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Purpose: The objective of this work was to investigate the ability of machine learning models to use treatment plan dosimetry for
prediction of clinician approval of treatment plans (no further planning needed) for left-sided whole breast radiation therapy with boost.
Methods and Materials: Investigated plans were generated to deliver a dose of 40.05 Gy to the whole breast in 15 fractions over 3
weeks, with the tumor bed simultaneously boosted to 48 Gy. In addition to the manually generated clinical plan of each of the 120
patients from a single institution, an automatically generated plan was included for each patient to enhance the number of study plans
to 240. In random order, the treating clinician retrospectively scored all 240 plans as (1) approved without further planning to seek
improvement or (2) further planning needed, while being blind for type of plan generation (manual or automated). In total, 2 x 5
classifiers were trained and evaluated for ability to correctly predict the clinician’s plan evaluations: random forest (RF) and
constrained logistic regression (LR) classifiers, each trained for 5 different sets of dosimetric plan parameters (feature sets [FS]).
Importances of included features for predictions were investigated to better understand clinicians’ choices.

Results: Although all 240 plans were in principle clinically acceptable for the clinician, only for 71.5% was no further planning
required. For the most extensive FS, accuracy, area under the receiver operating characteristic curve, and Cohen’s « for generated RF/
LR models for prediction of approval without further planning were 87.2 & 2.0/86.7 £ 2.2, 0.80 = 0.03/0.86 & 0.02, and 0.63 % 0.05/
0.69 % 0.04, respectively. In contrast to LR, RF performance was independent of the applied FS. For both RF and LR, whole breast
excluding boost PTV (PTV49sG,) Was the most important structure for predictions, with importance factors of 44.6% and 43%,
respectively, dose recieved by 95% volume of PTV 405 (Dose,) as the most important parameter in most cases.

Conclusions: The investigated use of machine learning to predict clinician approval of treatment plans is highly promising. Including
nondosimetric parameters could further increase classifiers’ performances. The tool could become useful for aiding treatment planners
in generating plans with a high probability of being directly approved by the treating clinician.
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Introduction

Radiation therapy (RT) treatment planning for breast
cancer focuses on reducing radiation exposure to healthy
tissues (whole heart, left anterior descending coronary
artery [LAD], lungs, and contralateral breast [CB]), while
ensuring an adequate target coverage. Two phase 3 studies
have shown significant toxicity reductions with intensity
modulated RT (IMRT) compared with 3-dimensional
(3D) conformal RT."” Apart from regular C-arm linear
accelerators, static beam IMRT for patients with breast
cancer can also be delivered with TomoDirect, an IMRT
modality delivered with TomoTherapy (Accuray, Madi-
son, WI).‘”’

In a standard clinical practice, treatment plans are gen-
erated by planners and presented to the treating clinician
for approval. Often, the final approved plan is the product
of an iterative procedure in which an initial plan is step-
wise enhanced to best satisfy the clinician’s requirements.
If on the one hand this can be a process that can avoid
human errors,” it is also time-consuming and workload
intensive.

Automated planning has been proposed to enhance
plan quality and reduce workload.>””* However, several
studies with blinded plan comparisons have shown that
clinicians do not always prefer the automatically gener-
ated plan.'”'” Recently, Cagni et al'” systematically inves-
tigated differences in plan scoring among planners and
treating clinicians in a single department. Large differen-
ces in plan quality assessments were observed.

In this study, we have investigated the ability of ran-
dom forest (RF) or constraint logistic regression (LR)
classifiers to use treatment plan dosimetry for correct pre-
diction of clinicians’ plan evaluations for left-sided whole-
breast RT (WBRT) with boost as (1) approved without
further planning to seek improvement or (2) further plan-
ning needed. The basis of the study was treatment plans
for previously treated patients. To enhance the statistical
power of the study, for each patient the manually gener-
ated clinical plan and an automatically generated plan
were included. For study purposes, the involved clinician
retrospectively labeled in random order all clinical and
automatically generated study plans as (1) approved with-
out further planning or (2) further planning needed, while
being blinded for type of applied plan generation (manual
or automated).

For both RF and LR, 5 different dosimetric feature sets
(FS) were investigated (2 x 5 investigated classifiers in
total) to assess dependence of prediction quality on
selected plan parameters. Machine learning (ML) predic-
tions for plans that were labeled “approved without

further planning” were considered correct in case of a pre-
dicted probability P (approved without further planning)
>.5.

For each of the investigated 2 x 5 classifiers, nested
cross-validation was used to establish both hyperpara-
meters and assess model performance, using the same
data set.'* Importance of included features for predictions
was investigated to better understand in clinicians’ plan
evaluations.

To the best of our knowledge, this study is the first
attempt of using ML with dosimetric plan parameters as
input to predict clinicians’ plan evaluations. In a hypothe-
sized future clinical application, a planner could then first
assess the probability that the clinician would consider a
generated plan approved. If this probability is low, the
planner could then try to further improve the plan before
presenting it to the clinician, thereby minimizing the time
used by clinicians for plan evaluations.

Methods and Materials

Patient selection and treatment planning

A total of 120 patients receiving adjuvant left-sided
WBRT after breast-conserving surgery at the European
Institute of Oncology (IEO) Institute between 2019 and
2020 were randomly selected from the institutional data-
base. The study approved by the Ethical Committee of the
IEO Institute (identification number UID2433). Institute
(identification number UID2433). RT was delivered with
TomoDirect in a TomoTherapy Hi-Art System (Accuray,
Sunnyvale, CA).

Clinical plans were manually generated with the
VOLO treatment planning system (version 2.1.6; Accuray,
Sunnyvale, CA), applying a jaw width of 2.5 cm, a pitch of
0.25, and modulation factors of 1.8 to 2.0 to keep the
delivery time within the range of 10 to 15 minutes. Breast
and tumor bed were contoured based on European Soci-
ety for Therapeutic Radiation and Oncology guidelines
for early breast cancer."” Isotropic 5-mm expansions were
added to create the corresponding planning target vol-
umes (PTVs). Organs at risk (OARs) included left and
right lung, CB, heart, and LAD."® In line with the Radia-
tion Therapy Oncology Group 1005 study protocol,'”
40.05 Gy was delivered to the whole breast in 15 fractions
over 3 weeks with a simultaneously integrated boost to
the tumor bed that resulted in a total dose of 48 Gy. Dose
objectives mainly followed those used in the previously
mentioned protocol (Table 1).
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Table 1 Dose-volume histogram constraints for clinical planning and recommended and maximum acceptable values

for all considered targets and organs at risk

PTV,0.05Gy (Whole breast — boost volume)

PTV,50Gy (boost volume)

Dosy; >38 Gy

Organ at risk Ideal Acceptable

Heart Viecy <5% Vaogy <5%
Vaay <30% Vsay <35%
Dpean <32 Gy Dpnean <4 Gy

Left anterior descending coronary artery Dinean <25 Gy
Dy, <45 Gy

Left lung Viegy <15% Viegy <20%
Vaay <35% Vaay <40%
Vaay <50% Vaay <55%
Drnean

Right lung Vigy <10% Vigy <15%

Contralateral breast Do o3cc <2.4 Gy Do,o3cc <3.84 Gy
Dy, <1.44 Gy Dsy, <2.40 Gy
Dinean <4 Gy Dinean <5 Gy

Vgo% >36 Gy

Dsou

D309

Do 03cc <46 Gy
CI

HI

Dosy, 245.6 Gy
Dso, <52.8 Gy
Do osec <55.2 Gy
CI

HI

Doo3cc <48 Gy

Dogo, >43.2 Gy
DIO% <52.8 GY
DO,O3CC S57.6 Gy

were also used in this study.

Abbreviations: CI = conformity index; HI = homogeneity index; PTV = planning target volume.
Apart from obtained values for the constraints, obtained values for parameters in the table without recommended and maximum acceptable values

For each of the 120 study patients, automated plan
generation was performed for the same planning com-
puted tomography and structures as in the clinical plan.
Autoplanning was performed with a for breast adapted
version of the Guided Planning System'’ in the RaySta-
tion TPS, version 11A (RaySearch, Stockholm, Sweden).
This autoplanning module was not specifically tuned for
generation of highest quality plans for the treatment
approaches and traditions in the center where the
included patients were treated, as comparison of auto-
planning with manual planning was not a study aim (see
Introduction section).

Collected data

The labeling of all 240 involved plans as (1) approved
without need for further planning to seek improvement

or (2) further planning needed was performed by a senior
radiation oncologist with more than 20 years of experi-
ence in breast cancer treatment (IEO).

The following 24 dosimetric plan parameters were
gathered for all 240 plans: Dy 93cc; D30%> D509 Dososr cON-
formity index (CI; defined as the ratio between the region
of interest volume covered by the 95% isodose and the
total patient volume covered by >95% of the prescribed
dose), and homogeneity index (HI; defined as Dgsy,/Dso;)
for the whole breast excluding boost PTV (PTV.0s56y);
Doy oscs Dsos Doses CI, and HI for the boost PTV
(PTV.4s06y)s Vaoays Vsay and Diean for the heart and
Dinean and Dy, for the LAD; VigGy, Vigys Vagy and Diean
for the left lung; Vg, for the right lung; and Dg g3cc, D5
and Dy, for CB. See Table 1 for an overview.

Apart from the previously mentioned dosimetric plan
parameters, composite dosimetric scores (CPS) were col-
lected for OARs and PTVs, as previously proposed by
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IEO investigators.'® In this scoring system, the involved 5
OARs and 2 PTVs each get a score of 0, 0.5, or 1, depend-
ing on the fulfilment of planning constraints reported in
Table 1: 1 point was given if all dose constraints were
within recommended values, 0.5 point if at least 1 dose
constraint was respected, and no points otherwise. Param-
eters in Table 1 without acceptable values were not con-
sidered in this scoring system. Before classifier trainings,
the 240 values for each dosimetric feature were first cen-
tered around zero by subtracting the mean value, and the
values were scaled to unit variance.

The full data set consisted of 240 rows (one for each
plan) and 32 columns (24 dosimetric parameters, 7 com-
posite scores, and the clinician’s binary score [approved
or not]). The Python scikit-learn library19 was used for all
data analyses and model developments.

ML models and training

The investigated 5 dosimetric FS used to train both the
RF and LR classifiers (2 x 5 classifiers in total) consisted
of the following:

® ES1: 24 dosimetric parameters defined in the Col-
lected Data section

® ES2: 7 CPS defined in Collected Data section

® FS3: 24 differences between dosimetric parameters
and their objectives, as indicated in the “Ideal” col-
umn of Table 1. If this was missing (eg, left lung
Dnean)» the original value was maintained.

® FS4: FS2 + FS3

e ES5: FS2 + FS1

For each of the 2 x 5 investigated classifiers (RF and
LR, both combined with FSi with i = 1-5), model building
was performed with nested cross-validation with an outer
and an inner loop. The applied procedure is extensively
described in Talbot'* and schematically presented in
Fig. 1. Here a brief summary is presented: for the outer
loop, the 240 available plans were equally and randomly
distributed over 10 folds of 24 plans. Each of the 10 folds
then served as a test set for model training based on the
remaining (240-24) plans. However, before such a train-
ing, an inner-loop 5-fold cross-validation was performed
to establish model hyperparameters such as the number
and type of trees for RF and solver, penalty, and regulari-
zation strength for LR. Inner-loop cross-validations were
performed using only the training set of the correspond-
ing outer loop (Fig. 1). For each the 2 x 5 classifiers, the
10 outer-loop models were used to assess the prediction
performance. The inner-loop models served only for
establishment of model hyperparameters.

The function “GridSearchCV” of the Python scikit-
learn library'” was used in the inner loops to select opti-
mal hyperparameters. For each of the 2 x 5 classifiers,

Test1

\Validation 1

T

Test 2 Inner loop (K,=5)

=10)

§ — ]
H
E Best hyperparameters
3
T | Te10
Figure 1 Schematic explanation of the applied nested

cross-validation, consisting of 10-fold outer-loop cross-
validation and 5-fold inner-loop cross-validation. Each of
the 10 outer-loop model buildings is preceded by a paired
5-fold inner-loop cross-validation to establish hyperpara-
meters using only the training patients of the correspond-
ing outer-loop model. Nested cross-validation was
performed for each of the 2 x 5 classifiers investigated in
this study. For each classifier, the 10 outer-loop models
were used to evaluate prediction performance.

prediction performance was assessed by calculating mean
values and standard errors of the accuracy, area under the
receiver operating characteristic curve (AUC), and
Cohen’s kappa coefficient (x)*° for the 10 outer-loop
models.

Landis and Koch®' proposed the following classifica-
tion «: k < 0, agreement “poor”; 0 < k < 0.2, agreement
“slight™; 0.2 < k < 0.4, agreement “fair”; 0.4 < k < 0.6,
agreement “moderate”; 0.6 < x < 0.8, agreement “sub-
stantial”’; and 0.8 < k < 1, agreement “almost perfect.”

For LR, we calculated the Euler number to the power
of its coefficient to quantify the importance.”” For RF clas-
sifiers, feature importance was computed as Gini impor-
tance or mean decrease in impurity.” For each of the
2 x 5 classifiers, the final values of variable importance of
included features were calculated as averages of impor-
tance values in the 10 outer-loop models. The sum of the
importances of all considered features is always 100%.

One-way analysis of variance (ANOVA) tests were
used for detecting differences among FS in terms of accu-
racy, AUC, and « values, while t tests were used for ana-
lyzing performance differences between RF and LR
classifiers.

Results

The clinician considered all evaluated 240 plans clini-
cally acceptable. Nevertheless, only 92 of 120 clinical plans
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Table2 Accuracy, AUC, and « parameters for the RF and LR models for the 5 investigated FS

RF LR P (Student 1)

Accuracy (%) AUC K Accuracy (%) AUC K Accuracy (%) AUC «
FS1 825415 076+0.03 054405 767+14" 0.754002>* 047 £0.03*° .02* 34 .09
FS2 829+14 076+0.02 055+004 81.7+13  0.85+002"° 0.61 +0.03 22 01 .09
FS3 850+ 1.1 077 £0.03 0594004 758+17" 0.7440.02>* 0.45 + 0.04*° .01* 18 .01*
FS4 872420 0.80£0.03 0.63+005 86722 0864002 069+ 0.04" 43 04 19
FS5 833+18 077 +0.03 056006 833+£25 084=+002° 0.63+£0.04" 5 04 16
P (ANOVA) 207 889 663 .005 <.001 <.001

sion; RF = random forest.

In bold the statistically significant values.
* REF is superior.
1 LR is superior.

Abbreviations: ANOVA = analysis of variance; AUC = area under the receiver operating characteristic curve; FS = feature set; LR = logistic regres-

Average values and standard errors were calculated from the 10 folds of the outer loop in the nested cross-validation. The last 3 columns show P val-
ues for comparisons between RF and LR. The last row shows P values for ANOVA tests for models considering FS1 through FS5. Superscript num-
bers refer to FS that give statistically different results. For example, for FS1, the LR model has an AUC of 0.75 + 0.02>*; in this case, superscripts 2
and 4 indicate statistically significant differences for the LR model for FS1 compared with the LR models based on FS2 and FS4, respectively.

(77%) were approved without further planning, and the
remaining 28 not. Of the autoplans, 79 (66%) were judged
approved and 41 not.

Model performances in terms of accuracy, AUC, and
Cohen’s « are presented and compared in Table 2. Accu-
racy, AUC, and « for generated RF/LR models for the
most extensive feature set (FS4) were 87.2 £ 2.0/86.7 +
2.2,0.80 £ 0.03/0.86 £ 0.02, and 0.63 = 0.05/0.69 =+ 0.04,
respectively. Accuracies of 87.2%/86.7% and AUCs of
0.80/0.86 are at the high end compared with many pub-
lished predictive modeling studies in RT. According to
the interpretation by Landis and Koch,”' « values of 0.63/
0.69 point at “substantial agreement” between clinician
plan labeling and ML prediction (see the Methods and
Materials section).

The last 3 columns in Table 2 show that performance
differences between RF and LR were mostly not statisti-
cally significant, depending on considered performance
parameter and applied FS. RF had superior accuracy for 2
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ES, and one of these also had a superior x. LR was supe-
rior in AUC for 3 FS.

Achieved accuracy, AUC, and « for created RF classi-
fiers were independent of the FS (columns 2-4 in Table 2,
including P [ANOVA] in the last row), implying that
there was no evidence that adding the FS3 features to FS2
(= FS4; see ML Models and Training section) or adding
FS1 to FS2 (= FS5) resulted in better predictions. In con-
trast, for LR, dependences on applied FS were observed
(columns 5-7 in Table 2, including P [ANOVA] in last
row), with FS4 and FS5 overall performing best.

Figure 2 shows for the evaluated PTVs and OARs,
summed importances of the corresponding features for
the 5 investigated FS (left panel: RF, right panel: LR).
Both for RF and LR, PTV4¢sGy was undoubtedly the
most important structure for the predictions, independent
of the applied FS. The right lung was always of minor
importance, and the most important OARs were heart
and LAD for RF and LR classifiers, respectively. Figure 3
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-
o

uFSl wFS2 mFS3 mFS4 mFSS

v
o o

o H
0
S

RS

<
&

\\’(&

Percentage (%)
»n w &
o o
1
1
7 ==
.
% =
=
=
A ——
S
(v; ]
—
—

|I st il Hlll .
e &,)(\ ‘;a‘\

W

Figure 2 Importances for all feature sets (FS1-FS5) for all considered structures (organs at risk and planning target
volumes). For each feature set, the values for the 7 structures add up to 100%. For each structure, the bar for each feature
set represents the sum of the importances of all features related to that structure. Abbreviations: CB = contralateral breast;
LAD = left anterior descending coronary artery; PTV = planning target volume.
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Figure 3 Relative importance of various PTV sy features. Abbreviations: CI = conformity index; CPS = composite
score; HI = homogeneity index; LR = logistic regression; PTV = planning target volume; RF = random forest.

shows importances of various PTV 4 o5y features: for FS1
and FS3, which do not contain the CPS, it is clearly seen
that Dgse, is the parameter that has the highest impor-
tance in predictions, and for FS4 and FS5 with LR model
the CPS and with RF model the Dgsq, are respectively the
features of greater importance.

Discussion

In the complex landscape of large amounts of data, ML
(including deep learning) offers unique opportunities for
improving the overall quality and efficiency of the modern
RT workflow.”**” The aim of our study was to investigate
whether ML models could become useful for aiding treat-
ment planners to present only treatment plans to clini-
cians that have a high probability to be approved without
further planning. The applied data set consisted of 240
treatment plans for left-sided WBRT with boost, each of
them retrospectively labeled by a clinician as either
“approved without further planning to improve” or “fur-
ther planning needed.” In total, 2 x 5 classifiers were
investigated; RF and constraint LR, both trained with 5
different sets of dosimetric plan features. For a given
treatment plan, each of the 2 x 5 classifiers predicted the
probability that the clinician would approve the plan
without further planning. For plans labeled “approved
without further planning to improve,” a probability >.5
was considered as a correct prediction. Likewise, for plans
with a label “further planning needed,” a probability <.5
was considered correct. The use of 5 different FS allowed
us to investigate the sensitivity of RF and LR for the
choice of applied dosimetric features. FS1 and FS3 both
consisted of 24 dosimetric parameters that could be
directly calculated from the dose distributions. The much

smaller FS2 (7 parameters) contained for each of the 7
involved anatomic structures a composite score that was
derived from related dosimetric parameters, as previously
proposed.'® FS4 and FS5 were the largest FS, consisting of
FS2 + FS3 and FS2 + FS1, respectively. For FS4, accuracy,
AUC, and Cohen’s « for generated RF/LR models for pre-
diction of approval without further planning were rather
high: 87.2 £ 2.0/86.7 £ 2.2, 0.80 & 0.03/0.86 £ 0.02, and
0.63 £ 0.05/0.69 £ 0.04, respectively. RF performance
was basically independent of the applied FS (Table 2),
meaning that FS2 with only 7 features performed as well
as FS1 and FS3 with 24 features and FS4 and FS5 with 31
features. For LR, a dependency on FS was observed, with
the large FS4 and FS5 overall performing the best. The
possibility of using nonlinear combinations of available
dosimetric features in RF modeling could make up for
reduced availability of dosimetric features in FS2.

Clinicians’ plan evaluations are not only based on plan
parameters but consider also the full 3D dose distribution.
This study shows that not explicitly considering the full
3D dose in the 2 x 5 investigated classifiers could
still result in high-quality predictions of clinicians’ plan
evaluations.

As mentioned previously, all 240 study plans were
retrospectively labeled by the clinician as “approved
without further planning” or “further planning
needed.” Apart from this labeling, the clinician also
assessed plan acceptability. Although only 71.5% of
plans were labeled as “approved without further plan-
ning,” the clinician found 100% of plans in principle
acceptable for treatment. Apparently, for a large num-
ber of plans the clinician had a wish to further explore
plan improvement even though the plan was in princi-
ple acceptable. This reflects the complex decision mak-
ing that was modeled in this article; the label “further
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planning needed” was not related to unacceptable con-
straint violations but to more subtle desires for plan
improvement.

For all investigated 2 x 5 classifiers, PTV g5y was by
far the most important anatomic structure for predictions,
reflecting the importance given to it by the clinician
(Fig. 2), with Dgse, as the most important parameter for
most classifiers having PTV 0 scy Doso, as feature (Fig. 3).

In this study, all 240 available labeled treatment plans
could be used for training, validation, and testing (classi-
fier performance assessment) due to the applied nested
cross-validation (Talbot,"* Fig. 1). With this procedure,
inner-loop cross-validation was used for establishment of
hyper parameters, to be used for model trainings in the
outer-loop cross-validation.

A limitation of this study is that the analyses were per-
formed for a single clinician. Generalizability of these pre-
diction models for use by more clinicians is a topic of
future research. The endeavor of developing a single
model for all clinicians in the center could result in higher
consistency of the treatments delivered in the study cen-
ter. Another limitation is the lack of nondosimetric
patient data in the performed analyses, including age, per-
formance status, previous or concomitant treatments, sur-
gery results, and comorbidities. Future investigations will
include such factors that could further enhance the reli-
ability of the predictive models.

Conclusion

We have investigated several ML approaches for pre-
diction of clinician approval of treatment plans for left-
sided WBRT plus boost based on plan dosimetry. Results
are encouraging for future workflows in which treatment
planners will only present treatment plans to treating
clinicians if they have a high probability of being directly
approved, that is, without an additional round of planning
and plan evaluation.
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