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Abstract

Turbulence subjected to rotation is present in a wide range of natural phe-
nomena, including geophysical and astrophysical flows, and engineering ap-
plications. In general, rotation affects the structure and the dynamics of
turbulence through the Coriolis force, which also tends to make the flow
two-dimensional via the Taylor-Proudman theorem. From a theoretical point
of view, rotating turbulence is an active field of research, with many open
questions in particular when combined with other ingredients such as con-
finement or stratification.

The project of this thesis, which has been developed in the period of three
years, relies on the study of the effects of rotation on a turbulent flow in
a simple homogeneous configuration in the absence of (or far from) bound-
aries. This simplification aims at understanding the effects induced directly
by rotation without the complications produced by other ingredients.

The purpose of the thesis is to reach a physical understanding on how diverse
turbulent systems can be affected by different rotation intensity. In particular,
motivated by the important role played in atmospheric and oceanic environ-
ment, we investigate three particular effects induced by rotation, i.e. the
asymmetry between cyclones and anticyclones, the formation of columnar
structures and the role of rotation on the turbulent dimensional transition.

The work in this thesis is based on both laboratory experiments and direct
numerical simulations, with also the development of data analysis software
and the optimization of extisting codes.
Laboratory experiments have been performed in the TurLab facility in Turin
where the experimental apparatus consists of a 6m diameter rotating plat-
form, which is one of the largest in the world and allows to investigate the
behavior of large scale motions and turbulent flows subjected to solid body
rotation.
Numerical simulations are based on a series of codes which integrate the
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Navier-Stokes equations in periodic boxes with pseudo-spectral methods. Ad-
ditional terms, such as the Coriolis acceleration, and fields, i.e. an active
temperature field in the Boussinesq approximations, have been also consid-
ered. Numerical code are fully parallelized with MPI protocol and have been
runned on several architectures, mainly including MARCONI and GALILEO
supercomputers, available at the High Performance Computing (HPC) de-
partment of CINECA which is the main italian supercomputing center.

More in detail, this thesis is made of three parts:
Part I consists of an introduction to the basic concepts of turbulence theory
(Chapter 1) and to the principal action of rotation on a generic flow (Chap-
ter 2). These two chapters are meant to provide the reader with the tools
able to clarify the results presented in the last part.

Part II introduces the experimental tools I used and the numerical methods
implemented in the models. Here the focus is on the Turin laboratory where
I conducted experiments of turbulence under rotation, with the analysis tools
exploited (Chapter 3). Furthermore, a brief overview on the numerical meth-
ods is discussed, describing my code implementation in order to improve and
optimize the computational efficiency (Chapter 4).

Part III collects the results of the work done during the PhD which led to three
publications on international journals (one in submission) and represents the
core of the present thesis.

• Chapter 5: G. Boffetta, F. Toselli, M. Manfrin, S. Musacchio, Cy-
clone–anticyclone asymmetry in rotating thin fluid layers , Journal of
Turbulence, 1 (2020).
https://doi.org/10.1080/14685248.2020.1855352

• Chapter 6: F. Toselli, S. Musacchio and G. Boffetta, Effects of rotation
on the bulk turbulent convection, Journal of Fluid Mechanics, 881, 648
(2019).
https://doi.org/10.1017/jfm.2019.764

• Chapter 7: S. Musacchio, F. Toselli, G. Boffetta, The kolmogorov flow
in a rotating frame - in preparation
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The first work (presented in Chapter 5) addresses the problem of the asymme-
try between the statistics of cyclones and anticyclones in rotating turbulent
flows by a combination laboratory experiments and direct numerical simula-
tions. The main result of our work indicates that rotation, combined with the
flow confinement, can retard the developing of such asymmetry. Moreover in
spite of some flow structural differences between experiments and numerical
simulation, mainly related to their boundary conditions, the observed effects
on the cyclone-anticyclone asymmetry statistics are similar.

In the second work (Chapter 6) we study the effect of rotation on turbu-
lent heat transfer. In detail the behavior of an unbounded system, where
homogeneous turbulent convection is produced by a mean vertical temper-
ature gradient, is investigated by means of direct numerical simulations of
bulk turbulent convection. Here we find that the quasi-bidimensionalization
of the flow and the formation of vertical columnar structures, due to rota-
tion, produce strong correlations between temperature and vertical velocity.
These elements seem to be responsible for the observed increase of the heat
transport inside the system.

Finally, in Chapter 7 we study the effect of rotation on the a simple chan-
nel flow given by the celebrated Kolmogorov flow. Here, we mainly consider
the action of rotation on the mean flow and its impact on the friction and
stress coefficient variation. Furthermore, a comparison between the velocity
and stress vector orientation is presented, showing that their alignment is
strongly influenced by the rotation intensity.
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Part I

Turbulence, Dimensions &
Rotation





Chapter 1

Introduction to turbulence

Turbulent phenomena are observed every day and appear in flows of different
scales and sizes: from large-scale processes such as the atmospheric jets or
oceanic currents, to local problems such as a pipe flow or the efficiency of
a wind turbine. From a theoretical point of view, turbulence can be defined
as a state in a physical system, out of equilibrium, with a large number of
degrees of freedom, characterized by spatial and temporal disorder usually
associated with a random and chaotic flow. Turbulence is generated by an
excess of kinetic energy injection in fluid flow, which overcomes the damping
effect of the fluid’s viscosity. The scale of injection, where the turbulence
is excited, usually differs strongly from the scale of damping, where dissi-
pation takes place. Moreover the nonlinear interations strongly act in the
so-called inertial range by transferring energy from larger scales (injection
scale) towards smaller ones (damping scale). These various "active scales",
the transfer of energy through a cascade-like process and the presence of dy-
namically conserved quantities are the turbulence key features and represent
the crucial issue in turbulence. Indeed, those characteristics produce a mix-
ing enhancement and an unpredictability of fluid motion even if we know the
initial conditios of the system. For this complex nature of turbulent flows,
problems can rarely be solved analytically and so we have to rely on experi-
mental studies or numerical simulations using a statistical analysis. Even if
the classical physics laws that rule the turbulent behaviour are well known
equations, nowadays a full understanding of turbulence is still missing. The
first person that studied and tried to describe turbulence through his ob-
servations was Leonardo da Vinci in the XV century; after him, in the XIX
century, the works of L. Euler, L. M. H. Navier, G. G. Stokes, L. F. Richard-
son and O. Reynolds have given the basis of turbulence as research field.
Finally in the last century, N. Kolmogorov strongly influenced the research
field by introducing the first statistical theory and significantly changing the
turbulence problem approach. His work in 1941 remains a major source of
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1. Introduction to turbulence 4

inspiration for turbulent research.

1.1 Navier-Stokes equations
The dynamics of an incompressible fluid is determined by the well known
Navier-Stokes equations:

∂tu + u · ∇u = −1
ρ
∇p+ ν∇2u + f (1.1)

∇ · u = 0 (1.2)
In these equations, derived by L. M. H. Navier and G. G. Stokes in the early
1800’s, u = (u, v, w) represents the velocity field of the fluid assumed in-
compressible with equation 1.2, p is the pressure, ρ the fluid density, ν = µ

ρ

is its kinematic viscosity (with µ its dynamic viscosity) and f represents the
sum of the external forces per unit mass which supports the system motion.
The Navier-Stokes equations take origin from the conservation of mass and
momentum per unit volume; moreover their different terms represent respec-
tively:

• u · ∇u the non-linear term or inertial term which is responsible for the
trasnfer of kinetic energy in the turbulent cascade.

• −∇pρ the pressure gradients which guarantee the incompressibility of the
flow. They are determined by the Poisson equation

∂2p = −ρ∂i∂juiuj (1.3)

which is obtained by taking the divergence of equation 1.1.

• ν∇2u the viscous term, proportional to viscosity. It acts mainly at
smaller scales by dissipating energy, so it is easy to understand that it is
the dominant term in the laminar regime and it tends to stop the flow
motion in absence of the forcing term f .

In order to solve the Navier-Stokes equations 1.1, both initial conditions and
boundary conditions are needed. To achieve the maximum symmetry in the
system, it is advantageous not to have any boundaries: in this way one can
assume that the fluid fills all the R3 space. However, the boundlessness of the
space can lead to mathematical issues. For this reason, to simply overcome
the problem, it is quite typical to deal with periodic boundary conditions in
the space variable r = (x, y, z):

u(x+ aL, y + bL, z + cL) = u(x, y, z) (1.4)



5 1.1. Navier-Stokes equations

for every integer value of a, b, c and for all x, y, z. In this way the flow is re-
stricted to a periodic box of extension L (where L ∈ R is a positive number,
called period) such as: 0 ≤ x < L, 0 ≤ y < L, 0 ≤ z < L.
With the periodic boundary conditions it’s quite easy to show that the pres-
sure term can be eliminated from Navier-Stokes equations 1.1 by using the
Poisson equation 1.3 [36]. By going from the r-space (physical space) to
the k-space (Fourier space) one can write the pressure using Fourier series:

p(r) =
∑
k

eik·rp̂k (1.5)

therefore, from eq.1.3 we obtain

p̂k = −kikj
k2 ( ˆujui)(k), k 6= 0 (1.6)

where k is the modulus of the wavevector k. Finally, after returning in the
physical space, the expression of the pressure is

p(r) = ∇−2∂i∂j(uiuj) (1.7)

consequently the Navier-Stokes equations can be rewritten as

∂tui + (δil −∇−2∂i∂l)∂j(ujul) = ν∇2ui (1.8)

by imposing the divergence conditions 1.2.
An alternative way to elimitate the non-local pressure term is to introduce
the vorticity, defined as ω = ∇× u. The vorticity field equation of motion
is now derived by taking the curl of the Navier-Stokes equations 1.1, then
using the identity u · ∇u = 1

2∇ |u|
2−u× (∇×u), obtaining the following

equation:
∂tω + (u · ∇)ω = (ω · ∇)u + ν∇2ω (1.9)

The left hand side of this equation represents the convective derivatives of
the vorticity, while on the right hand side of the equation we have the non
linear term (ω · ∇)u, also called the vortex-stretching term, that implies
lengthening of vortices associated with a corresponding increase of the vor-
ticity component in the stretching direction. The last contribution to the
equation is brought by the dissipative term.

1.1.1 Reynolds number

Equation 1.1 can be made non-dimensional by introducing a characteristic
length scale L and a specific velocity U of the flow. If we consider a simple
case of a pipe flow: L can be identified as the diameter of the pipe and U as
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the mean-flow velocity. In this way, taking the density equal to 1 by rescaling
the pressure, we can get:

∂tu + u · ∇u = −∇p+ 1
Re
∇2u + f (1.10)

where Re = UL
ν is the definition of the famous Reynolds number that gives a

measure of the nonlinearity of the system. This adimensional number is the
only control parameter of the flow and was introduced by Osborne Reynolds
in 1883, who showed that a transition between laminar and turbulent flow
occurs when the Re number reaches a critical value [81]. This value depends
on the geometries of the flow, but the crucial thing is that the transition from
laminar to turbulent flow always occurs near the critical Reynolds as seen in
figure 6.3.
The Reynolds number is defined as the ratio between the inertial forces and
the viscous ones:

UL

ν
∼ u · ∇u

ν∇2u
(1.11)

Due to its mathematical definition, we can have a laminar regime when the
viscosity dominates over the inertial term while the so called fully developed
turbulence is achieved in the opposite case or in the ideal limit in which ν → 0
and Re → ∞. In the transition from laminar regime to fully developed

Figure 1.1: Original sketches by Reynolds work [81]. In his experiments water flows through a
horizontal pipe where some dye is added in order to visualize the flow. From top to bottom the
Reynolds number is increased and the system evolves from laminar (a) to turbulent (c) after the
critical value is exceeded.

turbulence, symmetries that characterize the Navier-Stokes equations (see
[36]) are firstly broken and then, at very high Reynolds number, all or some
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of them are restored in a statistical sense when fully developed turbulence is
reached.

1.1.2 Conservation laws

In turbulence is important to discuss the global conservation laws, involving
the integration over the entire volume occupied by the fluid. As in the
previous section, periodic boundary conditions 1.4 are assumed and angular
brackets 〈...〉 are used to denote averages over the periodic box.
The main known conservaton laws are:

• The conservation of momentum
d

dt
〈u〉 = 0 (1.12)

• The conservation of energy
d

dt
〈12u2〉 = −ν〈ω2〉 (1.13)

where ω = ∇× u.
• The conservation of helicity

d

dt
〈12u · ω〉 = −ν〈ω · ∇ × ω〉 (1.14)

All these laws can be easily proven: for the momentum conservation all terms
of 1.1, being spatial derivatives of periodic functions, vanish when the average
is taken and the only terms that survives is the temporal derivative ∂tui. For
the energy relation one can multiply 1.1 by ui and use the incompressibility
1.2; after averaging over space the pressure term and the nonlinear term go
to zero because they are evaluated at the boundaries after being integrated
by parts. Moreover, since boundaries and functions are periodic, the identity
〈u·∇2u〉 = −〈∇×u·∇×u〉 is used to rewrite the viscous term. Finally, the
helicity balance relation can be proven by taking the scalar product between
the vorticity equation 1.9 and the vector u and averaging over space: the
only term that survives is the viscous one, expressed by the known identity
〈u · ∇2ω〉 = −〈∇× u · ∇ × ω〉.
At this point some important notation can be introduced:

E ≡ 〈12 |u|
2〉

Z ≡ 〈12 |ω|
2〉

H ≡ 〈12u · ω〉

(1.15)



1. Introduction to turbulence 8

where E1 is the mean energy, Z the mean enstrophy and H the mean helicity.
With these new quadratic quantities defined in 1.15, the energy and helicity
balance equations can be expressed as:

d

dt
E = −2νZ, d

dt
H = −2νHω (1.16)

where the quantity Hω ≡ 〈12ω ·∇×ω〉 represents the mean vertical vorticity.
The energy balance shows that, for ν = 0 and in the abscence of other
external forcing, the dynamics conserve the kinetic energy which is, under
this conditions, an inviscid invariant. Furthermore, one of the most frequently
used quantities in turbulence is the so called energy dissipation rate

ε ≡ −dE
dt

(1.17)

that in the limit of ν → 0 does not vanish but reaches a constant value
equal to limν→0 2νZ. This phenomenon is known as dissipative anomaly
and implies that, in order to mantain the energy dissipation finite, the total
enstrophy needs to diverge as Z ∝ ν−1 by compensating the decreasing
viscosity. The enstrophy growth, in three dimensions, is phisically explained
by the vortex stretching term that produces diverging velocity gradient in
the limit Re → ∞. In two dimensions, instead the enstrophy is conserved
because the vortex-stretching term goes to zero.

1.1.3 Energy budget

As shown in the global energy balance 1.13 the nonlinear term in Navier–Stokes
equation does not change the total kinetic energy. Nevertheless it has a pri-
mary role in turbulence, because it is responsible for the energy redistribution
among the various scales of motion: such energy transfer between different
modes is the origin of the turbulent cascade.
In order to describe the transfer of energy we need a qualitative definition
for the concept of scale: if a typical turbulent flow image (characterized by
greater structures and smaller ones like filaments or small eddies) is shown
through a slide projector, the very high quality details of the image can be
blurred by going out of focus where only greater structures can be appreci-
ated. This defocusing is equivalent to a filtering which can act by attenuating
or removing high harmonics in the the spatial Fourier decomposition of the
image. The cutoff K of the filtering obviously depends on the chosen defo-
cusing and is associated with a scale ` ∼ K−1.

1It is actually the mean energy per unit mass, but considering an incompressible fluid with constant
density the distinction is not important.
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In the same way the idea can be mathematically formalized introducing the
Fourier series of a periodic function f

f(r) =
∑
k

eik·rf̂k (1.18)

and defining respectively the low-pass and the high-pass filtered function:
f<K(r) =

∑
k≤K

eik·rf̂k f>K(r) =
∑

k>K

eik·rf̂k (1.19)

where the length ` ∼ K−1 is the scale of the filtering. In this way only
frequencies above or below the threshold cutoff K are filtered. The example
in figure 1.2 clarifies the idea of low/high-pass filtering.

Figure 1.2: A signal (a) where a low-pass filtering (b) and a high-pass filtering (c) are applied.

In three-dimensional turbulence, under periodic boundaries conditions, the
same concept of filtering can be used on the velocity field by defining the
functions u<

K(r) and u>
K(r) which represent eddies of scale greater than `

and eddies of scale smaller than `.
Such notation can be used to study the energy budget of the low-pass fil-
tered velocity field: indeed by taking the scalar product of u<

K with the
Navier-Stokes equation written for the relative low-filtered velocity field, and
then semplifying some terms using periodicity and vector identities, one can
collects the remaining terms to obtain the scale-by-scale energy budget equa-
tion:

∂tEK = −ΠK − 2νΩK + FK (1.20)
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where EK ≡ 1
2〈|u

<
K |2〉 is the cumulative energy, ΩK ≡ 1

2〈|ω
<
K |2〉 the cumu-

lative enstrophy and FK ≡ 〈f<
K ·u<

K〉 is the cumulative energy injection due
to the forcing. All these terms are defined between wavenumber 0 and K.
Finally, the flux of energy through wavenumber K is described with ΠK ≡
〈u<

K · (u<
K ·∇u>

K)〉+〈u<
K · (u>

K ·∇u>
K)〉 and represents the amount of energy

that flows towards smaller scales due to nonlinear interactions.
To sum up, the equation 1.20 shows that the energy variation in time, at
scales smaller than ` ∼ K−1, is equal to the energy injection at such specific
scales (FK) minus the energy flux towards smaller scales (ΠK) and minus the
energy dissipation (2νΩK). In a classical fully developed turbulent system,
where high Reynolds number are reached, there is a remarkable scale sepa-
ration between large scales where the energy is injected and the small scales
where dissipation localizes: in the so called inertial range (the intermediate
range of scale) the energy is conserved and transferred scale-by-scale.

1.2 Turbulence phenomenology
In the previous section the role of the nonlinear term in Navier–Stokes equa-
tion is explained to correspond to an energy transfer in Fourier space between
modes, in the inertial range. Using another approach, which consists of a sim-
ple dimensional analysis of the Navier-Stokes equation, one can understand
the essential phenomenology of turbulence.

1.2.1 Richardson cascade

The basics of turbulence phenomenology can be described by the concept of
turbulent cascade proposed by Richardson in 1920. In figure 1.3 the whole
process is described: initially some kinetic energy is injected at large scales
by an external forcing which allows the formation of eddies of size `0. Due to
the fluid motions, these eddies are stretched and deformed until they reach
smaller scales through a process of breaking. This process is repeated and the
energy continues to flow towards smaller scales forming smaller structures. At
the end, when enough small scales are reached, the viscosity acts dissipating
eddies in form of heat.
Let us now consider u` the mean flow velocity at scale `, τ` ∼ `/u` the time
at the relative scale required to transfer energy from `-scale eddies to smaller
ones and τ diss` ∼ `2/ν the time required by the viscous term to dissipate
the kinetic energy of a `-scale eddie. At this point, one can identify three
different range of scales:

• Injective range: corresponds to the large scales (`0) where the external
forcing injects the kinetic energy.
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• Inertial range: where the energy is conserved and transported to
smaller scales. Here the time required for energy transfer is still shorter
than the dissipative time τ` << τ diss` .

• Dissipative range: when the time required for energy transfer becomes
of the same order of the dissipative time. In this range the energy
dissipation starts to overcome the transfer and the energy cascade is
stopped.

Figure 1.3: Sketch of the turbulent cascade, described by the celebrated rhyming verse by Richard-
son:"Big whorls have little whorls that feed on their velocity, and little whorls have lesser whorls
and so on to viscosity".

A simple dimensional analysis, by looking at the energy at scale `, i.e.
E(`) ∝ u2

` , allows to identify the Kolmogorov scaling laws. Indeed, the
energy dissipation rate can be written as:

ε ∼ E(`)
τ`
∼ u2

`

u`
`

(1.21)

that does not depend on the viscosity ν. As a consequence, the characteristic
Kolmogorov scalings for times and velocities are respectively:

u` ∼ ε1/3`1/3, τ` ∼ ε−1/3`2/3 (1.22)

The so called Kolmogorov scale η, is finally identified as the scale under which
the linear viscous term dominates the fluid motions. Once the border between
the inertial and the dissipative range is reached, indeed, the dissipative time
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τ diss` is equivalent with the transfer time τ` and the Kolmogorov scale can be
define as:

η ∼ ν3/4ε−1/4 (1.23)
As said before, increasing the Re number and mantaining a constant forcing
at the larger scale, the inertial range is extended. The portion of the system
in this range is far from both the forcing and the dissipative range; here
turbulence properties are universal because they are independent on how the
system dissipates energy and how the latter is produced at larger scales.

1.2.2 Kolmogorov theory (K41)

Inspired by the Richardson qualitative concept of cascade, in 1941 Kol-
mogorov defined a theoretical framework for turbulence, now known as the
K41 theory. His theory is proposed under specific hypotheses and applies
to homogenous and isotropic turbulence (i.e. statistically invariant under
translation and rotation of the coordinates reference frame). Nevertheless,
his original work is still considered the only approach that provides the best
description of turbulence.
The K41 work is made quantitative thanks to some assumptions:

• In the limit of infinite Reynolds, all symmetries are restored in a statis-
tical sense at small scales.
This is the hypothesis of local isotropy: small scales are defined as
(` � `0), where `0, called the integral scale, is characteristic of the
production of turbulence. Moreover, the homogeneity at small scales is
defined in terms of velocities increments:

δu(r, `) ≡ u(r + `)− u(r) (1.24)

and means that also the velocity fluctuations remain invariant for space
translation (i.e. δu(r + r′, `) = δu(r, `)).

• In the limit of infinite Reynolds, the turbulent flow is self-similar at small
scales.
This is the self-similarity hypothesis: thus, there exists a unique scaling
exponent h ∈ R such that

δu(r, λ`) = λhδu(r, `) (1.25)

for every r and ` in the limit where λ`� `0.

• In the limit of infinite Reynolds, the turbulent flow has a finite nonvan-
ishing mean rate of energy dissipation ε.
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Moreover, we can define the longitudinal structure function, i.e. the p-th
moment of the velocity increments, as:

Sp(`) = 〈(δu||)p〉 (1.26)

where δu||(r, `) = δu(r, `) · `/|`| is the longitudinal velocity increment.
Using the Karman-Howarth-Monin relation, Kolmogorov obtained an exact
result for the third order structure function:

S3(`) = 〈(δu||)3〉 = −4
5ε` (1.27)

The equation 1.27 represents the famous four-fifths law that allows to fix the
value for the scaling exponent h = 1/3 and to write the generic structure
function scaling law

Sp(`) = Cpε
p
3 `

p
3 (1.28)

by using the self-similarity hipothesis. Here Cp are all dimensionless unknown
constant, except for C3 = −4/5 that is a universal constant since the four-
fifths law holds without any need to assume self-similarity.
Starting from 1.28 a particular case can be derived, when p = 2, for the
second order structure function, introducing the well known two-third law:

S2(`) = C2ε
2
3`

2
3 (1.29)

This relation equals the so called five-third law for the energy spectrum

E(k) ≡ 2πk〈|û(k)|2〉 ∼ ε
2
3k−

5
3 (1.30)

An analogue derivation can be done by using dimensional arguments: with
the same assumption of a constant, non-vanishing, rate of energy dissipation
written as ε ∼ u3

`/`, one can write

u` ∼ ε
1
3`

1
3 (1.31)

obtaining again the two-third law

〈δu2
`〉 ∼ ε

2
3`

2
3 (1.32)

A simple explanation is presented in figure 1.4 where all energetic ranges
of a three-dimensional turbulent system are shown, including the five-third
spectrum power law scaling. Moreover, equation 1.28 and 1.30 are fairly well
supported by experimental and numerical data.
All these scaling relations are intended for the application within the inertial
range, where scales are much smaller than the scales at which turbulence is
produced and much larger than the Kolmogorov dissipation scale η at which
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direct energy dissipation becomes relevant. Focusing on the range between
the inertial and the dissipation range, the time, velocity and length scale can
be introduced:

τη ≡
(
ν

ε

)1/2

uη ≡ (εν)1/4

η ≡
ν3

ε

1/4
(1.33)

Moreover, looking at the Reynolds number at the Kolmogorov scale, one
can get Reη = ηuη/ν = 1, and understand that this scale is characterized
by dissipative eddies which stop the energy cascade. Finally, in order to
understand how many scales are involved in the turbulent system, the ratios
between the integral and the Kolmogorov scale can be computed: keeping in
mind that ε ∼ u3

`0
/`0 one can express the ratios in terms of Reynolds number

τ`0/τη ∼ Re1/2

u`0/uη ∼ Re1/4

`0/η ∼ Re3/4

(1.34)

understanding that, as Reynolds increases, the ratio between scales η/`0
decreases. Thus, in fully developed turbulence, the inertial range is confirmed
to be composed by a large amount of scales.

Figure 1.4: Sketch of the turbulent spectrum, with the inertial range scaling law characterized by
the slope ∝ k−5/3, generally observed in turbulence.
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1.3 Turbulence and dimensions
Changing the system from three towards two dimension implies radical alter-
ation in the flow turbulent behaviour. Indeed, new phenomena can arise and
be observed when we consider a two-dimensional or quasi-two-dimensional
flow.
Two-dimensional turbulence describes the behaviour of high-Reynolds-number
solutions of Navier–Stokes equation which depends only on two coordinates
(e.g., horizontal (x, y) components). In this case, the third component of
the velocity follows an advection-diffusion equation without back-reaction on
the horizontal flow. Hence, without loss of generality, one may assume that
the velocity has only two components.
The classical theory of two-dimensional turbulence derives from the works of
Batchelor and Kraichnan [4, 55], which showed that the conservation of vor-
ticity along the streamlines, which occurs in two dimensions, produces crucial
changes in the behaviour of turbulence. Moreover, the study of incompress-
ible two-dimensional flows at high Reynolds numbers presents several reasons
of interest. One field of study is understanding the physics of plasma, where
turbulent plasma flows can be confined by strong magnetic fields and can
be described by the two-dimensional magnetohydrodynamics [8]. However
the principal reason for studying two-dimensional, or quasi-two-dimensional
flows, is due to its crucial role in understanding geophysical flows like oceans
or the atmosphere. Indeed, because of the two effects of stratification and
earth rotation, their intermediate-scale dynamics can be approximated and
described as a two-dimensional flow.
From a computational point of view, the Navier–Stokes equation in two di-
mensions has the important feature to be less demanding respect to the
three-dimensional one; this allows to reach higher Re numbers in numerical
simulations. Moreover, besides being a simpler version of the three dimen-
sional system, two-dimensional turbulence shows totally different character-
istics which lead to new observable phenomena, such as the inverse energy
cascade or the formation of coherent vortices from an initial vorticity disorder.
All these topics are discussed in next sections.

1.3.1 The two-dimension vorticity equation

Considering a two dimensional system, one can express the incompressible
velocity field u in terms of the stream function ψ as:

u = (∂yψ,−∂xψ) (1.35)
At this point, the vorticity field, defined as the curl of velocity field, ω =
∇ × u, in two dimensions has only one non-zero component which is the
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one orthogonal to the horizontal velocity plane and is related to the stream-
function by

ω = −∇2ψ (1.36)
Thus, it is convenient to rewrite the two-dimensional Navier–Stokes equation
in terms of the vorticity scalar field:

∂tω + u · ∇ω = ν∇2ω + fω (1.37)

where the term fω represents an external force acting as a source of enstro-
phy on the largest scales. By compensating the viscous dissipation with this
forcing term, the equation allows to reach a statistical stationary state.
As a consequence of having only one non-zero vorticity component, the vor-
ticity equation, previously written in three dimensions, looses its non-linear
vortex stretching term: the next section explains the presence of new system
invariances and different flow characteristics.

1.3.2 Invariances and turbulent cascades in two dimensions

The main difference with the three-dimensional case is the conservation of
vorticity along fluid trajectories when viscosity and external forcing are ig-
nored. The origin of this phenomenon is due to the vanishing, in two di-
mensions, of the so-called vortex stretching term (ω · ∇)u of equation 1.9
that appears as a forcing term in the evolution equation for vorticity in the
three-dimensional case where it is responsible for the unbounded growth of
enstrophy in the limit Re → ∞. Hence, in the absence of external friction
and forcing and in the inviscid limit ν = 0 the vorticity equation simply
shows that the material derivative of the vorticity vanishes along the fluid
trajectories.

Dω

Dt
= ∂tω + u · ∇ω = 0 (1.38)

Thus, since the vortex stretching is absent, implies that the vorticity of the
considered flow is globally conserved and consequently, also the total en-
strophy Z which is the integral of the square vorticity 1.15, becomes a new
inviscid quadratic invariant of the flow. Moreover, assuming periodic bound-
ary conditions and in absence of external forcing f = 0, in two dimensions
the enstrophy is constrained by the energy balance equation, which is ob-
tained from the vorticity Navier-Stokes equation 1.37.
In contrast to the three-dimensional case, in two-dimensional turbulence the
viscous dissipation of energy vanishes in the limit Re→∞ (i.e., ν → 0)

lim
ν→0
−2νZ = lim

ν→0

dE

dt
= 0 (1.39)
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so it is impossible to have a cascade of energy with constant flux toward
small scales. Moreover, the presence of two different quadratic flow invari-
ants (i.e., the energy and the enstrophy) totally modifies the picture of the
turbulent cascade. The comprehension of the new cascades phenomena in
two-dimensional turbulence was given by Kraichnan in the sixties [55], dis-
covering the double cascade process. On one hand enstrophy plays the role
of the energy in three-dimension being mainly transferred to smaller scales
(high wavenumbers) where it is dissipated by viscosity, while on the other
hand the energy is transported to large scales (lower wavenumbers).
As well as in the three-dimensional case, the scaling laws in both cascades can
be obtained from dimensional analysis of Navier–Stokes equation. For the
inverse energy cascade, one can assume the constant energy flux Π(`) = −ε
towards large scales: this reproduces the same scaling laws for velocity ob-
tained in the three-dimnesional case 1.31. Hence, the prediction for the
energy spectrum of the inverse energy cascade remains:

E(k) = Cε
2
3k−

5
3 (1.40)

Physically, the inverse energy cascade brings to the formation of large clusters
vortices, with sizes of the injection range, which are continuously generated
by the forcing. Shortly after they are formed, they get distorted and strained
by the action of other neighboring eddies, and thus tend to aggregate with
other eddies of same vorticity sign. For this reason, the presence of forcing
as a constant energy input for a long time combined with an abscence of
large-scale energy dissipation, can lead to a motion of energy at large scales
which eventually reaches the integral scale and accumulates at low wave
numbers. If the system does not present a friction terms, able to dissipate
the accumulated energy, the formation of a condensate [26, 70] (which is
a phenomenon similar to the Bose-Einstein condensation) can be observed.
Numerically, one can overcome the problem by introducing a friction term
−αω in the vorticity equation 1.37 which is physically argued with the pres-
ence of the Ekman friction in thin layers [76]. In the experiments energy is
dissipated by the friction produced along the walls that bound the system.
Conversely, an analogue of the K41 energy cascade towards small scales, in
the sense that the transfer develops at constant rate across the scales, is
the direct enstrophy cascade [4]. Indeed, considering scales smaller than the
forcing one can mantain the same assumption of a constant enstrophy flux
εω = Z(`)/τ` and obtain different scaling laws. Indeed, considering that the
enstrophy of an `-size eddie can be estimated as Z(`) ∼ u2

`/`
2, the velocities

scaling law will be:
u` ∼ ε

1
3
ω` (1.41)
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and the prediction for the energy spectrum of the direct enstrophy cascade
reads

E(k) = C ′ε
2
3
ωk
−3 (1.42)

On physical grounds, the process prevailing in the cascade is essentially the
elongation of the vorticity structures [36].
A scheme of the double cascade process can be seen in figure 1.5 where
respectively the direct enstrophy cascade and the inverse energy cascade are
represented.

Figure 1.5: Scheme of a forced two dimensional turbulence spectrum: in red the inverse energy
cascade characterized by the slope ∝ k−5/3, in blue the direct enstrophy cascade characterized by
the slope ∝ k3.

1.3.3 Coherent structures

In two-dimensional or quasi-two-dimensional turbulence decay, the transfer
of energy towards large scales (i.e., inverse energy cascade) brings to the
formation of coherent structures and vortices which organize from a starting
background disorder. Initially the flow organizes into a limited number of
coherent vortices which contains most of the system vorticity and that are
surrounded by a background of incoherent structures at smaller scales, with
lower vorticity. As the time grows, two vortices of the same vorticity sign can
be advected one near the other and they can merge in a bigger one with the
result of a decay in the total vortices number [94]. The final stage will be the
formation of a condensate [85, 26, 70] where only a vorticiy dipole survives:
this dipole can then decay because of diffusion. Typical environmental systems
when this structures can be observed are the atmosphere [74] and the ocean
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where often are subjected to the formation of this large scales vortices [59].
The study of this structures is crucial to be able to improve the modelling
and better understand our climate and weather. As we see in the next
section, the presence of the Coriolis force in the system can induce a strong
bidimensionalization of the flow and hence brings to the formation of self-
organized coherent structures.





Chapter 2

Rotation

The presence of the Earth’s rotation means that we continuously experience
an apparent force known as the Coriolis force. This force leads to a deflection
of the wind direction to the right in the northern hemisphere and to the left
in the southern hemisphere. The reason why the wind-flow around low and
high-pressure systems circulates in opposing directions in each hemisphere is
explained by the presence of the rotation.
The effects of rotation on turbulence concern all domains of fluid dynam-
ics. In typical natural or industrial situations, rotation is often coupled with
other dynamical factors such as shear flow deformation, buoyancy (e.g., at-
mospheric and oceanic motion), or other factors like combustion. According
to these various and complex situations, there is much to be gained by un-
derstanding the specific role of rotation in the absence of any other external
mechanisms. Moreover, rotation also causes a bidimensionalization of the
flow leading to a possible change in the characteristics of the system. The
study of rotating flows is therefore interesting from the point of view of both
topological flow structure and turbulence modelling in many different fields
such as astrophysics, engineering (e.g. turbomachinery), but most of all
in geophysics where oceanic and atmospherical motion flow are studied to
understand our Earth and to better predict our climate.

21
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2.1 The Coriolis force

It is crucial to realize that this force becomes more and more important when
applied to global-scale motions in the atmosphere and ocean, because of the
much larger spatial scales involved respect to our everyday experience like for
example the carousel. For instance, the mean motions of the upper layers of
the ocean can be understood, in a first approximation, as a balance between
the main driving force (e.g., density gradients and wind drag) and the Coriolis
force which enters as the results of the Earth rotation.
To understand how the Coriolis force arises, one can consider a body of mass
m at the equator that is stationary respect to the solid Earth. With a planet
rotation with an angular velocity Ω, in an external reference frame the mass
will have a linear velocity ΩR, where R is the Earth radius. If now the body
moves polewards on the globe surface, with no friction and along the meridian
direction, it will present a smaller velocity Ωr with r corresponding to the
smaller distance from the rotation axis. In this way the mass will appear,
to an observer on the rotating system, to be moving with a relative velocity
u = Ω(R− r) and if it continues to move at higher latitudes with a constant
velocity, it will be observed to accelerate eastwards. The force responsible of
this acceleration is the Coriolis force.
The magnitude of the Coriolis force f can easily be obtained starting from
the conservation of the angular momentum I = mΩr2. Indeed it needs to
apply a torque equal to the variation of angular momentum:

dI

dt
= d

dt
(mΩr2) = 2mΩrdr

dt
= rf (2.1)

Considering the polar coordinates for a poleward velocity u we also have
dr
dt = dy

dt sinΦ = vsinΦ, where Φ is the latitude.
The intensity of the Coriolis force per unit mass reads:

f = 2ΩusinΦ (2.2)

with its vector relation being f = 2Ω × u. Hence, considering a poleward-
motion, the force is perpendicular to the displacement and deviates towards
east in either hemisphere. Conversely, for a motion away from the pole in
either hemisphere, the body is accelerated in the opposite direction.

2.1.1 Geostrophic balance

Geostrophic balance is arguably the most central concept in atmosphere
physic, physical oceanography and also in the study of dynamical meteorol-
ogy [77, 98]. It is important to realize that, although higher-order processes
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are responsible for all the interesting dynamics, almost all large-scale flows in
the atmosphere and ocean are in geostrophic balance to a leading order. The
only place where geostrophic balance never occurs is at the equator, where
there is no Coriolis force. Indeed, considering the Navier-Stokes equation in
presence of the Coriolis forces, the momentum budget reads:

∂tu + u · ∇u = −1
ρ
∇p+ ν∇2u− 2Ω× u (2.3)

In this equation, we consider a large scale current in either ocean or atmo-
sphere, it is easy to consider the two horizontal component and see that the
contribution terms of pressure gradient and Coriolis forces are almost always
much larger than the other terms, such as molecular viscous forces. Thus, it
seems to be completely justifiable to neglect friction and other time deriva-
tive terms which should be enormously greater to be able to compensate the
force of pressure and rotation.
Making this approximation, the remaining terms in the Navier-Stokes equa-
tion are the pressure forces −1

ρ ∇p and the rotation term 2Ω × u that can
balance each other. Hence, considering the equation 2.3 for the two horizon-
tal components, respectively x and y, one obtains the geostrophic equation:

∂p

∂x
= fρv

∂p

∂y
= −fρu

(2.4)

where u and v are the two horizontal velocity components, while f is the
Coriolis force at 2.2.
This is called the geostrophic balance: with this assumption one can calculate
the internal pressure field from the density distribution using the hydrostatic
approximation and this horizontal pressure gradient can be used to predict
the velocity field.
In order to understand how geostrophic balance emerges, one can describe
a moving fluid parcel that starts to be accelerated because of a pressure
gradients between two different regions. As the parcel moves, it is deflected
by the Coriolis force that operates in a direction perpendicular to the direction
of the current, until it flows parallel to the isobars: here the pressure gradient
and the Coriolis force cancel each other. In conclusion, a key feature of
geostrophic balance is that rather than flowing from high to low pressure, the
fluid actually moves parallel to lines of equal pressure (Fig. 2.1). Using this
feature, ocean currents velocities can be estimated from altimetry satellite
data only by knowing the pressure field distribution [101]
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Figure 2.1: Scheme of a geostrophic flow currents which follows the isobars, showing a balance
between pressure and Coriolis forces. Viewing in the direction of the flow, low pressure region is
to the left and high pressure region is to the right.

2.1.2 Rossby and Ekman number

The time, space and velocity scales are crucial in determining the relevance
of the Coriolis force. Whether rotation is important in a system can be
determined by its Rossby number, which is defined as the ratio between the
inertial forces and the Coriolis ones, respectively represented in the Navier-
Stokes equations as u · ∇u ∼ U2

L and 2Ω × u ∼ 2ΩU . Here, U is the
velocity of the system while L represents the typical motion length scales.
The dimensionless Rossby number

Ro = U

2ΩL (2.5)

can therefore be used to describe a fluid flow in a rotating frame. A small
Rossby number indicates a system is strongly affected by Coriolis forces, and
a large Rossby number indicates a system in which inertial forces dominate.
Indeed it is commonly used in geophysical phenomena in the oceans and
atmosphere, where it characterizes the importance of Coriolis accelerations
arising from planetary rotation. For instance in tornadoes, where the the
Coriolis force is negligible and balance is between pressure and centrifugal
forces, the Rossby number is large. In low-pressure systems, centrifugal forces
are negligible and balance between Coriolis and pressure forces occurs; this
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produce a low Rossby number. In conclusion, when the Rossby number is
large the effects of planetary rotation are unimportant and can be neglected.
When it is small, the effects of planetary rotation are large, and the net
acceleration is comparably small.
A second adimensional number that can be defined in a rotating system is
the Ekman number which determines the ratio between the frictional force
per unit mass to the Coriolis acceleration.

Ek = ν

2ΩL2 (2.6)

where L is the length scale (typically the vertical one) and ν is the kinematic
viscosity of the fluid. Hence, for geophysical flows where dissipative terms are
negligible respect to the effects of rotation, the Ekman number must satisfy
Ek << 1.
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2.2 Rotating flow
Through the action of the Coriolis force, Earth’s rotation imparts a special
character to large-scale motions flow such as the water masses in the atmo-
sphere or the ones in oceans. In the absence of planetary rotation, typical
magnitudes of the horizontal and vertical motion components (that can be
expressed as u and w, respectively) would scale relative to one another in
proportion to their respective horizontal length (L) and vertical length scales
(H) of the horizontal and vertical motions:

u

L
∼ w

H
(2.7)

Boundary layer turbulence and convection, whose timescales are much shorter
then the planetary rotation do, in fact, scale in such a manner.
However, the vertical component of large-scale motions is smaller than would
be expected on the basis of their aspect ratio. This is due to the rotation
which suppresses part of the vertical motions, furthermore generating other
typical phenomena which are described in this section.

2.2.1 Taylor Proudman theorem

The Taylor Proudman theorem is one of the most known effects produced
by rotation in a generic flow. The theorem states that when ρ is constant,
the velocity cannot vary along the direction of the rotation axis and the flow
shows a two-dimensional behaviour. It can be rigorously proved by taking
the curl of the equation of geostrophic balance

∇× (2Ω× u) = −1
ρ
∇× (∇p) (2.8)

using the vector identity

∇× (A×B) = A(∇ ·B)− (A · ∇)B + (B · ∇)A−B(∇ · A) (2.9)

and remembering that ∇ · u = 0 and ∇× (∇p) = 0.
Moreover, since the angular velocity is divergence-free, ∇ · Ω = 0 is also
needed.
The result is the Taylor-Proudman theorem that reads:

(Ω · ∇)u = 0. (2.10)

Hence, considering the product expansion

Ωx
∂u
∂x

+ Ωy
∂u
∂y

+ Ωz
∂u
∂z

= 0 (2.11)
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with a rotation along the vertical axis (for wich Ωx = Ωy = 0 and Ωz 6= 0),
the equation reduces to the solution

∂u
∂z

= 0. (2.12)

In conclusion, all three components of the velocity vector are uniform along
any line parallel to the vertical axis.
This result leads to the formation, and experimental observations, of the

Figure 2.2: The T-P theorem demands that vertical columns of fluid act as if they were rigid and
move along contours of constant fluid depth. Horizontal flow is thus deflected as if the obstacle
extended through the whole depth of the fluid [17].

so called Taylor-Proudman columns: imaginary cilinders wich are projected
above and below a solid body (e.g, obstacle placed at a certain level inside
the flow as in figure 2.2) and that are parallel to the rotation axis. At levels
below the top of the obstacle, the flow must of course go around it. But
the Taylor-Proudman theorem assures that the flow must be the same at all
levels in the fluid: so, at all heights, the flow is deflected as if the bump on
the boundary extended all the way through the fluid. Taylor columns is a
simplified, experimentally observed effect of what transpires in the Earth’s
atmosphere and oceans.

2.2.2 Ekman transport

Another phenomenon induced in flows which are under rotation is the Ekman
transport, which has a significant impact on the biogeochemical properties
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of the world’s ocean. This phenomenon was first noticed during an Artic
expedition by the explorer Fridtjof Nansen, who recorded that icebergs were
transported along a deviated direction respect to the blowing wind. Indeed,
the Ekman transport occurs when ocean surface waters are influenced by
a friction force acting on them. Generally, in the absence of rotation, the
friction force casted by the wind stress would generate a flow motion with a
velocity vector presenting the same orientation of the forcing. However, due
to the influence of the Coriolis effect, the ocean water deviates with an angle
from the direction of the surface wind. Because of the two different orienta-
tion of the Coriolis force respect to the motion, the direction of transport is
dependent on the hemisphere.
The process is explained in figure 2.3 where the frictional movement of

Figure 2.3: Sketch of the Ekman spiral in the Northern Hemisphere. If the magnitudes and
directions of the movements of each layer are added together, the result is that the net movement
in the Ekman layer is 90◦ to the right relative to the original wind direction.

the surface layer of water induces a motion on the directly underneath layer,
which then sets in motion the next layer under that, and so on as the water
gets deeper. Clearly some energy is lost in each transition, so each succes-
sive layer of water will not move as far as the layer above it. Moreover, the
Coriolis Effect deflects each layer relative to the layer above it and the re-
sulting deviation of the successive layers therefore creates a spiraling pattern
of water motion called the Ekman spiral, while the depth in which this net
transport occurs is calle Ekman layer. In the northern hemisphere, Ekman
transport occurs at 90◦ clockwise from wind direction, while in the southern
hemisphere it occurs with the same angle direction anticlockwise.
Since the wind varies from place to place, so does the Ekman transports:
it converges in some regions and diverges in others. Here vertical flows are
developed at the bottom of the surface boundary layer to replace or remove
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Figure 2.4: Effect of a cyclonic (a) and an anticyclonic (b) wind on the surface of the ocean in the
Northern Hemisphere. In (a) there is a divergence at the surface which depresses the surface of the
ocean and raises water from beneath the thermocline towards the surface, producing an Ekman
suction (upwelling). In (b) the surface waters converges and pushes the sea surface upwards,
depressing the thermocline with an Ekman pumping (downwelling). Figure from www.open.edu.

the converging water masses.
This process of flow generation below the surface layer through vertical move-
ments with water displacement brings to phenomena of downwelling or up-
welling (see figure 2.4). The upwelling regions are characterized by the phe-
nomenon called Ekman suction where surface water diverges causing new
water masses to rise from below. On the other hand the phenomenon called
Ekman pumping represents the component of the Ekman transport where
water masses are pushed downward in the downwelling process. Hence, ac-
cording the mass conservation, in reference to Ekman transport, any water
displaced within an area must be replenished.
This can be done by either Ekman suction or Ekman pumping depending on
wind patterns, and both of them are really important for the study of the
coastal upwelling and downwelling of water masses.

2.2.3 Dimensional transition in turbulent systems

Talking about turbulent systems, here the Coriolis force is responsible for an
energy transfer among scales which is redistributed by rotation in its own-
specific way. This focus particular attention on questions about the linear
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[30, 88] or nonlinear [84] nature of the effect of rotation on turbulent flows,
and a univocal answer is not yet available, since an accurate analysis of the
different timescales and topological effects involved in the dynamics is re-
quired.
Above all, different effects may drive rotating flows to different regimes, de-
pending on the value of Rossby and Reynolds number: for low Reynolds
number, in the linear rotating regime, inertial waves propagation (i.e, plane
waves that follow the linearized momentum equations in a rotating frame
[43, 60]) is observed; while for high Reynolds and vanishing Rossby num-
ber, weak interactions are expected to occur and the wave turbulence regime
[72, 5] arises.
In sufficiently energetic flows (high Re), while still considering an important
rotation (Ro < 1), the quasi-two-dimensional turbulence [21, 32] can be
observed: here the flow exhibits a dynamics very similar to what is found in
a two-dimensional system, with the vertical velocity behaving as a passive
scalar [33].This phenomenon has been observed in several numerical simula-
tions where is also clear a split of the energy cascade (described in section
1.3.2). In this regime it is important to remark that the rotation needs to
have an intermediate intensity, such that the Coriolis force will not be too
strong to overwhelm nonlinear interactions or too weak to be neglected.
Finally, in the limit of high Reynolds and Rossby numbers, the rotation has
low intensity and a three dimensional isotropic turbulent regime is recovered.

2.2.4 Breaking of symmetry

Another remarkable feature of rotating turbulent flows is the breaking of
symmetry between cyclonic and anticyclonic vortices. Cyclones are defined
as those vortices which spin in the same direction of the angular velocity Ω,
while anticyclones are rotating in the opposite direction.
The cyclone–anticyclone asymmetry is a generic feature of rotating flows,
which originates from the modification of stretching and tilting of the vor-
ticity by the Coriolis force, suggesting a more pronounced asymmetry at
Ro ' O(1). Indeed, during the process of columnar structures formation,
the distribution of elongated vortices becomes asymmetric, such that cyclones
formation is favored. Moreover, as explanation of this phenomenon, it has
been shown that the cyclones and anticyclones have different stability prop-
erties [3] and different probabilities to be generated at finite Rossby number
[87]. In homogeneous rotating turbulence the cyclonic–anticyclonic asymme-
try is reflected in the asymmetry of the pdf (probability density function) of
the vertical vorticity ωz, as shown in the work of chapter 5. The statistical
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characterisation of this asymmetry can be done through the observation of
a nonzero value of the third-order moment of vertical vorticity 〈ω3

z〉 (or the
skewness Sω = 〈ω3

z〉/〈ω2
z〉3/2).

The predominance of cyclonic vortices has been observed both in experi-
ments [88, 62, 66] and numerical simulations [3, 99, 84, 100, 7] of rotating
turbulence and, eventhough the physical mechanisms acting on the Earth’s
geophysical flows are more complex than in idealized rotating turbulence,
similar asymmetries have been observed also in the tropopause and in the
stratosphere.
The asymmetry is expected to strongly depend on the details of the forcing
and boundary conditions. The published work described in chapter 5 will fo-
cus on the study of this phenomenon depending on the vertical confinement
of the flow.
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Chapter 3

The experimental apparatus

This chapter provides the reader with a description of the experimental setup
principal components (3.1) and the analysis technique (3.2) employed in one
of my principal works. To get through the content, see chapter 5.

3.1 The laboratory:TurLab
The Turlab facility, built at the Physics Department of Turin University in
2004, has one of the largest rotating platforms in the world, available for
scientific investigations of turbulence in presence of rotation and/or stratifi-
cation.
In order to allow the study of fluid dynamics in the best conditions, it is
located on the fourth underground floor, where a proper control on variables
such as light, temperature, dust and external vibrations can be guaranteed.
In this section a description of the main tools equipped in the laboratory is
given to the reader.

3.1.1 Rotating platform

The experimental apparatus consists of a 6m diameter rotating platform. On
the platform a rotating tank of a 5m diameter is installed: it can reach a
maximum rotation velocity of around 20rpm. Between the platform and the
edge of the tank can be placed cameras, pc used for the acquisition, the laser
and its cooling system.
Generally, it is possible to fill the tank until a water height of about 80 cm can
be reached. However, due to possible high rotations, it is always important to
adjust the water inside the tank, considering the formation of the paraboloid
due to centrifugal force and hence, accordingly to avoid water leakage. The
paraboloid formation is also important to consider in order to obtain final
images with the right focus and high quality for the post-processing and
analysis. On the internal side walls of the tank there are optical crystal-clear

35
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windows which allow to observe the fluid inside the tank, in particular the
region illuminated by the laser sheet.
Concerning our experiments, turbulence inside the tank was generated by
periodic oscillations of a comb (shown in Figure 3.3), formed by a series of
spaced paddles, that moves back e forward along a motorized linear guide
placed in the radial direction. The comb motion can be controlled by an ex-
ternal software directly connected to the linear guide, being able to smoothly
reduce its velocity before inverting the direction of motion avoiding wave
perturbations on the surface.
The spacing between paddles can be modified in order to change the forcing
scale energy injection and hence also the flow Reynolds number. In this way,
vortices with a length scale of the order of the spacing paddles distance are
generated and a study of the flow turbulent characteristics can be performed.

Figure 3.1: Image of the Turin rotating platform.

3.1.2 Laser

The experiment’s lighting system is composed by a Quantum Opus solid state
diode green laser with a maximum output power of 6W , a direct transmis-
sion without optic fiber and a wavelength of 532nm. Through semicilindrical
concave lenses with different focal point, the laser beam can be expanded in
a laser sheet which can be oriented both horizontally or vertically according
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to the experiment. Indeed the presence of a channel arranged in a radial
direction and covered by a rectangular optical crystal plate that completes
the bottom of the tank, allows an illumination from below and therefore im-
plies an optimal study of the boundary layer of the fluid in contact with the
bottom floor. The orientation of the laser sheet can however be improved
thanks to the use of a system of adjustable mirrors. Moreover, in order to
cover a large part of the apparatus, the laser light can be spread by a maxima
divergence lens.
In our experiments, shown in Figure 3.3, the Opus laser was positioned later-
ally, opposite to the forcing comb, producing an horizontal sheet, parallel to
the tank floor and 6cm above it. For any type of experiment it is necessary
to find, through different pre-tests, the best setup that leads to the best
configuration in terms of image sharpness and particle detectiion.

3.1.3 Seeding particles

The seeding of a flow with little particles is a fundamental part of the ex-
perimental setup, in order to track the particles motion and then to be able
to reconstruct the flow velocity field. Indeed, considering the Particle Im-
age Velocimetry (PIV) technique, described in section 3.2, the light diffusion
properties of these particles are crucial characteristics for the quality of this
technique based on tracers. Moreover, to obtain good measures, an homo-
geneous seeding of the flow is necessary.

Figure 3.2: Zoomed imaged of particle tracers.

For this reason, a large quantity of particles need to be injected. Moreover,
the seeding particles material influences the character of the image field:
particles used are made of polyamide and present a mean diameter of some
tens of µm. Ideally they ought to be spherical, homogeneous and to have
high diffusivity to minimize the input light energy. Actually, particles trac-
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ers are not perfect spheres, they have a radius distribution and they don’t
maximize diffusivity (Example shown in Figure 3.2). Usually, before being
incorporated into the flow inside the tank, they are treated with a wetting
agent that increased their suspension and hence a homogeneous distribution
can be achieved. Moreover, they need to be meshed in the flow some hours
before the measures acquisition in order to get the best homogeneity inside
the flow and, at the same time, to avoid the particle sedimentation.

3.1.4 Digitals cameras

Several cameras, with high spatial resolution and sensibility, are equipped in
the laboratory in order to acquire images for the PIV analysis. Each camera
is able to acquire in stand alone or in synchronized mode, with a selection of
both the grey scale (in terms of pixel depth 8− 10 bits) and the frame rate
(1− 60 Hz).
The frame rate needs to be properly chosen depending on the flow velocity:
nor too high, in order to allow a minimum displacement of tracer particles,
neither too low, to avoid a excessive displacement having the risk of loosing
groups of particles between a couple of consecutive frames. Generally, to
optimize the analysis, a frame rate which allows to acquire 5 − 10 pixel
particle displacement can be setted.
It is furthermore important to choose the right iris opening and image focus:
indeed, the aim on having brighter frames to analyse sometimes it results in
too much blurry images. Hence, usually it is better to privilege the image
focus and possibly change the brightness at a later time via software.
When a particle is enlightened by the laser sheet, Mie scattering [31] is
produced and the related intensity light power particle emitted is:

Pp = πr2Pl
dS

(3.1)

where r is the particle radius, d the laser sheet thickness, S is the laser sheet
extension and Pp is the laser power. The real low Pp value justifies the need
to use very sensitive cameras.
Regardless of the cameras characteristics, the water needs to be as clean
as possible to correctly identify particles inside the flow, which is why small
amounts of chlorine can be sometime added to the liquid. Indeed, especially
for those experiments that last several days, the presence of environmental
bacteria could really create a major problem, causing particles agglomera-
tion and variation in their dimensions. Nevertheless, also the pre-tests are
important in order to select the best recording flow region, according to the
images illumination, the presence/absence of vortices following the mean ro-
tating flow. For istance, in some tests we observed the presence of macular
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areas without particles tracer in the water, most likely due to the paddles-
generated whirlwinds which, being stabilized by rotation, could expel the
tracer with the result of a non-homogeneous seeding.
Finally, the acquisition can be performed by two pc that collect data through
a camera link connection. These systems can control cameras, their param-
eters, the synchronization and the acquisition settings. Each pc is able to
acquire directly onto hard drives ensuring very long acquisitions on many
consecutive experiments before exporting data.
Concerning our experiments, for each analized flow configuration, a few dozen
of short acquisitions have been made in order to have a solid statistics. The
camera was placed above the comb passage, recording a portion of the flow
perturbed by the paddles (see Figure 3.3). The huge amount of acquired
frames can be hence analysed and post-processed with data analysis tech-
nique described hereafter.

Figure 3.3: Scheme, in orange, of the experimental recorded area. In the image, also the comb
and the laser are shown.
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3.2 Data analysis: Particle Image Velocimetry tech-
nique

Particle Image Velocimetry (PIV) is an optical method adopted in flow analy-
sis [79]. This technique is appropriate to describe fluid evolution in a specific
area or volume. PIV is used to match pattern in two time-consecutive images
of the flow. The field’s displacement, proportional to velocity, is obtained
from the direct cross-correlation between a couple of pictures. As previously
described, the fluid is seeded with a lot of particles, with a density similar
to the fluid’s one, which accurately follow the fluid motion. At the same
time, particles must be very small because the goal is to minimise inertia and
interaction with the fluid and to avoid sedimentation effects. The field of
view is usually enlightened with a laser sheet and the velocity field projection
is obtained on this plane of measurement. In particular, the particles reflect
light (Mie scattering) which is captured by a camera.
The following section provides an overview of such technique and briefly
describes the software used for the experimental analysis.

3.2.1 Principles of PIV

The experimental set-up for a PIV experiment usually consists of different
subsystems. Studying a fluid, the first thing to do is to add solid tracers.
The illuminated particles scatter the light that is recorded in a sequence of
frames. The displacement of the particles over the time has to be determined
through evaluation of the recordings. To be able to handle the great amount
of images and retrieve physical informations by camera, a sophisticated post-
processing is required.
For evaluation, the recordings are divided in small sub-area called "inter-
rogation windows". The local displacement vector is determined for each
interrogation area by a cross-correlation statistical method in which a pair of
interrogation areas are evaluated.
A common set-up for PIV can be seen in figure 3.4.
The assumption that is made is that each particle in the interrogation area
has moved homogeneously between two different recorded frames. The pro-
cess of interrogation is then repeated for each interrogation areas of the PIV
recordings. A digital camera is usually used to record the different images,
after having carefully chosen the acquisition rates, depending on the actual
problem that is going to be studied.
Some characteristic of the PIV technique are here listed:

• Whole field technique and indirect velocity measurement
PIV is a technique that allows to record images of large part of flow
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Figure 3.4: Scheme of an experimental set-up for PIV analysis in a wind tunnel [79].

fields, depending on the experimental set-up, in a variety of applications
in gas and liquid media. Moreover, PIV measures the velocity of a
fluid element by measurement of the velocity of suitable tracer particles
within the flow.

• Non intrusive velocity measurement
In contrast of measurement techniques that employ probes, the PIV,
being an optical technique, works in a non intrusive way that allow
application of this technique in high speed flows where the flow may be
disturbed by the presence of the probes.

• Importance of the particles distribution in the flow
Qualitatively three different types of particle density can be distin-
guished. In the case of low density the images corresponding to the
same particle originating from different illuminations can be identified.
For this reason, low particle density also requires tracking methods for
evaluation (the so called “Particle Tracking Velocimetry” or PTV).
Considering medium particle density, the images of individual particles
can be detected as well and is required to apply the standard statistical
PIV evaluation techniques. Remember that PTV adopts a Lagrangian
description, while PIV is suitable for Eulerian fields.
Finally, in a case of high particle density, it is not even possible to de-
tect individual particles as they overlap in most cases, forming speckles.
This situation is called “Laser Speckle Velocimetry”.

• Spatial resolution
The size of the interrogation areas during evaluation must be small
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enough for the velocity gradients not to have significant influence on
the results. Furthermore, it determines the number of independent
velocity vectors and therefore the maximum spatial resolution of the
velocity map which can be obtained at a given spatial resolution of the
recording camera.

• Temporal resolution
Most PIV systems allow to record with high spatial resolution, but at
relative low frame rates. However, the recent development of high-
speed lasers and cameras allows time resolved measurements of most
liquid and low-speed aerodynamic flows.

In order to process a flow velocity vector field, a direct cross-correlation, or
covariance, method between image pairs (divided in small boxes) is used in
PIV technique. The final displacement vector is obtained as the vector that
determines the maximum of cross-correlation for each box.
The basic algorithm starts with the selection of the elementary box, called
pattern box, in which the correlations will be calculated along both directions
x and y. The minimum value for the box is the one that include at least 5
particles and the box size needs to be properly choose according to the char-
acteristics of the flow, but it is preferable not to choose a too large box that
is too large since the velocity is obtained as an avarage in the pattern box,
a box that is too large leads to a lower spatial resolution. Moreover, being
the supposed pure translation motion valid only in a local limit, the larger
the box, the more the deformation effects increase, with a lower correlation
quality.
The second step is to define a search box which must contain the expected
optimum pattern position in the second frame. Here an excessive size leads
to an increased computation cost and appearance of false vectors, due to
spurious correlation maxima, while a smaller search box can produce false
vectors due to the missing of the real correlation maximum.
Then the algorithm computes the cross-correlation working with the images
pixel intensities: here the velocity vector is obtained as the displacement that
maximizes the correlation. However, the occasional occurence of secondary
maxima of the correlation is one of the major problems of the analysis. Usually
those multiple peaks are caused by a low particle density or bad illumination.
To limit those false velocity vectors, it is possible to reduce the search box,
using a priori knowledge of the velocity field; alternatively, if the correlation
of false vectors remains high, a threshold on the standard deviation of the
velocity distribution can be introduced in order to flag those flase vectors
which deviate too much in terms of module or component directions. These
kind of filtering allows to remove false vectors and eventually interpolate us-
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ing the neighbour vector values, in order to obtain good ones.
Finally, since the images are in pixel units, a conversion into physical co-
ordinates needs to be considered; so, in every PIV analysis it is necessary
to introduce a step of calibration, inserting a calibration target board, with
known pattern and dimensions.

Figure 3.5: Example of a target board used to the transformation from pixel to physical units.
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3.2.2 OpenPIV software

In this short paragraph I present the analysis software that I used on the
experimental PIV data and that I helped to implement by improving some
scripts concerning the organization and transposition of the computed veloc-
ity field matrices.
The OpenPIV software is an open-source package for analysing images of
particles flow and producing velocity fields. In addition the software allows
the use of additional tools for post-processing the PIV results. Here I present
the principal software features, while further details can be found in [6]. The
software architecture is built both in Python and Matlab to provide the users
with an intuitive and fast post-processing tools.
First of all a Graphical User Interface comprises several subroutines that al-
low to import PIV images, pre-process them, analyse using cross-correlation
algorithm, filter and interpolate the flow field, and export the velocity vec-
tor maps as ASCII files. After the loading of raw images, the GUI allows
the user to choose the main PIV parameters such as time interval between
frames (∆t), scale (i.e., pixels/meter), image pre-processing function (e.g.,
contrast enhancement).
Furthermore, also a precise region-of-interest (ROI) can be selected inside
the image for the PIV analysis, together with the interrogation window size
and the pixels spacing/overlap between each window.
The cross-correlation algorithm is applied to sub-image square or rectangular
interrogation windows. OpenPIV utilizes an FFT-based cross-correlation al-
gorithm to process pairs of frames, therefore the interrogation window sizes
are typically of 2n × 2n. The windows spacing/overlap value controls the
spatial resolution of the x, y grid at which horizontal and vertical velocity
components (u, v) can be estimated. Larger interrogation window size re-
duces resolution but are less affected by the background noise.
The kind of threshold vector filtering can be chosen a priori between two op-
tions: the outlier velocity threshold or the signal-to-noise ratio (S/N) type
threshold. The latter is in turn divided in two implementations: one com-
pares the peak in the correlation plane with the mean of the correlation field,
while the other estimates the ratio between the highest peak with the second
highest one. There are no default thresholds values and a try-out has to be
perform in order to find out the best value.
OpenPIV also applies global and local filtering. The global filter removes
vectors with length that are larger than the mean of the flow field plus N
times its standard deviation; defined in a statistical sense as global outliers.
The N value is selected through the GUI global filter parameter.
Moreover, local filter is performed on small neighbourhoods of vectors us-
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ing a 3× 3 kernel, removing vectors which length differs more than 3 times
standard deviation respect to the local mean of the 8 nearest neighbour vec-
tors. Typically it is desired to reach about 5% of erroneous vectors: the
missing ones are later filled using iterative interpolation, based on the valid
neighbourhood vector values. This is also a reason for the Matlab version to
generate three lists of ASCII files: raw data, filtered data and finally interpo-
lated data (see an example in Figure 3.6). After the file creation, a second

Figure 3.6: Velocity vector maps from OpenPIV analysis files. Panel (a) represent raw data with
red outlier velocity vectors, in (b) filtered data, and in panel (c) the final velocity vector maps
where the interpolated vectors are colored in green.[6]

GUI called Spatial and Temporal Analysis toolbox, allows to load the created
vector velocity maps into a 3D flow velocity array where the third dimension
is the frame number of the flow field in the ensemble. Thanks to the toolbox,
various flow characteristics are calculated.
Data can be automatically decomposed into mean and turbulent fluctuations
and provides both qualitative and quantitative visualization tools of a large
variety of flow properties including the spatial velocity derivatives, vorticity,
strain rate and turbulent parameters like turbulent kinetic energy, production,
dissipation and enstrophy.
Qualitatively, the toolbox offers several options to show the calculated flow
properties in the form of colored contour maps, contour lines and vector
representation. Quantitatively, it offers the user to plot the properties in
a 2D format, by selecting regions of interests, or cross-sections. The flow
characteristics computed in this toolbox are then exported as binary Matlab
file.





Chapter 4

Numerical method

This chapter briefly describes the numerical methods adopted in all simula-
tions presented in part III where my works are proposed. Moreover, in section
4.2 an overview on the modelling implementation and code optimization car-
ried out during my PhD is given.
The majority of the code simulation and implementation has been done on
HPC CINECA clusters: in particular on MARCONI and GALILEO supercom-
puters (see https://www.hpc.cineca.it/content/hardware for details of the
hardware characteristics).

4.1 Pseudospectral method

This section gives a brief explanation on the use of the pseudo-spectral code
used to integrate the rotating Navier-Stokes equation in an unbounded space,
with periodic boundary conditions.
The integration of the following set of PDE is needed:∂tu + u · ∇u = −∇p+ ν∇2u− 2Ω× u + f

∇ · u = 0
(4.1)

where u = (u, v, w) is the velocity vector, p is the pressure, ν is the kinematic
viscosity, Ω = (Ωx,Ωy,Ωz) is the angular velocity vector and f represents
an external forcing. The solution of the problem requires to specify both the
initial and boundary conditions. Concerning boundary conditions, we assume
periodic boundary conditions, i.e. ui(x) = ui(x+ L). From a physical point
of view, this allows to look for universal behavior considering an homogeneous
flow far from boundaries. From a numerical point of view, this is convenient
because it simplifies the code making it efficient. Assuming periodic boundary
conditions fixes a uniform discretization and the Fourier representation of the
velocity field.
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4.1.1 Fourier transforms and FFT

The definition of Fourier transform can be done considering, for simplicity,
a scalar field u discretized on N points xi = iδx with δx = L/N and
i = 0, . . . , N −1. Hence the direct (forward) and inverse (backward) Fourier
transforms are

un =
N−1∑
k=0

ûke
i 2π
N nk

ûk = 1
N

N−1∑
n=0

une
−i 2π

N nk

(4.2)

where un = u(xn) and ûk is the Fourier component at fixed wavenumber
k. Because of the discretization one have ûN−k = û−k with the Nyquist
frequency (i.e. the higher frequency representable) being k = N/2 [22].
With the normalization factors in (4.2), the Parseval identity is written as

N−1∑
n=0
|un|2 = N

N−1∑
k=0
|ûk|2 (4.3)

and thus, defining the average as 〈u〉 ≡ 1
L

∫L
0 u(x)dx, the kinetic energy can

be written as
E ≡ 1

2〈u
2〉 = 1

2
N−1∑
k=0
|ûk|2 (4.4)

Moreover, if the considered field is real u ∈ R, from (4.2), the reality con-
ditions is û−k = û∗k and thus the Fourier representation requires only the
positive wavenumbers. In the three-dimensional case the Fourier transform
û(kx, ky, kz) involves in general N3 complex components. If u ∈ R one can
still reduces the components by a factor 2. Indeed, for simplicity, most of the
multidimensional Fourier transforms, consider the following wavenumbers

kx ∈ [0, . . . , N2 ] (4.5)

ky, kz ∈ [−N2 + 1, . . . , 0, . . . , N2 ]. (4.6)

Eventhough this representation uses more memory than what is necessary
(N3 real numbers), the resulting code is much simpler, as the codification
of the Fourier transform in N3 real numbers would be much more complex
than in the one-dimensional case.
Considering the one-dimensional transform in (4.2), the evaluation of the
Fourier transform ûk for all the values of k requires N2 operations. This is
numerically very expensive, expecially when N is large or in more dimensions.
The idea of Fast Fourier Transform (FFT) is to drastically reduce the number
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of these operations. These method, originally introducted by Gauss [42],
becomes popular in the sixties, after the work of Cooley & Tuket [29]. Despite
being used to solve partial differential equations, fluid flows, density functional
theory, etc., the FFT remains one of the most significant algorithms which
crosses various disciplines in science and society such as signal processing,
image analysis or radio astronomy.
The basic idea is to write the Fourier series in (4.2) as a sum of two terms,
one corresponding to odds n and the other to even n:

ûk =
N/2−1∑
n=0

ei
2π
N k(2n)u2n +

N/2−1∑
n=0

ei
2π
N k(2n+1)u2n+1 =

=
N/2−1∑
n=0

e
i 2π
N
2
kn
u2n + ei

2π
N k

N/2−1∑
n=0

e
i 2π
N
2
kn
u2n+1 =

=û(e)k + ei
2π
N kû

(o)
k

(4.7)

This result means that Fourier transform can be obtained by computing two
series with half the length and with all even indices, respectively all odd
indices, as new data vectors.
In this way one can reduce the original Fourier transform on N points to
two Fourier transforms on N/2 points. Since the number of operations is
proportional to the number of points square, in the latter case one need to
perform only O(N2/2) operations and thus a gain of a factor two is achieved.
The idea of FFT is then to repeat this splitting procedure recursively. If the
number of points is a power of two, N = 2m, after repeating m times the
procedure one obtains that the computation of the FFT on N points involves
O(N logN) operations.

4.1.2 Physical and Fourier space operations

The idea of using Fourier representation on a periodic grid is that derivatives
and integrals become simple multiplicative operations. From the definitions
(4.2), the exact Fourier representation of ∂xu(x) is simply (2π/L)ikûk and,
for simplicity, one can consider the period L = 2π. The enormous advantage
of Fourier representation became evident for more complex operations such
as, taking into account the Navier-Stokes equations 4.1, the inversion of a
Laplacian:

̂(∇−2u)k = −ûk/k2 (4.8)

The drawback of Fourier representation are the nonlinear terms that become
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convolutions involving O(N2) operations. For example

u∂xu
F7−→

∑
m
û(k −m)imû(m) (4.9)

For this reason, the idea of the pseudo-spectral method is to perform linear
operations, such as derivatives, in Fourier space and to calculate the products
of nonlinear terms in physical space. A scheme for computing the term (4.9)
is

û(k) FFT−1
7−→ u(x) ↘

u∂xu
FFT7−→ û∂xu

ikû(k) FFT−1
7−→ ∂xu(x) ↗

(4.10)

and thus requires 3 Fourier transforms. Indeed, this is the usual numeri-
cal method to compute convolutions, by means of efficient FFT, since this
method remains much faster than the direct evaluation of the convolution.
As an example, our 3D code integrates the Navier-Stokes equations for the
vorticity field 1.9 here rewritten as:

∂tω −∇× (u× ω) = ν∆ω (4.11)

Introducing now a vector potential b defined as u = ∇ × b one can write
ω = ∇ (∇ · b)−∆b.
Moreover, since the vector potential is divergence-free, onee can take ∇·b =
0 and hence ω = −∆b. The equation of motion written for b are

∂tb + ∆−1 [∇× (u× ω)
]

= ν∆b (4.12)

Here the numerical scheme integrates (4.12) by computing u and ω from b
in Fourier space, the product u × ω in physical space and then derivatives
back in Fourier space.
To conclude, since in a pseudospectral code approximately the 70% − 80%
of the total time is spent on the forward and inverse Fourier transforms, a
good thing is to find the best FFT routine which better optimize the code
speed without loosing in precision.

4.2 Parallel computing library
FFT-based spectral methods are the core of all Direct Numerical Simulation
(DNS) codes used in fundamental studies of turbulence and transitional flows
and, nowadays, these simulations are pushing the limits of high-performance
supercomputers with huge computational domains and a tremendous amount
of variables. Considering such applications, it is important to ensure the best
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possible algorithms in terms of serial/parallel FFT which takes the majority
of the time computation being therefore the determining factor in the code
speedness.
Usually an FFT on multidimensional data can be performed as a sequence
of one-dimensional transforms along each dimension, using a transpose ap-
proach. Considering for example a multidimensional array of shape Nx ×
Ny × Nz, one can firstly perform a Nx × Ny serial transform of length Nz

along the thirs axis, followed by a Nx×Nz transform of length Ny along the
second axis and then finally compute the Ny × Nz transform of length Nx

along the first axis.
This can cause problems when the computational domain is very large and
can’t be fitted in the memory of a single core unit. In these case the domain
need to be distributed among several units where only a small part of the
multidimensional array is available on each processor. Hence, the computa-
tion of a multidimensional FFT need to be supported by global redistribution
operations and decomposition algorithms, by ensuring that array data for a
serial one-dimensional transform is locally available when needed. The main
used parallel implementation are based on transpose algorithms [35], where
the array is reorganized by a single step of global transposition so that the
dimension to be transformed becomes local, and then serial 1D FFT can be
applied.
During my PhD i contributed to optimize our numerical parallel codes, where
a simultaneous use of multiple compute resources is exploited to numerically
integrate the physics equations. My contribution had been to modify the ac-
tual matrix fields organization (see 4.2.1) and to test/implement a new FFT
field decomposition (see 4.2.2) according to the opensource library P3DFTT
[75] with the aim of optimize computing performance. Hereafter the two
principal decomposition method are described.

4.2.1 Slab decomposition

The first main used method refers to the so called slab decomposition where
a global array data is divided in one or more 2D planes, each one assigned
to a core processor task. Since, using slab decomposition, only one axis of a
multidimensional array is distributed between core processors and the grid is
divided along a single dimension, the method involves a 1D domain decom-
position (see Fig. 4.1(a)). This method implies a very high efficiency on a
limited number of cores because, after a FFT along the two local directions,
it only requires one global array transpose and the computation of the FFT
along the third axis direction, minimizing the communication between cpu
processors.



4. Numerical method 52

However, considering a 3D-array domain of dimension Nx, Ny and Nz, this
approach works well only as long as the number of processors does not exceed
the linear grid size N , with N = min(Nx, Ny, Nz). This could result in sud-
den loss of scalability due to load imbalance, as some tasks could be without
work. This is a severe limitation since nowadays petascale supercomputer
platforms offer several hundreds of thousands of cores for calculation.
To overcome this issue, and obtain a global code gain in speed/efficiency, a
different kind of decomposition can be implemented.

Figure 4.1: Left panel a) represents a slab (1D) decomposition of a global array that is distributed
along y among 4 CPUs, with x, z dimensions locally contained in the same processor. Right panel
b) shows a pencil (2D) decomposition of a global array divided in pencils aligned in the local
z-direction and distributed among 3 CPUs in the x-direction and 4 CPUs in the y-direction, with
a total of 12 tasks. Part of the figure from [24].

4.2.2 Pencil decomposition

The next logical step of parallel computing is reached with the so called
pencil decomposition, where two axes of a multidimensional array are here
distributed (2D decomposition).
With a huge global array distribution, pencil decomposition requires more
information exchange between cores in terms of FFT computation, resulting
in a higher difficulty in code implementation and in a lower efficiency respect
to the slab method which has less communication between each processor.
Despite paying an higher cost in terms of MPI communications, the algorithm
ensures higher scalability. Indeed, it possess a better scaling respect to the
1D decomposition since the maximum number of processors can be as large
as N2 (equal to the maximum number of pencils) in a N3 domain. For this
reason, the 2D pencil decomposition becomes a valid choice for large-scale
simulations using hundreds of thousands of processors.
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Figure 4.1(b) shows an example of a global array domain where, instead of
slabs, each processor/task is responsible for a rectangular column (pencil) of
the data array. Here the domain is organized in pencil which possess, along
one axes (here the z), all grid points. In this way, corresponding to the idea
of the transpose approach previously described, the one-dimensional FFT al-
ways proceeds locally along the pencils oriented direction. Considering the
other two directions the domain is divided and each subgroup of grid points
is distributed among processors. Hence, in order to locally compute the 1D
FFT, a transposition of the global array it is first necessary. For a global 3D
Fourier transform, having a 2D pencil decomposition, are thus needed three
FFT computation and two transpose stages.
Thus, using the library P3DFFT (several details can be found in [75]), I im-
plemented a pencil decomposition on our code and tested it, verifying final
FFT results to be equal to the ones of our previous slab decomposition code.
Moreover, following [75] I arranged in a two-dimensional virtual grid with
dimensions M1 × M2 (rows × columns) which controls the dimensions of
each pencil being respectively (Nx, Ny/M1, Nz/M2). Clearly, as long as the
productM1×M2 = P , with P the total number of tasks/processors, there is
some freedom in choosing the grid dimensions. Tests need to be conducted
also to find an optimal choice of M1,M2 since code performance depends
also on the supercomputer platform organization.
Intuitively, the optimal performance might have seemed the one which max-
imize the number of pencils in both directions, producing a processor di-
mensions distribution of M1 ×M2 square grid. However, testing the same
global array domain with different pencil decompositions I verified that, for
our platform (HPC CINECA center), the maximum performance is achieved
when the value of M1 remains close to the number of cores contained inside
a single node.
The observed result could have the following explanation: with such a value
of M1, the first row-transpose can always occur all within a single node,
avoiding communication among cores of different nodes and saving time in
terms of algorithm computation.
In conclusion, the 1D slab decomposition is faster on a limited number of
computing cores and possesses a lower scaling respect to the 2D pencil de-
composition. Even if the latter requires more communication between cores,
the continuous rise in technology and the availability of massively parallel
supercomputers make it the better solution in a perspective of code opti-
mization and speed. However, this kind of decomposition need to be tested
according to the kind of the available platform in order to optimize the gain
during matrix transposition and cores communication.
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Chapter 5

Cyclone–anticyclone asymmetry
in rotating thin fluid layers

This chapter has been published:
G. Boffetta, F. Toselli, M. Manfrin, S. Musacchio, Cyclone–anticyclone asym-
metry in rotating thin fluid layers, Journal of Turbulence, 1 (2020).
https://doi.org/10.1080/14685248.2020.1855352

The following study reports a series of laboratory experiments and numerical
simulations of freely-decaying rotating turbulent flows confined in domains
with variable height. We show that the vertical confinement has important
effects on the formation of large-scale columnar vortices, the hallmark of
rotating turbulence, and in particular delays the development of the cyclone-
anticyclone asymmetry. We compare the experimental and numerical results
face-to-face, showing the robustness of the obtained results.

5.1 Introduction

A distinctive feature of turbulent rotating flows is the spontaneous formation
of coherent columnar vortices aligned in the direction of the rotation axis.
The presence of these long-living, quasi-two-dimensional structures has been
observed both in experiments [49, 62, 88, 66] and in numerical simulations
[3, 99, 84, 100, 7]. The mechanisms which cause their formation, in par-
ticular concerning the interplay between inertial waves and nonlinear triadic
interactions, have been subject of intense studies (for a recent review see,
e.g., Ref. [41]).
Remarkably, most of these vortices are always co-rotating with the flow, i.e.,
they are cyclones. The predominance of cyclones over anticyclones have been
reported and investigated in a large number of numerical and experimental
studies, both in freely decaying turbulence [3, 16, 96, 68, 67, 78, 66] and
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forced turbulence [40, 83, 37, 7]. It has been observed also in atmospheric
measurements [27, 47] and in rotating thermal convection [25, 46, 97]. The
symmetry-breaking is typically quantified in terms of the skewness Sω =
〈ω3

z〉/〈ω2
z〉3/2 of the vorticity ωz in the direction of the rotation vector Ω =

Ωez. Other indicators have been recently introduced, including third-order
two-point velocity correlation functions [38], the skewness of the azimuthal
velocity increments [32] and the alignment statistics between vorticity and
the rotation vector [71].
Two types of arguments have been proposed to explain this phenomenon.
First, cyclones have a larger vortex stretching (2Ω +ωz)∂uz/∂z in a rotating
flow with given vertical strain ∂uz/∂z. As a consequence, an isotropic tur-
bulent flow suddenly put into rotation develops a positive skewness Sω [39].
The second type of explanations is based on the Rayleigh stability criterion,
which shows that anticyclonic vortices are more subject to centrifugal insta-
bilities [3, 87].
Previous studies have shown that the asymmetry is strongly dependent on the
Rossby number Ro. In particular, it is maximum for Ro of order unity [16].
In decaying rotating flows the skewness Sω grows in time as Ro decreases
from an initial large value [68, 66, 71]. A recovery of the symmetry has been
observed in the late stage of the decay, when Ro � 1 [68, 66]. Much less
is known about the dependence of the asymmetry on the the height H of
the fluid in the direction of the rotation axis, because this phenomenon is
typically studied in domains with aspect ratio of order unity. Recently, it
has been shown that the confinement of the flow in a thin layer causes a
reduction of the asymmetry in forced rotating turbulence [32].
The aim of this study is to investigate, by means of experiments and nu-
merical simulations of freely decaying rotating turbulence how the cyclone-
anticyclone asymmetry is affected by the thickness of the flow. This is-
sue is closely connected to the puzzling relation between rotation and two-
dimensionalization in turbulence. On the one hand, it is well known that
rotation induces a two-dimensionalization of turbulent flow, which becomes
almost invariant along the rotation vector Ω. On the other hand, the Cori-
olis force affects the dynamics of the velocity field only if the latter has
non-vanishing gradients in the direction of Ω. In particular, in a perfectly
two-dimensional (2D) flow the effects of rotation disappear because the Cori-
olis force is canceled by pressure gradients. Considering that the reduction
of the thickness H of the layer enhances the two-dimensionalization of the
flow [32], we expect that also the cyclone-anticyclone asymmetry should be
suppressed by the confinement.
In our study, the comparison of experiments and numerical simulations is
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not intended to reproduce exactly the same physical setup. Our aim is to
compare two systems with structural differences related to their boundary
conditions. In the experiment, the turbulent flow is subject to friction with
the bottom wall of the tank, which causes the development of an Ekman
layer. In the numerics the boundary conditions are periodic in all directions
and the bottom friction is absent. In the numerical simulations the large-scale
energy transfer induced by rotation and vertical confinement [32] eventally
leads to the phenomenon of spectral condensation at the horizontal scale of
box. In the experiments this phenomenon does not occur because the tur-
bulent flow is surrounded by still fluid and the diameter of the tank is much
larger than the typical size of the vortices generated by the comb. Despite
these differences, we show that the effects of the vertical confinement on
the cyclone-anticyclone asymmetry is similar: it causes a retardation of the
growth of Sω.

5.2 Experimental setup and procedure
The experiments have been performed in the rotating tank of the TurLab
facility in Turin. The tank has a diameter of 5m and it rotates anticlockwise
with periods that range from 90 to 3 seconds. In the experiment the pe-
riod of rotation was set to T = 17.6s, corresponding to an angular velocity
Ω = 2π/T = 0.357rad/s.
The tank has been filled with fresh water at four different heights H =
(10, 16, 24, 32)cm. Water is seeded with Polyamide particles (Arkema Or-
gasol), with density of 1.03 g/cm3 and diameter d = 20± 2µm, which are
used for the visualization of the flow using the Particle Image Velocimetry
technique (see Section 3.2 for a complete description). The particles are
illuminated by an horizontal laser sheet, at 6cm above the floor of the tank,
generated by a Quantum Opus solid state diode green laser. The images
are acquired by a 8-bits camera Dalsa Falcon 4M60 with 2352× 1728 pixels
resolution (further details of the tank and of the acquisition system can be
found in [34]). The camera is located 1.43m above the horizontal laser sheet.
Before the beginning of the experiment, the fluid is set to solid body rota-
tion by increasing gradually the angular velocity of the tank. Then, trails of
vortices are generated by the horizontal motion of a comb, which is mounted
on a motorized linear guide. The comb is composed by six vertical flat plates
of width a = 2.3cm with a mesh size of M = 10cm. It moves with constant
velocity V = 18cm/s over a distance L = 90cm. In order to avoid the for-
mation of waves, the velocity of the comb is smoothly reduced to zero close
to the extremities of the guide, before inverting the direction of motion. The
comb Reynolds and Rossby numbers, defined in terms of the comb velocity
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V and and the mesh spacing M as in [66], are Rec = VM/ν = 1.8 × 104

and Roc = V/(2ΩM) = 2.5. A schematic of the experimental setup is rep-
resented in Figure 5.1.

Figure 5.1: Left panel: Schematic of the experimental setup. Right panel: Photo of the experi-
mental setup

After 10 minutes of initial forcing, the comb is stopped and the decay of the
flow is recorded for 1 minute with an acquisition rate of 60Hz. The forcing
is resumed for a duration of 2 minutes and then stopped before the next
recording. The procedure is repeated 15 times for each height H of the fluid
layer.
As described in Section 3.2 of Chapter 3, the velocity fields are obtained by
standard PIV analysis, using the Open Source Particle Image Velocimetry
software (OpenPIV, for more detail see [95]) with an interrogation window
of 32x32 pixels size and an overlap of 16 pixels. The resulting velocity fields
cover a rectangular area of size Lx = 28cm and Ly = 20.5cm and are
defined on a grid of 116 × 85 points with a uniform spatial resolution of
∆x = ∆y = 0.241cm. We reconstructed the velocity fields with a sampling
rate of 0.1s, skipping an initial time of 0.5s from the last passage of the
comb to avoid the disturbances of the free surface.
The measured velocity fields are the superposition of the turbulent fields
u(x, t) and a uniform velocity U(t) which is due to the large-scale circula-
tion induced by the comb and the inertial waves. The inertial waves manifest
in the time series of Ux(t) and Uy(t) as oscillations with period which is half
of the rotation period of the tank TIW = T/2 and a phase shift of π/2
between Ux and Uy. Before proceeding to the analysis of the data we have
subtracted the uniform velocity U(t) (as in [66]).
The time-series presented in section 6.4 are first averaged at fixed time over
the ensemble of 15 experiments at given height and further time-averaged
over a window of 1s. The experimental data have been nondimensional-
ized using the comb scale M , the rms horizontal velocity at initial time
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u0 = 〈(u2
x + u2

y)/2〉1/2(t = 0) and the timescale T0 = M/u0.

5.3 Numerical simulations
Besides the experiments, we also performed a series of direct numerical sim-
ulations (DNS) of an incompressible velocity field in a rotating domain with
variable height. The dynamics of the velocity field u(x, t) is described by
the rotating Navier-Stokes equation:

∂tu + u ·∇u + 2Ω× u = −∇p

ρ
+ ν∇2u (5.1)

where Ω = (0, 0,Ω) is the angular velocity of the reference frame, ρ is the
uniform density of the fluid, ν is the kinematic viscosity, and the pressure p
is determined by the condition ∇ · u = 0.
As described in Chapter 4, we perform Direct Numerical Simulation by means
of a standard 2/3-dealiased, pseudospectral code with second-order Runge-
Kutta integration scheme. The velocity field is defined on a triply-periodic
domain with fixed horizontal sizes Lx = Ly = 2π and variable height
H = (1/4, 1/2, 1) × 2π. It is discretized on a uniform grid at resolution
Nx = Ny = (H/Lx)Nz = 512. For each height H we consider two values of
the angular velocity Ω = (1, 2). The viscosity is set to ν = 10−3.
At time t = 0, the velocity field is initialized as the superposition of a
large-scale two-dimensional, two-component (2D2C) flow, and a small three-
dimensional, three-component (3D3C) perturbation. The 2D2C large-scale
flow mimics the 2D vortices generated by the comb in the experiment.
Nonetheless, it is worth to notice that the initial flows in the DNS and experi-
ments are not identical. In the DNS the small 3D perturbation requires some
time to develop the 3D turbulent flow. In the experiments, 3D turbulence is
already present in the initial flow as a result of the previous passeges of the
comb.
The velocities ux and uy of the 2D2C flow are defined in Fourier space
as the sum of random Gaussian horizontal modes (kx, ky, kz = 0) with
kh = (k2

x + k2
y)1/2 in the range 4 < kh < 6. The 3D3D perturbation is

defined in the Fourier space as the sum of random Gaussian modes in the
shell 2 < |k| < 8. The amplitude of the perturbation field is 5×10−4 smaller
than the 2D2C flow.
For each height H we performed 10 simulations with different initial random
flow, keeping constant the kinetic energies of the base flow and of the per-
turbation. The time-series presented in section 6.4 are obtained from the
ensemble average at fixed time of the data obtained in the 10 simulations
with given H. The data of the DNS are nondimensionalized using the scale
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L0 = 2π/4, corresponding to the largest wave-length of the initial flow,
the rms horizontal velocity at initial time u0 = 〈(u2

x + u2
y)/2〉1/2(t = 0),

(u0 = 0.93 for all (H,Ω)) and the timescale T0 = L0/u0.

5.4 Experimental and numerical results

In Figure 5.2 we show two examples of the typical vorticity fields obtained in
the experiments and in the DNS. More precisely, the left panel shows a square
portion (with size Ly × Ly) of the vertical vorticity field ωz = ∂xuy − ∂yux
at time t = 1.8T0 in the experiments at H = 32cm, while the right panel
shows a section at z = 0 of the vertical vorticity field ωz(x, y, z = 0) at time
t = 7.1T0 in the simulations at H = π/2 and Ω = 1. In both the exper-
iments and the DNS it is clearly visible the presence of large-scale cyclonic
vortices (represented in red).

Figure 5.2: Vertical vorticity field in the experiments with H = 32cm at time t = 1.8T0 (left
panel) and in the DNS with H = π/2 and Ω = 1 at time t = 7.1T0 (right panel). Cyclonic vortices
are represented in red.

The formation of these structures during the decay of the rotating flow causes
an increase of the horizontal correlation scale. In order to quantify this effect
we first compute the longitudinal correlation function of horizontal velocity
C(r, t) = 〈uα(x, t)uα(x + reα, t)〉/〈uα(x, t)2〉 with α = (x, y). Then we
define the correlation length Lc(t) as the scale at which C(Lc) = 0.8. The
time evolution of Lc is shown in Figure 5.3. In both the experiment and the
DNS we observe a weak dependence of Lc on H. The scale Lc increases
almost linearly in time for t > T0. Previous studies have reported a different
scaling Lc(t) ' tβ with exponent β in the range (0.2, 0.4) [50, 66]. We note
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that the growth of Lc is faster in the DNS than in the experiments: in the
DNS the average growth rate of Lc is Lc/L0 ' 0.05t/T0, while in the ex-
periments it is Lc/M ' 0.03t/T0. This effect could be caused by the 2D2C
initial condition in the DNS, which induce a 2D dynamics characherized by
stronger large-scale energy transfer.
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Figure 5.3: Left panel: Velocity correlation length Lc in the experiments at Ω = 0.357rad/s
with H = 10cm (red squares), H = 16cm (green triangles), H = 24cm (purple down-pointing
triangles) and H = 32cm (blue circles). Right panel: Velocity correlation length Lc in the DNS
with H = π/2 (red squares), H = π (green triangles) and H = 2π (blue circles) at angular
velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols).

The growth of the correlation scale influences the time evolution of the
Reynolds and Rossby numbers, defined as

Re(t) = uh(t)Lc(t)
ν

, Ro(t) = uh(t)
2ΩLc(t)

, (5.2)

where uh(t) is the rms horizontal velocity uh = (〈(u2
x+u2

y)/2〉1/2). As shown
in Figure 5.4 (left panel), in the experiments, after an initial rapid decay at
t < T0, the Reynolds number remains approximatively constant with some
fluctuations (similarly to what observed in [66]). Conversely, in the DNS we
observe an almost linear increase of Re(t), which indicates that the growth
of Lc(t) overwhelms the decay of the velocities. We argue that the differ-
ence between the behavior of two systems could be ascribed to their different
boudary conditions. In the experiments the bottom friction (which is absent
in the DNS) causes a faster decay of the velocities, resulting in a different
temporal evolution of Re. The dependence of Re(t) on H is unclear: in
the experiments with the thinner layer (H = 10cm) the values of Re are on
average smaller than those measured with the thickest layer (H = 32cm),
but we observe the opposite behavior in the DNS with Ω = 1.
The Rossby number decreases in time both in the experiments and in the
numerics (see Figure 5.5) and it is almost independent on H. At long times
t > T we observe a scaling regime Ro(t) ' t−1. This scaling has been
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Figure 5.4: Reynolds number Re = Lcurms/ν in the experiments (left panel) and in the DNS
(right panel) at angular velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols). Symbols as
in Figure 5.3.

previously reported in [66]. The decay of the Rossby number indicates that
the Coriolis force prevails over the inertial forces at long times. Therefore the
effects of rotation are expected to become more pronounced as the system
evolves.
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Figure 5.5: Rossby number Ro = urms/2ΩLc in the experiments (left panel) and in the DNS
(right panel) at angular velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols). Symbols as
in Figure 5.3.

In Figure 5.6 we compare the energy spectra Eh(k) of the horizontal velocity
fields ux, uy in the experiments at t = 1.8T0 (left panel) and in the DNS
at time t = 7.1T0 (right panel). In the experiments we observe a power-
law spectrum Eh(k) ' k−2 in the wavenumber range 6 < kM < 20. A
similar spectral slope is observed also in the DNS at Ω = 1 in the range
10 < kL0 < 30, while the simulations with Ω = 2 have steeper spectra. In
both the experiments and DNS the spectra are almost independent on the
heights H. In the spectra of the DNS it is possible to observe a beginning of
accumulation of energy in the lowest accessible mode. The spectral conden-
sation is clearly visible in the spectra at late times of the DNS (not shown).
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Conversely, this phenomenon is not observed in the experiments because of
the large scale separation between the diameter of the tank and the typical
size of the vortices produced by the comb.
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Figure 5.6: Horizontal energy spectra in the experiments at time t = 1.8T0 (left panel) and in
the DNS at time t = 7.1T0 (right panel) at angular velocity Ω = 1 (empty symbols) and Ω = 2
(filled symbols). Symbols as in Figure 5.3.

The results presented so far do not show a strong dependence on the height
of the fluid layer. On the contrary, the effect of varying H is clearly visible
in the statistics of the vertical component of the vorticity ωz = ∂xuy− ∂yux.
The probability distribution functions (PDF) of ωz are shown in Figure 5.7
for different values of H at a fixed time t = 1.8T0 in the experiments and
t = 7.1T0 in the DNS. The PDFs corresponding to the large H are character-
ized by a positive skewness Sω = 〈ω3

z〉/〈ω2
z〉3/2, which quantifies the cyclone-

anticyclone asymmetry. Reducing the thickness H, the PDFs become more
symmetric and the skewness is reduced. This means that the confinement of
the decaying flow in a thin layer weakens the cyclone-anticyclone asymmetry
at fixed time. This is in qualitative agreement with previous numerical results
in forced stationary conditions [32].
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Figure 5.7: PDFs of the vertical vorticity ωz in the experiments at time t = 1.8T0 (left panel) and
in the DNS at time t = 7.1T0 at angular velocity Ω = 1 (right panel). Symbols as in Figure 5.3.
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Figure 5.8: Skewness of the vertical vorticity ωz in the experiments (left panel) and in the DNS
(right panel) at angular velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols). Symbols as
in Figure 5.3.

Because of the decay of the Rossby number, it is expected that the cyclone-
anticyclone asymmetry increases with time. Previous studies [66, 71] reported
a power-law growth of the skewness Sω ' tγ with γ ≈ 0.70± 0.05. Here we
are interested to investigate how the height H of the fluid layer influences
the growth of Sω. The temporal evolution of Sω is shown in Figure 5.8.
In all the simulations and experiments, after an initial transient we observe
the development of a positive skewness, which indicates the prevalence of
cyclones over anticyclones. In the DNS, we find that the regime of positive
skewness is systematically preceded by a transient in which Sω is negative.
We are not aware of previous observations of this phenomenon. After the
negative transient, the skewness in the DNS grows as Sω(t) ∼ (t−t∗)0.80±0.05

(not shown), being t∗ the time at which Sω changes sign from negative to
positive. The value of the exponent is in agreement with the results reported
in [71].
The series of Sω(t) obtained in the numerics display a clear dependence on
H. Smaller H correspond to smaller values of Sω at fixed short time. A sim-
ilar dependence on H is observed also in the experimental series, even if they
are more noisy. After the initial growth, the skewness saturates to almost
constant values at late times both in the DNS (for t > 8T0) and experiments
(for t > 4T0). In the numerical series with Ω = 2 the asymptotic value of
the skewness has not a clear dependence on H. In the experiments with
H = 24cm we observe a decay of Sω at t > 5T0. It is tempting to interpret
this as the beginning of the long time decay of the vorticity skewness which
has been reported in previous studies (e.g.[66]). Nonetheless, even after av-
eraging over 15 independent experiments, our data displays strong temporal
fluctuations which do not allow to make accurate statements concerning the
late stage of the evolution of the skeweness. The inspection of the numerical
series in Figure 5.8 suggests that, while the cyclone-anticyclone asymmetry
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develops for all the cases with different H considered here, reaching similar
values of Sω at the end of the simulations, the main effect of the confinement
of the flow in a thin layer is to delay its development.
To test this idea, in Figure 5.9 we plot the series of Sω(t) by rescaling
the times with height-dependent time scales TH . The values of TH have
been determined by least square method, minimizing the differences between
Sω(t/TH) at given H with respect to the case with the largest H = Hmax

(Hmax = 32cm in the experiments and Hmax = 2π in the DNS), and fixing
THmax = T0. The collapse of the series is reasonably good, and the rescaling
times TH become larger as the thickness H is reduced. We note that the
values of TH/T0 are identical in the DNS with Ω = 1 and Ω = 2. This
shows that the confinement in a thin layer slows down the development of
the cyclone-anticyclone asymmetry. It is interesting to note that this effect is
qualitatively similar in the experiment and in the DNS, in spite of the differ-
ences between the two systems highlighted in the introduction and observed
in the temporal evolution of the correlation scale (Fig. 5.3) the Reynolds
mumber (Fig. 5.4) and the spectra (Fig. 5.6).
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Figure 5.9: Skewness of the vertical vorticity ωz in the experiments (left panel) and in the DNS
(right panel) at angular velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols). Time has
been rescaled with TH . The values of TH are shown in the insets. Symbols as in Figure 5.3.

Finally we present a result of the late-stage of the decay in the DNS. We have
continued the DNS up to time t = 24T0. At that time, the turbulent fluctu-
ations are almost completely disappeared, and the velocity field consists of a
single cyclonic vortex. Because in the DNS the mean vorticity is constrained
to be zero, the vortex is surrounded by a sea of negative vorticity. As one
can see in Figure 5.10, the PDF of the vorticity field of this fossil state of
turbulence displays an interesting feature: its negative tail has a sharp cutoff
at ωz = −2Ω. In other words, at long times the total vorticity computed in
the laboratory frame ωz+2Ω is always positive. This result contrasts with the
recovery of the symmetry at long times which has been observed in [68, 66].



5. Cyclone–anticyclone asymmetry in rotating thin fluid layers 68

As discussed in Ref. [66], the symmetry is expected to be restored only if the
initial state contains a significant amount of vertical velocity, which is almost
absent in our case. It would be interesting to investigate more systematically
how this phenomenon is dependent on the properties of the initial velocity
field and on the boundary conditions.
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Figure 5.10: PDFs of the vertical vorticity ωz in the numerical simulations at time t = 24T0 at
angular velocity Ω = 1 (empty symbols) and Ω = 2 (filled symbols). Symbols as in Figure 5.3.

5.5 Conclusions

The main result of our study is that the confinement of a turbulent ro-
tating flow in a thin layer delays the development of the cyclone-anticyclone
asymmetry. This effect is observed both in experiments and in numerical sim-
ulations which have structural differences in the boundary conditions, and it
is therefore a robust feature of decaying rotating flows, independent on the
presence of bottom friction. Our findings show that the, although the forma-
tion of the cyclone-anticyclone asymmetry is obseved both with and without
vertical confinement, the height of the fluid layer is a crucial parameter to
determine the temporal scale of this phenomenon. Further experiments and
numerical simulations are needed to better understand how the mechanism
of formation of cyclonic columnar structures are influenced by the vertical
confinement.
Our results have important implication for large-scale geophysical flows,
where the height of the fluid layer is typically smaller than the horizon-
tal scales. The cyclone-anticyclone asymmetry observed in these conditions
could be much weaker than what expected on the basis of experiments and
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DNS with aspect ratio of order unity.





Chapter 6

Effects of rotation on the bulk
turbulent convection

This chapter has been published:
F. Toselli, S. Musacchio and G. Boffetta, Effects of rotation on the bulk
turbulent convection, Journal of Fluid Mechanics, 881, 648 (2019).
https://doi.org/10.1017/jfm.2019.764

In this work we study rotating homogeneous turbulent convection forced by a
mean vertical temperature gradient by means of direct numerical simulations
(DNS) in the Boussinesq approximation in a rotating frame. In the absence
of rotation our results are in agreement with the “ultimate regime of thermal
convection” for the scaling of the Nusselt and Reynolds numbers vs Rayleigh
and Prandtl numbers. Rotation is found to increase both Nu and Re at
fixed Ra with a maximum enhancement for intermediate values of the Rossby
numbers, qualitatively similar, but with stronger intensity, to what observed
in Rayleigh-Bénard rotating convection. Our results are interpreted in terms
of a quasi-bidimensionalization of the flow with the formation of columnar
structures displaying strong correlation between the temperature and the
vertical velocity fields.

6.1 Introduction

Turbulent convection involves the coupling between an active temperature
field transported by a turbulent flow in presence of gravity. Within this gen-
eral framework, different examples of turbulent convection are characterized
essentially by boundary conditions which force the flow in different ways. In
the most common configurations temperature difference is parallel to grav-
ity, as in the case of Rayleigh-Bénard (RB) convection, in which the flow is
confined into a box with fixed temperatures on the two horizontal bound-
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aries [9, 1] or for Rayleigh-Taylor (RT) convection, which is forced by two
reservoirs of fluid at different temperature [11]. Another geometry, which
has become very popular for numerical simulations, is the so-called bulk tur-
bulent convection (BTC) in which the flow is forced by an imposed vertical
temperature linear gradient. BTC is motivated by the study of the ultimate
state regime predicted by [54], which is supposed to appear in RB convection
when the contribution of boundary layers become negligible [45]. Moreover,
it is similar to the turbulent phase of RT convection where a linear temper-
ature (density) profile naturally appears and both RT and BTC display the
ultimate state regime [61, 20, 10].
Several internal and external factors can modify the dynamical and statis-
tical properties of turbulent convection: among the latters, rotation along
the vertical axis is known to affect the efficiency of turbulent transport of
heat in both RB and RT convection. The study of the effects of rotation is
of great interest because of its relevance for geophysical and astrophysical
applications, including convection in the oceans [63] and in the atmosphere
[48, 80]), convection inside gaseous giant planets [19] or in external layer of
the Sun [65]), and for technological applications [51].
Linear stability analysis, performed originally by [23] for RB shows that ro-
tation has a stabilizing effect and this suggests that it might reduce the
transfer of heat in the nonlinear, turbulent phase. However, the work by [82]
shows that rotation can also increase the heat transport. This enhancement
is explained by the mechanism of Ekman pumping [102, 53, 56, 52] that
contributes to a vertical heat flux produced by an extra vertical circulation
due to a suction of fluid at the two boundary layers. The effect of rota-
tion in turbulent RB convection has been extensively studied by means of
experiments [18, 56, 73, 58] and numerical simulations [86, 93, 92, 28]. The
picture which emerges is that the heat transport between the hot and the cold
plate, measured by the dimensionless Nusselt number Nu (all parameters are
defined below), has a non-monotonic dependence on the rotation, identified
by the dimensionless Rossby number Ro: moderate rotations enhance the
heat transfer while stronger rotations bring to an important suppression of
the vertical velocities and to a reduction of the heat transport.
In the case of RT convection, the effect of rotation has been studied more
recently by means of both experiments [2] and DNS within the Boussinesq
approximation [13]. The main result is that rotation always reduces the tur-
bulent heat transfer in this case. The mechanism for this reduction is due to
a partial decoupling and decorrelation of the temperature and the vertical ve-
locity fields which reduces the Nusselt number. This result does not contrast
with the enhancing mechanism associated to the Ekman pumping which has
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been observed in the RB case, because of the absence of boundary layers in
the RT system.
The aim of this work is to investigate the effects of rotation on the heat trans-
fer within the framework of the BTC, driven by a mean temperature gradient.
Surprisingly, at variance with RT convection, we find a strong enhancement
of the Nusselt number (at fixed Rayleigh number) induced by rotation. A
detailed analysis shows that the heat flux is mainly due to the formation of
convective columnar structures produced by the quasi-bidimensionalization
of the flow.
The remaining of this work is organized as follow. Section 6.2 is devoted to
the description of the numerical simulations while in section 6.3 we discuss
the dependence of Nusselt and Reynolds number on rotation. In Section 6.4
we investigate the role played by the columnar structures generated by the
rotation in the process of heat transfer. Finally, conclusions are reported in
Section 6.5.

6.2 Mathematical model and numerical method

We perform extensive numerical simulations of BTC by integrating the Boussi-
nesq equations for an incompressible flow forced by a mean unstable tem-
perature gradient −γ in a cubic box of size L [15, 61]. The temperature
field is therefore written as T (x, t) = −γz+ θ(x, t), where θ(x, t) represents
the fluctuation field. The Boussinesq equations, written in a reference frame
rotating with angular velocity Ω = (0, 0,Ω) along the z axis, read

∂tu + u · ∇u + 2Ω× u = −∇p+ ν∇2u− βgθ (6.1)

∂tθ + u · ∇θ = κ∇2θ + γw (6.2)
where u = (u, v, w) is the incompressible (∇ · u = 0) velocity field, p is the
pressure, β is the thermal expansion coefficient, g = (0, 0,−g) is gravity, ν
is the kinematic viscosity and κ the thermal diffusivity.
The dimensionless parameters which govern the flow are the Rayleigh num-
ber, defined as Ra = βgγL4/(νκ) (where L is the size of the system), the
Prandtl number Pr = ν/κ and the Rossby number, here defined as Ro =√
βgγ/(2Ω), which measures the (inverse) intensity of rotation as the ratio

between the buoyancy and Coriolis force. When the turbulent flow reaches
a statistical stationary condition, we measure velocity and temperature fluc-
tuations and their correlation from which we compute the Reynolds number
Re = UL/ν (where U =

√
〈| u2 |〉/3 is the root mean square of all velocity

components) and the Nusselt number is defined as Nu = 〈wθ〉/(κγ) + 1
with 〈...〉 indicating the average over the volume.
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Ra Pr Ro Nu Re Ω ν κ
1.1× 107 10 ∞ 3.12× 103 4.57× 102 0 6.00× 10−3 6.00× 10−4

1.1× 107 10 3.16× 10−1 5.86× 103 6.04× 102 0.25 6.00× 10−3 6.00× 10−4

1.1× 107 10 1.58× 10−1 8.19× 103 6.99× 102 0.5 6.00× 10−3 6.00× 10−4

1.1× 107 10 7.91× 10−2 1.14× 104 8.12× 102 1 6.00× 10−3 6.00× 10−4

1.1× 107 10 3.95× 10−2 9.56× 103 7.60× 102 2 6.00× 10−3 6.00× 10−4

1.1× 107 10 1.98× 10−2 9.02× 103 7.38× 102 4 6.00× 10−3 6.00× 10−4

2.2× 107 1 ∞ 1.97× 103 2.48× 103 0 1.89× 10−3 1.89× 10−3

2.2× 107 1 4.47× 10−1 2.92× 103 2.94× 103 0.25 1.89× 10−3 1.89× 10−3

2.2× 107 1 2.23× 10−1 3.87× 103 3.31× 103 0.5 1.89× 10−3 1.89× 10−3

2.2× 107 1 1.12× 10−1 5.18× 103 3.77× 103 1 1.89× 10−3 1.89× 10−3

2.2× 107 1 5.59× 10−2 5.29× 103 3.84× 103 2 1.89× 10−3 1.89× 10−3

2.2× 107 1 2.79× 10−2 3.43× 103 3.41× 103 4 1.89× 10−3 1.89× 10−3

2.2× 107 5 ∞ 3.67× 103 1.02× 103 0 4.24× 10−3 0.85× 10−3

2.2× 107 5 4.47× 10−1 4.86× 103 1.15× 103 0.25 4.24× 10−3 0.85× 10−3

2.2× 107 5 2.23× 10−1 7.70× 103 1.41× 103 0.5 4.24× 10−3 0.85× 10−3

2.2× 107 5 1.12× 10−1 1.10× 104 1.64× 103 1 4.24× 10−3 0.85× 10−3

2.2× 107 5 5.59× 10−2 1.27× 104 1.77× 103 2 4.24× 10−3 0.85× 10−3

2.2× 107 5 2.79× 10−2 8.30× 103 1.59× 103 4 4.24× 10−3 0.85× 10−3

2.2× 107 10 ∞ 4.88× 103 6.87× 102 0 6.00× 10−3 6.00× 10−4

2.2× 107 10 4.47× 10−1 6.50× 103 7.78× 102 0.25 6.00× 10−3 6.00× 10−4

2.2× 107 10 2.23× 10−1 9.55× 103 9.29× 102 0.5 6.00× 10−3 6.00× 10−4

2.2× 107 10 1.12× 10−1 1.40× 104 1.09× 103 1 6.00× 10−3 6.00× 10−4

2.2× 107 10 5.59× 10−2 1.60× 104 1.18× 103 2 6.00× 10−3 6.00× 10−4

2.2× 107 10 2.79× 10−2 1.34× 104 1.13× 103 4 6.00× 10−3 6.00× 10−4

Table 6.1: Parameters of the numerical simulations
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Figure 6.1: Nu (a) and Re (b) as a function of 1/Ro normalized with the value at 1/Ro = 0
for simulations at Ra = 2.2× 107 and Pr = 1 (red squares), Pr = 5 (blue circles) and Pr = 10
(black triangles). The insets show the values of Nu and Re in the absence of rotation (1/Ro = 0)
as a function of Pr. The lines represent the scaling Nu(0) ∝ Pr0.40 and Re(0) ∝ Pr−0.55.

We performed extensive direct numerical simulations of equations (6.1-
6.2) by means of a fully parallel pseudo-spectral code, described in Chapter
4, at resolution N3 = 5123 in a cubic domain of size L = 2π with periodic
boundary conditions. We explore the set of parameters by considering two
different Rayleigh numbers, Ra = 1.1 × 107 and Ra = 2.2 × 107, three
values of the Prandtl number Pr = 1, Pr = 5 and Pr = 10 and 6 differ-
ent Rossby numbers. The different Pr numbers are obtained by changing
both ν and κ by keeping their product constant which fixes the value of
Ra. The two different Ra are obtained by changing the mean temperature
gradient γ. All parameter values for the simulations are showed in Table 6.1.
The maximum value of Ra has been chosen such that in the case Pr = 1
and Ro = ∞ both the Kolmogorov scale η = (ν3/ε)1/4 and the Batchelor
scale `B = (κ2ν/ε)1/4 (where ε = ν〈(∂iuj)2〉 is the volume averaged kinetic
dissipation rate) are well resolved. In terms of the maximum wavenumber
Kmax = N/3 we have Kmaxη = Kmax`B = 2.4 for the case Pr = 1 and
Ro = ∞. The effects of rotation on the Kolmogorov and Batchelor scales
could not be predicted a priori, but we have checked a posteriori that in the
worst case we have Kmaxη > 1.8 (for Ω = 4, Pr = 1) and Kmax`B > 1.4
(for Ω = 4, Pr = 10). The duration of each simulation is T = 100τ , mea-
sured in units of the characteristic time τ = 1/

√
β g γ.

We found that average quantities such as Re and Nu display strong fluctu-
ations in the time series.
Therefore as a measure of the error on the time average of these quantities
we use the maximum fluctuation of the running average computed on the
second half of the time series.



6. Effects of rotation on the bulk turbulent convection 76

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  10  20  30

N
u
(1

/R
o
)/

N
u
(0

)

1/Ro

10
3

10
4

1 2

N
u
(0

)

Ra (x 10
7
)

 0.5

 1

 1.5

 2

 0  10  20  30

R
e
(1

/R
o
)/

R
e
(0

)

1/Ro

0.1

0.5

1

1 2

R
e
(0

) 
(x

 1
0

3
)

Ra (x 10
7
)

Figure 6.2: Nu (a) and Re (b) as a function of 1/Ro normalized with the value at 1/Ro = 0
for simulations at Ra = 1.1× 107 (red squares) and Ra = 2.2× 107 (black triangles) for the case
Pr = 10. The insets show the values of Nu (Re) in the absence of rotation (1/Ro = 0) as a
function of Ra. The dashed red lines represent the scaling Nu(0) ∝ Ra1/2 and Re(0) ∝ Ra1/2.

6.3 Nusselt and Reynolds dependence on rotation

In order to study the effects of the Coriolis force on the heat transfer and
the turbulence intensity, we first consider the dependence of Nu and Re on
the rotation number 1/Ro for different values of Pr. In Fig. 6.1 we report
the values of Nu and Re rescaled on their respective value in absence of
rotation (1/Ro = 0) for the simulations at Re = 2.2 × 107. We find a
non-monotonic dependence: the heat transfer (measured by Nu) and the
turbulence intensity (quantified by Re) increase with the rotation rate and
they attain a maximum for an optimal value of Ro ≈ 6× 10−2. For stronger
rotation rates they decrease slowly. The relative variation with respect to the
non-rotating case (Nu(0)) is larger for the cases Pr = 5 and Pr = 10.
The non-monotonic behavior of Nu and Re as a function of Ro, as well as
the dependence on Pr, is qualitatively similar to what has been reported in
previous works for the case of turbulent RB convection [102, 89, 91, 90]. The
main difference between the RB case is the magnitude of the heat transfer
enhancement: in our simulations of BTC we observe a maximum relative
increase of Nu of a factor 3.5. This enhancement is much larger than the
increase of a factor 1.1−1.2 which has been observed in the RB case for Ra
in the range of 108 − 109 [90]. Moreover, the decay at large rotation rates
is much slower in BTC case than in RB case. It is worth to notice that the
mechanisms which originate the heat transfer enhancement are different in
RB and BTC: in the case of the RB convection, the increase of Nu is mostly
due to the effects of the rotation on the boundary layers. The latters are
absent on the BTC case, which is dominated by bulk effects.
In absence of rotation, the scaling of Nu(0) and Re(0) as a function of
Pr observed in our simulations are Nu(0) ∝ Pr0.40 and Re(0) ∝ Pr−0.55
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(see inset of Fig. 6.1) The scaling exponents are close to those predicted
for the ultimate state of turbulent convection Nu ∝ Ra1/2Pr1/2 and Re ∝
Ra1/2Pr−1/2 [54] and they are in agreement with previous numerical results
for RB case [20].
We do not observe a strong dependence on Ra for the rotation effects on
the heat transfer and turbulent intensity. The curves of Nu/Nu(0) and
Re/Re(0) measured for Pr = 10 at Ra = 1.1 × 107 and Ra = 2.2 × 107

are comparable within the errorbars (see Fig. 6.2). The only exception are
the values of Nu and Re of the simulation at Ra = 1.1 × 107, Ro =
7.91× 10−2. The inspection of the time serie of this simulation reveals that
these anomalous values are due to a single event of strong convection that
influenced the whole statistics. In absence of rotation, the dependence of
Nu(0) and Re(0) on Ra is in agreement with the ultimate-state scaling laws
Nu(0) ∝ Ra0.5 and Re(0) ∝ Ra0.5.
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The anisotropy between the horizontal and vertical velocity can be quan-
tified by introducing the horizontal and vertical Reynolds numbers defined
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respectively as:
ReH = urmsL

ν
, ReV = wrmsL

ν
. (6.3)

In absence of rotation the dependence of ReH and ReV on Pr is in
agreement with the ultimate-state scalings ReH,V ∝ Pr−1/2 (see insets of
Fig. 6.3). The behavior of ReV as a function of 1/Ro is non-monotonic
and it is similar to the behavior of the total Reynolds number, while the
ReH shows a weaker monotonic increase. In Fig. 6.3 we also show the ratio
ReV /ReH which gives information on the anisotropy between vertical and
horizontal velocities. The anisotropy, which is present already at 1/Ro = 0,
is enhanced by rotation and attains a maximum for Ro ≈ 6× 10−2.

Besides, following [12] we decompose the Nusselt number as the product
of three different contributions:

Nu = wrmsθrmsCw,θ
κγ

+ 1 (6.4)

where Cw,θ = 〈wθ〉/(wrmsθrms) is the correlation between the vertical veloc-
ity component w and the temperature field θ . All the three factors which
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contribute to Nu display a non-monotonic dependence on the rotation rate
(see Fig. 6.4). The largest variations are observed for the rms fluctuations
of the vertical velocity and the temperature, which for Ro = 5.59× 10−2 are
about 80% larger than in the case Ro =∞. The variation of the correlation
Cw,θ is considerably smaller.

The dependence on Pr of wrms, θrms, and Cw,θ in absence of rotation
(shown in the insets of Fig. 6.4) has a simple physical interpretation. In order
to increase Pr keeping Ra fixed, one has to increase the kinematic viscosity
as ν ∝ Pr1/2 and to decrease the thermal diffusivity as κ ∝ Pr−1/2. The
increase of the viscosity suppresses the velocity fluctuations at small scales,
and therefore causes a decrease of wrms. Conversely, the reduction of the
thermal diffusivity allows for the development of small-scale temperature fluc-
tuations, and therefore causes an increase of θrms. The opposite behavior of
the small-scale structures of the velocity and temperature fields at increasing
Pr causes the decrease of the correlation Cw,θ.

6.4 Columnar convective structures
The time series of the Nusselt number obtained in our simulations are char-
acterized by strong fluctuations, which correspond to events of weak/strong
convection. The standard deviation of these fluctuations is of the order of
50% of their mean values, defined as the time-average over the duration of
the simulations (and corresponding to the values reported in the previous
section).

We have found that, in the rotating cases, the events of strong convection
are related with the formation of columnar structures aligned with the rota-
tion axis, which are present both in the temperature field and in the vertical
velocity field. As an example, we show in Figure 6.5 the field θ and w at
time t = 80τ , corresponding to a local maximum of the time series of Nu in
the simulation with Ra = 2.2× 107, Pr = 10 and Ro = 5.59× 10−2.

The presence of quasi-2D columnar structures is a distinctive feature of
rotating turbulence, and has been observed both in experiments [49, 88, 37]
and numerical simulations [99, 100, 7]. The formation of columnar structures
has been reported also on the case of RB convection by [57]. In the case
of BTC we observe a significant correlation between hot (cold) regions and
rising (falling) regions in the core of these structures, which results in a strong
increase of the heat flux.

In order to investigate quantitatively this phenomenon we proceed as fol-
low. First, we measure the degree of bidimensionalization of the system
during an event of strong convection, by studying how much the velocity and
temperature fields (at fixed time) are correlated in the vertical direction. For
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Figure 6.5: Upper panels: Vertical velocity field w (left panel) and temperature fluctuation
field θ (right panel) during a strong convective event at time t = 80τ in the simulation with
Ra = 2.2 × 107, Pr = 10 and Ro = 5.59 × 10−2. Lower panels: Two-dimensional fields w2D

(left) and θ2D (right) obtained by averaging the fields w and θ shown above along the vertical
direction. Fields are rescaled with maxima of absolute values.

this purpose, we computed the vertical correlation function of u, w, θ and
the z-component of the vorticity ωz:

Cu(r) = 〈u(x + rê3) u(x)〉 (6.5)

Cw(r) = 〈w(x + rê3) w(x)〉 (6.6)
Cθ(r) = 〈θ(x + rê3) θ(x)〉 (6.7)

Cωz(r) = 〈ωz(x + rê3) ωz(x)〉 (6.8)
In Fig. 6.6 we show a comparison of the vertical correlation functions com-
puted in the case of the simulation with Ra = 2.2 × 107, Pr = 10 and
Ro = 5.59× 10−2 at the same time of the Figure 6.5 (t = 80τ). At variance
with the typical columnar vortices observed in rotating turbulence, here we
do not find a strong vertical correlation of the z-component of the vorticity
(see Fig. 6.6). Also the vertical correlation of horizontal velocity u decays at
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scales larger than 1/2 of the box size. Conversely the vertical velocity w and
the temperature fields θ remains correlated through the whole domain.

This long-scale, vertical correlation lead us to introduce the 2D fields
w2D = 〈w〉z and θ2D = 〈θ〉z, defined as the average along the vertical
direction of the respective 3D fields. In Fig. 6.5 (lower panels) we show the
2D fields of w2D and θ2D obtained for the simulation at Ra = 2.2 × 107,
Pr = 10 and Ro = 5.59× 10−2 at time t = 80τ , which confirms the spatial
correlation between the hot (cold) regions and the rising (falling) regions also
in the vertically averaged fields.

Despite the lack of a strong vertical correlation of ωz, the inspection of
the 2D field ω2D

z = 〈ωz〉z reveals a connection between the regions of intense
heat flux, which can be identified as thermal convective columns, and cyclonic
regions, i.e. those which rotates in the same direction of Ω. It is possible
that the preferential link between convective structures and cyclones could
be related with the cyclonic-anticyclonic asymmetry which is observed in
rotating turbulence (for a recent review on rotating turbulence see [41]).

Finally, we introduce the 2D Nusselt number defined in terms of the 2D
fields as :

Nu2D = 〈〈w〉z〈θ〉z
κγ

〉x,y (6.9)

where 〈· · · 〉x,y is the average over the horizontal directions x and y. The
physical meaning of the ratio Nu2D/Nu is the relative contribution of the
2D modes, i.e. of the columnar structures, to the total heat transport. In
Figure 6.6 we show the ratio Nu2D/Nu for the various Pr and Ro simula-
tions at Ra = 2.2 × 107. The increase of Nu2D/Nu with the rotation rate
demonstrates that in the limit of vanishing Ro the heat transport is domi-
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nated by the 2D modes. We also observe a systematic trend as a function
of Pr: increasing Pr reduces the contribution of the 2D modes to the heat
flux. This effect can be understood in terms of the reduced spatial correla-
tion between the fields w and θ at increasing Pr, as discussed in the previous
Section (see Fig. 6.4 and the related discussion).

6.5 Conclusions
We have investigated the behavior of the bulk turbulence convection (BTC)
system in a rotating frame by performing extensive DNS of the Boussinesq
equations for an incompressible flow in a cubic box with periodic boundary
conditions in all directions. In the absence of rotation, we confirmed the con-
sistency of the both Nu and Re scaling with Pr and Ra numbers according
to the “ultimate regime of thermal convection” theory [44]. In the presence
of rotation, quantified by the Rossby number Ro, we find a surprising strong
enhancement of both Nu and Re for intermediate values of Ro followed by
a moderate decreases for the largest Ro investigated.

A detailed analysis of the temperature and velocity fields shows that the
observed heat flux enhancement at intermediate rotation is due to the for-
mation of columnar convective structures with strong correlations between
temperature and vertical velocity.

The understandig of the mechanism behind this phenomenom is still in-
complete. In the RB case the non-monotonic increase of Nu is associated
with the Ekman pumping and it depends on the modification of the boundary
layer caused by rotation. Even if in BTC case the boundary layer is absent
we still observe similarities with RB phenomenology. In particular we find a
correlation between Nu and vertical velocity variations. Further studies are
required in order to improve our knowledge on this phenomenon.



Chapter 7

The Kolmogorov flow in a
rotating frame

This chapter is in preparation for submission to a scientific journal.

The work reports a series of massive numerical simulation of the Navier-
Stokes equation by studying rotating homogeneous turbulence which occurs
in the Kolmogorov flow configuration. In particular, the effects of rotation
on the mean flow amplitude and on friction coefficient are investigated.

7.1 Introduction

The Kolmogorov flow is a solution of the Navier Stokes equation in which
the flow motion is generated by a steady sinusoidal force that varies in space:
this stationary sinusoidal shear has a wavelength equal to the length of the
periodic box, where the imposed velocity is usually in the x-direction but de-
pends on the vertical direction. Hence the Kolmogorov flow resulting motion
can be considered as homogeneous in each horizontal plane (x,y-direction),
but not in the vertical one (z-direction).
Indeed, the flow displays a mean velocity profile that vanishes at the zeroes
of the sinusoidal force: near this nodes the velocity profile is approximately
linear (Couette flow), while near the maxima of the forcing the flow velocity
presents an approximate parabolic profile (Poiseuille flow). This brings to
think the basic Kolmogorov flow as the combination of these different pro-
files forming a series of virtual channels that are not confined by material
boundaries and that flow in alternate directions, having their width equal
to half of the sinusoidal forcing period. The abscence of boundaries makes
the Kolmogorov flow a system that allows to isolate and study the flow bulk
properties (i.e. diffusion, turbulent drag) that in other systems can be hidden
by the energy that is produced by the wall presence and that is transferred

83
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into the flow, leading to the formation of more complex flow structures.
Even if generating a periodic forcing in an unbounded flow is quite difficult
to appear in nature, the Kolmogorov flow is an optimal system for thoretical
studies with analytical-numerical treatment and also for laboratory settings
and experimental measurements. In spite of its simplicity, the Kolmogorov
flow makes a good test case for studying simultaneously inhomogeneous con-
ditions, sheared, and anisotropic features in a flow. This system is also ap-
propriate for conducting investigations on fluid instability together with the
transition towards turbulence ??, stratification problem or viscoelastic solu-
tion ??.

7.2 Kolmogorov flow phenomenology

To describe the Kolmogorov flow we now consider the Navier-Stokes equa-
tions:

∂tui + uj∂jui = −∂ip+ ν∂2ui + fi (7.1)
with i = x, y, z representing the single components of the incompressible
velocity field. The base flow is forced along the x direction by the Kolmogorov
body force fi = δi,1Fcos(kz) where k = 1

L is the wave number associated
with the characteristic length L where the forcing acts.
In the laminar regime, when the Re number is below the critical value Rec =√

2, the Kolmogorov flow admits the following stationary solution:

u(z) = (U0cos(kz), 0, 0) (7.2)

with the velocity amplitude U0 which strictly depends on the amplitude of
the forcing F , being proportional to the characteristic length L and inversely
proportional to the viscosity ν (U0 = F/νk2). The laminar regime allows to
study analytically the stability of the system and its transition from laminar to
a chaotic regime [64] indeed the laminar solution is found to be always stable
for small-scale perturbations (i.e., when the perturbation wave number is
greater than the base flow wave number k = 1/L) while it becomes unstable
for large-scale perturbations (i.e., when the perturbation wave number is
smaller than k = 1/L) and for Re > Rec and Rec =

√
2.

In order to have a transition to a turbulent regime one need to consider high
Reynolds number where Re � Rec: in this regime the turbulent velocity
field can be clearly decomposed in a mean flux U with its turbulent velocity
fluctuation u′. Here the Kolmogorov flow shows an interesting property: the
mean velocity still presents a monochromatic profile u1(x, t) = Ucos(kz)
similar to the laminar regime, where the overbar represents the average over
the time t and the two horizontal directions x, y. Moreover the new amplitude



85 7.2. Kolmogorov flow phenomenology

of the mean velocity U has a non trivial dependence that cannot be predicted
a priori.
Thanks to this property one can still consider the Kolmogorov flow in the
turbulent regime, like a series of virtual channels respectively separated by
virtual walls where the mean velocity sinusoidal profile is equal to zero. On
the other hand, inside each channel, the velocity field presents a sinusoidal
profile having a maximum at the center of each virtual channel.

7.2.1 Momentum budget

The momentum budget can be studied by considering the Navier-Stokes
equation 7.1 and by taking the space-time average only for the x velocity
component that is the only one to be non zero according to the forcing
(averages along y and z components are zero because of isotropy due to the
absence of forcing term).
After the space-time average operation, the equation can be reduced to a
profile equation:

∂z(uxuz) = ν∂2
zux + fx (7.3)

with fx = Fcos(kz) being the deterministic sinusoidal forcing. Since the
mean velocity profile is also described by a sinusoidal profile, one can make
the hypotesis, following 7.3 that all the mean quantities still depend on z
according the following relation:

∂2
zux = −k2Ucos(kz)

∂z(uxuz) = kScos(kz)
(7.4)

which represent respectively the viscous term and the Reynolds stress terms.
It is crucial to note that the sinusoidal profile of the Reynolds stress term in
7.4 is not trivial and derives from this hypotesis. Indeed, taking into account
that both the viscous and forcing term present a sinusoidal behaviour, this
allows to assume that also the Reynolds stress term in the Kolmogorov flow
should present a sinusoidal profile depending on z which is monochromatic
and with an amplitude S. This property has been observed and verified
through numerical simulations results [14].
Hence at this point a simple algebraic relation for the amplitude coefficients
of these three scalar quantities can be found as:

kS = −νk2U + F → F = S

L
+ νU

L2 (7.5)

Finally, one can introduce two dimensionless coefficients by defining the fric-
tion (or drag) coefficient for the Kolmogorov flow as the ratio between the
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work done by the sinusoidal forcing and the mean flow kinetic energy:

f = FL

U2 (7.6)

and the stress coefficient as:
σ = S

U2 . (7.7)

Therefore is possible to rewrite the momentum budget equation 7.5 as

f = σ + 1
Re

(7.8)

which in the laminar regime, in the fixed point where S = 0, brings to the
well know friction factor relation with the Reynolds number:

flam = 1
Re

. (7.9)

As long as Reynolds has low values the laminar solution is stable, but when
the turbulence increases, the growth of Reynold brings to the instability with
the friction factor becoming larger than flam.

7.3 Rotating Kolmogorov flow
In a rotating frame the Navier-Stokes equation are the following

∂tu + u · ∇u = −1
ρ
∇p+ ν∇2u + f − 2Ω× u (7.10)

In this case the dimensionless parameter of Ro = U0
2ΩL , relating the ratio

between the inertial and the Coriolis forces, can be introduced. We can now
consider the same Kolmogorov unbounded system where the flow is forced
along the x direction as fi = δi,1Fcos(z/L) and the system is rotating with
a uniform angular velocity Ωẑ along the vertical direction.

7.3.1 The laminar regime

The presence of the Coriolis force induces a deviation of the initial flow,
creating a non-zero component on the other horizontal direction y.
Indeed, considring a rotating frame, the laminar solution becomes

u(z) =
Ucos(kz)

1 + Ek−2 ,−
Ek−1Ucos(kz)

1 + Ek−2 , 0
 (7.11)

and depends on the Ekman number defined as Ek = νk2/2Ω, which repre-
sents the ratio between the viscous force and Coriolis force. Therefore the
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Figure 7.1: Scheme of the vectors direction in the rotating Kolmogorov system: the forcing F
is orientated along the x axis, the velocity field is deviated of an angle θ while the second vector
component is due to the Coriolis force.

Ekman number can be also expressed as the ratio Ek = Ro
Re , indeed the non

rotating case is recovered with Ek →∞.
Even with the presence of rotation, the monochromatic solution is still a
Kolmogorov flow, where the direction of the velocity is no more aligned with
the external force along x. The velocity is rotated clock-wise by an angle
θ = arctan(Ek−1) with respect to the direction of the external force f , and
also its amplitude intensity is reduced by a factor (1 +Ek−2)−1/2. Hence the
final espression for the velocity is:

||u|| = U |cos(kz)|√
1 + Ek−2 . (7.12)

Figure 7.1 outlines the balance, in the laminar regime, between three force
vectors which form a triade: the external forcing of amplitude F along the
horizontal axis, the viscous force proportional to U and the rotation force
proportional to Ω that are orthogonal.

7.3.2 The turbulent regime

Increasing the Reynolds number and considering the transition to the turbu-
lent regime, an analogous of relations 7.11 and 7.12 does not exist. Here
an exact expression for the velocity is still missing and needs to be achieved
through numerical simulations.
In principle, in the turbulent regime, the balance will be between the three
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forces contributios of Figure 7.1 with the addition of the Reynolds stress
forces. Hence, the momentum budget equation 7.3 in the rotating frame for
the two horizontal component can be written as:

∂z(uxuz) = ν∂2
zux + 2Ωuy + fx (7.13)

∂z(uyuz) = ν∂2
zuy − 2Ωux (7.14)

where it is easy to see that the Reynolds stress term will be also divided in
two components x, y.
Making the same assumption of 7.4 one can also hypothesize a sinusoidal
behavior for the stress forces and write the final relation for the mean quan-
tities:

ux = Uxcos(kz)
uy = Uycos(kz)

uxuz = Sxsin(kz)
uyuz = Sysin(kz)

(7.15)

where both the velocity and the stress terms components have different am-
plitude according to the rotation intensity with their modules being simply
U =

√
U2
x + U2

y and S =
√
S2
x + S2

y .
In first approximation the dominant contribution of the Reynolds stress term
can be assumed. Indeed, with this hypothesis, it stands to reason that the
viscous dissipation, proportional to U , becomes negligible in comparison with
the stress force vector of module S.
Furthermore, making a second assumption according to which these two vec-
tors remain aligned in the same direction, a similar triadic relation as in Fig.
7.1 of the laminar case can be recovered, with the stress vector replacing the
viscous term.
In this case, the prediction for the deviating rotation angle can be obtained
as:

tan(θ) = 2ΩUL
σU2 = 1

σEkRe
∝ 1
Ro

(7.16)
Now, substituting the mean quantites 7.15 in the two components of the
momentum budget equation 7.13 and 7.14 one can obtain the following
relations:

Sx
L

+ ν

L2ux = 2Ωuy + F (7.17)
Sy
L

+ ν

L2uy = −2Ωux (7.18)
Finally, if the velocity and stress vectors are aligned, starting from 7.17 and
7.18, the sum squared of the two components brings to the compact relation:S

L
+ νU

L2

2

+ 4Ω2U2 = F 2 (7.19)
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that can be rewritten in terms of adimensional parameters as(
σ + 1

Re

)2
+ 1
Ro2 = f 2 (7.20)

However, an alignment between the stress and the velocity vectors cannot
be predicted a priori and needs to be studied in detail (see 7.5). The main
results are presented hereafter.

7.4 Numerical simulations and modelling
We performed extensive Direct Numerical Simulations of the Navier-Stokes
equation under rotation

∂tu + u · ∇u = −1
ρ
∇p+ ν∇2u + f − 2Ω× u (7.21)

in a cubic domain of size Lbox = 2π with periodic boundary conditions, fixed
viscosity, Kolmogorov forcing at the scale L = 1 and different values of the
forcing amplitude F . Starting from a turbulent statistically stationary state,
reached after several large-scale eddy turnover times T = 〈u2〉/2ε, the Corio-
lis force is turned on and the same rotation regime is explored for each forced
flow.
In order to compute the mean profiles from which to obtain the amplitudes
by fitting equations 7.15, a solid statistics (i.e., good convergence of mean
quantities with an average over many T ) is needed. Finally, after the rotat-
ing system reaches a stationary regime, the other statistical properties of the
flow can be computed. Since the value of F determines different velocity
amplitudes, and therefore diverse Reynolds number. This required the use of
different resolutions of the cubic domain to be simulated.
Moreover, several increasing rotation intensities are explored for each differ-
ent forcing, taking care to explore the same Rossby number range in every
simulation series. Since rotation induces a reduction of the velocity fields, we
choose rotation intensities that still allow a turbulent regime in the system.
To clarify, all simulation parameters are shown in Table 7.1.
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F Re Ω U ε η τη T
0.008 220 0.005 0.22 9× 10−4 3.25× 10−2 1.05 35.0
0.008 188 0.01 0.19 7× 10−4 3.46× 10−2 1.19 38.4
0.008 129 0.02 0.13 4× 10−4 3.98× 10−2 1.58 43.0
0.008 95 0.04 0.09 2× 10−4 4.73× 10−2 2.24 47.5
0.512 1984 0.005 1.98 5.08× 10−1 6.66× 10−3 0.045 4.91
0.512 1734 0.05 1.73 4.33× 10−1 6.93× 10−3 0.048 4.94
0.512 1399 0.1 1.40 3.30× 10−1 7.41× 10−3 0.055 5.17
0.512 869 0.2 0.87 1.41× 10−1 9.16× 10−3 0.084 6.71
0.512 768 0.3 0.77 8.63× 10−2 1.04× 10−2 0.11 8.10
1.024 2013 0.125 2.01 5.09× 10−1 6.65× 10−3 0.044 6.97
1.024 1368 0.25 1.37 4.81× 10−1 6.75× 10−3 0.046 4.51
1.024 1119 0.5 1.12 2.51× 10−1 7.95× 10−3 0.063 5.82

Table 7.1: Parameters of the simulations: F is the amplitude of the forcing, U =
√
U2
x + U2

y is
the amplitude of the mean velocity profile, Ro = U/2ΩL, Re = UL/ν, ε = ν〈(∂u)〉 is the mean
energy dissipation, η = (ν3/ε)1/4 is the Kolmogorov scale, τη = (ν/ε)1/2 is the Kolmogorov time
scale, and T = 〈u2〉/2ε is the large-scale eddy turnover time. The viscosity ν = 10−3 and the
integral scale L = 1 are fixed for all simulation. Simulations with forcing F = 0.008 are done at
resolution N = 128, F = 0.512 at N = 512, and F = 1.024 at high resolution N = 1024.

7.5 Results

We firstly analyse vertical profiles computing ensemble average for both the
velocity and Reynolds stress components, in each forced simulation and for
every rotation intensity. As one can observe from figure 7.2 the two velocity
components present a cosine profile, reaching maxima at the boundaries and
in the middle of the cubic domain (i.e, Lz = 0 = 2π and Lz = π). Viceversa
the mean stress component profiles are well approximated by a sinusoidal
function being clearly null in association of the maxima energy input values
and becoming important in the inversion velocity regions (i.e., virtual chan-
nels boundary).
Hence the hypothesis of equation 7.15 is justified and both the sinusoidal be-
haviours are verified. This allows to introduce the velocity and stress vectors
defining their modules as U =

√
U2
x + U2

y and S =
√
S2
x + S2

y .
We now focus on the study of the rotating turbulent behavior, studying in
particular on the friction coefficient f = FL/U2 and the stress coefficient
σ = S/U2 and their dependence on Ro = U

2ΩL rotation parameter.
Our numerical simulations start from the work of [69] where fully develeped
regime is reached in a Kolmogorov flow system in absence of rotation. In-
deed, the black and magenta lines shown in Figure 7.3, respectively represent
the friction factor f and the stress coefficient σ dependence on Re number
in a non-rotating domain. According to 7.8, in absence of rotation, their



91 7.5. Results

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  1  2  3  4  5  6

u
x
(z

),
u

y
(z

)

z

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1  2  3  4  5  6

s
x
(z

),
s

y
(z

)

z

Figure 7.2: The figure show an example of vertical averaged profiles for the velocity component
(left panel) and stress vectors components (right panel). Blue lines represent the x component
while red lines indicate y component.

variation is always equal to the inverse Reynolds number while, as one can
see from the figure, they follow to a good approximation a relation of the
type a+ b

Re with coefficients a and b properly obtained from fitting equations
(see [69]).
As previously said, the aim of the work is to study the physical behaviour
of friction and stress coefficient in presence of rotation. In Figure 7.3 are
shown the two coefficient, f and σ, as a function of Re, where different
symbols represent the three different forcing F = 0.008, F = 0.512 and
F = 1.024 while each dot represents a different rotation intensity explored
in simulations.
Physically, as rotation increases, the amplitude of the mean flow velocity
decreases leading to an increase in the friction factor according the exact
relation f = C

Re2 . Indeed, starting from the definition of f and writing the
velocity in terms of the Reynolds number, the previous relation can be ob-
tained with the constant C = FL3

ν2 . The three curves (blue, red and green)
represent the behaviour of f which is verified to be a curve ∝ 1/Re2, here
shown in a log scale.
Moreover, another information is given by the Figure 7.4 where, in the left
panel, the two coefficients behaviour is plotted as a function of the Rossby
parameter. Here as long as the rotation increases, the growth of both f
and σ is confirmed. Furthermore, the other interesting result is that all data
of the friction coefficient f at different forcing present the same decreasing
dependence with Rossby, showing a collapse of their curves. The same thing,
with a different behavior, occurs for the stress coefficient σ. The above
mentioned collapse could indicate that we have reached the same asymptotic
regime expected at high Reynolds.
On the right panel of Figure 7.4 we show the decrease of the Reynolds number
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Figure 7.3: Three different simulated external forcing in presence of rotation are shown: the
external forcing F = 0.008 (squares), forcing at F = 0.512 (circles) and forcing F = 1.024
(triangles). All filled symbols are referring to the friction factor f = FL/U2 (respectively the blue,
red and green lines) while the empty symbols refer to the stress coefficient σ = S/U2 (respectively
the orange, cyan and olive line). Black and magenta series refer to the work [69] where f and σ
dependence on Reynolds is studied in absence of rotation.
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Figure 7.4: Left panel: Friction factor f and stress coefficient σ dependence on rotation (Ro
number) at three different forcing of the flow (F = 0.008, F = 0.512 and F = 1.024). Symbols
as in Figure 7.3. Right panel: Re dependence on rotation. The Re values are normalized with
their corresponding Re(0) in absence of rotation. Different symbols for the three external forcings
as in Figure 7.3.

with the increasing rotation, due to the suppression of velocities. We show
the Re normalized with its value Re(0) in a fully turbulent system in absence
of rotation: even if diverse external forces produce different velocity fields,
by decreasing the Rossby number the same relatively decrease of Reynolds
is achieved in all simulations and a collapse of the curves is obtained. This
indicates that the same regime is therefore investigated.
However, it is important to note that, considering absolute Reynolds values,
even for the simulation presenting the maximum of rotation and the mini-
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mum external forcing, a fully developed turbulent regime still persists. This
can be also verified from values of the Re number in table 7.1.
Finally we investigate if, with the action of rotation, the amplitude of mean
velocity and the stress vectors can still present an alignment in terms of the
angle direction. We can firtsly define the angles θU = atan(UyUx ) formed by
the velocity vector components ux and uy together with the angular values
of θS = atan(SySx ) and then we study their dependence with the rotation
intensity. The increasing of rotation should bring to a growth of the angles
deviation.

 0.01
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Figure 7.5: Velocity vector angles θu (filled symbols) and stress vector angles θS (empty symbols)
dependence on the Ro number at three differente forcing. Symbols shape and line colours as in
Figure 7.3. The dashed line represents the prediction 7.16 where tan(θ) ∝ 1/Ro.

Results are presented in Figure 7.5 where the inset shows that both θU and
θS have their values between 0 and π/2. In the limit of Ro → ∞ the Kol-
mogorov in absence of rotation is recovered, presenting vanishing angular
values. Here, both the stress and velocity vectors tend to orient aligning
along the external force direction. Furthermore, at low rotation, also the
relative difference between the two angles is vanishing.
As long as rotation increases both angles orientation present a behaviour
that follows the prediction of 7.16 (black dashed line ∝ 1/Ro) confirming
the hypothesis that the vector directions remain aligned within the error bars.
To better understand the behaviour, angles of Figure 7.5 are displayed in a
logarithmic scale.
Afterwards, angles continue their growth up to be identical at an interme-
diate Rossby number where their values measure θ = π/4. Finally, at very
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low Rossby numbers, the rotation hugely impacts on the velocity field which
ends in a significant reduction of the amplitude U , with an increase in the
measurements uncertainty, and a theoretical prediction is still missing.
For this reason the behaviour at very high rotations is not totally under-
stood and further studies need to be conducted in order to have a better
comprehension of the system.

7.6 Conclusions
After a theoretical description of the Kolmogorov flow, we investigated the
system under a rotating regime by performing Direct Numerical Simulation of
the Navier-Stokes equations in a cubic box with periodic boundary conditions
subjected to rotation. Firstly, even in a rotating turbulent regime, the mean
profiles of velocity and stress vectors can be still represented with sinusoidal
function.
The dependence of the friction factor f and the stress coefficient σ, in pres-
ence of a growing rotation, is studied showing a curve collapse of their be-
haviours and confirming the quantities growth according to the physics of
the system: the velocity amplitude decrease with the rise of rotation, hence
the friction factor shows the same kind of increment at different forcing.
Moreover, the angular orientation of the velocity vector and the Reynolds
stress vector is investigated for a wide range of rotation intensities. An align-
ment of these quantities is observed for very low rotation, where the stress
and velocity vectors align along the forcing direction. The range of interme-
diate rotation still presents an alignment with a grow of the angular deviation
which follows the theoretical prediction 7.16.
Neverthelss, further studies need to be conducted for the range of high rota-
tions which acts highly suppressing the velocity fields resulting in a significant
suppression of its amplitude. Here a theoretical description is still missing.
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