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Abstract

Exception handling has been successfully proposed in software engineering practice as a simple, but effective, technology to address
abnormal situations possibly occurring at runtime. Such mechanisms support the robust composition of heterogeneous software
components, promoting code modularity, decoupling, and separation of concerns. Multi-agent systems bring these features to
an extreme, but often lack systematic mechanisms for treating exceptions as part of their design. In this paper, we show how
exception handling mechanism can be introduced in SARL, leveraging the abstractions that characterize its programming model.
We introduce a new kind of space, supporting the responsibility distribution among agents concerning the handling of exceptional
situations.
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1. Introduction

Exception handling is a well-known technology, adopted in software engineering practice to achieve robustness.
Broadly speaking, it amounts to equipping a software system with the capabilities needed to tackle, at runtime, classes
of abnormal situations, identified at design time. An exception is an “event that causes suspension of normal program
execution” [17]. Therefore, the purpose of an exception handling mechanism is to provide the tools to (i) identify
when an exception occurs, and (ii) apply suitable handlers, capable of treating the exception and recover. Thus, when
an exception breaks the normal flow of execution, a pre-defined exception handler is typically executed to manage
the specific situation. On its completion, the execution is possibly directed back to the normal flow of the program.
Raising an exception is a way to signal that a given piece of the program cannot be performed normally; whereas,
handling an exception refers to the set of instructions to be performed to restore the normal execution flow [11].

Taking a wider perspective, the need for treating exceptions emerges from the desire of structuring and modulariz-
ing software, separating concerns into independent components that interact with each other. Indeed, the seminal work
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by Goodenough on exceptions in programming languages [11, 12, 13], points out how exceptions are an important
enabler for robust software composition. They allow the user of an operation to extend the operation domain (the set
of inputs for which effects are defined), or its range (the effects obtained when certain inputs are processed). They
allow the invoker tailoring an operation’s results or effects to the particular purpose for which the operation is used,
thus making it usable in a wider variety of contexts than would otherwise be the case. Consequently, an exception full
significance is known only outside the detecting operation: the operation is not permitted to determine unilaterally
what is to be done after an exception is raised. The invoker controls the response to the exception, that is to be acti-
vated. This increases the generality of an operation because the appropriate “fixup” will not be hard-coded inside the
operation itself but, rather, it will vary from one use to the next, depending on the invoker’s objectives, with straight-
forward benefits in terms of robustness. To make this possible the invoker must be provided with sufficient contextual
information about the exceptional situation at hand.

Multi-Agent Systems (MAS), in this perspective, bring software structuring, modularization, and separation of
concerns to an extreme. They embody a computational model that offers effective high-level abstractions for con-
ceptualizing distributed, autonomous systems, characterized by multiple autonomous threads of execution that run in
parallel. Here, agents amount to loci of decision, and they possibly need to interact and rely on one another to pursue
their aims. In SARL [18], for instance, a MAS is conceived as a collection of agents interacting together through a set
of shared distributed spaces, which realize a support layer for interaction. A specific type of space, the event space,
is natively defined in SARL and supports event-driven interactions. Agents are equipped with behaviors, which map
perceived events to sequences of actions.

Indeed, robustness is a serious concern in SARL: an agent inability to complete some behavior may have an impact
on the tasks carried out by others interacting with it. Currently, the SARL programming model and its platform do not
encompass an exception handling mechanism, but just the possibility for an agent to emit failure events. In this paper,
we show how an exception handling mechanism can be introduced in the SARL platform, and its benefits in terms
of increased robustness during the execution. To this end, we leverage the high-level abstractions that characterize its
programming model; namely spaces, events and behaviors.

2. Exception Handling in SARL: a Social Attitude

At the language level, SARL supports exception throwing and catching within an agent’s code, in a similar way
to what is done in Java (upon which SARL is built). This language feature, however, operates at a lower level of
abstraction than the agent’s computational model. It deals, in fact, with exceptions at the level of the threads, that
constitute each single agent, rather than with exceptions between the agents themselves. To deal with this issue, the
SARL authors recently introduced the notion of failure event. These events represent any failure, or validation errors,
that an agent could face. Each time an agent needs to be notified about a failure, an occurrence of this event type
is internally fired, and eventually handled through some suitable behavior. Similarly, agents may emit failure events
directed towards other agents while executing their behaviors. In particular, since agents can form holons [8, 10, 19],
(failure) events can propagate from one agent to its parent in a holarchy.

Failure events alone, however, are not enough to realize Goodenough’s vision, who underlines how exception
handling always involves two parties: a party that is responsible for raising an exception, and another party that is
responsible for handling it. The raised exception represents a feedback concerning the situation at hand, that the ex-
ception raiser has to provide to the exception handler, and which is seen as crucial to enable a successful handling
[1, 4]. In other terms, Goodenough’s vision suggests that any exception handling mechanism must be a social struc-
ture, where the parties accept to act so as to discharge responsibilities they have towards the society. While in agent
organizations such social structures can be built upon institutional norms [5, 6, 7, 9], it is more challenging to map
them into the SARL model, which, purposely, lacks of primitive notions of organizations and norms. Indeed, SARL
allows its agents to raise and capture failure events that may resemble exceptions, but no social structure is established
between the involved agents. Without a social perspective, agents are not committed either to raise or to handle failure
events. Thus, failures can even get unmanaged, and no cues to understand why are available. On the other hand, when
a social structure is established, agents are committed to play their roles in the systems. This enables one to check,
at runtime, whether possible failures are matched with committed agents, and when a failure is not managed, it is
possible to isolate the involved agents and understand why they did not behave as expected. Broadly speaking, what is
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currently missing in SARL is a clear distribution of responsibilities among agents for raising and handling exceptions.
This makes the whole system fragile since no mechanism is established to assess, at runtime, whether (and in what
circumstances) such failure events will be actually raised and captured.

Since in SARL interaction among agents is based on events and supported by spaces, we propose to exploit the
very same elements to encode a social structure upon which an exception handling mechanism can be realized. In
particular, we introduce a dedicated space to allow agents to explicitly take responsibility w.r.t. the raising and handling
of exceptions. Intuitively, by registering to this space, agents living in the same context take on the responsibility to
(i) provide feedback (i.e., emit specific kinds of failure events) about the context where they detected exceptions,
while executing some behaviors, or (ii) handle some of the exceptions raised by others, once the needed information
(i.e., the feedback) is available. The proposed exception space realizes a channel through which relevant contextual
information concerning an exception can flow from the agent detecting it to the ones impacted by and able to treat it.

More in detail, we defined an exception space interface, describing the following functionalities provided by the
exception space:

def registerAsRaiser(ev : Class<? extends Event>, ex : Class<? extends Failure>, ag : EventListener)

By executing this action over an exception space instance, a listener agent takes on the responsibility for pos-
sibly raising an exception ex in response to an event ev. This creates an expectation within the society that the
agent is equipped with a behavior to react to the occurrence of event ev. At the same time, the execution of such
behavior could eventually end in the raising of an exception. Every time an agent registers as exception raiser,
all the agents participating in the exception space are notified through the emission of an ExceptionRaiserReg-
istered event. The event attributes specify the agent identifier, the exception type and the type of event whose
the exception could be a response to.

def registerAsHandler(ex : Class<? extends Failure>, listener : EventListener)
Similarly, by executing this action, a listener agent explicitly takes on the responsibility for handling an excep-
tion ex, should it be raised by some other agent. By doing so, the agent denotes to be recipient of the exception
at hand, as exception handler, and establishes a social expectation concerning its possibility (i.e., willingness,
ability, etc.) to handle it. As before, every time an agent registers as a handler for some exception, an Excep-
tionHandlerRegistered event is fired and propagated to the participating agents.

def raiseException(f : Failure, u : UUID)
This action allows a previously registered exception raiser agent to actually raise an exception instance f (i.e.,
a failure event of some kind). The event is then delivered to all the registered exception handler agents (if any).
If no handler is registered for the given exception, a NoHandlerAvailable event is fired back to the agent who
raised the exception.

The exception space interface has been concretely implemented in the Janus runtime platform'. In particular, we
extended the OpenLocalEventSpace implementation of the event space provided by SARL. Once instantiated in a
given context, along with the execution, the space keeps track of the agents which register as exception raisers and
handlers, and propagates exceptions accordingly.

Similarly to what achieved in programming languages through constructs such as, e.g., try...catch and throws
(in Java), the proposed space allows to clearly identify situations, possibly occurring during the agent interaction,
which could hinder robustness, thereby making the system fragile. Moreover, agents are put in condition to reason on
the expected behavior of the others, also in presence of exceptions, and calibrate their behavior accordingly. In Java,
declaring that a method throws an exception allows any invoker to be aware of a potential source of fragility. If needed,
the method invocation can be then surrounded by a try/catch block to handle the eventuality in a straightforward way.
Analogously, if an agent registers as exception raiser in response to some event, the agents interacting with it are made
aware of the fact that their interaction could end in the occurrence of an exceptional situation, and therefore may enact
suitable handling strategies according to their objectives.

! The proposed implementation is available at https://di.unito.it/sarlexceptions.
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3. An Illustrative Example

To illustrate the usage and benefits of the exception handling mechanism in a practical use case, let us consider the
following scenario. Money withdrawal at an ATM involves two steps: (i) the user types the desired amount; (ii) the
money is provided. Suppose the typed amount is fed as a string (e.g., “100”), whose characters correspond to digits,
and then it is parsed. A SARL application realizing the ATM could consist of a user agent, in charge of interacting
with the user—namely gathering the input, and providing the money—, and a parser agent, that receives the input string
from user agent and converts it into a number. If the string, that is inserted by the human user, is not a number in digits
(e.g., “one hundred”), parsing fails. A desirable behavior would be that the system, instead of crashing, were able
to cope with the situation. To make this possible, the user agent should be made aware that, in some cases, parsing
requests could raise exceptions (e.g., not a number). Thus, for any possible exception raised during parsing, the user
agent should be equipped with a suitable handling strategy. For instance, in the case of the not a number exception,
the user agent could ask the human user for another amount. Note that this would be completely transparent to the
parser agent, which is unaware of how its inputs are generated, and of how its outputs are used. The exception space
we propose enables this mechanism: it makes an agent aware of the exceptions that may be generated by other agents
as a response to events it has previously emitted. Awareness, thus, puts the agents in the position to make the overall
system more robust when they assume the responsibilities of handling exceptions.

Without such a mechanism, the potential fragility concerning the handling of non-numeric strings would remain
opaque. The user agent could not leverage any social expectation on the parser’s behavior to determine that the
emission of a failure event could be due to its previous request. A failure event, thus, could be left unhandled because
the other agent in the space would not recognize it as an event pertaining its objectives.

The following listing shows an excerpt of the parser agent’s code using the exception space we propose.

agent Parser {

uses DefaultContextlnteractions, Behaviors,Logging
var exSpace : ExceptionSpace

on Initialize {
exSpace = defaultContext.getOrCreateSpaceWithSpec (
typeof (ExceptionSpaceSpecification), occurrence.parameters.get(0) as UUID)
9 exSpace.registerAsRaiser (ParsingRequest , NotANumberException, asEventListener)
10 }
11
12 on ParsingRequest {

1
2
3
4
5
6
7
8

13 var amountString = occurrence.amount

14 var amountint : int

15 var parsingResult : boolean

16 // Perform the parsing

17 if (parsingResult) {

18 emit (new ParsingDone(amountint))

19 }

20 else {

21 exSpace.raiseException (new NotANumberException(index), ID)

22 }
23 }
24}
Listing 1. Excerpt of the parser agent’s code.

Both the parser and the user agent interact through the same instance of an exception space, created by following
the corresponding space specification (see Line 7). As soon as the agent is initialized, it registers itself as raiser of a
NotANumberException in response to a ParsingRequest event (Line 9). Indeed, the agent is equipped with a behavior
triggered by the very same event, whose body attempts to perform the parsing of the string specified as attribute in
the event occurrence. If the string is not a number, the agent raises a NotANumberException. The exception is a
specialization of SARL failure event and includes an index attribute, denoting the index of the first non numeric digit
found in the string.

As soon as the exception is raised, the space instance propagates it to all the agents registered as handlers, if any.
Listing 2, below, shows an excerpt of the user agent’s code, responsible for exception handling.

1 agent UserAgent {

2
3 uses DefaultContextlnteractions , Schedules, Behaviors, Logging
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4 var exSpace : ExceptionSpace

5 var attempts = 1

6

7 on Initialize {

8 exSpace = defaultContext.getOrCreateSpaceWithSpec (

9 typeof (ExceptionSpaceSpecification), occurrence.parameters.get(0) as UUID)
10 exSpace.registerStrongParticipant (asEventListener)

1 }

13 on Requestinput {

14 // Gather input from user

15 emit (new ParsingRequest(amount))

16 }

17

18 on ExceptionRaiserRegistered[occurrence.ev === ParsingRequest && occurrence.ex === NotANumberException] {
19 exSpace.registerAsHandler (occurrence.ex, asEventListener)

20 wake (new Requestinput)

21 }

23 on ParsingDone {

24 // Provide money
25 wake (new WithdrawalCompleted)
26 }

28 on NotANumberException {

29 if (attempts++ < 3) {

30 wake (new Requestlnput)

31 } else {

32 wake (new CloseATM)

33 }

34 }

35

36 on CloseATM { ... }

37 on WithdrawalCompleted { ... }

38}
Listing 2. Excerpt of the user agent’s code.

The code snippet above highlights the usefulness of our exception space. The user agent, in fact, is aware that when
it emits a ParsingRequest event, a NotANumberException could be generated as a response, and hence it takes on the
responsibility for handling this exception. This is apparent in Lines 18-21, where the agent registers itself as handler
for NotANumberException as soon as another agent has registered as a parser. Thus, should the exception be raised
by the parser, the space would propagate the failure event to the user agent, triggering the behavior in Lines 28-34.
In detail, the exception is actually handled by keeping track of the attempts made by the user, and requesting another
input up to three times.

It is worth noting that, although this simple scenario involves two agents only, an exception space instance could
support the composition and collective exception handling of multiple interacting agents. More sophisticated imple-
mentations could include, e.g., a money keeper agent, in charge of interacting with the strongbox and providing the
money, or a balance monitor agent, in charge of authorizing the withdrawal if the user’s account has sufficient balance.
Each one could leverage the exception space to raise or handle those exceptions impacting its field of operation.

4. Discussion

Goodenough’s work points out that any exception handling mechanism is essentially a social structure, where in-
dependent, but interacting stakeholders assume the responsibility to handle specific situations by raising or capturing
exceptional events. Such a vision is particularly interesting when applied to the development of distributed systems,
where two major conceptual models have been proposed in the literature: actors [16] and agents. In the actor model,
computational entities are modeled as independent acfors, communicating with others through message passing. For
instance, in Akka [14, 15], actors are organized into a supervision hierarchy, which forms the basis of Akka’s excep-
tion handling model. Specifically, actors are always created as children of some other existing actor, which supervises
them and manages their lifecycle. Each time an actor faces a failure during a task, it can notify an exception to its
parent actor, which, in turn, either implements suitable supervision strategies, or escalates the exception to its own
parent. This supervision technique can be conceived as a way to move the responsibility of handling an exception
from the component that fails [14] to the one that can determine the best way to treat the issue.
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A substantial difference between actors and agents is that agents are not structurally bound by parent-child re-
lationships. Even in presence of a holarchy, like in SARL, agents are autonomous in the management of their own
lifecycle. Thus, exception handling must be leveraged on some explicit social structure. Multi-agent organizations
(MAO) [5, 6, 7, 9], for instance, are built upon the distribution of responsibilities (i.e., task allocation). An organiza-
tion typically encompasses a decomposition of a global task into sub-tasks. Sub-tasks are, then, assigned to agents by
means of norms, that orchestrate the execution: as soon as a specific organizational task is needed to be achieved, the
normative system generates an obligation towards some agent to achieve that task. In essence, norms shape the scope
of the responsibilities that agents take when joining the organization, capturing what they should do to contribute to
the achievement of the organizational goal, including the responsibilities for raising or handling exceptions [2, 3, 4].

Agents in SARL, however, cannot exploit a normative system. Thus, the distribution of responsibilities over the
treatment of exceptions must be obtained in a different way. In this paper, we have proposed an exception space where
some specific actions performed by agents assume a social value, that is, they correspond to responsibilities toward
the other agents in the space. This increases the awareness of an agent about its context: an agent knows whether some
of events it emits could induce exceptions, and hence it can decide to handle these exceptions. More generally, since
the registrations as raiser/handler of an exception are public events, any agent into a space knows what exceptions are
possibly raised and handled and by what agents. The use of failure events only, instead, is opaque to the agents: agents
can neither know whether a specific failure event will be emitted, nor whether such an event will be intercepted by
some other agent in the space.
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