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1 Introduction

In the era of precision high-energy physics, significant efforts and excitement in the particle
physics community focus on developing methods to explore high orders in perturbation
theory, and improving on the precision of theoretical predictions, to meet the standards set
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by current and future experiments (refer to refs. [1–3] for recent reviews). An important
requirement to access the calculation of hard processes at lepton and hadron colliders is to
have a detailed control on infrared singularities (arising from configurations where one or
more particles become soft or collinear), that plague both real and virtual corrections. While
this problem is completely solved at next-to-leading order (NLO) [4–10], the issue of treating
infrared singularities in a fully general manner remains a challenge at NNLO. Numerous
subtraction and slicing schemes are currently available [11–34], as reviewed in [35], and a
few of them have already been applied to a variety of NNLO calculations (see [36–60] for
some representative results). However, none of the existing methods have so far provided
an explicit demonstration of the cancellation of infrared singularities for arbitrary hadron
collider processes at NNLO. Although recent work made substantial progress in this direction,
in the context of antenna subtraction [34, 61] and nested soft-collinear subtraction [33], such a
proof for generic final states is still beyond the current state of the art for hadronic scattering.
For e+e− collisions, this cancellation for arbitrary final states has only been displayed within
the framework of the local analytic sector subtraction scheme [30, 31, 62].

Given this scenario, perfecting our understanding of the physical mechanisms governing
infrared divergences is crucial. It is intriguing to observe an “asymmetry” in the control
we have on soft and collinear singularities in virtual corrections to scattering amplitudes,
compared to our understanding of the behaviour of real-radiation corrections in the same
regimes. The infrared content of virtual corrections has been deeply scrutinised in the past [63–
74], and, in the case of massless gauge amplitudes, it has been shown that it is governed to
all orders by a limited set of universal functions defined by gauge-invariant operator matrix
elements. These functions, in turn, obey evolution equations that can be solved in terms of
soft and collinear anomalous dimensions, which have been computed in the massless case up
to three loops [75–78], and in some cases also beyond [79–81]. Our knowledge of the behaviour
of real-radiation matrix elements under unresolved limits is somewhat more limited, as most
existing results have been derived at fixed order. Nevertheless, it has been demonstrated that,
under a variety of conditions, these matrix elements factorise in soft and collinear limits into
universal kernels and lower-multiplicity amplitudes [82–84]. The necessary kernels for NNLO
calculations are fully known [82–87], while partial results are available at N3LO [88–101].

A theoretical framework to systematically construct unresolved radiative contributions,
serving as local subtraction counterterms, and leveraging the well-understood structure of
infrared divergences in virtual corrections, would greatly benefit the ultimate organisation of
subtraction methods. This paper aims at filling this gap, complementing the study performed
in ref. [102]. In that paper, a general method was proposed to identify local infrared
subtraction counterterms, to any order in perturbation theory. The core idea of the method
consists in exploiting completeness relations and general theorems on the cancellation of
infrared singularities, to infer the expression of real-radiation counterterms from the factorised
form of virtual corrections. In the latter, soft and collinear divergences are organised in
gauge-invariant matrix elements of fields and Wilson lines. Ref. [102] also tested the agreement
between the expressions of the candidate counterterms and the known results at NLO, and
presented the organisation of the relevant counterterms at NNLO. An interesting aspect of
NNLO calculations that was not addressed in ref. [102], and which is the focus of the present
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paper (see also ref. [103]), is the issue of identifying and dealing with strongly-ordered soft and
collinear limits, where groups of particles become unresolved in a hierarchical manner. For
example, at NNLO, up to two partons can become soft and up to three partons can become
collinear at the same time. When these double-unresolved limits are analysed, one needs to
disentangle uniform limits, where soft and collinear emissions become unresolved at the same
rate, and strongly-ordered limits, where one or more particles become unresolved at a faster
rate than the others. These hierarchical configurations, upon integration, play the delicate
role of cancelling singularities arising in mixed real-virtual contributions. In the present
paper, we will tackle the problem of systematically building strongly-ordered subtraction
counterterms, exploiting the principles of infrared factorisation. Through specific examples,
we will illustrate how matrix elements involving fields and Wilson lines, that describe the
factorised emission of soft and collinear particles, can be re-factorised in strongly-ordered
configurations. We will then exploit this nested factorisation structure to display the required
cancellation of singularities between strongly-ordered limits and real-virtual contributions.

The paper is organised as follows: in section 2 we present the architecture of infrared
subtraction in full generality, starting at NLO and then illustrating the organisation of
relevant counterterms up to N3LO. The resulting structure smoothly generalises to any order,
and we discuss the counting of necessary counterterms at NkLO, for generic k. In section 3,
we discuss the factorisation approach to explicitly construct the counterterms introduced in
section 2. Given such a construction, we will focus on strongly-ordered limits at tree level in
section 4. We will show that ordered configurations can be easily modelled by products of soft
and jet functions, with appropriate colour and spin contractions. This result paves the way
for a formal, all-order definitions of hierarchical limits. We then recall that strongly-ordered
configurations must interplay with the real-virtual corrections. For this reason, in section 5,
we analyse the single radiative contributions at one-loop order, and we obtain the relevant
counterterms. Combining the results of section 4 and section 5 will allow us to derive the
form of strongly-ordered counterterms in terms of factorised soft and jet functions, presented
in section 6. We conclude in section 7 with a summary of our results and a brief discussion of
future prospects. Four appendices present some technical aspects: in particular, appendix A
discusses in detail how the cancellation of singularities in terms of universal matrix elements is
achieved at NLO, emphasising the role played by phase-space mappings in the collinear case.

2 The architecture of infrared subtraction

Consider renormalised scattering amplitudes An(pi) involving n massless coloured particles
carrying momenta pi (i = 1, . . . , n). For simplicity, we focus on the case of final-state particles
with a total momentum Q =

∑n
i=1 pi, generated by the decay of a colour-singlet current,

and we do not display the dependence on the strong coupling αs(µ2) and the dimensional
infrared regulator ϵ = (4− d)/2 < 0, where d is the number of space-time dimensions. We
expand the amplitude in perturbation theory as

An(pi) = A(0)
n (pi) +A(1)

n (pi) +A(2)
n (pi) + . . . , (2.1)

where A(k)
n (pi) is the k-loop correction, including the appropriate power of the strong coupling

constant. Given the amplitude, one can compute finite differential distributions for a generic
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infrared-safe observable X, whose perturbative expansion we write as

dσ

dX
= dσLO

dX
+ dσNLO

dX
+ dσNNLO

dX
+ . . . . (2.2)

For example, the leading-order distribution is given by

dσLO

dX
=
∫
dΦnBnδn (X) , (2.3)

where Bn ≡ |A(0)
n |2 is the Born-level squared amplitude, Φn is the n-particle phase space, and

δn(X) ≡ δ(X −Xn) fixes Xn, the expression for the observable appropriate for an n-particle
configuration, to the prescribed value X. At higher orders, infrared divergences arise from both
loop and phase-space integrations, and must be properly handled. We begin our discussion
with a brief overview of the structure of the problem, order by order in perturbation theory.

2.1 Subtraction at NLO

At NLO, there are infrared divergent contributions from the one-loop virtual correction in
eq. (2.1), and further divergences arising from the phase-space integration of unresolved real
radiation. These divergences cancel in the sum, so that one can compute1

dσNLO

dX
= lim

d→4

[∫
dΦnVnδn(X) +

∫
dΦn+1Rn+1δn+1(X)

]
, (2.4)

where Vn ≡ 2Re
[
A(0)†
n A(1)

n
]
, and Rn+1 ≡ |A(0)

n+1|2. The main idea of infrared subtraction is
to introduce local counterterms mimicking the phase-space behaviour of real radiation in all
singular regions, but simple enough to be analytically integrated over the unresolved degrees
of freedom. At NLO, this amounts to defining a single function in Φn+1 (in practice, a sum
of contributions from non-overlapping singular regions), which we denote with K

(1)
n+1, where

the superscript emphasises the fact that only one particle can become unresolved at NLO. A
proper definition of a local counterterm requires several steps, and a detailed construction
was described for example in refs. [30, 104]. For the purposes of this paper, we will not
need a complete implementation, so we will provide here only a brief outline, which does
not depend on the detailed definitions of the counterterms.

The first step in our construction is to define projection operators that extract leading-
power contributions to Rn+1, for all singular regions, in the relevant variables. Since diver-
gences arise only in soft and collinear limits, at NLO the required operators are Si, extracting
the soft limit for particle i (where SiRn+1 is singular only if i is a gluon), and Cij , extracting
the collinear limit for particles i and j. In our approach, we then split the real-radiation
phase space by introducing sector functions Wij , inspired by the method of ref. [6], forming
a partition of unity, so that each radiation sector has at most one soft and one collinear

1The same formula can be found in eq. (2.3) in ref. [31]. However, we point out that in this paper we will
adopt a slightly different notation. For instance, we will always specify the number of partons contributing to
the matrix elements, for example Vn and Rn+1. We will use the same convention for the various conterterms.
We believe this choice to be beneficial for clarity, in the context of the general discussion pursued here.
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singularity. This makes it possible to define a single operator collecting all NLO singular
limits, without double counting, as

L (1)Rn+1 =
n+1∑
i=1

n+1∑
j=1
j ̸=i

(
Si + Cij − SiCij

)
Rn+1Wij , (2.5)

where the superscript (1) indicates that the singular limits under consideration involve a single
particle becoming unresolved. The next step is to introduce phase-space mappings, following
ref. [7], in order to factor the radiative phase space as the product of a Born-level phase space
times a measure for the degrees of freedom of the unresolved radiation, according to2

dΦn+1 ≡
ςn+1
ςn

dΦndΦn+1
rad,1, (2.6)

where we explicitly display the appropriate symmetry factors ςp. The soft and collinear
operators can then be improved by expressing the limits in terms of mapped variables,
allowing for a complete factorisation of soft and collinear kernels (which depend only on
radiative degrees of freedom) from Born-level squared matrix elements (depending only on
the momenta of the resolved particles). Note that different mappings can be implemented
for different sectors, and even for different terms in the soft and collinear kernels, in order
to simplify subsequent integrations. Note also that one can, if needed, adjust the actions
of improved limits on sector functions, or include subsets of non-singular terms, in order to
ensure the consistency of nested improved limits, or to ameliorate numerical stability. A
detailed discussion about different mappings and strategies to adapt them to the various
singular kernels can be found in ref. [31].

We denote the improved operators by Si, Cij , and SiCij , respectively, and we use them
to build an improved version of the subtraction operator defined in eq. (2.5), which we denote
by L (1). We can then finally define our NLO counterterm as

K
(1)
n+1 = L (1)

Rn+1. (2.7)

With these definitions, we are now in a position to integrate the local counterterm K
(1)
n+1 over

the unresolved degrees of freedom, for any fixed Born configuration, defining the integrated
counterterm

I(1)n =
∫
dΦn+1

rad,1K
(1)
n+1. (2.8)

The infrared poles of I(1)n are, by construction, the same as those arising from the exact
integration of Rn+1 in eq. (2.4), and thus must cancel the explicit poles of the virtual
correction Vn. Similarly, subtracting the counterterm K

(1)
n+1 from Rn+1 yields a function that

is integrable in Φn+1 directly in d = 4. It is then possible to rewrite eq. (2.4) identically as
dσNLO

dX
=
∫
dΦn

[
Vn + I(1)n

]
δn(X) +

∫
dΦn+1

[
Rn+1δn+1(X)−K

(1)
n+1δn(X)

]
. (2.9)

Both combinations in square brackets are suitable for a direct numerical evaluation in d = 4.
Importantly, the infrared (IR) safety of the observable is necessary for the cancellation, which
ensures δn+1(X) to turn smoothly into δn(X) in all unresolved limits.

2Such factorisation is identical to the one presented in eq. (2.5) in ref. [31], with the convention dΦn+1
rad,1 ≡

dΦrad. Analogously, we will use dΦn+2
rad,2 as a synonym for dΦrad,2 used in ref. [31].
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2.2 Subtraction at NNLO

The intricacy of the subtraction problem starts to show up at NNLO, where the cancellation
of divergences requires mixing double-virtual corrections, to be integrated in the n-particle
phase space, with real-virtual contributions, to be integrated in the (n+ 1)-particle phase
space, and with integrated double-real radiation in Φn+2. The observable distribution is then

dσNNLO

dX
= lim

d→4

[∫
dΦnV Vnδn(X) +

∫
dΦn+1RVn+1δn+1(X) +

∫
dΦn+2RRn+2δn+2(X)

]
,

(2.10)
where

V Vn =
∣∣∣A(1)

n

∣∣∣2 + 2Re
[
A(0)†
n A(2)

n

]
, RVn+1 = 2Re

[
A(0)†
n+1A

(1)
n+1

]
, RRn+2 =

∣∣∣A(0)
n+2

∣∣∣2 .
(2.11)

The double-virtual matrix element V Vn features up to quadruple poles in ϵ, while the
real-virtual correction RVn+1 displays up to double poles in ϵ, and up to two phase-space
singularities. Finally, the double-real matrix element is finite in d = 4, but is affected by
up to four phase-space singularities. Following the procedure outlined at NLO, at this
order we need to consider all possible double-unresolved limits of RRn+2, to be added to
the single-unresolved ones that we have already introduced. The relevant configurations
involve: i) double-soft emission of two partons i and j, described by the projection operator
Sij , ii) triple-collinear splitting of a single Born-level parton, described by the operator
Cijk, iii) double-collinear splitting of two different Born-level partons, given by the operator
Cij,kl, and, finally, iv) joint emission of a soft parton i and a collinear pair jk, given by the
operator SCi,jk. Since up to four particles are involved in these limits, the partition of the
double-radiative phase space will involve sector functions Wijkl, with up to four different
partonic labels. Each sector is designed to contain up to two soft singularities and up to
two collinear singularities. Importantly, the relevant limits of RRn+2 can be organised into
three sets, which, in analogy with eq. (2.5), we denote by

L (1)RRn+2, L (2)RRn+2, L (12)RRn+2 ≡ L (1)L (2)RRn+2. (2.12)

As was the case at NLO, L (1)RRn+2 collects (without double-counting) all singular contribu-
tions associated with single-unresolved radiation: it is given by eq. (2.5) with the replacement
Rn+1 → RRn+2, and with NNLO sector functions. Similarly, L (2)RRn+2 collects all sin-
gularities due to double-unresolved radiation. These configurations are reached when both
particles become unresolved at the same rate, and we will refer to them as democratic
limits. Finally, L (12)RRn+2 collects all strongly-ordered limits, in which two particles become
unresolved at different rates. These singular limits lie in the overlap of single-unresolved and
double-unresolved radiation, and must be subtracted from their sum in order to avoid double
counting. The operators L (1), L (2) and L (12) are given by iterations of the fundamental soft
and collinear limits, and each term in these sums must be improved, in order to construct
a fully subtracted form of the distribution in eq. (2.10). To this end, we need to factorise
the (n+ 2)-particle phase space as in eq. (2.6). In this case we have

dΦn+2 =
ςn+2
ςn+1

dΦn+1dΦn+2
rad,1, dΦn+2 =

ςn+2
ςn

dΦndΦn+2
rad,2. (2.13)
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The procedure to improve the NNLO singular limits, beginning with the choice of suit-
able mappings of the double-radiative phase space, is intricate, and highly constrained by
consistency requirements: in the case of massless final-state radiation it is described in
ref. [31]. Ultimately, improved limits can be used to define the required local counterterms
for double-real radiation, as

K
(1)
n+2 = L (1)

RRn+2, K
(2)
n+2 = L (2)

RRn+2, K
(12)
n+2 = L (12)

RRn+2. (2.14)

When a phase-space parametrisation yielding eq. (2.13) is in place, one can define integrated
counterterms for double-real radiation as

I
(1)
n+1 =

∫
dΦn+2

rad,1K
(1)
n+2, I(2)n =

∫
dΦn+2

rad,2K
(2)
n+2, I

(12)
n+1 =

∫
dΦn+2

rad,1K
(12)
n+2 . (2.15)

The last ingredient to construct a fully subtracted version of eq. (2.10) is a local counterterm
for the phase-space singularities of the real-virtual contribution RVn+1. Since only one
particle is radiated, and can become unresolved, it is natural to mimic the NLO procedure,
and make use of the limit L (1)RVn+1, defined as in eq. (2.5). The corresponding improved
real-virtual counterterm reads3

K
(RV)
n+1 = L (1)

RVn+1. (2.16)

As discussed below, however, the improvement of the real-virtual local counterterm is non-
trivial, due to the presence of explicit infrared poles in RVn+1, which are not associated with
phase-space singularities. Once the appropriate improvement has been identified, we can
define the real-virtual integrated counterterm as

I (RV)
n =

∫
dΦn+1

rad,1K
(RV)
n+1 . (2.17)

Putting together the ingredients assembled so far, we can now write a fully subtracted form
of the generic NNLO distribution, eq. (2.10), which is the NNLO equivalent of eq. (2.9).
It is given by

dσNNLO

dX
=
∫
dΦn

[
V Vn + I (2)

n + I (RV)
n

]
δn(X) (2.18)

+
∫
dΦn+1

[(
RVn+1 + I

(1)
n+1

)
δn+1(X)−

(
K

(RV)
n+1 + I

(12)
n+1

)
δn(X)

]
+
∫
dΦn+2

[
RRn+2δn+2(X)−K

(1)
n+2δn+1(X)−

(
K

(2)
n+2 −K

(12)
n+2

)
δn(X)

]
.

With the definitions we have presented above, eq. (2.18) is an identical rewriting of eq. (2.10).
To analyse eq. (2.18), we begin by noting that the third line is integrable in Φn+2 by
construction, since all singular regions have been subtracted with no double counting. The

3For consistency with the notations adopted so far, this counterterm could be denoted by K
(RV,1)
n+1 , to

emphasise that it involves only single-unresolved configurations. To avoid redundancies, here and below we
employ the labels (RV), (RVV), and similar, only when virtual corrections are involved, to count the number
of loops relevant for the selected counterterm; furthermore, we include the labels counting the number of
unresolved particles only when ambiguities arise.
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analysis of the second line, which involves both explicit poles in ϵ and phase-space singularities,
is more delicate. With a minimal definition of the local counterterms (including only leading-
power contributions to the singular limits), standard theorems for the cancellation of IR
divergences imply that the integral I(1)n+1 must cancel the poles of RVn+1. The resulting
sum, however, will still be affected by phase-space singularities, when the radiated particle
becomes unresolved. To take care of this problem, the counterterm K

(RV)
n+1 is designed to

cancel the phase-space singularities of RVn+1. Furthermore, the integral I (12)
n+1 must share

the phase-space singularities of I(1)n+1, since the limit taken in defining K (12)
n+2 from K

(1)
n+2 does

not affect the leading-power contributions in the variables relative to the first unresolved
particle. We conclude that the second line in eq. (2.18) is free of phase space singularities,
and the first parenthesis is finite in d = 4. However, with a minimal definition of K (RV)

n+1 ,
we are not guaranteed that the second parenthesis will be finite: for example, the poles
in K

(RV)
n+1 will depend on the phase-space mappings used in eq. (2.16), while the poles in

I
(12)
n+1 will depend on the mappings and parametrisations used in the double-radiation phase

space, and incorporated in eq. (2.14). Nevertheless, the complete cancellation of poles in
the second parenthesis of the second line can be enforced by adjusting the definition of
K

(RV)
n+1 to match the poles of I (12)

n+1 , without affecting phase-space singularities. Since this
adjustment involves only terms that are not singular when the radiated particle becomes
unresolved, we understand it here as part of the necessary improvement of the L (1) operator,
leading to the definition of L (1), when acting on RVn+1. Having established the finiteness
and integrability of both the second and the third line in eq. (2.18), the cancellation of poles
in the first line follows directly from the KLN theorem.

2.3 Subtraction at higher orders

It is interesting to attempt to extrapolate the patterns appearing at NLO and at NNLO to
higher orders. At N3LO the required matrix elements are

V V Vn = 2Re
[
A(0)†
n A(3)

n +A(1)†
n A(2)

n

]
, RV Vn+1 =

∣∣∣A(1)
n+1

∣∣∣2 + 2Re
[
A(0)†
n+1A

(2)
n+1

]
,

RRVn+2 = 2Re
[
A(0)†
n+2A

(1)
n+2

]
, RRn+3 =

∣∣∣A(0)
n+3

∣∣∣2 . (2.19)

The uniform limits in which three particles become unresolved are

Sijk, Cijkl, Cij,klm, Cij,kl,mn, SCi,jkl, SCi,jk,lm, SCij,kl, (2.20)

where, following the conventions introduced at NNLO, we use commas to separate clusters of
particles originating from the same hard parton, and we treat all soft particles as a single
cluster. Thus, for example, in the limit Cij,klm particles i, j and particles k, l, m form two
distinct collinear clusters, while in the limit SCij,kl particles i and j are soft, while particles
k and l form a collinear pair. These limits must of course be added on top of the single-
and double-unresolved ones. Importantly, at N3LO there are several new possibilities for
strong ordering of infrared limits. In fact, in analogy with eq. (2.12), one must introduce
triple-unresolved limits

L (3)RRRn+3, L (13)RRRn+3 ≡ L (1)L (3)RRRn+3, (2.21)

L (23)RRRn+3 ≡ L (2)L (3)RRRn+3, L (123)RRRn+3 ≡ L (1)L (2)L (3)RRRn+3.
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Here L (3) gives the uniform limit, where three particles become unresolved at the same
rate, L (13) gives the strongly-ordered limits in which one particle becomes unresolved much
faster than the other two, L (23) covers the case in which two particles become unresolved at
the same rate, but much faster than the third particle. Finally L (123) gives the completely
ordered limits in which each particle becomes unresolved at a different rate. All of the limits
in eq. (2.21) will be expressed as iterations of the fundamental limits in eq. (2.20), and each
term in these sums will have to be improved, using the phase-space factorisations

dΦn+3 =
ςn+3
ςn+2

dΦn+2dΦn+3
rad,1, dΦn+3 =

ςn+3
ςn+1

dΦn+1dΦn+3
rad,2, dΦn+3 =

ςn+3
ςn

dΦndΦn+3
rad,3.

(2.22)
The required counterterms for limits involving three unresolved particles will then be of
the form

K
(h)
n+3 = L(h)

RRRn+3, (2.23)

with h ∈ {3,13,23,123}, and the corresponding integrated counterterms will be given by

I
(h)
n+3−q =

∫
dΦn+3

rad,qK
(h)
n+3, (2.24)

where q is the number of particles going unresolved at the highest rate, as in eq. (2.15).
In order to complete the N3LO subtraction formula, one will further need a single local
counterterm for single real radiation in RV Vn+1, which we denote by K

(RVV)
n+1 , and three

local counterterms for double real radiation in RRVn+2, which we denote by K(RRV,h)
n+2 , with

h ∈ {1,2,12}, following the pattern set in eq. (2.14). These RV V and RRV counterterms
must be integrated in the appropriate phase spaces, according to the rules introduced at
NLO and at NNLO. Thus we define

IRVV
n =

∫
dΦn+1

rad,1K
(RVV)
n+1 , I

(RRV,h)
n+2−q =

∫
dΦn+2

rad,qK
(RRV,h)
n+2 . (2.25)

We are finally in a position to write a master formula for (final-state) N3LO subtraction.
It takes the form4

dσN3LO

dX
=
∫
dΦn

[
V V Vn + I (3)

n + I(RRV,2)
n + I(RVV)

n

]
δn(X)

+
∫
dΦn+1

[(
RV Vn+1 + I

(2)
n+1 + I

(RRV,1)
n+1

)
δn+1(X)−

(
K

(RVV)
n+1 + I

(23)
n+1 + I

(RRV,12)
n+1

)
δn(X)

]
+
∫
dΦn+2

{(
RRVn+2 + I

(1)
n+2

)
δn+2(X)−

(
K

(RRV,1)
n+2 + I

(12)
n+2

)
δn+1(X)

−
[(
K

(RRV,2)
n+2 + I

(13)
n+2

)
−
(
K

(RRV,12)
n+2 + I

(123)
n+2

)]
δn(X)

}
+
∫
dΦn+3

[
RRRn+3δn+3(X)−K

(1)
n+3δn+2(X)−

(
K

(2)
n+3 −K

(12)
n+3

)
δn+1(X)

−
(
K

(3)
n+3 −K

(13)
n+3 −K

(23)
n+3 +K

(123)
n+3

)
δn(X)

]
. (2.26)

4Following up on footnote 3, we note that counterterms labelled (RVV) are unambiguously associated
with single-unresolved configurations, while for counterterms labelled (RRV) one needs to distinguish single-
unresolved, double-unresolved and strongly-ordered limits.
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In a concrete implementation, each one of the four phase space integrands in eq. (2.26) will
be free of non-integrable singularities, and finite in d = 4. For example, in the (n+ 3)-
particle phase space, single-unresolved and double-unresolved singular contributions have
been subtracted, and their overlap added back, in the first line. Triple-unresolved singular
contributions are subtracted in the second line, with their overlap with single- and double-
unresolved ones removed, and the overlap of the overlaps added back in. In the (n+ 2)-
particle phase space, infrared poles will cancel in the first parenthesis according to general
theorems, and the phase-space singularities of RRVn+2 are fully subtracted by construction.
Furthermore, the phase-space singularities of the three local counterterms are matched by
the three corresponding integrated counterterms, also by construction. This would leave out
possible uncancelled explicit poles, not associated with phase-space singularities, in each
one of the last three parentheses: these can be handled in the process of improving the
relevant limit operators, as was done at NNLO. A similar pattern applies to the integrand
in the (n+ 1)-particle phase space.

We see that a general-purpose subtraction algorithm at N3LO requires the construction
of 11 local counterterm functions,5 out of which 5 involve various forms of strong ordering,
while 6 correspond to uniform limits. At the price of introducing some more formal notations,
it is not too difficult to generalise this counting to NkLO, for generic k. We find that the
total number of local counterterms is then

c(k) = 2k+1 − 2− k, (2.27)

and, of these, only k(k + 1)/2 correspond to uniform limits, while the remaining ones involve
strong ordering: for example, already for k = 4 the number of strongly-ordered counterterms
(16) exceeds the number of uniform ones (10). Moreover, as we have seen, the pattern of
cancellations involving mixed real-virtual local counterterms and the integrated versions of
counterterms with extra real radiation is especially delicate, due to the interplay of phase-space
singularities and explicit poles. Clearly, a general understanding of infrared subtraction will
require mastering strongly-ordered infrared limits, and the cancellation of their singularities.
We believe that a factorisation-based approach will be instrumental to this understanding,
and we now turn to illustrate this viewpoint.

3 The factorisation approach to subtraction

Conceptually, the approach to subtraction that was discussed in the previous section can
be described as bottom-up, according to the ordering used to analyse the lines in eq. (2.18)
and eq. (2.26): one starts by considering the singular limits for multiple real-radiation
matrix elements, and subsequently integrates the resulting counterterms, finally achieving
the cancellation of virtual poles. However, we believe that it is interesting to consider a
complementary top-down viewpoint, beginning with an analysis of infrared poles in the

5We have described the structure of subtraction for final-state emissions only, however the inclusion of
initial-state radiation does not essentially affect this counting. Rather, in a sector approach, some terms in
the collinear parts of the counterterms, associated with initial-state radiation sectors, must be treated and
integrated separately.
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virtual correction, with the tools of factorisation, and then constructing infrared-finite soft
and collinear cross sections, from which one can extract local counterterms. This approach was
pursued in ref. [102], where a general prescription was given to construct local counterterms
for uniform soft and collinear limits, in terms of matrix elements of fields and Wilson lines.
We now discuss how this approach can be extended to strongly-ordered local counterterms:
this extension will ultimately guarantee the cancellation of infrared poles and phase-space
singularities in the intermediate lines of eq. (2.18) and eq. (2.26).

To begin our discussion, we recall the well-known infrared factorisation formula for
massless gauge-theory scattering amplitudes [69, 70, 73, 74]

An
(
{pi}

)
=

n∏
i=1

[
Ji
(
pi, ni

)
JEi

(
βi, ni

)]Sn({βi})Hn
(
{pi}, {ni}

)
, (3.1)

where we introduced four-velocities βi ≡
√
2pi/µ, and reference vectors ni, for each one of

the external legs. The soft function Sn captures long-wavelength gluon exchanges between
external particles: it does not depend on the spin of the latter, but it is a non-trivial operator
in colour space, acting on the finite hard coefficient Hn. A jet function Ji is associated to
each external particle, capturing collinear singularities: these depend only on the momentum
and spin of the hard particle i, and are proportional to the identity in colour space. The
eikonal jets JEi encapsulates the overlap of soft and collinear singularities, that is present
both in Sn and in Ji, and would otherwise be double-counted.

The factorisation functions Sn, Ji and JEi appearing in eq. (3.1) have explicit operator
definitions involving semi-infinite Wilson lines aligned with the external-particle trajectories,

Φβi
(∞, 0) ≡ P exp

{
igsTa

∫ ∞

0
dzβi ·Aa(z)

}
, (3.2)

where the symbol P identifies the path ordering, Aa is the gluon field, and gs is the strong
coupling. These Wilson lines capture soft-gluon radiation off external particles; further
Wilson lines along the unphysical directions ni are employed in the definition of the jet and
eikonal jet functions. In the context of subtraction, it is useful to consider the virtual soft
and jet functions in eq. (3.1) as special cases of more general objects, which we describe as
radiative soft and jet functions, and can be used to organise soft and collinear real radiation.
In the soft case, we begin by defining eikonal form factors

Sn,f1...fm

(
{βi}; {kj , λj}

)
≡ ⟨{kj , λj}|T

[
n∏
i=1

Φβi
(∞, 0)

]
|0⟩ , (3.3)

where T is the time-ordering operator. The equation above describes the radiation of
m particles of flavours fj , momenta kj and spin polarisations λj (j = 0, . . . ,m), from the
Wilson lines representing hard particles, including virtual corrections in the soft approximation.
Similarly, we define collinear form factors, in order to describe collinear radiation from external
particle i. These are spin-dependent quantities, involving the quantum field responsible for
the creation or absorption of the hard particle. For final-state quarks we write

J α
q,f1...fm

(
x;n; {kj , λj}

)
≡ ⟨{kj , λj}|T

[
ψ̄α(x)Φn(x,∞)

]
|0⟩ , (3.4)
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where one of the final-state particles is the quark created by the field ψ̄ at point x. For
final-state gluons, on the other hand, we choose [105]

gsJ ν
g,f1...fm

(
x;n; {kj , λj}

)
≡ ⟨{kj , λj}|T

[
Φn(∞, x)

(
iDνΦβ(x,∞)

)]
|0⟩ , (3.5)

where the Φβ Wilson line is in the adjoint representation, oriented along the direction of a
final-state gluon within the set {kj}, and Dν = ∂ν − igsAν . In eq. (3.4) and eq. (3.5), the
index j ranges in {1, . . . ,m}, where the m = 1 case reads Jfi,fi

= Ji.
Finally, the eikonal versions of collinear form factors are spin-independent, and only

characterised by the colour representation of the hard emitter. We can thus use the definition
in eq. (3.4), and replace the field by a Wilson line along the classical quark or gluon trajectory,
which gives

JEi,f1...fm

(
βi;ni; {kj , λj}

)
≡ ⟨{kj , λj}|T

[
Φβi

(∞, 0)Φni(0,∞)
]
|0⟩ . (3.6)

The purely virtual soft and jet functions appearing in eq. (3.1) are instances of these form
factors in the cases m = 0 (for the eikonal form factors and eikonal jets, corresponding to
no final-state radiation), and m = 1 (for the collinear form factors, corresponding to the
emission of the single particle created by the field).

At cross-section level, eikonal and collinear form factors must be appropriately squared,
building up radiative soft and jet functions, which are fully local in the degrees of freedom
of soft and collinear real radiation. Specifically, the radiative soft function, responsible for
the emission of m soft particles by n resolved emitters, is defined by

Sn,f1...fm

(
{βi}; k1, . . . , km) =

∑
{λj}

S†
n,f1...fm

(
{βi}; {kj , λj}

)
Sn,f1...fm

(
{βi}; {kj , λj}

)
, (3.7)

where we summed over the polarisation of the final-state soft particles, regardless of their
flavour.6 Radiative jet functions must take into account the fact that hard-collinear emissions
carry non-negligible momentum. At cross-section level one will therefore need a convolution
rather than a simple product, with one of the two collinear form factors evaluated at a
displaced location x, Fourier-conjugate to the total momentum ℓ carried by final-state
particles. We thus define

Jαβf,f1...fm

(
ℓ;n; k1, . . . , km

)
=
∑
{λj}

∫
ddxeiℓ·xJ α,†

f,f1...fm

(
0;n; {kj , λj}

)
J β
f,f1...fm

(
x;n; {kj , λj}

)
.

(3.8)
In eq. (3.8), f denotes the flavour of the parent particle, which can be either a quark or a
gluon, and we have adopted a unified notation, where α and β are indices in the spin-1/2
or the spin-1 representations of the Lorentz group, depending on the flavour f . Performing
the x integral will fix ℓ =

∑
j kj . To exemplify, for the discussion of NLO corrections we will

need J
(0)
f,f1f2

, describing the tree-level splitting of type f → f1 + f2; similarly, for tree-level
triple-collinear emissions, relevant for NNLO corrections, we will need J (0)

f,f1f2f3
, corresponding

to the branching f → f1+f2+f3; finally, real-virtual corrections involving one-loop splittings
6Although Wilson lines only radiate gluons, those gluons can in turn produce qq̄ pairs.
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will be described by the one-loop jet function J (1)
f,f1f2

. We tested the definition of the radiative
jet function at tree-level in the case of single and double radiation, and found agreement
with known results (see for instance ref. [84] for a comprehensive list of splitting functions).
The single radiative jet functions are given explicitly in appendix B. For cross-section-level
radiative eikonal jets, the Fourier transform is not necessary, since they can be computed
directly in the soft approximation.7 We have

JEi,f1...fm

(
βi;ni; k1, . . . , km

)
=
∑
{λj}

J †
Ei,f1...fm

(
βi;ni; {kj , λj}

)
JEi,f1...fm

(
βi;ni; {kj , λj}

)
.

(3.9)
As argued in ref. [102], the cross-section-level soft and jet functions thus defined provide
natural candidates to build local soft and collinear counterterms for subtraction algorithms,
to any order in perturbation theory. Indeed, integrating eq. (3.7) over the radiative m-particle
phase space, summing over the number of particles, and using completeness, one finds

∞∑
m=0

∑
{fi}

∫
dΦmSn,f1...fm

(
{βi}, k1, . . . , km

)
= ⟨0|T

[
n∏
i=1

Φβi
(0,∞)

]
T

[
n∏
i=1

Φβi
(∞, 0)

]
|0⟩ ,

(3.10)
where T is the anti-time ordering. The r.h.s. of eq. (3.10) represents a total cross section in the
presence of Wilson-line sources, and it is infrared finite order by order in perturbation theory.
This implies that the phase-space integrals of the m-particle radiative soft functions defined
in eq. (3.7) do indeed cancel the virtual poles arising from soft virtual corrections. Similarly,
integrating eq. (3.8) over phase space, summing over the number of radiated particles, and
using completeness, one finds (for quarks)

∞∑
m=1

∑
{fi}

∫
dΦmJαβq,f1...fm

(
ℓ;n; k1, . . . , km

)
= Disc

[∫
ddxeiℓ·x ⟨0|T

[
Φn(∞, x)ψβ(x)ψ̄α(0)Φn(0,∞)

]
|0⟩
]
, (3.11)

and similarly for gluons. The r.h.s. of eq. (3.11) represents the discontinuity of a two-point
function in the presence of Wilson lines, and it is infrared finite order by order, as was the
case for eq. (3.10). This shows that the radiative jet functions in eq. (3.8) provide candidate
local collinear counterterms to cancel virtual collinear singularities.

3.1 A top-down approach to subtraction at NLO

Before moving on to strongly-ordered soft and collinear limits, we illustrate how one can build
and integrate local infrared counterterms within the framework presented in section 3, and
previously discussed in some detail in ref. [102]. We begin at NLO, where some of the technical
issues can be easily clarified. For the sake of notational simplicity, from now on we drop the n
dependence from the argument of jet functions, and we expand all functions in perturbation
theory using the same conventions as in eq. (2.1). With these definitions, the NLO virtual

7Note that this convention is different from the one adopted in ref. [102].
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correction Vn can be obtained by expanding eq. (3.1) to NLO, and can be written as

Vn = H(0)
n

†
S(1)
n

(
{βi}

)
H(0)
n −H(0)

n

†
S(0)
n H(0)

n

n∑
i=1

J
(1)
Ei

(
βi
)

+
n∑
i=1

∑
fj

∫
ddℓi
(2π)dH

(0)
n,αi

†({p}/i , ℓi) J (1)αiβi

fi,fj

(
ℓi; pi

)
S(0)
n H(0)

n,βi

(
{p}/i , ℓi

)
+ finite

≡ V (s)
n +

n∑
i=1

V
(hc)
n,i + finite, (3.12)

where we distinguish the soft singular contribution V
(s)
n , given by the first term in eq. (3.12),

from hard-collinear contributions associated with each external particle, denoted by V
(hc)
n,i

and given by the remaining two terms. The tree-level hard function H(0)
n depends on the

momentum and spin (as well as colour) of the partons in the Born process, while the tree-level
soft function S

(0)
n is just a colour tensor connecting the two hard functions. The notation

H(0)
n,αi

(
{p}/i , ℓi

)
means that one needs to replace pi with ℓi in the hard function, as well as

remove the wave function of parton i (the spinor for quarks and the polarisation vector for
gluons), uncovering the spin index αi. Since J (1)

fi,fj
(ℓi; pi) ∼ δ(ℓi − pi)δfifj

, the ℓi integral and
the flavour sum are trivial: we include them here in order to match the necessary notation
when dealing with the case of real radiation, where the corresponding integrals will identify
ℓi as the parent particle for collinear splittings, and the flavour sums will be non trivial.

We can now exploit the finiteness of eq. (3.10) and of eq. (3.11) (as well as the analogous
relation for eikonal jets) to write the NLO completeness relations8

S(1)
n

(
{βi}

)
+
∫
dΦ(k)S(0)

n,g

(
{βi}; k

)
= finite, (3.13)

J
(1)
Ei

(βi) +
∫
dΦ(k)J (0)

Ei,g(βi; k) = finite, (3.14)∑
f1

∫
dΦ(k1)J (1)αβ

f,f1
(ℓ; k1) +

∑
f1,f2

ςf1f2

∫
dΦ(k1)dΦ(k2)J (0)αβ

f,f1f2
(ℓ; k1, k2) = finite, (3.15)

where the flavour sum extends to all final-state flavour combinations compatible with the
Feynman rules (with each combination counted only once: for example, if {f1, f2} = {q, g} is
included, then {f1, f2} = {g, q} is excluded). Furthermore, ςf1f2 is a phase-space symmetry
factor, equal to 1/2 when f1 = f2 = g and equal to one in all other cases at NLO. For single
soft emissions, we have used the fact that only the radiation of a single gluon is allowed, which
removes the need for a flavour sum in eq. (3.13) and in eq. (3.14). The finiteness conditions
in eqs. (3.13)–(3.15) immediately suggest expressions for candidate soft and hard-collinear

8We defer to appendix A a proper treatment of UV divergences associated with these relations.
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local infrared counterterms at NLO, which are given by

K
(1,s)
n+1

(
{pi}, k

)
= H(0)

n

†({pi})S(0)
n,g

(
{βi}; k

)
H(0)
n

(
{pi}

)
, (3.16)

K
(1,hc)
n+1,i

(
{pi}, k1, k2

)
=
∑
f1,f2

[ ∫
ddℓi
(2π)dH

(0)
n,αi

†({p}/i , ℓi)J (0)αiβi

fi,f1f2

(
ℓi; k1, k2

)
S(0)
n H(0)

n,βi

(
{p}/i , ℓi

)
−H(0)

n

†({pi})( 2∑
j=1

J
(0)
Ei,fj

(
βi; kj

))
S(0)
n H(0)

n

(
{pi}

)]
(3.17)

≡ H(0)
n

† ∑
f1,f2

(
J
(0)
fi,f1f2

−
2∑
j=1

J
(0)
Ei,fj

)
S(0)
n H(0)

n ,

where in the last line we have introduced a shorthand notation to denote the convolution
of the hard function with the jet function over the total collinear momentum ℓi, including
the spin sum. Note again that eikonal jets with a single final-state quark emission, JEi,q,
vanish: thus the sum on the second line of eq. (3.17) includes only one term, except in the
case f1 = f2 = g. For all flavour combinations it is straightforward to check, using the results
of appendix B, that the jet combination in round brackets in the latter equation is completely
free of soft phase-space singularities (i.e. both those associated to f1 and to f2). Hence we
define the hard-collinear single-radiative jet at k loops as

J
(k),hc
fi,f1f2

≡ J
(k)
fi,f1f2

−
2∑
j=1

J
(k)
Ei,fj

. (3.18)

With these definitions, eq. (3.13) implies that the phase-space integral (over the gluon
momentum k) of eq. (3.16) will cancel the explicit infrared poles of the first term in eq. (3.12);
similarly, eq. (3.14) shows that the phase-space integration of momentum kj in the last
term in eq. (3.17) will cancel the explicit infrared poles of the second term in eq. (3.12);
finally, eq. (3.15) shows that the phase-space integration of the first term in eq. (3.17) over
momenta k1 and k2 will cancel the explicit infrared poles of the last term in eq. (3.12), after
the (trivial) integration in dΦ(k1).

It is important, at this stage, to emphasise that the candidate counterterms in (3.16)
and (3.17) are not quite ready for implementation in a subtraction scheme. The first problem
is that the phase-space integrals in eq. (3.13) and eq. (3.14) are affected by ultraviolet
divergences, since the respective integrands correctly reproduce the amplitude only in the
limit of soft k. Physically, we expect that infrared singularities will be independent of the
choice of the ultraviolet regulator, but still a specific scheme needs to be devised. A second
problem is that eq. (3.15) is valid as distribution identity, since the first term has support
when ℓ is on-shell, while in the second term ℓ is off-shell, and divergences arise in the on-shell
limit. In order to implement eq. (3.15) locally in the Born phase-space we will therefore
need to introduce appropriate phase-space mappings, expressing ℓ in terms of an on-shell
momentum in the real-radiation contribution. A detailed implementation of the soft and
collinear cancellations in a form useful for subtraction is presented in appendix A.
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3.2 Factorisation structure at NNLO

The top-down approach presented at NLO can be naturally generalised to cope with NNLO
corrections. The core idea consists in writing virtual corrections in a way suitable to apply
completeness relations at the relevant perturbative order and obtain candidate counterterms.
At NNLO, this approach can be applied to both double-virtual and real-virtual corrections.
Enforcing the concept of top-down strategy, we begin with the double-virtual contribution,
which indeed appears in the top line of the subtraction formula in eq. (2.18): this will lead
naturally to the definition of democratic local counterterms. Following the same procedure
as at NLO, one can extract the poles of the two-loop amplitude by expanding all factors of
eq. (3.1) at the proper order, and then organising them in terms of cross-section-level soft
and jet functions. The final result for V Vn can be written as [102]

V Vn = V V (2s)
n +V V (1s)

n +
n∑
i=1

[
V V

(2hc)
n,i +

n∑
j=i+1

V V
(2hc)
n,ij +V V (1hc,1s)

n,i +V V (1hc)
n,i

]
+finite, (3.19)

where the superscripts identify the soft or hard-collinear nature of the poles collected in
the different terms. Explicitly,

V V (2s)
n = H(0)

n

†
S(2)
n

(
{βi}

)
H(0)
n ,

V V (1s)
n = H(0)

n

†
S(1)
n

(
{βi}

)
H(1)
n +H(1)

n

†
S(1)
n

(
{βi}

)
H(0)
n ,

V V
(2hc)
n,i = H(0)

n

†
[
J
(2)
fi,fi

(
pi
)
− J

(2)
Ei

(
βi
)
− J

(1)
Ei

(
βi
)
J
(1),hc
fi,fi

]
S(0)
n H(0)

n ,

V V
(2hc)
n,ij = H(0)

n

†
J
(1),hc
fi,fi

J
(1),hc
fj ,fj

S(0)
n H(0)

n , (3.20)

V V
(1hc,1s)
n,i = H(0)

n

†
J
(1),hc
fi,fi

S(1)
n

(
{βj}

)
H(0)
n ,

V V
(1hc)
n,i = H(0)

n

†
J
(1),hc
fi,fi

S(0)
n H(1)

n +H(1)
n

†
J
(1),hc
fi,fi

S(0)
n H(0)

n ,

where we slightly simplified the notation (as compared to eq. (3.12)), by performing, where
needed, the trivial integration over the total jet momenta ℓi. We also introduced a symbol
for the hard-collinear one-loop non-radiative jet

J
(1),hc
fi,fi

≡ J
(1)
fi,fi

(pi)− J
(1)
Ei

(βi), (3.21)

which is free of ϵ poles of soft origin.9 Moving to the second line of eq. (2.18), and proceeding
in analogy with the double-virtual case, we use factorisation to analyse the explicit infrared
poles of the real-virtual correction, which reads

RVn+1 = H(0)
n+1

†
S
(1)
n+1

(
{βi}

)
H(0)
n+1 +

n+1∑
i=1

H(0)
n+1

†
J
(1),hc
fi,fi

S
(0)
n+1H

(0)
n+1 + finite

≡ RV
(s)
n+1 +

n∑
i=1

RV
(hc)
n+1,i + finite. (3.22)

9For gluon jets, note that the subtraction of soft poles involves a single eikonal jet for virtual corrections,
as in eq. (3.21), while for the real radiation of two gluons one needs to subtract two eikonal contributions,
as in eq. (3.18), since both gluons can independently become soft. The symmetry factor ςf1f2 multiplying
the phase-space integral in eq. (3.15) is then crucial to compensate for this extra factor of two, ensuring the
consistency of the two definitions in eq. (3.21) and in eq. (3.18).
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One must keep in mind that the finite contributions that we are not displaying in eq. (3.22)
will be affected by phase-space singularities, when the radiated particle becomes soft or
collinear. These singular contributions, as well as those stemming from the other terms in
RVn+1, are subtracted by introducing the local real-virtual counterterm K

(RV)
n+1 .

Finding an explicit expression for K (RV)
n+1 and K

(2)
n+2 requires extending the conditions

given in eqs. (3.13)–(3.15) to two loops. They read

S(2)
n

(
{βi}

)
+
∫
dΦ(k1)S(1)

n,g

(
{βi}; k1

)
(3.23)

+
∑
f1,f2

ςf1f2

∫
dΦ(k1)dΦ(k2)S(0)

n,f1f2

(
{βi}; k1, k2

)
= finite,

J
(2)
Ei

(
βi
)
+
∫
dΦ(k1)J (1)

Ei,g

(
βi; k1

)
(3.24)

+
∑
f1,f2

ςf1f2

∫
dΦ(k1)dΦ(k2)J (0)

Ei,f1f2

(
βi; k1, k2

)
= finite,

∑
f1

∫
dΦ(k1)J (2)αβ

f,f1
(ℓ; k1) +

∑
f1,f2

ςf1f2

∫
dΦ(k1)dΦ(k2)J (1)αβ

f,f1f2
(ℓ; k1, k2) (3.25)

+
∑

f1,f2,f3

ςf1f2f3

∫
dΦ(k1)dΦ(k2)dΦ(k3)J (0)αβ

f,f1f2f3
(ℓ; k1, k2, k3) = finite,

where again the flavour sums extend to all final-state flavour combinations compatible with
the Feynman rules, as discussed in section 3.1, and the symmetry factors differ from unity
when identical particles are emitted in the final state, as expected. As was the case at NLO,
eqs. (3.23)–(3.25) naturally provide tentative expressions for local counterterms at NNLO,
following the logic outlined in ref. [102]. More specifically, starting from eq. (3.20), and
using eqs. (3.23)–(3.25), one can easily identify the contributions to the double-unresolved
counterterm K

(2)
n+2. Such contributions live in the (n+ 2)-particle phase space, and are thus

proportional to a double-radiative jet or soft function, or to the product of a single-radiative
soft function and a single-radiative jet function, properly combined into hard-collinear
corrections. An example of the first configuration is given by the third term in eq. (3.23),
which reproduces the singularities of two uniformly soft emissions. Pursuing this line of
attack, the double-unresolved counterterm K

(2)
n+2 can be organised according to the soft or

hard-collinear character of the radiated particles. We write

K
(2)
n+2 = K

(2,2s)
n+2 +

n∑
i=1

[
K

(2,2hc)
n+2,i +

n∑
j=i+1

K
(2,2hc)
n+2,ij +K

(2,1hc,1s)
n+2,i

]
, (3.26)

where each term, evaluated at tree level, is defined in a phase space with n+ 2 particles,
two of which will become unresolved. As suggested by the notation in eq. (3.26), the two
radiations can be both soft (including soft-collinear), or both hard and collinear, in which
case they can be associated to either one or two detected particles, or, finally, one of them
can be soft while the other one is hard and collinear to one of the Born-level particles.10

10We note that the counterterm in eq. (3.26) is written, in the spirit of our top-down approach, for a
fixed set of Born momenta, and with a specific assignment of unresolved momenta. When the subtraction is
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Individual contributions read

K
(2,2s)
n+2

(
{pi}, k1, k2

)
= H(0)

n

† ∑
f1,f2

S
(0)
n,f1f2

(
{βi}; k1, k2

)
H(0)
n , (3.27)

for double-soft emission,

K
(2,2hc)
n+2,i

(
{pi}, k1, k2, k3

)
= H(0)

n

† ∑
f1,f2,f3

[
J
(0),hc
fi,f1f2f3

−
∑

jkl∈{123,312,231}
J
(0)
Ei,fj

J
(0),hc
fi,fkfl

]
S(0)
n H(0)

n ,

(3.28)
for double hard-collinear emission from a fixed Born-level particle i,

K
(2,2hc)
n+2,ij

(
{pi}, k1, k2, k3, k4

)
= H(0)

n

† ∑
f1,f2,f3,f4

J
(0),hc
fi,f1f2

J
(0),hc
fj ,f3f4

S(0)
n H(0)

n + (i↔ j), (3.29)

for two hard-collinear emissions from two distinct Born-level particles i and j, and finally

K
(2,1hc,1s)
n+2,i

(
{pi}, k1, k2, k3

)
= H(0)

n

† ∑
f1,f2,f3

∑
jkl∈{123,312,231}

J
(0),hc
fi,fkfl

S
(0)
n,fj

H(0)
n , (3.30)

for the joint emission of a soft particle and a hard-collinear particle. Once again, flavour
sums extend to all final-state flavour configurations allowed by the Feynman rules, and we
introduced the necessary sums over assignments of soft and collinear momenta within the
sets of radiated particles; furthermore, we have introduced the definition

J
(0),hc
fi,f1f2f3

≡ J
(0)
fi,f1f2f3

−
∑

jk∈{12,13,23}
J
(0)
Ei,fjfk

. (3.31)

The most intricate case is clearly the double hard-collinear emission from a single Born-level
parton, given in eq. (3.28). There, the first term, defined in eq. (3.31) gives the full collinear
double emission, with the subtraction of configurations where two of the three final-state
particles are soft (the only allowed flavour combinations in this case are {fj , fk} = {g, g}
and {fj , fk} = {q, q̄}); the second term subtracts configurations where only one final-state
particle is soft, while the remaining two particles form a hard-collinear pair: in this case, the
soft emission factorises from the hard-collinear one, resulting in a single-radiative eikonal jet,
so that fj must be a gluon. We emphasise that symmetry factors for functions involving
the radiation of identical particles, for example a factor of 1/6 for the jet function Jg,ggg,
must be included in the phase-space measure when the counterterm is integrated, according
to eq. (3.25).

We turn next to the real-virtual counterterm K
(RV)
n+1 . In order to construct a candidate

counterterm in this case, we need to collect all contributions arising from eqs. (3.23)–(3.25),
which are defined in a phase space with n detected particles, involve a single extra unresolved
radiation, and have one of the factor functions evaluated at one loop. Note that our goal here

implemented on the full double-real matrix element, it will be necessary to perform a further sum over the
possible assignments of unresolved momenta in the set of n + 2 final-state particles, in order to account for all
singular contributions. Note also that in ref. [102] the counterterms in eq. (3.26) were written in compact
form, keeping the flavour sums implicit, whereas here the flavour structure is given in detail, at the price of a
slightly more cumbersome notation.
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is to organise all phase-space singularities of the real-virtual contribution to the cross section,
while retaining control of all explicit infrared poles arising in the loop. To this end, we write

K
(RV)
n+1 = K

(RV,s)
n+1 +

n∑
i=1

[
K

(RV,hc)
n+1,i +

n∑
j=i+1

K
(RV,hc)
n+1,ij +K

(RV,1hc,1s)
n+1,i +K

(RV,1hc)
n+1,i

]
. (3.32)

Importantly, in eq. (3.32) the distinction between soft and hard-collinear radiation applies
both to the single real radiation and to the loop correction. Thus, for example, K(RV,s)

n+1
collects all terms that have a soft phase-space singularity, possibly accompanied by a pole
of soft origin. Therefore we define

K
(RV,s)
n+1 = H(0)

n

†
S(0)
n,gH(1)

n +H(1)
n

†
S(0)
n,gH(0)

n +H(0)
n

†
S(1)
n,gH(0)

n . (3.33)

In eq. (3.33), the first two terms have soft singularities arising from soft-gluon emission,
accompanied by finite one-loop corrections: thus, they have no explicit poles. The last term
contains soft poles, accompanied by soft phase-space singularities. As customary in our
approach, we include soft-collinear configurations in the soft sector, both for virtual and
for real contributions. Next, we consider hard-collinear configurations associated with the
i-th external leg. They are given by

K
(RV,hc)
n+1,i = H(0)

n

† ∑
f1,f2

[
J
(1),hc
fi,f1f2

−
∑

kl={12,21}

(
J
(1)
fi,fk

− J
(1)
Ei

)
J
(0)
Ei,fl

− J
(1)
Ei
J
(0),hc
fi,f1f2

]
S(0)
n H(0)

n ,

= H(0)
n

† ∑
f1,f2

[
J
(1),hc
fi,f1f2

−
∑

kl={12,21}
J
(1),hc
fi,fk

J
(0)
Ei,fl

− J
(1)
Ei
J
(0),hc
fi,f1f2

]
S(0)
n H(0)

n , (3.34)

where the first term is defined in eq. (3.18), and we used the fact that J (1)
fi,fk

carries momentum
kk = ki, and is flavour-diagonal, fk = fi. In the second line of eq. (3.34), the first term in
brackets contains the one-loop contributions to all relevant collinear splitting kernels (with
a single unresolved radiation). This term is in fact affected by both collinear phase-space
singularities and collinear poles, while it is free from singularities and poles of soft origin.
The second term subtracts all hard-collinear one-loop virtual poles that are accompanied
by soft-collinear phase-space singularities; finally, the third term subtracts hard-collinear
phase-space singularities that are accompanied by soft-collinear one-loop poles.

Next, we need to consider the case in which collinear poles and collinear phase-space
singularities are associated with different external legs: these contributions are given by

K
(RV,hc)
n+1,ij = H(0)

n

†
J
(1),hc
fi,fi

∑
f1,f2

J
(0),hc
fj ,f1f2

S(0)
n H(0)

n + (i↔ j). (3.35)

A further contribution accounts for soft phase-space singularities accompanied by hard-
collinear virtual poles on leg i, as well as hard-collinear phase-space singularities in emissions
from leg i, accompanied by soft virtual poles. It is

K
(RV,1hc,1s)
n+1,i = H(0)

n

† ∑
f1,f2

[ ∑
kl={12,21}

J
(1),hc
fk,fk

S
(0)
n,fl

+ J
(0),hc
fi,f1f2

S(1)
n

]
H(0)
n , (3.36)

where we used again the fact that the virtual jet is flavour-diagonal, so that J (1),hc
fk,fk

= J
(1),hc
fi,fk

.
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Finally, one needs to account for hard-collinear phase-space singularities due to emissions
from leg i, accompanied by the finite part of one-loop corrections. These give

K
(RV,1hc)
n+1,i = H(0)

n

† ∑
f1,f2

J
(0),hc
fi,f1f2

S(0)
n H(1)

n +H(1)
n

† ∑
f1,f2

J
(0),hc
fi,f1f2

S(0)
n H(0)

n . (3.37)

The expressions given in eqs. (3.33)–(3.37) reproduce all the phase-space singularities of
eq. (3.22), including those that are not accompanied by virtual poles. Note that only eq. (3.33)
and eq. (3.37) contain non-universal one-loop ingredients, which must of course occur at this
stage at NNLO. All other contributions are given by universal soft and collinear functions.

To conclude our discussion, the simplest required ingredient at NNLO is the single-
unresolved counterterm in the (n+ 2)-particle phase space, K (1)

n+2. This has precisely the
same form as its NLO counterpart, given in eq. (3.16) and in eq. (3.17), with the replacement
n → (n+ 1). Our next goal is therefore to study the double-radiative local counterterms
introduced in eqs. (3.27)–(3.30), in the hierarchical limit in which one of the two radiated
particles becomes unresolved at a faster rate with respect to the second one. We expect, and
verify below, that in these limits radiative functions refactorise, and this feature allows for
an easy identification of the remaining local counterterm required for NNLO subtraction,
namely K

(12)
n+2 .

4 Factorisation of radiative functions in strongly-ordered limits at tree
level

It is clear from our discussion in section 2 that strongly-ordered soft and collinear limits play
an increasingly important role for subtraction at higher perturbative orders. For practical
purposes, the construction of strongly-ordered counterterms, starting from the corresponding
‘unordered’ ones, is not difficult: one simply needs to take suitable scaling limits on subsets
of soft and collinear momenta. It is, however, very interesting to study these limits from
an operator point of view, expressing strongly-ordered counterterms in terms of operator
matrix elements related to those in eqs. (3.7)–(3.9). This would be of significant help
when attempting to prove the line-by-line finiteness of subtracted distributions, by means
of completeness relations and power-counting arguments. Furthermore, a discussion of the
factorisation properties of Wilson-line matrix elements including radiation is of intrinsic
interest, and indeed issues of ‘refactorisation’ of soft and collinear cross sections have already
arisen in the context of resummation for inclusive rates, for example in ref. [106]. In this
section, we will present a discussion of the factorisation properties of radiative functions,
deriving general results at tree level.

To begin our discussion, we note that the jet and soft functions defined in eqs. (3.7)–(3.9)
reproduce the relevant multiple singular configurations in the absence of any hierarchy among
unresolved partons. Thus, for example, at NNLO the counterterms derived from these
functions are naturally identified as contributions to the unordered counterterm K

(2)
n+2. A

procedure is then necessary in order to extract the strongly-ordered configurations entering
K

(12)
n+2 , and similarly for higher-order counterterms.
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4.1 Tree-level radiative soft functions

Consider, as a first example, the case of double-soft radiation at tree level. In the limit in
which one of the two radiated soft gluons is much softer than the other, say k2 ≪ k1, the
strongly-ordered double-soft current is given by [84][

J
(0),s.o.
CG

]a1a2

µ1µ2
({βi}; k1, k2) =

(
J (0)a2
µ2 (k2)δa1a + igsµϵfa1a2a k1,µ2

k1 · k2

)
J (0)
µ1,a(k1), (4.1)

where

J (0)a
µ (k) = gsµ

ϵ
n∑
i=1

βi,µ
βi · k

Ta
i (4.2)

is the single-gluon tree-level soft current. Notice that it is a colour matrix, so that the
ordering in eq. (4.1) is fixed. This expression can of course be obtained from factorisation by
considering the tree-level double-radiative soft function S(0)

n,gg ({βi}; k1, k2), stripping off the
two gluon polarisation vectors, rescaling k2 by a factor ξ2, and retaining only the leading power
in the limit ξ2 → 0. As discussed above, however, it is desirable to give a definition of strongly-
ordered soft operators without resorting to an a posteriori limit operation on unordered
configurations: this can be achieved by applying soft factorisation in an iterative fashion.11

The key idea is that, in the limit k2 ≪ k1 ≪ µ, with µ a typical hard scale of the process,
gluon 1 (corresponding to momentum k1) is soft with respect to the n hard Born partons,
but, in turn, is seen as a hard parton if probed by gluon 2 (with momentum k2). This implies
that the soft emission of gluon 1 is described by a soft current featuring n Wilson lines,
corresponding to the Born partons, while the emission of gluon 2 is represented by a soft
current featuring n+ 1 Wilson lines: one of these (in the adjoint representation) corresponds
to gluon 1. In the language of factorisation, we may apply the standard techniques of the
soft approximation to the matrix element S(0)

n,gg (βi; k1, k2), in the limit when gluon 2 is softer
than all other particles. In this limit, such a matrix element factorises, and the resulting soft
function is, as expected, a Wilson-line correlator, where gluon 2 is still treated as a final-state
parton, while gluon 1 has been replaced by a Wilson line in the adjoint representation.12

This factorisation leaves behind a ‘hard’ function which, consistently, is given by the Wilson
line correlator for the radiation of gluon 1 from the n hard Born-level partons. This tree-level
factorisation is represented pictorially in figure 1, in the simplified case with n = 2.

In formulae, the natural definition for a strongly-ordered tree-level double-soft radiative
function, which we denote by S(0)

n;g,g, is thus[
S(0)
n;g,g

]a1a2

{diei}

(
{βi}; k1, k2) ≡ ⟨k2, a2|T

[
Φa1b
βk1

(0,∞)
n∏
i=1

Φ ci
βi,di

(∞, 0)
]
|0⟩

× ⟨k1, b|T
[ n∏
i=1

Φβi,ciei
(∞, 0)

]
|0⟩
∣∣∣
tree

=
[
S(0)
n+1,g

]a2,a1b

{dici}
(βk1 , {βi}; k2)

[
S(0)
n,g

]
b,{ciei}

({βi}; k1) , (4.3)

11We emphasise that strongly-ordered soft emission to leading IR accuracy was already investigated in
ref. [107, 108], where both real and virtual emission contributions are discussed.

12One could perhaps describe this factorisation by saying that the harder gluon has ‘Wilsonised’, becoming
a classical source for all much softer radiation.
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Figure 1. The factorisation of an eikonal form factor, illustrated for the case of two hard lines and
strongly-ordered double-soft radiation.

where, in the first line, one recognises the factorised emission amplitude of gluon 2 off n+ 1
Wilson lines, multiplied times the radiation of gluon 1 off n Born-level Wilson lines (the
second line). For clarity, in eq. (4.3) we have written explicitly all colour indices: one sees
that the first eikonal form factor, involving n+ 1 Wilson lines, acts as a colour operator on
the second form factor, with the adjoint index b of the Wilson line associated with gluon
1 contracting with the index of the gluon state in the second line. It is straightforward to
verify that eq. (4.3) yields precisely[

S(0)
n;g,g

]a1a2
({βi}; k1, k2) = ϵ∗µ1(k1) ϵ∗µ2(k2)

[
J
(0),s.o.
CG

]a1a2

µ1µ2
({βi}; k1, k2) . (4.4)

The strongly-ordered double-soft counterterm K
(12,s)
n+2 is then obtained by squaring eq. (4.3),

in the spirit of eq. (3.16).
By iterating this factorisation procedure, one may define the strongly-ordered triple-soft

current, in the kinematic limit k3 ≪ k2 ≪ k1 ≪ µ, as[
S(0)
n;g,g,g

]a1a2a3

{fiei}
({βi}; k1, k2, k3) ≡

[
S(0)
n+2,g

]a3

{fidi},a1b1,a2b2

[
S(0)
n+1,g

]b2

{dici},b1g1

[
S(0)
n,g

]g1

{ciei}

= ⟨k3, a3|T
[
Φa1b1
βk1

(∞, 0)Φa2b2
βk2

(∞, 0)
n∏
i=1

Φfidi
βi

(∞, 0)
]
|0⟩

×⟨k2, b2|T
[
Φb1g1
βk1

(0,∞)
n∏
i=1

Φdici
βi

(∞, 0)
]
|0⟩

×⟨k1, g1|T
[ n∏
i=1

Φciei
βi

(∞, 0)
]
|0⟩
∣∣∣
tree

, (4.5)

where, on top of the double radiation already detailed in eq. (4.3), we recognise in second
line the emission of the softest gluon 3 (with momentum k3) from a set of n + 2 Wilson
lines, two of which are ‘Wilsonised’ versions of gluons 1 and 2. Eq. (4.5) yields a natural
generalisation to the case of triple radiation of the strongly-ordered two-gluon eikonal form
factor given in eq. (4.4),[
S(0)
n;g,g,g

]a1a2a3 = ϵ∗µ3(k3)ϵ
∗
µ2(k2)ϵ

∗
µ1(k1)

×
[
Jµ3
a3 (k3)δ

a1b1δa2b2 + igsµϵfa1a3b1δa2b2 kµ3
1

k1 · k3
+ igsµϵfa2a3b2δa1b1 kµ3

2
k2 · k3

]

×
[
Jµ2
b2
(k2)δb1c1 + igsµϵf b1b2c1 kµ2

1
k1 · k2

]
Jµ1
c1 (k1), (4.6)
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in complete agreement with the strongly-ordered limit of the triple-soft current presented
in ref. [95]. Based on the above physically motivated discussion, and on the explicit form
of the strongly-ordered currents for up to three soft radiations at tree-level, it is natural to
build an ansatz for the strongly-ordered eikonal form factor for the radiation of m gluons
with momenta km ≪ km−1 ≪ · · · ≪ k1 ≪ µ. We write

[
S(0)
n;g,...,g

]a1,1...a1,m

{b1,ℓbm+1,ℓ}
≡

m∏
i=1

⟨km−i+1,ai,m−i+1|T
[m−i∏
p=1

Φai,pai+1,p

βkp
(∞,0)

n∏
ℓ=1

Φbi,ℓbi+1,ℓ

βℓ
(∞,0)

]
|0⟩
∣∣∣
tree

=
m∏
i=1

[
S(0)
n+m−i,g

]ai,m−i+1

{bi,ℓbi+1,ℓ},ai,1ai+1,1,...,ai,m−iai+1,m−i

=
m∏
i=1

ϵ∗µm−i+1(km−i+1)
[
Jµm−i+1
ai,m−i+1(km−i+1)

m−i∏
p=1

δai,pai+1,p

+igsµϵ
m−i∑
r=1

k
µm−i+1
r

kr ·km−i+1
fai,rai,m−i+1ai+1,r

m−i∏
j=1
j ̸=r

δai,jai+1,j

]
, (4.7)

which reduces to eq. (4.3) and eq. (4.5) for m = 2 and m = 3, respectively. We point out that
the factorisation arguments presented for the totally ordered configuration km ≪ km−1 ≪
· · · ≪ k1 ≪ µ generalise to less hierarchical kinematics, in which for instance q among the
radiated gluons have comparable softness: in such a case, the corresponding sequence of q
single-radiative form factors is replaced by a single form factor radiating q gluons.

While the analysis above has focused on tree-level soft functions, the underlying physics,
and the fact that the discussion can be phrased in terms of operator matrix elements, strongly
suggests that the structure of the proposed factorisations can be extended to higher orders,
upon retaining hard-collinear and finite loop contributions, as well as including renormalisation
factors. Indeed, the fact that the softest radiation can be factorised from the remaining
(harder) ones, in terms of a soft function, where harder radiated gluons have ‘Wilsonised’,
follows from the standard rules of the soft approximation, and Ward identities could be applied,
where appropriate, since the original eikonal form factor is gauge invariant. These qualitative
arguments can be verified at one-loop by examining the strongly-ordered limit of the one-loop
current for the radiation of two soft gluons [97, 99, 109], and indeed one recovers a natural
generalisation of eq. (4.3), which we briefly discuss below in section 5. Notwithstanding this
strong check, a proper generalisation to all orders of a nested factorisation such as eq. (4.7)
would require a thorough analysis, which is left for future work.

4.2 Tree-level radiative jet functions

Strongly-ordered collinear configurations need to be analysed next. Let us consider, for
instance, the triple-collinear configuration corresponding to a kinematic situation in which
three partons i, j, k become collinear, with relative angles θij , θik, θjk → 0, but with two
partons displaying a dominant collinearity, say θij ≪ θik, θjk. It is known that the strongly-
ordered collinear limit of squared scattering amplitudes factorises into products of Altarelli-
Parisi kernels, which are matrices in spin space. For instance, the NNLO strongly-ordered
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collinear configuration for a q → q′1q̄
′
2q3 branching is given by

lim
θ12≪θ13→0

RRn+2 =
(8παs)2

s12s[12]3
P ρσq→gq

(
z[12], q⊥

)
dρµ
(
k[12]

)
Pµνg→qq̄

(
z1
z[12]

, k⊥

)
dσν

(
k[12]

)
Bn, (4.8)

where the intermediate-particle momentum is k[12] ≡ k1 + k2, its collinear energy fraction
is z[12] ≡ z1 + z2 = 1 − z3, and s[12]3 = 2k[12] · k3. Finally,

dµν
(
k[12]

)
= −gµν +

k[12]µnν + k[12]νnµ

k[12] · n
, (4.9)

with n2 = 0, represents the gluon polarisation sum. The momenta q⊥ and k⊥ in the
splitting kernels specify the transverse directions for the successive branchings, q → g[12]q3
and g[12] → q′1q̄

′
2, respectively: their definitions follow from the Sudakov parametrisation

of momenta ki (i = 1, 2, 3), according to

kµi = zip
µ + k⊥i −

k2⊥i
zi

nµ

2p · n, q⊥ = k⊥3, k⊥ = z2k⊥1 − z1k⊥2. (4.10)

The kernel P ρσq→gq describes the first splitting of a parent quark into a quark-gluon pair,
with gluon spin indices un-contracted. As such, it represents the spin matrix acting on the
subsequent splitting of the virtual gluon in a quark-antiquark pair, described by Pµνg→qq̄. The
explicit form of the relevant kernels is

Pµνg→qq̄(z, k) = TR

(
−gµν + 4z(1− z)k

µkν

k2

)
, P ρσq→gq(z, k) =

CF
2TR

zP ρσg→qq̄(1/z, k). (4.11)

Our goal is now to express such collinear refactorisations by means of radiative jet functions.
This can be done without any loss of information, since the jet functions defined in eq. (3.8)
retain full dependence on gluon (as well as quark) spin. As a first example, the strongly-ordered
triple-collinear kernel in eq. (4.8) can be rewritten in the factorisation language as∫

ddℓ

(2π)d
[

lim
θ12≪θ13→0

J
(0)
q,qq′q̄′(ℓ; k1, k2, k3)

]
≡
∫

ddℓ

(2π)dJ
(0)
q,gq;g,q′q̄′(ℓ; k1, k2, k3) (4.12)

=
∫

ddℓ

(2π)dJ
;ρσ(0)
q,gq

(
ℓ; k[12], k3

) ∫ ddℓ′

(2π)dJ
ρσ(0)
g,q′q̄′ (ℓ

′; k1, k2),

where the first line sets up the notation for a strongly-ordered jet function, specifying the
sequential splittings involved. The integrals over ddℓ and ddℓ′ just serve the purpose of
resolving the Dirac delta-function constraints contained in the definition of jet functions,
which in turn fix the momentum of the splitting parton to equal the momentum sum of its
decay products. Note also that in J

;ρσ(0)
q,gq we have left implicit the spin indices associated

with the parent quark, to lighten the notation. The semicolon serves as a marker for this
implicit dependence, and Lorentz spin indices after semicolon are associated to the daughter
gluon created by the splitting. Conversely, in the secondary branching described by Jρσ(0)g,q′q̄′ the
Lorentz indices are related to the splitting gluon. It is not difficult to verify that, upon retaining
the leading-power contribution in the transverse momenta, the radiative quark jet J ;ρσ(0)

q,gq

yields the P ρσq→gq kernel of (4.8), while the factor Jρσ(0)g,q′q̄′ reproduces the product dρµP
µν
g→qq̄d

σ
ν .
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The factorisation of other flavour combinations in strongly-ordered limits follows the
same lines, upon keeping proper track of the relevant Dirac or Lorentz indices. As an example,
we consider the case of the strongly-ordered splitting q → qgg, which we display in the
abelian limit for simplicity (non-abelian terms follow the same kinematic pattern). This
limit is described by the factorised formula∫

ddℓ

(2π)d
[

lim
θ12≪θ13→0

J (ab)(0)
q,qgg (ℓ; k1, k2, k3)

]
≡
∫

ddℓ

(2π)dJ
(0)
q,qg;q,qg(ℓ; k1, k2, k3) (4.13)

=
∫

ddℓ

(2π)dJ
;αβ(0)
q,qg

(
ℓ; k[12], k3

) ∫ ddℓ′

(2π)dJ
αβ(0)
q,qg (ℓ′; k1, k2),

where α and β are now Dirac indices. The only case featuring a further complication involves
a gluon splitting into gluons: in fact, this requires keeping track of the Lorentz indices of
both the parent and the sibling gluons. For instance we find∫

ddℓ

(2π)d
[

lim
θ12≪θ13→0

Jµν(0)g,ggg (ℓ; k1, k2, k3)
]
≡
∫

ddℓ

(2π)dJ
µν(0)
g,gg;g,gg(ℓ; k1, k2, k3) (4.14)

=
∫

ddℓ

(2π)dJ
µν;ρσ(0)
g,gg

(
ℓ; k[12], k3

) ∫ ddℓ′

(2π)dJ
ρσ(0)
g,gg (ℓ′; k1, k2),

where the four-index jet Jµν;ρσ(0)g,gg is defined by

Jµν;ρσ(0)g,gg

(
ℓ; ka, kb

)
=
∑
λa,λb

∫
ddxeiℓ·x

(
J µ;ρ(0)
g,gg

(
0; {kj , λj}

))†
J ν;σ(0)
g,gg

(
x; {kj , λj}

)
, (4.15)

and J ν;σ(0)
g,gg satisfies

J ν(0)
g,gg

(
x; ka, kb;λa, λb

)
= J ν;σ(0)

g,gg

(
x; ka, kb;λa, λb

)
ϵ∗(λa)
σ (ka). (4.16)

We emphasise that eqs. (4.12)–(4.14) have been found by explicitly computing the limits
of the two-radiative jet functions.

This factorised structure can be generalised to the case of an arbitrary number of
collinear emissions, all strongly ordered. Introducing appropriate notation, such limits can
be described by the expression∫

ddℓ

(2π)d
[

lim
θ1≪θ2≪···≪θm−1→0

J
IJ(0)
f,f1...fm

(
ℓ; k1, . . . , km

)]
≡
∫

ddℓ

(2π)dJ
IJ(0)
f,a1b1,...,ambm

(
ℓ; k1, . . . , km

)
=

m−1∏
j=1

∫
ddℓj
(2π)dJ

IpjJpj ;IajJaj (0)
pj ,ajbj

(ℓj ; kaj , kbj
). (4.17)

The labels in the previous equation are constructed as follows. Partons a1, b1 ∈ {1, . . . ,m},
stemming from the splitting of parent particle p1, are those emitted with the smallest
relative angle among all, θ1. If the next-to-smallest independent relative angle, θ2, is the one
connecting partons c, d ∈ {1, . . . , /a1, . . . , /b1, . . . ,m}, then a2 = c and b2 = d. Otherwise, if θ2
connects c ∈ {1, . . . , /a1, . . . , /b1, . . . ,m} with either a1 or b1, then a2 = c and b2 = [a1b1] = p1.
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Iteratively, proceeding by larger and larger relative angles θj , with j ≤ m− 1, aj is assigned
in the set {1, . . . ,m} deprived of all ak, bk with k < j; if θj connects aj to a yet unassigned
parton, the latter then gets labelled as bj , otherwise bj is labelled as the ancestor of the
cluster of partons to which aj is linked by θj . Parent pj is [ajbj ], understanding the iterative
rule [a[bc]] = [abc] and so on. Finally, indices IpjJpj (IajJaj ) are the Lorentz or Dirac indices
of the j-th parent (first sibling), with the constraint Ip1Jp1 = IJ . Once again, situations
in which not all collinear splittings are strongly ordered, but rather successive clusters of
k > 2 particles are produced with parametrically similar collinearities, can be described by
analogous factorisations. This is not difficult to achieve case by case, while writing down
a general formula for this would involve rather cumbersome notations.

5 Factorisation of single-radiative functions at one loop

Extending the discussion of section 4 to loop level is non-trivial. Virtual corrections involve
loop momenta which are unconstrained: thus they may, and do, carry soft, collinear and
ultraviolet enhancements, which will eventually survive strongly-ordered limits. These
enhancements will have to be properly identified and analysed, as they will impact the
connection between strongly-ordered and real-virtual counterterms. Our strategy will be to
treat the matrix elements defining radiative soft and jet functions as generalised scattering
amplitudes: we will then conjecture natural expressions for their factorisations, and verify
that they hold at one loop.

5.1 Single-radiative soft function at one loop

We consider first the single-radiative eikonal form factor defined by eq. (3.3) with m = 1. This
amplitude-level radiative soft function is in fact, on its own accord, a scattering amplitude in
the presence of Wilson lines acting as sources. As such, the following factorisation ansatz,
along the lines set in eq. (3.1), is expected to hold:13

Sn,g
(
{βi}; k

)
= Sn+1

(
{βi}, βk)

J µ
g,g(0; k)
JEg(βk)

SH,µ
n,g

(
{βi}; k

)
. (5.1)

Note that, at variance with previous sections, in eq. (5.1) we have dropped the dependence
on the polarisation of the emitted gluon, since it is not relevant for the present discussion.
This dependence is encoded on the l.h.s. in the definition of Sn,g, and on the r.h.s. in the
definition of J α

g,g. The first factor in eq. (5.1) contains the virtual soft poles of an (n+ 1)-
point amplitude, while the jet ratio contains hard-collinear virtual poles associated with the
radiated gluon. The factor SH,µ

n,g

(
{βi}; k

)
encodes all loop contributions to the radiative soft

function that are finite as ϵ → 0: thus, it describes hard wide-angle virtual contribution
to the soft real radiation of gluon g off a set of n hard legs. Finally, observe that, starting
from eq. (3.1), one might have expected further hard collinear factors in eq. (5.1), associated
with the n Wilson lines along the directions βi: these factors however are all equal to one,
since the jet functions in the numerators coincide with their soft approximations, given by
the eikonal jet functions in the denominators.

13The jet functions, defined in eqs. (3.4)–(3.5), can be evaluated at x = 0 in this case, without loss of
generality.
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At NLO, the factorisation in eq. (5.1) leads to

S(1)
n,g

(
{βi}; k

)
=
[
S(1)
n+1

(
{βi}, βk

)
− J (1)

Eg (βk)
]
S(0)
n,g

(
{βi}; k

)
+J (1)µ

g,g (0; k)S(0)µ
n,g

(
{βi}; k

)
+ finite, (5.2)

where we used the fact that at tree level SH,µ
n,g coincides with the full tree level radiative soft

function S(0)
n,g after contracting with the appropriate polarisation vector.

We can now proceed to verify eq. (5.2). We start with the known expressions for the
relevant soft functions. At tree level, the radiative soft function gives[

S(0)
n,g

(
{βi}; k

)]a
= gsµ

ϵ
n∑
i=1

βi · ϵλ(k)
βi · k

Ta
i , (5.3)

where µ is the MS renormalisation scale, including the appropriate correction for contributions
proportional to γE and ln 4π, and gs is the bare strong coupling. The one-loop contribution to
the virtual soft function for (n+ 1) particles, on the other hand, reads (see for instance [69])[

S(1)
n+1

(
{βi}, βk

)]ab
= αs

4π

n∑
i,j=1
i ̸=j

Ti · Tjδ
ab
[ 1
ϵ2

− 1
ϵ
ln 2pi · pj

µ2

]

+αs2π

n∑
i=1

Ti · (Tk)ab
[ 1
ϵ2

− 1
ϵ
ln 2pi · k

µ2

]
, (5.4)

where pi = µ/
√
2βi, and we have understood the gluon with momentum k to be at position

n+ 1, i.e. pn+1 = k, we wrote explicitly the colour indices of the Wilson line associated with
that gluon, and all poles in ϵ are of purely soft origin. Since eq. (5.4) is the leading-order
term for the virtual soft function, the coupling αs can equivalently be taken to be bare or
renormalised, without affecting the argument below.

The first term of eq. (5.2) is found by multiplying eq. (5.3) to the right of eq. (5.4).
Importantly, one can show that

S(1)
n+1

(
{βi}, βk

)
S(0)
n,g

(
{βi}; k

)
= S(0)

n,g

(
{βi}; k

)
S(1)
n

(
{βi}

)
+ ελ(k) · J

(1),b
CG

(
{βi}; k

)
, (5.5)

where J (1),b
CG is the bare one-loop Catani-Grazzini (CG) soft-gluon current for final-state

radiation [87], given by

J
(1),b,µ
CG

(
{βi}; k

)
= −αs4πgsµ

ϵifabc
n∑

i,j=1
Tb
iTc

j

1
ϵ2

(
βµi
βi · k

−
βµj
βj · k

)(
µ2pi · pj

2pi · kpj · k

)ϵ
. (5.6)

Eq. (5.4) is useful because the combination S(0)
n,gS(1)

n appears in the one-loop renormalised
radiative amplitude A(1)

n,1

A(1)
n,1
(
{pi}; k

)
= S(0)

n,g

(
{βi}; k

) n∑
i=1

[
J (1)
i

(
{pi}

)
− J (1)

Ei

(
{βi}

)]
H(0)
n

(
{pi}

)
+S(0)

n,g

(
{βi}; k

)
H(1)
n

(
{pi}

)
+ S(1)

n,g

(
{βi}; k

)
H(0)
n

(
{pi}

)
= S(0)

n,g

(
{βi}; k

)
A(1)
n

(
{pi}

)
+
[
S(1)
n,g

(
{βi}; k

)
− S(0)

n,g

(
{βi}; k

)
S(1)
n

(
{βi}

)]
A(0)
n

(
{pi}

)
, (5.7)
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where A(0)
n = H(0)

n . We can now compare eq. (5.7) to the equivalent formulation from [87]:
in that approach one writes

A(1)
n,1
(
{pi}; k

)
= ελ(k) ·

[
J
(0)
CG
(
{βi}; k

)
A(1)
n

(
{pi}

)
+ J

(1),r
CG

(
{βi}; k

)
A(0)
n

(
{pi}

)]
, (5.8)

where J (0)
CG is equal to the expression in eq. (5.3). We note that all quantities in eq. (5.8) are

renormalised, and in particular we now feature the renormalised CG current J (1),r
CG . Thus

we can identify

ελ(k) · J
(1),r
CG

(
{βi}; k

)
= S(1)

n,g

(
{βi}; k

)
− S(0)

n,g

(
{βi}; k

)
S(1)
n

(
{βi}

)
. (5.9)

Then, using (5.5), we have

S(1)
n,g

(
{βi}; k

)
= S(1)

n+1
(
{βi}, βk

)
S(0)
n,g

(
{βi}; k

)
+
[
J
(1),r
CG

(
{βi}; k

)
− J

(1),b
CG

(
{βi}; k

)]
· ελ(k)

= S(1)
n+1

(
{βi}, βk

)
S(0)
n,g

(
{βi}; k

)
− αs

4π
b0
2ϵJ

(0)
CG
(
{βi}; k

)
· ελ(k)

=
[
S(1)
n+1

(
{βi}, βk

)
− αs

4π
b0
2ϵ

]
S(0)
n,g

(
{βi}; k

)
, (5.10)

where b0 = (11CA − 4TRnf )/3 in our normalisation, with nf being the number of active
flavours in the process. Eq. (5.10) is actually equivalent to eq. (5.2), which we set out to
prove: indeed, the second term in the last line is the hard-collinear contribution from the
radiated gluon, i.e. the contribution arising from the ratio of the two jet functions in eq. (5.2).
Such a ratio is computed for instance in ref. [110] (see eqs. (2.21) and (2.26) there). The
β-function coefficient b0 arises in this context as the anomalous dimension of the gluon jet
function.14 We note that the result in eq. (5.10) is compatible with the soft factorisation
displayed in eq. (4.3) upon converting the softer real gluon into a soft virtual radiation,
namely selecting soft loops only.

In order to apply these ideas to subtraction, we need to explore what happens at cross-
section level. In order to do this, we begin by examining the general expression of the
real-virtual contribution to the cross section, RVn+1, in the limit in which the emitted gluon k
becomes soft. The corresponding kernel features explicit soft and hard-collinear poles relevant
to all n+ 1 external legs. When comparing it with the cross-section-level version of eq. (5.2),
we then expect the two expressions to differ by the hard-collinear poles associated with all
particles but the radiated gluon. This expectation is verified in the following.

The soft limit of RVn+1 in the MS scheme can be found in refs. [15, 86, 87, 111, 112],
and reads15

SkRVn+1 = −N1δfkg

∑
i ̸=k
j ̸=i,k

I(k)
ij

[
Vn,ij −

(
N1cΓ

CA
ϵ
π cot(πϵ)

(
I(k)
ij

)ϵ
+ αs

4π
b0
ϵ

)
Bn,ij

+N1cΓ
2π
ϵ

∑
p ̸=i,j,k

(
I(k)
jp

)ϵ
Bn,ijp

]
, (5.11)

14Note that in ref. [110] different conventions are used for the normalisation of the β-function coefficients.
15This is the Sk limit defined in section 2. Note that, with a slight abuse of notation, we are using k both

for the ordering number of the gluon in the set of radiated particles, and for its momentum.
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where the colour-correlated Born and virtual contributions are defined by Bn,ij = A(0)†
n (Ti ·

Tj)A(0)
n and by Vn,ij = 2Re

[
A(0)†
n (Ti · Tj)A(1)

n
]
, respectively. Furthermore, we introduced

the notations

I(i)
ab = sab

saisbi
, Bn,ijp = fabcA(0)†

n Ta
iTb

jTc
pA(0)

n ,

N1 = 8παsµ2ϵ, cΓ = 1
(4π)2−ϵ

Γ(1 + ϵ)Γ2(1− ϵ)
Γ(1− 2ϵ) , (5.12)

where sab = 2pa · pb. In order to make the pole content of eq. (5.11) explicit, we need to
extract the divergent contributions to the colour-correlated virtual matrix element Vn,ij .
This can be written as

Vn,ij
∣∣∣
poles

= −αs2π

{
Bn,ij

∑
m ̸=k

[
δfmg

(
CA
ϵ2

+ b0
2ϵ

)
+ δfm{q,q̄}CF

( 1
ϵ2

+ 3
2
1
ϵ

)]

+ 1
2ϵ

∑
r ̸=k
s ̸=k,r

Bn,ijrs ln
srs
µ2

}
, (5.13)

where Bn,ijrs = A(0)†
n
{
Ti ·Tj ,Tr ·Ts

}
A(0)
n . The flavour Kronecker delta functions are defined

as follows: if fi is the flavour of parton i, then δfig = 1 if parton i is a gluon, and δfig = 0
otherwise. Similarly, we define δfi{q,q̄} ≡ δfiq + δfiq̄. Next, we expand in ϵ the curly bracket in
eq. (5.11): one can then use colour conservation to show that

∑
p ̸=i,j,k Bijp = 0. The explicit

pole content of eq. (5.11) can then be presented as follows

SkRVn+1
∣∣∣
poles

= N1
αs
2π

∑
i ̸=k
j ̸=i,k

I(k)
ij

{
Bn,ij

∑
m ̸=k

[
δfmg

(
CA
ϵ2

+ b0
2
1
ϵ

)
+ δfm{q,q̄}CF

( 1
ϵ2

+ 3
2
1
ϵ

)]

+ 1
2ϵ

∑
r ̸=k
s ̸=r,k

Bn,ijrs ln
srs
µ2

+
[
CA

(
1
ϵ2

+ 1
ϵ
ln µ2sij
siksjk

)
+ b0

2ϵ

]
Bn,ij

}
. (5.14)

One can then express the equation above in the language of factorisation, and find

SkRVn+1 = α2
sµ

2ϵ
n∑

i,j=1
j ̸=i

2βi · βj
βi · kβj · k

H(0)†
n

{
Ti · Tj

n∑
m=1

(
Cm
ϵ2

+ γ
(1)
m

ϵ

)

+Ti · Tj

[
CA

( 1
ϵ2

+ 1
ϵ
ln µ2βi · βj

2βi · kβj · k

)
+ b0

2ϵ

]

+ 1
2ϵ

n∑
r,s=1
r ̸=s

{
Ti · Tj ,Tr · Ts

}
ln 2pr · ps

µ2

}
H(0)
n + finite, (5.15)

where Cm = CF and γ
(1)
m = 3CF /2 for (anti-)quarks, while Cm = CA and γ

(1)
m = b0/2

for gluons. The contributions proportional to quadratic Casimir eigenvalues are of soft
origin, while the ones proportional to γ(1)m are hard-collinear single poles, and the b0 term
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is due to renormalisation. After performing the relevant colour algebra, eq. (5.15) can be
shown to satisfy

SkRVn+1 = H(0)
n

† (S(0)
n,g

(
{βi}; k

))†
S
(1)
n+1

(
{βi}, βk

)
S(0)
n,g

(
{βi}; k

)
H(0)
n

+α2
sµ

2ϵ
n∑

i,j=1
j ̸=i

2βi · βj
βi · kβj · k

H(0)
n

†Ti · TjH(0)
n

[
n∑

m=1

γ
(1)
m

ϵ
+ b0

2ϵ

]
, (5.16)

where S(1)
n+1 = 2Re

[
S(1)
n+1S

(0)
n+1

†]
, and, for brevity, we are henceforth omitting the mention

of finite contributions. Eq. (5.16) is an example of the issues outlined in the introduction
of this section. RVn+1 is a cross section involving (n+ 1) outgoing particles, one of which
is gluon k; upon taking the soft limit for k, the first term on the r.h.s. provides a natural
generalisation of the tree-level soft refactorisation discussed in section 4. At loop level, as
expected, we find poles in ϵ of hard-collinear origin, that correct a purely soft refactorisation
picture: this is given by the second term on the right-hand side. In particular, γ(1)m comes
from the loop momentum being collinear to leg m, while b0 comes from the loop momentum
being collinear to the extra gluon, k = n+ 1. This can be further clarified by rewriting the
second term using the cross-section-level version of eq. (5.10), found by multiplying it times
the tree-level complex conjugate and summing over the polarisations of the radiated gluon.
Writing SkRVn+1 in terms of S(1)

n,g cancels the term involving b0 in eq. (5.16), with the result

SkRVn+1 = H(0)
n

†
[
S(1)
n,g

(
{βi}; k

)
+ S(0)

n,g

(
{βi}; k

)αs
2π

n∑
m=1

γ
(1)
m

ϵ

]
H(0)
n . (5.17)

One can then further rewrite the remaining hard-collinear term as a difference of jet functions
for each external particle of the Born process, in the form

SkRVn+1 = H(0)
n

†
[
S(1)
n,g

(
{βi}; k

)
+

n∑
i=1

J
(1),hc
fi,fi

S(0)
n,g

(
{βi}; k

)]
H(0)
n , (5.18)

where we have adopted the notation of eq. (3.20) for the jet function multiplying the hard
function H(0)

n . Eq. (5.18) thus confirms the argument presented above eq. (5.11): the one-loop
radiative soft function S

(1)
n,g captures all the soft-virtual poles of SkRV , while there are still

collinear poles from hard momenta circulating in the loop, which are correctly reproduced
by the appropriate combination of jet functions.

We emphasise that the expressions presented in eq. (5.18) are particularly suitable for
verifying explicitly that the pole content of the soft limit SkRVn+1 coincides (up to a sign)
with the pole structure of the soft component of I (12)

n+1 . This is a crucial validation of the
arguments presented below eq. (2.18), and will be discussed in section 6. We now proceed
to the analysis of the collinear limit of the real-virtual correction.

5.2 Single-radiative jet functions at one loop

By the same reasoning that was applied to the radiative soft function in section 5.1, the
radiative jet function is also expected to factorise as a scattering amplitude in the presence
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of Wilson lines, in the form16

Jfi,f1f2

(
0; k1, k2

)
= S3

(
β1, β2, n

)Jf1,f1

(
0; k1

)
JE1(β1)

Jf2,f2

(
0; k2

)
JE2(β2)

JH
fi,f1f2

(
0; k1, k2

)
, (5.19)

with one hard-collinear jet combination, Jfm,fm(0; km)/JEm(βm) for each outgoing parton,
m = 1, 2, a three-line soft function S3(β1, β2, n) defined by Wilson lines in the directions of
k1, k2 and n, and finally a hard function JH

fi,f1f2
(0; k1, k2) responsible for finite corrections,

due to hard virtual particles not collinear to either f1 or f2. Note that there is no hard-
collinear behaviour associated to the Wilson-line in direction n (provided n2 ̸= 0), only
soft singularities. Spin indices connecting the two outgoing jet functions to the hard jet
function are implicit in eq. (5.19).

Squaring the factorised expression in eq. (5.19) and evaluating the result at one loop
gives the cross-section level jet function J

(1)
fi,f1f2

, which appears in the collinear sector of
K

(RV)
n+1 . This factorisation reads

J
(1)αiβi

fi,f1f2

(
ℓi; k1, k2

)
= (5.20)

=
∫
ddxeiℓi·x

{(
J (0)αi

fi,f1f2

(
0; k1, k2

))†[
S
(1)
3
(
β1, β2, n

)
−

∑
j∈{1,2}

J
(1)
Ej

(βj)
]
J (0)βi

fi,f1f2

(
x; k1, k2

)
+
∫

ddq

(2π)d
(
J (0)αi;ᾱ1
fi,f1f2

(
0; q, k2

))†
J
(1)ᾱ1β̄1
f1,f1

(
q; k1

)
J (0)βi;β̄1
fi,f1f2

(
x; q, k2

)
+
∫

ddq

(2π)d
(
J (0)αi;ᾱ2
fi,f1f2

(
0; k1, q

))†
J
(1)ᾱ2β̄2
f2,f2

(
q; k2

)
J (0)βi;β̄2
fi,f1f2

(
x; k1, q

)}
+ finite,

where the spin indices undergo the conventions explained below eq. (4.12). The integrals over
the parent momentum q are trivial in eq. (5.20), since the cross-section-level jet functions
J
(1)
fm,fm

are proportional to δ(q − km). However we will see later, in section 6, that in the
strongly-ordered limit for double-radiative jet function the corresponding momentum q will
play an important role. The cross-section-level soft function S3 in eq. (5.20) is defined as
usual by squaring the vacuum expectation value of the appropriate Wilson lines. In this case

S3
(
β1, β2, n

)
=
∣∣∣ ⟨0|T [Φn(0,∞)Φβ1(0,∞)Φβ2(0,∞)

]
|0⟩
∣∣∣2. (5.21)

In order for S3 to be gauge invariant, we require colour conservation, in the form Tn + T1 +
T2 = 0, whenever the soft function operates within an on-shell amplitude. This implies that
the Wilson line in direction n carries the total colour charge of all the Born-level particles,
excluding the colour charge of the parent momentum ℓi.

We note that an equivalent factorisation exists for the eikonal radiative jet. At cross-
section level we write

J
(1)
Ei,g

(
βi; k

)
=
[
S
(1)
3
(
βi, βk, n

)
− J

(1)
Eg

(
βk
)]
J
(0)
Ei,g

(
βi; k

)
+
∫

ddq

(2π)dJ
(0)ᾱ

Ei,g

(
βi; q

)
J (1)ᾱβ̄
g;g

(
q; k

)
J (0)β̄

Ei,g

(
βi; q

)
. (5.22)

16As before, we evaluate the jet functions at x = 0, and we do not display the dependence on the polarisation
vectors.
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Here we can specify that the radiated particle is a gluon since one cannot radiate a single
quark from a Wilson line. We will now show that eqs. (5.20) and (5.22) hold, by explicit
computation of the one-loop radiative jet.

5.3 Computing radiative jet functions at one loop

In section 5.2 we have introduced factorisation formulas for jet and eikonal-jet functions at
the one-loop level. In order to test such formulas, it is necessary to compute these functions
at order αs. This is non-trivial, since different scales enter the relevant diagrams, and the
corresponding Feynman rules involve denominators that are linear in the loop momentum.

Often, an axial gauge (n ·A = 0) is chosen when computing jet functions, since the Wilson
line Φn in eqs. (3.4), (3.5) and (3.6) becomes unity in that gauge. This choice prevents the
proliferation of diagrams involving the interaction of gluons with the auxiliary Wilson line,
and also avoids diagrams with ghosts. At loop-level, however, there are complications that
arise from the denominators of the axial-gauge gluon propagator [113]: it is therefore practical
to work in Feynman gauge. Another convenient choice would be to set n2 = 0, which makes
the integrals easier to compute, as there is no additional variable, proportional to n2, that
they could depend upon. One difficulty in this selection, however, is that it introduces a set
of unphysical collinear divergences associated with the Wilson line in the direction n, which
would need to be removed. To be on the safe side and to avoid confusion, we choose n2 ̸= 0.

The computation of the (bare) jet functions proceeds in a standard way. The necessary
Dirac and colour algebra for the Feynman diagrams can be performed with the software
FeynCalc [114–116]. The results are then passed to the program LiteRed [117, 118] to reduce
them to a set of basis integrals using integration-by-parts identities. Some details of the
calculation are presented in appendix C. In particular, given the results for the relevant
master integrals, presented in eqs. (C.2), (C.8) and (C.9), it is easy to obtain compact
expressions for the bare jet functions at one loop. The quark radiative jet function with
a single gluon emission reads

J (1),b
q,qg

(
ℓ; k1, k2) = −αs2πJ

(0)
q,qg

(
ℓ; k1, k2

)
(5.23)

×
[
CA

(
1
ϵ2

+ 1
ϵ
log µ2k1 · n

2k2 · nk1 · k2

)
+ CF

(
1
ϵ2

+ 1
ϵ

(
1 + log µ2n2

(2k1 · n)2

))]
+ finite,

where the superscript b denotes a bare function. The gluon radiative jet function with the
emission of a quark-antiquark pair reads

J
(1),b,µν
g,qq̄

(
ℓ; k1, k2) = −αs2πJ

(0),µν
g,qq̄

(
ℓ; k1, k2

)
(5.24)

×
[
CA
ϵ

(
log n2k1 · k2

2k1 · nk2 · n
− 8

3

)
+ CF

(
2
ϵ2

+ 1
ϵ

(
3 + 2 log µ2

2k1 · k2

))
+ 2nf

3ϵ

]
+ finite.

Similarly, the gluon radiative jet function with the emission of a gluon pair reads

J (1),b,µν
g,gg

(
ℓ; k1, k2

)
= −αs2πJ

(0),µν
g,gg

(
ℓ; k1, k2

)
× CA

[
2
ϵ2

+ 1
ϵ

(
1 + log µ2n2

2k1 · nk2 · n
+ log µ2

2k1 · k2

)]
+ finite. (5.25)
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Figure 2. Assigning renormalisation constants to different factors in the radiative jet functions:
radiation from the field line.

Finally, the radiative eikonal jet function with the emission of a gluon reads

J
(1),b
E,g

(
β; k

)
= −αs2πJ

(0)
E,g
(
β; k

)
CA

[
1
ϵ2

+ 1
ϵ
log

(
µ2β · n

2k · nk · β

)]
+ finite. (5.26)

In eqs. (5.23)–(5.26) we extracted the tree-level results, given in appendix B, and αs is the
bare coupling. It is worthwhile to discuss the renormalisation of the jet functions in detail. As
we have chosen to regulate the infrared and ultraviolet both in dimensional regularisation, we
cannot readily distinguish between them in the calculation (note that radiative functions are
not pure counterterms even in the eikonal limit, since the radiated momentum provides a scale).
As a consequence, the renormalisation factors need to be determined separately. We will do
so by examining the tree-level diagrams and dressing each component with a renormalisation
factor. All relevant factors are known or can be easily computed. Upon renormalisation we
will find a universal and transparent expression for single-radiative jet functions at one loop.

The tree-level diagrams where the radiated particle is emitted from the field line are
displayed in figure 2. Each internal vertex carries a Z factor for the corresponding coupling
(these are ZV ψ, ZV A, Zg, Zggg). Similarly, each internal propagator carries a factor Z−1 for
the correponding field (in the case at hand, Z−1

ψ and Z−1
A ). Finally, each external leg carries

a factor of Z−1/2 for the corresponding wave function (here Z
−1/2
WF

, Z
−1/2
WA

, Z
−1/2
A , Z

−1/2
ψ ).

Altogether, the renormalisation takes the form

Jq,qg
(
ℓ; k1, k2

)
= Jb

q,qg

(
ℓ; k1, k2

) (
ZV ψZgZ

−3/2
ψ Z

−1/2
A Z

−1/2
WF

)2
,

Jµνg,gg
(
ℓ; k1, k2

)
= Jb,µν

g,gg

(
ℓ; k1, k2

) (
ZV AZgggZ

−2
A Z

−1/2
WA

)2
, (5.27)

Jµνg,qq
(
ℓ; k1, k2

)
= Jb,µν

g,qq

(
ℓ; k1, k2

) (
ZV AZgZ

−1
ψ Z−1

A Z
−1/2
WA

)2
,

and the relevant renormalisation factors Zi are collected in appendix C.
Furthermore, there is another type of graph at tree-level, where a gluon is radiated from

the Wilson line, as shown in figure 3. The corresponding renormalisation factors can be
consistently determined by demanding that these diagrams renormalise in the same way
as those in figure 2. The results are also given in appendix C. Finally, the single-radiative
eikonal jet renormalisation factors are presented in figure 4, showing one of the two tree-level
diagrams. The eikonal jet thus renormalises as

JEi

(
βi; k

)
= Jb

Ei

(
βi; k)

(
ZβinZWiAZ

−3/2
Wi

Z
−1/2
A

)2
, (5.28)
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Figure 3. Assigning renormalisation constants to different factors in the radiative jet functions:
radiation from the Wilson line.
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Figure 4. Assigning renormalisation constants for the eikonal radiative jet function.

where Zβin is the renormalisation of the vertex connecting the Wilson lines in directions
βi and n (see eq. (C.13)). On the other hand, light-like Wilson lines do not carry a ‘wave
function renormalisation’, as all self-energy diagrams vanish, since they are proportional to
β2i = 0. Once renormalised in the MS scheme, single-radiative jet functions can be written
universally in the form

J
(1)
fi,f1f2

(
ℓi; k1, k2

)
= −αs2πJ

(0)
fi,f1f2

(
ℓi; k1, k2

)[γ(1)1
ϵ

+ γ
(1)
2
ϵ

+ C1 + C2
ϵ2

(5.29)

+1
ϵ

(
Ci + 2T1 · T2 log

(k1 · k2)n2

2k1 · nk2 · n
+ C1 log

n2µ2

4(k1 · n)2
+ C2 log

n2µ2

4(k2 · n)2

)
+O(ϵ0)

]
,

where γ(1)i is the one-loop collinear anomalous dimension for parton i, given below eq. (5.15):
the terms involving these anomalous dimensions are of hard-collinear origin and feature in
the difference between radiative jet and eikonal jet functions arising from eq. (5.20).

To complete the proof of factorisation at one-loop, we need to show that the remaining
terms build the soft function S

(1)
3 (β1, β2, n). To this end, recall that S(1)

3 (β1, β2, n) is a
Wilson-line correlator defined with lines β1, β2 and n, as in eq. (5.21). In particular, at
one-loop, it is the sum of three terms, given by

S
(1)
3
(
β1, β2, n

)
= αs

π
T1 · T2

( 1
ϵ2

− 1
ϵ
log β1 · β2

)
+ αs

2πT1 · Tn

[
1
ϵ2

+ 1
ϵ

(
1 + log n2

2(β1 · n)2

)]

+αs2πT2 · Tn

[
1
ϵ2

+ 1
ϵ

(
1 + log n2

2(β2 · n)2

)]
, (5.30)

where the first term captures the correlation between the two light-like Wilson lines in
directions β1 and β2, and can be borrowed directly from eq. (3.9) in ref. [69] up to taking
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twice its real part. The next two terms in eq. (5.30) connect one of the light-like lines to the
line along n, which is off the light cone. The corresponding expression can be derived from
eq. (3.11) in ref. [69]. Using colour conservation in the form Tn = −T1 − T2 we find then

S
(1)
3
(
β1, β2, n

)
= −αs2π

[
C1 + C2

ϵ2
(5.31)

+1
ϵ

(
C[12] + 2T1 · T2 log

(β1 · β2)n2

2β1 · nβ2 · n
+ C1 log

n2

2(β1 · n)2
+ C2 log

n2

2(β2 · n)2

)]
,

where C[12] ≡ (T1 + T2)2 is the quadratic Casimir of the parent particle radiating 1 and 2.
Using eq. (5.31) in eq. (5.29), with βi =

√
2ki/µ, we finally find

J
(1)
fi,f1f2

(
ℓi; k1, k2

)
=J (0)

fi,f1f2

(
ℓi; k1, k2

)[
−αs
2π

1
ϵ

(
γ
(1)
1 + γ

(1)
2

)
+S(1)

3
(
β1, β2, n

)
+O(ϵ0)

]
. (5.32)

Thus, identifiying, as before, γ(1)i as the difference between the one-loop jet function and its
eikonal counterpart, we have indeed obtained the factorisation of the radiative one-loop jet
function, as given in eq. (5.20). One can similarly verify that eq. (5.22) also holds.

6 A top-down approach to strongly-ordered counterterms

Before proceeding, we find it useful to summarise what we have achieved so far. In section 4
we obtained expressions for strongly-ordered radiative functions at tree level, by applying soft
and collinear factorisation in an iterative fashion: we conjectured the form of such hierarchical
configurations to all orders, and we verified a posteriori their correspondence with know
results. On the other hand, in section 5 we derived the form of soft and collinear limits of
squared matrix elements at one loop, starting from factorisation concepts: in doing so, we
treated soft and jet functions as generalised scattering amplitudes featuring Wilson lines
as sources. These two constructions may seem unrelated, and based on different principles.
However, soft and collinear limits of real-virtual contributions, and strongly-ordered limits
of double-real contributions, must be intertwined. Indeed, the corresponding counterterms
K

(RV)
n+1 and K

(12)
n+2 (or, more precisely, its integral I(12)

n+1 ) have to combine appropriately in
order to ensure the cancellation of explicit poles in the second line of eq. (2.18), similarly
to what happens with the combination of Vn and I

(1)
n at NLO. One can thus expect K (RV)

n+1
and K(12)

n+2 to be connected by NLO-like completeness relations, analogous to those presented
in eqs. (3.13)–(3.15). This reasoning suggests that, by following the top-down approach
introduced in section 3.1, in this case starting from the second line in eq. (2.18), one can
obtain explicit expression for double-real strongly-ordered counterterms, directly from the
factorised form of real-virtual counterterms: this is the goal of this section.

To proceed, we insert the factorised real-virtual functions found in section 5.1 and in
section 5.2 in the expression for K (RV)

n+1 . We then apply the NLO completeness relations in
eqs. (3.13)–(3.15), and we arrive at the factorised strongly-ordered terms discussed in section 4.
From these expressions, after a preliminary analysis in section 6.1 and in section 6.2, we
proceed to derive, in section 6.3, the expression for the complete counterterm K

(12)
n+2 responsible

for strongly-ordered configurations. In appendix D, we will verify that indeed our result
coincides with the single-unresolved limit L (1) of K(2)

n+2, defined in eq. (2.12).
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6.1 Soft sector

In this section we show that, by applying the NLO-like completeness relations in eqs. (3.13)–
(3.15) to the factorised one-loop radiative soft function S

(1)
n,g, we arrive at NNLO finiteness

conditions linking the real-virtual contribution to double-real strongly-ordered configurations.
We start by considering the factorised one-loop soft function given in eq. (5.2). Con-

structing the corresponding cross-section level expression, we obtain

S(1)
n,g

(
{βi}; k

)
= S(0)

n,g

†({βi}; k) [S(1)
n+1

(
{βi}, βk

)
− J

(1)
Eg (βk)

]
S(0)
n,g

(
{βi}; k

)
+
∫

ddℓ

(2π)d
(
S(0)µ
n,g

(
{βi}; ℓ

))†
J (1)µν
g,g (ℓ; k)S(0)ν

n,g

(
{βi}; ℓ

)
, (6.1)

where βk is the velocity of the radiated gluon with momentum k. In this form, we can
readily apply the relations in eqs. (3.13)–(3.15) to the inner one-loop functions on the right-
hand side. Effectively, this means exchanging a loop function with an integrated radiative
function. This gives

S(1)
n,g

(
{βi}; k1

)
+
∫
dΦ(k2)

{(
S(0)
n,g

(
{βi}; k1

))† [
S
(0)
n+1,g

(
{βi}, βk1 ; k2

)
− J

(0)
Eg ,g(βk1 ; k2)

]
S(0)
n,g

(
{βi}; k1

)
+
∫

ddℓ

(2π)d
(
S(0)µ
n,g

(
{βi}; ℓ

))†∑
f1,f2

J
(0)µν
g,f1f2

(ℓ; k1, k2)S(0)ν
n,g

(
{βi}; ℓ

)}
= finite. (6.2)

Eq. (6.2) can be slightly refined by replacing momentum k1 with the combination k1 + k2 in
the tree-level soft function responsible for the harder emission. This makes no difference in the
soft limit for k2, but it proves useful to maintain consistency in collinear limits, as discussed in
appendix D. With this understanding, we can now identify the strongly-ordered soft function,
defined in eq. (4.3), as the first term in the integrand of eq. (6.2). We can then write

S(1)
n,g

(
{βi}; k1

)
+
∫
dΦ(k2)

{
S(0)
n;g,g

(
{βi}; k[12]; k2

)
−
(
S(0)
n,g

(
{βi}; k[12]

))†
J
(0)
Eg ,g(βk1 ; k2)S(0)

n,g

(
{βi}; k[12]

)
+
∫

ddℓ

(2π)d
(
S(0)µ
n,g

(
{βi}; ℓ

))†∑
f1,f2

J
(0)µν
g,f1f2

(ℓ; k1, k2)S(0)ν
n,g

(
{βi}; ℓ

)}
= finite. (6.3)

As usual, the k2 phase-space integration in the first line cancels the poles of S(1)
n,g originating

from soft radiation at wide angles from the directions {βi, k1}, while the convolution on the
second line cancels collinear poles (including soft-collinear ones, which were subtracted in
the first line) associated with the emitted gluon. As discussed below eq. (5.1), there are no
hard-collinear poles associated with the directions of the n Wilson lines.

6.2 Collinear sector

We can similarly apply the NLO finiteness conditions in eqs. (3.13)–(3.15) to the factorised
one-loop single-radiative jet function J

(1)
fi,f1f2

, which will lead to a finite relation between the
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latter and the strongly-ordered double-radiative jet function. We start with the factorised
one-loop radiative jet in eq. (5.20). Applying the NLO completeness relations to the inner
one-loop functions of that equation we find

J
(1)αiβi

fi,f1f2
(ℓi; k1, k2) +

∫
dΦ(k3)

∫
ddxeiℓi·x (6.4){(

J (0)αi

fi,f1f2
(0; k1, k2)

)†[
S
(0)
3,f3

(β1, β2, n; k3)−
∑

j∈{1,2}
J
(0)
Ej ,f3

(βj ; k3)
]
J (0)βi

fi,f1f2
(x; k1, k2)

+
∫

ddq

(2π)d
(
J (0)αiᾱ1
fi,f1f2

(0; q, k2)
)†
J
(0)ᾱ1β̄1
fq ,f1f3

(q; k1, k3)J (0)β̄1βi

fi,f1f2
(x; q, k2)

+
∫

ddq

(2π)d
(
J (0)αiᾱ2
fi,f1f2

(0; k1, q)
)†
J
(0)ᾱ2β̄2
fq ,f2f3

(q; k2, k3)J (0)β̄2βi

fi,f1f2
(x; k1, q)

}
= finite.

In the last two lines of the integrand of eq. (6.4) one recognises the expressions for strongly-
ordered jet functions discussed in section 4.2, specifically J (0)αiβi

fi;fqf2;f1f3,f2
and J (0)αiβi

fi;f1fq ;f1,f2f3
. In

the same way as for the soft function in section 6.1, collinear poles of J (1)
fi,f1f2

are cancelled
by integrating the strongly-ordered jet functions, while soft non-collinear poles are cancelled
by integrating the radiative soft function in the second line, where the soft-collinear region
has been subtracted to avoid double counting.

6.3 Extracting strongly-ordered counterterms

After working out soft and collinear finiteness conditions, we are ready to derive in this section
a complete, explicit expression for the strongly-ordered counterterm K

(12)
n+2 , in a top-down

approach. In order to do so, we first write K (RV)
n+1 in eq. (3.32) using the factorised expressions

we have derived. Then, applying the finiteness relations derived in the previous sections, we
can arrive at the integrated counterterm I

(12)
n+1 , whose integrand is K (12)

n+2 .
We begin by focusing on the explicit poles of the soft component K(RV,s)

n+1 . They are
entirely encoded in the third and last term on the right-hand side of eq. (3.33), and, in
particular, in the radiative, one-loop soft function S

(1)
n,g. Therefore we can write

K
(RV,s)
n+1 = H(0)

n

†
S(1)
n,gH(0)

n + finite. (6.5)

Using the finiteness condition in eq. (6.2), or equivalently in eq. (6.3), we can identify
the integrals on the left-hand sides of these equations as the integrated strongly-ordered
counterterm, I(12,s)

n+1 . This provides an ansatz for the corresponding integrand functions as
K

(12,s)
n+2 . In appendix D we will verify that this ansatz indeed corresponds to the single-soft

limit of the double-unresolved counterterm K
(2,s)
n+2 . We get

K
(12,s)
n+2 = H(0)

n

† ∑
f1,f2

[
S
(0)
n;f[12],f2

(
k[12], k2

)
+ S

(0)
n,f[12]

(
J
(0)
f[12],f1f2

− J
(0)
E[12],f2

)]
H(0)
n , (6.6)

where we have understood spin indices and, as discussed in section 6.1, we have included
a set of non-singular contributions by attributing the total soft momentum to the harder
gluon emission. In writing eq. (6.6), starting from eq. (6.2), we have used the fact that jet
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functions are colour singlets, and thus they commute with soft functions, which carry colour
structure; furthermore, for simplicity, we are understanding the convolution in the parent
gluon momentum k[12] that was explicitly written in eq. (6.2).

We now turn to the hard-collinear component, and examine K(RV,hc)
n+1,i in eq. (3.34). To

manipulate this term, it is convenient to use the factorised expressions for jet and eikonal jet
functions derived in section 5.2. In particular, we can consider eq. (5.20), and then obtain
the corresponding result at cross-section level. For the one-loop radiative eikonal jet function
we can directly use the result in eq. (5.22). Exploiting the definition in eq. (3.18), we can
write the real-virtual counterterm for the hard-collinear sector associated with particle i as

K
(RV,hc)
n+1,i = H(0)

n

† ∑
f1,f2

J
(0),hc
fi,f1f2

[
S
(1)
3 − J

(1)
Ei

+
2∑

k=1
J
(1),hc
fk,fk

]
H(0)
n , (6.7)

where for simplicity, we have understood the necessary convolution, as before, as well as
the spin structure, which was displayed in detail in eq. (5.22) and in eq. (6.4). Recall that
eq. (6.7) describes the one-loop correction to the hard-collinear splitting of Born-level particle
i into two particles of flavours f1 and f2, summed over the consistent flavour channels: thus
the soft function S3 involves the Wilson lines associated with external legs 1 and 2, and the
Wilson line for the reference vector ni of the jets along the direction of leg i. Now, using the
finiteness conditions, we can derive the corresponding counterterm for the strongly-ordered
hard-collinear configuration. It can be written as

K
(12,hc)
n+2,i = H(0)

n

† ∑
f1,f2,f3

[
J
(0),hc
fi,f1f2

(k̄1, k̄2)S(0)
3,f3

− J
(0),hc
fi,f1f2

(k1, k2)J (0)
Ei,f3

+
∑

kl={12,21}
J
(0),hc
fi,f[k3]fl

(
J
(0)
f[k3],fkf3

− J
(0)
Ek,f3

)]
H(0)
n . (6.8)

In analogy to what was done in the soft sector, we have introduced a shift of the collinear
momenta, so that the hardest splitting carries the total radiated momentum, according
to k̄1 + k̄2 = k1 + k2 + k3, while the soft function S3 is built with β̄1, β̄2, and ni. This
reparametrisation does not affect singular contributions.

We now turn to the hard-collinear real-virtual counterterm K
(RV,hc)
n+1,ij in eq. (3.35), fea-

turing the hard-collinear radiation from two distinct Born-level partons. In this case, loop
corrections and real radiation affect separately parton i and j, and they are not intertwined.
Then we can simply apply the completeness relations to the one-loop jet function following
eq. (3.15), to obtain

K
(12,hc)
n+2,ij = H(0)

n

† ∑
f1,f2,f3,f4

J
(0),hc
fi,f1f2

J
(0),hc
fj ,f3f4

H(0)
n + (i↔ j). (6.9)

which is the same as eq. (3.29). The final expression is simple, since for two uncorrelated
limits ‘democratic’ and strongly-ordered counterterms coincide. Note however that, in a
concrete implementation, one needs to complement eq. (6.9) with appropriate phase-space
mappings, as discussed in appendix A. For example, when checking that collinear limits of
K (2) coincide with those of K (12), one must assume the corresponding mappings to behave in
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the same way. A similar structure emerges in the case of K(RV,1hc,1s)
n+1,i , presented in eq. (3.36),

describing singular configurations involving one soft and one collinear limit. Also in this case,
the contributions of virtual and real origin are factorised, leading to a particularly simple
expression, which is expected as a consequence of QCD colour coherence: soft emissions do
not resolve individual colour charges of the decay products, just the total colour charge of
the emitters. Applying completeness to eq. (3.36) we obtain

K
(12,1hc,1s)
n+2,i = H(0)

n

† ∑
f1,f2,f3

∑
jkl∈{123,312,231}

J
(0),hc
fi,fkfl

S
(0)
n,fj

H(0)
n , (6.10)

reproducing eq. (3.30), which is factorised, and thus effectively strongly ordered. The last
term of eq. (3.32), K(RV,1hc)

n+1,i , is presented in eq. (3.37): its loop content is entirely carried by
the one-loop resolved amplitude H(1)

n , which is finite in d = 4 dimensions. As a consequence,
there is no K

(12)
n+2 contribution stemming from this term.

We are now in a position to assemble the different contributions and arrive at the final
expression of the strongly-ordered double-unresolved counterterm. This reads

K
(12)
n+2 = K

(12,s)
n+2 +

n∑
i=1

[
K

(12,hc)
n+2,i +

n∑
j=i+1

K
(12,hc)
n+2,ij +K

(12,1hc,1s)
n+1,i

]
, (6.11)

which is structurally analogous to eq. (3.26) and eq. (3.32). The results given above for
individual contributions to eq. (6.11) are obtained by exploiting completeness relations,
starting from the factorised form of the real-virtual counterterm. This represents an alternative
approach with respect to the one in section 4, which is based on the iterative factorisation of
subsequent emissions. As a crucial validation of our arguments, we need to verify that the
two results agree. In particular, we have to check that eq. (6.11) reproduces the iterative
limits of double-real matrix elements, constructed by taking single-unresolved soft and
collinear limits of the double-real counterterm. In formulae, we have to prove the relation
L1
[
K

(2)
n+2

]
= L1

[
K

(12)
n+2

]
, given the definition of L1 in eq. (2.5), the expression for K (2)

n+2
reported in eq. (3.26), and the results in eq. (6.11). The required calculation is successfully
carried out in appendix D.

7 Summary and future prospects

In this paper we have outlined a general procedure to identify local counterterms capturing
the singular behaviour of real-radiation squared matrix elements, including the case of
strongly-ordered and nested limits. The organisation of the relevant counterterms has been
presented at NNLO, and sketched at N3LO in section 2, following the spirit of previous
studies performed in the context of the local analytic sector subtraction [30, 31, 102]. The
general structure of this subtraction algorithm turns out to be remarkably transparent, and
allows for a straightforward generalisation to higher orders, at least so far as a formal analysis
is concerned. We note also that the number and complexity of independent counterterms
grow exponentially with the perturbative order (see eq. (2.27)), but remain reasonably limited
for the perturbative orders that are expected to be of phenomenological interest.
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Having established the subtraction framework, in section 3 we went on to construct all
the local counterterms that are needed for the NNLO subtraction procedure, relying on the
established factorised structure of infrared poles of virtual corrections to scattering amplitudes.
This approach was first exploited in ref. [102], and it builds on the cancellation of infrared
singularities between real and virtual corrections, ensured by general cancellation theorems.
At cross-section level, soft and collinear functions responsible for virtual poles are used as
building blocks for inclusive cross-section-like quantities that can be shown to be infrared
finite by power counting: throughout the paper, we have referred to these constructions as
completeness relations, since finiteness is achieved by performing an inclusive sum over a
complete set of radiation states. These soft and collinear cross sections then contain integrated
real-radiation contributions that cancel virtual poles by construction: their integrands are
thus readily understood as local soft and collinear counterterms.

We note that our approach essentially reverses the standard logic guiding the construction
of most established infrared subtraction schemes. Typically, these schemes are based on
three main steps: i) the identification of the real-emission subtraction terms, ii) the analytic
integration of the counterterms over the unresolved phase space, leading to explicit poles, and
iii) the proof of pole cancellation between integrated counterterms and virtual corrections.
The idea of starting from the infrared structure of virtual corrections to infer the form of
the counterterms has been recently considered by other groups, in the context of nested
soft-collinear subtraction [33] and antenna subtraction [34]. We stress that in this paper we
have moved a further step forward with respect to simply using the singularity structure of
virtual amplitudes as a guideline. We have, indeed, taken advantage of the detailed infrared
factorisation properties of fixed-angle massless amplitudes, and we have derived expressions for
all relevant real-radiation counterterms, in a fully general fashion. As explained in section 2,
and noted above, we derive expressions for local counterterms as matrix elements of fields
and Wilson lines by “completing” the corresponding soft, collinear and soft-collinear building
blocks that appear in the factorisation formula for virtual amplitudes. This approach to the
definition of counterterms is, by construction, valid to all orders in perturbation theory and
can accomodate an arbitrary number of real emissions.

Starting from section 4, we focused on the issue of disentangling and modelling strongly-
ordered configurations, that are not directly manifest in the expressions for multiple real-
radiation counterterms, which are based on uniform infrared limits. Strongly-ordered coun-
terterms are very important, not only because they proliferate as the perturbative order
increases, as noted in section 2, but also because their integrals play the delicate role of can-
celling the poles of mixed real-virtual contributions, without upsetting the balance of singular
phase space limits for the remaining unintegrated radiation. In all existing approaches, this
subtle cancellation has been engineered on a case-by-case basis, fine-tuning the structure of
individual counterterms. Our aim in this paper has been to provide a systematic method
to secure this cancellation in full generality. To this end, we first made educated guesses to
conjecture expressions for the relevant hierarchical configurations, to all orders, in terms of
expectation values of appropriate combinations of fields and Wilson lines. Then we checked
for agreement with results known from the literature. Next, in section 5, we derived factorised
expressions for soft and collinear limits of squared matrix elements involving both real radia-
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tion and virtual corrections. With these expressions in hand, as explained in section 6, one
can exploit NLO-like completeness relations to connect real-virtual counterterms to integrals
involving multiple real radiations. These integrals are, in turn, identified with contributions
to the integrated strongly-ordered counterterm I

(12)
n+1 . Completeness relations thus link the

real-virtual counterterm K
(RV)
n+1 with the strongly-ordered double-real counterterm K

(12)
n+2 , in a

way that automatically ensures the cancellations foreseen in our approach. We have explicitly
checked that the results obtain by means of the “completeness procedure” (applied to the
real-virtual counterterm) agree with direct iterated limits of double-real matrix elements.

We emphasise that our results do not immediately translate into a concrete subtraction
algorithm, because we have assumed, but not concretely implemented, the phase-space
mappings that are necessary for all singular limits involving collinear splittings, and that
must be chosen in a consistent way when multiple nested limits are considered. These issues
are discussed in detail in ref. [31]: we believe that the approach presented in this paper can
lead to a significant simplification of the intricate structure of the mappings employed there.

The method we have introduced naturally lends itself to various extensions. First of
all, the inclusion of initial-state radiation can be devised without posing, in principle, new
theoretical challenges: indeed, there are no significant conceptual differences between soft
and jet functions involving initial and final state particles. Similarly, the extension of the
method to massive quarks (which is of considerable interest in phenomena related to top-quark
observables, and in connection with b-quark mass effects) does not pose new conceptual
issues at the level of the definition of local counterterms. However, in the case of massive
partons, defining phase-space mappings related to their branchings [119] and performing the
corresponding integrations, will necessitate further work. Finally, we emphasise that the
approach we have presented is likely to significantly influence the structuring of general N3LO
subtraction algorithms. Work is underway to explore these generalisations.
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A Soft and collinear cancellations at NLO

In this appendix we present a detailed calculation verifying the cancellations implied by the
NLO completeness relation in eqs. (3.13)–(3.15). As we will see, this requires the introduction
of an appropriate regulator to cure the (unphysical) UV divergences of the relevant matrix
elements, and a choice of phase-space mapping in the collinear case. We discuss soft and
collinear cancellations in appendices A.1 and A.2 respectively.

A.1 Soft cancellation

The cancellation stated in eq. (3.13) occurs, as usual, between a virtual term, the one-loop soft
function S

(1)
n , and a real-radiation term, the integrated radiative soft function

∫
dΦ(k)S(0)

n,g.

– 41 –



J
H
E
P
0
6
(
2
0
2
4
)
0
2
1

The virtual contribution is understood to be renormalised, so it is affected only by infrared
(soft and collinear) divergences (indeed, the bare Wilson-line correlator vanishes beyond
tree level, since it is constructed out of scale-less integrals). The phase-space integral of
the real-radiation contribution, on the other hand, diverges at large values of the radiated
momentum, since the soft gluon energy is not constrained by momentum conservation in
the eikonal approximation.

In order to regulate this UV singularity, we introduce a soft cross section at fixed total
final-state energy, following [106], and then we integrate over this energy up to a finite cutoff,
matching the scale of the virtual correction. Concretely, we displace one of the two Wilson
line correlators defining the soft cross section by a finite timelike vector yµ = {y,0}, and
we introduce the finite quantity∫ λ

0
dξ

∫
dy

2πe
iξy ⟨0|T

[ n∏
i=1

Φβi
(0,∞)

]
T

[ n∏
i=1

Φβi
(∞, y)

]
|0⟩ = finite. (A.1)

The timelike displacement y corresponds to the Fourier conjugate of a cutoff on the energy of
the final state, represented here by λ. By letting y → 0 in the correlator, or by letting the
ξ integration run unconstrained, one recovers the r.h.s. of eq. (3.10). Expanding eq. (A.1)
to NLO (see also the l.h.s. of eq. (3.10)), we obtain the completeness relation

∫ λ

0
dξ

∫
dy

2πe
iξy
{
⟨0|T

[ n∏
i=1

Φβi
(0,∞)

]
|0⟩ ⟨0|T

[ n∏
i=1

Φβi
(∞, y)

]
|0⟩
∣∣∣∣
one-loop

+
∫
dΦ(k) ⟨0|T

[ n∏
i=1

Φβi
(0,∞)

]
|k⟩ ⟨k|T

[ n∏
i=1

Φβi
(∞, y)

]
|0⟩
∣∣∣∣
tree

}
= finite, (A.2)

where dΦ(k) is the phase-space measure of the radiated gluon. Using translational invariance
of the vacuum, which implies

⟨0|T
[ n∏
i=1

Φβi
(∞, y)

]
|0⟩ = ⟨0|T

[ n∏
i=1

Φβi
(∞, 0)

]
|0⟩ , (A.3)

the first term can be shown to equal S(1)
n . The second term, on the other hand, evaluates to∫

dΦ(k)Θ(λ− k0)S(0)
n,g, where k0 is the energy component of the total final-state momentum.

This modified version of the completeness relation in eq. (3.13) makes the dependence on
the energy cutoff λ manifest, as we can write

S(1)
n +

∫
dΦ(k)Θ(λ− k0)S(0)

n,g = finite. (A.4)

We can now proceed with the explicitly validation of eq. (A.4). First we need to obtain
a cross-section-level expression for the single-radiative soft function. This can be easily
achieved by squaring the result in eq. (5.3), and summing over the polarisation and colour
degrees of freedom relevant for the emission of momentum k. We obtain, as expected, the
well-known result

S(0)
n,g = −g2sµ2ϵ

n∑
i ̸=j=1

Ti · Tj
βi · βj

(βi · k)(βj · k)
. (A.5)
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Next, we perform the phase-space integration over dΦ(k) by parametrising the momentum
of the radiated gluon as kµ = xβµi + yβµj + kµ⊥. The integrand and the measure in eq. (A.4)
become then

dΦ(k)Θ(λ− k0)S(0)
n,g = −2αsµ2ϵ

n∑
i ̸=j=1

Ti · Tj
dx

x

dy

y

dd−2k⊥
(2π)d−2 δ(2xyβi · βj + k⊥ · k⊥)

×Θ(xβ0i + yβ0j )Θ(λ− xβ0i − yβ0j ). (A.6)

The integrals over x, y and k⊥ can be performed to arrive at∫
dΦ(k)Θ(λ− k0)S(0)

n,g = −αs2π

n∑
i ̸=j=1

Ti · Tj

[
1
ϵ2

− 1
ϵ
ln 4λ2

µ2
+O(ϵ0)

]
. (A.7)

The virtual soft function S
(1)
n is given by the first line on the r.h.s. of eq. (5.4),

S(1)
n = αs

2π

n∑
i ̸=j=1

Ti · Tj

[ 1
ϵ2

− 1
ϵ
ln 2pi · pj

µ2

]
. (A.8)

After identifying λ2 = pi · pj/2, we have satisfied eq. (A.4). Note that the choice of the cutoff
λ is arbitrary: indeed, the numerical factor in the argument of the logarithm in eq. (A.8)
can be freely chosen by rescaling the momenta pi and pj . This ambiguity is cancelled by an
equivalent calculation for the eikonal jet function in eq. (3.14), where the hard momentum
can be similarly rescaled [69, 70].

A.2 Collinear cancellation

The cancellation of collinear poles in eq. (3.15) has a different subtlety with respect to the soft
cancellation discussed in section A.1. Indeed, eq. (3.15) understands an explicit mapping to
go from the (n+1)-particle phase space of the real-radiation matrix element to the n-particle
phase space of the virtual matrix element. In particular, we seek an expression that is locally
finite in the n-body phase space: to be precise, we will prove a condition of the form

dΦ(k̄r)dΦ(k12)J (1)
f,f1

(
ℓ̄; k12

)
+ dΦ(kr)dΦ(k1)

∫
dΦ(k2)J (0)

f,f1f2

(
ℓ; k1, k2

)
= finite. (A.9)

This describes the splitting k12 → k1 + k2, with momentum kr acting as a spectator. Note
that all the momenta in eq. (A.9) are on-shell and massless, except the ‘parent’ momenta ℓ
and ℓ̄, which are fixed by the δ functions implicit in the jet definitions. The advantage of
eq. (A.9), as compared to eq. (3.15), is that it is local in k12 and k1, i.e. we only integrate
the momentum of the radiated parton, k2. We will now show that eq. (A.9) holds, using
as an example the splitting q → qg.

We start with the second term, where the integrand (discussed in appendix B) is given
by [102]

J (0)
q,qg

(
ℓ; k1, k2

)
= 4παsCF

(k1 · k2)
(2π)dδd(ℓ− k1 − k2)

{[
1 + 2(k1 · n)

(k2 · n)
− (k1 · k2)

(k2 · n)2
n2
]
/k1

+
[
1− ϵ+ (k1 · n)

(k2 · n)

]
/k2 −

(k1 · k2)
(k2 · n)

/n

}
, (A.10)
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where we keep n2 ̸= 0 to regulate spurious collinear singularities. We note that the above
expression reduces to the usual Altarelli-Parisi splitting kernel Pqg upon taking the collinear
k1||k2 limit. Next, we apply the Catani-Seymour mapping (k1, k2, kr) → (k12, k̄r) [7],

k12 = k1 + k2 −
s12

s1r + s2r
kr,

k̄r = s12 + s1r + s2r
s1r + s2r

kr,

δ(d) (ℓ− k1 − k2) = δ(d)
(
ℓ̄− k12

)
, (A.11)

where sir = 2ki · kr for i = 1, 2, and ℓ is mapped to ℓ̄ so that the δ functions align in eq. (A.9).
The jacobian of this change of variables is

dΦ(kr)dΦ(k1)dΦ(k2) = dΦ(k̄r)dΦ(k12)dΦ(k2) (A.12)

×
(

s1r + s2r
s12 + s1r + s2r

)d−3(s1r + s2r
s1r

)
Θ
(

s1r
s1r + s2r

)
Θ
(

s1r + s2r
s12 + s1r + s2r

)
.

As the vector n in the jet function definition is arbitrary, we simplify the integration by
choosing n = k12 + k̄r, so that n2 ̸= 0. The integration then depends on only two light-like
momenta, k̄r and k12, instead of three. We use them to parameterise k2 as

k2 = zk12 + y(1− z)k̄r + k2⊥. (A.13)

Our phase space is then

dΦ(kr)dΦ(k1)dΦ(k2) = dΦ(k̄r)dΦ(k12)dΦ(k2)
(1− y)1−2ϵ

1− z
Θ(1− z)Θ(1− y). (A.14)

Integrating eq. (A.10) over z, y and k2⊥ we arrive at

dΦ(kr)dΦ(k1)
∫
dΦ(k2)J (0)

f,f1f2

(
ℓ; k1, k2

)
= (2π)dδ(d)(ℓ̄− k12)dΦ(k12)dΦ(k̄r)

×αsCF2π

{[
1
ϵ2

+ 1
ϵ

(
5
2 − log µ2

2k12 · k̄r

)]
/k12 +O(ϵ0)

}
. (A.15)

Reinstating the dependence on an arbitrary n by writing k12 · k̄r = 2(k12 ·n)2/n2, we recognise
in the second line the structure of the one-loop virtual jet function J (1)

q,q , which is given by [69]

J (1)
q,q

(
ℓ̄; k12

)
= −(2π)dδ(d)

(
ℓ̄− k12

)αsCF
2π

[
1
ϵ2

+ 1
ϵ

(
5
2 − log n2µ2

(2k12 · n)2

)
+O(ϵ0)

]
/k12,

(A.16)
which completes the proof of the cancellation of collinear poles according to eq. (A.9).

B Tree-level radiative jet functions for different partonic processes

In this appendix we give explicit expressions for tree-level single-radiative jet functions for
QCD partonic processes. In the process, we recover the Altarelli-Parisi splitting functions by
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considering the collinear limit of the results, expressed as the limit k⊥ → 0 in the Sudakov
parametrisation of radiative momenta,

kµ1 = zpµ + kµ⊥ −Anµ, kµ2 = (1− z)pµ − kµ⊥ −Bnµ, (B.1)

where p is the collinear light-like direction, and

A = −zp · n
n2

1−
√
1− n2k2⊥

(zp · n)2

 , B = A|z→1−z. (B.2)

We have checked that a similar, lengthier calculation for double-radiative process yields the
Catani-Grazzini [84] double splitting kernels for all the relevant partonic processes.

For the q → qg process the calculation yields eq. (A.10), which we reproduce here
for convenience:

J (0)
q,qg(ℓ; k1, k2) = 4παsCF

(k1 · k2)
(2π)dδd(ℓ− k1 − k2)

{[
1 + 2(k1 · n)

(k2 · n)
− (k1 · k2)n2

(k2 · n)2

]
/k1

+
[
1− ϵ+ (k1 · n)

(k2 · n)

]
/k2 −

(k1 · k2)
(k2 · n)

/n

}
. (B.3)

In the limit k⊥ → 0 one recovers the Pqg splitting function:

J (0)
q,qg(ℓ; k1, k2) = 4παs

(k1 · k2)
CF

[1 + z2

1− z
− ϵ(1− z)

]
/p(2π)dδ(d)(ℓ− p) +O(k0⊥)

= 4παs
(k1 · k2)

Pqg(z)/p(2π)dδ(d)(ℓ− p) +O(k0⊥). (B.4)

For a gluon radiating a quark-antiquark pair, summing over massless flavours, we find

J
(0)
g,qq̄(ℓ; k1, k2) = 4παsnfTR

(k1 · k2)

[
− gµν + 2(k1 · n)(k2 · n)− n2(k1 · k2)

(k1 · k2)(ℓ · n)2
(kµ1 kν2 + kν1k

µ
2 )

−n
2(k1 · k2)(kµ1 kν1 + kµ2 k

ν
2 ) + 2(k2 · n)2kµ1 kν1 + 2(k1 · n)2kµ2 kν2
(k1 · k2)(ℓ · n)2

+ 1
(ℓ · n) (k

ν
1n

µ + kν2n
µ + kµ1n

ν + kµ2n
ν)
]
(2π)dδ(d)(ℓ− k1 − k2). (B.5)

In the collinear limit, we recover the Pqq̄ splitting function:

J
(0)µν
g,qq̄ (ℓ; k1, k2) = 4παs

(k1 · k2)
dµρ(p, n)nfTR

(
−gρσ + 4z(1− z)k

ρ
⊥k

σ
⊥

k2⊥

)
×dνσ(p, n)(2π)dδ(d)(ℓ− p) +O(k0⊥)

= 4παs
(k1 · k2)

dµρ(p, n)nfP
ρσ
qq̄ (z)dνσ(p, n)(2π)dδ(d)(ℓ− p) +O(k0⊥), (B.6)

where dµν(p, n) is the gluon polarisation tensor for non-light-like reference momenta,

dµν(p, n) = −gµν + pµnν + pνnµ

p · n
− n2

pµpν

(p · n)2 . (B.7)
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For a gluon radiating to two gluons the full result is somewhat lengthier, and we find

J (0)µν
g,gg (ℓ; k1, k2) =

4παsCA
(k1 · k2)

{
gµν

[
n2(k1 · k2)
(k2 · n)2

− 2(k1 · n)
(k2 · n)

]
− kµ1 k

ν
2

(ℓ · n)2
[2(1− ϵ)(k1 · n)(k2 · n)

(k1 · k2)

+ n2

(k1 · n)(k2 · n)
(
n2(k1 · k2) + (k1 · n)2 + (k2 · n)2

) ]
+ kµ1 k

ν
1

(ℓ · n)2

[
2(1− ϵ)(k2 · n)2

(k1 · k2)
− 2n2

(
1 + (k1 · n)

(k2 · n)
+ (k2 · n)

(k1 · n)

)
+ (n2)2(k1 · k2)

(k2 · n)2

]

+ kµ1n
ν + kν1n

µ

(ℓ · n)

[
1 + 2(k1 · n)(k2 · n)

+ (k2 · n)
(k1 · n)

+ n2(k1 · k2) ((k2 · n)− (k1 · n))
(k1 · n)(k2 · n)2

]

− (k1 · k2)
(k1 · n)(k2 · n)

nµnν + (k1 ↔ k2)
}
(2π)dδ(d)(ℓ− k1 − k2). (B.8)

In the collinear limit, eq. (B.8) reproduces the Pgg splitting function:

J (0)µν
g,gg (ℓ; k1, k2) = 4παs

(k1 · k2)
dµρ(p, n)2CA

[
− gρσ

( z

1− z
+ 1− z

z

)
− 2(1− ϵ)z(1− z)k

ρ
⊥k

σ
⊥

k2⊥

]
×dνσ(p, n)(2π)dδ(d)(ℓ− p) +O(k0⊥)

= 4παs
(k1 · k2)

dµρ(p, n)P ρσgg (z)dνσ(p, n)(2π)dδ(d)(ℓ− p) +O(k0⊥). (B.9)

Finally, the single-radiative eikonal jet function is given by

J
(0)
Ef ,g(β; k) = 4παsCf

[
2(β · n)

(β · k)(k · n) −
n2

(k · n)2

]
, (B.10)

and can be obtained both by direct calculation, or by taking the soft limit of either eq. (B.3)
or eq. (B.8): as expected, it is spin-independent.

C On the computation of radiative jet functions at one loop

In this appendix we summarise the techniques relevant for the calculation of one-loop single-
radiative jet functions for the required flavour structures, and we give some details about
their renormalisation. For all the relevant processes, the underlying integrals can be written
in terms of the family

Ta1a2a3a4 =
∫

ddk

iπd/2
eϵγE

(k2)a1 ((pi − k)2)a2 ((pi + pj − k)2)a3 (k · n)a4
, (C.1)

with ai being non-negative integers, p2i = p2j = 0, and we can set pi ·pj = −1 (a negative value
is useful to simplify numerical tests); furthermore, as mentioned in the main text, in order to
avoid unphysical collinear divergences, we set n2 = 1. The numerical values for the invariants
pi · pj and n2 are chosen so as to simplify the calculation: the dependence on such invariants
can be fully reconstructed using the mass dimension of the integral and its scaling with
respect to n, respectively. In the case of partonic jet functions, the momenta pi and pj are the
outgoing partonic momenta, whereas, for the eikonal, jet one of them should be thought of as
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the light-like Wilson-line velocity. The integral family in eq. (C.1) can be computed from the
basis integrals T0011, T0101, T1010, T1011 and T1111. In particular, the integrals T0011, T0101 and
T1010 can be easily evaluated to all orders in ϵ by Feynman parameterisation. For instance,

T0101 = 2 (−2pi · n)1−2ϵ eϵγEΓ(1− ϵ)Γ(2ϵ− 1), T1010 =
2−ϵeϵγEΓ(1− ϵ)2Γ(ϵ)

Γ(2− 2ϵ) , (C.2)

and similarly for T0011 = T0101|pi→pi+pj . We note that the integral T1011 is finite in ϵ and,
therefore, is not needed for the present analysis. On the other hand, there is one non-standard
integral we have to evaluate, namely the IR divergent box integral T1111. To tackle this
calculation we exploit the method of differential equations.

As a first step, we assemble the integral basis

f =
{

ϵ(1− 2ϵ)
(pi + pj) · n

T0011,
ϵ(1− 2ϵ)
pi · n

T0101, ϵ(1− 2ϵ)T1010, ϵ2
√
2 + ((pi + pj) · n)2T1011,

ϵ2(pi · n)T1111

}
. (C.3)

Then, we define new variables, t1 and t2, to remove any square roots that may appear in
the integral basis f . They are implicitly defined by

pi · n = 2
√
2t1t2

t21 − (1 + t2)2
, pj · n = 2

√
2t1

t21 − (1 + t2)2
. (C.4)

Using this basis and these variables has the advantage that the differential equations take
the canonical form [120]

df(ϵ, t1, t2) = ϵ

∑
l∈A

Ald log(l)

 · f(ϵ, t1, t2), (C.5)

where the Al are constant 5× 5 matrices, each associated to a letter l in the alphabet

A =
{
t1, t2 + 1, t2,

t1 + t2 + 1
1− t1 + t2

, t21 + t22 + 2t2 + 1, 1− t21 + t22 + 2t2,

t21 − 2t1t2 + 2t1 + t22 + 2t2 + 1, t21 + 2t1t2 − 2t1 + t22 + 2t2 + 1
}
. (C.6)

The overall ϵ factor in eq. (C.3) is chosen so that f admits an expansion in ϵ starting at
O(ϵ0). We can then integrate eq. (C.5) in terms of iterated integrals. In principle, one can
compute the integrals to arbitrary order in ϵ, assuming the appropriate boundary conditions
are known. In our case, however, as we are only interested in the poles of the jet functions,
one iteration of the differential equations is sufficient. This corresponds to functions that
have a transcendental weight of one, which is the highest possible weight that can appear.
Notice that f1, f2 and f3 are given by eq. (C.2), and the first non-vanishing term of f4 will be
of weight two. We can then focus directly on f5: upon solving eq. (C.5), without specifying
the boundary conditions, we get an expression of the form

f5 = c0 + ϵ
[
c1 + log g(t1, t2)

]
+O(ϵ2), (C.7)
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where g(t1, t2) is a known polynomial built from the letters in the alphabet A, c0 is of weight
zero, and c1 is of weight one, ensuring that eq. (C.7) is of uniform weight. The values of the
coefficients can be found by computing f5 numerically, for example using pySecDec [121, 122],
and then fitting the result: it turns out that c0 = −3

4 , and c1 = 7
4 log 2. Inverting eq. (C.3)

for T1111, and reinstating the Mandelstam invariants, we finally find

T1111 =
(−pi · pj)−1−ϵ

2pi · n

[
−3
2
1
ϵ2

+ 1
2
1
ϵ
log

(
−2(pi · n)2

(pi + pj) · n
√
n2

√−pi · pj

)
+O(ϵ0)

]
. (C.8)

A similar calculation leads to the eikonal version of eq. (C.8), which we compute using
p2 = β2 = 0. Up to O(ϵ0) corrections, we find

∫
ddk

iπd/2
eϵγE

k2(p− k)2 ((k − p) · β) k · n = 1
(p · n)(p · β)

[
3
2
1
ϵ2

+ 1
2
1
ϵ
log

(
n2(2β · n)2

(2p · n)4(2p · β)2

)]
.

(C.9)
In order to complete our discussion about one-loop radiative jet functions, we report below the
renormalisation factors in the MS scheme that were used in section 5.3. They are given by

Zψ =1− αs
4π

1
ϵ
CF +O(α2

s), quark field, (C.10a)

ZA =1 + αs
4π

1
ϵ

(5
3CA − 2

3nf
)
+O(α2

s), gluon field, (C.10b)

Zg =1− αs
4π

1
ϵ
(CF + CA) +O(α2

s), qqg vertex, (C.10c)

Zggg =1 + αs
4π

1
ϵ

2
3 (CA − nf ) +O(α2

s), ggg vertex, (C.10d)

ZWi =1 + αs
4π

2
ϵ
Cfi

+O(α2
s), Wilson line, (C.10e)

ZV ψ =1− αs
4π

1
ϵ
CF +O(α2

s), q – Wilson-line vertex, (C.10f)

ZVA =1 +O(α2
s), g – Wilson-line vertex. (C.10g)

Eqs. (C.10a)–(C.10d) are standard textbook QCD results. Eq. (C.10e) can be found for
instance in [69]. Eqs. (C.10f) and (C.10g) were found by explicit computation of the diagrams
involved. We also derive the renormalisation factors for the coupling of a Wilson line
radiating a gluon, see figure 3: they are given by

ZWFA = ZgZ
−1
ψ ZWF

=1 + αs
2π

1
ϵ

(
CF − CA

2

)
, fundamental Wilson line (C.11a)

ZWAA = ZgggZ
−1
A ZWA

=1 + αs
2π

1
ϵ

CA
2 , adjoint Wilson line. (C.11b)

Note that both colour factors in eq. (C.11) are of the form (Cfi
−Nc/2) expected for vertex

graphs. Since also

ZgZ
−1
ψ Z

−1/2
A = ZgggZ

−3/2
A ≡ Zαs = 1− αs

4π
1
ϵ

b0
2 +O(α2

s), (C.12)

the jets Jµνg,gg(ℓ; k1, k2) and Jµνg,qq(ℓ; k1, k2) renormalise in the same way.
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Finally, the renormalisation factor related to the vertex connecting the Wilson lines in
directions βi and n is given by the usual cusp renormalisation, involving an extra collinear
pole. It is given by

Zβin = 1− αs
4πCfi

(
1
ϵ2

+ 1
ϵ
log n2

4(βi · n)2

)
. (C.13)

D Consistency relations

In section 6.3 we mentioned the necessity to verify the relation L1
[
K

(2)
n+2

]
= L1

[
K

(12)
n+2

]
in order to confirm the consistency of the strongly-ordered counterterm we derived. Here
we report the relevant details of the calculation. We note once again that, when hard-
collinear configurations are involved, factorised matrix elements involve convolutions (which
are understood in our notation). In these cases the tests we perform below rely on the
assumption that the necessary phase-space mappings are chosen consistently, ensuring that
they behave properly under iterated limits.

We start by acting on K (2)
n+2 with the soft limit S1, i.e. considering the k1 → 0 limit of each

of the constituent counterterms in eqs. (3.27) to (3.30). As for the double-soft counterterm
in eq. (3.27), accounting for two uniform soft emissions, we get

S1
[
K

(2,2s)
n+2

]
= H(0)

n

†
S(0)
n;g2,g1H

(0)
n = H(0)

n

†S(0)
n,g2

†
S
(0)
n+1,g1S

(0)
n,g2H

(0)
n , (D.1)

where we have used eq. (4.3). In order to compare this expression with the soft limit of
K

(12,s)
n+2 , we note that eq. (6.6) is written assuming k2, as opposed to k1, to be the unresolved

momentum, hence a meaningful comparison with eq. (D.1) needs a 1 ↔ 2 relabelling of
eq. (6.6). We get then

S1
[
K

(12,s)
n+2

]
= H(0)

n

† ∑
f1,f2

S1

[
S
(0)
n;f[12],f1

+ S
(0)
n,f[12]

(
J
(0)
f[12],f1f2

− J
(0)
E[12],f1

)]
H(0)
n

= H(0)
n

†
S(0)
n;g2,g1H

(0)
n = S1

[
K

(2,2s)
n+2

]
, (D.2)

where we have used S1J
(0)
f[12],f1f2

= J
(0)
E[12],f1

. Next we consider the hard-collinear counterterm

associated with a single leg, given by K
(2,2hc)
n+2,i in eq. (3.28). The single-soft limit of the

various contributions to this counterterm read

S1
[
J
(0)
fi,f1f2f3

]
= J

(0)
fi,f2f3

S
(0)
3,f1

, (D.3)

S1
[
J
(0)
Ei,f1fk

]
= J

(0)
Ei,fk

S
(0)
3,f1

, k = 2, 3,

S1
[
J
(0)
Ei,f2f3

]
= 0,

S1
[
J
(0)
Ei,f1

J
(0),hc
fi,f2f3

]
= J

(0)
Ei,f1

J
(0),hc
fi,f2f3

,

S1
[
J
(0)
Ei,fj

J
(0),hc
fi,f1fk

]
= 0, j, k = 2, 3,

where S(0)
3,f1

is the same object appearing in eq. (6.4), namely a soft function formed from
three Wilson lines in the directions β2, β3 and n (the latter being the auxiliary vector used
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in the definition of the jet functions), radiating a gluon with momentum k1. Plugging these
limits into eq. (3.28), we can assemble

S1
[
K

(2,2hc)
n+2,i

]
= H(0)

n

† ∑
f1,f2,f3

J
(0),hc
fi,f2f3

(
S
(0)
3,f1

− J
(0)
Ei,f1

)
H(0)
n . (D.4)

We can compare this expression with the single-soft limit of eq. (6.8). For this purpose,
we note that in eq. (6.8) the unresolved momentum is k3, hence a 1 ↔ 3 relabelling is
necessary. This gives

S1
[
K

(12,hc)
n+2,i

]
= H(0)

n

† ∑
f1,f2,f3

[
J
(0),hc
fi,f2f3

(
S
(0)
3,f1

− J
(0)
Ei,f1

)
+S1

∑
kl={23,32}

J
(0),hc
fi,f[1k]fl

(
J
(0)
f[1k],f1fk

− J
(0)
E[1k],f1

)]
H(0)
n

= H(0)
n

† ∑
f1,f2,f3

J
(0),hc
fi,f2f3

(
S
(0)
3,f1

− J
(0)
Ei,f1

)
H(0)
n = S1

[
K

(2,2hc)
n+2,i

]
. (D.5)

One can similarly show that S1
[
K

(2,2hc)
n+2,ij

]
= 0, and furthermore one sees that K(2,1hc,1s)

n+2,i =
K

(12,1hc,1s)
n+2,i before taking any limits. Therefore, the consistency test for the soft limit,

S1
[
K

(2)
n+2,i

]
= S1

[
K

(12)
n+2,i

]
, is completed.

Next, we analyse the collinear C12 limit of the double-unresolved counterterm. Beginning,
as above, with the double-soft counterterm in eq. (3.27), we find

C12
[
K

(2,2s)
n+2

]
= H(0)

n

† ∑
f1,f2

C12S
(0)
n,f1f2

H(0)
n = H(0)

n

† ∑
f1,f2

S
(0)
n,f[12]

J
(0)
f[12],f1f2

H(0)
n . (D.6)

On the other hand, from eq. (6.6) we get

C12
[
K

(12,s)
n+2

]
= H(0)

n

† ∑
f1,f2

[
C12S

(0)
n;f[12],f2

(k[12], k2) + S
(0)
n,f[12]

(
J
(0)
f[12],f1f2

− J
(0)
E[12],f2

)]
H(0)
n

= H(0)
n

† ∑
f1,f2

S
(0)
n,f[12]

J
(0)
f[12],f1f2

H(0)
n = C12

[
K

(2,2s)
n+2

]
, (D.7)

where we have used C12S
(0)
n;f[12],f2

(k[12], k2) = S
(0)
n,f[12]

J
(0)
E[12],f2

. Moving on to the contributions

of K(2,2hc)
n+2,i in eq. (3.28), we find

C12
[
J
(0)
fi,f1f2f3

]
= J

(0)
fi,f3f[12]

J
(0)
f[12],f1f2

, (D.8)

C12
[
J
(0)
Ei,f1f2

]
= J

(0)
Ei,f[12]

J
(0)
f[12],f1f2

,

C12
[
J
(0)
Ei,fkf3

]
= J

(0)
E[12],fk

J
(0)
Ei,f3

, k = 1, 2,

C12
[
J
(0)
Ei,fj

J
(0),hc
fi,fkf3

]
= 0, j, k = 1, 2,

C12
[
J
(0)
Ei,f3

J
(0),hc
fi,f1f2

]
= J

(0)
Ei,f3

J
(0),hc
fi,f1f2

= J
(0)
Ei,f3

J
(0),hc
f[12],f1f2

,

where spin indices have been understood. Combining these contributions we obtain the
simple result

C12
[
K

(2,2hc)
n+2,i

]
= H(0)

n

† ∑
f1,f2,f3

J
(0),hc
fi,f[12]f3

J
(0)
f[12],f1f2

H(0)
n . (D.9)
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This expression must be compared with the collinear limit of eq. (6.8), after the necessary
1 ↔ 3 relabelling. We get

C12
[
K

(12,hc)
n+2,i

]
= H(0)

n

†C12
∑

f1,f2,f3

[
J
(0),hc
fi,f2f3

(k̄2, k̄3)S(0)
3,f1

− J
(0),hc
fi,f2f3

(k2, k3)J (0)
Ei,f1

+
∑

kl={23,32}
J
(0),hc
fi,f[1k]fl

(
J
(0)
f[1k],f1fk

− J
(0)
E[1k],f1

)]
H(0)
n

= H(0)
n

†C12
∑

f1,f2,f3

J
(0),hc
fi,f[12]f3

[
S
(0)
3,f1

+ J
(0)
f[12],f1f2

− J
(0)
E[12],f1

]
H(0)
n . (D.10)

Noting that C12S
(0)
3,f1

(β[12], β3, n) = J
(0)
E[12],f1

(β2, n), we finally get

C12
[
K

(12,hc)
n+2,i

]
= H(0)

n

† ∑
f1,f2,f3

J
(0),hc
fi,f[12]f3

J
(0)
f[12],f1f2

H(0)
n = C12

[
K

(2,2hc)
n+2,i

]
. (D.11)

The remaining counterterms do not cause any difficulties, since K(2,2hc)
n+2,ij = K

(12,2hc)
n+2,ij , and sim-

ilarly K(2,1hc,1s)
n+2,i = K

(12,1hc,1s)
n+2,i . The collinear consistency check C12

[
K

(2)
n+2,i

]
= C12

[
K

(12)
n+2,i

]
is thus completed. This, in turn, concludes the proof that L1

[
K

(2)
n+2

]
= L1

[
K

(12)
n+2

]
.
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