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Abstract. The large availability of hospital administrative and clinical
data has encouraged the application of Process Mining techniques to
the healthcare domain. Predictive Process Monitoring techniques can be
used in order to learn from these data related to past historical execu-
tions and predict the future of incomplete cases. However, some of these
data, possibly the most informative ones, are often available in natural
language text, while structured information — extracted from these data
— would be more beneficial for training predictive models.
In this paper we focus on the scenario of the Home Hospitalization Ser-
vice, supporting the team in making decisions on the home hospitaliza-
tion of a patient, by predicting whether it is likely that a new patient
will successfully undergo home hospitalization. We aim at investigat-
ing whether, in this scenario, we can take advantage of mapping un-
structured textual diagnoses, reported by the doctor in the Emergency
Department, into structured information, as the standardized disease
ICD-9-CM codes, to provide more accurate predictions. To this aim, we
devise two different approaches involving respectively lexicographic and
semantic distance for mapping textual diagnoses in ICD-9-CM codes
and leverage the structured information for making predictions.

Keywords: Healthcare processes · Predictive Process Monitoring · Natural
Language Processing· Home Hospitalization Service

1 Introduction

The improvement of healthcare processes and the support of clinical personnel
in making decisions might have an impact on the efficiency of the healthcare



2 Ronzani et al.

services, as well as on the quality of the work of the clinical personnel, who
sparing time in administrative tasks has more time available for taking care of
patients, thus improving the patients’ quality of life. Process Mining (PM) [1],
which deals with the analysis of business processes based on their behaviour —
observed and recorded in event logs — can be a useful instrument in this setting.
PM deals with the analysis of business process event logs in different ways [3], in-
cluding process discovery (i.e., extracting process models from an event log) [1],
predictions of the future of ongoing cases [17] and process optimization [1]. PM
techniques can be leveraged for the discovery and analysis of both clinical and
administrative processes in healthcare. The application of PM techniques is fur-
ther encouraged by the wide availability of administrative and clinical data in
hospitals. These data could be leveraged for discovering (and improving) pro-
cesses, as well as for supporting hospital teams in making decisions on clinical
and administrative issues [4, 23]. It often happens that these data are collected
in national standard forms and documents, shared among several hospitals on
the national area. For instance, in Italy, one of these documents is the Hospital
Discharge Form (HDF), which collects information related to the clinical history
of a patient during his/her hospitalization. The data collected in the discharge
form range from data (with temporal information) related to the hospital ad-
mission, discharge and examinations carried out during the hospitalization to
data such as the number of days of hospitalization. Unfortunately, however, not
all these data are structured. Some of them, possibly the most informative ones,
are textual unstructured fields, as in the case of the patients’ diagnoses reported
by the doctor at the arrival of the patient at the Emergency Department.

In this paper we aim at investigating whether we can take advantage of
mapping unstructured data into the structured information provided by the
ICD-9-CM4 taxonomy when making predictions in the scenario of the Home
Hospitalization Service. We extend the work in [5], where we investigated a lex-
icographic distance for mapping textual diagnoses to ICD-9-CM codes, with a
semantic distance. We first provide some preliminaries (Section 2) and introduce
the Home Hospitalization scenario (Section 3). In Section 4 we report about the
proposed approach that aims at (i) mapping unstructured data to ICD-9-CM
codes via lexicographic or semantic match; and (ii) leveraging this structured
information when making predictions. We report on the evaluations carried out
in Section 5 and we finally conclude in Section 7.

2 Background

In this section we report the background concepts useful for understanding the
remainder of the paper.

Predictive Process Monitoring. Predictive Process Monitoring (PPM) [17] is a
relatively new branch of PM that aims at predicting at runtime and as early as
possible the future development of an ongoing incomplete execution of a process.

4 https://www.cdc.gov/nchs/icd/icd9cm.htm
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Predictions related to the future of an incomplete process execution (as known
as case) of state of-the-art approaches can be classified in macro-categories [10]:
numeric predictions (e.g., time or cost predictions); categorical predictions (e.g.,
risk predictions or specific categorical outcome predictions such as the fulfillment
or the violation of a certain property); as well as to next activities predictions
(e.g, the sequence of future activities, possibly with their payloads).

Together with these techniques, few frameworks have also been recently
developed implementing and collecting these techniques, such as for instance
Nirdizati [21]. These frameworks take as input a set of past executions and use
them to train predictive models to be used for providing users with predictions at
runtime. They are usually characterized by two main modules: one for the case
encoding, and one for the supervised learning. Each of them can be instantiated
with different techniques.

ICD-9-CM. ICD-9-CM is the ninth edition of the International Classification
of Diseases. It contains a structured standard codification of diseases and proce-
dures that is used internationally both in the management of public health and
for statistical and epidemiological purposes.

The ICD-9-CM assigns specific codes (and associated descriptions) to both
diseases and procedures. It is organized in the form of a taxonomy, so that
each code corresponding to a specific disease variant (subprocedure) is classified
as a disease (procedure), which, in turn, is classified as a category of diseases
(procedures) and so on. In the case of the diagnoses, each code is composed of five
digits: the first three digits represent a high level disease category, the fourth digit
indicates the specific disease, while the last digit identifies the specific variant
of the disease. In turn, the first three digits are further classified according to
number interval ranges corresponding to families of diseases. For instance, the
code 410.22 corresponding to the description Acute myocardial infarction of
inferolateral wall, subsequent episode of care is a leaf of the hierarchy:

390–459: Diseases of The Circulatory System
410–414: Ischemic Heart Diseases

410: Acute myocardial infarction
410.2: Acute myocardial infarction of inferolateral wall

410.22: Acute myocardial infarction of inferolateral wall, sub-
sequent episode of care

This simple representation of the taxonomy allows us to select, for a given
diagnosis code, the level of abstraction, i.e., the ancestor, among the low levels
of the taxonomy, by truncating the last or the last two digits of the ICD-9-CM
code.

3 The Home Hospitalization Service Scenario

The Home Hospitalization Service (HHS) of the City of Health and Science
(CHS), which has been in operation for over 30 years, has proven to be a valid
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alternative to hospitalization for a variety of acute and chronic exacerbated dis-
eases [22], such as uncomplicated ischemic stroke, congestive heart failure, exac-
erbations of chronic obstructive pulmonary disease, onco-hematological diseases
with high transfusion requirements, dementia with behavioral disorders [14]. The
HHS consists of a multidisciplinary team. The essential criteria for taking care
of an acute patient at home are threefold: (i) clinical aspects, e.g., no need for
continuous or invasive monitoring of vital parameters, as well as to perform in-
vasive diagnostic-interventions; (ii) geographical aspects (residence in the area
of competence of the HHS); (iii) social welfare (constant presence of one or more
caregivers, formal or informal). Every year, the service manages about 500 ad-
missions of patients coming in most cases from the same hospital and in small
part upon direct request of the General Practitioner (GP). At the end of the
treatment period, more than 80% of patients are discharged to the GP, 10.5%
die during hospitalization and about 8% is moved to hospital. Over the past 8
years, the percentage of patients unable to continue care management at home
has remained constant, despite the increase in clinical complexity and care bur-
den of patients taken into care. In 2018, HHS patients were 492 with a high
average age (about 84 years). The overall goal is supporting the HHS team in
the timely identification and notification of the patients that can be managed
through the HHS, as well as in the efficient management of the HHS processes.

Data Description. The administrative and clinical data available so far for
the specific case study are related to Emergency Department Discharge Forms
(EDDF) and to the Hospitalization Discharge Forms (HDF) of about 400 CHS
patients benefitting from the HHS. The EDDF contains information collected at
the Emergency Department (ED) such as: (i) date and time information related
to the ED admission, triage, discharge, last and latest update of the anamnesis;
(ii) structured information e.g., on the patient triage colour code; and (iii) tex-
tual notes e.g., on the diagnosis. The HDF contains instead information about
the clinical history of the patient during the hospitalization, such as: (i) date
and time information related to e.g., the hospital admission, discharge, main
intervention; (ii) structured information related to e.g., patients’ data (age, sex,
civil status, etc.), number of visits; and (iii) textual information related to e.g.,
the hospitalization cause and the anamnesis.

4 Approach

In order to support the HHS team in making decisions on the home hospital-
ization of a patient, the overall idea is applying existing approaches of PPM to
the data related to the administrative and clinical management of ED patients.
To this aim, patient data need to be transformed into a trace describing the his-
tory of the patient and used as features to learn and provide predictions about
the home hospitalization of the patient. Most of these data are structured bits
of information, while others, equally or more informative, are collected as un-
structured text, as for instance the diagnosis informally reported by the doctor
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when the patient reaches the ED. In order to be able to apply PPM approaches
and properly leverage this information when making predictions, we devised the
following pipeline:

• we preprocess data so as to generate an event log describing the patient
histories (Section 4.1);

• we map the informal diagnosis descriptions into the standardized diagnosis
codes of the ICD-9-CM taxonomy (Section 4.2);

• we leverage the mapped structured ICD-9-CM code or one of its ancestors
as a structured feature to be used in making predictions (Section 4.3).

4.1 Data Preprocessing and Analysis

The dataset related to the HDFs extracted from the hospital information systems
has first been cleaned by removing hospitalizations of few days or “routine”
procedures and then joined with the dataset of the ED. The following steps have
been then applied to the joined dataset:

• The dataset has been transformed into an event log. The hospital discharge
id number has been used as trace id. For the HDF data, date and time
fields related to the hospital admission, discharge, and to the interventions
performed by the patient during the hospitalization have been used as times-
tamps for the activities H admission, H discharge and for the intervention
activities (labelled with the corresponding ICD-9-CM code or with the pro-
cedure category they belong to in the ICD-9-CM procedures), respectively.
Patient personal data and other structured data, such as the setting of refer-
ral, have been added as case attributes. Similarly, for EDDF data, date and
time fields related to the ED admission, discharge, triage, anamnesis and
diagnostic hypothesis have been used as timestamps for the ED admission,
ED discharge, ED triage, ED anamnesis, ED diagnostic hp, respectively.
Diagnosis and other few attributes have been instead used as case attributes.
The resulting event log is composed of 413 cases with 270 different paths and
49 different activities.

• In order to be able to make predictions at the time of the discharge from
the ED, each trace in the log has been truncated at the time of the activ-
ity ED discharge, and the attributes that cannot be known at the time of the
ED discharge have been removed, e.g. the attribute H number of days in the

facility, which is known only at the end of the hospitalization.

Finally, data have been labelled according to whether (i) the patient has been
hospitalized at home and the hospitalization had a positive outcome (hh, i.e.,
Home Hospitalization); or (ii) she/he has been hospitalized in a different ward
or the home hospitalization had a negative outcome (no-hh). Out of the 413
cases, 368 (89%) were labeled with hh and 45 (11%) with no-hh.
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Fig. 1: Overview of the ICD-9-CM mapping pipeline.

4.2 Mapping the Diagnosis field to the ICD-9-CM dictionary

In this section we briefly illustrate the Natural Language Processing (NLP) tech-
niques applied to short unstructured textual diagnoses in order to map them to
structured ICD-9-CM diagnosis codes. Since all the textual diagnoses we want
to decode are in Italian, we refer to the Italian translation of the ICD-9-CM de-
scriptions5. This is used to create a description/code dictionary of diseases, after
the removal of those codes starting with letter ‘E’ (supplementary classification
of external causes) and ‘V’ (supplementary classification of factors influencing
health status and contact with health services). The technique developed is or-
ganized in three steps, which are illustrated in Fig. 1:

• Preprocessing step: the input textual diagnosis is preprocessed with the
removal of stop-words and proper replacement of acronyms;

• Step 1: if the input diagnosis is already exactly matching one of the ICD-9-
CM descriptions, then the corresponding code is taken from the dictionary;

• Step 2: if in the previous step there is no match, we try to identify among
the ICD-9-CM descriptions the closest one to the input diagnosis. To this
aim, we can follow a pure lexicographic or a semantic approach. We detail
in the following the two alternative approaches for carrying out Step 2.

Lexicographic approach. In order to identify among the ICD-9-CM de-
scriptions the one closest to the input diagnosis we can go through the following
procedure:

• Step 2 lexicographic:
– we stem words6 in both input and ICD-9-CM diagnoses. Moreover we
delete some undefined adjective (e.g. “non specificato” that means un-
specified); this is done in order to prefer generic diagnoses to specialized
ones.

5 https://www.salute.gov.it/portale/documentazione/p6 2 2 1.jsp?lingua=italiano&id=2251
6 We used snowball stemmer from nlkt package
https://www.nltk.org/ modules/nltk/stem/snowball.html
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– we identify the subset of ICD-9-CM diagnoses that share the maximum
number of stems with the input diagnosis Dinput

– among this subset we select the diagnosis DICD9 with the highest value
of the metrics g(Dinput, DICD9) defined as

g(D1, D2) =
1

len(D1)len(D2)

∑
stem1∈D1
stem2∈D2

lev.ratio(stem1, stem2) (1)

where lev.ratio(s1, s2) is the Levenshtein ratio between two stems s1, s2
and len(D) counts the number of stems composing the sentence D. The
denominator normalizes the metrics: since the numerator grows with the
number of words in the diagnoses, the metrics is a number between 0
and 1.

Once the input diagnosis is associated to an ICD-9-CM code, we assign a Lexi-
cographic score (SCL) from 0 to 100. This metrics aims at estimating the prob-
ability that the mapping is correct. If a match is found in Step 1, then SCL

= 100; if the mapping comes in Step 2, then it is computed as follows:

SCL = min (ω g(D1, D2)(1 + r(D1, D2)), 100) (2)

where ω is a weight set to 50, g is the metrics defined in (1) and r is the number
of stems in common between diagnoses D1 and D2. The quality of this choice
for the metrics is investigated in Section 5.1.

The value of the Lexicographic score will be used to as a filter parameter:
when its value is above a certain Lexicographic score threshold, we will use the
associated ICD-9-CM code, otherwise we will assign a default code “0”. The
impact of the choice of the Lexicographic score threshold on the predictions is
inspected in Section 5.2.

Semantic approach. The pipeline proposed above is based uniquely on the
Levenshtein lexicographic distance. This means that diagnoses with the same
semantics but with a different wording have a high lexicographic distance. For
instance, pyrexia and fever, though having the same semantics, will result in a
high lexicographic distance. In the semantic approach, instead, we want to take
into account the semantic distance between words and for this we leverage a
word embedding model.

For the embedding model we relied on CODER [26], a multilingual model
created specifically to deal with medical nomenclature, thanks to the integration
of Knowledge Graph, such as UMLS, and mBERT [8]. Behind the functioning
of word embeddings lies the principle of distributional semantics, according to
which: “linguistic items with similar distributions have similar meanings”; there-
fore, vectors corresponding to similar words will appear close together in the
embeddings space. For instance, the vectors of pyrexia and fever will be rather
close in the embedding space. Moreover, we have observed how important it is,
in this context, to extend this principle by integrating the information expressed
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in UMLS in order to correctly compute the similarity between medical terms.
This similarity has been calculated on the basis of the cosine distance, which is
defined as:

vect.distance(w1, w2) = 1− cos(θ) = 1− w1 · w2

∥w1∥∥w2∥
(3)

where θ is the angle between the vector representation of words w1 and w2.
In order to identify among the ICD-9-CM descriptions the one closest to the

input diagnosis we can go through the following procedure:

• Step 2 semantic:
– we split input and ICD-9-CM diagnoses in two lists of words and we
delete some undefined adjectives (e.g. “non specificato” that means un-
specified); this is done in order to prefer generic diagnoses to specialized
ones.

– we identify the subset of ICD-9-CM diagnoses that share with the input
diagnosis Dinput the maximum number of semantically similar words.
Given two sentences D1 and D2, two words w1 ∈ D1, w2 ∈ D2 are
semantically similar when:

vect.distance(w1, w2) ≤ 0.15 (4)

– in this subset we select the diagnosis DICD9 with the highest value of the
metrics h(Dinput, DICD9) defined as:

h(D1, D2) = (1−Q(v))(1−D(v)) (5)

where Q and D are respectively the value of the first quartile and the
value of the first decile computed on the population v of all the semantic
distances between the words of the two diagnoses:

v = {vect.distance(w1, w2),∀w1 ∈ D1, w2 ∈ D2}. (6)

The metrics is a number between 0 and 1.

Similarly to the lexicographic case (2), when the ICD-9-CM code is associ-
ated to the input diagnosis we assign a Semantic score (SCS). This score is set
to 100 if the diagnosis is matched during Step 1, otherwise it is computed with
the following formula:

SCS = min (ω h(D1, D2)(1 + s(D1, D2)), 100) (7)

where ω is a weight set to 50, h is Equation (5) and s is the number of semanti-
cally similar words in D1 and D2, computed as described in Equation (4). The
quality of this choice for the metrics is investigated in Section 5.1.

The two pipelines described in this section are used separately to associate
the ICD-9-CM code to the input diagnosis; the respective results are then used
in the predictive model and their performances are compared in Section 5.2.



Unstructured data in Predictive Process Monitoring 9

4.3 Predicting the Home Hospitalization Outcome

The structured data, either extracted from the diagnosis textual fields or already
stored in structured fields, can then be provided as input to PPM algorithms that
use these features to learn a predictive model. At runtime, when the HHS team
has to decide whether a new patient should undergo the home hospitalization,
given the features of the new patient, the predictive model will predict whether
it is likely that she/he will successfully undergo home hospitalization (hh) or
whether it is better to proceed with the hospitalization in another ward (no-
hh). PPM algorithms, e.g., the ones available in Nirdizati [21], a PPM tool
that collects a rich set of state-of-the-art approaches based on machine learning
algorithms, can be used to train a predictive model able to learn the correlations
between variables that describe the patient data and examinations he/she has
carried out (features) and the hospitalization at home or in another hospital
ward.

5 Evaluation

In this section we evaluate the proposed approach. In detail, we first evaluate
the mapping of the textual fields to the ICD-9-CM disease codes (Section 5.1)
and then the impact of the mapping to ICD-9-CM codes at different levels of
abstraction of the ICD-9-CM taxonomy, when making predictions on the home
hospitalization outcome (Section 5.2).

5.1 ICD-9-CM Mapping Evaluation

In this section we aim at evaluating: (i) the correctness of the ICD-9-CM map-
pings obtained using the two approaches presented in Section 4.2; (ii) whether
the Lexicographic score and the Semantic score are good metrics to evaluate the
quality of each ICD-9-CM mapping.

In order to evaluate their correctness, we analyzed the ICD-9-CM mappings
given by the two approaches to 490 different textual diagnoses in the dataset.
We then asked a domain expert to classify each mapping according to three
categories:

• Good mapping: the assigned ICD-9-CM code correctly represents the se-
mantics of the textual diagnosis, e.g. “anemia” (anemia) is mapped to code
599.0 corresponding to “altre e non specificate anemie” (other and unspeci-
fied anemias)

• Fair mapping: the assigned ICD-9-CM code represents only partially the se-
mantics of the textual diagnosis, possibly it represents a superclass , e.g. “leucemia
e polmonite” (leukemia and pneumonia) is mapped to code 208.9: “leucemia
non specificata” (unspecified leukemia), so we miss the information about
pneumonia

• Bad mapping: the assigned ICD-9-CM code represents a diagnosis that is
uncorrelated to the textual one, e.g. “acufeni” (tinnitus) is mapped to code
706.1: “altre acni” (other acni)
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(a) (b)

Fig. 2: Number of diagnoses for score values. (a) Lexicographic approach. (b)
Semantic approach.

TL tot good fair bad

0 100% 41% 33% 26%
53 70% 38% 23% 9%
70 45% 33% 10% 2%

(a)

TS tot good fair bad

0 100% 42% 36% 22%
50 70% 40% 26% 4%
79 45% 33% 11% 1%

(b)

Table 1: Percentage of ICD-9-CM diagnosis mappings with: (a) SCL value
higher than TL for the lexicographic approach; (b) SCS value higher than TS

for the semantic approach. The values of the thresholds TL and TS are chosen
so to filter respectively 100%, 70% and 45% of all the diagnoses.

Based on the classification of the domain expert, we found that

– with the lexicographic approach: 41% of the mappings are good, 33% are fair
and 26% are bad.

– with the semantic approach: 42% of the mappings are good, 36% are fair and
22% are bad mappings.

This represents a reasonable result. Indeed, by discarding the bad mappings we
are able to fairly map 74% and 78% of the textual diagnoses for the lexico-
graphic and the semantic approach, respectively. Moreover, we notice that the
results returned by the semantic approach are overall better than the ones of
the lexicographic approach.

In order to check whether the two scores are good metrics to evaluate the
quality of the mappings, so as to use these metrics to discriminate the mappings
we can trust as features for prediction tasks, we show in Fig. 2) the distributions
of the three categories of diagnoses with respect to the relative score for each of
the two approaches. The plot shows that in both cases most of the bad mappings
have a low score value.

The metrics look reasonably good in separating bad mappings and hence,
setting a Lexicographic score threshold value TL (respectively Semantic score
threshold value TS), they can be used to automatically exclude most of the
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bad mappings. Table 1 reports for different TL (TS) values the percentage of
diagnosis mappings that are above the threshold for each quality category.7

5.2 Home Hospitalization Outcome Prediction Evaluation

In this section we report about the accuracy of the predictions related to the
HHS scenario. The accuracy of the predictions is evaluated using the Matthews
correlation coefficient metric (MCC) [18] that is defined as follows:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(8)

where TP, TN, FP, FN are respectively true positive, true negative, false positive
and false negative predictions. The MCC metrics ranges from −1 to 1, where a
perfect prediction measures 1, a random prediction measures 0 and a completely
wrong prediction measures −1. In unbalanced datasets, like ours, where the
number of positive and negative traces is very different (368 vs. 45), this metrics
is more suitable than others like accuracy and F-measure for measuring the
quality of the predictions [7].

In order to evaluate whether structured features, as the ICD-9-CM codes
or its ancestors, rather than unstructured ones, as textual diagnoses, can be
leveraged to get more accurate predictions, we analyzed and compared the results
obtained with different sets of features:

• without the diagnosis (no diag);
• with the textual diagnosis (text diag);
• with the ICD-9-CM code assigned to the textual diagnosis or one of its
ancestors via the lexicographic match (icd9 diag lex(all)).

• with the ICD-9-CM code assigned to the textual diagnosis or one of its
ancestors via the semantic match (icd9 diag sem(all)).

These last two cases are further refined in different sub-cases based on two pa-
rameters: (i) the threshold values TL, TS; for each of them we consider two
reference values: one that filters the 70% of the diagnoses (TL = 53, TS = 50)
and one that filters the 45% of the diagnoses (TL = 70, TS = 79), see Table 1;
and (ii) the level of abstraction of the ICD-9-CM classification, that corresponds
to the number of digits that we trim from the right side of the ICD-9-CM codes
(see Section 2): the higher the number of digits trimmed, the higher the abstrac-
tion level in the ICD-9-CM taxonomy. Here we consider two abstraction levels:
the full ICD-9-CM code corresponding to the specific diagnosis, and the code
with two digits trimmed corresponding to its ancestor diagnosis group.

As predictive model we used a Random Forest classifier on the incomplete
traces properly preprocessed as described in Section 4.1. Moreover, we tested the
predictions assuming we have observed only the first five activities at the ED.

7 The percentages in Table 1 refer to the number of mappings per diagnosis. Note that
these are in principle different from the number of mappings per trace in which the
diagnosis appears, since the same diagnosis may appear in more than one trace.



12 Ronzani et al.

Diagnosis information Description avg(MCC) σ(MCC) max(MCC)

no diag without diagnosis 0.51 0.09 0.65
text diag textual diagnosis 0.4 0.1 0.6
icd9 diag lex 70%-5 ICD-9-CM, lexicographic, TL = 53, 5 digits 0.58 0.05 0.65
icd9 diag lex 70%-3 ICD-9-CM, lexicographic, TL = 53, 3 digits 0.56 0.07 0.65
icd9 diag lex 45%-5 ICD-9-CM, lexicographic, TL = 70, 5 digits 0.57 0.05 0.70
icd9 diag lex 45%-3 ICD-9-CM, lexicographic, TL = 70, 3 digits 0.61 0.04 0.70
icd9 diag sem 70%-5 ICD-9-CM, semantic, TS = 50, 5 digits 0.56 0.06 0.70
icd9 diag sem 70%-3 ICD-9-CM, semantic, TS = 50, 3 digits 0.49 0.08 0.65
icd9 diag sem 45%-5 ICD-9-CM, semantic, TS = 79, 5 digits 0.56 0.07 0.70
icd9 diag sem 45%-3 ICD-9-CM, semantic match, TS = 79, 3 digits 0.55 0.07 0.65

Table 2: Prediction accuracy results obtained with different diagnosis informa-
tion used in the encoding.

For the feature encoding we used the frequency-based encoding [16] enriched
with trace attribute features. The classifier is trained with 70% of the traces;
10% of the traces is used to perform the hyper-parameter optimization on the
MCC metrics (8); and finally the classifier is tested on the remaining 20% of
the traces. Due to the non-deterministic trait of the prediction, each experiment
is repeated 30 times, and the average value of MCC together with its standard
deviation σ are used as reference metrics.

The results are reported in Table 2. The first and the second columns of Ta-
ble 2 show the diagnosis information used for the prediction and its description.
The third and fourth columns contain respectively the mean and the standard
deviation σ of the MCC value computed in several (30) tests, while the fifth
column contains the maximum values of MCC obtained during the (30) tests.

The worst performance is obtained when the textual diagnosis is used as
feature (text diag), while no diag performs better than text diag. This is pos-
sibly due to the high variability of the textual information, resulting in noise
for the predictive model. On average, the best way of taking into account the
diagnosis for the predictions seems to be via the mapped ICD-9-CM codes. In-
deed, all the predictions obtained with mapped ICD-9-CM codes, except one
(icd9 diag sem 70%-3), provide better results than the no diag prediction.

In order to further validate this analysis, we also checked the statistical sig-
nificance of the identified differences:

no diag > text diag p-value < 0.002

all icd9 diag except icd9 diag sem 70%-3 > text diag p-value < 10−5

all icd9 diag except icd9 diag sem 70%-3 > no diag p-value < 0.05

icd9 diag sem 70%-3 > text diag p-value < 0.006

The results confirm that all the mappings based on ICD-9-CM codes — except
icd9 diag sem 70%-3 — are significantly higher than no diag and text diag, while
icd9 diag sem 70%-3 is only significantly better than text diag.

We further analysed the results obtained with the mappings based on the
ICD-9-CM codes by focusing on:

• the approach, i.e., the lexicographic or the semantic approach adopted;
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• the threshold values used to filter bad ICD-9-CM mappings, i.e., TL and
TS: the higher the value of these thresholds, the lower the percentage of bad
ICD-9-CM codes mapped;

• the number of digits used of the ICD-9-CM code, corresponding to the level
of abstraction of the diagnoses: 5 digits represent detailed diagnosis codes,
3 digits represent groups of diagnoses.

Concerning the approach, the results obtained with the lexicographic ap-
proach provide slightly better results than the ones obtained with the semantic
approach. However, when comparing the approaches with the same threshold
value and number of digits, the difference is overall low and it is not statis-
tically significant — except for icd9 diag lex 45%-3 (lexicographic, TL = 70,
3 digits) and icd9 diag lex 70%-3 (lexicographic, TL = 50, 3 digits) that per-
form better than their semantic-based counterpart (icd9 diag sem 45%-3 and
icd9 diag sem 70%-3, respectively) with p-value ≤ 0.05. This result is rather
surprising considering the evaluation of the matching methods in terms of bad
ICD-9-CM codes reported in Section 5.1.

Our understanding of this result is that a big part in the prediction perfor-
mance is given by those ICD-9-CM codes which are classified in the Fair cate-
gory. For example the diagnosis pneumonia and cough may be fairly mapped to
both 486 pneumonia and 786.2 cough, but clearly the first one might be more
important in the decision about home hospitalization than the second one. At
the moment, however, we have not yet developed a method to select the most
relevant sub-diagnosis when a diagnosis is composed of several sub-diagnosis.

Concerning the threshold values used to filter bad mappings, the results do
not show any clear trends, although it seems that overall higher thresholds return
very close or more accurate results than lower thresholds. This difference is how-
ever not statistically significant — except for the case of icd9 diag lex 45%-3 that
presents better results than icd9 diag lex 70%-3 with a statistical significance.

Finally, concerning the level of abstraction of the ICD-9-CM mappings, we
can observe that overall the accuracy obtained with more specific ICD-9-CM
codes (5 digits) is higher than the accuracy obtained with more general ICD-9-
CM codes (3 digits). This is however not true for icd9 diag lex 45%-3 (3 digits)
that has a significantly higher accuracy than icd9 diag lex 45%-5 (5 digits).

In general, the statistical analysis shows that there are no significant differ-
ences between any of the ICD-9-CM results displayed in Table 2, except for two
cases: icd9 diag lex 45%-3 (lexicographic, TL = 70, 3 digits) performs better than
all the other ICD-9-CM mappings with p-value ≤ 0.005 and icd9 diag sem 70%-
3 (semantic, TS = 50, 3 digits) performs worse than all the other mappings with
p-value ≤ 0.004.

6 Related Work

The literature related to this work mainly pertains to two research areas: Predic-
tive Process Monitoring (in particular with unstructured data) and the mapping
of textual fields to the ICD.
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Predictive Process Monitoring approaches can be classified based on the types
of prediction they provide: (i) numeric predictions, (ii) outcome–based predic-
tions, and (iii) next activity predictions. In this work we focus on outcome–based
predictions, that is related to the fulfilment of a predicate on an ongoing trace,
i.e., the outcome of the home hospitalization. Almost all the approaches in this
field, rely on implicit models such as machine learning and statistical methods.
Maggi et al. [17] report an approach that classifies the fulfilment of a predicate
on an ongoing trace by exploiting both control flow and data flow. This work
has then been extended in [9, 16, 25, 24]. Di Francescomarino et al. [9] extend
the work adding clustering techniques on top of the previous approach. This
results in training more classifiers with a smaller subsets of data. Leontjeva et
al. [16] treat the execution traces as complex symbolic sequences, while Verenich
et al. [25] combine these two approaches. Teinemaa et al. [24] exploit unstruc-
tured (textual) information contained in messages exchanged between process
instances during execution in order to improve the accuracy of the predictions.
Recently in [20] Pegoraro et al. apply natural process language techiniques and
LSTM neural networks to integrate information from text documents written in
natural language to the prediction model. In this work we borrow the idea of
the works in PPM to extract structured information from textual data so as to
improve the accuracy of outcome-based predictive models. However, to this aim,
we leverage a mapping of textual diagnosis to ICD-9-CM diseases.

The mapping of free text to the ICD classification has been considered in
several works. In [2] Akshara et al. provide an automated ICD-9-CM diagno-
sis prediction integrating structured patients’ data together with unstructured
clinical text notes. In [13] Gangavarapu et al. present a method for ICD-9-CM
code group prediction from unstructured clinical nursing notes, using vector
space and topic modeling approaches; in [12] this approach is integrated with
a fuzzy similarity cleansing approach to merge anomalous and redundant data.
In [19] machine learning and natural language processing approaches are used
in the automatic mapping of ICD-10 codes from narrative text fields. In this
work the performance of different classical machine learning classifiers are com-
pared in terms of accuracy, precision and recall. In [15] and [11] machine learning
techniques are used to map ICD-10 codes from textual death certificates. In [6]
recurrent neural networks are used to map ICD-10 codes from Dutch cardiology
discharge letters. Differently from all the above state-of-the-art approaches, we
focus on Italian textual data and we defined an approach that is able to cope
with the available NLP resources.

7 Conclusions

With the purpose of improving prediction accuracy by using structured rather
than unstructured information in PPM, we have proposed a pipeline that lever-
ages NLP methods and two different approaches — a lexicographic and a se-
mantic one — for mapping textual fields to an existing dictionary, as in the case
of textual fields mapped to ICD-9-CM codes. We have applied the proposed
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approach to a real-life healthcare scenario related to the HHS, and we have eval-
uated (i) the quality of the mappings; and (ii) the accuracy of the predictions
without using the diagnosis information, using the textual diagnosis informa-
tion, or using the structured information contained in ICD-9-CM codes. The
results are overall reasonable and confirm that having structured rather than
unstructured features improves the accuracy of the predictions.

We plan, as future work, to further refine the pipeline devised for mapping
textual fields to the ICD-9-CM codes, e.g., by taking into account the fact that
some textual descriptions are richer than a single ICD-9-CM code and can hence
be mapped to more than one code.
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