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Abstract: Epithelial ovarian cancer (EOC) is a significant cause of cancer-related mortality in women.
Despite advances in diagnosis and treatment, EOC remains a challenging disease to manage, and
the 5-year survival rate is still poor. The role of hormone receptors (HRs) in EOC carcinogenesis and
prognosis has been actively explored; however, the role of hormone therapy (HT) in the treatment
of these tumors is not well established. Most available data on HT mainly come from retrospective
series and small early clinical trials. Several of these studies suggest that HT may have a role in
adjuvant, maintenance therapy, or in the case of recurrent disease, especially for some subtypes
of EOC (e.g., low-grade serous EOC). Furthermore, HT has recently been combined with targeted
therapies, but most studies evaluating these combinations are still ongoing. The main aim of this
review is to provide an overview of the progress made in the last decade to characterize the biological
and prognostic role of HRs for EOC and the developments in their therapeutic targeting through HT.

Keywords: ovarian cancer; hormone therapy; endocrine therapy; hormone receptors; aromatase
inhibitors; fulvestrant; tamoxifen; letrozole

1. Introduction

Epithelial ovarian cancer (EOC) is the third most common gynecological malignancy
worldwide, with 313,959 new cases reported in 2020. It is also one of the deadliest malig-
nancies, with over 200,000 deaths reported globally in the same year [1]. EOC accounts
for about 90% of ovarian tumors and comprises several distinct subgroups with different
molecular profiles, biological behaviors, and clinical features. Currently, five subgroups of
EOC are described: high-grade serous EOC (70%), endometrioid (10%), clear cell (10%),
mucinous (3%), and low-grade serous EOC (<5%) [2–4]. High-grade serous EOC is char-
acterized by several molecular aberrations and mutations: TP53 is mutated in almost all
cases [5–8], and somatic or germline mutations of homologous recombination genes such
as BRCA1 and BRCA2 are also involved in EOC carcinogenesis [5,6]. Moreover, high-grade
serous EOC shows widespread accumulation of copy number alterations [7,8], and other
pathways involved in high-grade serous EOC are FXM1, Rb1, PI3K, and Notch 1 [5,9].
Clear cell EOC and endometrial EOC share similar patterns of mutations, including al-
terations in ARID1A, PIK3CA, PTEN, and KRAS [10,11]. Several mucinous EOCs have
KRAS mutations and HER2 amplification [12–14], while low-grade serous EOC exhibits
activation of the mitogen-activated protein kinase (MAPK) pathway via NRAS, KRAS or
BRAF mutations [15–17]. EOC has a poor prognosis, with a 5-year relapse rate of 75% for
patients diagnosed with advanced disease (International Federation of Gynecology and
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Obstetrics-FIGO stage III-IV) [15] and a low 5-year overall survival (OS) [12]. To address
these poor survival outcomes, better treatment strategies have been developed over the
last decade, including optimal debulking surgery to achieve no macroscopic residual tu-
mor and new targeted therapies, particularly for high-grade serous EOC. For instance,
bevacizumab, a recombinant humanized monoclonal antibody that blocks angiogenesis by
inhibiting vascular endothelial growth factor (VEGF), is approved for maintenance treat-
ment of high-risk EOC [16]. Several trials evaluated the efficacy of inhibitors of the poly
ADP ribose polymerase (PARPi) enzyme, and these drugs have been recently approved
for treating EOC. Olaparib for BRCA-mutated patients as a maintenance treatment after
first-line chemotherapy and at platinum-sensitive relapse; Niraparib and Rucaparib at
platinum-sensitive relapse regardless of BRCA status. PARPis improve progression-free
survival (PFS), but, to date, no significant impact on OS has been observed [17–21]. Among
emerging target therapies for EOC, several studies have investigated the role of immune
checkpoint inhibitors, but with little impact on survival [22–24]. This scenario highlights
the need to explore alternative treatment options capable of improving survival outcomes
without decreasing quality of life. Hormone therapy (HT) is an old but important option
with promising results in the maintenance treatment of EOC, especially for the low-grade
serous histotype [25,26]. However, the evidence about the efficacy of HT is limited to
retrospective studies and small phase II trials. The aims of this review are to summarize the
developments in the field of HT in the last decade and offer an overview of the biological
and prognostic significance of the hormone receptors (HRs) in EOC.

2. The Role of Hormone Receptors in Ovarian Cancer Carcinogenesis

Estrogen Receptor (ER) is a key receptor in the development and progression of EOC.
Two different ERs isoforms have been described: ERα and ERβ encoded by ESR1 (6q25.1)
and ESR2 (14q23.2), respectively. They share a similar structure with other steroid hormone
receptors, with an N-terminal domain (NTD), a C-terminal domain corresponding to the
DNA binding domain (DBD), a hinge region, and a ligand binding domain (LBD). When the
ligand binds to the receptor, the latter forms a dimer and translocates from the cytoplasm
to the nucleus, where it acts as a transcription factor (TF), binding to Estrogen Responsive
Elements (EREs) [27].

ERα and ERβ expression levels vary in different tissues, and in the ovary, ERβ is
more dominant [28]. In preclinical models, ERβ acts as a tumor suppressor and ERα as a
pro-tumorigenic factor in breast, prostate, colon, and ovarian cancer cells [27]. Treeck et al.
showed that ERβ inhibits cell proliferation by increasing p21 and triggering apoptosis in SK-
OV-3 ovarian cancer cells [29]. Furthermore, Bossard et al. showed that ERβ also reduces
pro-tumoral factors such as P-AKT, P-RB1, CycD1, and CycA2 in BG-1 (ERα-positive) and
PEO14 (ERα-negative) cell lines transfected with ESR2 adenoviruses. These results were
confirmed in mouse models [30].

Additionally, Liu et al. used RNA-seq analysis to show that ERβ can alter the expres-
sion of several pro-tumoral genes when activated by an agonist. They also showed that
ERβ inhibits NF-kB through a non-canonical interaction with its subunit p65 and that ERβ
enhances the sensitivity of chemoresistant EOC cell lines to chemotherapy. Pinton et al.
confirmed this effect in naïve EOC cell lines [31,32].

However, not all ERβ isoforms have anti-tumoral effects. Chan et al. transfected
EOC cell lines with different ERβ isoforms and found that isoforms -2 and -5 increased
the aggressiveness and dissemination of the EOC cells. Specifically, ERβ-5 activated the
FAK/Src pathway, which promoted cell migration and proliferation. These effects were
reversed by a FAK inhibitor [33]. The loss of ERβ and the imbalance of the ERα/ERβ ratio
are crucial for EOCs carcinogenesis, tumor progression, and dissemination, as shown by
in vitro experiments [34–36]. These findings have been validated in patient-derived samples
by immunohistochemical analysis of surgical specimens. A cohort study on 171 EOC
patients (mainly represented by the serous histotype: 134/171, 78.36%) at different FIGO
stages revealed a higher expression of the inactive cytoplasmic form of ERβ (cERβ) [37],
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confirming a previous result on a case series of 58 serous EOCs [38]. This finding is
supported by a recent study on ERβ performed on TMA samples of EOC, which also
reported a correlation between ERβ nuclear/cytoplasmic staining and known clinical risk
factors such as the number of pregnancies [39].

ERα activates downstream pathways crucial for carcinogenesis, such as IL6/STAT3,
PI3K/AKT, MAPK signaling, and pro-invasive pathways [40]. Additionally, Benhad-
jeba et al., through in vitro experiments on EOC cell lines, proved a feed-forward mecha-
nism between ERα and the CXCR7/CXCL11 chemokines axis, which activates Erk1/2 and
phosphorylates ERα at Ser-118, leading to a more aggressive pro-metastatic tumor pheno-
type [41]. Moreover, in mice models, Hodgkinson et al. showed the role of GREB1 (Growth
Regulation by Estrogen in Breast cancer) in EOC as a promoter of tumor development and
growth, being a possible cofactor of ERα in the transcription of ERE genes [42].

Progesterone is another steroid hormone involved in female cancer development by
modulating the transcription of several genes. The two main isoforms of progesterone
receptor (PR), PRα and PRβ, are encoded by PGR, localized on the long arm of chromosome
11 (11q22). PRα and PRβ have the canonical structure of steroid HRs but differ in a
164 amino acid region absent at the N-terminal of PRα, leading to different binding of
Progesterone Responsive Elements (PREs) [43].

Progesterone and PR have an anti-tumoral role in ovarian carcinogenesis, unlike their
pro-tumoral role in breast cancer [44]. Therefore, the contrasting interaction between the
ER and PR in EOC is expected [45]. Mukherjee et al. compared ovarian (OVCA) and
breast (MCF-7) cancer cell lines stimulated with estrogen, demonstrating that EOC cells
are characterized by an ER-dependent downregulation of PRG expression that can be
reverted through ER antagonists [46]. Progesterone alone or with estrogen also inhibited
the ER-dependent activation of the WNT/β-catenin pathway in EOC—initiating lesions in
both human serous EOC cells and murine models [47]. This anti-tumoral ability was also
linked to the induction of specific cell death programs such as senescence and necroptosis.
Diep et al. observed a strong interaction between FOXO1 and PRβ in vitro in PEO4 cell lines
(ERα-positive cells). FOXO1 is a direct interactor of specific steroid HRs, including both PR
isoforms [48]. In EOC, PRβ appears to recruit FOXO1 and form a transcriptional complex
upon progestin stimulation. This complex enhances the expression of the pro-senescent
factor p21 or other senescence effectors (p15, p16, and p27) in case of p21 loss [49,50].
Studies on high-grade serous EOC in murine models, which is characterized by TP53
loss [51], revealed the importance of progesterone and PR for activating the necroptosis
death program, which depends on the TNFα/RIPK1/RIPK3/MLKL pathway [52,53]. PR’s
anti-tumoral effects also seem to be related to the induction of A Disintegrin and Metallo-
proteinase with ThromboSpondin motifs (ADAMTS) proteases [54]. ADAMTS are involved
in fertility-related physiological functions of the ovary as well as anti-tumoral effects [55].
ADAMTS1, an inhibitor of the VEGFR pathway, resulted in being directly induced by PR
through C/EBPβ, NF1-like factor, and Sp1/3 co-factors in a murine model [56]. According
to a recent in vitro study, activation of PR increases both its and ADAMTS4′s expressions;
this mechanism seems to be protective against ovarian carcinogenesis. Conversely, PR and
ADAMTS losses occur in metastatic cancers [57,58]. Recently the PR anti-tumoral role in the
ovary has been questioned since some authors provided data about its relevance in cancer
development and quiescence. Wetendorf et al. used transgenic mice to demonstrate that
PR overexpression, especially of PRβ, can promote the formation of hormone-dependent
ovarian and endometrial neoplasms through the activation of the PI3K-AKT pathway and
a cyclin D1-mediated deregulation of the cell cycle [59]. Moreover, Mauro et al., studying
p53-mutant fallopian tube epithelial cells transfected (FTE) with PRα or PRβ constructs,
assessed the role of PR and progestins in the progression of Serous Tubal Intraepithelial
Carcinoma (STIC) into high-grade serous EOC. Through several in vitro experiments, the
authors demonstrated different behaviors depending on the presence of progestins; in
the absence of progestins, PR+-p53 mutant-FTE cells proliferated due to the inhibition of
dual-specificity dimerization partners DP1/2, Rb-like p130/p107, E2F4/5 plus the core
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complex MuvB (LIN9, LIN37, LIN52, LIN54, RBBP4 proteins)/tyrosine-regulated protein
kinases (DREAM/DYRK1) complex, while, on the contrary, in presence of progestins, the
DREAM/DYRK1 complex is activated. The latter causes a tumor-quiescent status and
promotes PR+ emboli formation, increasing invasive features mainly responsible for the
EOC dissemination in the peritoneal cavity [60].

Androgens also exhibit an important role in female physiological and pathological
processes. Notably, these hormones can be converted into estrogens by CYP19A1-mediated
in situ conversion, thus promoting ER-related cancer growth [61]. Moreover, androgens
can also activate their specific receptor, whose gene (AR) is localized on chromosome X
(Xq11-Xq-12), and induce the transcription of Androgen Responsive Elements (AREs).
The expression of androgen receptors (AR) varies among the different EOC histotypes,
being higher in serous than in non-serous neoplasms, and ARs have also been shown to
enhance cell proliferation. In vitro studies showed a higher number of cells in S-phase,
inhibition of p21 and p27 (master regulators of the cell cycle), and the up-regulation of
telomerase expression/activity after androgen stimulation, ultimately promoting tumor
growth [62–64].

AR-dependent cancer growth stimulation is also mediated by the suppression of
anti-tumoral pathways. Specifically, in ovarian cancer cells, the activated form of the
receptor seems to be capable of sequestering SMAD3, thus leading to a downregulation
of the transforming growth factor β (TGFβ) pathway and resulting in pro-tumoral ac-
tivity [65]. This correlation between activated AR and TGFβ has also been confirmed in
other studies [66,67]. SMAD3 is also involved in other cross-talks affecting AR regulation:
Kollara et al., exploring the AR interactome, demonstrated that a ligand-independent
interaction between AR and VEPH1 inhibits SMAD3 and p-Akt, resulting in a tumor boost
caused by higher AR levels [68].

AR can also activate specific cross-talks with pro-tumor pathways by promoting
epidermal growth factor receptor (EGFR) signaling and the secretion of the pro-tumoral IL
6 and 8 [69,70].

Furthermore, the oncogenic activity of AR is attributable to its activity as a tran-
scription factor and the formation of molecular complexes with other proteins. GLI3, a
Hedgehog-activated transcription factor, has been described as an interactor of AR in both
ovarian and breast cancer cell lines, promoting malignancy [71]. Another recently identified
interactor of AR is Nanog, a known stem cell phenotype inducer; Ling et al. showed the
increase of Nanog, SOX2, and OCT4 expressions after androgen stimulation in EOC cell
lines. These findings illustrate the importance of AR in the establishment of a cancer stem
cell niche that promotes cancer growth, progression, and dissemination [72].

These data show that steroid hormones play a key role in EOC development through
multiple synergic mechanisms, which could be investigated as novel therapeutic targets.

A summary of the pathways activated by hormone receptors and involved in the
pathogenesis of EOC are reported in Figure 1.
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3. Prognostic Role of Hormone Receptors in EOC

The expression of HRs in EOC has been widely studied as a prognostic factor. Different
histotypes of EOC have different expression patterns of HRs. A large analysis of the
Ovarian Tissue Analysis Consortium Study on 2933 EOCs showed that high-grade serous,
endometrioid, and low-grade serous EOC had strong ER expressions (defined as ≥50%
tumor nuclear staining: 60%, 60%, and 71% respectively). In contrast, clear cell and
mucinous EOC had low expression of ER (14% and 16%) [73].

ER and PR expressions were also associated with improved survival even after ad-
justing for age, tumor site, stage, and histological grade at diagnosis [Hazard Ratio: 0.33,
95% Confidence Interval (CI) 0.21–0.51; p < 0.0001)]. Moreover, two recent meta-analyses
confirmed the favorable prognostic role of ER [74] and PR [75] expression in terms of PFS
and OS. ER expression was also associated with less aggressive histological features such
as lower lymphovascular space invasion [76], and both ER and PR have also been found to
be related to platinum sensitivity [77]. However, a recent meta-analysis questioned these
findings, as the use of different antibody clones to determine ER immunohistochemical
expression may have influenced the results of previous prognostic studies [78]. On the
other hand, the role of AR was controversial. Some studies suggested that women with
longer AR CAG repeats had a lower risk of developing EOC, but other authors did not
confirm this finding [79]. Similarly, the prognostic impact of AR expression was unclear,
as some authors reported a favorable prognostic role, while others obtained inconclusive
results [79]. Other studies suggest that low AR expression correlated with a higher risk of
developing extra-pelvic metastases, in particular brain metastases [80–83].

The expression of HRs may correlate with the response to HT, but the evidence is
mostly based on retrospective studies [84–86]. There is no reliable randomized phase III
studies addressing the predictive value of HRs, and this lack of data is due to multiple
reasons, including the challenges in defining a meaningful cut-off for stratifying HR ex-
pression, the low incidence of some EOC subtypes (e.g., low-grade serous EOC), and the
differences in the methods used for their assessment. For example, a recent study suggests
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that ER immunohistochemistry is not an effective predictive marker of response to HT for
low-grade serous EOC. Instead, multigene assays should be used to evaluate ER pathway
activation, which could help identify patients who are unlikely to benefit from single-agent
HT and those who may need combination therapies [87].

4. Aromatase Inhibitors

Aromatase inhibitors (AIs) (e.g., letrozole, exemestane, and anastrozole) are com-
monly used HTs for postmenopausal women with ER/PR-positive breast cancer in ad-
juvant, neoadjuvant, or metastatic settings [88]. AIs block the aromatase enzymes that
convert testosterone to estradiol (Figure 2), thereby reducing estrogen production in post-
menopausal women [89]. In the 2000s, several studies and trials tested the efficacy of
AIs for the treatment of EOC, especially using letrozole and anastrozole, with conflicting
results [90]. One of the largest pioneering phase II studies evaluated 60 patients with EOC
detected by elevated CA125 levels who received letrozole (2.5 mg daily). Unfortunately, no
partial or complete responses were observed by computed tomography in any of the pa-
tients, although 10 patients showed disease stabilization for more than 12 weeks [91]. Based
on these results, at least seven other phase II clinical trials were conducted between 2003
and 2007 to evaluate the role of AIs in recurrent EOC. The response rates varied from 0%
to 38% [92–98]. Moreover, a recent comprehensive review and meta-analysis of 2490 EOC
patients treated with HT reported a summary estimate of a 39% (95% CI 0.29–0.50) clinical
benefit ratio for AIs [99]. More recently, a new phase II study (PARAGON—ANZGOG-
0903) evaluated the role of anastrozole in 49 women with HR-positive platinum-resistant or
refractory recurrent EOC. The study reported a clinical benefit in 13 patients (27%; 95% CI
16–40) despite the absence of complete or partial responses (based on the RECIST criteria).
The median PFS was of 2.7 months (95% CI 2.0–2.8 months) [100].

In another phase II study, the PARAGON investigators evaluated the efficacy of
anastrozole in 52 patients with asymptomatic HR-positive EOC relapse diagnosed by
CA125 elevation. These patients had a low tumor burden and had received only one
line of prior chemotherapy. The study reported a 4% complete response and 35% clinical
benefit [101]. However, this study has been criticized for its patient selection criteria
(e.g., patients with low HR expression levels) [102].

Stanley et al. performed a large retrospective study on 269 patients with relapsed
EOC treated with HT, mostly with AIs (77.0% letrozole, 18.6% tamoxifen, 2.2% megestrol
acetate, 2.2% other). They investigated the predictive role of HR expression in HT. The
CA125 response and clinical benefit rates (response or stable disease) were 8.1% and 40.1%,
respectively. The authors also reported that an ER histoscore value > 200 and a time-free
interval ≥ 180 days from the last dose of chemotherapy and the initiation of HT were
independent predictive factors of response [84].

The role of AIs as first-line maintenance therapy has also been evaluated. In a prospec-
tive cohort study on high-grade serous EOC, the addition of letrozole as maintenance
was associated with a significantly prolonged recurrence-free survival after 24 months
of treatment [60% for letrozole (n = 23) vs. 39% for the control (n = 27); p = 0.035]. A
benefit was also observed in patients who received letrozole alongside bevacizumab: 87.5%
of patients who received letrozole and bevacizumab had no recurrence after 12 months
(p = 0.026) [103].

The studies mentioned above involved patients with advanced and/or relapsed
high-grade serous EOC; however, several data are also available on the role of HT in
low-grade serous EOC. A retrospective study on 64 patients with recurrent low-grade
serous EOC evaluated the response to AIs (letrozole n = 33 and anastrozole n = 21) and
tamoxifen (n = 17). Among these patients, six complete responses (6.7%, four with letrozole,
one with anastrozole, one with tamoxifen) and two partial responses (2.2%, two with
letrozole) were obtained. Disease stabilization was reported in 44 patients (33 with AIs
and 11 with tamoxifen). These results may be partly explained by the indolent behavior of
low-grade serous EOC, but a potential benefit of HT is suggested [104]. Similar results were
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reported in a phase II study on 36 women affected by HR-positive low-grade serous OC
or serous borderline ovarian tumor treated with anastrozole. The study showed a clinical
benefit in 61% of patients after 6 months of therapy, and although no patients achieved a
complete response, a partial response was reported in 5 patients (14%) and stable disease
in 18 patients (50%) [105].
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More intriguing results on low-grade serous EOC were obtained when AIs were
used in a maintenance setting. A study compared 70 patients with low-grade serous EOC
who received maintenance HT (57.2% AIs, 28.6% tamoxifen, 14.2% others) with 133 who
underwent observation after primary surgery followed by platinum-based chemother-
apy. Median PFS for patients without maintenance HT was 26.4 months, compared with
64.9 months for those who received HT (p ≤ 0.001). No statistically significant difference
in OS was reported between the two groups (102.7 vs. 115.7 months, respectively) [106].
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More encouraging results were reported by Fader et al.: out of 27 patients with low-grade
serous EOC treated with HT as maintenance (over 90% with AIs), only 6 patients (22.2%)
developed a tumor recurrence, and 2 patients died of disease (after a median follow up
of 41 months). Recently, maintenance therapy with AIs for low-grade serous EOC has
been analyzed from a cost-effectiveness point of view [107]. The study highlighted that
maintenance with letrozole is a cost-effective strategy in women with advanced low-grade
serous EOC leading to a clinically-relevant improvement in quality-adjusted life years, life
years, and a reduction in the number of recurrences [108].

These results suggest an advantage in terms of PFS in patients with low-grade serous
EOC receiving HT.

4.1. Combinations Strategies with AIs

Recently, several combinations of target therapy and aromatase inhibitors have been
studied to increase the response rate to treatments.

4.1.1. Everolimus and AIs

Oestradiol binds to the ER activating signaling pathways, including PI3K/AKT/mTOR
signaling [109]. Small molecules that inhibit the mammalian target of rapamycin (mTOR)
kinase activity are being developed to treat various tumors [110,111]. Interestingly, in
breast cancer, mTOR inhibitors such as everolimus (Figure 2) can partially overcome AI
resistance [112]. A study involving patients with recurrent endometrial cancer found some
benefits from treatment with AIs plus everolimus [113]. The PI3K/AKT/mTOR pathway is
frequently mutated or activated in EOC and plays a crucial role in tumor progression [114].
In a phase II trial of everolimus and letrozole in relapsed ER-positive high-grade EOC,
evaluable patients (n = 19) received both oral everolimus (10 mg) and letrozole (2.5 mg
orally) daily until disease progression or intolerable toxicity. Three patients (16%) had a
confirmed partial response; however, no patient achieved a complete response. Moreover,
seven other patients showed a disease control rate of 53%. After 12 weeks of therapy, the
PFS was 47%, with a median PFS time of 3.9 months (95% CI, 2.8–11.0) and a 6-month PFS
rate of 32% [115].

4.1.2. CDK 4/6 Inhibitors and AIs

Cyclin-dependent kinases (CDKs) are a family of serine–threonine kinases identified in
the 1970s–1980s as gene products involved in cell division control. In particular, CDK4 and
CDK6 phosphorylate retinoblastoma protein 1 (RB1) and regulate its activity. The active
hypophosphorylated form of RB1 acts as a negative regulator of the cell cycle by forming
multiprotein complexes that bind the E2F transcription factors and prevent premature
cell division. CDK inhibitors (CDKI) inhibit CDK4/6 and lead to hypophosphorylation of
RB1 and arrest of cells in the G1 phase (Figure 2) [116,117]. Several molecules (palbociclib,
ribociclib, and abemaciclib) have shown significant survival benefits when combined with
AIs or fulvestrant in the treatment of metastatic ER-positive breast cancer, leading to
their Food and Drug Administration (FDA) approval [118,119]. Interestingly, a significant
fraction of EOC showed aberrant expression of cyclins, CDKs, and/or CDKI supporting
the hypothesis that these tumors may also respond to CDK4/6 inhibition. Indeed, cyclin
inhibitors have been evaluated in different settings for EOC treatment, either as a single
agent or in combination with cytotoxic chemotherapy [120].

Based on this background, the association between AIs and cyclin inhibitors has also
been evaluated in the treatment of EOC. In a recent trial involving 40 patients with an
ER-positive recurrent cancer (20 affected by EOC and 20 by endometrial cancer) treated
with 400 mg of oral ribociclib and 2.5 mg of oral letrozole daily, PFS of 50% and 35% were
obtained at 12 and 24 weeks, respectively, in the EOC cohort. Interestingly, the greatest
benefit was seen in low-grade serous EOC (3 patients were progression-free after 24 weeks
of treatment) [121].
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4.1.3. Miransertib and AIs

Miransertib is an AKT1 inhibitor (Figure 2) that has been combined with anastrozole
in women with PIK3CA and AKT1-mutant ER-positive endometrial cancer and EOC.
Preliminary data showed some efficacy in endometrial cancer but not in EOC (data available
for 13 patients) [122].

All studies on AIs performed since 2012 are reported in Table 1.

Table 1. Main results of studies performed since 2012 exploring the efficacy of hormone therapy
for OC.

Ref. Drug Study Design Clinical Setting Primary
Endpoints

Number of
Patients
Evaluated

CBR PFS

Bonaventura
et al. [100] Anastrozole Phase II

Recurrent HR-positive
platinum-resistant or
refractory OC

CBR 49 39% 2.7 months

Kok et al. [101] Anastrozole Phase II Recurrent asymptomatic
HR-positive OC CBR 52 34.6% 2.7 months

Stanley et al. [84]
Letrozole (77%),
tamoxifen, (18.6%),
others (4.4%)

Retrospective Recurrent high-grade
serous OC CBR 269 48.2% NA

Heinzelmann-
Schwarz et al.
[103]

Letrozole Prospective
case-control

Maintenance therapy in
high-grade serous OC RFS 50 / 60% after

24 months

Ghersenson et al.
[104]

Letrozole (84%),
tamoxifen (16%) Retrospective Recurrent low-grade

serous OC CBR, PFS, OS 64 9% 7.4 months

Tang et al. [105] Anastrozole Phase II

Recurrent HR-positive
low-grade serous OC and
serous borderline
ovarian tumor

CBR 36 61% 9.6 months

Ghersenson et al.
[106]

57.2% AIs,
28.6% tamoxifen,
14.2% others

Retrospective-
prospective
case-control

Maintenance therapy in
low-grade serous OC PFS 203 / 64.9 months

Fader et al. [107]
55.5% letrozole,
37.1% anastrozole,
7.4% tamoxifen

Retrospective Maintenance therapy in
low-grade serous OC PFS 27 / 79% after

36 months

Colon-otero et al.
[115]

Everolimus +
letrozole Phase II Recurrent ER-positive

high-grade serous OC PFS 19 / 3.9 months

Colon-otero et al.
[121] Ribcoclib + letrozole Phase II Recurrent ER-positive

high-grade serous OC PFS 20 / 35% after
24 weeks

Hyman et al.
[122]

Miransertib +
letrozole Phase Ib

Recurrent PIK3CA or
AKT1-mutant
ER-positive OC

Response rate 3 0% /

Chan et al. [85] Tamoxifen Retrospective
All patients with ovarian
cancer who received
tamoxifen

PFS 92 56% 4.1 months

Lindemann et al.
[123]

Weekly paclitaxel or
pegylated liposomal
doxorubicin vs.
tamoxifen

Phase III Platinum-resistant
ovarian cancer HRQoL 238 / 8.3 weeks

Trédan et al.
[124]

Regorafenib vs.
Tamoxifen Phase II

Platinum-sensitive
recurrent ovarian
cancer with rising CA125
and no evidence of clinical
or RECIST
progression

PFS 68 / 5.6 month

Kristeleit et al.
[125]

Epacadostat vs.
tamoxifen Phase II

Biochemical-only recurrence
(CA-125 elevation) following
complete remission after
first-line chemotherapy

PFS 42 / 5.56 months

Wagner et al.
[126]

Gefitinb plus
tamoxifen Phase II

Refractory or resistant to
platinum–taxane-based
therapy

PFS 56 / 58 days

CBR: clinical benefit rate, ER: estrogen receptor, HR: hormone receptor, AIs: aromatase inhibitors, NA: not
available, OC: ovarian cancer, OS: overall survival PFS: progression-free survival, RFS: recurrence-free survival,
HRQoL: Health-Related Quality of Life.

4.2. Ongoing Trials

Some trials are currently evaluating the use of AIs for EOC therapy. As mentioned
previously, data on AIs are based on retrospective/prospective studies or phase II trials
(summarized in Table 2). For the first time, a randomized, double-blind placebo-controlled
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multi-center phase III trial has been proposed to evaluate the role of letrozole (2.5 mg daily)
as maintenance therapy in patients with FIGO Stage II-IV low and high-grade serous or
endometrioid EOC [127].

Table 2. Ongoing trials exploring hormone therapy in OC.

Study Study Design Drug Clinical Setting Enrollment
(Estimated) Primary Endpoint Current Status

MATAO;
NCT04111978

Randomized
double-blind
placebo-controlled
multi-center
phase III trial

Letrozole vs. placebo

Maintenance
therapy in low and
high-grade
ovarian cancer

540 patients PFS Recruiting

LEPRE;
NCT05601700

Randomized,
open-label
phase III trial

Letrozole vs.
carboplatin + taxol

Adjuvant treatment
for low-grade
serous OC

132 patients PFS Recruiting

NCT04095364 Randomized
phase III trial

Letrozole vs. carboplatin
+ taxol + letrozole

Adjuvant treatment
in low-grade
serous OC

450 patients PFS Recruiting

NCT04720807 Phase II Letrozole + anlotinib Platinum-resistant
recurrent OC 30 patients ORR Recruiting

NCT04469764 Phase II Letrozole or anastrozole
+ ademaciclib Recurrent OC 32 patients PFS Recruiting

IMPACT
NCT03378297

Phase 0 randomized
window-of-
opportunity
study

Letrozole vs. olaparib,
vs. metformin vs.
acetylsalicylic acid

Advanced
high-grade serous
OC before surgery

143 patients
Changes in the
expression of
biomarkers

Recruiting

TICTOC
NCT05156892 Phase I/II Tamoxifen +

SUBA-Itraconazole
Platinum-resistant
recurrent OC 44 patients

Recommended
phase 2 dose of
tamoxifen +
SUBA-itraconazole

Recruiting

NCT05669768 Phase II Tamoxifen + pamiparib

EOC with
biochemical
recurrence During
first-line PARPi
maintenance
therapy

46 patients Response rate by
CA125 Not recruiting

FUCHSia
NCT03926936 Phase II Fulvestrant

Recurrent/metastatic
ER-positive,
low-grade
gynecological
malignancies

200 patients Response rate Recruiting

NCT05113368 Phase II Fulvesrtant +
regorafenib

Recurrent
low-grade serous
OC

31 patients Response rate Not recruiting

NCT05082025 Phase II Fulvestrant + copanlisib

ER+ and/or PR+
ovarian,
endometrial breast
cancers with PI3K
(PIK3CA, PIK3R1)
and/or PTEN
alterations

78 patients
Safety, tolerability,
and dose-limiting
toxicities

Recruiting

ORR: objective response rate, OC: ovarian cancer, OS: overall survival PFS: progression-free survival.

Regarding low-grade serous EOC, a multicenter, randomized, open-label phase III trial
is evaluating the superiority of letrozole to conventional carboplatin-taxol chemotherapy
(LEPRE trial, NCT05601700). The results of this trial are expected in 2029. Another phase
III randomized trial is evaluating letrozole with or without paclitaxel and carboplatin
chemotherapy (NCT04095364).

A further phase II study (NCT04720807) is evaluating the combination of anlotinib
(a multi-target tyrosine kinase inhibitor targeting tumor angiogenesis and proliferative
signaling, Figure 2) and letrozole in patients with relapsed EOC and at least two prior lines
of chemotherapy. Currently, 13 patients have been enrolled, and preliminary data showed
that 2 and 7 patients achieved a partial response and stable disease, respectively, yielding
an objective response rate of 16.7% (2/12, 95% CI: 3.3 to 54.3) [128].

Regarding CDK4/6 inhibitors, an open-label phase II study (NCT04469764) is investi-
gating the efficacy and safety of abemaciclib plus anastrozole or letrozole in patients with
hormone receptor-positive OC.

Finally, an interesting study (IMPACT NCT03378297) is evaluating the effect on tumor
tissue of four different drugs (acetylsalicylic acid, olaparib, metformin, and letrozole). One
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of these drugs is taken 10–14 days prior to tumor reductive surgery, starting on the day of
laparoscopy.

5. Anti-Estrogens

Anti-estrogen agents include a category of drugs that directly interfere with ER sig-
naling and are mainly represented by selective ER modulators (SERMs) and selective ER
downregulators (SERDs).

SERMs (e.g., tamoxifen, raloxifene) are anti-estrogen compounds that act as ERα
antagonists by competing with estrogen and modulating the transcription of ERα. Ta-
moxifen is the best-known SERM (Figure 2) which is commonly used for the treatment
of premenopausal breast cancer [129]. Currently used SERMs include triphenylethylenes,
such as tamoxifen and its analogs; benzothiophenes, such as raloxifene and arzoxifene;
phenylindoles, such as bazedoxifene and pipindoxifene; and tetrahydronaphthalenes, such
as lasofoxifene. These agents modulate estrogens in breast, bone, and endometrial tis-
sues [130,131]. Differences in the molecular and 3D structures of the co-activators and
co-suppressors that modulate the transcriptional activity of the ERs seem to be related
to the mechanism of these dual effects that are specific to each tissue [132]. SERDs have
antagonistic effects on ERα and ERβ. Fulvestrant is a selective ER degrader that acts by
binding, blocking, and degrading the ER, leading to complete inhibition of the estrogen
signaling cascade (Figure 2) [133]. Fulvestrant is approved for the treatment of ER-positive
metastatic breast cancer alone or in combination with other drugs [133,134].

5.1. Tamoxifen

In the last 30 years, several authors investigated the use of tamoxifen in patients with
a diagnosis of recurrent or persistent EOC. One of the pioneering studies of anti-estrogen
therapy reported three patients with advanced serous EOC treated with tamoxifen: one
patient achieved a complete remission lasting for 18 months, and another obtained a partial
response. One of the three cases showed high HR expression suggesting a role of this
marker in the response to HT [135]. In 1991, Heatch et al. [136] evaluated the response to
tamoxifen (40 mg daily) in 105 patients with recurrent or persistent EOC. They found a
completed response rate of 10% and a partial response rate of 8%. Furthermore, higher
expression of ERs was found in 89% of patients who achieved a complete response and in
59% of patients who achieved a partial response.

The effectiveness of tamoxifen was later reviewed in a Cochrane Systematic Review
that included 32 studies. Data from 623 patients were analyzed, of which 60 achieved a
partial or complete response (9.6%), and 31.9% showed stable disease. The response rates
varied from 0 to 56%, while the no-disease progression rates varied from 0 to 85%. This
review did not support a predictive role for HR expression when patients were treated with
tamoxifen. The authors concluded that there is only limited evidence of anti-tumor activity
based on phase II studies [137]. Another systematic review reported an overall estimated
clinical benefit ratio of 43% (95% CI, 0.30–0.56) for tamoxifen [99].

More recently, a retrospective study evaluated tamoxifen in 92 patients with EOC of
different stages (I–IV), histotypes (serous, endometroid, clear cell), and clinical settings
(first, second, and third line). The clinical benefit ratio was 56%: 10% of patients achieved
a partial or complete response, and 46% had stable disease. Also, ER and PR expressions
were analyzed in 47 patients, but no correlation was found between clinical response and
HR expression or histotype [85].

Ovaresist is a recent phase III trial that compared the efficacy of single-agent chemother-
apy (weekly paclitaxel 80 mg/m2 or four weekly pegylated liposomal doxorubicin 40 mg/m2)
and tamoxifen (40 mg daily) in patients with platinum-resistant OC. The primary endpoint
was Health-Related Quality of Life (HRQoL), and the secondary endpoints were PFS and
OS. Patients (156 and 82) were randomized to chemotherapy and tamoxifen, respectively.
Patients treated with tamoxifen had a PFS of 8.3 weeks vs. 12.7 for chemotherapy. OS
was not significantly different between the treatment arms. Despite a better PFS in the
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chemotherapy arm, the patients treated with tamoxifen had fewer side effects and superior
HRQoL [123].

Regorafenib is a multi-kinase inhibitor that targets angiogenic (VEGFR1–3, TIE2),
stromal (PDGFR-b, FGFR), and oncogenic kinases (KIT, RET, and RAF), as well as tumor
immunity (CSF1R) (Figure 2). It is approved for the treatment of refractory metastatic
colorectal cancer, unresectable or metastatic gastrointestinal stromal tumors, and hepatocel-
lular carcinoma previously treated with sorafenib [138].

The REGOVAR trial randomized 68 patients to tamoxifen (40 mg daily) or regorafenib
(160 or 120 mg daily, 3 weeks on/11 weeks off) until progression or occurrence of toxicity.
After a median follow-up of 32 months, there was no difference in PFS and OS between the
two groups [124].

Epacadostat is a selective indoleamine 2,3-dioxygenase-1 (IDO1) enzyme inhibitor
(Figure 2), currently under investigation in several tumor types [139–141]. IDO1 regu-
lates the innate immune response by suppressing T lymphocytes and natural killer cells
and by activating regulatory T cells and myeloid-derived suppressor cells [142]. IDO1
also promotes tumor neoangiogenesis through the expression of interferon-γ (IFN-γ) and
IL-6 [142,143]. IDO1 is overexpressed in EOC and is associated with advanced stage,
chemoresistance, and poor survival [144–146].

A randomized, open-label, phase II study [125] compared epacadostat with tamoxifen
in biochemically recurrent EOC (CA125 relapse). Forty-two patients were enrolled: the
median PFS was 3.75 months for epacadostat (n = 22) versus 5.56 months for tamoxifen
(n = 20, p = 0.54). Of evaluable patients, one (5.0%) epacadostat and three (15.8%) tamox-
ifen patients had confirmed CA125 responses. Despite a supporting preclinical rationale,
epacadostat was not superior to tamoxifen in this setting.

The recent studies performed on tamoxifen alone or in combination are summarized
in Table 1.

5.1.1. Combination Strategies with Tamoxifen

Tamoxifen has also been investigated in combination with other drugs. AGO-OVAR
2.6 is a phase II trial that investigated the combination of tamoxifen with gefitinib, a signal
transduction inhibitor of EGFR tyrosine kinase (Figure 2). However, among 56 patients
treated, no survival advantage was observed [126].

5.1.2. Ongoing Trials

Two trials evaluating the use of tamoxifen in combination with other drugs for the
treatment of EOC are currently ongoing (reported in Table 2).

The TICTOC study (NCT05156892) is a phase I/II trial investigating the tolerability,
toxicity, and efficacy of tamoxifen plus SUBA-itraconazole in platinum-resistant recurrent
EOC. Itraconazole is an anti-fungal drug that also has anti-cancer effects by inhibition of
angiogenesis, inhibition of the hedgehog pathway, autophagy induction, and reversion
of multi-drug resistance (Figure 2) [147,148]. Itraconazole has been tested either as a
single agent or with cytotoxic chemotherapy in the treatment of various cancers, including
EOC [147]. The TICTOC trial is expected to be completed by 1 January 2025. Another
phase II single-arm prospective clinical trial (NCT05669768) is assessing the efficacy and
toxicity of the pamiparib + tamoxifen in EOC patients with biochemical recurrence during
first-line PARPi maintenance therapy. Pamiparib is a selective PARP1 and PARP2 inhibitor
approved in China for the treatment of germline BRCA mutation-associated recurrent
advanced ovarian, fallopian tube, or primary peritoneal cancer after two or more lines of
chemotherapy [149]. The trial is not currently recruiting patients, and results are expected
in 2024.

5.2. Fulvestrant

Fulvestrant was investigated in a single phase II study evaluating 26 recurrent EOC
patients. Based on CA125 values, one patient obtained a complete response (4%), one had a
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partial response (4%), and nine had stable disease (35%) [150]. The response to fulvestrant
was related to ER and vimentin expression in EOC tissue [86]. More recently, a heavily
pretreated patient with ER-positive, recurrent low-grade serous EOC showed a response to
fulvestrant and trametinib (a MEK inhibitor) [151].

Ongoing Trials

Some trials are testing the efficacy of fulvestrant alone or in combination with other
drugs. The FUCHSia Study (NCT03926936) is a phase II trial of fulvestrant in women with
ER-positive low-grade gynecological cancers, including EOC. Fulvestrant is also being
investigated in combination with the multi-targeted kinase inhibitor regorafenib in a phase
II single-arm trial for recurrent low-grade serous EOC (NCT05113368). Another phase II
study is evaluating the role of PI3K inhibitor copanlisib in combination with fulvestrant
in selected ER-positive and/or PgR-positive advanced EOCs and endometrial cancers
with PI3K (PIK3CA, PIK3R1) and/or PTEN mutations (NCT05082025). Ongoing studies
investigating fulvestrant for EOC treatment are summarized in Table 2.

6. Conclusions

Estrogen, progesterone, and androgens have been studied for their role in EOC car-
cinogenesis, and literature data suggest that HR-positive EOC have a better prognosis than
HR-negative EOC. The currently available studies, mostly retrospective or prospective
phase II studies with small sample sizes, have obtained varying and even conflicting results.
Nevertheless, HT in EOC could have a similar role to breast cancer, where it is used for
adjuvant (first-line), maintenance, and relapse treatment. HT has a relatively low toxic-
ity profile, which makes it suitable for elderly or frail patients who cannot tolerate more
aggressive therapies. Moreover, HT seems to prolong the response to chemotherapy and
delay disease progression as maintenance therapy. However, more efforts are needed to
identify biomarkers that can predict the response to HT and optimize treatment regimens.
In this context, some subtypes of EOC, such as low-grade serous EOC, seem to respond
better to endocrine therapy. Additional research is needed to ascertain whether combining
HT with other drugs, including targeted therapies, can be more effective, and this effort
is ongoing. In particular, more multicenter, prospective, well-designed, and randomized
clinical trials are warranted to define the role of HT in EOC treatment.
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