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Abstract: With respect to other fields, bone tissue engineering has significantly expanded in recent
years, leading not only to relevant advances in biomedical applications but also to innovative
perspectives. Polycaprolactone (PCL), produced in the beginning of the 1930s, is a biocompatible and
biodegradable polymer. Due to its mechanical and physicochemical features, as well as being easily
shapeable, PCL-based constructs can be produced with different shapes and degradation kinetics.
Moreover, due to various development processes, PCL can be made as 3D scaffolds or fibres for bone
tissue regeneration applications. This outstanding biopolymer is versatile because it can be modified
by adding agents with antimicrobial properties, not only antibiotics/antifungals, but also metal ions
or natural compounds. In addition, to ameliorate its osteoproliferative features, it can be blended
with calcium phosphates. This review is an overview of the current state of our recent investigation
into PCL modifications designed to impair microbial adhesive capability and, in parallel, to allow
eukaryotic cell viability and integration, in comparison with previous reviews and excellent research
papers. Our recent results demonstrated that the developed 3D constructs had a high interconnected
porosity, and the addition of biphasic calcium phosphate improved human cell attachment and
proliferation. The incorporation of alternative antimicrobials—for instance, silver and essential oils—
at tuneable concentrations counteracted microbial growth and biofilm formation, without affecting
eukaryotic cells’ viability. Notably, this challenging research area needs the multidisciplinary work of
material scientists, biologists, and orthopaedic surgeons to determine the most suitable modifications
on biomaterials to design favourable 3D scaffolds based on PCL for the targeted healing of damaged
bone tissue.

Keywords: scaffolds; polycaprolactone; calcium phosphates; antimicrobial agents; metal ions;
essential oils; bacterial adhesion; biofilm formation; eukaryotic cell proliferation and integration

1. Introduction

In the human body, bone is a connective tissue characterised by a high specialisation,
vascularisation, and mineralised extracellular matrix. It serves vital functions, specifically
providing strength, rigidity, defence, and sustenance to the tissues, while also serving as a
reserve of calcium and phosphates [1]. In natural conditions, well-balanced bone tissue
remodelling is crucial for the skeletal system’s homeostasis. Three types of eukaryotic cells
are involved in its resorption, preservation, and neoformation: osteoblasts, osteocytes, and
osteoclasts [2]. When a trauma, a tumour, osteoporosis, or other external factors cause
a bone defect, physiological healing occurs only if a small tract is involved; conversely,
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extended bone tract damage is not restored by the body, and a fibrous connective mass
is deposed [3,4]. Therefore, it is really necessary that suitable restoration is promoted by
a bone graft created using biological or synthetic materials [5,6]. The gold standard for
restoring lost bone is an autologous graft; however, due to the risk of morbidity in the
donor and the progress made in tissue engineering research, bone tissue implants have
become a suitable solution for many patients [1,7].

The key aspect of bone tissue engineering is the production of a temporary three-
dimensional (3D) structure able to allow the reconstruction of the damaged bone tissues,
using a scaffold based on various polymers that can be modified to impart and to improve
different properties [4]. A pivotal aspect of biomaterial design is to facilitate the process of
tissue regeneration in the site of bone loss and, thereafter, being “resorbed and substituted”
by new bone tissue deposition [1]. Additionally, the 3D scaffold should have high and inter-
connected porosity. Polymers are utilised as bone implants due to various characteristics,
mainly biocompatibility, modelling elasticity, low weight, and ductility, but they present
low stiffness [5].

Polymers can be categorised as natural or synthetic; the former encompass chitosan,
col, collagen, and alginate, whereas the latter include polycaprolactone (PCL), poly (lac-
tic acid) (PLA), and poly (lactic-co-glycolic) acid (PLGA). Chitosan displays a non-toxic
nature and biodegradability, although its mechanical strength could be improved by the
addition of hydroxyapatite (HA) [1]. Col is biocompatible and allows for bone cell ad-
hesion and proliferation, and it is not antigenic, even if it has a fast rate of degradation
and low mechanical strength that could be enhanced with the addition of HA. Due to the
complexity in modifying natural polymers, the utilisation of synthetic ones has become
increasingly necessary.

In this context, PCL, a synthetic polymer, has outstanding properties in tissue engi-
neering, including compatibility with osteoblasts, bioresorbability, a semicrystalline nature,
and a non-cytotoxic effect towards eukaryotic cells, making it an appropriate biomaterial
to guide bone regeneration [8–10]. Additionally, PCL is a cost-effective raw material when
compared with other biodegradable polymers [11]. Figure 1 shows the properties of pure
PCL that make it a perfect candidate in bone tissue engineering.
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Moreover, PCL can be shaped into various forms using different techniques. It can be
blended with calcium phosphates (CaPs) to promote bone deposition and provide adequate
strength, and supplemented with antimicrobials to counteract implant-related infections
without compromising its compatibility with human cells (Figure 2) [1,12,13]. Notably,
several studies have demonstrated that enriching PCL with natural polymers, such as
chitosan and gelatin, further enhances human cell adhesion and proliferation by providing
cues for these cells. This increase is attributed to the enhancement in surface and bulk
hydrophilicity [10,14–16].
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Figure 2. A representative image illustrating the enhanced properties of PCL when blended with
calcium phosphates and functionalised with antimicrobial agents.

Several review articles have focused on the use of PCL in tissue engineering; however,
to the best of our knowledge, none have specifically addressed bone tissue engineering.
This review article focused on the available and most recent literature regarding the applica-
tion of PCL scaffolds in bone tissue engineering, encompassing their elaboration processes
and modification with additives to enhance functionality. Initially, we explored both con-
ventional and innovative techniques used to produce scaffolds for bone tissue engineering
applications. Additionally, we described the use of various calcium phosphates to promote
implant mineralisation and osteoblast colonisation. The incorporation of antimicrobial
compounds, specifically antibiotics, metal ions, and natural extracts, was examined to
assess advancements in the antibacterial and antifungal performance of PCL-based bioma-
terials. Subsequently, we discussed the literature on the cytocompatibility and promotion
of human cell adhesion and proliferation on these constructs. Finally, we emphasised the
challenges and future perspectives of PCL-based biomaterials.

2. Development Processes of PCL-Based Biomaterials

PCL and PCL-based scaffolds for bone tissue engineering can be fabricated either
through conventional processes or innovative 3D printing techniques.

Electrospinning, solvent casting/porogen leaching, and phase separation are the most
widely used traditional fabrication methods. A brief description of these techniques is pro-
vided below, while Table 1 summarises the main features of the scaffolds, the advantages,
and the open challenges for each technology. When possible, results achieved through the
incorporation of osteoconductive particles (such as CaPs) and antimicrobial agents, during
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the same fabrication process, have been highlighted. Additionally, Figure 3 presents repre-
sentative micrographs of PCL scaffolds fabricated using the main traditional techniques.

In the electrospinning process (ES) and melt electrospinning (MES), a continuous
filament is drawn from a polymer solution (ES) or from a melt (MES) through a spinneret
by high electrostatic forces and deposited on a conductive collector [17,18]. Scaffolds
developed through these methods typically exhibit a high surface-area-to-volume ratio, and
high porosity and fibre diameters ranging from nanometre to sub-micrometre scales [19].
The variation of specific parameters such as solution concentration, applied voltage, and
distance between the injector tip and collector [20] enables the tuning of the scaffold
characteristics, including fibre diameter, alignment, and micro/nanostructure [21].

PCL can be further blended with natural or synthetic hydrophilic polymers to improve
biodegradability and achieve some degree of hydrophilicity [18]. Examples of electrospun
fibrous scaffolds made from PCL blended with natural polymers (such as chitosan [22], silk,
and gelatin [23]) or synthetic ones (such as PLGA and PLA) [24–26] have been successfully
reported. Additionally, the incorporation of calcium carbonate or calcium phosphate parti-
cles into the polymer solution or melt has been shown to enhance osteoblast proliferation
and differentiation [17,27].

The electrospinning process can be performed applying different equipment configu-
rations. For instance, single and multi-channel ES can be used to feed different polymers
(e.g., PCL and PLA) either from a mixed solution in the former case or separately in the latter,
where the feeding configuration affects both mechanical properties and cell adhesion [26].
Furthermore, uniaxial and coaxial configurations can be used to prepare single-phase or
core–shell fibres. Particularly, Prado-Prone et al. [25] developed electrospun PCL with
antibacterial features by incorporating zinc oxide (ZnO) particles within the fibres [28].
They fabricated fibrous materials by electrospinning a ZnO-PCL solution/suspension using
acetic acid as a green solvent. Two electrospinning layouts were tested: uniaxial fibres
produced from ZnO-PCL solutions, and coaxial fibres fabricated with a PCL inner-core and
ZnO-PCL outer shell. Antibacterial activity of both types of fibrous materials was tested
against Escherichia coli and Staphylococcus aureus. Results revealed a significant boost in the
antibacterial efficacy of mats through a coaxial-fibre configuration compared to traditional
uniaxial ones. The mats effectively restrained the growth of both planktonic and biofilm-
embedded bacteria, likely via two main antibacterial mechanisms: (1) the release of Zn2+

ions, primarily sourced from Zn acetate nanoparticles, and (2) the photocatalytic oxidative
actions facilitated by ZnO nanoparticles. Similarly, antibacterial core–shell fibres were
fabricated by co-axial electrospinning [29]. In this case, the core was composed of xylan (the
major component of hemicellulose in plant cell walls, with immune regulatory, antioxidant,
and anti-tumour properties) suspension, while the shell was composed of a PCL solution.
Additionally, levofloxacin was dissolved in the xylan solution and demonstrated excellent
bactericidal performance against E. coli and S. aureus. Moghaddasi et al. [25] prepared com-
posite electrospun fibrous scaffolds made of PCL/PLA/HA; the mixture was dissolved and
dispersed in a N,N-dimethylformamide (DMF) and dichloromethane (DCM) mixture, to
which was added Nigella sativa-derived essential oil, prior to electrospinning. The research
demonstrated the antibacterial properties against Gram-positive bacteria of these fibrous
constructs, highlighting the need to tune the concentration of Nigella sativa (no higher than
15%) to avoid a cytotoxic effect against fibroblast cells. Abudhahir et al. [30] combined PCL
with wollastonite and copper (Cu) ions using the electrospinning technique, to achieve both
osteoinduction and antimicrobial behaviour. In particular, the presence of Cu improved
the amount of adsorbed protein on the scaffold, facilitated apatite formation in vitro, and
exhibited a potent antibacterial effect against S. aureus and E. coli, while preserving biocom-
patibility towards mouse mesenchymal stem cells [30]. To overcome the well-known issue
of PCL hydrophobicity, a possible solution involves mixing it with natural or synthetic
polymers, as previously mentioned. Although not the topic of this review, the use of
alternative strategies are also discussed, precisely functionalisation [31] or coating [32] to
improve hydrophilicity. For instance, Goreninskii et al. [32] developed electrospun PCL
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scaffolds, subsequently covered by a diamond-like layer under a nitrogen atmosphere,
showing a clear decrease in the water contact angle without affecting cell viability.

The solvent casting/porogen leaching (SC/PL) technique consists of a two-step pro-
cess. In the solvent casting stage, the polymer is dissolved into a suitable solvent, to which
are added water-soluble porogen particles. The mixture is then poured into moulds of
the desired shape and dried under various conditions to remove the solvent (e.g., air
drying, vacuum drying, and freeze-drying). The dried samples are subsequently subjected
to a porogen leaching step in water, which is then removed within a short timeframe
(approximately 48 h). Both inorganic salts (e.g., sodium chloride (NaCl) and sodium bicar-
bonate) and natural/synthetic polymer particles (e.g., sucrose, fructose, polyvinyl alcohol
(PVA), low-molecular-weight polyethylene glycol) can be used as porogens. This technique
produces scaffolds with approximately 70–90% porosity, depending on the amount of
added salt. High porosity levels are necessary to successfully reach the interconnection of
pores. The diameter and morphology of pores strictly depend on the size and shape of the
salt/polymer crystals, making this a very reproducible technique. The main disadvantage
is related to the complete removal of the porogen, which poses a challenge, particularly in
the case of large samples. Additionally, an open and fully interconnected porosity is needed
to achieve full porogen removal. In the literature [33–38], many examples are available
related to the fabrication of PCL/CaP composite scaffolds using the SC/PL technique and
conversely, a very limited number of studies address the addition of antibacterial agents.
A few previous studies have investigated the role of antimicrobial agents, such as copper
oxide [39], ZnO [40], and β-silver vanadate oxide (AgVO)3 [41] particles, in non-porous
solvent cast films. Nevertheless, the authors’ previous studies [42–45] focused on the
fabrication of high-porous PCL and calcium phosphate–PCL 3D constructs made using the
SC/PL technique. The results exhibited the possibility to impart antimicrobial properties
to the scaffolds by adding silver particles or essential oils during their fabrication [42–45].
The data achieved using this strategy are thoroughly discussed in Section 4.

The thermally induced phase separation (TIPS) technique is based on mixing a poly-
mer dissolved in organic solvents (e.g., dioxane, tetrahydrofuran, dimethylformamide)
with water (nonsolvent), generating polymer-poor and polymer-rich phases. The latter is
cast into moulds, frozen, and freeze-dried under vacuum to remove the frozen solvent,
leading to the formation of pores [46]. The polymer concentration, solvent/nonsolvent
ratio, and cooling rate are the major processing parameters that play a role in influencing
the morphology of scaffolds [46,47]. In fact, an efficient control over the final structure
of the scaffold in terms of the morphology, average size of pores, and degree of their
interconnection can be achieved adjusting these parameters [46]. The addition of calcium
phosphate particles influences the architecture and properties of scaffolds, leading to an
increase in the elastic modulus, a decrease in porosity, and an improvement in osteocon-
ductive properties [48,49]. This technique allows the fabrication of a nanofibrous structure,
in which can be achieved an additional and larger porosity by adding leachable porogen to
the mixture [50], similar to the SC/PL technique.

Mixtures of PCL with natural polymers are not easily fabricated [51,52], necessitating
a combination with other techniques, such as electrospun gelatin fibres [53] or post-coating
with chitosan or gelatin [54]. In a broader context, researchers have explored the combina-
tion of TIPS with various fabrication techniques, including electrospinning [55], porogen
leaching [56], and 3D printing [57]. These advancements have facilitated the creation of
diverse architectures and morphologies of pores at the micro/nanometre scale, tailored
for specific applications. These innovations have yielded porous scaffolds with a range of
structures, including micro/macroporous [56], fibrillar (nano/micro-fibrous) [46], isotropic
(random pore) [46], and anisotropic (oriented/aligned pore or microtubular) [58].

Few previous studies have demonstrated the feasibility of using the TIPS technique to
incorporate antimicrobial agents into the primary polymer solution. Farzamfar et al. [59] de-
veloped bone scaffolds made of PCL/PLA containing the antibiotic tetracycline hydrochloride,
whose addition provided antibacterial and osteoinductive properties. Shu and colleagues [60]
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designed membranes composed of PCL/PLA/nano-HA, with the addition of a zeolite-
imidazolate framework loaded with Cu, and demonstrated an antibacterial effect against
E. coli and S. aureus.
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Figure 3. Representative micrographs of PCL-based scaffolds fabricated by ES/MES (a–c), SC/PL
(d–f), and TIPS (g–i). Electrospun PCL (a), PCL with 1.0% HA (b) scaffolds (reprinted from [17] under
the CCC license n. 5766001110392), and (c) Cu-doped wollastonite/PCL scaffolds after immersion
in simulated body fluid for 14 days (reprinted from [30] under the CCC license n. 5766071417184).
Lower (d) and higher (e) magnification images of PCL scaffolds and PCL/biphasic calcium phosphate
scaffolds obtained by the SC/PL method, using NaCl as a template; (f) a biphasic calcium phosphate
(BCP)/PCL sample showing the fine and homogeneous distribution of the calcium phosphate
particles inside the polymer matrix (reprinted from [42] under an open access Creative Common
CC BY license). TIPS-derived scaffolds containing PCL and virgin olive oil (g) (modified from [52]
under the CCC license n. 5766100665534) and PLA/PCL/gelatin nanofibers (h) also added with 0.1%
taurine (i) (reprinted from [53] under an open access Creative Common CC BY license).
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Table 1. Three main traditional techniques to fabricate PCL-based scaffolds for bone tissue engineering.

Technology Scaffold Main Features Advantages Open Challenges References

ES and MES

■ Densely packed fibrous structure
■ Random orientation of the fibres
■ High porosity
■ High surface-to-volume ratio
■ Fibres from submicrometric to

nanometric size for ES
■ Larger diameters of fibres (micrometric)

using MES
■ Low thickness of scaffolds (1 mm max)

■ High control over geometrical features
of scaffolds (e.g., hierarchy, fibre
diameter, alignment)

■ Possibility of blending with natural or
synthetic polymers

■ Possibility of adding inorganic fillers
(e.g., calcium phosphates
and carbonates)

■ Possibility to match ES with other
techniques: self-assembly ES,
template-assisted ES, layer-by-layer ES

■ Limitation in thickness (1 mm max):
2D scaffolds

■ Small volumes of scaffolds at low rates
■ Need of (toxic) solvents to dissolve

the polymer
■ For MES, worse hydrophilicity and minor

bioactivity to support growth and adhesion
of cells

[18,19,21,25,61–63]

SC/PL

■ 3D scaffold
■ High porosity (70–90%) with good

degree of interconnection
■ Tuneable porosity selecting the amount,

size, and shape of porogen

■ Easy technique
■ No complex or expensive equipment
■ Good reproducibility
■ Possibility to load calcium phosphate

and antimicrobial agents

■ Small samples
■ Possible retention of toxic solvents
■ Risk of residual salts in the scaffolds
■ Co-addition of natural polymers still not

available in literature

[42–45,62,64]

TIPS and TIPS/PL ■ Fibrous membranes or 3D scaffolds

■ 3D fibrous scaffolds
■ Hierarchical porosity by addition of

pore former
■ Tuneable scaffolds by adjusting

processing parameters
■ High versatility in the architecture

of scaffolds
■ Possibility to combine TIPS with other

shaping methods

■ Toxic solvents
■ Sublimation of the frozen solvent is,

relatively, a time- and
energy-consuming process

■ Mixture of PCL and natural polymers is not
easily fabricated

[46,51]
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Despite being commonly employed, traditional techniques display several draw-
backs. Particularly, their inability to fabricate scaffolds beyond simple shapes, their lack
of customisation to match defect characteristics of patients, and their incompletely con-
trolled structure/microstructure. Various 3D printing techniques such as extrusion-based
printing, inkjet printing, selective laser sintering, fused deposition modelling, and vat-
photopolymerisation have been proven as effective in shaping complex tissue scaffolds
tailored to desired specifications [65,66].

Scaffolds produced through 3D printing methods typically exhibit full interconnectiv-
ity, and their porosity can be readily adjusted through the optimisation of processing param-
eters. This technology offers a unique opportunity to investigate how micro-architecture
influences the proliferation of cells and the generation of the extracellular matrix. Tissue
geometry can be derived from computed tomography or magnetic resonance imaging scans
of patients, and reconstructed into 3D models [67]. Additionally, computational tools can
simulate biomechanical and transport properties, enabling the design of specific scaffold
architectures to maximise tissue growth within a scaffold-guided environment [68].

Table 2 reports the most commonly used 3D printing technologies for PCL-based
scaffolds, and provides a brief overview of the main features of these constructs, as well
as their advantages and the open challenges. The recent advances in fabricating antimi-
crobial 3D-printed scaffolds have been highlighted, as it was previously performed with
traditional processes.
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Table 2. Three main 3D printing techniques to fabricate PCL-based scaffolds for bone tissue engineering.

Technology Scaffold Main Features Advantages Open Challenges References

Extrusion-based printing (EBP): FDM

■ Simple lattice structures
■ Small scaffolds: dimension of

hundred microns, sometimes
up to millimetres

■ No solvent
■ Continuous process
■ High-strength materials
■ Possibility of loading drugs and

other agents
■ Possibility of loading with natural

polymer in the melt
■ Possibility of loading CaP particles

■ Low resolution
■ The efficiency could be increased by

Melt Electrospinning Writing (MEW)
to print scaffolds based
on micro-fibres

■ The need of filament reduces
batch dimension

■ Risk of pollution
■ Limited printing size and volumes
■ No cell incorporation

[62,65,69]

Selective laser sintering (SLS)

■ Simple and complex structures
■ Porosity up 85%
■ Hierarchical structure, with

millimetre-sized pores and
diffused microporosity
(40–100 µm)

■ High resolution
■ Fast process
■ Rough surfaces potentially improve

adhesion of cells
■ No solvent
■ Possible multiple materials
■ No filament needed
■ Mechanical properties similar to

trabecular bone

■ Possible thermal damage
■ Loading with antimicrobials not yet

reported in literature
■ High amount of waste due to

high temperature
■ The incorporation of cells and

biomolecules is limited

[62,67,70,71]

Vat-photopolymerisation (SLA, DLP)
■ Complex and

unprecedented structures
■ High accuracy
■ High resolution

■ Only photocurable polymers (PCL
should be modified with acrylates,
methacrylates, or fumarates to
enable photo-polymerisation)

■ Expensive equipment
■ Cytotoxicity caused by photoinitiator

or unreached monomers

[70]
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Among the extrusion-based techniques, fused deposition modelling (FDM) is widely
used for the development of scaffolds based on pure or functionalised PCL, especially due
to low melting temperature of the polymer (>60 ◦C). Besides producing materials with
high strength [72], the easiness, reliability, and cost-effectiveness of the process contribute
to its success. In FDM, the thermoplastic filament is heated to its melting point and then
extruded through the heated nozzle onto a platform, forming a 3D structure. The adhesion
between successive layers is achieved through high-temperature deposition, which re-melts
the surface of the printed part, enabling bonding with the subsequent layer. A further
advantage of this technique is its solvent-free nature. The features of the printed parts can
be tuned by changing printing parameters, such as printing speed and temperature [66].

Numerous studies proved the feasibility to add calcium phosphate particles into
melts of PCL, and extrude composite filaments, to be further used in the 3D printing
process [73–80]. Composite scaffolds made of PCL and HA at 20 wt% have been fabricated
using either micro- or nano-sized HA particles, and 3D pore structures of different sizes
were produced successfully [73]. Similarly, PCL/HA (up to 20%) composite filaments were
used to fabricate scaffolds. HA played a role in enhancing the compressive strength and
especially the Young’s modulus: the researchers determined an increase by 30% in the fila-
ments and by 50% in the scaffolds [80]. Safiaghdam et al. [74] developed PCL/β-tricalcium
phosphate (β-TCP) 3D constructs with and without magnesium oxide (MgO) nanoparticles,
and proved a role of MgO in boosting the osteogenic capacity in vivo. To this aim, the
inorganic fillers were added to melts of PCL, and filaments were used to print lattice
scaffolds [74]. Analogously, Krobot et al. [75] prepared blends of poly(3-hydroxybutyrate)-
(PHB)/PLA/PCL and incorporated TCP particles as a bioactive filler. Composite filaments
were used to print simple lattice scaffolds [75]. Their mechanical properties were in the
range of human trabecular bone, and they resulted in not being cytotoxic. Kim et al. [76]
developed PCL/β-TCP composite scaffolds that were submitted to a surface amine plasma
polymerisation. The surface treatment improved the hydrophilicity of the scaffold, as well
as the ceramic particles enhancing the bioactivity of pre-osteoblasts, proving the promising
properties of these scaffolds in bone tissue applications [76]. In a study, PCL/biphasic
calcium phosphate (BCP) composite scaffolds were created and in vivo-implanted sub-
cutaneously, proving to have both biocompatibility and osteoconductive properties [81].
Likewise, composite PCL/CaP scaffolds were designed as a honeycomb-like structure and
showed a complete interconnectivity of the pores, as well as an improved biodegradability
due to the presence of CaPs [79]. Human mesenchymal stem cells, seeded on the constructs,
were able to adhere, migrate, and differentiate into the osteogenic lineage [79].

The feasibility to print blends of PCL with natural polymers was demonstrated by
Duymaz et al. [82]. They 3D-printed mixtures of PCL, gelatin, and different concentrations
of a low-molecular-weight polysaccharide (Halomonas levan, HLh). Therefore, cellular
behaviour of human osteoblasts was studied, resulting in an increased biocompatibility
proportionally to HLh content [82].

The low melting temperature of PCL allows the addition of (certain) drugs in the
melt, without thermal degradation [66]. However, several limitations remain regarding
heat-sensitive biomolecules, and the failure to seed cells. In this scenario, Kim et al. [83]
demonstrated the feasibility to load stents with antibiotics (amoxicillin and cefotaxime),
which were directly added to molten PCL. Stents showed good mechanical properties, and
the efficacy of antibiotics was successfully retained after printing. Muwaffak et al. [84]
proved the opportunity to load zinc, copper, and silver into melted PCL, to achieve their
controlled release and to impart antimicrobial properties. Salmria et al. [85] also demon-
strated the incorporation into PCL of an antibacterial substance, such as silver sulfadiazine,
whereas Wang at al. [86] used Zn (1–3%)-loaded PCL melts to produce filaments, and to
print lattice scaffolds. The addition of Zn improved their mechanical properties and pro-
moted the formation of new bone tissue up to 8 weeks after in vivo implantation. Notably,
the greatest osteogenic effect was underlined when Zn was at 2 wt%.
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Selective laser sintering (SLS) is a further, well-exploited, 3D printing technique to
fabricate PCL-based scaffolds. The computer-controlled laser beam sinters the powder;
once sintered, a roller spreads a new layer of powder, while the remaining one provides
a structural support [65]. A carbon dioxide laser is usually applied for PCL [65]. The
key feature of the technique is the surface roughness of the printed parts. Han et al. [87]
carried out systematic research on how parameters of the SLS process affect the surface
roughness of PCL scaffolds and the relationship between roughness and biocompatibility
of constructs. Scaffolds were fabricated using various laser powers and scanning speeds.
Observations revealed that elevated energy density compromises shape fidelity concerning
pore size and porosity, leading to dense and smooth scaffold surfaces featured by an inferior
cytocompatibility. Conversely, lower energy density yielded to a diminished mechanical
strength; thus, the resulting roughness of the surfaces, attributed to incomplete sintering of
PCL particles, allowed cell adhesion and proliferation [87].

Borate bioactive glass (BBG)/PCL composites were developed by SLS, to exploit the
excellent biodegradability and osteogenesis of BBG [88]; likewise, CaP/PCL composites
were also fabricated through SLS [47,89–91]. Liu et al. [47], using SLS, developed PCL/HA
scaffolds characterised by interconnected pores able to support the proliferation of cells
and the penetration of blood vessels. Furthermore, the authors highlighted that the loading
of vascular endothelial growth factor onto the scaffolds further enhanced angiogenesis
and osteogenesis.

Concerning the fabrication of antimicrobial PCL-based scaffolds by SLS, to the best of
the authors’ knowledge, no previous literature is available.

Vat-photopolymerisation techniques include Stereolithography (SLA) and Digital light
processing (DLP). In these processes, a photocurable liquid monomer is polymerised layer
by layer by an ultraviolet (UV) light, being the UV source, a laser, in the case of SLA and a
projector in DLP. Among the mentioned 3D printing technologies, vat-photopolymerisation
processes provide the highest printing precision and resolution, as well as the best control
over scaffold inner geometries. The design and printing of complex shapes is well proved,
with a careful control in terms of porosity amount, size, shape, and interconnectivity [92].

As a major concern, it was recently observed that UV light poses a significant risk to
DNA cells, potentially leading to dermal cancer [19]. This problem can be solved by using
visible light during SLA bioprinting [92]. In addition, as a key post-printing step, scaffolds
need to be carefully washed, in order to remove the remaining photoinitiator and uncured
resin, since the presence of moieties can induce cytotoxicity.

As a further challenge, PCL has been modified with acrylates, methacrylates, and
fumarates, to allow photopolymerisation, but only a few studies have reported the use of
photocrosslinkable PCL in SLA [93–96]. In particular, Elomaa et al. [96] used solvent-free
SLA to prepare a photocurable PCL-based resin: the resulting scaffold had high accuracy,
no shrinkage, and interconnected pores of suitable size and shape.

Recently, bioprinting has been gaining increasing interest. In fact, the seeding of
cells on the scaffolds can result in a non-uniform distribution of cells, while decreasing its
effectiveness. Bioprinting allows the deposition and uniform distribution of living cells,
and other biomolecules, simultaneously to printing [97,98]. Bioprinters typically have
several printing nozzles, one for printing polymers (e.g., PCL) and one for printing cells as
well as heat-sensitive materials. This method allows the integration of various cells into
scaffolds, thus promoting tissue formation [69,98]. Figure 4 depicts some representative
SEM micrographs of PCL-based scaffolds fabricated using the main 3D printing techniques.
If compared to Figure 3, showing traditional methods, the higher resolution and capability
to control the geometrical features is evident in the scaffold. This is especially visible
through the vat-photopolymerisation techniques that allow complex and unprecedented
inner architectures.
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3. Blending of PCL-Based Biomaterials with Calcium Phosphates to Allow Osteogenesis

Calcium phosphates (CaPs), the mineral elements of bone, can be used in combina-
tion with different materials, including metals, like titanium (preferentially as bioactive
coating [99,100]), or with polymers. The latter provide composite mixtures to be used as
injectable materials (such as acrylic cements) for bone repair and implant fixation [101,102],
drug delivery systems [103,104], and scaffolds [105]. CaPs are mainly represented by hy-
droxyapatite (HA), β-tricalcium phosphate (β-TCP), and their mixture biphasic calcium
phosphate (BCP). CaPs are featured by different properties, especially osteoinduction and
osteoconduction, since they are similar in composition to bone. Osteoconduction refers to
the ability of a biomaterial to serve as a scaffold for the growth of new bone tissue, meaning
that a hierarchically porous structure is mandatory for this aim. Upon implantation, the
biomaterial interacts with body fluids, resulting in the dissolution of calcium and phosphate
ions from its surface. These ions reprecipitate on the scaffold surface, generating a biolog-
ical apatite, whose chemical and structural similarity to natural bone promotes human
cellular attachment and proliferation, thus initiating the bone remodelling process [106].
Conversely, osteoinduction refers to the ability to induce the differentiation of progenitor
cells into osteoblasts, leading to the formation of new bone tissue. As the mechanism
occurs through the release of bioactive factors (e.g., bone morphogenetic proteins, BMPs)
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that stimulate the recruitment and differentiation of cells, pure CaPs are typically not
inherently osteoinductive. However, they can display this characteristic when combined
with bioactive factors. The in vivo osteoinductive properties of CaP have already been
reported in the literature, and associated with their high affinity for BMPs and growth
factors. Therefore, CaP acts as a concentrator of osteoinductive molecules, also providing
this feature to the ceramic material [107].

PCL is believed to be one of the key biomaterials for applications in bone tissue engi-
neering, as it possesses outstanding characteristics such as biocompatibility and biodegrad-
ability. Literature reports show its use in repairing a small tract of bone defects to allow its
healing. In addition, examples of osteoinductive electrospun PCL scaffolds have already
been reported. In fact, the loading of this polymer with proper pro-angiogenic agents such
as dexamethasone, simvastatin [108], and cholecalciferol [109] successfully conferred to
PCL osteoinductive properties. It can also be blended with CaPs, being composite materials,
enhancing the hole compressive strength and improving the rate of osteogenesis [110,111].

β-TCP was the first CaP used as a bone graft substitute, already in 1920. Notably,
upon its utilisation, the resultant formed bone mass typically diminishes from its original
quantity due to resorption. This is the reason why β-TCP needs to be used in association
with another compound featured with a slow resorbable period [112]. Thereafter, in the
1970s, HA became available in this field, representing the predominant CaP component
of bone. In an in vivo environment, these CaPs display different behaviour; in fact, HA,
with its low solubility constant, is often regarded as non-resorbable, whereas β-TCP, being
highly soluble, undergoes resorption [113]. β-TCP is also able to neutralise the acidification
milieu that occurs during the degradation process of the polymers [114]. Therefore, their
mixture that is BCP, at a different ratio, is an assessable solution since it combines the
properties of both. Due to their similarity to bone and to their cytocompatibility, CaPs (e.g.,
HA, β-TCP, and BCP) are widely used in bone tissue engineering for orthopaedic applica-
tions. Moreover, the low degradation rate of PCL allows bone tissue regeneration during
its degradation period. Figure 5 reports the key characteristics achieved by composite
biomaterials based on PCL and CaPs.
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Consequently, composite biomaterials based on PCL and CaPs are highly desired due
to the properties achieved from their combination [115]. In a notable study, the researchers
demonstrated that a composite multi-layer scaffold made of PCL and BCP is a suitable
solution for bone tissue engineering since each layer confers additional properties to
the construct: resistance in the bulk (ceramic core) and porosity in the surface (polymer
external layer). Additionally, these 3D scaffolds displayed the appropriate gradient of
porosity and degradation rate [113]. In a work of our research group, a functionally
graded 3D scaffold was designed with a ceramic inner core and a PCL external layer. The
characterisation performed with field emission scanning electron microscopy (FESEM)
allowed us to demonstrate that the different layers were closely linked and the degradation
rate test revealed the bioactivity of the inner core, thus being a promising construct for bone
tissue applications [116]. More recently, Rezania et al. [80] obtained a scaffold made of PCL
and HA, of which they observed the uniformity of pores and the dispersion of HA into
the constructs, with agglomeration in some parts. Gerdes and colleagues [111] developed
3D-printed scaffolds based on PCL and enriched with HA, as composite material, and
revealed close spaces within the pores. Additionally, when PCL and HA were blended in a
3D scaffold, a fine distribution of HA was revealed, with aggregates of different sizes [115].
In another study, 3D constructs made of PCL and blended with HA were characterised,
and the presence of CaPs in their structure was highlighted [117]. More recently, PCL
was successfully incorporated with 1% of HA into 3D scaffolds and their increase in
roughness improved the performance of cell attachment [118]. Miszuk et al. [119] produced
biphasic PCL and HA nanofibrous scaffolds by electrospinning with high interconnected
pores, whose diameter was about 2.4 µm. PCL was enriched with HA and fluorapatite
to fabricate 3D composite constructs, which were subsequently examined using scanning
electron microscopy (SEM): the analysis revealed the presence of apatite particles in the
surface [120].

In a recent study, the researchers developed a 3D functionally graded scaffold com-
posed of PCL, gelatin, and nanohydroxyapatite. Each layer was interconnected to achieve
a suitable porosity, and the construct displayed an initially high degradation rate, within
the first two days, which subsequently decreased [121]. In a similar study, the researchers
produced comparable scaffolds and reported both an average pore size of 4.7 ± 1.04 µm and
a uniform and adequate deposition of nanohydroxyapatite on the surface. The degradation
in an aqueous medium led to structural rupture of the scaffolds [4].

In another study, electrospun scaffolds composed of PCL, HA, and chitosan were
prepared. An SEM analysis revealed the interconnected porosity of the specimens and the
presence of HA. The bioactivity test highlighted the deposition of an apatite layer after
6 weeks of incubation [16]. Similarly, PCL and chitosan cubic-shaped scaffolds exhibited a
squared porosity with an average width of 440 ± 16 µm and a height of 120 ± 5 µm [10].

PCL-based scaffolds produced using the melt electrowriting technique demonstrated
an increased surface roughness when compared to those prepared with PLA or with
PLA/PCL [122].

Cylindrical-shaped granular multichannel bone substitutes were developed using
BCP (60 HA + 40 β-TCP), and the internal porosity and compressive strength were assessed.
The results revealed a high bulk macro-porosity with pore diameters of 1, 2, and 3 mm, and
that the compressive strength increased proportionally with the diameter of pores [2].

Thuaksuban et al. [123] produced three types of 3D scaffolds: pure PCL, and PCL incor-
porated with BCP at 20% or 30%—they demonstrated that the scaffolds had large pores and
released calcium and phosphates over time. However, when the BCP content was increased
to 30%, fractures were observed within the constructs. More recently, our interdisciplinary
group designed PCL-based scaffolds blended with BCP (70 HA + 30 β-TCP) and evaluated
their physico-chemical properties from various perspectives. The results demonstrated that
the 3D constructs were featured by a highly interconnected and homogeneously distributed
porosity, due to the salt-leaching process [42]. When NaCl was used as pore-formed salt, the
resulting pores displayed a regular squared geometry, whereas the use of sodium nitrate
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(NaNO3) produced pores with less defined geometry. Furthermore, the dimension of pores
varied from approximately 234 µm with NaCl to 208 µm with NaNO3 [43]. Additionally,
the FESEM analysis revealed the homogeneous and fine distribution of BCP within the
porous 3D constructs, which also increased their stiffness compared to those made of
pure PCL [42]. The degradation rate tests, conducted by immerging the constructs, for
different incubation times, in simulated body fluids, revealed that pure PCL specimens
experienced slow weight loss during 20 days of immersion. In contrast, the addition of
BCP into the polymer determined a faster weight loss [43,44]. Kim and colleagues [76]
fabricated PCL scaffolds with a plasma polymerisation for β-TCP deposition. An FESEM
analysis demonstrated both the random distribution of β-TCP nanoparticles on the surface
and the pores of ~300 µm, whereas the X-ray diffraction (XRD) analysis revealed peaks
corresponding to PCL and β-TCP. In a study, 3D scaffolds were fabricated using PCL and
45 wt% of β-TCP, with or without the addition of 10 wt% of MgO nanoparticles. The
resulting scaffolds exhibited a well-defined microstructure, a size of pores of about 500 µm,
and an effective dispersion of MgO nanoparticles [74].

In another study, the researchers hybridised PCL with the copolymer
Inulin-g-poly(D,L)lactide, resulting in scaffolds with squared pores, high surface roughness,
and low degradation rates after 180 days of incubation [124].

Several papers reported the loading of CaPs and antimicrobial agents on 3D scaffolds
based on PCL, and revealed no alterations in their structural integrity and interconnected
porosity, while demonstrating sustained release of the incorporated compounds [125,126].
Conversely, a 3D scaffold based on PCL, PLA, and HA was enriched with Nigella sativa,
known as black curcumin: the addition of the natural compound determined an altered
morphology compared to the pure one [25].

Table 3 reports the key results of the literature analysis on the morphological and/or
chemical characterisation of the PCL-based scaffolds blended with CaPs.
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Table 3. Summary of the key literature findings pertaining to morphological and/or chemical characteristics of PCL-based 3D scaffolds blended with calcium
phosphates for bone tissue engineering.

Scaffold Composition Key Findings References

Composite multi-layer scaffold made of PCL and BCP It had a resistant bulk (ceramic core) and a porous surface (polymer external layer), and displayed the appropriate gradient of porosity
and a degradation rate [113]

Functionally graded 3D scaffold designed with a ceramic
inner core and a PCL external layer The different layers were closely linked and the degradation rate of the inner core revealed bioactivity [116]

Scaffold based on PCL and HA The pores were uniformly distributed and HA was dispersed in the constructs, with some agglomeration [80]

3D-printed scaffold made of PCL and enriched with HA The composite material revealed small spaces among pores [111]

PCL and HA blended in a 3D scaffold HA in PCL-based scaffold was finely distributed with aggregates of different size [115]

3D scaffold based on PCL and blended with HA The appearance of CaPs was revealed in the structure [117]

PCL incorporated with 1% of HA into 3D scaffold The addition of HA to PCL provoked an increase in roughness [118]

Biphasic PCL/HA nanofibrous scaffold The pores displayed a high degree of interconnection. Their diameter was about 2.4 µm [119]

PCL enriched with HA and fluorapatite to obtain a 3D
composite scaffold The presence of apatite particles was detected in the surface [120]

3D functionally graded scaffold based on PCL, gelatin,
and nanohydroxyapatite

The layers were interconnected to reach a suitable porosity. An initial high degradation rate within 2 days was recorded that,
thereafter, slowed [121]

3D functionally graded scaffold based on PCL, gelatin,
and nanohydroxyapatite

It had an average pore size of 4.7 ± 1.04 µm with the uniform, and adequate deposition of nanohydroxyapatite on its surface, but the
degradation in aqueous medium determined a rupture of its structure [4]

Scaffold prepared with PCL, HA, and chitosan Specimen with an interconnected porosity and with the presence of HA. The deposition of an apatite layer was highlighted [16]

PCL and chitosan cubic-shaped scaffold The construct presented a squared porosity (average width of 440 ± 16 µm and a height of 120 ± 5 µm) [10]

PCL-based scaffold with or without PLA An increase in surface roughness was observed in pure PCL scaffold compared to that prepared with PLA or with PLA/PCL [122]

Cylindrical-shaped multichannel bone substitutes prepared
using BCP (60 HA + 40 β-TCP) A high bulk macro-porosity was revealed (1, 2, and 3 mm of diameter) and the compressive strength increased with the pore’s diameter [2]

Three types of 3D scaffolds: pure PCL, and PCL added with
BCP at 20% or 30% The scaffolds had large pore size and released calcium and phosphates over time. BCP at 30% produced fractures in the construct [123]

PCL-based scaffold blended with BCP (70 HA + 30 β-TCP),
and added with 1.67% of silver

The 3D scaffold was featured by a highly interconnected and homogeneously distributed porosity, a homogeneous and fine dispersion
of BCP, and an increased stiffness [42]

PCL-based scaffold blended with BCP (70 HA + 30 β-TCP),
and added with essential oils

The salt-leaching process formed two types of pores (about 234–208 µm): NaCl determined squared regular pores, whereas NaNO3
produced pores with a less defined geometry. The pure PCL specimens slowly lost weight during the immersion [43]

PCL-based scaffold blended with BCP (70 HA + 30 β-TCP),
and added with ~1% of silver The blending of PCL with BCP provokes a faster weight loss respective to pure PCL [44]

PCL scaffold with deposition of β-TCP nanoparticle FESEM analysis demonstrated the random distribution of β-TCP nanoparticles on the surface and the pores of about 300 µm. The XRD
revealed the peaks related to PCL and β-TCP [76]
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Table 3. Cont.

Scaffold Composition Key Findings References

3D scaffold of PCL and β-TCP, and added or not with
MgO nanoparticles A well-defined microstructure with the pore size of ~500 µm, and the dispersion of the MgO nanoparticles was revealed [74]

Composite scaffold based on PCL and HA, and incorporated
with tetracycline

FESEM images showed the homogeneous distribution of tetracycline on the PCL surface. A high efficiency of its encapsulation was
revealed as well as a sustained release over time [125]

3D scaffold made of PCL and HA, and loaded with ZnO The higher content of HA makes the constructs more fragile, whereas ZnO was presented in agglomerates [126]
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4. Antimicrobial Properties of PCL-Based Biomaterials Loaded with
Antimicrobial Agents

PCL-based biomaterials for bone tissue engineering can be added with different
antimicrobial agents to prevent bacterial and yeast adhesion, and biofilm formation on the
device. The antimicrobials can be released by the construct and act towards free-floating
microorganisms. The available literature data pertain to the enrichment of PCL with
antibiotics or antifungals, metal ions, and natural compounds (e.g., essential oils), and the
investigation of the antimicrobial properties by means of different approaches. Particularly,
the release of antimicrobial compounds has been evaluated using an agar diffusion method
comparable to the Kirby–Bauer test, while microbial adhesion has been quantified through
experiments preceded by sonication. Additionally, FESEM has been employed to observe
the inhibition of biofilm formation stages.

Only a limited number of articles reported the loading of antimicrobial drugs on
3D scaffolds based on PCL, designed for bone tissue engineering, aimed at evaluating
their antibacterial properties. In these cases, the antibacterial features were conferred by
the selective toxicity of the drugs depending on their mechanism of action. Specifically
concerning antibiotics, PCL constructs were supplemented with doxycycline and the agar
diffusion assay was employed towards E. coli K-12: the results demonstrated the elution of
the drug and an inhibition halo of 10 mm [127]. Tetracycline was incorporated in composite
scaffolds based on PCL and HA. The researchers observed, through an agar diffusion
test, no inhibition halo on pure PCL, but a significant growth inhibition of two bacterial
strains upon drug loading, with a larger inhibition halo measured for S. aureus compared
to E.coli [125]. In a more recent study, tetracycline was blended in PCL and PLA porous
membranes, which were evaluated for antimicrobial properties towards S. aureus and E. coli
through an inhibition halo assay. The results confirmed the sustained antibacterial activity,
up to 21 days, with a more pronounced action towards E. coli [128]. Similarly, PCL scaffolds
were coated with PLA vancomycin-loaded microspheres, and showed a relevant anti-S.
aureus action, observed over 28 days of incubation [129]. In a study, researchers introduced
erythromycin in a coaxial structure based on PCL/PLGA-PVA. An agar diffusion test on
S. aureus growth revealed that the inhibition halo diameter increased proportionally with
the erythromycin concentration into the constructs (ranging from 10 to 1000 µg/mL) [130].
Another study involved the fabrication of scaffolds based on PCL and TCP loaded with
ceftriaxone microspheres to evaluate the antibacterial activity against E. coli, resulting in an
inhibition halo of 30 mm [131].

Due to the global rising problem of antimicrobial resistance to both antibiotics and
antifungals, researchers draw their efforts towards elucidating alternative compounds,
mainly metal ions. The latter offer the advantage of exerting multitargeted actions, which
can result in a reduced likelihood of resistance induction compared to conventional antimi-
crobial agents [6,132]. Notably, metal ions can interact with key functions and/or structures
of microorganisms, precisely targeting and disrupting their cell wall or cytoplasmic mem-
brane, interfering, at various extents, with the metabolism of proteins, enzymes, and DNA.
Additionally, they inhibit the biofilm formation of both bacteria and fungi [43–45].

In this scenario, silver emerges as a key additive to PCL to impart both antibacterial
and antifungal activity. Afghah and colleagues [133] produced highly porous 3D scaffolds
based on PCL loaded with silver, demonstrating varying degrees of antimicrobial efficacy
against different pathogens. Candida albicans was the most susceptible microorganism
(inhibition halo of about 16–17 mm), followed by E. coli and S. aureus (inhibition halo of
about 9–10 mm), whereas Pseudomonas aeruginosa demonstrated the lowest susceptibility
(inhibition halo of about 8 mm).

PLGA and PCL scaffolds were added in situ with silver nanoparticles and the agar
diffusion tests showed antibacterial action towards both S. aureus and Streptococcus mutans,
with inhibition zone diameters of ~13.5 mm and ~9.0 mm, respectively. Moreover, FESEM
images revealed the bacterial attachment to the constructs [134]. In a study conducted by
our research group, 3D composite scaffolds were enriched with silver at a concentration of
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1.67%. While an S. aureus inhibition in growth and adhesion was revealed, this percentage
impaired eukaryotic cells’ viability [42]. Therefore, silver concentration was reduced at
approximately 1%, which exhibited no adverse effect on human osteosarcoma (Saos-2)
cells, as well as an important antibacterial and antifungal activity. The inhibition halo
experiments demonstrated the silver release from the constructs, leading to halted growth
of all tested microorganisms, precisely S. aureus, S. epidermidis, E. coli, C. albicans, and C.
auris. Additionally, the adhesion of bacteria and yeasts was reduced on the constructs
added with silver, and planktonic growth of these microorganisms was also inhibited.
Ultimately, we also demonstrated that only the 3D scaffolds enriched with silver showed no
biofilm formation as confirmed by the FESEM analysis, which also revealed alterations in
the usual morphology of bacteria and yeasts due to silver direct action on these cells [44,45].

PCL and HA constructs were loaded with different percentages of ZnO, and upon
contact of S. aureus with these scaffolds, ZnO release determined a significant reduction
in viable bacteria, mainly after 30 days of incubation. The most pronounced effect was
observed at a concentration of 6% [126]. In another study, the researchers produced
composite 3D membranes made of PCL blended with ZnO at increasing percentages,
ranging from 1% to 7%. They demonstrated an effective antibacterial activity on S. aureus
and E. coli, with a notable reduction in their adhesion to the constructs especially at 7%
of ZnO [40]. Moreover, ZnO nanoparticles (0.5 wt% or 5 wt%) were added to PCL to
hamper the growth of S. mutans and Porphyromonas gingivalis: no significant differences
were obtained in the adhesion of these bacteria to the modified constructs compared to
pure PCL [135].

The Abudhahir research group [30] developed PCL scaffolds reinforced with copper,
and revealed a zone of inhibition measuring approximately 6.2 mm and 5.8 mm against S.
aureus and E. coli, respectively. The greater activity towards S. aureus was attributed by the
researchers to the intrinsic antibacterial properties of copper.

The research also exploited the effect of natural compounds added to PCL to improve
the antimicrobial properties while avoiding the development of a resistant profile. In fact,
the multitargeted action of these molecules hampers bacteria and/or fungi to become
resistant, and the suitable concentration should be added in order to not impair the via-
bility of eukaryotic cells [136–140]. Despite that the mechanism of action of essential oils
(EOs) has not been fully elucidated yet, several studies have hypothesised the disruption
of the microbial cell membrane, causing an increase in the permeability, the release of
intracytoplasmic material, and an interference with cell metabolism and enzyme perfor-
mance [43,141]. In a study, PCL and gelatin scaffolds were enriched with chrysin (at 5%), a
natural flavonoid, and the antibacterial action was evaluated by both agar diffusion and
live/death assays. The chrysin-enriched scaffolds were able to counteract Acinetobacter
baumannii, Ps. aeruginosa, S. aureus, and Enterococcus faecalis growth due to the chrysin pres-
ence with an inhibition zone ranging from 8 mm to 12 mm, and additionally bacterial cells
did not survive only in the enriched scaffolds [142]. Polo’s research group [143] produced
scaffolds based on CaPs supplemented with vanillin, demonstrating an anti-E. coli effect
only in the presence of this compound compared to the free-vanillin control. Additionally,
an FESEM analysis revealed an altered bacterial morphology [143]. PCL scaffolds were
added with increasing concentrations—0%, 2%, 4%, and 8%—of clove and red thyme to
impart anti-Candida tropicalis biofilm production activity. The results demonstrated that
C. tropicalis clinical strains were inhibited in biofilm formation when the essential oil con-
centration was at 4% [144]. More recently, PCL was blended with varying cinnamon and
eugenol concentrations ranging from 30% to 50%. The resulting scaffolds demonstrated an
antibacterial and anti-biofilm activity towards S. aureus, S. epidermidis, and E. coli as evinced
by inhibition halo assays, adhesion experiments, and FESEM observations. The bacteria
were also altered in their usual morphology with S. aureus exhibiting an enlarged shape
and E.coli displaying filamentous forms [43]. Likewise, a 3D scaffold based on PCL/PLA
and enriched with HA and Nigella sativa oil at concentrations of 15, 18, and 20 wt% was
evaluated for the antibacterial properties against S. aureus and E. coli by the inhibition halo
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test. The data revealed that, when the natural compound was added, the antibacterial
activity was obtained only towards S. aureus since E. coli displayed a natural resistance to
Nigella sativa [25].

PCL was also loaded with graphene oxide (GO), and evaluated for its antibacterial
efficacy on S. epidermidis and E. coli. Both bacterial strains were found on the scaffolds but,
compared to pure PCL, an increased number of dead cells was observed, demonstrating a
bactericidal action, more pronounced when the 7.5% of GO was introduced [8]. PCL was
loaded with chitosan to obtain antimicrobial and anti-biofilm 3D scaffolds, which were
evaluated for their effects on S. aureus and S. epidermidis growth after 24 h of incubation.
Despite the chitosan molecular weight, a significant reduction in adhesion and biofilm
formation for both bacteria was demonstrated compared to pure PCL constructs [10].

Table 4 reports a summary of the literature results pertaining to the antimicrobial
features of the PCL-based scaffolds enriched with antimicrobials.
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Table 4. Summary of the key literature findings pertaining to antimicrobial properties of PCL-based 3D scaffolds enriched with antibiotics, metal ions, or natural
compounds towards different microorganisms.

Scaffold Composition Microorganisms Methods Key Findings References

PCL loaded with doxycycline Escherichia coli K-12 Agar diffusion test The drug was successfully loaded in the scaffold and its release
produced an inhibition halo of 1 cm [127]

PCL and HA incorporated
with tetracycline

Escherichia coli (ATCC® 25922) and
Staphylococcus aureus (ATCC® 25923)

Agar diffusion test Despite the drug concentration, the inhibition halo was revealed, but
it was more pronounced for S. aureus respective to E. coli [125]

Porous membranes of PCL and PLA
added with tetracycline

Staphylococcus aureus (NCTC 10788) and
Escherichia coli (NSM59) Agar diffusion test A pronounced antibacterial activity of the constructs up to 21 days of

incubation, and a larger inhibition halo against E. coli [128]

PCL and β-TCP loaded with
microspheres of ceftriaxone Escherichia coli Agar diffusion test A sustained drug release was demonstrated with an inhibition halo of

3 cm, after 24 h of incubation [131]

PCL coated with PLA
vancomycin-loaded microspheres Staphylococcus aureus (ATCC® 29213) Agar diffusion test A relevant anti-S. aureus action was demonstrated over 28 days

of incubation [129]

Coaxial structure based on
PCL/PLGA-PVA loaded

with erythromycin
Staphylococcus aureus (ATCC® 49230) Agar diffusion test Higher diameter of inhibition in the growth of S. aureus was revealed

in relation to erythromycin concentration in the construct [130]

In situ-added silver nanoparticles
on PLGA/PCL

Staphylococcus aureus and
Streptococcus mutans Agar diffusion test, FESEM images A wider diameter of inhibition halo for S. aureus respective to S.

mutans was registered, whereas both bacteria attached to the scaffold [134]

PCL loaded with silver
Staphylococcus aureus, Escherichia coli,

Pseudomonas aeruginosa, and
Candida albicans

Agar diffusion test
The antimicrobial effect was different depending on the

microorganisms: C. albicans was the most susceptible to silver
followed by E. coli, S. aureus, and Ps. aeruginosa

[133]

Composites of PCL and BCP enriched
with 1.67% of silver Staphylococcus aureus (ATCC® 29213) Agar diffusion test, adhesion assay An inhibition halo around the specimen was shown, as well as a

reduction in both adhered and planktonic staphylococci [42]

Composites of PCL and BCP enriched
with ~1% of silver

Staphylococcus aureus (ATCC® 29213),
Staphylococcus epidermidis (ATCC® 35984),

and Escherichia coli (ATCC® 25922)

Agar diffusion test, adhesion assay,
FESEM images

An inhibition halo around the silver-enriched sample was shown. A
reduction in adherent and planktonic bacteria, and an alteration in

their morphology, was revealed. No biofilm formation was shown on
the enriched scaffold

[44]

Composites of PCL and BCP enriched
with ~1% of silver

Candida albicans (ATCC® 10231) and
C. auris (clinical isolate)

Agar diffusion test, adhesion assay,
FESEM images

An inhibition halo around the silver-enriched sample was shown for
both strains. A reduction in adherent and planktonic yeasts and a

filamentous morphology were revealed. No biofilm formation was
shown on the enriched scaffold

[45]

PCL and HA loaded with ZnO Staphylococcus aureus (ATCC® 25923) Contact with the scaffolds The release of Zn reduced S. aureus load when placed in contact with
the scaffold [126]

Composite 3D membrane of PCL
blended with ZnO (from 1% to 7%)

Staphylococcus aureus (ATCC® 29923) and
Escherichia coli (ATCC® 25922)

Agar diffusion test, adhesion assay,
FESEM images

Good antibacterial activity on S. aureus and E. coli, and a reduction in
their adhesion to the construct especially at 7% of ZnO [40]

ZnO nanoparticles added in PCL Streptococcus mutans (KCOM 1504) and
Porphyromonas gingivalis (KCOM 2804) Contact with the scaffolds No significant differences in the bacterial load were obtained by

varying the construct composition [135]
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Table 4. Cont.

Scaffold Composition Microorganisms Methods Key Findings References

PCL reinforced with copper Staphylococcus aureus and Escherichia coli Agar diffusion test S. aureus (Gram-positive) was more susceptible to copper activity
compared to E. coli (Gram-negative) [30]

PCL and gelatin supplemented
with chrysin

Acinetobacter baumannii
(ATCC® BAA-747), Pseudomonas

aeruginosa (ATCC® 27853), Staphylococcus
aureus (ATCC® 6538), and Enterococcus

faecalis (ATCC® 13048)

Agar diffusion test and live/death assay The scaffold inhibited A. baumannii, Ps. aeruginosa, S. aureus, and E.
faecalis growth [142]

CaPs enriched with vanillin Escherichia coli (DH5α) CFU count after contact with
the scaffolds

A reduction in the CFU of E. coli only in vanillin presence, as well as
an altered morphology of the bacterium [143]

PCL enriched with 0%, 2%, 4%, and 8%
of clove and red thyme Candida tropicalis clinical isolates Biofilm quantification by crystal violet The biofilm formation of C. tropicalis clinical strains was inhibited

when the concentration of the EOs was at 4% [144]

PCL with cinnamon or thyme at 30%,
40%, and 50%

Staphylococcus aureus (ATCC® 29213),
Staphylococcus epidermidis (ATCC® 35984),

and Escherichia coli (ATCC® 25922)

Agar diffusion test, adhesion assay,
FESEM images

All the concentrations of EOs were able to inhibit the bacteria in
growth, adhesion, and biofilm formation. The EO presence modified

the bacterial morphology as well
[43]

PCL/PLA enriched with HA and Nigella
sativa oil at 15, 18, and 20 wt% Staphylococcus aureus and Escherichia coli Agar diffusion test

When Nigella sativa was added, the antibacterial activity was obtained
only towards S. aureus since E. coli displayed a natural resistance to

this compound
[25]

PCL with graphene oxide at 5% and 7.5% Staphylococcus epidermidis (ATCC® 35984)
and Escherichia coli (ATCC® 25922)

Live/death assay The presence of GO increased the number of S. epidermidis and E. coli
dead cells, which was more pronounced at 7.5% of GO [8]

PCL with chitosan with different
molecular weight

Staphylococcus aureus (ATCC® 6538) and
S. epidermidis (ET13)

Adhesion assay and biofilm formation The addition of chitosan reduced adhesion and biofilm formation of
both staphylococci [10]
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5. Cytocompatibility of PCL-Based Biomaterials Functionalised with Both
Antimicrobials and Calcium Phosphates

Several types of eukaryotic cells can be used in bone tissue engineering applications to
evaluate the cytocompatibility of 3D scaffolds. The most common eukaryotic cells pertain
to mesenchymal stem cells, osteoblasts, and fibroblasts from different cell lines. These cells
demonstrate robust attachment and proliferation on porous constructs with a pore size of
about 200–400 µm [145]. The size of pores does influence cell penetration into a 3D scaffold:
pores that are too small may prevent cell infiltration into the construct, leading to cellular
aggregation outside it, whereas excessively large pores may limit cell bonding due to
reduced surface area for attachment. Therefore, a good balance should be reached to permit
cell adhesion, proliferation, and integration within the 3D scaffold [146]. Mesenchymal
stem cells play a crucial role in bone regeneration, since they differentiate into osteoblasts
under a suitable condition with soluble factors, and also modulate the formation of stroma
during new tissue deposition [147]. Human fibroblasts, under appropriate environmental
cues, might differentiate into osteoblasts, thus serving as a potential source of osteogenic
cells [148].

Figure 6 depicts the most relevant results pertaining to cytocompatibility of PCL-based
biomaterials on human mesenchymal stem cells, human fibroblasts, and osteoblasts.
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Hejazi et al. [121] demonstrated that in the presence of 3D-graded scaffolds based on
PCL, CaPs, and gelatin, mesenchymal stem cells were not impaired in their viability and
proliferations, during the 14 days of incubations, since no toxic products were released by
the constructs. Human mesenchymal stem cells were tested to determine the osteoconduc-
tivity of PCL-based constructs enriched with HA and ZnO (1% w/w). The immunostaining
results revealed the expression of osteodifferentiation markers by these cells, along with
significant calcium deposition, mainly in the HA presence. Additionally, the cells success-
fully colonised the scaffold and underwent differentiation into osteoblasts [149]. Previously,
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the same researchers demonstrated by an SEM analysis the presence and proliferation of
mesenchymal stem cells on the same scaffolds produced without the addition of ZnO [111].

In a study, scientists blended PCL with silica microcapsules and revealed that mes-
enchymal stem cells were able not only to survive in the constructs but also to adhere
and proliferate. A significant difference was observed between PCL decorated with silica
microcapsules and pure PCL, as the latter exhibited minor surface roughness, potentially
affecting attachment and the subsequent proliferation of mesenchymal stem cells [147].

Recently, the Malysheva research group [120] evaluated the cytocompatibility of 3D
composite constructs produced with PCL functionalised with different concentrations of
HA. Their data revealed that human mesenchymal stem cells were not hampered in their
viability after 72 h of incubation, but only when HA was lesser than 7%, it promoted a
greater attachment of human cells. They also performed differentiation assays on mouse
mesenchymal stem cells (C2C12), revealing a higher early-stage differentiation marker
production on PCL-HA than on pure PCL constructs [120]. Two types of 3D scaffolds were
designed and assayed for cytocompatibility towards bone marrow mesenchymal stromal
cells, specifically PCL with β-TCP (45 wt%) and PCL with β-TCP (45 wt%) supplemented
with nano-MgO (10 wt%). The experiments revealed the osteoinduction of cells, a long-
term viability when MgO was introduced, and an increase in alkaline phosphatase (ALP)
activity [74].

Murine fibroblasts (L929) were used to evaluate the cytocompatibility of PCL scaf-
folds produced with the electrospinning technique by a 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) tetrazolium (MTT) assay. The data demonstrated that the
cells were not impaired in their viability and not altered in their morphology, since they
preserved the spherical shape [122]. The hybridisation of PCL with the copolymer Inulin-g-
poly(D,L)lactide was investigated for its non-toxic behaviour towards human fibroblasts
(MRC-5-CCL-171, American Type Culture Collection, ATCC®) and human adipose-derived
mesenchymal stem cells. The results proved that at direct contact, fibroblasts displayed an
adequate cytocompatibility, and the experiments on human adipose-derived mesenchymal
stem cells confirmed a 100% viability, an enhanced attachment, and high cell density on the
scaffolds, as well as an increased expression of differentiation markers [124].

PCL scaffolds, coated with chitosan, gelatin, and bioactive glass, were assayed for
biocompatibility towards fibroblast cells (MG-63): the experiments revealed that human
cells were not affected in viability and proliferation into the constructs, whereas the coating
further enhanced the calcium deposition of cells [54]. Three-dimensional PCL/PLA con-
structs enriched with gelatin and taurine were evaluated for their toxicity on fibroblasts
(MG-63) after 24 and 72 h after seeding: the results showed no compromise in the viability
and proliferation of these cells [53]. Human fibroblast cells (CCD-1072-SK) were posed in
contact with 3D scaffolds based on PCL/PLA and HA, enriched with black curcumin EO at
increasing concentrations. The researchers demonstrated that after 24 h, a relevant number
of viable cells was registered on both pure and EO-enriched constructs, whereas after 48 h,
the number of viable cells further decreased respective to pure constructs [25].

Previously, research on osteoblast cells (MC3T3-E1, subclone 4) aimed to evaluate
their anchorage, proliferation, and differentiation on pure PCL or PCL blended with
BCP (at 20% or 30%) demonstrated that eukaryotic cells were not only able to attach and
proliferate with multi-layers on the scaffold but also to differentiate as evinced by increased
ALP activity and osteocalcin (OCN) gene expression. These results significantly differed
from those observed with pure PCL scaffolds [123]. The same cells were investigated for
their proliferation on PLA and PCL composite scaffolds. The researchers demonstrated
that the scaffolds displayed a good cytocompatibility while allowing the proliferation of
osteoblasts [47].

Recently, our research group designed 3D scaffolds made of PCL and blended with
BCP, produced by the salt-leaching technique. These constructs were tested for their bio-
compatibility with SaoS-2 cells by an MTT assay, for their cell adhesion and proliferation
via an FESEM analysis, and for calcium deposition by alizarin red S staining. The results
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demonstrated that the specimens were not toxic for osteoblast-like cells at different incu-
bation times, and the addition of BCP did not impair their viability. Conversely, only low
concentrations of either silver (~1%) or EOs (30%) did not reduce the viability and prolifer-
ation of osteoblasts [42–44]. The FESEM micrographs showed that the cells adhered and
proliferated into the constructs, in particular after 7 days of incubation. The osteoblasts did
not alter their morphology when posed in contact with the specimens, but they exhibited
an elongated shape capable of a better anchoring to the constructs [42–44]. Additionally,
we revealed that scaffolds were able to promote calcium deposition by SaoS-2 cells [45].
In accordance with our data, a study by the Rezania group [80] investigated the seeding
of human osteoblast cells (MG-63) onto scaffolds composed of PCL and HA at varying
percentages. The MTT assay demonstrated a non-toxic behaviour of the biomaterials, at
7 and 14 days. SEM images showed the colonisation of the constructs by the cells, which
also maintained their spherical shape. Furthermore, alizarin red S staining revealed the
calcium deposition of osteoblasts, further demonstrating their differentiation [80]. Similarly,
when human osteoblasts were seeded on 3D scaffolds made of PCL and HA—at increasing
percentages—these were shown to be non-toxic, as proved by the coverage of their surface
by the cells, which properly proliferated and attached. The most suitable HA concentration
was found to be 10% that allowed the spread of osteoblasts and the favourable flat polyhe-
dral morphology [115]. In another study, 3D scaffolds based on PCL and blended with HA
were assayed for their biocompatibility towards human osteoblasts (MG-63). The results
revealed that the constructs were able to support cell proliferation, calcium deposition, and
the upregulation of genes involved in differentiation. These results were more pronounced
in PCL blended with HA compared to the pure one [117].

Recently, human osteoblasts (HOB-Promocell C-12720) were tested for adhesion and
proliferation on 3D constructs made of PCL blended with 1% of HA: the cells increased
their viability and proliferation along with enhanced calcium deposition compared to neat
PCL. Moreover, an SEM analysis demonstrated the presence of osteoblasts with filopo-
dia [118]. Osteoblast cells were also assayed for viability, proliferation, and morphological
characterisation on scaffolds composed of PCL, gelatin, and nanohydroxyapatite. The
experiments revealed an enhanced cell viability and proliferation of cells, which also dis-
played a polygonal-shaped morphology able to better colonise the 3D specimens. This
colonisation was attributed to the rise in surface roughness determined by HA addition [4].

Pre-osteoblasts (MC3T3-E1) were tested for their viability, proliferation, and differenti-
ation on PCL-based scaffolds enriched with β-TCP nanoparticles. The results demonstrated
a high viability, proliferation, and adhesion of eukaryotic cells on the constructs as well as
an increase in their ALP activity and mineralisation after 7 and 14 days of incubation [76].
Composite scaffolds made of PCL and Zn at increasing percentages (1, 2, or 3 wt%) were
designed, on which MC3T3-E1 cells were seeded: the live/dead assay revealed no toxicity
mainly when Zn content was at 2 or 3 wt% [86].

Finally, when PCL was blended with HA or TCP, and further enriched with antimicro-
bial agents such as antibiotics, metal ions, or essential oils, different results were obtained
depending on the amount of these compounds [30,125,126,129–131,133–135,140,143]. For
instance, Tamjid and colleagues [125] produced composite scaffolds made of PCL contain-
ing different concentrations of tetracycline hydrochloride and revealed that fibroblast cells
displayed a higher viability pattern at a drug concentration of 1.15 mg/mL compared to
0.57 mg/mL. Conversely, another study revealed that human cells, specifically osteoblasts,
when in contact with PLGA/PCL scaffolds in situ added with silver nanoparticles, ex-
hibited the highest proliferative capability when silver was at the lowest concentration.
The mineralisation of these cells was also highlighted, as well as their attachment to the
scaffolds through filopodia [134].

Notably, chitosan and GO were selected to impart an antimicrobial effect on PCL-based
constructs without affecting eukaryotic cells’ viability. PCL, HA, and chitosan were ex-
ploited to produce electrospun composite scaffolds and were posed in contact with human
osteosarcoma cells (MG-63). The results demonstrated not only that these cells were viable
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within the constructs but also that an increase in HA concentration permitted a greater
osteoblast proliferation. The researchers also demonstrated an upregulation of different
genes involved in osteogenesis [16]. Cubic-shaped PCL and chitosan 3D scaffolds were
tested for their cytocompatibility for adriamycin-resistant mouse fibroblast cells (L929). It
follows that the constructs resulted in a high cell viability after 24 h and 7 days of incubation,
and no changes in their phenotype were revealed [10]. Recently, PCL with chitosan was
enriched with Zn at increasing concentrations (from 0 to 50) and the experiments on mouse
fibroblast cells (NIH-3T3) demonstrated that only lower (10 and 20) Zn concentrations
were not toxic for these cells, and allowed their attachment and proliferation into the 3D
constructs [150]. A direct contact assay of human foreskin fibroblasts (HFF-1) on PCL
fibrous scaffolds enriched with different percentages of GO demonstrated an irregular
porosity proportional to the increase in GO content and that the scaffolds were able to
promote the adhesion and spreading of eukaryotic cells, for up to 14 days of incubation [8].
Additionally, in another study, the researchers demonstrated that the GO presence (1% or
2%) in PCL-based scaffolds permitted human cell adhesion and proliferation even though
at a lower rate compared to pure PCL [15].

Immortalised myoblast cells (C2C12) were posed in contact with biphasic PCL/HA
nanofibrous scaffolds. The results demonstrated that cells attached and spread successfully
into the construct, while significantly increasing their ALP activity, particularly when HA
was added to the polymer [119].

Table 5 reports the key results of the literature analysis on the biocompatibility of
PCL-based scaffolds.
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Table 5. Summary of the key literature findings pertaining to cytocompatibility of mesenchymal stem cells, fibroblasts, and osteosarcoma cells when placed in
contact with PCL-based 3D scaffolds.

Scaffold Composition Cells Key Findings References

PCL with CaPs and gelatin Mesenchymal stem cells Cells were not impaired in their viability and proliferation, and non-toxic products
were released by the scaffold [121]

PCL enriched with HA and ZnO (1% w/w) Mesenchymal stem cells Cells expressed osteodifferentiation markers and a high calcium deposition was
detected in HA presence. Cells colonised the scaffold and differentiated in osteoblasts [149]

PCL enriched with HA Mesenchymal stem cells Cells were anchored and proliferated into the scaffold [111]

PCL with silica microcapsules Mesenchymal stem cells Cells lived in, adhered to, and proliferated into the construct [147]

PCL functionalised with different concentration of HA Mesenchymal stem cells
Cells were not hampered in their viability. The greater HA concentration (7%)

promoted a superior cell attachment. The cells produced high early-stage
differentiation marker on PCL with HA

[120]

PCL/β-TCP or PCL/β-TCP with nano-MgO Bone marrow mesenchymal stromal cells Alizarin red S staining revealed the osteoinduction of cells. These cells displayed a
long-term viability in MgO presence, as well as an increase in their ALP activity [74]

PCL coated with PLA vancomycin-loaded microspheres Rabbit bone marrow-derived mesenchymal
stem cells

Eukaryotic cells increased in their amount over time, and some of them, after the
attachment, secreted matrix [129]

Coaxial structure based on PCL/PLGA-PVA loaded
with erythromycin Rat bone marrow stromal cells Cell growth augmented at erythromycin concentration of 100 µg/mL, but ALP activity

decreased at a drug concentration of 500 and 1000 µg/mL [130]

PCL enriched with different percentages of graphene oxide Human foreskin fibroblast (HFF-1) cells Cells adhered to and spread into the construct, for up to 14 days of incubation [8]

PCL with gelatin and graphene oxide (1% or 2%) Human gingival mesenchymal stem cells The scaffold promoted cell adhesion and proliferation [15]

PCL coated with chitosan, gelatin, and bioactive glass Fibroblast cells (MG-63) Human cells were not impaired in viability and proliferation, and the coating enhanced
their calcium deposition [54]

PCL/PLA enriched with gelatin and taurine Fibroblast cells (MG-63) The cells were not compromised in their viability and proliferation, after 24 and 72 h [53]

PCL/PLA and HA, enriched with black curcumin essential
oil at increasing concentrations Human fibroblast cells (CCD-1072-SK) The oil presence reduced the viability of cells after 24 h of incubation; a lower effect was

revealed after 48 h [25]

Cubic-shaped PCL and chitosan Mouse murine fibroblast cells (L929) Cells displayed a higher viability and maintained their phenotype [10]

Composites of PCL and HA incorporated with tetracycline Fibroblast cells (L929) Cells were viable and the tetracycline concentration did not affect their viability [125]

PCL Mouse murine fibroblast cells (L929) Cells were not impaired in their viability and morphology, and they preserved the
spherical shape [122]

CaPs enriched with vanillin Fibroblast-like cells (ATCC® L929) and human
osteoblast-like cells (ATCC® MG-63)

Fibroblasts were not impaired in viability when vanillin was present and were
uniformly distributed. Also, the viability of osteoblasts was promoted within a short

time of incubation
[143]

PCL with β-TCP nanoparticle deposition Pre-osteoblasts (MC3T3-E1) Cells showed high viability, proliferation, and adhesion as well as an increase in ALP
activity and mineralisation [76]
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Table 5. Cont.

Scaffold Composition Cells Key Findings References

Composites based on PCL and Zn (at 1, 2, or 3 wt%) Pre-osteoblasts (MC3T3-E1) A greater number of live cells was recorded at 2–3 wt% of Zn respective to pure PCL or
the one with 1 wt% of Zn [86]

PCL with the copolymer Inulin-g-poly(D,L)lactide
Human fibroblasts (ATCC® MRC-5-CCL-171)

and human adipose-derived mesenchymal
stem cells

An adequate cytocompatibility towards fibroblasts was proved. Additionally, a 100%
viability of human adipose-derived mesenchymal stem cells and their attachment to the

biomaterial surface was revealed, as well as their high production of
differentiation markers

[124]

PCL loaded with silver Human dermal fibroblasts High cytocompatibility of PCL added with silver but only at low concentrations (from
2.5% to 1%) [133]

Pure PCL or PCL blended with BCP at 20% or 30% Osteoblast cell lines (MC3T3-E1, subclone 4) Cells attached and proliferated with multi-layers but also differentiated as a result of an
increase in ALP activity and in OCN gene expression [123]

Composites of PLA and PCL Osteoblast cell lines (MC3T3-E1, subclone 4) Cells proliferated in the scaffold, while displaying a good cytocompatibility, at 2 and
3 days of incubation [47]

ZnO nanoparticles added in PCL constructs Osteoblast cell lines (MC3T3-E1, subclone 4) No significant difference in the viability of cells was observed for pure PCL compared
to the modified one [135]

In situ-added silver nanoparticles on PLGA/PCL scaffolds Osteoblast cell lines (MC3T3-E1, subclone 14)

Cells cultured with the scaffolds reported higher proliferative capability when silver
was at the lowest concentration. FESEM images showed cell attachment to the scaffolds

as well as the presence of extended filopodia. Furthermore, an increase in ALP and
mineralisation was demonstrated

[134]

PCL reinforced with copper Human osteoblastic-like cells (MG63) and
mouse mesenchymal stem cells

Mesenchymal stem cells were not impaired in either viability or migratory capability.
Also, they showed increased expression of osteoblast differentiation markers, as well as

calcium deposition
[30]

PCL and HA loaded with ZnO Human foetal osteoblast cell line (HFOb 1.19) Zn presence enhanced ALP activity and promoted cells’ calcium deposition. However,
it reduced their viability [126]

PCL–chitosan enriched with Zn at increasing concentrations Mouse fibroblast cell (NIH-3T3 lines) Only the lower Zn concentrations (10 and 20) allowed a 100% viability of cells with an
increase in cellular attachment and proliferation [150]

PCL blended with BCP and enriched with silver at 1.67% or
essential oils Human osteosarcoma cell—Saos-2

Specimens were not toxic for osteoblasts and the addition of BCP did not impair their
viability. Cells adhered, proliferated, and did not alter their morphology. Silver at 1.67%

impaired cell viability, as well as essential oils at 40–50%
[42,43]

PCL and β-TCP loaded with ceftriaxone microspheres Human osteosarcoma cell—Saos-2 An increased number of viable cells was determined within 28 days of incubation, with
the attachment and spreading of osteoblasts [131]

PCL blended with BCP and enriched with silver at ~1% Human osteosarcoma cell—Saos-2 Pure PCL was not toxic for Saos-2 cells, whereas only the lowest silver concentration
allowed cellular survival and proliferation [44]

PCL and blended with BCP, and enriched with silver at ~1% Human osteosarcoma cell—Saos-2 The scaffolds were able to promote calcium deposition by SaoS-2 cells [45]
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Table 5. Cont.

Scaffold Composition Cells Key Findings References

PCL and HA at different percentages Human osteoblast cell line (MG-63) The biomaterial was non-toxic and permitted the colonisation by the cells, which
maintained their spherical shape. Their calcium deposition was also demonstrated [80]

PCL and HA at increasing percentages Human osteoblasts Cells proliferated into, attached to, and covered the surface, while displaying a flat
poliedric morphology [115]

PCL blended with HA Human osteoblast cell line (MG-63) Cells successfully proliferated, deposed calcium, and upregulated the expression of
genes involved in differentiation, mainly in HA presence [117]

PCL blended with 1% of HA Human osteoblasts (HOB-Promocell C-12720) HA addition increased the viability, proliferation, and calcium deposition of human
osteoblasts, which were featured by filopodia [118]

PCL, HA, and chitosan Human osteosarcoma cells (MG-63) Osteoblasts were viable and their proliferation increased proportionally to HA
concentration. Cells expressed different genes involved in osteogenesis [16]

PCL, gelatin, and nanohydroxyapatite Human osteoblasts Cells increased their viability and proliferation and displayed a
polygonal-shaped morphology [4]

Biphasic PCL/HA nanofibrous scaffold Immortalised myoblast cell line (C2C12) Cells attached, spread, and increased ALP activity mainly when HA was added [119]
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6. Conclusions

The development of bone tissue engineered 3D scaffolds is an advanced approach
to restore or even substitute damaged bone tissue, avoiding some serious disadvantages
of autograft, allograft, and xenograft substitutes. Therefore, synthetic biopolymers, such
as PCL, have become potential candidates to design constructs with favourable proper-
ties, mainly biocompatibility and biodegradability, associated with low costs and ease of
shaping. PCL can be moulded into 3D scaffolds by using different elaboration processes
and can be blended with calcium phosphates to enhance its stiffness and the potential of
osteogenesis. Intriguingly, the slow rate of PCL degradation—combined with a suitable
macro- and microporosity—allows the adhesion and integration of human cells into the
construct. In fact, the pores inside the 3D scaffold can favourably permit the attachment,
proliferation, and spreading of different cells involved in bone tissue healing. Additionally,
the presence of HA and/or β-TCP further improves the cytocompatibility, osteoinduction,
and mineralisation properties. Notably, several traditional and unconventional antimicro-
bial agents can be used to functionalise the 3D constructs to achieve anti-adhesive and
anti-biofilm characteristics towards bacteria and fungi that might colonise the scaffold,
thus diminishing its longevity upon implantation. The tuning of these compounds is
necessary, since high doses can enhance microbial killing while impairing the viability of
eukaryotic cells. Among the antimicrobial agents, not only antibiotics and antifungals can
be employed, but also metal ions and natural compounds. The latter two did not display
the drawbacks of the microbial resistance due to the multitargeted mechanisms of action.
Our recently achieved results demonstrated that PCL-based 3D scaffolds with biphasic
calcium phosphates displayed a high interconnected inner porosity that allowed eukaryotic
cell attachment and proliferation. Notably, the addition of either silver or essential oils—at
lower concentrations—was able to counteract bacterial and fungal growth, as well as their
biofilm formation, by acting directly on these cells and altering their usual morphology. The
progress in the design, manufacturing, and functionalisation achieved to date demonstrated
in vitro the effectiveness of composite PCL/calcium phosphate 3D scaffolds for bone tissue
engineering in the targeted healing of damaged bone. However, the step forward in this
challenging scenario will be in vivo investigations in large animal models and in human
clinical trials to further revolutionise and validate the efficacy and safety of these scaffolds
in this constantly evolving biomedical field.
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Abbreviations

3D, Three-dimensional; AgVO, Silver vanadate oxide; ALP, Alkaline phosphatase; ATCC®, Amer-
ican Type Culture Collection; BBG, Borate bioactive glass; BCP, Biphasic calcium phosphate; BMPs,
Bone morphogenetic proteins; CaPs, Calcium phosphates; Cu, Copper; DCM, Dichloromethane;
DLP, Digital light processing; DMF, Dimethylformamide; EBP, Extrusion-based printing; EO, Es-
sential oil; ES, Electrospinning process; FDM, Fused deposition modelling; FESEM, Field emission
scanning electron microscopy; GO, Graphene oxide; HA, Hydroxyapatite; HLh, Halomonas levan;
MES, Melt electrospinning; MEW, Melt electrospinning writing; MgO, Magnesium oxide; MTT,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium; NaCl, Sodium chloride;
NaNO3, Sodium nitrate; OCN, Osteocalcin; PCL, Polycaprolactone; PHB, Poly (3-hydroxybutyrate);
PLA, Poly (lactic acid); PLGA, Poly (lactic-co-glycolic) acid; PVA, Polyvinyl alcohol; Saos-2, Human
osteosarcoma; SC/PL, Solvent casting/porogen leaching; SEM, Scanning electron microscopy; SLA,
Stereolithography; SLS, Selective laser sintering; TIPS, Thermally induced phase separation; UV,
Ultraviolet; XRD, X-ray diffraction; Zn, Zinc; ZnO, Zinc oxide; β-TCP, β-tricalcium phosphate.
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