
ar
X

iv
:2

20
7.

08
27

6v
2 

 [
cs

.A
I]

  2
8 

A
pr

 2
02

3

Certain and Uncertain Inference
with Indicative Conditionals

Paul Égré Lorenzo Rossi Jan Sprenger

Abstract

This paper develops a trivalent semantics for the truth conditions and the
probability of the natural language indicative conditional. Our frame-
work rests on trivalent truth conditions first proposed by W. Cooper and
yields two logics of conditional reasoning: (i) a logic C of inference from
certain premises; and (ii) a logic U of inference from uncertain premises.
But whereas C is monotonic for the conditional, U is not, and whereas C

obeys Modus Ponens, U does not without restrictions. We show system-
atic correspondences between trivalent and probabilistic representations
of inferences in either framework, and we use the distinction between
the two systems to cast light, in particular, on McGee’s puzzle about
Modus Ponens. The result is a unified account of the semantics and
epistemology of indicative conditionals that can be fruitfully applied to
analyzing the validity of conditional inferences.

1 Introduction and Overview

Research on indicative conditionals (henceforth simply “conditionals”) pur-
sues two major projects: the semantic project of determining their truth con-

ditions, and the epistemological and pragmatic project of explaining how we
should reason with them, and when we can assert them. The two projects
are related: Jackson (1979, p. 589) states that “we should hope for a theory
which explains the assertion conditions in terms of the truth conditions” while
according to David Lewis (1976, p. 297), “assertability goes by subjective prob-
ability”, where the value of the latter depends on when a proposition is true
or false (see also Adams 1965, pp. 173-174; Jackson 1979, p. 565; Leitgeb 2017,
p. 278).

Ideally, we would have a unified treatment of truth conditions and prob-
ability of conditionals and, on that basis, a theory of reasoning with con-
ditionals. Here is the standard approach. Suppose A and C are sentential
variables of a propositional languageLwithout conditionals, and→ denotes
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the “if. . . then. . . ” connective. Then, the probability of the sentence A → C

should go by the conditional probability p(C|A) (e.g., Adams 1965, 1975;
Stalnaker 1970):

p(A→ C) = p(C|A) (Adams’s Thesis)

The idea is that the conditional “if the sun is shining, Mary will go for a walk”
seems plausible if and only if it is likely that, given sunshine, Mary is going for
a walk.1 Normative theories of conditionals often recognize Adams’s Thesis
as a desideratum (e.g., Stalnaker 1970; Adams 1975). The empirical data
are more complicated, but Adams’s Thesis is well-supported when the an-
tecedent is relevant for the consequent (e.g., part of the same discourse:
Over, Hadjichristidis, et al. 2007; Skovgaard-Olsen, Singmann, and Klauer
2016).

Unfortunately, David Lewis’s well-known triviality result complicates the
picture. Lewis (1976) showed that, if (i) the probability of a sentence depends
in the standard way on its truth conditions (i.e., as expectation of semantic
value),2 and (ii) the probability function is closed under conditionalization,
Adams’s Thesis implies p(A → C) = p(C), whenever A is compatible with
both C and its negation. Similar triviality results have been shown by Hájek
(1989), Bradley (2000), and Milne (2003). This reductio ad absurdum seems to
preclude a unified semantic and epistemological treatment of conditionals, at
least as far as probability and probabilistic reasoning is concerned.

We show in this paper that this conclusion is premature: we introduce a
third truth value (“neither true nor false”) and propose trivalent truth condi-
tions for natural language indicative conditionals whose probability validates
Adams’s Thesis. The probabilistic semantics allows us to define a logic for
reasoning with certain premises as well as a structurally similar logic for rea-
soning with uncertain premises.

In other words, we argue that different logics of conditionals suit different

epistemic situations. When no conditionals are involved, the epistemic status
of the premises does not matter: deductive logic validates all and only those
inferences that preserve maximal certainty, i.e., probability one, and also
all and only those inferences that do not increase uncertainty (e.g., Adams
1996a). There is just one notion of valid inference. But conditionals complicate
the picture. When premises are supposed as being certain, the inference

1The extension of Adams’s Thesis to arbitrary sentences A and C, possibly involving con-
ditionals, is known as “Stalnaker’s Thesis”.

2In other words, the probability of A corresponds to the total weight of the possible worlds
where A is true.
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from “if Alice goes to the party, Bob will” to “if Alice and Carol go to the
party, Bob will” appears valid. Alice’s presence ensures Bob’s presence no
matter his feelings for Carol. This picture changes when the premises are
taken to be just likely instead of certain: Carol going to the party can make
a difference if we think that Alice going to the party does not guarantee that
Bob will go in all circumstances. Conditional reasoning for uncertain premises
has non-monotonic aspects and may require more than one notion of valid
inference (compare Santorio 2022b). Our account explains the difference
between certain and uncertain reference by keeping the truth conditions of
conditionals constant and by building a definition of probability based on
those, while relaxing the definition of logical consequence when going from
certain to uncertain reasoning.

We briefly expound the structure of our paper. The first part lays the
semantic foundations: Section 2 motivates the trivalent treatment of condi-
tionals and Section 3 introduces specific trivalent truth tables for the indicative
conditional and the Boolean connectives, giving reasons to select the trivalent
conditional operator first introduced by Cooper 1968. Section 4 defines the
(non-classical) probability of trivalent propositions in analogy with defining
probability in a conditional-free language.

The second part of the paper focuses on conditional reasoning. From the
definition of probability in trivalent semantics, Section 5 and 6 derive two
logical consequence relations for certainty-preserving inference (=the logic
C) and for inferences that do not increase probabilistic uncertainty (=the
logic U). We show that C and U can be characterized as preserving semantic
values within trivalent logic, and in Section 7 we examine which principles of
conditional logic they validate. In particular, we show that some principles
such as Or-to-If or Modus Ponens with nested conditionals are controversisal
because they hold in the context of reasoning with certain premises, but fail
for uncertain premises.

The third part contains applications, comparisons and evaluations: Sec-
tion 8 discusses nested conditionals and McGee’s objection to Modus Ponens
from the vantage point of our semantics and the two separate logics for certain
and uncertain inference. Section 9 draws comparisons with other theories.
Section 10 highlights the strengths and limits of our account. Appendix A
provides proof details.
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2 Truth Conditions: The Basic Idea

It is controversial whether indicative conditionals have factual truth condi-
tions and can be treated as expressing propositions (e.g., see the dialogue in
Jeffrey and Edgington 1991). According to the non-truth-conditional, prob-
abilistic analysis of conditionals (Adams 1965, 1975; Edgington 1986, 1995,
2009; Over and Baratgin 2017), indicative conditionals do not express propo-
sitions; at most they have partial truth conditions.

[...] the term ‘true’ has no clear ordinary sense as applied to conditionals,
particularly to those whose antecedents prove to be false [...]. In view of
the foregoing remarks, it seems to us to be a mistake to analyze the logical
properties of conditional statements in terms of their truth conditions.
(Adams 1965, pp. 169-170)

Non-truth-conditional accounts stipulate that p(A → C) = p(C|A) and de-
velop a probabilistic theory of reasoning with conditionals on the basis of high
probability preservation (called “logic of reasonable inference” by Adams).
This move yields a powerful logic for capturing core phenomena of reason-
ing with simple conditionals, such as their non-monotonic behavior in cer-
tain contexts. This success is recognized by truth-conditional accounts (e.g.,
McGee 1989, p. 485; Ciardelli 2020, p. 544), but the probabilistic approach
severs the link between semantics and epistemology. In particular, it does
not cover nested conditionals and compounds of conditionals. Moreover,
due to the lack of truth conditions, it does not clarify how one can argue and
disagree about conditional sentences in a similar way as we do for normal,
non-conditional propositions (Bradley 2012, p. 547).

However, even a defender of a non-truth-conditional view such as Adams
(1965, p. 187) admits that we feel compelled to say that a conditional “if
A, then C” has been verified if we observe both A and C, and falsified if we
observe A and ¬C. For example, take the sentence “if it rains, the match will
be cancelled”; it seems to be true if it rains and the match is in fact cancelled,
and false if the match takes place in spite of rain. Indeed, what else could be
required for determining the truth or falsity of the sentence?

This “hindsight problem” (the terminology is from Khoo 2015) is a prima
facie reason for treating conditionals as propositions, and assigning them
factual truth conditions. Defenders of non-propositional accounts need to
explain why observations in our actual world are sufficient for the truth or
falsity of “if A, then C”, and why A → C behaves so differently when A is
false.

Truth-conditional accounts of conditionals address this point. They come
in various guises: variably strict conditionals (e.g., Stalnaker 1968), restrictor
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semantics (e.g., Kratzer 2012), dynamic semantics (e.g., Gillies 2009), infor-
mation state semantics (e.g., Ciardelli 2020; Santorio 2022a), and many more.3

Many of these accounts emulate Adams’s probabilistic logic of reasonable
inference, or central parts thereof. For example, truth preservation in Stal-
naker’s modal framework famously validates the same inference schemes as
Adams’s logic in their common domain. All of them, however, face a non-
trivial task of modelling the probability of conditionals. Truth preservation
works in these logics like a qualitative plausibility order, but their analysis
of the quantitative probability of conditionals must, in the light of Lewis’s
triviality result, deviate systematically from Adams’s thesis. Thus, both the
truth-conditional and the non-truth-conditional approaches seem to lose out
on some important aspects of conditionals.

In this paper, we would like to resolve the impasse by treating “if A, then
C” as a conditional assertion—i.e., as an assertion about C upon the supposition
that A is true. Whereas, when the antecedent is false, the speaker is committed
to neither truth nor falsity of the consequent. This view takes into account
Adams’s observation that “true” has no clear ordinary sense when applied
to indicative conditionals; it has been voiced perhaps most prominently by
Quine (1950, p. 12, our emphasis):

An affirmation of the form “if p then q” is commonly felt less as an
affirmation of a conditional than as a conditional affirmation of the con-
sequent. If, after we have made such an affirmation, the antecedent
turns out true, then we consider ourselves committed to the consequent,
and are ready to acknowledge error if it proves false. If on the other hand

the antecedent turns out to have been false, our conditional affirmation is as if

it had never been made.

In other words, asserting a conditional makes an epistemic commitment only
in case the antecedent turns out to be true. If it turns out to be false, the
assertion is retracted: there is no factual basis for evaluating it (see also Belnap
1970, 1973). Therefore it is classified as neither true nor false. The “gappy” or
“defective” truth table of Table 1 interprets this view as a partial assignment of
truth values to conditionals (e.g., Reichenbach 1935; de Finetti 1936a; Adams
1975; Baratgin, Over, and Politzer 2013; Over and Baratgin 2017).4

3The material conditional analysis, endorsed by Jackson and Lewis, claims that the truth
conditions of the indicative and the material conditional agree, and that perceived differences
are due to pragmatic, not to semantic factors (Jackson 1979; Grice 1989). This approach,
however, gives up on a unified picture of truth conditions and probability in the first place.
On that account, if sun were unlikely, the probability of “if the sun is shining, Mary is going
for a walk” would be close to one regardless of Mary’s intentions, which looks unacceptable.

4Some accounts also take the conditional probability p(A|C) as a possible semantic value
for the conditional A→ C (e.g., McGee 1989; Stalnaker and Jeffrey 1994; Sanfilippo et al. 2020),
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Truth value of A→ C v(C) = 1 v(C) = 0
v(A) = 1 1 0
v(A) = 0 (neither) (neither)

Table 1: ‘Gappy” or “defective” truth table for a conditional A → C for a (partial)
valuation function in a language with conditional.

However, without a full truth-conditional treatment, such an account is
limited: it neither evaluates nested conditionals, nor Boolean compounds of
conditionals. If we could complete Table 1 and provide full truth conditions
in a satisfactory way, this would greatly increase the scope and descriptive
power of conditional reasoning, and facilitate the identification of theorems
and valid inferences.

The obvious candidate for such truth conditions is a trivalent truth table,
where the absence of commitment to the consequent C is represented by a
third truth value. Instead of using partial valuations, we assign a third seman-
tic value, 1/2 or “indeterminate”, when the antecedent is false (See Table 2).
This is a recurring idea in the literature, defended, among others, by de Finetti
(1936a), Reichenbach (1944), Jeffrey (1963), Cooper (1968), Belnap (1970, 1973),
Manor (1975), Farrell (1986), McDermott (1996), Olkhovikov (2002/2016),
Cantwell (2008), Rothschild (2014), and Égré, Rossi, and Sprenger (2021a,b).

Truth value of A→ C v(C) = 1 v(C) = 1
v(A) = 1 1 0
v(A) = 0 1/2 1/2

Table 2: Partial trivalent truth table for a conditional A → C for a partial valuation
function in a language with conditional.

This basic idea has to be developed in various directions. Firstly, we need
to decide how to extend the truth table of Table 1 to a fully trivalent truth table
for A→ C where A and C can also take the value 1/2 (=neither true nor false,
indeterminate). Secondly, we need to decide how to interpret the standard
Boolean connectives∧,∨,¬ in the context of propositions which can take three
different truth values. Doing so will allow us to deal with nested conditionals,
and more generally, with arbitrary compounds of atomic sentences connected
by the standard connectives and→. Thirdly, we have to define a probability
measure for trivalent propositions and a consequence relation for reasoning

but this analysis reverses the traditional direction of the dependency between the probability
and the truth conditions of a sentence: probability should depend on how often we find a
sentence to be true, not vice versa.
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with certain and uncertain premises. We approach these tasks in turn in the
next sections.

3 Trivalent Truth Tables

We start by extending the basic idea of Table 2 to a full trivalent truth table for
A→ C. The two main options are shown in Table 3 and have been proposed
by Bruno de Finetti (1936a) and William Cooper (1968), respectively. We
abbreviate the two connectives with “DF” and “CC” (the latter after Cooper-
Cantwell).5 In both of them the value 1/2 can be interpreted as “neither true
nor false”, “void”, or “indeterminate”. There is moreover a systematic duality
between those tables: whereas de Finetti treats indeterminate antecedents like
false antecedents, Cooper treats them like true ones. Thus, in de Finetti’s table
the second row copies the third, whereas in Cooper’s table it copies the first.

f→DF 1 1/2 0
1 1 1/2 0
1/2 1/2 1/2 1/2

0 1/2 1/2 1/2

f→CC
1 1/2 0

1 1 1/2 0
1/2 1 1/2 0
0 1/2 1/2 1/2

Table 3: Truth tables for the de Finetti conditional (left) and the Cooper conditional
(right).

Both options can be pursued fruitfully, and the choice between them pri-
marily depends on the results which they yield. Our choice is the Cooper
table since it interacts more naturally with our probabilistic treatment of con-
ditionals and the various notions of logical consequence (a detailed analysis is
given in Égré, Rossi, and Sprenger 2021a). However, for the arguments made
in this section, which concern only simple, non-nested conditionals, there is
no difference between the two.6

The second choice concerns the definition of the standard logical connec-
tives. A natural option is given by the familiar Łukasiewicz/de Finetti/Strong
Kleene truth tables, displayed in Table 4. Conjunction corresponds to the
“minimum” of the two values, disjunction to the “maximum”, and negation
to inversion of the semantic value. In particular, the trivalent analysis ad-

5Belnap (1973), Olkhovikov (2002/2016) and Cantwell (2008) rediscovered Cooper’s truth
table independently.

6Intermediate options vary the middle row, e.g., with the triple 〈1/2, 1/2, 0〉 (Farrell
1986) or the triple 〈1, 1/2, 1/2〉, suggested by a referee. The former option is reviewed in
Égré, Rossi, and Sprenger 2021a, while the latter option forsakes the equivalence of ¬(A→ C)
and A→ ¬C, typically seen as a desirable property.
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mits, next to the indicative conditional A → C, a Strong Kleene “material”
conditional A ⊃ C, definable as ¬(A∧¬C), or equivalently, ¬A∨ C.

f¬
1 0

1/2 1/2

0 1

f∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

f∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

Table 4: Strong Kleene truth tables for negation, conjunction, and disjunction.

The Strong Kleene truth table for negation is uncontroversial and also
yields the consequence that the conditional commutes with negation (for
either the DF- or the CC-conditional): ¬(A → C) has the same truth table as
A→ ¬C. This is a very natural choice for interpreting conditional assertions:
when we argue about A → C, both sides presuppose the antecedent A and
argue about whether we should be committed to C or rather to ¬C, given A

(see also Ramsey 1929/1990, p. 247).
Unfortunately, the Strong Kleene truth tables for conjunction and disjunc-

tion have a very annoying consequence: “partitioning sentences” such as
(A → B) ∧ (¬A → C) will always be indeterminate or false (Belnap 1973;
Bradley 2002, pp. 368-370). However, a sentence such as:

If the sun shines tomorrow, John goes to the beach; and if it rains,
he goes to the museum.

seems to be true (with hindsight) if the sun shines tomorrow and John goes
to the beach. This intuition is completely lost in Strong Kleene semantics,
regardless of whether we use the de Finetti or the Cooper table for the con-
ditional. Even worse, “obvious truths” such as (A → A) ∧ (¬A → ¬A) are
always classified as indeterminate.

For this reason, we endorse alternative truth tables for conjunction and dis-
junction, advocated by Cooper (1968) and Belnap (1973). See Table 5. In these
truth tables, indeterminate sentences are “truth-value neutral” in Boolean op-
erations: true and false sentences do not change truth value when conjoined or
disjoined with an indeterminate sentence. This can be motivated by observing
that such sentences do not add determinate content as empirical statements
do. We call these connectives quasi-conjunction and quasi-disjunction. They re-
tain the usual properties of Boolean connectives (associativity, commutativity,
the de Morgan laws, etc.), solve the problem of partitioning sentences, and
have no substantial disadvantages with respect to Strong Kleene truth tables
in conditional logic. Moreover, they have two non-trivial benefits.

First, quasi-disjunction avoids the Linearity principle that (A→ B)∨ (B→

A) cannot be false. This schema was famously criticized by MacColl (1908),

8



f¬
1 0

1/2 1/2

0 1

f ′∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

f ′∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 0
0 1 0 0

Table 5: Truth tables for Strong Kleene negation, paired with quasi-conjunction and
quasi-disjunction as defined by Cooper (1968).

who pointed out that neither “if John is red-haired, then John is a doctor”,
nor “if John is a doctor, then he is red-haired”, nor their disjunction seems
acceptable in ordinary reasoning. A semantics that qualifies such expressions
as either true or indeterminate might thus be considered inadequate. Using
quasi-conjunction and quasi-disjunction instead, (A→ B) ∨ (B → A) is false
when A is true and B is false (or vice versa).

There is also a principled reason for adopting quasi-conjunction and quasi-
disjunction, based on the connection between conditional bets and conditional
assertions. How should we evaluate the conjunction of conditional assertions
like (A → B) ∧ (C → D)? The interesting case occurs when A is false, but C

and D are true. McGee (1989, 496-501, in particular Theorem 1) shows by a
Dutch Book argument that in this case, a bet on (A → B) ∧ (C → D) should
yield a strictly positive partial return. Also Sanfilippo et al. (2020, p. 156)
argue that we should classify the compound bet as winning. Indeed, to the
extent that the sentence (A → B) ∧ (C → D) is testable, it has been verified
when A is false, but C and D are true. All this suggests to treat the assertion
(A→ B) ∧ (C→ D) as true rather than indeterminate. Unlike Strong Kleene
conjunction, quasi-conjunction allows us to model this line of reasoning.

For all these reasons, we adopt quasi-conjunction, quasi-disjunction,
Strong Kleene negation and the Cooper truth table for the conditional in
the remainder of this paper. Our object-language is the language of propo-
sitional logic L, supplemented with a primitive conditional connective →,
and is indicated as L→. A Cooper valuation is a function v : L→ 7→ {0, 1/2, 1}
that assigns a semantic value to all sentences of L→ in agreement with the
Cooper truth-tables, i.e. it interprets¬ as the strong Kleene negation, ∧ and ∨
as Cooper’s quasi-conjunction and quasi-disjunction respectively, and → as
Cooper’s conditional. Note finally that all combinations of conditional and
conjunctions surveyed in this section validate Import-Export: (A ∧ B) → C

and A→ (B→ C) are extensionally equivalent formulas.
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4 Probability for Trivalent Propositions

Epistemologists capture the standing of a proposition A by the probability

of A, reflecting the agent’s evidence for and against A. When we identify
propositions with sets of possible worlds, the probability of a proposition A

is the cumulative credence assigned to all possible worlds where A is true.
Trivalent semantics for conditionals implements the same approach using

a slight twist. As with bivalent probability, we start with a set of possible
worlds W with an associated algebraA, and a weight or credence function c :
A→ [0, 1] defined on the measurable space (W,A). This function represents
the subjective plausibility of a particular element of the algebra, i.e., a set
of possible worlds. Our use of possible worlds is devoid of metaphysical
baggage and instrumental to define credence functions, as is customary in
probabilistic semantics: for us, possible worlds are just Cooper valuations. 7

Moreover, we assume that any algebra A includes the singletons of worlds,
i.e., for every w ∈ W, {w} ∈ A. Finally, we assume that the credence function
c is finitely additive with c(∅) = 0, and c(W) = 1.

We now identify propositions with sentences of L→ and define a (non-
classical) probability function p : L→ 7−→ [0, 1], taking into account that
sentences of L→ can receive three values: true, false, or indeterminate.8 For
convenience, define

AT = {w ∈W | vw(A) = 1} AI = {w ∈W | vw(A) = 1/2}

AF = {w ∈W | vw(A) = 0}

as the sets of possible worlds where A is valued as true, false or indeterminate,
relative to (Cooper) valuation functions vw : L→ 7→ {0, 1/2, 1}, indexed by the
possible worlds they represent.

In analogy to bivalent probability, we derive the probability of a (condi-
tional) proposition A from the (conditional) betting odds on A: how much
more likely is a bet on A to be won than to be lost? For this comparison,
two quantities are relevant: (1) the cumulative weight of the worlds where A

is true (i.e., c(AT)), and (2) the cumulative weight of the worlds where A is
false, i.e., c(AF)). The decimal odds on A are O(A) = (c(AT) + c(AF))/c(AT),

7Notably, this does not make the interpretation of the conditional modal or non-truth-
funtional: at each world w, the truth-value of A→ C is given by a Cooper valuation.

8If you do not like to use the term “probability” in a non-classical framework, because you
prefer to reserve it for standard bivalent probability, just replace it by “degree of assertability”
or a similar term. This is the choice of McDermott (1996), whose definition is identical to
ours. Also Cantwell (2006) proposes the same definition of trivalent probability on the basis
of different truth conditions.
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indicating the factor by which the bettor’s stake is multiplied in case A occurs
and she wins the bet. Then we calculate the probability of A from the decimal
odds on A by the familiar formula p(A) = 1/O(A), yielding

p(A) :=
c(AT)

c(AT) + c(AF)
if max(c(AT), c(AF)) > 0. (Probability)

Hence, the probability of a sentence corresponds to its expected semantic
value, restricted to the worlds where the sentence takes classical truth value. Addi-
tionally, we let p(A) = 1 whenever c(AT) + c(AF) = 0, i.e., if it is certain that
A takes the value 1/2 (e.g., when A is ⊥ → ⊤).

In other words, the trivalent probability of A is the ratio between the
credence assigned to the worlds where A is true, and the credence assigned
to the worlds where A has classical truth value. Worlds where A takes in-
determinate truth value are neglected for calculating the probability of A,
except when they take up the whole space. For conditional-free sentences A

and their Boolean compounds, this corresponds to the classical picture since
W = AT ∪AF, or equivalently, AI = ∅.

The idea behind (Probability) is the same that motivates classical opera-
tional definitions of probability: a proposition is assertable, or probable, to

the degree that we can rationally bet on it, i.e., to the degree that betting on this
proposition will, in the long run, provide us with gains rather than losses
(e.g., Sprenger and Hartmann 2019). This is a good reason for calling the
object defined by equation (Probability) a “probability”, or a measure of the
plausibility of a proposition.

The structural properties of p : L→ 7−→ [0, 1] resemble the standard axioms
of probability:

(1) p(⊤) = 1 and p(⊥) = 0.

(2) p(A) = 1− p(¬A).

(3) p(A ∨ B) ≤ p(A) + p(B). The equality p(A∨ B) = p(A) + p(B) holds if
and only if AT ∩ BT = ∅ and AI = BI.9

Just like standard probability, our trivalent probability is not additive, but
subadditive. Equality holds here exactly when A and B are incompatible and
they take classical truth values in the same set of worlds. The main difference
to the standard picture is that the probability of a conjunction can exceed the
probability of a conjunct. In other words, the “and-drop” inference from X∧Y

to Y will not always preserve probability.

9The “only if” direction presupposes that p(A) > 0 and p(B) > 0.
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However, on the betting interpretation of probability, this makes sense:
when A and B are false and C is true, the bet on (A → B) ∧ C yields a
positive return, while the bet on A→ B is called off. So we should not expect
that in all circumstances p((A → B) ∧ C) ≤ p(A → B), in notable difference
to bivalent probability, and some non-classical probability functions (for a
survey, see Williams 2016). Exactly the same phenomenon—the failure of
“and-drop” in the context of conditional reasoning—was demonstrated in
recent experiments by Santorio and Wellwood (2023). Of course, p(A ∧ B) ≤

p(A) will hold as long as A and B are conditional-free sentences.
On this definition of probability, we obtain for conditional-free sentences

A, C ∈ L that

p(A→ C) =
c(AT ∩CT)

c(AT)
=

p(A∧C)

p(A)
= p(C|A) (Adams’s Thesis)

as for conditional-free sentences, p(X) = c(XT), and because for bivalent A

and C, c(A→C)T

c(A→C)T+c(A→C)F
=

c(AT∩CT)
c(AT)

. That is, instead of postulating Adams’s
Thesis as a desideratum on the probability of a conditional, as in Stalnaker
(1970) and Adams (1975, p. 3), we obtain it immediately from the semantics
of trivalent conditionals, and the definition of probability as the inverse of
rational betting odds.10 The well-known triviality results by Lewis (1976) and
others are blocked since they depend on an application of the (bivalent) Law of
Total Probability, which does not hold for trivalent, non-classical probability
functions (Lassiter 2020).11 Equipped with a definition of probability, we
now proceed to characterizing logical consequence relations for certain and
uncertain inference.

5 Certain Inference

For a conditional-free propositional language L with only two truth values,
valid inferences preserve the truth of the premises—or equivalently, they
preserve certainties (i.e., probability one: Leblanc 1979). In a trivalent setting,

10For more discussion of Adams’s Thesis, including experimental evidence for and
against, see Stalnaker 1968; Adams 1975; Dubois and Prade 1994; Douven and Verbrugge
2010, 2013; Evans et al. 2007; Over, Hadjichristidis, et al. 2007; Égré and Cozic 2011; Over
2016; Skovgaard-Olsen, Singmann, and Klauer 2016.

11Bradley (2000) proposes a different triviality result: arguably we want indicative condi-
tionals to satisfy the Preservation Condition—if p(A) > 0 and p(C) = 0, then p(A→ C) = 0 —,
but for this to hold in full generality, we need to posit strong logical dependencies between a
conditional and its components, thus trivializing the conditional. This is indeed so for bivalent
accounts, but our trivalent account implies the Preservation Condition as a theorem without
having a vicious dependency between the truth values of A, C and A→ C.
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however, there is no canonical notion of “truth preservation”: it could amount
to preserving strict truth (i.e., semantic value 1), to preserving non-falsities
(i.e., semantic value greater than 0), or to a combination of both. It is simply
not clear what valid inference amounts to. But there is a canonical extension
of certainty-preserving inference toL→: whenever all premises have probability
one, as defined in the previous section, the conclusion should have probability
one, too. We call this logic C like “inference with certain premises”. Formally:

Definition 1 (Valid Inference in C). For any set of formulas {Γ, B} ⊆ L→, the

inference from Γ to B is C-valid, in symbols Γ |=C B, if and only if for all probability

functions p : L→ 7−→ [0, 1]: if p(A) = 1 for all A ∈ Γ, then also p(B) = 1.

In its spirit, this definition of logical consequence is similar to theories of
conditional inference based on preserving acceptability in context (e.g., Gillies
2009; Santorio 2022a,b)—probability 1 is just a specific way of expressing
which propositions are accepted, and valid inference amounts to preservation
of (full) acceptance (e.g., Stalnaker 1975, p. 271). In fact, the properties of C

largely agree with Santorio’s preferred system (though not with Gillies’s)—
but without the limitation to a language involving at most simple conditionals.

Based on the probabilistic characterization of the logic of certain inference
C, we can derive which trivalent logic corresponds to it: an inference is C-valid
if and only if non-falsity is preserved in passing from Γ to B. Equivalently, we
cannot assign a designated value (1 or 1/2) to the premises without assigning
it to the conclusion, too. This is the main result of this section.

Proposition 1 (Trivalent Characterization of C). For any set {Γ, B} ⊂ L→, Γ |=C

B if and only if for all Cooper valuations v : L→ 7−→ {0, 1/2, 1}:

for every A in Γ, if v(A) ≥ 1/2, then v(B) ≥ 1/2.

In other words, C preserves truth in the (weak) sense that we cannot infer
a false conclusion from a set of non-false premises. Equivalently, if the con-
clusion is false, one of the premises must have been false. We have thus
established an analogous result to the equivalence between truth-preserving
and certainty-preserving inference in standard propositional logic.

C satisfies principles such as B |=C A → B, i.e., if we are certain that Bob
comes to the party, then we are also certain that Bob comes to the party if Alice
does. While this inference is fallacious when premises are uncertain, it is valid
in any context where we have verified the premise—either empirically or by
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mathematical proof.12 We also have Conditional Proof and other characteristic
principles of deductive reasoning in C, such as Modus Ponens, Modus Tollens
and the Law of Identity (|=C A → A). On the other hand, problematic
inferences such as the inference from ¬A to A → B are blocked. Finally,
the laws of classical logic in the conditional-free language L (=the Boolean
fragment of L→) are also theorems of C, if we restrict ourselves to bivalent
valuations. 13

C retains Disjunctive Syllogism (A∨ B,¬A |= B), but gives up Disjunction
Introduction (A |= A∨B). However, the counterexample necessarily involves
the semantic value 1/2: when we restrict ourselves to classical valuations of
atomic sentences, the only invalid instances of A |= A ∨ B occur when A is
itself a conditional with a false antecedent. This shows that exceptions to the
otherwise intuitive rule of Disjunction Introduction addition are quite mod-
est; in fact, Santorio and Wellwood (2023) present theoretical and empirical
arguments why Disjunction Introduction should fail in these circumstances.

Finally, characterizing C as preserving two designated semantic values
(D = {1, 1/2}) is not only of theoretical interest, but greatly simplifies the study
of this logic: for deciding theorems and valid inferences it suffices to look at
the truth tables. Section 7 studies the theorems and valid inferences in more
detail and compares certain inference with C to uncertain inference where
instead of certainty, high probability is preserved. Notably, these properties
depend on interpreting the conditional using the Cooper truth table: if we
had instead paired the de Finetti truth table with preserving non-falsity, we
would have lost Modus Ponens—arguably a substantial drawback for a logic
that generalizes deductive logic to certain inference with conditionals.

At this point, the reader may ask what would have happened if we had
adopted strict truth preservation (i.e., preservation of semantic value 1) as
the condition for logical consequence. This logic, let us call it |=P, preserves
strictly positive probability in passing from the premise to the conclusions:

Proposition 2 (Characterization of Possibility-Preserving Inference). Suppose

A, B ∈ L→ and there exists at least one probability function where p(B) < 1. Then

the following two characterizations of A |=P B are equivalent:

1. For all Cooper valuations v : L→ 7−→ {0, 1/2, 1} such that v(A) = 1, it is also

the case that v(B) = 1.

12This behavior of the conditional is similar to the conditional developed in state space
semantics, e.g., by Leitgeb (2017).

13C is a paraconsistent logic almost equivalent to Cooper’s—his propositional logic
of Ordinary Discourse—except that we do not restrict C to bivalent valuations.
Égré, Rossi, and Sprenger (2021a), who study the entire family of trivalent consequence re-
lations and provide a different argument in favor of C, call it QCC/TT.
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2. For all credence functions c : A 7−→ R with c(AI) < 1 and associated

probability function p : L→ 7−→ [0, 1]: if p(A) > 0, then p(B) > 0.

In other words, A |=P B if and only if B is a real possibility (i.e., p(B) > 0) in
all probability functions that make A a real possibility. While C preserves non-
falsity and probabilistic certainties, P preserves strict truth and probabilistic
possibilities (see also Adams 1996b).14 Therefore it also satisfies characteristic
principles of (conditional) possibility logic, such as the inference from A→ B

to B→ A. The fact that it satisfies such principles (and fails plausible theorems
such as |= A→ A) is also a good argument why preservation of (strict) truth
is not an adequate consequence relation for reasoning with conditionals. We
now move to the main contribution of this paper: developing an account of
non-monotonic reasoning with conditionals when premises are uncertain.

6 Uncertain Inference

Certain inference with conditionals is arguably monotonic: when we know B

for certain, or when we suppose it as holding no matter what, we also know
that B is the case under the condition that A. However, when we move to
uncertain inference, where only high probability or degree of assertability is
preserved, things change. We may accept, assert, or find plausible B, but reject
B under the condition that A. For example, the conditional “if Real Madrid
faces Juventus in their next match, then Real Madrid will win” sounds highly
plausible, whereas “if Real Madrid faces Juventus in their next match but
most of their players are sick, then Real Madrid will win” seems much less
plausible. A logic of inference with uncertain premises U should therefore,
unlike the logic C, be non-monotonic, i.e., we cannot infer from A → C that
A∧ B→ C for any A, B and C ∈ L→.15

The canonical definition of validity for single-premise inference in a logic
of uncertain inference preserves probability, as a proxy for rational accep-
tance or assertability (e.g. Adams 1975). In other words, the probability of the
premise A must never exceed the probability of the conclusion B. Almost all
logics of uncertain reasoning agree on this criterion for single-premise infer-
ence, which is the natural analogue of truth preservation in certain reasoning.
We therefore adopt it as our definition of single-premise logical consequence
in uncertain reasoning:

14This logic is called QCC/SS in the classification system proposed by
Égré, Rossi, and Sprenger (2021a).

15The structural rule of Weakening (that is, inferring A, B |= C from A |= C) will remain
valid in our logic U. However, the rule ¬A |= A→ B fails in it, for the same reasons that make
it fail in C.
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Definition 2 (Valid Single-Premise Inference in U). For formulas A, B ∈ L→:

A |=U B if and only if p(A) ≤ p(B) for all probability functions p : L→ 7−→ [0, 1]
based on credence functions c : A 7−→ R

≥0.

Corollary 1. |=U B if and only p(B) = 1 for all probability functions p : L→ 7−→
[0, 1] based on credence functions c : A→ R

≥0.

Corollary 2. C and U have the same theorems.

It is easy to show that this inference criterion has the following characteriza-
tion in trivalent logic:

Proposition 3 (Equivalent Characterizations of Valid Single-Premise Inference
in U). For A, B ∈ L→, the following are equivalent:

(1) A |=U B

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}, v(A) ≤ v(B), or |=C B. In

other words, if v(A) = 1 then v(B) = 1, and if v(A) ≥ 1/2, then v(B) ≥ 1/2.

(3) A |=C B and A |=P B, or |=C B;

(4) A |=C B and ¬B |=C ¬A, or |=C B;

Condition (2) expresses that the semantic value of the conclusion must
not fall below the semantic value of the premise in all possible valuations.
By Proposition 1 and Proposition 2, this is equivalent to the conjunction of
A |=C B and A |=P B (or ¬B |= ¬A), i.e., both certainties and possibilities are
preserved.16 Thus, U validates fewer inferences than C. The proposition states
that all these conditions are equivalent to demanding that the conclusion be
at least as probable as the premise for all probability functions.

Extending this criterion to multi-premise inference Γ |= B, for Γ ⊆ L→,
is non-trivial. Should the probability of B not fall below the minimum prob-
ability of the premises? Should it follow Adams’s uncertainty preservation
criterion (Adams 1975, 1996b)? Should B be at least as plausible as the con-
junction of the premises? Since there is no intuitively best candidate here,
we believe that the choice should depend on the logical properties of the pro-
posed criterion. We propose that Γ |=U B if and only if for a subset X ⊆ Γ of the
premises, the probability of the (quasi-)conjunction of the elements of X never ex-

ceeds the probability of the conclusion, regardless of the choice of the probability
function. Formally:

16Égré, Rossi, and Sprenger (2021a) call this logic QCC/SS∩TT since it preserves both strict
and tolerant truth value (=both strict truths and non-falsities). This is one of the logics
entertained in Belnap (1973).
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Definition 3 (Valid Multi-Premise Inference in U). For a set of formulas Γ ⊆ L→

and a formula B ∈ L→: Γ |=U B if and only if there is a finite subset of the premises

∆ ⊆ Γ such that for all probability functions p : L→ 7−→ [0, 1], p(
∧

Ai∈∆ Ai) ≤ p(B).

We define validity by means of existential quantification over (possibly
improper) subsets of Γ, in order to preserve the fact that a set of premises
entails each of its members, namely Γ |=U A for any A ∈ Γ (compare
Dubois and Prade 1994, p. 1729). If we required instead that the quasi-
conjunction of all members of Γ have lower probability than B, we would
no longer have that A, B |=U A for every B, despite the fact that A |=U A for
every A.17

There are also principled reasons for adopting this definition. First of
all, Definition 3 allows us to extend the equivalence between probabilistic
inference and a trivalent consequence relation from the single-premise to the
multi-premise case:

Proposition 4 (Equivalent Characterizations of Valid Multi-Premise Inference
in U). For Γ ⊆ L→ and B ∈ L→, the following are equivalent:

(1) Γ |=U B.

(2) Either |=C B, or there is a finite subset of premises ∆ ⊆ Γ such that the semantic

value of B is, for all Cooper valuations v, at least as high as the semantic value

of the quasi-conjunction of the premises: v(
∧

Ai∈∆ Ai) ≤ v(B).

(3) Either |=C B, or there is a finite subset of premises ∆ ⊆ Γ such that
∧

Ai∈∆ Ai |=C

B and
∧

Ai∈∆ Ai |=P B.

(4) Either |=C B, or there is a finite subset of premises ∆ ⊆ Γ such that
∧

Ai∈∆ Ai |=C

B and ¬B |=C

∨

Ai∈∆ ¬Ai.

As for C, the equivalence of (1) with (2), (3) and (4) is not only attractive
from a computational point of view, but it also connects probabilistic rea-
soning with conditionals to the trivalent semantics that defines their truth
conditions in the first place.

Secondly, Proposition 4 also provides sound and complete calculi for the
logic U for free. For instance, since Cooper (1968) has a sound and complete
Hilbert-style calculus for C, this automatically translates, thanks to Proposi-
tion 4, into a sound and complete calculus for U. Validity in U is nothing else
but the combination of two valid consequence relations in C. Alternatively,

17In other words, although the logic would remain reflexive, it would not be structurally
monotonic. We are indebted David Over for discussion on this topic.
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still using Proposition 4, tableau- and sequent-style sound and complete ax-
iomatizations of U can be extracted from Égré, Rossi, and Sprenger (2021b).

Thirdly and finally, defining multi-premise inference in this way yields an
attractive set of valid inferences with uncertain premises, as we will see in the
next two sections.

7 Properties of U

Constitutive and Generally Desirable Principles in Uncertain Inference C U

Logical Truth |= A→ ⊤ ✓ ✓

Law of Identity |= A→ A ✓ ✓

Supraclassicality (Laws) (for A without→) if |=CL A, then |= A (✓) (✓)
Left Logical Equivalence if A |=C B, B |=C A, then A→ C |= B→ C ✓ ✓

Stronger-Than-Material A→ B |= A ⊃ B (✓) (✓)
Conjunctive Sufficiency A, B |= A→ B ✓ (✓)
AND A→ B, A→ C |= A→ (B∧C) ✓ ✓

OR A→ C, B→ C |= (A∨ B)→ C ✓ (✓)
Cautious Transitivity A→ B, (A∧ B)→ C |= A→ C ✓ (✓)
Cautious Monotonicity A→ B, A→ C |= (A∧C)→ B ✓ ✓

Rational Monotonicity A→ B,¬(A→ ¬C) |= (A∧C)→ B ✓ ✓

Reciprocity A→ B, B→ A |= (A→ C) ≡ (B→ C) ✓ (✓)
Right Weakening if B |=Q C, then A→ B |= A→ C ✓ (✓)
Rule of Conditional K if A1, . . . , An |=C C, then ✓ (✓)

(B→ A1), . . . , (B→ An) |= (B→ C)
Optional and Disputed Principles

Supraclassicality (Inferences) if Γ |=CL B then Γ |= B ✗ ✗

Modus Ponens A→ B, A |= B ✓ (✓)
Modus Tollens A→ B,¬B |= ¬A (✓) (✓)
Simplifying Disjunctive Antecedents (A∨ B)→ C |= (A→ C) ∧ (B→ C) (✓) (✓)
Import-Export A→ (B→ C) if and only if (A∧ B)→ C ✓ ✓

Or-to-If ¬A∨ B |= A→ B ✓ ✗

Conditional Excluded Middle |= (A→ B) ∨ (A→ ¬B) ✓ ✓

Connexive Principles (optional)

Aristotle’s Thesis |= ¬(¬A→ A) ✓ ✓

Boethius’s Thesis |= (A→ C)→ ¬(A→ ¬C) ✓ ✓

Undesirable Principles

Contraposition A→ C |= ¬C→ ¬A (✓) ✗

Monotonicity A→ C |= (A∧ B)→ C ✓ ✗

Transitivity A→ B, B→ C |= A→ C ✓ ✗

Table 6: Overview of Inference Principles involving conditionals in uncertain infer-
ence. In the rightmost columns, it is shown whether C and U validate the principle
generally (✓), only for bivalent valuations of the sentential variables (✓in parenthe-
ses), or not at all (✗).

We now evaluate the logic U in terms of the inference schemes it validates,
using the principles in Table 6, taken from the survey article by Egré and Rott
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(2021).18 The principles above the first horizontal line are generally con-
sidered to be desirable, or at least not harmful, in uncertain reasoning with
conditionals. The principles between the lines—e.g., Modus Ponens, Or-To-
If, Import-Export, and Conditional Excluded Middle—are typically a bone of
contention between theorists. We also include some tautologies that are dis-
tinctive for connexive logics. The principles at the bottom—Contraposition,
Monotonicity and Transitivity—are characteristic of most monotonic logics,
and logics of deductive inference in particular, but should not be satisfied by a
non-monotonic logic of uncertain reasoning with conditionals (for compelling
counterexamples, see Adams 1965). So we should expect that these principles
are satisfied by C, but not by U.

Table 6 evaluates, in the rightmost columns, C and U with respect to all
these principles. We cannot discuss each of them in detail, but we make some
general observations. Many desirable or non-harmful principles are satisfied
by U without restriction, whereas some of them only hold for bivalent (“atom-
classical”) valuations of at least one sentential variable. This means that when
all sentences are conditional-free, the inference is valid; only when one of
the sentences contains a conditional connective (so that it can take the third
truth value), it is possible that the inference fails. When we compare U to
classical conditional logics (i.e., logics where all valuations are bivalent, such
as Stalnaker-Lewis logics), we can consider the principles valid since making
a comparison presupposes bivalent valuations. Specifically, U recovers all
valid inferences of System P, which is a classical benchmark for conditional
logics (Adams 1975; Kraus, Lehmann, and Magidor 1990).19 Moreover, both
C and U validate connexive principles such as Aristotle’s Thesis (¬(¬A→ A))
and Boethius’s Thesis ((A→ C)→ ¬(A→ ¬C)).

Principles that are typically considered problematic—Monotonicity, Con-
traposition, Transitivity, (Egré and Rott 2021)—are indeed not valid in U.
These principles do not even hold when we restrict U to bivalent valua-
tions of sentential variables. However, they do (mainly) hold in our logic of
certain inference C, in line with our view of C as a generalization of classical
deductive logic to a language with a conditional.

Most interesting are the six principles in the middle. Supraclassicality
fails because C does not support Explosion, e.g., while A ∧¬A |=CL B holds
for any two sentences A and B, it is not the case that A∧¬A |=C B. However,

18We use C as an appropriate generalization of classical deductive logic in formulating
principles like Left Logical Equivalence or Right Weakening.

19Adams (1975) characterized his logic of uncertain inference by seven syntactic princi-
ples whose combination is known as System P: the Law of Identity, AND, OR, Cautious
Monotonicity, Left Logical Equivalence, and Right Weakening.
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all classical laws are theorems of both C and U when restricted to bivalent
valuations. Modus Ponens and Modus Tollens hold for conditional-free sen-
tences, but break down for nested conditionals—in line with McGee’s famous
objections (see the next section for a detailed analysis). Also Simplification of
Disjunctive Antecedent is preserved for bivalent valuations only.

Import-Export holds unrestrictedly, since A → (B → C) and (A ∧ B) →

C have exactly the same truth conditions. The principle is intuitively
plausible: “it appears to be a fact of English usage, confirmed by nu-
merous examples, that we assert, deny, or profess ignorance of a com-
pound conditional A → (B → C) under precisely the circumstances un-
der which we assert, deny, or profess ignorance of (A ∧ B) → C” (McGee
1989, p. 489). Experimental evidence seems to confirm this attitude
(van Wijnbergen-Huitink, Elqayam, and Over 2015). Indeed, the main mo-
tivation for giving up Import-Export—e.g., in Stalnaker-Lewis semantics,
but also in the probabilistic semantics of Sanfilippo et al. (2020)—is not its
implausibility, but the pressure from Gibbard’s and Lewis’s triviality re-
sults, where Import-Export is an important premise. Some accounts there-
fore restrict the validity of Import-Export to simple conditionals and set up
an error theory of why we infer from there to the general validity of the
principle (e.g., Mandelkern 2020). By contrast, both C and U can incorpo-
rate Import-Export since the triviality results do not apply to these logics
(Égré, Rossi, and Sprenger 2022).

Conditional Excluded Middle (CEM) is a validity of C, and is therefore
valid in U as well. Numerous analyses of indicatives endorse CEM (e.g.,
Stalnaker 1980; Williams 2010; Ciardelli 2020; Santorio 2022a), but there are
also notable opponents (e.g., Gillies 2009; Kratzer 2012). A natural way to
argue for CEM is to note that it is an immediate consequence of commutation
with negation, i.e., the semantic equivalence between¬(A→ B) and A→ ¬B,
which also holds in our system. To see this, note that (A→ B)∨¬(A→ B)—
an instance of the Law of Excluded Middle—immediately entails (A→ B)∨

(A→ ¬B), that is CEM.
Finally, a crucial difference between C and U concerns the relation of the

indicative to the material conditional A ⊃ B := ¬A ∨ B (read as the quasi-
disjunction of A and B). On the one hand, A ⊃ B |=C A→ B, i.e., if we know
that Alice or Bob ordered a beer, then, if we learn that Alice did not order a
beer, we can infer that Bob did so. This apparently valid Or-to-If inference is
a classical argument for analyzing the indicative conditional in line with the
material conditional, and C captures this intuition. However, this inference is
invalid when we infer the conditional from an uncertain disjunction. A good
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illustration of this failure is given by Edgington (1986, p. 191): if I am 90%
confident that it is 8 o’clock, then I am at least as confident that it is 8 or 11
o’clock, but that does not give me the same confidence that if it is not 8 then
it is 11 o’clock. Indeed, Or-to-If fails in U, as we want to have it. Actually,
neither does the material conditional imply the indicative conditional in U,
nor vice versa.

However, the simple, non-nested indicative conditional often appears to
be more demanding to assert than the material conditional (e.g., Gibbard 1980;
Gillies 2009). Can our account then explain this “Stronger-Than-Material”
intuition? Yes—because for bivalent valuations that use only classical truth
values, A → B entails A ⊃ B in both C and in U. In the context of uncertain
reasoning with conditional-free statements, p(A → B) = p(B|A) ≤ p(A ⊃ B)

is a theorem. In summary, we have Or-to-If as a valid principle for reasoning
from certain premises, but not from uncertain premises; nonetheless, we
show that why A→ B is less acceptable than A ⊃ B whenever antecedent and
consequent are conditional-free sentences.

8 Modus Ponens, Tollens, and Import-Export

Modus Ponens appears invariably valid in inference from certain premises, but
a famous counterexample by McGee (1985) challenges its validity in inference
from uncertain premises. It concerns the 1980 U.S. presidential elections.

If a Republican wins the election, then, if Reagan does not win, Anderson will
win.

A Republican will win the election.

Therefore, if Reagan does not win the election, Anderson will.

At some point before the elections, the two premises were commonly ac-
cepted: Ronald Reagan was predicted to win the election, and Anderson was
the runner-up behind Reagan in the Republicans’ primary race. By Modus
Ponens we infer that if Reagan does not win, Anderson will. The logical
form of that inference is: from A → (B → C) and A, infer, by Modus Po-
nens, B → C. However, in the polls Anderson was actually trailing both
Reagan and Carter, the democrat incumbent. Therefore, if Reagan was not
elected president, the best prediction would be that Carter would be elected,
contradicting the conclusion.
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McGee’s counterexample has generated a large amount of literature con-
cerning the validity of Modus Ponens.20 As stressed by McGee, the intuitive
appeal of the counterexample depends crucially on the use of nested condi-
tionals. In particular, Stern and Hartmann (2018) show that when the major
premise of Modus Ponens is a nested conditional, the probability loss in in-
ferring to the conclusion can be much higher than when we apply Modus
Ponens to non-nested premises. For bivalent propositions A and B, the term

p(B) = p(B|A)p(A) + p(B|¬A)(1− p(A)) (1)

is, by the Law of Total Probability, well controlled by the values of p(A)

and p(B|A)—the values that represent the probability of the two premises of
Modus Ponens. For example, if both values exceed .9, then p(B) ≥ .81, so the
product of the two probabilities is still a reasonably high value.

However, in the case of right-nested conditionals, the probability of the
conclusion of Modus Ponens is poorly controlled:

p(C|B) = p(C|A∧ B)p(A|B) + p(C|¬A∧ B)(1− p(A|B)) (2)

Suppose that premises are highly plausible, e.g. p(A) ≥ .9 and p(C|A∧B) ≥ .9,
where the latter probability has been calculated by applying Import-Export
and Adams’s Thesis to A → (B → C). Then you can still assign extremely
low values to three of the four probabilities on the right hand side of equation
(2), and derive a very low value of p(C|B). Therefore the probability loss is
more pronounced in McGee’s example than when we apply Modus Ponens
to simple conditionals.

Our logics mirror this diagnosis: Modus Ponens is valid in C, i.e., in cer-
tain inference, and valid in U for bivalent valuations, i.e., when all involved
propositional constants are classical. However, U does not validate the un-
restricted form of Modus Ponens, and in fact, the only countermodel to the
schema A→ B, A |= B is v(A) = 1 and v(B) = 1/2 (i.e., B is a conditional with
false antecedent).21 The same kind of analysis can be applied to showing

20Sinnott-Armstrong, Moor, and Fogelin (1986) respond that the conclusion should be eval-
uated as a material conditional—which would be a plausible proposition—, and argue that the
burden is on McGee to show that this interpretation of the conditional is inadequate. But this
defensive strategy is threatened by the strong theoretical and empirical arguments against the
material conditional view, in particular the paradoxes of material implication, and the fact that
judgments on the probability or assertability of A→ C align with p(C|A), not with p(¬A ∨C)
(e.g., Over, Hadjichristidis, et al. 2007).

21Suppose that “A Republican will win” is true if and only if Reagan or Anderson wins.
The main conditional then has probability 1 (since Or-to-If is valid in C), the disjunction has
high probability, and the consequent has a low probability. Thus, nested Modus Ponens in
McGee-type examples fails if and only if the associated Or-to-If inference fails. The fact that
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that Modus Tollens, i.e., the schema A → B,¬B |= ¬A, is valid for simple
conditionals, but not for arbitrary nested conditionals.

Since Import-Export features crucially in McGee’s counterexample (e.g.,
in Stern and Hartmann’s probabilistic reconstruction), philosophers and lo-
gicians have often faced a choice between both principles. For example,
Stalnaker (1968) and Lewis (1973b) give up Import-Export, but retain Modus
Ponens. So does Mandelkern (2020), who restricts the validity of Import-
Export.22 Our trivalent framework makes the opposite and arguably more
natural choice: like McGee (1989), we let Import-Export be unrestrictedly
valid and restrict the validity of Modus Ponens. This account does not only
give a convincing analysis of McGee-style examples, which are typically rec-
ognized as a problem for Modus Ponens in uncertain reasoning, but also
agrees with psychological evidence in favor of Import-Export and simple
Modus Ponens.

9 Comparisons

The trivalent treatment of indicative conditionals is first sketched in
Reichenbach (1935) and de Finetti (1936a,b). A more detailed motivation
of this approach, including an overview of the main consequence relations of
interest, is given by Belnap (1970, 1973), but none of these authors provides a
fully worked out account of the logic and epistemology of conditionals. The
first complete trivalent account of a logic of conditionals is due to Cooper
(1968), who originally created system C. However, Cooper restricts it to bi-
valent valuations of the sentential variables, without applying it to the entire
language L→, and does not connect it to the probability of conditionals.
Cantwell (2008) investigates the logical consequence relation of C (=preser-
vation of non-falsity), but uses Strong Kleene connectives for conjunction and
disjunction. Moreover, his treatment of “non-bivalent probability” ends up
with an altogether different probabilistic logic (Cantwell 2006).

Most similar to our approach, both in spirit and content, are the triva-
lent accounts developed by Dubois and Prade (1994) and McDermott (1996).

McGee’s argument is analyzed as valid in C and as invalid in U is also in accordance with the
ambivalence generally felt regarding whether the argument is valid or not; specifically, also
Neth (2019) and Santorio (2022b) distinguish between the validity of Modus Ponens in certain
and uncertain inference.

22More precisely, Mandelkern shows that a conditional satisfying Conditional Introduction
(i.e., the meta-inference from Γ, A |= B to Γ |= A → B) and both Modus Ponens and Import-
Export is equivalent to the material conditional. He suggests to restrict the scope of Import-
Export to cases where the “middle proposition” B in A → (B → C) does not contain a
conditional.
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However, these authors stick to de Finetti’s original truth table and (in the
case of McDermott) use Strong Kleene truth tables for conjunction and dis-
junction. The semantic features are thus quite different. On the level of
inferences, many features are similar, but McDermott’s logic validates Tran-
sitivity (A → B, B → C, therefore A → C). While this is acceptable and even
desirable in the framework of certain inference, it is arguably problematic
when reasoning from uncertain premises since the probability of p(C|A) is
in no way controlled by p(C|B) and p(B|A); in fact, it can be arbitrarily low.
Suppose that you live in a very sunny, dry place. Consider the sentences A

= “it will rain tomorrow”, B = “I will work from home”, C = “I will work
on the balcony”. Clearly, both A → B and B → C are highly plausible, but
A → C isn’t. This structural feature offers, in our view, a decisive reason to
prefer our model to McDermott’s. Dubois and Prade avoid that feature, but
like Adams and Cooper, they restrict their account to the flat fragment ofL→,
i.e., allowing only simple, non-nested conditionals.

Trivalent Logics Bivalent Logics
Inference Principle U MD P VC C2

Stronger-Than-Material (✓) ✓ ✓ ✓ ✓

Conjunctive Sufficiency (✓) ✓ ✓ ✓ ✓

OR (✓) ✓ ✓ ✓ ✓

Cautious Transitivity (✓) ✓ ✓ ✓ ✓

Transitivity ✗ ✓ ✗ ✗ ✗

Modus Ponens (✓) (✓) ✓ ✓ ✓

Modus Tollens (✓) (✓) ✓ ✓ ✓

Import-Export ✓ ✓ N/A ✗ ✗

SDA (✓) ✓ N/A ✗ ✗

Rational Monotonicity ✓ (✓) N/A ✓ ✓

Conditional Excluded Middle ✓ ✓ N/A ✗ ✓

Table 7: Comparison of the logic U with alternative conditional logics, restricted to
inference principles where not all of the logics agree. The surveyed alternatives are
System P, Lewis’ VC, Stalnaker’s C2, and McDermott’s MD.

On the side of reasoning, our logic U generalizes the benchmark account of
uncertain reasoning developed in Adams’s (1975) monograph The Logic of Con-

ditionals. In this book, Adams equates the probability of a conditional A→ C

with the conditional probability p(C|A), and develops a probabilistic logic of
uncertain reasoning with conditionals on that basis. The descriptive accuracy
of the predictions of Adams’s logic is acknowledged both by philosophers and
by psychologists of reasoning (e.g., McGee 1989, pp. 487-488; Ciardelli 2020,
p. 544; Over, Hadjichristidis, et al. 2007; Over and Baratgin 2017), but due the
lack of general truth conditions for compounds and Boolean combinations
of conditionals, it has limited scope. The incompleteness of the theory has
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encouraged more ambitious theorists to pursue different roads (e.g., modal
semantics or dynamic semantics). Our account recovers all the inferences in
Adams’s logic of reasonable inference without suffering from these restric-
tions. Specifically, some principles that Adams needs to postulate as axioms,
such as the equation p(A → B) = p(B|A) (for A, B ∈ L) or the Import-Export
Principle, emerge as corollaries of our semantics. This makes our account more
unified and coherent than Adams’s.

We conclude our comparisons with a note on other truth-conditional ap-
proaches. The classical modal semantics for a conditional A→ C defines it as
true if C is true at the closest possible A-world (e.g., as defined by Stalnaker’s
selection function or Lewisian spheres: Stalnaker 1968, 1975; Lewis 1973b,a;
McGee 1989). If A is true in the actual world, the truth value of the conditional
corresponds to the truth value of the consequent, as in our analysis. The fun-
damental difference emerges when A is false: while we assign a third truth
value to the conditional, modal theorists assign a classical truth value, essen-
tially based on epistemic considerations (“is C the case in a plausible world,
or set of worlds, where A is the case?”). In other words, Stalnaker-Lewis
semantics creates a disparity between the case where A is true, where truth
conditions are factual, and the case where A is false, where truth conditions
depend on considerations of plausibility and normality. On our approach,
epistemological considerations are relevant for assertion and reasoning, but
truth conditions are entirely factual.

Modern developments of modal semantics go beyond possible-world se-
lection functions. Their common denominator is to evaluate a conditional
A → C as true if C is true in all relevant contexts selected by the antecedent
A (e.g., Kratzer 1986; Mandelkern 2019). Specifically, dynamic and informa-
tion state semantics implement this idea by updating on A (e.g., Gillies 2009;
Santorio 2022a). These accounts integrate the semantics of “if. . . then. . . ”
with the semantics of other modal operators, but they struggle to give a quan-
titative analysis of the probability of conditional which squares with the truth
conditions and yields Adams’s thesis (though see Goldstein and Santorio
2021). The connection to probabilistic reasoning, and the distinction between
certain and uncertain inference, is therefore easier to make for us than for
them. Moreover, in order to obtain full truth conditions that are stronger
than the material conditional, Gibbard’s (1980) triviality result forces modal
accounts to give up Import-Export (or another very plausible principle such
as Supraclassicality), limiting them in their ability to analyze complex condi-
tionals. As explained in Section 7, the trivalent account does not need to make
similar concessions (see also Lassiter 2020; Égré, Rossi, and Sprenger 2022).
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10 Conclusions

The trivalent analysis in this paper closes the gap between the truth conditions
of conditionals, their probabilistic semantics, and our (certain and uncertain)
reasoning with them. Specifically, we propose two logics that generalize the
concept of valid inference to reasoning with conditionals: C explicates con-
ditional reasoning with certain premises, U explicates conditional reasoning
with uncertain premises. Although C is a paraconsistent logic, all theorems
of classical logic are also theorems of C when restricted to bivalent valuations.
The combination of C and U avoids Gibbard’s and Lewis’s triviality results,
and provides a unified framework for conditional reasoning, in light with
the observation that some inference schemes (e.g., Or-To-If, nested Modus
Ponens) appear valid in certain and invalid in uncertain reasoning.

Summarizing the main features and results of our approach according to
topics:

Truth Conditions The indicative conditional expresses a conditional commit-
ment to the consequent, retracted if the antecedent turns out false. This
interpretation motivates a fully truth-functional trivalent analysis of the
conditional. Following Cooper, we group indeterminate antecedents
with true ones, and interpret conjunction and disjunction according to
his truth tables for quasi-conjunction and -disjunction.

Probability The probability of a sentence of L→ is the ratio of the weight of
possible worlds where it is true,divided by the weight of possible worlds
where it is either true or false. Adams’s Thesis p(A → C) = p(C|A)

for conditional-free sentences follows as a corollary and need not be
postulated as an axiom.

Certain Inference Conditional reasoning from certain premises is captured
by the logic C, which can be characterized as preservation of maximal
probability, and equivalently as preservation of non-falsity in trivalent
semantics (Proposition 1).

Uncertain Inference Conditional reasoning with uncertain premises is cap-
tured by the logic U, which preserves probability between the quasi-
conjunction of the premises and the conclusion. Equivalently, U pre-
serves truth and non-falsity for all trivalent valuations of the premises
and the conclusion (Proposition 3 and 4).

Combining these semantic and epistemological elements delivers a coherent
and fruitful framework. Specifically, we can use it to analyze and to explain
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the controversy about the validity of Modus Ponens, Or-to-If, Import-Export
and other important inference principles.

More work needs to be done. The most urgent projects are to explore
whether this analysis can in any way be connected to the semantics and
epistemology of counterfactuals, and to integrate our analysis with an account
of modal operators in natural language, such as “must” and “might”. Possible
ways of achieving this are to find an equivalent modal semantics, or to embed
the present trivalent approach into a modal framework. We leave these issues
for further research.
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A Proofs of the Propositions

Given a model, consisting of a nonempty set of worlds W and a valuation
function v, recall that AT, AI, AF ⊆ W denote the set of possible worlds where
A is true, indeterminate, and false, respectively. Here and in the remainder,
we identify possible worlds with complete valuation functions to all sentences
in the language L→.

Proposition 1 (Trivalent Characterization of C). For any set {Γ, B} ⊂ L→, Γ |=C

B if and only if for all Cooper valuations v : L→ 7−→ {0, 1/2, 1}:

for every A in Γ, if v(A) ≥ 1/2, then v(B) ≥ 1/2.

Proof. “⇒”. Suppose A |=C B. This means that for every model, BF ⊆ AF.
Suppose now that p(A) = 1 for some probability function p: by (Probability),
this requires c(AF) = 0. But since BF ⊆ AF, and the measure properties of c,
also c(BF) ≤ c(AF) = 0 and hence p(B) = 1.

“⇐”. Suppose that for any p with p(A) = 1, also p(B) = 1. Suppose
further that A 6|=C B, i.e., there is a model and a world w ∈ BF with w < AF.
Choose c such that c(w) = 1, i.e., w has maximal credence, and in particular,
c(w′) = 0 ,∀w′ , w. Then c(AF) = c(BT) = 0, and

p(A) =
c(AT)

c(AT) + c(AF)
=

c(AT)

c(AT) + 0
= 1, but

p(B) =
c(BT)

c(BT) + c(BF)
=

0
0 + 1

= 0,

contradicting what we have assumed. Hence it must be the case that A |=C B.
The generalization to more than one premise is straightforward since

A1, . . .An |=C B if and only if
∧

Ai |=C B. �

Proposition 2 (Characterization of Possibility-Preserving Inference). Suppose

A, B ∈ L→ and there exists at least one probability function where p(B) < 1. Then

the following two characterizations of A |=P B are equivalent:

1. For all Cooper valuations v : L→ 7−→ {0, 1/2, 1} such that v(A) = 1, it is also

the case that v(B) = 1.

2. For all credence functions c : A 7−→ R with c(AI) < 1 and associated

probability function p : L→ 7−→ [0, 1]: if p(A) > 0, then p(B) > 0.

Proof. “⇒”. Suppose A |=QCC/SS B. This means that for every model, AT ⊆

BT. Suppose now that p(A) > 0; since we have excluded the case c(AI) = 1
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we have strictly positive credence that A is true. In other words, c(AT) > 0.
Since AT ⊆ BT, it follows that c(BT) ≥ c(AT) > 0, and hence p(B) > 0.
“⇐”. Suppose AT , ∅ (otherwise the proof is trivial). We suppose further
that A 6|=QCC/SS B, i.e., there is a world w ∈ AT with w < BT. Moreover, by
assumption (=B is no theorem of C) there must be a world w′ ∈ BF. Then we
choose c(w) = c(w′) = 1/2 (for the case w = w′, choose c(w) = 1) and infer

p(A) =
c(AT)

c(AT) + c(AF)
=

(

1 +
c(AF)

c(AT)

)−1

> 0,

and moreover, since w, w′ < BT,

p(B) =
c(BT)

c(BT) + c(BF)
=

0
0 + 1/2

= 0,

contradicting what we assumed. Hence A|=QCC/SSB. �

Proposition 3 (Equivalent Characterizations of Valid Single-Premise Inference
in U). For A, B ∈ L→, the following are equivalent:

(1) A |=U B

(2) For all Cooper valuations v : L→ 7−→ {0, 1/2, 1}, v(A) ≤ v(B), or |=C B. In

other words, if v(A) = 1 then v(B) = 1, and if v(A) ≥ 1/2, then v(B) ≥ 1/2.

(3) A |=C B and A |=P B, or |=C B;

(4) A |=C B and ¬B |=C ¬A, or |=C B;

Proof. We reason by cases and begin with the case |=C B. In this case, p(B) = 1
and hence, (1), (2) and (3) are all true. In the remainder, we can therefore
neglect this case and assume that there is at least a world w ∈ BF. We simplify
and unify notation and write “|=SS” instead of “|=QCC/SS”, and “|=TT” instead
of “|=QCC/TT” or “|=C”. First, we show the equivalence of (2) and (3).

(2)⇒(3): By assumption, we already have A |=TT B. Suppose ¬B |=C ¬A;
this means that (¬A)F ⊆ (¬B)F, or equivalently, AT ⊆ BT. But the latter is the
same as A |=SS B. So both the SS- and the TT-entailment holds between A

and B.

(3)⇒(2): Suppose A |=QCC/SS∩TT B. This implies A |=TT B trivially; we
still have to show ¬B |=TT ¬A. But since A |=QCC/SS B, we have AT ⊆ BT and
hence (¬A)F ⊆ (¬B)F. The latter is equivalent to ¬B |=TT ¬A.
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(3)⇒(1): By assumption, AT ⊆ BT and BF ⊆ AF. Hence, c(AT) ≤ c(BT) and
c(AF) ≥ c(BF). Thus, for all probability functions p : L→ → [0, 1],

p(A) =
c(AT)

c(AT) + c(AF)
=

(

1 +
c(AF)

c(AT)

)−1

≤

(

1 +
c(BF)

c(BT)

)−1

= p(B).

(1)⇒(3): Let us first deal with the case AT = ∅. In that case, A |=SS B is
trivially satisfied. The only way for (3) to be false is if there is a w ∈ AI ∩ BF,
such that A |=TT B fails. However, in that case, we can assign c(w) = 1,
obtaining p(A) = 1 and p(B) = 0. So (1) would fail, too. For this reason, we
can presuppose in the remainder that AT , ∅.

We now prove the converse, i.e.,¬(3)⇒ ¬(1). Assume first that A 6|=QCC/SS

B, i.e., AT ∩ (BF ∪ BI) , ∅.

Case 1: AT ∩ BF , ∅. Choose a w ∈ AT ∩ BF and a probability distribution
with c(w) = 1, yielding p(A) = 1 and p(B) = 0. So ¬(1) holds.

Case 2: AT ∩ BF = ∅. Choose a w ∈ AT ∩ BI. However, since B is by as-
sumption no theorem of QCC/TT, we know that there is a w′ ∈ BF.
Assign the credences c(w) = c(w′) = 1/2. Then we obtain the following
counterexample to (1):

p(A) =
c(AT)

c(AT) + c(AF)
≥

1/2

1/2 + c(AF)
≥ 1/2

p(B) =
c(BT)

c(BT) + c(BF)
=

0
0 + 1/2

= 0.

Now assume that A 6|=TT B, i.e., BF∩ (AT∪AI) , ∅. If there is a w ∈ BF∩AT, we
are done: simply assign maximal credence to this world, and we obtain that
p(A) > p(B). If there is only a w ∈ BF ∩AI, by contrast, we assign c(w) = 1/2,
and moreover, we choose an arbitrary w′ ∈ AT ∩ (BT ∪ BI) with c(w′) = 1/2.
Such a w′ must exist since we have assumed AT , ∅. Then, we construct a
counterexample to (1) as follows:

p(A) =
c(AT)

c(AT) + c(AF)
=

1/2

1/2 + 0
= 1

p(B) =
c(BT)

c(BT) + c(BF)
≤

1/2

1/2 + 1/2
= 1/2

�
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The proof of Proposition 4 proceeds exactly as the proof of Proposition 3,
with the (quasi-)conjunction A1 ∧ . . .∧An taking the role of A. Since there are
no structural differences, we omit it.
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