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Motivation

constrained and

The increasing complexity and energy demands of modern Al models, such as
Vision Transformers (ViTs), pose challenges for their deployment in resource-
real-time environments. This research
programmable gate arrays (FPGAs) as an efficient hardware platform for Al
acceleration. By minimizing and adapting these models for FPGAs, we aim to:

« Reduce Energy Footprint
« Optimize Model Size
« Enhance Efficiency

« To minimize and synthesize modern Al models, such as Vision Transformers
(ViTs), for small-scale scenarios.

« To analyze the trade-offs, energy consumption, and performance of these
models when deployed on FPGAs.

« To evaluate the feasibility of using FPGAs as an alternative hardware
platform for deploying transformer models in real-time classification tasks.
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Initial Results
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First attempt: CNN models
using the HLS4ML tool.

Next: ViTs on NN2FPGA tool.
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Related Work
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VAQF is a framework that

automatically builds efficient,
real-time Vision Transformer
accelerators on FPGAs by

optimizing quantization and

hkardware parameters. /

\

/

codesign

A novel algorithm-hardware
combines
static weight and dynamic
token pruning for efficient
Vision Transformer execution

@ a new accelerator.
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quantization and

Qeed on FPGAs.

uasar-ViT is a framework
designs efficient and accurate
Vision Transformers for edge
devices through hardware-aware

search, achieving high inference
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Quasar-ViT hardware architecture
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Layer Normalization (LN) was replaced with Batch
Normalization (BN) to enable fusion with linear layers,
improving inference efficiency on the FPGA with minor
\accuracy loss.
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Conclusions & Future Work

Our initial experiments using the HLS4ML framework on the Pyng-Z2 board
achieved promising results, demonstrating the feasibility of deploying complex
neural networks on FPGAs.

After successfully deploying ResNet models using NN2FPGA on Kria KV-260 and
Ultra96-v2 boards, we are now exploring its compatibility with ViT models and
identifying any unsupported parameters.
Test Transformer Models: Implement Swin TF model using NN2FPGA, focusing
on maintaining accuracy.
Select FPGA Platform: Choose the best FPGA for deployment, comparing cloud
and edge options.
Compare GPU and FPGA: Evaluate performance and energy use for models
deployed on GPU and FPGA.
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