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Abstract: There is a growing interest in tissue engineering, in which biomaterials play a pivotal
role in promoting bone regeneration. Furthermore, smart functionalization can provide biomate-
rials with the additional role of preventing orthopedic infections. Due to the growing microbial
resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their
known wide range of bactericidal properties, are believed to be promising additives in developing
antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have
been designed and developed, where the polymer matrix was modified with both silver (Ag), to
supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles
to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs
were characterized by square-shaped macropores, in line with the morphology and size of the tem-
plating salts used as pore formers. Degradation tests demonstrated the important role of calcium
phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL
composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition
halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant
(p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the
3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not
hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial,
osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for
bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.

Keywords: poly(ε-caprolactone)-based biomaterial; calcium phosphates; silver; Staphylococcus aureus;
S. epidermidis; Escherichia coli; anti-adhesive/antibacterial properties; Saos-2 cells’ cell viability/proliferation

1. Introduction

Bone tissue diseases are a growing concern due to the aging population. In fact, ad-
verse clinical conditions, attributable to trauma, pathologies, tumors, or previous surgical
procedures, may affect the population, especially those over 50 [1]. While tissue regen-
eration is a natural process, certain clinical cases may benefit from tissue engineering to
boost the production of new bone tissue. Self-regeneration is a multifaceted biological
process that includes molecular signaling and many different types of cells. Osteoblasts,
as bone synthesizing cells, produce the bone matrix, and, subsequently, the remodeling of
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new bone tissue occurs to finalize mature bone [2,3]. However, these physiological healing
processes decrease in older people; therefore, tissue engineering can offer a new approach
for bone restoration and the improvement of medical procedures [1,4].

Engineered bone graft substitutes are designed to restore impaired bone tissue and its
mechanical properties, allowing, at the same time, natural bone regeneration and healing
progression. Deficient tissue can be repaired and substituted by a three-dimensional
(3D) porous construct known as a “scaffold”, which has been identified as an innovative
therapeutic answer for cavity filling in bone pathological alterations or for the healing of
fractured bone [1]. Such bone biocompatible 3D scaffolds may be obtained from natural or
synthetic sources. The latter comprise polymers such as polycaprolactone (PCL), a nontoxic
aliphatic polyester with FDA-approved clinical applicability thanks to its biodegradability
and biocompatibility properties [5,6]. In medical applications, PCL is investigated for
wound dressing [7,8], fixation implants [9], drug delivery [10], or in bone-tissue engineering
for the manufacturing of long-term implantable devices [3,5,6,11,12].

In order to better match the compositional, physical, and mechanical properties of
natural bone, synthetic polymers can be added with ceramic particles, mainly hydroxyap-
atite (HA), α/β-tricalcium phosphate (α/β-TCP) or biphasic calcium phosphate (BCP, a
mixture of HA/β-TCP), known as the mineral components of the natural bone [1,6,13,14].
The incorporation of calcium phosphates (CaPs), as the bioactive component, into PCL pro-
vides the 3D scaffold with the required multi-functionalities, merging mechanical features,
bioactivity, biodegradability, and the ability to stimulate, promote, and induce osteogenic
cell differentiation [3,15].

Furthermore, it is pivotal that these 3D scaffolds can be additionally tuned to let the
controlled—fast or prolonged—release of antibacterial agents, allowing the development
of novel personalized tissue engineering applications with the ability to act as a targeted
delivery system, achieving a high local concentration of loaded molecules with a dose-
dependent effect [13,16]. PCL itself could be the cargo of antimicrobial substances such as
copper, silver, zinc oxide, or graphene [15,17]. Notably, silver displays a wide spectrum
of antimicrobial activity against different pathogens, including those resistant to various
antibiotics. In addition, due to its low toxicity to mammalian cells [8,16], the use of silver in
orthopedics appears to be a strategic choice.

In one of our previous studies [11], with the aim of developing antibacterial and
anti-biofilm biomaterials for tissue regeneration, we focused on the design and manufac-
turing of BCP/PCL composites functionalized with silver at 1.67wt% with respect to the
polymer matrix. These 3D scaffolds showed a highly porous structure, suitable mechanical
properties, and relevant antibacterial/anti-adhesive activity against Staphylococcus aureus
as well. On the other hand, despite the fact that the silver content was relatively low, they
displayed cytotoxic behavior towards eukaryotic cells, specifically human osteoblasts.

For these reasons, in the present research, the silver content in the BCP/PCL porous
architecture was tuned in the range ~0.8–1.2%, featuring a 3D scaffold characterized by both
antibacterial/anti-adhesive and osteogenic properties. This research presents a comparative
study of the antibacterial properties of the 3D scaffolds made of BCP/PCL with the addition
of varying silver content against three typical human pathogens—S. aureus, S. epidermidis,
and Escherichia coli—involved in orthopedic infections.

2. Materials and Methods
2.1. BCP/PCL-Based Scaffold Preparation and Characterization

Poly(ε-caprolactone) (PCL, Merck KGaA, Milan, Italy) pellets were solubilized in
acetone (20 wt%) at 40 ◦C for 24 h. In order to fabricate 3D porous structures, two types of
inorganic salts, with sizes in the range 125–355 µm, were used as pore formers, precisely
NaCl and NaNO3 (Sigma Aldrich, St. Louis, MO, USA, >99.5% purity). Salt granules were
mixed with the solubilized polymer (NaCl or NaNO3:PCL weight ratio 90:10); once homog-
enized, the suspension was cast into cylindrical plastic molds (∅ = 20 mm, h = 10 mm).
Once dried and demolded, samples were soaked in deionized water for 4 days, renewing
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the water each day, to solubilize the salt and generate the required porosity. To fabricate the
porous poly(ε-caprolactone)/biphasic calcium phosphate (BCP/PCL) composites, first HA
(Captal S BM192, Plasma Biotal Limited, Buxton, UK) and β-TCP (Captal R, Plasma Biotal
Limited) powders were mixed under dry conditions in a 70:30 weight ratio to provide
the BCP mixture. BCP composite powder was then added to acetone and stirred for 12 h,
to which PCL was finally added (BCP:PCL weight ratio, 40:60). Further details on the
experimental process can be found in Comini et al. 2021 [11]. Finally, for the (Ag)-doped
materials, a variable concentration of silver nitrate (AgNO3, Grade AR, Sigma Aldrich)
was mixed with acetone until complete dissolution. In particular, the 1 wt% or 1.2 wt%,
and the 0.79 wt% or 1 wt% (as respect to PCL) were introduced for the NaCl or NaNO3
3D-scaffolds, respectively. These silver concentrations to be added to the polymer were
determined by preliminary tests aimed at providing an antibacterial action against the
three different microorganisms while preserving the viability of the human osteosarcoma
(SaoS)-2 cells. These preliminary results were obtained by testing—using the micro-dilution
assays [18]—the direct effect of silver on both bacteria and eukaryotic cells.

Details of all the obtained specimens are reported in Table 1.

Table 1. 3D PCL-based constructs obtained for the present research.

Types of 3D Scaffolds Salt Used as Pore Former Composition of the 3D Scaffolds

pure PCL NaCl poly(ε-caprolactone)

pure BCP/PCL NaCl biphasic calcium phosphates/poly(ε-caprolactone)

PCL + Ag 1% NaCl poly(ε-caprolactone) + 1% of silver

PCL + Ag 1.2% NaCl poly(ε-caprolactone) + 1.2% of silver

BCP/PCL + Ag 1% NaCl biphasic calcium phosphates/poly(ε-caprolactone) + 1% of silver

BCP/PCL + Ag 1.2% NaCl biphasic calcium phosphates/poly(ε-caprolactone) + 1.2% of silver

pure PCL NaNO3 poly(ε-caprolactone)

pure BCP/PCL NaNO3 biphasic calcium phosphates/poly(ε-caprolactone)

PCL + Ag 0.79% NaNO3 poly(ε-caprolactone) + 0.79% of silver

PCL + Ag 1% NaNO3 poly(ε-caprolactone) + 1% of silver

BCP/PCL + Ag 0.79% NaNO3 biphasic calcium phosphates/poly(ε-caprolactone) + 0.79% of silver

BCP/PCL + Ag 1% NaNO3 biphasic calcium phosphates/poly(ε-caprolactone) + 1% of silver

The microstructural characterization was carried out by field emission scanning elec-
tron microscopy (FESEM, Zeiss Supra 40, Jena, Germany).

The phase composition was investigated with X-ray diffraction (XDR, Philips PW 1710,
Eindhoren, The Netherlands) analysis. In particular, the relative ratio between the HA and
β-TCP phases was determined by the following relationship [19]:

%HA =
I100(HA)

I100(HA) + 1100(TCP)
× 100 (1)

where I100 (HA) and I100 (TCP) denote the relative peak intensities of the hydroxyapatite
and β-TCP phases, respectively.

Simultaneous Thermogravimetry-Differential thermal analysis (TG-DTA, LabSys evo
machine, Setaram, Caluire, France) was performed on both PCL and BCP/PCL samples to
assess the influence of the ceramic filler on the thermal behavior of the polymer.

2.2. PCL-Based and BCP/PCL-Based 3D Scaffold Biodegradability Test

The biodegradability tests were performed as previously reported in detail [12]. Briefly,
the BCP/PCL-based construct —prepared with different silver concentrations—was im-
mersed in Dulbecco’s modified eagle medium (DMEM; Merck KGaA) solution [12,20–22] at
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37 ◦C during 3, 6, 12, and 18 days of incubation. After each soaking time, the scaffolds were
removed from the DMEM and dried to reach a constant mass before weighing. The weight
loss values of the pure PCL and composite BCP/PCL samples were obtained following
this formula:

weight loss(%) =
m0 − mx

m0
× 100 (2)

where

m0 = initial mass of the sample
mx= mass of the dried sample after immersion at time x

2.3. Cell Viability Assays by Direct-Contact Assay

The in vitro cytotoxicity test was performed, as previously detailed [11,12], on human
Saos-2 (American Type Culture Collection®, ATCC®, HTB-85, Manassas, Virginia, VA, USA),
an osteosarcoma cell line characterized by an osteoblastic phenotype. These eukaryotic
cells were cultured in DMEM high in glucose (Merck KGaA) with phenol red (plus sodium
bicarbonate, 10% fetal bovine serum, and 1% penicillin–streptomycin), and incubated at
37 ◦C in a 5% CO2 atmosphere.

The sterile BCP/PCL 3D scaffolds were cut into cylinders of 5 mm diameter and 5 mm
height and put in 96-well plates; thereafter, their surface was covered by 2 × 104 Saos-2 cells
and incubated in culture medium for different incubation times, specifically 0, 3, 6, and
12 days. All the BCP/PCL-based samples, with or without silver, were assayed in triplicate,
and the medium was replaced every 2–3 days. At each time point, the cell viability was
determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)
assay (Merck KGaA), and the optical density (OD) was measured at 570 nm using a
microplate reader (VICTOR3TM, PerkinElmer, Waltham, MA, USA). The results were
reported as OD values, subtracting the OD of the PCL or BCP/PCL-based scaffolds without
Saos-2 cells from the OD of the PCL or BCP/PCL-based 3D scaffolds with Saos-2 cells.
Differences among the obtained OD values on the various constructs with and without
silver were determined and statistically analyzed.

2.4. In Vitro Antibacterial Assays

The in vitro antibacterial assays were performed by testing different pathogens involved
in orthopedic infections [23–25], specifically S. aureus (ATCC® 29213), S. epidermidis (ATCC®

35984), and E. coli (ATCC® 25922). To investigate the activity of silver blending to PCL- or
BCP/PCL-based 3D constructs, the inhibition halo (manual v 9.0; https://www.eucast.org/
ast_of_bacteria/disk_diffusion_methodology, accessed on 30 July 2023) and the bacterial
adhesion experiments were conducted on the three bacterial strains as recently reported in
our research [11,12].

Briefly, for the inhibition halo test, 0.5 McFarland (1–2 × 108 colony-forming units,
CFU/mL) suspensions of each bacterium were uniformly spread on Mueller Hinton Agar
(MHA, Becton Dickinson and Company, BD, Franklin Lakes, NJ, USA), then sterile both
PCL- or BCP/PCL-pure scaffolds and the correspondingly silver-added ones were placed
on agar. The silver release from functionalized specimens and its effect on bacterial devel-
opment were evaluated after an incubation for 24 h at 35 ± 2 ◦C by measuring (mm) the
inhibition halo [11,12].

Whereas, for the microbial adhesion test, as previously detailed [11,12], the bacteria
were cultured for 18–24 h at 35 ± 2 ◦C in Mueller Hinton Broth (MHB, BD), then centrifuged
and diluted in MHB to obtain a 104 CFU/mL inoculum. The sterile PCL- or BCP/PCL-
based 3D constructs, with and without different silver contents, were surrounded by 7 mL
of bacterial inoculum in a 6-well culture plate and incubated at 35 ± 2 ◦C by shaking
for 24 h to permit in vitro bacterial bonding to the biomaterials. After incubation, the
constructs were subjected to sonication for 30 min at room temperature in 10 mL of NaCl
0.9% solution (Bieffe Medital S.p.A., Grosotto, Italy) to detach bacteria, which were strongly
bound to the samples themselves and quantified by a plating count on MHA. Planktonic
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bacteria were also counted as CFU/mL. The adhesion tests were conducted in triple for
each 3D construct type and performed at least three times.

2.5. Statistical Analysis

The GraphPad Prism 9 software (San Diego, CA, USA) was employed to analyze the
morphological parameters, the weight loss percentages, the microbiological (CFU/mL),
and the MTT (OD, 570 nm) data by descriptive statistics (means and standard error of the
means). An unpaired Student’s t-test was used to find significant differences (p < 0.05)
between the various tested samples.

3. Results and Discussion

The present study was aimed at designing and developing 3D scaffolds based on pure
PCL or BCP/PCL functionalized biomaterials for orthopedic bone tissue engineering that
would, in parallel, ensure bone regenerative potential through the presence of BCP and an
antimicrobial feature by adding AgNO3, released as Ag+. The available literature pertains
to PCL as fibers or printed constructs, but only when added with metal ions (i.e., silver,
copper, zinc, etc.) [5,13–16,26,27], whereas no existing research has studied the combined
use of calcium phosphates and silver, especially on 3D constructs fabricated by the salt
leaching/polymer casting method.

3.1. Characterization of PCL- and BCP/PCL-Based Biomaterials

The dimensions of all the PCL- and BCP/PCL-based biomaterials are reported in
Table 2. In brief, the 3D scaffolds exhibited a morphological cylinder-shaped geometry with
comparable dimensions, specifically diameter (mm) and height (mm). Composite samples
(BCP/PCL) presented a slightly larger diameter compared to pure PCL, indicating a lower
shrinkage during drying of the former specimens, imputable to the constraining effect
of the ceramic particles. Density values showed almost superimposable values among
the same type of samples but obtained with different salts (NaCl or NaNO3). Besides the
negligible role of salts on density, these results highlight the high reproducibility of the
process employed.

Table 2. Morphological characteristics (reported as mean ± standard error of the mean) of the pure
PCL- or BCP/PCL-based 3D scaffolds, functionalized with low silver concentrations, and pored with
NaCl (A) or NaNO3 (B).

Morphological Parameters Statistical Analysis

A Diameter (mm) Height (mm) Density (mg/mm3) Student’s t-Test

Scaffold Type

PCL 18.31 ± 0.11 11.27 ± 0.16 0.126 ± 0.003

weight and density
PCL vs. BCP/PCL

p < 0.001

BCP/PCL 18.98 ± 0.10 10.80 ± 0.29 0.204 ± 0.005

PCL + Ag 1% 18.31 ± 0.21 10.58 ± 0.49 0.133 ± 0.009

PCL + Ag 1.2% 18.38 ± 0.22 11.18 ± 0.49 0.132 ± 0.005

BCP/PCL + Ag 1% 18.73 ± 0.12 11.68 ± 0.13 0.213 ± 0.004

BCP/PCL + Ag 1.2% 18.92 ± 0.13 12.15 ± 0.16 0.221 ± 0.003

B

PCL 18.10 ± 0.13 10.10 ± 0.39 0.127 ± 0.003

weight and density
PCL vs. BCP/PCL

p < 0.001

BCP/PCL 18.74 ± 0.10 9.87 ± 0.41 0.205 ± 0.005

PCL + Ag 0.79% 18.61 ± 0.13 11.11 ± 0.65 0.133 ± 0.009

PCL + Ag 1% 18.42 ± 0.22 11.81 ± 0.46 0.132 ± 0.005

BCP/PCL + Ag 0.79% 18.63 ± 0.11 9.64 ± 0.25 0.213 ± 0.004

BCP/PCL + Ag 1% 18.99 ± 0.07 11.25 ± 0.16 0.220 ± 0.003
Abbreviations: PCL—poly(ε-caprolactone); BCP—biphasic calcium phosphates; Ag—silver.
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In addition, considering the theoretical density of neat PCL (1.145 g/cm3), the den-
sity of pure PCL specimens (0.126 ± 0.003 g/cm3 and 0.127 ± 0.003 g/cm3 for the 3D
scaffolds pored with NaCl or NaNO3, respectively) provided a total porosity of ~89%, in
fair agreement with the expected nominal porosity of 90%. When the BCP was added to
obtain the BCP/PCL composite constructs, the density increased to about 0.22 g/cm3. This
augmentation can be explained by considering the theoretical density of the ceramic phases
(3.16 g/cm3 for HA and 3.07 g/cm3 for β-TCP), which provided a nominal density for the
BCP/PCL composite of 1.53 g/cm3 (as determined by the rule of mixture). Therefore, in
this case, the overall porosity was ~86%, just slightly lower than the nominal 90% volume.

Notably, the addition of the different percentages of silver to the 3D scaffolds, either
pure PCL or BCP/PCL, did not significantly modify neither the cylindrical geometry nor
the dimensions, while a slight increase in density was observed (Table 2).

In Figure 1, the XRD patterns of neat PCL (a) and of BCP composite powder (b)—both
used as references—and the pattern related to BCP/PCL composite scaffold (c) are pre-
sented. Concerning the neat polymer (a), the presence of two sharp peaks at 21.65 (◦2θ) and
23.92 (◦2θ), corresponding respectively to the (110) and (200) planes, denotes the presence of
polycaprolactone with a semi-crystalline structure, in agreement with literature data [28,29].
In (b), the peaks of the HA and β-TCP phases were recognized and indexed through the
JCPD files n. 00-009-0432 and 00-009-0169, respectively. By applying Equation (1), the
HA: β-TCP weight ratio was 68:32. The fair agreement between the experimental and
nominal ratios (70:30) strengthens the use of the above equation for the semi-quantification
of the calcium phosphate phase’s ratio. In (c), the PCL main signals have been determined,
along with all the most intense peaks of the HA and β-TCP phases. These results suggest a
negligible role for calcium phosphate particles in modifying the crystallinity of the polymer
matrix. Equation (1) provides that the HA and β-TCP phases are present in the polymer
matrix with a weight ratio of 72:28, still in very good agreement with the nominal ratio.
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In addition, in order to quantify the PCL:BCP ratio, DTA-TG analysis was carried out
on the composite scaffold. After thermal decomposition at 650 ◦C, a residual mass equal to
43% was determined, corresponding to the calcium phosphate particles, in agreement with
the nominal content (40 wt% with respect to PCL).

Joint results concerning the calcium phosphate content in the polymer (by DTA-TG)
and on the HA:β-TCP ratio (by XRD) clearly demonstrate that the long water soaking time
of the samples (4 days), necessary to leach out the NaCl and NaNO3 salts, did not induce
any significant or preferential dissolution of the calcium phosphate phases. Although
the above results were determined on samples prepared by using NaCl as a pore former,
similar results were determined with NaNO3 and therefore were not repeated here.

FESEM micrographs of neat PCL scaffolds as well as silver-added PCL and BCP/PCL
composite constructs are illustrated in the following: In Figure 2, the morphology of the
PCL scaffolds pored with NaCl (A) and NaNO3 (D) salts is compared. While in the former
case the pores are characterized by well-defined geometrical shapes due to regular-shaped
NaCl granules [11,12], a less regular pore shape can be recognized in NaNO3-derived
materials. This difference in pore morphology is maintained in the micrographs of the
silver-added PCL scaffolds, where squared pores characterized the NaCl-based sample
(B,C), contrary to the NaNO3-one (E,F). In spite of this, all the structures were characterized
by a very high porosity and were open and interconnected (as evidenced by the higher
magnification images, C and F), which is extremely required in bone tissue engineering.
Notably, the addition of silver did not alter the pore morphology or the microstructures, as
the same features can be observed in neat and silver-added PCL specimens.
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Figure 2. Representative FESEM micrographs of neat PCL scaffolds (A,D) and silver-added PCL
(B,C,E,F) obtained by using NaCl (A–C) and NaNO3 (D–F) as pore formers. For silver-added PCL,
lower (B,E) and higher (C,F) magnification images are depicted.

Figure 3 shows the FESEM micrograph of BCP/PCL scaffolds obtained by using NaCl
as a pore former, as indicated by the geometrically shaped pores. The lower magnification
image (A) shows again the high porosity degree and the pore interconnection by means
of tine pores in the cell walls; the higher magnification one (B) shows the homogeneous
dispersion of the HA/β-TCP particles, well embedded into the polymer matrix. Similar
microstructural features were observed in the NaNO3-based samples and are thus not
depicted here.
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Figure 3. Representative FESEM micrographs of BCP/PCL (NaCl) scaffolds at lower (A) and higher
(B) magnification.

3.2. PCL- and BCP/PCL-Based 3D Scaffold Biodegradability Degree

In Figure 4, the weight loss of the 3D scaffold as a function of the immersion time in
DMEM is depicted.
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Figure 4. Weight loss of PCL and BCP/PCL scaffolds (by using NaCl as pore former salt) at different
time points (3, 6, 12, and 18 days) after the immersion in DMEM.

For both PCL and BCP/PCL scaffolds, a gradual increase in mass loss was determined,
with close values for the two types of samples up to 12 days (4.6% and 5.5%, respectively).
After 18 days, a more significant mass loss was determined for the composite sample,
reaching 14% of the weight loss compared to the neat polymer scaffold (11%).

These results are in poor agreement with literature data since, generally, a lower degra-
dation degree for PCL-based materials is reported [30,31]. However, a clear comparison
of results is difficult due to the various experimental conditions used to test the materials
(such as soaking medium, time and temperature, degradation mechanism, etc.), as well as
the different material features (such as porosity amount and size, crystallinity, thickness of
the samples, etc.). With specific reference to biodegradability tests performed in DMEM,
Lu et al. (2012) fabricated scaffolds by injecting the melt polymer or melt PCL added with
β-TCP particles into a soluble porous mold [32]. The authors reported a weight loss of just
0.35% after 2 weeks of immersion, which increased to ~3% and 4% after 4 and 6 weeks,
respectively. These values increased significantly for 10% and 20% β-TCP-containing
materials, showing 2.4% and 2.8% weight loss, respectively, after 2 weeks of immersion.
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A very low weight loss (0.7%) after 2 weeks of immersion of PCL scaffold, obtained by
fused deposition modeling technique, was also reported by Hedayati et al. (2022) too [33].
Muhammad et al. (2012) compared the biodegradability of a commercial PCL scaffold
with a self-crossing PCL-derived polymer, the polycaprolactone trifumarate, obtained by
a salt-leaching method, similarly to our work but using a lower polymer: NaCl ratio of
1:1 [34]. While the former still presented a moderate weight loss after 2 weeks (~2.5%)
but was comparable to the values achieved in this work after 12 days, the modified PCL
achieved values close to 20%. Finally, Janarthanan et al. (2019) reported weight loss of
~8% and 10% for porous PCL and porous PCL/α-TCP, obtained by a solvent casting/salt
leaching method similar to our process after 14 days of immersion, in good agreement
with the present results [35]. The highly porous structure, characterized by open and
well-interconnected pores and thin struts within the cells, is probably responsible for this
high degradation degree and rate. A further explanation, when comparing the current
results with tests carried out in other media, can be ascribed to the better wettability of PCL
by DMEM than other mediums like physiological buffer solution (PBS), as determined by
Musciacchio et al. (2022) [36].

In this work, to rule out a selective release of calcium phosphate particles during
soaking in DMEM, XRD analyses were performed on BCP/PCL samples before and after
each incubation time (Figure 5).
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Figure 5. XRD patterns of BCP/PCL scaffolds after soaking for 3 (a), 6 (b), 12 (c), and 18 (d) days
in DMEM.

Samples soaked in DMEM for different times showed very similar diffraction patterns
in terms of the intensity of the signals associated with PCL, HA, and β-TCP phases. By
applying Equation (1), the HA: β-TCP ratio was in fact 71.5, 70, 70, and 73 in samples
incubated for 2, 6, 12, and 18 days, respectively, showing a very good match with the
nominal ratio. These results rule out any significant dissolution of the ceramic particles
into the incubation fluid; on the other hand, calcium phosphate particles can play a role in
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improving the hydrophilicity of PCL, thus explaining the highest degradation of BCP/PCL
compared to the neat polymer after 18 days of soaking.

3.3. In Vitro Saos-2 Cell Viability/Proliferation Assay

Here, we evaluated Saos-2 cells since these eukaryotic cells are a useful in vitro model
of typical osteoblast behavior and represent a mature osteoblast phenotype with high
alkaline phosphatase activity and osteocalcin expression at similar levels as human pri-
mary osteoblasts [37–39].

In our previous paper, we demonstrated that the silver concentration of ~1.67%, even
if it showed good efficacy against S. aureus, unfortunately impaired Saos-2 cell viability and
proliferation [11]. Thus, here we tuned the silver amount into the 3D scaffolds to reach both
antibacterial and non-cytotoxic behavior. Specifically, regarding samples pored with NaCl,
they were added with 1% and 1.2%, whereas those pored with NaNO3—for which we
demonstrated a higher release of silver content into the medium [11]—were functionalized
with 0.79% and 1%.

In Figure 6, the summary of all the results achieved by the MTT assays and expressed
as optical density (OD 570 nm) concerning the viability and proliferation of Saos-2 cells in
contact with the different specimens pored with NaCl (A) or NaNO3 (B) within 12 days of
incubation, blended or not with silver, is reported.
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(B) salts, expressed as optical density (OD) value at 570 nm. Results are means ± standard error of
the mean (SEM) of at least three independent experiments; * p < 0.001 unpaired t-test.

Briefly, within 3 days of incubation, similar OD values were recorded for all the
PCL-based 3D scaffolds, reporting no differences neither between controls and silver-
functionalized specimens nor between the NaCl (A) and NaNO3 (B) salts used to form
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the pores in the samples. At 6 days of incubation, while the OD for the pure PCL and the
PCL + 1% of silver for NaCl constructs, or 0.79% of silver for the NaNO3 ones, resulted in
an additional increase in the OD values, the 3D scaffolds enriched with the higher silver
concentrations—specifically 1.2% or 1% for NaCl and NaNO3, respectively—highlighted
a significant (p < 0.001) decrease in the OD values with respect to pure PCL (Figure 6).
Notably, after 12 days of incubations, a further significant (p < 0.001) reduction in cell
viability was evident for the 1.2% (NaCl pored) and the 1% (NaNO3 pored) functionalized
specimens, with respect to pure-PCL and to the ones added with the lower concentrations
(1% or 0.79% for NaCl and NaNO3 pored constructs, respectively). An analogous but
not cytotoxic pattern pertaining to the 3D scaffolds obtained with BCP/PCL and with
BCP/PCL added with the lower (1% for NaCl and 0.79% NaNO3) silver concentrations
was obtained, thus demonstrating that the functionalization with calcium phosphates did
not impair eukaryotic cell viability.

Finally, for both pure-PCL and PCL enriched with the lower (1% or 0.79%) silver
percentages, the preparation of the 3D scaffolds either with NaCl or with NaNO3 promoted
Saos-2 proliferation within 6 days, determining a confluence state and no additional growth
at 12 days (Figure 6).

In the attempt to screen the existing literature on the effect of PCL enriched with silver
on sarcoma Saos-2 cells viability, we faced the fact that very poor articles on the issue are
available; therefore, in the following part of the paper, we compared the direct action of
silver towards these types of eukaryotic cells. Research by Ashe S. et al. (2016) demonstrated
that the presence of AgNPs (0.005–0.25 mM) ameliorate Saos-2 cell parameters such as
morphology and restores native protein structure [40]. The same authors [41] prepared
composite hydrogels encompassing AgNPs and determined that, with respect to pure
biomaterials, a slight reduction in Saos-2 cells was revealed, and the initial concentration
of AgNPs was 1 mg/mL. More recently, Rodriguez-Contreras et al. (2023) demonstrated
both adhesion and proliferation of Saos-2 cells on silver and gallium-modified titanium
surfaces in a dose-dependent manner [25]. Additionally, in current studies, the direct
effect of AgNPs (3–250 µg/mL or 0.3125–10 ppm) on SaoS-2 cells was tested, and a dose-
dependent cytotoxicity was shown [42,43]. These data are in good agreement with those
here obtained, since a decrease in eukaryotic cell viability was highlighted only when
higher silver concentrations were used, whereas when they were exposed to lower ones,
no cytotoxic effects were demonstrated. The silver concentrations that displayed a toxic
or nontoxic behaviour towards Saos-2 cells are very close; thus, we can speculate that
the blending of silver into the PCL- and BCP/PCL-based biomaterials allowed a tailored
amount that was consequently specifically released as Ag+, demonstrating a cause/effect
association between ions and cytotoxicity on eukaryotic cells [25,44].

In parallel, we further confirmed that the PCL polymer alone or blended with CaPs
did not impair Saos-2 cell viability or proliferation [17,45,46].

3.4. Antibacterial Assays

A growing body of evidence indicates that the most common pathogens recovered
from prosthetic joint infections (PJIs) in different clinical settings are Gram-positive bacteria
belonging to the Staphylococcus species, mainly S. aureus and S. epidermidis [47,48]. There-
after, other microorganisms, such as Enterobacteriaceae (i.e., E. coli or Kleblsiella pneumoniae),
can be the causative bacterial species [48,49]. These bacteria can worsen the infectious
process by both being resistant to the antimicrobial treatment and by producing a well-
established biofilm [47,50,51].

For these reasons, three different pathogens—S. aureus, S. epidermidis, and E. coli—as
demonstrative microorganisms involved in PJIs were used in the present research. The
microbiological results were obtained by performing the inhibition halo (Figures 7–9 and
Table 3) and the bacterial adhesion experiments (Tables 4 and 5). Even if only the lower
concentration of silver (1% for NaCl and 0.79% for NaNO3) did not display a reduction
in Saos-2 cell viability and proliferation, being non-toxic for eukaryotic cells, all the mi-
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crobiological assays were performed by using all the silver concentrations added to the
PCL-based biomaterials. In fact, literature research also reported that close concentrations
of silver are not toxic for eukaryotic cells but exert antibacterial activity as well [24,25,27,42].
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Figure 7. Representative images of the inhibition halo assay against S. aureus in the presence of the
PCL-based samples, pored with NaCl, enriched with 1% (A) or 1.2% (B) of silver, or those pored with
NaNO3, enriched with 0.79% (C) or 1% (D) of silver.
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Figure 8. Representative images of the inhibition halo assay against S. epidermidis in the presence of
the PCL-based samples, pored with NaCl, enriched with 1% (A) or 1.2% (B) of silver, or those pored
with NaNO3, enriched with 0.79% (C) or 1% (D) of silver.
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Figure 9. Representative images of the inhibition halo assay against E. coli in the presence of the
PCL-based samples, pored with NaCl, enriched with 1% (A) or 1.2% (B) of silver, or those pored with
NaNO3, enriched with 0.79% (C) or 1% (D) of silver.

Table 3. Average diameters (reported as mean ± standard error of the mean) of the inhibition halo
around the pure-PCL- or the BCP/PCL-based scaffolds functionalized with low silver concentrations,
pored with NaCl (A) or NaNO3 (B), towards the three assayed bacterial strains.

Average Diameter ± SEM (mm)

A S. aureus S. epidermidis E. coli

Scaffold Type
pored with NaCl

PCL + Ag 1% 22.65 ± 0.16 27.41 ± 0.21 22.02 ± 0.36

PCL + Ag 1.2% 22.85 ± 0.32 30.82 ± 0.30 22.19 ± 0.13

BCP/PCL + Ag 1% 22.79 ± 0.24 28.13 ± 0.12 21.32 ± 0.16

BCP/PCL + Ag 1.2% 23.06 ± 0.11 31.65 ± 0.22 22.87 ± 0.41

B

Scaffold Type
pored with NaNO3

PCL + Ag 0.79% 23.12 ± 0.20 27.06 ± 0.38 21.11 ± 0.13

PCL + Ag 1% 23.13 ± 0.31 29.76 ± 0.18 22.29 ± 0.23

BCP/PCL + Ag 0.79% 24.09 ± 0.50 27.89 ± 0.22 21.51 ± 0.30

BCP/PCL + Ag 1% 24.23 ± 0.12 30.03 ± 0.47 22.77 ± 0.21
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Table 4. Number of adherent staphylococci and E. coli (log10 colony-forming units, CFU/mL) on the
PCL and BCP/PCL 3D scaffolds, pure or functionalized with low silver concentrations and pored
with NaCl (A) or NaNO3 (B), towards the three assayed bacterial strains.

Number of Adhered Bacteria as log10 CFU/mL
(Means ± Standard Error of the Means) Statistical Analysis

A S. aureus S. epidermidis E. coli Student’s t-Test

Scaffold Type
pored with NaCl

PCL 2.16 × 109 ± 3.56 × 108 1.55 × 107 ± 5.50 × 106 1.45 × 108 ± 1.14 × 106

PCL and BCP/PCL vs.
PCL + Ag and

BCP/PCL + Ag
p < 0.001

BCP/PCL 3.05 × 109 ± 6.65 × 108 2.15 × 107 ± 4.00 × 106 1.24 × 108 ± 1.10 × 106

PCL + Ag 1% 2.36 × 103 ± 1.88 × 102 4.67 × 102 ± 1.40 × 101 2.43 × 102 ± 1.15 × 101

PCL + Ag 1.2% 2.01 × 103 ± 6.61 × 101 2.27 × 102 ± 1.83 × 101 2.86 × 102 ± 1.69 × 101

BCP/PCL + Ag 1% 2.66 × 103 ± 8.54 × 101 3.32 × 102 ± 1.35 × 101 2.52 × 102 ± 1.35 × 101

BCP/PCL + Ag 1.2% 1.55 × 103 ± 6.53 × 101 2.42 × 102 ± 1.76 × 101 1.42 × 102 ± 1.55 × 101

B

Scaffold Type
pored with NaNO3

PCL 1.48 × 109 ± 3.80 × 108 2.66 × 107 ± 1.34 × 106 2.19 × 108 ± 1.41 × 106

PCL and BCP/PCL vs.
PCL + Ag and

BCP/PCL + Ag
p < 0.001

BCP/PCL 2.82 × 109 ± 9.60 × 107 2.65 × 107 ± 1.89 × 106 1.78 × 108 ± 1.76 × 106

PCL + Ag 0.79% 3.43 × 103 ± 2.18 × 102 2.30 × 102 ± 1.66 × 101 3.12 × 102 ± 1.83 × 101

PCL + Ag 1% 2.31 × 103 ± 2.30 × 102 2.01 × 102 ± 3.10 × 101 1.06 × 102 ± 1.28 × 101

BCP/PCL + Ag 0.79% 6.18 × 103 ± 2.86 × 102 2.52 × 102 ± 1.89 × 101 2.89 × 102 ± 1.50 × 101

BCP/PCL + Ag 1% 4.96 × 103 ± 1.22 × 102 2.44 × 102 ± 2.17 × 101 1.60 × 102 ± 1.12 × 101

Table 5. Number of planktonic staphylococci and E. coli (log10 colony-forming units, CFU/mL) in the
presence of PCL and BCP/PCL 3D scaffolds, pure or functionalized with low silver concentrations
and pored with NaCl (A) or NaNO3 (B), towards the three assayed bacterial strains.

Number of Planktonic Bacteria as log10 CFU/mL
(Means ± Standard Error of the Means) Statistical Analysis

A S. aureus S. epidermidis E. coli Student’s t-Test

Scaffold Type
Pored with NaCl

PCL 2.80 × 109 ± 2.82 × 108 2.64 × 108 ± 6.62 × 106 1.74 × 109 ± 3.13 × 108

PCL and BCP/PCL vs.
PCL + Ag and

BCP/PCL + Ag
p < 0.001

BCP/PCL 2.35 × 109 ± 7.25 × 107 3.09 × 108 ± 1.21 × 107 1.07 × 109 ± 9.35 × 107

PCL + Ag 1% 1.28 × 105 ± 1.18 × 104 3.32 × 104 ± 1.28 × 103 1.67 × 103 ± 1.14 × 102

PCL + Ag 1.2% 1.06 × 105 ± 5.53 × 103 2.82 × 104 ± 1.80 × 103 1.30 × 103 ± 1.60 × 102

BCP/PCL + Ag 1% 1.65 × 105 ± 1.64 × 104 2.80 × 104± 1.55 × 103 3.50 × 103 ± 2.51 × 102

BCP/PCL + Ag 1.2% 1.58 × 105 ± 2.40 × 104 1.72 × 104 ± 1.39 × 103 2.62 × 103± 1.64 × 102

B

Scaffold Type
pored with NaNO3

PCL 2.16 × 109 ± 5.81 × 108 2.02 × 108 ± 2.00 × 107 1.42 × 109 ± 1.56 × 108

PCL and BCP/PCL vs.
PCL + Ag and

BCP/PCL + Ag
p < 0.001

BCP/PCL 3.67 × 109 ± 3.22 × 107 3.51 × 108 ± 2.75 × 107 1.34 × 109 ± 4.33 × 107

PCL + Ag 0.79% 2.78 × 105 ± 2.76 × 104 2.79 × 104 ± 2.13 × 103 1.48 × 103 ± 1.07 × 102

PCL + Ag 1% 1.57 × 105 ± 1.46 × 104 2.61 × 104 ± 2.03 × 103 1.24 × 103 ± 1.33 × 102

BCP/PCL + Ag 0.79% 3.35 × 105 ± 8.26 × 103 2.76 × 104± 1.02 × 103 2.24 × 103 ± 8.05 × 101

BCP/PCL + Ag 1% 2.32 × 105 ± 4.21 × 104 2.23 × 104 ± 5.80 × 102 2.06 × 103± 1.00 × 102
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In Figures 7–9, representative images of the inhibition halo assay are depicted, and
in Table 3, the average diameter (mm) of the inhibition growth around the 3D scaffolds is
reported. These data established that the silver was released from the PCL- and BCP/PCL-
based Ag-added samples and that it acted towards the three microorganisms tested, even if
a more pronounced activity was revealed against S. epidermidis with respect to both S. aureus
and E. coli. No inhibition halo was obtained around the pure-PCL and -BCP/PCL constructs,
confirming that no antibacterial action is displayed by the polymer alone or by the polymer
functionalized by CaPs. These results are in line with those of other researchers [13,16,52].
In a recently published article, the authors demonstrated that a growth-inhibition zone
was generated around titanium samples doped with silver and gallium against both Gram-
positive (S. aureus and S. epidermidis) and Gram-negative (E. coli and Pseudomonas aeruginosa)
bacteria [25]. Additionally, a similar wide area of inhibition was obtained by testing S. aureus
halo around poly-lactic-co-glycolic-acid/PCL scaffolds enriched with AgNPs [53] or by
assaying S. aureus and E. coli halo around scaffolds containing silver-doped HA [27].

The microbiological results (expressed as log10 CFU/mL) of the adhered bacteria—precisely
S. aureus, S. epidermidis, and E. coli—to the different PCL- and BCP/PCL-based biomaterials,
produced with either NaCl or NaNO3 salts, after 24 h of incubation are presented in Table 4.

Briefly, the three bacteria adhered to the pure PCL and BCP/PCL-based 3D scaffolds,
used as controls, with different loads of 109 CFU/mL, 107 CFU/mL, and 108 CFU/mL, for
S. aureus, S. epidermidis, and E. coli, respectively. Whereas, with respect to the controls, the
silver-blend specimens were able to significantly (p < 0.001) reduce their bacterial adhesion,
highlighting values at 103 CFU/mL for S. aureus and 102 CFU/mL for both S. epidermidis
and E. coli. As expected, no differences between the two silver concentrations (1% and 1.2%
for NaCl and 0.79% and 1% for NaNO3) were revealed, neither for the Gram-positive nor
for the Gram-negative bacteria (Table 4), suggesting that despite the variable silver amount
in the 3D scaffolds, a reduction in the bacterial adhesion occurred anyway.

In Table 5, the growth of the three different microorganisms in the broths being in
contact for 24 h with the specimens either controls—PCL and BCP/PCL—or silver-added
ones, determined by the planktonic count as log10 CFU/mL, is shown.

These results confirmed that the silver was released by the enriched samples into the
bacterial medium and exerted an antibacterial effect on their growth. In fact, a significant
(p < 0.001) reduction in the planktonic S. aureus, S. epidermidis, and E. coli was detected,
represented by a load of 105 CFU/mL, 104 CFU/mL, and 103 CFU/mL, respectively.
Whereas, in agreement with other literature results, no innate antibacterial activity by the
polymer alone or functionalized with CaPs was highlighted [6,16,27,52].

Thus, the silver presence in the 3D scaffolds revealed an anti-adhesive and antibac-
terial (Tables 4 and 5) action, and additionally to that, an anti-biofilm activity. In fact, it
has to be highlighted that a well-structured biofilm was noted in the control materials
for both the Gram-positive and the Gram-negative bacteria (Figure 10), whereas in the
silver-functionalized PCL and BCP/PCL-biomaterials, only a few microorganisms were
observed, and notably, they were altered in their usual morphology (Figure 11). Actually,
the staphylococci lost their spherical shape, and E. coli displayed a more elongated-fusiform
morphology; this effect was due to the direct effect of silver on the bacterial external struc-
tures. These data are in line with those of other scientific works that have proposed a
destabilization of the biofilm exerted by silver [25,54]. Here, we can speculate that the silver
presence is able to inhibit the biofilm’s production rather than its dislocation.

All together, the microbiological results confirmed the anti-adhesive and anti-biofilm
properties of the 3D scaffolds functionalized with both silver concentrations and, in parallel,
antibacterial growth as well. In a study, the antimicrobial action of PCL/clay mineral
vermiculite films doped or not with zinc was assayed, and the results demonstrated an
antibacterial effect only against E. coli but not against S. aureus [5]. In addition, electrospun
scaffolds containing silver-doped HA demonstrated a great antibacterial effect on S. aureus
and E. coli growth over time [27]. Qian Y. et al. (2019) produced PLGA/PCL electro-
spun scaffolds, including AgNPs, and highlighted an inhibition in S. aureus growth [16].
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Florea D.A. et al. (2022) evaluated the antibacterial performance of different coatings
on magnesium phosphate-containing silver nanoparticles and demonstrated their strong
anti-S. aureus and -Ps. aeruginosa efficiency [14].
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S. epidermidis (A) has an oval-shaped morphology (white arrows) and E. coli (B) has an elongated
morphology (white arrows) on PCL-based scaffolds added with 1% silver, obtained by using NaCl
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4. Conclusions

In natural conditions, during an adult’s lifetime, bone regeneration and healing are
well-orchestrated processes that involve different eukaryotic cells. However, the bone tissue
remodeling due to different pathological events, such as bone fractures, tumors, skeletal
abnormalities, and elderly diseases, requires a guiding substitute able to allow osteogenic
cell proliferation and colonization. Notably, a relevant issue in the surgical implantation of a
bone-tissue scaffold is the occurrence of infections that cause a shortcoming in the patient’s
quality of life. These infections might be exacerbated by the presence of antimicrobial
drug-resistant and biofilm-producing bacteria, too. Recent research has tried to overcome
these problems by adding metal ions instead of antibiotics to scaffolds designed for bone
tissue engineering. In this context, the present study demonstrated that the 3D PCL-
based constructs functionalized with calcium phosphates showed a highly interconnected
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porosity and, in parallel, revealed a good degradation behavior able to promote eukaryotic
cell colonization. Moreover, the tuning of the silver content into the novel BCP/PCL-based
construct of about 1% revealed sustained anti-adhesive, antibacterial, and anti-biofilm
activity—towards a broad spectrum of microbial species—without affecting osteoblast
viability and proliferation. Further studies with human primary osteoblasts aimed at
deepening their integration and differentiation when in contact with these new scaffolds
will be investigated to promote bone tissue regeneration. The use of the appropriate
concentration of silver displays many advantages over conventional antibiotics, mainly the
targeted release and minimizing the problem of antibiotic resistance by bacteria. In fact,
silver killing activity against microorganisms is complex and involves its action on various
external layers of the bacterial cell and on proteins, DNA, and other inner structures; thus,
the risk of selecting resistance is low. Hence, the here designed and studied 3D scaffolds
based on PCL blended with calcium phosphates and blended with silver for bone tissue
engineering are an effective strategy to be applied to improve the healing of such important
human tissue.
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