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INTRODUCTION

The search and study of special geometric structures has long since been a fundamental research
topic in Riemannian geometry. Such a quest is strictly related to holonomy theory. For instance, the
Riemannian holonomy group of a given Riemannian manifold (M, g), that is the holonomy group of the
Levi-Civita connection with respect to g, is an important object that detects the presence of additional
structure on M as it corresponds to a reduction of the structure group of the frame bundle. The
classification of all possible holonomy groups is therefore of obvious interest and has been successfully
completed in the works of Cartan [71, 72] and Berger [36], with contributions by other mathematicians.

More in detail, Cartan dealt with Riemannian symmetric spaces, while Berger obtained the list
of possible Riemannian holonomy groups for irreducible (non locally symmetric) simply-connected
Riemannian manifolds. The possible groups are SO(n), U(n), SU(n), Sp(n)Sp(1), Sp(n), Gz, Spin(7).
The group SO(n) corresponds to generic Riemannian geometry; U(n) and SU(n) represent the geome-
tries of Kéhler and Calabi-Yau manifolds; Sp(n)Sp(1) and Sp(n) correspond to quaternionic Kéhler
and hyperkédhler geometries; and, finally, Gy and Spin(7) are exceptional groups which can only occur
in dimensions 7 and 8 respectively. The list originally included Spin(9) but later Alekseevsky [3] showed
that a manifold with Spin(9) as Riemannian holonomy group is necessarily a Riemannian symmetric
space. The classification still needed to show that all the groups in Berger’s list actually occur as
holonomy groups, a goal that was eventually completed with Bryant and Salamon’s [57] examples of
metrics with exceptional holonomy.

Such a classification can be looked from a more general perspective in two ways, both relevant
to our future discussion. The first perspective comes from looking at non-Riemannian holonomy
groups, i.e. the possible holonomy groups of a torsion-free linear connection that does not preserve
the Riemannian metric. A result of Hano and Ozeki [162] shows that any closed Lie subgroup of
GL(n,R) can occur as the holonomy group of some linear connection. Hence, it makes sense to impose
torsion-freeness and restrict the possibilities. Berger presented a list of possible irreducible holonomy
groups of a torsion-free connection claiming that at most a finite number of groups was missing from
it. Bryant [55] found the first missing group and Chi, Merkulov and Schwachhofer [85, 86, 87] found
more, even an infinite family of them, thus proving wrong Berger’s claim. Finally, in 1999 Merkulov
and Schwachhofer [224] reached a complete classification of possible groups and it was shown that
every group on such list actually occurs as an holonomy group. See the survey [56] for further details.

The second perspective is driven by theoretical physics, especially in the presence of supersymmetry
[173], and calls for investigation of structures with torsion. Thus Kéhler, Calabi-Yau, quaternionic
Kéhler and hyperkéhler geometries generalize as follows: instead of looking at the Levi-Civita connection,
the focus is moved to a metric linear connection preserving the (hyper)complex structure with
holonomy contained in U(n), SU(n), Sp(n)Sp(1), Sp(n) respectively, however such a connection has
(non-vanishing) totally skew-symmetric torsion. The corresponding geometries are called Kéhler with
torsion (KT), Calabi-Yau with torsion (CYT), quaternionic Kéhler with torsion (QKT) and hyperkéhler
with torsion (HKT).

The last one, namely HKT geometry, is the object of the present work and it was introduced by
Howe and Papadopoulos in [178] as it arose on some internal spaces of certain supersymmetric sigma
models with Wess-Zumino term. HKT manifolds also play a role as moduli spaces for black holes
[142], and later they were detected as solutions of five-dimensional de Sitter supergravity [151, 161].
The mathematical interest of HKT geometry is also supported by the necessity of weakening the
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INTRODUCTION

compatibility conditions of hyperkédhler geometry, which tends to be very rigid and restrictive, resulting
in a relatively limited number of examples. HKT structures represent a natural class which is larger
than hyperkéahler ones.

HKT manifolds belong to the family of hypercomplex manifolds, so let us briefly discuss these first.
A 4n-dimensional smooth manifold M is hypercomplex if it allows a GL(n, H)-structure, where H is the
skew field of quaternions. In other words, M is equipped with a triple (I, J, K) of complex structures
behaving like the purely imaginary unit quaternions. Obata [235] showed that the integrability of I,
J and K is equivalent to the existence of a torsion-free connection that preserves (I, J, K), which is
now called the Obata connection. Studying the properties of the Obata connection (and its holonomy)
is part of the first perspective mentioned above. For instance, it is known [305] that when M has
holomorphically trivial canonical bundle K(M,I), the holonomy of the Obata connection lies in
SL(n,H). Such manifolds are called SL(n,H)-manifolds. The converse is still an open problem in
general, but it is indeed true by a result of Verbitsky [305] when M is compact and admits a HKT
structure. The study of complex manifolds with holomorphically trivial canonical bundle has attracted
much attention over the years (see e.g. [20, 29, 107, 124, 125, 127, 129, 131, 185, 215, 251]).

Let us now introduce HKT manifolds. As mentioned, a HKT structure on M is the data of
a Riemannian metric g which is hyperhermitian, i.e. it is Hermitian with respect to I, J and
K together with a linear connection with skew-symmetric torsion that preserves both g and the
hypercomplex structure (I, J, K). Such a connection is necessarily the common Bismut connection
with respect to I, J and K. Moreover, a result of Grantcharov and Poon [148] shows that a HKT
structure on a hypercomplex manifold is equivalently defined by a hyperhermitian metric g such that
O :=g(J-,-) +ig(K-,-) satisfies the condition

02 =0,

where the operator 0 is taken with respect to I. Already from the outset we observe similarities
with the Kéhler setting. It is believed that HKT geometry represents the hypercomplex analogue of
Kéhler geometry and abundance of evidence has been found in this direction. The role of the two
operators d, d$ := I~1dI is played on hypercomplex manifolds by the two operators d and 9, := J 1.5
Indeed, they anticommute and square to zero, so that cohomology can be performed, as firstly done by
Verbitsky [301]. Other interesting cohomologically related results that deepen the similarities with
Kahler manifolds have been obtained in [146, 208].

On HKT manifolds a local 90 -lemma holds, i.e. locally there always exists a smooth real-valued
function u such that £ = 00 u, this is due to Banos and Swann [27] whom proved it under a different
formalism. The result was spelled out in terms of the operators 9, 9; by Alesker and Verbitsky [17].

As in the Kéhler case it becomes natural to wonder if, on a given HKT manifold (M, I, J, K, g,)
one could find special metrics belonging to the same “HKT class” of Q:

Ho = {p € C°(M,R) | Q+ 90,0 > 0} ,

where the inequality means that Q, := Q4 00;¢ induces a new HKT metric g, on (M,I,J, K).
It turns out that in the HKT world the “nicest possible” HKT metric is one that is balanced with
respect to all I, J and K, equivalently 85_23 = 0 (see [306]). The existence of such a special metric
is related to the holonomy of the Obata connection V as it clearly implies holomorphic triviality of
the canonical bundle and thus Hol(V) C SL(n,H). A very natural and captivating conjecture emerges
as whether or not the converse is true, at least in the compact setting, namely if a compact HKT
SL(n, H)-manifold always admits a balanced HKT metric. Such a conjecture can be viewed as the
HKT version of the conjecture of Calabi [67] on compact Kéhler manifolds, proved by Yau [327] with
the method of continuity. As a matter of fact, Alesker and Verbitsky [18] formulated the quaternionic
Calabi conjecture by wondering if on a HKT SL(n, H)-manifold any complex volume form is the wedge
n*™ power of a HKT metric Q, for some ¢ € Hq. This problem leads and is equivalent to the so-called
quaternionic Monge-Ampére equation:

(Q+80,0)" =eF Q" Fe C®(M,R), (1)
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where the datum F' satisfies the necessary condition
/(eF—l)Q"/\(:):O, (2)
M

being © a fixed positive (in a quaternionic sense) holomorphic trivialization of the canonical bundle
K(M,I). Equation (1) is fully non-linear elliptic of the second order and discussing its solvability lies
at the core of this work. Later, the assumption of being a SL(n, H)-manifold was dropped (see [16])
and equation (1) was studied on a general compact HKT manifold, but now it must have the form

(Q+0050)" = ber Q™ F e C™(M,R),

for some positive constant b, because the necessary condition (2) does no longer make sense. Going a
little step further, we observe that the equation can also be studied merely on compact hyperhermitian
manifolds.

The most natural approach to tackle the conjecture is by adapting the known results for the complex
Monge-Ampere equation. From this point of view, establishing a priori estimates becomes crucial. The
C" estimates has been proved on general compact HKT manifolds by Alesker and Shelukhin [16] and,
with an alternative, much simpler proof, by Sroka [269]. Before that, Alesker was able to show that
the conjecture is true on compact flat hyperkahler manifolds [14] and a recent paper by Dinew and
Sroka [106] significantly improved this result by removing the assumption of flatness. So far, this is
the most general framework under which the quaternionic Monge-Ampeére equation has been solved.

The fact that equation (1) appears to be more difficult than the complex Monge Ampeére equation
is essentially motivated by two facts. First of all, in general there are no “quaternionic coordinates”, in
the sense that it is not true, for a hypercomplex manifold, that each point allows a neighbourhood
isomorphic to an open subset of the flat space H™. Such a condition, known as local flatness, entails
the full integrability of the GL(n, H)-structure and is equivalent to flatness of the Obata connection.
Furthermore, even if we assume such a condition, working with “quaternionic derivatives” is not
particularly nice, as these do not satisfy neither the Leibniz rule, nor the chain rule, in general. Second,
a non-hyperkahler HKT manifold cannot be Kéhler (see [303]), hence even working from the complex
point of view one cannot consider normal coordinates, furthermore the coordinate expression of the
equation involves not only the coefficients of the metric but also of the complex structure J, whose
presence causes some troubles.

We now outline the content of this thesis.

The first chapter is meant as an introduction to quaternionic linear algebra. The non-commutativity
of quaternions imposes to be delicate in the development of linear algebra, however, this is not a major
issue and most of the essential theory can be reproved for the skew field of quaternions. On the other
hand, a very interesting “breaking point” emerges when dealing with determinants, which cannot be
defined coherently via the usual definition. A few possible definitions of quaternionic determinants have
been proposed but we shall only be interested in the Moore determinant [229]. The Moore determinant
compels to restrict to hyperhermitian matrices, i.e. matrices that are Hermitian in a quaternionic
sense. Such matrices have well-defined real (right) eigenvalues and the Moore determinant can be
defined as the product of them, hence it captures the positivity or negativity of the eigenvalues, which
is not the case for other determinants.

In the second chapter, after a brief discussion of G-structures, which we use to quickly review
complex structures as a way to fix some notations, we discuss hypercomplex structures and their
integrability. We then introduce HKT manifolds and start to study their geometry, giving more details
on the argument touched upon in this introduction, i.e. HKT potentials, cohomology and the relation
between the holonomy of the Obata connection and the canonical bundle. This leads to consider
balanced HKT metrics and the quaternionic Calabi conjecture which is carefully stated along with a
description of the current “state of the art” for what regards its solution.

The cohomology of HKT manifolds, especially under the assumption of balancedness resembles quite
closely that of Kéhler manifolds. The third chapter explores the relation between the cohomologies of
0 and 0; as well as the quaternionic Bott-Chern and Aeppli cohomologies introduced by Grantcharov,
Lejmi and Verbitsky [146]. We prove that on a compact balanced HKT manifold all these cohomology
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INTRODUCTION

groups are isomorphic (Theorem 3.21). Afterwards, we prove formality of the differential graded
algebra (A*(M, I), ), provided the (global) d9;-lemma holds (Theorem 3.22), which is true for HKT
SL(n, H)-manifolds by a result in [146], this allows to find an obstruction to the existence of a HKT
SL(n, H)-structure on complex manifolds (Corollary 3.30). In Section 3.2 we put nilmanifolds and
solvmanifolds under our lens and we study the relation between HK'T geometry and the presence of
an abelian hypercomplex structure. Recall that a hypercomplex structure (I, J, K) on a Lie algebra
(g,[,]) is called abelian if it satisfies [I-,I-] = [J-,J:] = [K-, K] = [-,:]. We recall the results of
Barberis, Dotti and Verbitsky [29] for nilmanifolds and we generalize some of them to solvmanifolds,
providing evidence for some of the conjectures stated before. For instance we prove that a solvmanifold
is SL(n,H) if and only if its canonical bundle has holomorphic sections (Theorem 3.39). We also
show that if a solvmanifold M with a left-invariant hypercomplex structure (I, J, K) such that that
either (I,J, K) is abelian or M is SL(n,H), admits a compatible HKT metric then it also admits
a left-invariant balanced HKT metric (Corollaries 3.37 and 3.41). This provides evidence for the
quaternionic Calabi conjecture. In a final subsection we also prove that on a Lie group with abelian
hypercomplex structure, the restricted holonomy group of the Obata connection is abelian (Theorem
3.50), an interesting fact related to the Merkulov-Schwachhoéfer classification.

The remaining chapters are all devoted to solvability results of the quaternionic Monge-Ampeére
equation. Chapter 4 studies the problem in two cases. The first section focuses on the equation on
some 2-step nilmanifolds of (real) dimension 8 which can be naturally viewed as toric fibrations over
tori. Under the assumptions that all the data are invariant by the action of the fiber, we prove that the
quaternionic Monge-Ampeére equation can always be solved (Theorem 4.1). On a related note, in the
second section we treat compact HKT manifolds having a foliation of corank 4 that is preserved by the
hypercomplex structure. Assuming that the datum is basic with respect to the foliation, the equation
rewrites as a semilinear elliptic equation, which is solved by a unique basic function (Theorem 4.12).

In the fifth chapter, inspired by a long-tradition of designing geometric flows as a way to attack
partial differential equations, we consider the natural parabolic version of the quaternionic Monge-
Ampeére equation. More generally, whenever we have an elliptic partial differential equation (PDE)
P(p, F) = 0 with datum F € C°°(M,R) and unknown ¢ € C°°(M,R), the associated parabolic
flow is %gp = P(p,F), which is set up by adding time dependence to the unknown, i.e. now
p € C®(M x [0,T),R). By standard parabolic theory, there always exists a unique maximal solution
and one might hope to establish long-time existence and convergence of the flow to a solution of the
related elliptic PDE. We proceed in this way, introducing the parabolic quaternionic Monge-Ampeére
equation and proving that on a compact flat hyperkédhler manifold there exists a long-time solution
whose normalization converges to a solution of (1) (Theorem 5.1).

One can observe that the quaternionic Monge-Ampére equation belongs to a whole family of fully non-
linear elliptic equations which can be treated simultaneously. This approach has a long lasting tradition
and goes back to the work of Caffarelli, Nirenberg and Spruck [66]. Inspired by the work of Székelyhidi
[280] who studies a class of equations on compact Hermitian manifolds, the sixth chapter deals with a
family of equations on compact locally flat hyperhermitian manifolds. Under the assumptions of local
flatness, the metric g and the form Q + 99,;¢ induce hyperhermitian matrices gzs, Q%,. The equations
we take into account are of the form f(A(A)) = F , where F € C*°(M,R) is the datum, A’ = ngQ;fs

is a hyperhermitian matrix with respect to g with n-tuple of eigenvalues A(A) and f is a real-valued
function satisfying some structural assumptions which ensure non-degeneracy and ellipticity of the
equation. For instance, for the quaternionic Monge-Ampeére equation f(A1,...,A,) =log(A1 -+ Ap).
We establish C?, Laplacian and C%® a priori estimates for this class of equations under the assumption
of having a certain type of subsolution (Propositions 6.4, 6.7 and 6.16). Unfortunately during the
Laplacian estimate we need the severe assumption of having a compatible hyperkéhler metric.

Similarly to what we discussed above for the parabolic quaternionic Monge-Ampere equation, one
can consider the parabolic counterpart of the class of elliptic equations studied in chapter 6. This
is done in the seventh chapter following the approach of Phong and Té [246] who generalized the
work of Székelyhidi to the parabolic framework. Our assumptions are essentially the same as for
the elliptic case, but here there is a dichotomy and the structural function f can present either a
“bounded” behaviour or an “unbounded” one. The bounded case is slightly less nicer, as it requires
some additional assumption in order to show the C° estimate. Nonetheless, in both cases we prove



long-time existence and we show that (the normalization of) its solution converges to a solution of the
corresponding elliptic equation (Theorems 7.2 and 7.3).

The last chapter tries to attack the quaternionic Calabi conjecture from a different angle. It is
inspired by the variational approach of Berman, Boucksom, Guedj and Zeriahi [39] to the complex
Monge-Ampeére equation. The underlying idea is that the critical points of the Ding functional are
solutions of the Monge-Ampeére equation and the problem of solvability is then translated into the
variational problem of showing that such a functional admits a maximizer. All this machinery works on
plurisubharmonic functions with very weak regularity assumptions, indeed by reducing the smoothness
of the family of functions considered, we gain in compactness, making it easier to find maximizers.
In order to take advantage of the needed pluripotential environment we need some preliminary work,
analogue to the theory developed by Guedj and Zeriahi [156] on compact Kéhler manifolds. Eventually
we are able to show that the quaternionic Monge-Ampeére equation on compact locally flat HKT
manifolds always admits a unique weak solution (Theorem 8.31).
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CHAPTER 1

‘ QUATERNIONIC LINEAR ALGEBRA

The first chapter serves the purpose of introducing the basic framework of quaternionic linear algebra.
Even though quaternions are not a field, once we fix a side for scalar multiplication, the theory goes
through almost unaffected, and very many results which are true for vector spaces over a field still
hold in the non-commutative setting. Indeed, most of the theory developed in this initial chapter is
not a special feature of quaternions and the majority of the results can be extended to more general
types of rings. Several results hold in the category of skew fields, sometimes with the requirement that
they carry an anti-involution (which plays the role of conjugation). Beside some minor exceptions, we
decided to phrase the results in terms of quaternions, leaving aside full generality and keeping the
focus on the division ring of quaternions, which is the one of our interest.

As mentioned, the known theory of vector spaces is barely altered by the lack of commutativity,
and with little more effort one can still introduce the notions of invertibility of a matrix, linear
(in)dependence of vectors, general linear group or special linear group and all these concepts behave
very much like the familiar linear algebra. However, sometimes subtle differences emerge. A striking
example is the spectral theory, studied at the end of the first section. Within this framework, (right)
eigenvalues are not uniquely defined as any other element in the same conjugacy class is again an
eigenvalue. On the other hand, the Spectral Theorem for normal matrices can still be obtained.

The determinant is another notion that is heavily affected by the absence of commutativity, indeed,
we will see that it is non-trivial to find a satisfactory definition of a determinant, unless we are
prepared to give up some properties. Some interesting approaches to these issues have been proposed
by Dieudonné [102], Study [274] and other mathematicians, but the determinant that provides the
most useful tool in view of Riemannian geometry is the one introduced by Moore [229]. Moore’s
determinant is the only one that is capable to encompass the positivity (or negativity) of an inner
product, but its application is limited to hyperhermitian matrices. For this kind of matrices, which are
the quaternionic analogue of Hermitian matrices each conjugacy class of eigenvalues, contains a single
real element. This behaviour of the eigenvalues is exactly the reason why the Moore determinant is
only valuable on the space of hyperhermitian matrices.

Even though it has attracted the attention of many researchers in the field of Quantum Mechanics
(renewed by the book [1]), there is not so much literature dealing carefully with the foundations of
quaternionic linear algebra. Our main references for this chapter include the book of Rodman [250],
which collects a thorough exposition of quaternionic linear algebra, and the survey of Zhang [330].
We cannot fail to mention the expository article of Farenick and Pidkowich [122] for what regards
spectral theory and the excellent survey of Aslaksen [23] which is also our prime source for the topic of
quaternionic determinants.



CHAPTER 1. Quaternionic linear algebra

1.1 Basic theory

The present section is divided into two parts. The first one deals with quaternionic modules, linear
maps and inner products; the second develops the theory of quaternionic matrices, shedding some
light on the structures of the first part and presenting a solid linear algebraic groundwork. In the
second part we will deal with the notion of invertibility and the general linear group. The definition of
the special linear group is interesting, as, at this level, we do not have at our disposal a determinant
function, hence, an alternative definition than the usual one must be adopted. Special importance is
then given to hyperhermitian matrices and the notion of (semi)definiteness. We also discuss possible
representations of quaternionic matrices into the real algebras of complex and real matrices, which will
be incredibly helpful, for instance, in the spectral theory.

1.1.1 Quaternionic modules.

The discovery of quaternions dates back to 1843 and is due to Sir Williamm Rowan Hamilton. The
history of how Hamilton came up with the idea of quaternions is well-known and told in innumerable
sources and it is not the place here to recall it (among others, we refer the interested reader to [300]).
In this subsection we begin with a brief treatment of the basic features of the algebra of quaternions,
describe their relation with three-dimensional rotations and build up our way into non-commutative
linear algebra.

The algebra of quaternions.

As usual, we will denote by R and C the fields of real and complex numbers respectively. The space H of
quaternions can be defined as the non-commutative associative algebra over R which is 4-dimensional
as a vector space, with basis (1,4, j, k):

H={a+bi+cj+dk|a,b,cdecR},,
where i, j, k are the quaternion units satisfying the fundamental relations
==k =-1, ij=-ji=k.

The product operation on H is completely determined by (the distribution laws together with) the
relations above, the usual product of real numbers and the condition that these commute with the
quaternion units. The center of H coincides with R, embedded in H as {a + 0i + 0j 4+ 0k | a € R}.

With this product H has also the structure of a division ring (or skew field), i.e. a non-
commutative ring where every non-zero element has an inverse (see [96, 114]). To see this consider the
quaternionic conjugate of ¢ = a + bi + ¢j + dk, defined as

q:=a—bi—cj—dk

and its norm

lal == V4a = V/3g = Va? + b + 2 + &2,

-1 q
q =75
lq|?

then if ¢ # 0, its inverse is

Checking that |- |: H — R is indeed a norm is straightforward, furthermore |¢| = |g| for any ¢ € H and
|pg| = |pl|q| for any p,q € H. Observe that conjugation satisfies pg = gp and ¢ = g if and only if ¢ € R.

The field of complex numbers naturally embeds into H in many ways, we shall fix the identification
C={a+bi+0j+0k|abeR} We can also write a quaternion ¢ = a + bi + ¢j + dk in one of the
following two forms

q=(a+bi)+ (c+di)j, q=(a+bi)+jlc—di),



1.1. Basic theory

emphasizing that H can also be seen as a vector space over C, however, be aware that H is not an
algebra over C (because the product of two quaternions is not a C-bilinear operation). Fixing this
embedding of C into H we have that every z € C satisfies zj = jz.

Rotations and conjugation.

For any quaternion ¢ = a + bi + ¢j + dk € H we call Re(q) := a its real (or scalar) part and
Im(q) := bi + ¢j + dk its imaginary (or vector) part. A purely imaginary quaternion can be seen as a
vector in R? and under this identification one can define a dot product and a cross product as follows:
let q, = b.i + ¢j + d.k for r = 1,2 be purely imaginary quaternions, then we define

di - 92 = biba + cicp + dida, q1 X q = (c1dy — dica)i + (diba — bida)j + (bica — c1ba)k .

An interesting feature is that the product of q; and qo can be expressed in terms of the dot product
and the cross product:

qiq2 = —q1 - 92 +q1 X qz. (1.1)

Similarly to complex numbers, quaternions allow a polar representation. For every g € H with
non-zero imaginary part there exists a € [0, 27) such that

B a Im(q) . «
q=q| (cos 5 + Tm(g)] sin 2) . (1.2)

To see this it is enough to observe that Re(q)? + [Im(q)|?> = |¢|?, therefore, choosing a such that
cos(a/2) = Re(q)/|q| we also have sin(a/2) = [Im(q)|/|g|. Such an observation makes quaternions into
an extremely useful tool to model spatial rotations due to the following result:

Theorem 1.1. The action pg: H — H of a unit norm quaternion q € H by conjugation

pq(p) := qpq,

fizes the real axis and on Ri+ Rj + Rk =2 R? acts as a rotation of angle a = 2arctan(|Im(q)|/Re(q))
around the axis Im(q). Such a rotation is clockwise if our line of sight points in the same direction as
Im(q).

Proof. If Im(q) = 0 the statement is trivial, therefore we may assume that ¢ is a non-real quaternion.
Furthermore, the fact that the real axis remains fixed is obvious, thus it is enough to prove the theorem
assuming p = p is a purely imaginary quaternion.

We have

pq(P) = (Re(q) + Im(q))p(Re(q) — Im(q)) = Re(q)?p + Re(q) (Im(q)p — pIm(q)) — Im(q)pIm(q) ,

but from (1.1) we deduce Im(q)p —pIm(g) = 2Im(g) x p as well as Im(q)pIm(q) = —Im(q)(p-Im(q))+
Im(q) x p x Im(g), therefore

pq(P) = Re(q)’p + 2Re(q)Im(q) x p + Im(q)(p - Im(q)) — Im(q) x p x Im(q) .

From this formula it follows that p,(p) = p whenever p is along Im(g), i.e. p = alm(q) for some a € R.
If p is normal to Im(q), letting u = Im(q)/|Im(q)| we obtain instead

pa(p) = Re(q)’p+2Re(q)|Im(g)[uxp—[Im(q)*uxpxu = (Re(q)* — [Im(q)|*) p+2Re(q) Im(q)luxp.
Now, from (1.2) we deduce
pq(p) = (cos(a/2)* — sin(a/2)?) p + 2 cos(r/2) sin(e/2)u x p = cos(a)p + sin(a)u x p.

Therefore p, rotates p on the plane defined by p and u x p through an angle «.
For a general p the theorem follows by using R-linearity of p, and decomposing p into its component
along Im(q) and its component normal to it. O
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An automorphism given by conjugation action is called inner; on H it turns out that all automor-
phisms are of this type. This is a particular case of the Skolem-Noether Theorem [261, 233] which
establishes this property for finite-dimensional central simple algebras.

Proposition 1.2. All automorphisms of the algebra of quaternions are inner.

Proof. Any automorphism n: H — H must satisfy n(1) = 1 and thus fixes the real line. By Theorem
1.1 it is therefore enough to show that the restriction of 1 to Ri + Rj + Rk = R? acts as a rotation.
As 7 preserves real parts we have from (1.1) that 1 preserves the dot product:

n(p) -n(a) = —Re(n(p)n(a)) = —Re(n(pq)) = —n(Re(pa)) =n(p-q) =p-q.

This implies that 7 restricted to imaginary parts is an element of O(3). But, again from (1.1) we see
that

n(p) x n(a) = n(p)n(a) +n(p) - n(a) =n(pa) +n(p-q) =n(p x q),
whence 7|gs € SO(3) as desired. O

Observe that when ¢ € H has unit norm its action by conjugation coincides with its action by
similarity: p,(p) = qpg = qpg~". Set

0(p) :=={apq ' |q € H"} = {qpq | ¢ € H, |q| = 1}

for the conjugacy class of p € H. It will be useful in the future to have a criterion to decide if two
quaternions are conjugate. Clearly, if p is real it is the only element in its conjugacy class and conversely.
If p is non-real its conjugacy class is infinite and contains exactly two mutually conjugate purely
complex elements and all other elements are non-complex quaternions. This last observation, proved
below, goes back to Cayley [76]. Our proof follows [23, p. 63], which is geometric in flavour. For other
proofs see [53, 330].

Lemma 1.3. For any non-real p € H we have 8(p) NC = {p, p} for some p € C.

Proof. For any ¢ € H with unit norm we know that the conjugation map py: H — H, p,(p) = qpq
fixes the real axis and can be thought of as a rotation of iR + jR + kR = R3 around the axis defined
by Im(g). Therefore, for any non-real p € H with unit norm, 6(p) describes a 2-dimensional sphere
orthogonal to the real axis. Clearly p,(p) = Re(p) + ¢lm(p)g~* and by our discussion the conjugacy
class of Im(p) intersects the i-axis only at two points which must have the same norm of [Im(p)|, hence
they are |Im(p)|i. We conclude that 8(p) N C = {Re(p) £ |Im(p)|i}. O

As an application of the lemma above we prove:

Proposition 1.4. The commutator subgroup of H* := H\ {0} coincides with the set of quaternions of
unit norm.

Proof. The fact that a commutator has unit norm is obvious. Conversely, let ¢ € H* have unit norm. If
g = 1 then it is clearly a commutator, if ¢ = —1 we can write ¢ = 45515~ !, otherwise by the previous
lemma there exists a u € C such that ¢ = aua™! for some a € H. Observe that from formula (1.1) it can
be deduced that every quaternion can be written as the product of two purely imaginary quaternions.
Let z € C be such that 22 = p and choose py, py purely imaginary and such that z = p;ps. The fact
that ¢ has unit norm implies that all u, z, p1 and p, have unit norm, in particular p; L= p, = —p; for

1 =1,2. From this we conclude

q=apa™" = apipopip2at = apipapy 'py ta”t = (apra”!)(apaa ) (aprat) " apaat) !

which is a commutator. O

See also [101, 102] for different proofs of Proposition 1.4.
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H-modules.

We now enter into the realm of non-commutative linear algebra. A right module over H (shortly, a
right H-module) is an additive abelian group V together with a function V x H — V| (v,q) — vq
such that for all p,q € H and u,v € V

L (u+v)g = uq+vg;
2. v(p+q) =vp+ g

3. (vp)g = v(pq);
4. vl = .

Sometimes, modules over a skew field are still called vector spaces. We prefer to keep calling them
modules to emphasize the lack of commutativity of scalars.

A left H-module is defined similarly via a function HH x V' — V', (g, v) — quv satisfying the obvious
analogues of the properties listed above. Here we will talk about right modules, everything we say has
an obvious analogue for left modules.

Example 1.5. The n-fold direct product H® = H x H x --- x H is both a left and a right H-module
with the natural actions

Q(U17U2a- . '7UTL) = (qvlaq’U??' .. aqvn)> <v17U27 e 7Un)q = (UlanQqa cee ,Unq) .

A H-module which is both left and right is called a H-bimodule.

A map a: V — W between two (right) H-modules is called a (right) H-module homomorphism
if is additive and preserves rescalings, more precisely for all ¢ € H and u,v € V

a(utv) =a(w)+a@),  alvg)=av)q.

We will also say that « is H-linear. A bijective H-linear map is called an isomorphism (of H-modules).

Let V be a right H-module and X C V a subset. Denote Spang(X) the smallest submodule of V
containing X, if V' = Spany(X) we say that V is spanned by X. The module V is spanned by a subset
X C V if and only if every element of V' may be written as a linear combination viqy +voqo+- - -+ Vi qp
for ¢; € H, v; € X and k € N. If there exists a finite subset spanning V', then V is said to be finitely
generated.

A subset X C V is said to be right linearly dependent if there exists a collection of distinct
elements v1, ..., v, € X and a non-zero ¢ = (q1,...,¢m) € H™ such that ;" v;q; = 0, while is called
right linearly independent if it is not right linearly dependent. A linearly independent subset of V'
that spans V is called a basis of V.

Theorem 1.6. Every H-module V' satisfies the following properties:

1. V has a basis and any two bases of V' have the same cardinality. The cardinal number of any
basis of V is called the dimension of V, denoted dim(V').

2. Every subset of V' that spans it contains a basis of V.
3. Bvery linearly independent subset of V' is contained in a basis of V.
4. V is free, i.e. it is isomorphic to HI™(V)

Proof. The proof is practically identical to the one for vector spaces over a field, we refer, for instance,
to [184, Chaper IV, Section 2]. O

The isomorphism of V with H™) is not unique. Any choice of a basis of V determines one such
isomorphism as follows. Suppose for simplicity that V' has finite dimension n and let B = (eq,...,e,)
be a basis. Any vector v € V can be written as v = 22:1 ervy for unique vy,...,v, € H called the
components of v with respect to B. The correspondence v — (vy, ..., v,) determines the isomorphism
between V and H".
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Quaternionic inner products.

Definition 1.7. A hyperhermitian (sesquilinear) form over V is a map ¢g: V x V — H that
o is additive: g(uy + uz2,v) = g(u1,v) + g(ug, v);
o is H-linear in the second entry g(u,vq) = g(u,v)q;
o is hyperhermitian: g(u,v) = g(v, u).

A hyperhermitian form is non-degenerate if g(u,v) = 0 for all v € V implies v = 0 and it is positive
definite (resp. semidefinite) if g(u,u) > 0 (resp. g(u,u) > 0) for all u # 0. A positive definite
hyperhermitian form g will be called a (quaternionic) inner product and the pair (V,g) is called a
(quaternionic) inner product space.

Example 1.8. The standard inner product (-,-) on H” is defined as
n
(u,v) := Zaivi
k=1
for every u = (uy,...,un),v = (v1,...,v,) € H".

Remark 1.9. Unlike the complex setting, non-zero symmetric and skew-symmetric bilinear forms do
not exist on H-modules. Indeed, if V' is a right H-module and ¢ a bilinear form, either symmetric or
skew-symmetric, for every u,v € V and p,q € H

g(up,vq) = g(up,v)q = £g(v,up)q = £g(v,u)pq = g(u,v)pq

but also
9(up,vq) = £g(vq, up) = £g(vq, u)p = g(u,vq)p = g(u,v)qp
hence g = 0.

Every inner product g: V x V — H on a right H-module V induces a norm || - ||g: V' — [0, +00)
naturally defined as ||v||4 := \/g(v,v) for every v € V. The usual Cauchy-Schwartz inequality is true:

Lemma 1.10 (Cauchy-Schwartz inequality). Let g: V x V. — H be an inner product on the right
H-module V', then

lg(u, v)| < flullglvllg-
Proof. Take u,v € V and p,q € H, then
0 < [lup — vgll3 = pllull p — pg(u,v)g — qg(v,w)p + qllvll} q.-

Choosing p = [|v]|2 and ¢ = g(v, u) one obtains

0 < [lolf (lullgllvlf = lg(u, v)[?)
and thus the desired inequality. O

On a quaternionic inner product space (V,g) we say that a basis (v1,...,v,) is hyperunitary
(with respect to g) if g(v;,v;) = d;;, where 0;; is the Kronecker delta. As usual, one can always adjust
a basis to obtain a hyperunitary one:

Proposition 1.11 (Gram-Schmidt process). Let (V,g) be a quaternionic inner product space and
V1,...,U, a basis. Then there exists a hyperunitary basis uy,...,u, such that for everyk=1,...,n
we have Spang(vy, ..., vg) = Spang(u1, ..., ux).

Proof. Define u; = v1/||v1]|y and then inductively

Uk — Zf;% Ur<ura vk>

qu ’
Hvk - r=1 U7~<UT,’U]€>H
g

U = k=2,...,n.

6
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It is clear that the vectors wuq,...,u, form a hyperunitary basis and that for each k we have
Spang(vy, ..., v;) = Spang(ug, . .., ug). O

1.1.2 Quaternionic matrices.

Let V', W be right H-modules of dimension n and m respectively. The set Homp(V, W) of H-linear
homomorphisms between V' and W is a real vector space (a subspace of Homg(V, W)). The choice of
bases of V' and W induces a isomorphism of real vector spaces between Homy(V, W) and the space
H™"™ of m x n matrices with coefficients in H. Be aware that there is no H-module structure on
Hompy (V, W) that makes this into an isomorphism of H-modules.

More precisely, to any linear map a: V — W we associate the matrix M («) € H™"™ with respect
to bases B = (e1,...,en), C = (f1,-.., fm) of V and W respectively, with entries defined as

M(a)ij := fi(aley)),

where (f}) € Homy (W, H) is the dual basis to (f;), i.e. f(f;) = 0i;. As usual, we may compute the
components of the image of a vector v € V' with respect to C as the product of the matrix M («) with
the column vector of components of v with respect to B:

a(v)e = M(a)vg, for every v € V. (1.3)
Also, for any pair of H-linear maps a: V — W and §: W — Z we have
M(Boa) = M(B)M(a). (1.4)

A word of caution is needed here. If we take into account left H-modules instead of right ones we
need to adjust things a little. Indeed (1.3), (1.4) and all formulas to come are only true if we define
the product of two matrices M € H™", N € H"* as MN := M op IN, where -, is induced by the
opposite product p -op ¢ := ¢p for every p,q € H. Explicitly, if M = (m;;) and N = (n,) then

n n
(MN)ab = > Mai op b = »_ MupMa - (1.5)
=1 =1

With this adjustment for the matrix product, we can make use of the same formulas of the case of
right modules, keeping in mind that if we choose to look at left module structures, products have to
be intended as in (1.5). In view of this consideration, it is convenient and customary to work with
right modules, which has considerable practical advantage.

Quaternionic linear groups.

We now address the important matter of invertibility of matrices. We say that a matrix A € H™™ is
left (resp. right) invertible if there exists a matrix B € H™" called the left (resp. right) inverse
of A, such that BA = 1,,, (resp. AB = 1,,), where 1,, denotes the identity matrix of order m. When
no confusion can occur we will drop the subscript and simply denote 1,, by 1. A priori we do not
know if a left inverse is automatically a right inverse and viceversa. Clearly, if a matrix A € H™"™ has
both a left inverse B € H™"™ and a right inverse C' € H™"™ then they are unique and they coincide:

Cc=C1,=CAB=1,B=B;
when this occurs, we call A invertible or non-singular and A~! := B = C the inverse of A.

Example 1.12. If we choose two bases B = (e1,...,e,) and C = (f1,..., f,) of a right H-module V'
we obtain two isomorphisms between V and H" and it is easy to see that f; = Y .| e;a;; for some
a;; € H. With little effort, we obtain the formula of change of coordinates

vg = Pue, for every v € V',

7
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where the matrix P = (a;;) € H™" must be invertible and is called the matrix of change of basis
from B to C.

In particular, the example above shows that for square matrices there is no distinction between left
and right invertibility.

Definition 1.13. The quaternionic general linear group of order n, denoted GL(n,H), is the
group of invertible matrices in H™™.

We do not have yet at our disposal the notion of a determinant, for this reason we cannot define
the special linear subgroup SL(n,H) C GL(n,H) of matrices with determinant equal to 1. A possible
alternative definition is offered by looking at elementary transformations.

Define B;;(¢q) € H™" to be the square matrix obtained from the identity matrix by replacing the
(i, j)-entry with ¢ € H. We distinguish two cases:

« For i # j multiplying a matrix on the left by B;;(¢) amounts to adding to the i*" row the j*™
row multiplied on the left by ¢. Similarly multiplying a matrix on the right by B;;(¢) amounts
to adding to the j*' column the i*" column multiplied on the right by ¢g. We call B;;(g) an
elementary matrix. These matrices are invertible because B;;(¢) ™' = B;;(—q).

« For i = j multiplication on the left by B;;(q) amounts to multiplying the i row on the left by ¢
while multiplication on the right amounts to multiplying the i*® column on the right by g. If
q # 0 these matrices are invertible because B;;(¢)~! = Bii(¢™1).

We first prove a very useful factorization formula.

Lemma 1.14. Every A € GL(n,H) can be factorized as
A= B,,(q)B

for some q € H*, where B is a product of elementary matrices.

Proof. Since A € GL(n,H) we can find a non-zero element a;; in the first row. We may assume a2 # 0
because if this is not the case by summing the j* column to the second we achieve ajs # 0. Now,
summing the second column multiplied on the right by ajy (1 — a1;) to the first column we obtain a
new matrix with (1, 1)-entry equal to 1 and with suitable operations we can now make all other entries
in the first row equal to zero.

Proceeding iteratively for the 2™, ... n — 1*" rows we obtain a;; =1 and aj; = 0 for k # j. For
the last row we cannot accomplish this task, however we must have a,, # 0, for otherwise the last
column would be zero which is not possible because A is non-singular. We can then make all the other
entries in the last row equal to zero. O

Examples 1.15.

(1) For i # j and ¢ € H* denote M;;(q) the matrix obtained from the identity matrix by replacing
the (i,)-entry with ¢ and the (j, j)-entry with ¢~. Then M;;(q) is a product of elementary
matrices. It is enough to observe that for i < j we have

M;j(q) = Bji(—¢~ ") Bij(g = )Bji(1)Bij(¢" = 1),

indeed, if i > j we conclude from the identity M;;(q) = Mj;(¢™1).

(2) Whenever g € H* is a commutator, i.e. ¢ = aba~1b~! then Byx(g) can be decomposed as
Bii(q) = My (a™") Mg (b7 ) Moy (ba)

for any r # k, which shows that By(q) is a product of elementary matrices.
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(3) Let S¥ be the square matrices obtained by exchanging the i'" and the j*" rows (equivalently
columns) of the identity matrix. In other words the entries of S™ are defined as

0ps ifr=#iands##j,
(S9)ps =14 8;5 ifr=1, (1.6)
dri if s :] .

Now, multiplication on the left by S% amounts to exchanging its i*® and j*! rows, while
multiplication on the right amounts to exchanging the i*" and j** columns. Since (S7)% =1
clearly these matrices are invertible. Furthermore, they are generated by elementary matrices as
we have the following decomposition

SY = Bj;(~1)Bi;(1)Bji(—1)Bi;(1) .

Everything we proved so far only uses the division ring structure of H, in particular, the general
linear group makes sense for matrices with coefficients in any division ring R and the analogue of
Lemma 1.14 still holds. The following proposition clarifies the relation between the commutator
subgroup of GL(n, R) and the group generated by elementary matrices, hinting to a general definition
of the special linear group.

Proposition 1.16. Let R be a division ring. Let S C GL(n,R) be the subgroup generated by all
elementary matrices B;j(q) for i # j, then S = [GL(n, R), GL(n, R)], except when n =2 and R = 7Z,.
Moreover, if R=K is a field S = SL(n, K).

Proof. We want to show that elementary matrices are commutators for R % Zo. For distinct ¢, j, k (we
need n > 3 here) it is straightforward to check that B;;(p) = [Bix(p), Bx;(1)]. When n =2 and R % Z,
there is an element ¢ € R such that ¢ # 0,1. Set ¢ = p(¢~! — 1)71, then B12(p) = [Baa(q), B12(c)] and
a similar identity holds for Bs;(p), then we see that S C [GL(n, R), GL(n, R)].

Conversely, to prove that [GL(n, R), GL(n, R)] € S, by Lemma 1.14 we only need to show that
for every non-zero p,q € R we have [Byy,(p), Bun(¢)] = Bun([p, q]) € S and [By,,(p), Bij(q)] € S for
i # j. The first fact was already observed in example 1.15(2). To prove the second, simply observe
that [Byn(p), Bij(q)] = 1 if i # n and j # n while we have By, (p), Bin(q)] = Bin(pg~* — p) and
[Bun(p), Bnj(a)] = Bjn(qp — p)-

Finally, if R = K is a field, by the usual properties of the determinant we know that elementary
operations do not affect the determinant, therefore S C SL(n,K). Conversely, from the previous lemma
we see that any A € SL(n, K) decomposes as A = By,,,(p)B where B is a product of elementary matrices,
computing the determinant we necessarily have p = 1, hence A = B and thus SL(n,K) = S. O

In view of this result the definition of the special linear group can be extended to any division ring.
Coherently to our interest, we state it in terms of quaternions.

Definition 1.17. The quaternionic special linear group of order n, denoted SL(n,H), is the

subgroup of GL(n, H) generated by elementary matrices, or, equivalently, the commutator subgroup of
GL(n, H).

For future reference we state the following technical lemma according to which a matrix of the form
B, (q) lies in the commutator subgroup of GL(n, R) if and only if ¢ lies in the commutator subgroup
of R*. We omit the proof, which can be found in [244, §16.5].

Lemma 1.18. Let R be a division ring and q € R*, where R* = R\ {0} is the multiplicative group of
R. Then By, (q) € [GL(n, R), GL(n, R)] if and only if ¢ € [R*, R*].

Hyperhermitian and hyperunitary matrices.

Transposition and conjugation are not automorphisms nor antiautomorphisms of H™", i.e., in general,
for A, B € H™" S
‘A'B £Y(AB) £'B'A, AB # AB # BA.

9
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Furthermore, they are not well-behaved operations with respect to inverses. However, the two operations
combined give rise to an antiautomorphism of H™"™ which commutes with the inversion. Indeed, it is
straightforward to check that

(AB)* = B*A*, (A=1)* = (A4%)7 1,
where A* = 'A denotes the conjugate transpose of the matrix A.
Definition 1.19. A matrix A € H™" is called

¢ hyperhermitian if A = A*;

¢ hyperunitary if AA* = 1.

We denote with Hyp(n) and Sp(n) the real vector space of n x n hyperhermitian matrices and the
group of n X n hyperunitary matrices respectively.

Lemma 1.20. Let (-,-) be the standard quaternionic inner product on H"™. Then, the following
conditions are equivalent for H € H™":

(i) H is hyperhermitian;
(ii) (Hu,v) = (u, Hv) for every u,v € H";
(iii) (v, Hv) is real, for every v € H".

Proof. Since (Hu,v) = (u, H*v) the equivalence of the first two assertion is immediate and since
(v, Hv) = (Hwv,v) it is also clear that they imply the third one.
Conversely, if (v, Hv) is real for every v € H", since for every u,v € H"

(u+v,H(u+v)) = (u, Hu) + (u, Hv) + (v, Hu) + (v, Hv)

we have (u, Hv) + (u, H*v) € R. Let (eq, ..., e,) be the standard basis of H". Choosing (u,v) = (e, €5)
and (u,v) = (e,i,e57) we get

hrs + her €ER,

thysj + jheri € R,

or, equivalently
) =0,
Im(ih,sj) + Im(jhg,t)

{Im(h,.s) + Im(h,,

0.
Using the first identity we obtain Im(ih,sj) +Im(jhsri) = (Re(hys) — Re(hs,)) k so that b,y = hg.. O

Arguably, hyperhermitian matrices represent the most interesting class of quaternionic matrices
from the geometric point of view. Their geometric interest is evident from the fact that they are in
one-to-one correspondence with hyperhermitian forms on a right H-module V. The correspondence is
as follows: let B = (ey,...,e,) be a basis for V, then a hyperhermitian form g: V' x V' — H induces
the hyperhermitian matrix M (g) with entries M (g):; = g(e;, e;). Therefore we have

9(u,v) = upM(g)vs -

Furthermore, g is positive (semi)definite if and only if the matrix M(g) is positive (semi)definite,
ie. w*M(g)w = (w, M(g)w) > 0 (resp. > 0) for every non-zero w € H".

If we take a different basis C and P € GL(n,H) is the matrix of change of basis from B to C, then
up = Puc, hence g(u,v) = uz P*M(g)Puvc so that the matrix M’(g) associated to g with respect to
C is M'(g) = P*M(g)P. Two matrices A, B € H™" such that there exist Q € GL(n,H) satisfying
A = Q*BQ are called congruent. With a suitable choice of basis we can obtain a simple representative
in the congruency class, yielding a convenient choice for the associated matrix.

Proposition 1.21 (Law of Inertia). For every H € Hyp(n) there exists a matriz P € SL(n,H) such
that P*HP is diagonal with p positive entries and q negative entries along the diagonal, where the

10
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pair of numbers (p,q), called the signature is uniquely determined by H. Furthermore, there exists
Q € GL(n,H) such that
1,
Q"HQ = -1, . (1.7)
0

In particular, two hyperhermitian matrices are congruent if and only if they have the same signature.

Proof. We first prove by induction that there exists P € SL(n,H) such that P*HP is diagonal. The
case n = 1 is trivial. Assume H # 0, so that there is at least a non-zero row and thus a non-zero
corresponding column. Possibly exchanging simultaneously such non-zero row and column with the
firsts by means of the matrices S'9 € SL(n, H) of example 1.15(3), we may assume that the first row
and column are non-zero. We may further assume that the first diagonal entry is non-zero, indeed if
hi1 = 0 and hqi # 0 choosing any ¢ € H such that Re(hixq) # 0 the matrix By (q)H By1(q) is again
hyperhermitian and has first diagonal entry 2Re(h1xq) # 0.

Knowing that hi; # 0 we can use it to kill all other entries in the first row and column by left
multiplication with Bﬂ(—hilhﬁl) and right multiplication with Bil(—hilhﬁl)* = Bu(—hﬁlhu) for
all i > 1. We thus have found a matrix S € SL(n,H) such that

. _(hi1 O
SHS-(O H)

where H' € Hyp(n — 1). By the inductive hypothesis and possibly further switching of rows and
columns we conclude that there exists P € SL(n, H) such that

dy

P*HP = —dpy1

_dp+q
0

with dy, ..., dpsg > 0.

To obtain the form (1.7) we need to rescale the diagonal entries, which can be done by left and
right multiplication with the matrices B;;(|d;|~'/?) € GL(n,H) for all j = 1,...,p + ¢. Observe that
in general this step can only be achieved in GL(n,H), as, by Lemma 1.18 the matrices B;;(g) lie inside
SL(n,H) if and only if ¢ is a commutator (i.e. has unit norm by Proposition 1.4).

Now we prove that the numbers p, ¢ are invariant and do not depend on the matrix P. First of
all, p + ¢ = Rank(H), which is uniquely determined by H. Let (eq,...,e,) be the standard basis
of H" and define the submodules U = Spany(Pes,...,Pe,) and V = Spang(Pept1,..., Pe,). we
have u*Hu > 0 and v*Hv < 0 for every v € U and v € V. Finally, p is the maximal dimension of
a submodule of H™ where H is positive definite, because if there were a larger space, it would have
non-zero intersection with V', leading to a contradiction. O

Now we move on to give a brief description of the hyperunitary group Sp(n) = {4 € H™" | AA* = 1}
which can be equivalently defined as the group of matrices preserving the standard quaternionic inner
product in H™:

Sp(n) ={AeH"" [ (A, A:) = ()} .

The hyperunitary group is sometimes denoted U(n,H) or HU(n) in the literature, but the notation
Sp(n), to which we adhere, is much more common. This is because such a group is also called the
(compact) symplectic group, however, even though it can be regarded as a subgroup of the complex
symplectic group (cf. Subsection 2.1.3), it is not itself “quaternionic symplectic”, in the sense of
preserving a non-degenerate skew-symmetric H-bilinear form on H™ (such a form does not exists by
Remark 1.9). For this reason we prefer to call it the hyperunitary group, name that is justified at least
by two additional reasons, the first one is the next lemma, the second lies in the fact that Sp(n) can

11



CHAPTER 1. Quaternionic linear algebra

be regarded as the intersection of the three unitary groups determined by 4, j and k (see Subsection
2.1.3 for more details).

Lemma 1.22. For a matriv A € H™" the following are equivalent:
(i) A€ Sp(n);
(ii) A sends hyperunitary bases of (H™, (-,-)) to hyperunitary bases;
(iii) the columns (and/or the rows) of A form a hyperunitary basis of (H™,(-,-)).

Proof. If A € Sp(n) and B = (eq,...,e,) is a hyperunitary basis of H” with respect to the standard
inner product (-,-) then (Ae;, Ae;) = (e;,e;) = d;; so that C = (Aey, ..., Ae,) is again hyperunitary,
thus (i) implies (ii).

When B is the canonical basis of H"”, then vectors of C are columns of A, hence (ii) implies (iii).

Finally if (iii) holds and B is the canonical basis of H" for any v = (u1,...,u,), v = (v1,...,v,) € H"
we have
n n n n
<Au, AU> = Z (Aeiui,Aejvﬁ = Z ai<A€i,A€j>Uj = Z ﬂiéijvj = Zﬂﬂ}i = <U,’U>
ij=1 ij=1 ij=1 i=1

i.e. A € Sp(n). The equivalence of the fact that the rows of A form a hyperunitary basis follows
immediately as A € Sp(n) if and only if A* € Sp(n). O

One interesting fact that distinguishes Sp(n) from its real and complex analogues O(n) and U(n) is
that the notion of “special hyperunitary group” is meaningless:

Lemma 1.23. Sp(n) is a subgroup of SL(n,H).

Proof. Let A € Sp(n), then by Lemma 1.14 we can write A = B,,(¢)B for some ¢ € H* and
B € SL(n, H), therefore

1= A*A = B*Bpn(q)Bun(q)B = B* B, (|q|*) B

which implies B, (|q|?) = (B*)"!B~! € SL(n, H) and by applying Lemma 1.18 we deduce |¢| = 1 and
thus, from Proposition 1.4 and again Lemma 1.18 we have By, (q) € SL(n,H) from which we conclude
A € SL(n, H). O

Remark 1.24. More in general one could define hyperhermitian, skew-hyperhermitian and hyperunitary
matrices with respect to any non-degenerate hyperhermitian form g(-,-). For example a matrix H is
hyperhermitian with respect to g if g(Hp, q) = g(p, Hq). If G is the hyperhermitian matrix associated
to g, this is equivalent to the condition H* = GHG™*.

Representations.

In order to overcome some difficulties of working with quaternionic matrices, it will be extremely
useful in the future to have a description of them in terms of complex or real matrices. We start by
representing complex matrices with real matrices as a preliminary argument, and then move on to
present the description of quaternionic matrices.

As usual, there is a vector space isomorphism a: C* — R?" given by
RN CR-L N R e T VL where 2" = 2" +y i, r=1,...,n.

Any matrix Z € C™™ can be seen as a complex endomorphism of C™, which in particular is R-linear.
Under the isomorphism «, this defines a real endomorphism of R?" represented by a matrix o Zoa™!.
By a slight abuse of notation we still denote the map that sends Z to a0 Z o o~ ! with a:

(C’IL Z (CTL

|

RQn . R2n

12



1.1. Basic theory

Proposition 1.25. a: C™" — R2™2" js an injective morphism of real algebras. Furthermore, if
Z=X+YieC" with X, Y € R™"™, then in the standard bases

X -Y
a(Z2) = (Y b% ) .
Proof. 1t is straightforward to check that « is a morphism of real algebras and injectivity is obvious.
The explicit form of a(Z) follows directly from the definition looking at the image of the standard

basis. For example if e; = (1,0...,0) € R?" then a~1(e;) = (1,0...,0) € C" and thus Za~!(e;) is
the first column of Z = X + Y’ so that applying a we obtain the first column of a/(Z). O

The same approach can be pursued on H™ seen as a complex vector space with right scalar
multiplication, i.e. a scalar a € C acts on z + wj € H™ with the right product: (z + wj)a = za + way.
In this case we consider the isomorphism

B:(q....q") — (24 ... 2wt ™), where ¢" = 2" +w"j, r=1,...,n.
One could also consider the composition oo 8 as an isomorphism of real vector spaces between H"
and R, but we believe it is more natural to choose the following one

. n 1 n 1 n 1 n 1 n
vilg, ooy, q") = (2gy o &, T, T, Ty e Y, Ty T )

where ¢" = zg +2ji+ x5 + x5k, r=1,...,n.
In the same spirit of Proposition 1.25 we obtain:

Proposition 1.26. The induced maps 3: H™" — C2™2" and : H»™ — R*™4" qre injective mor-
phisms of real algebras. Furthermore, if M = Z +Wj= A+ Bi+ Cj+ Dk € H™™ with Z, W € C™"
and A, B, C, D € R™", then in the standard basis

A -B -C -D
son-(i5 7). =8 5 X5

D -C B A

Remark 1.27. Here, we have fixed some choices. For instance we could have taken into account the
isomorphism H" — C?", (¢%,...,q") ~ (2',..., 2", —w", ..., —w") instead of the one we chose. One
can easily check that there are 2 possible choices for «, 2 choices for 3 (if fixing right scalar multiplication
of C on H"™) and 48 choices for v if we want the image of these morphisms of real algebras to be block
matrices corresponding to the writings Z = X +Yie C"", M =Z+Wj=A+ Bi+Cj+ Dk € H""
(cf. [121]).

The isomorphism a: C* — R2?" induces on R?" a structure of a complex vector space, where
multiplication by ¢ is given by multiplication with the matrix Z := a(il,) = (110,L o ). In the same
way B: H" — C?" endows C2" with a structure of a right H-module, where the action of j is given
by the map 3o jo 37!, which is easily checked to be equal to the map J(z) := Zz, where z € C".
Finally, v: H™"™ — R%™4" induces on R*" the H-bimodule structure with action of i, j, k given by left

or right multiplication with Iy := y(i1,), Jo := v(j1,), Ko := y(k1,), ie.

0 -1, 0 0 0o 0 -1, 0 o o o0 -1,

1, 0 0 0 1o o 0o 1, o o -1, o0
=149 o o ~1, | Jo = 1, 0 o o | Ko=1|y 1, 0 0

0o 0 1, 0 0o -1, 0 0 1, 0 0 0

With this additional structures, we can characterize the images of «, 8 and . Indeed, for example,
a matrix A € R?™2" corresponds to a C-linear endomorphism of R?” if and only if it commutes with
the action of i on R?". Reasoning similarly for C2* and R*" as H-modules, we reach the following

13
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description:

a((cn,n) — {A c RQn,Qn |IA — AI} ,
BHM™) ={AeC*™™ | JA=AT} ={AcC"* |IA= AT},
YH™™) = {A e R | [)A = Aly, JoA = AJy, KoA = AKo} .

Lemma 1.28. For a matriz M € H™" the following are equivalent:

(i) M is invertible (resp. hyperhermitian, hyperunitary, positive (semi)definite);
(ii) B(M) is invertible (resp. Hermitian, unitary, positive (semi)definite);
(iii) (M) is invertible (resp. symmetric, orthogonal, positive (semi)definite).

Proof. The lemma follows immediately from the relations 3(M 1) = B(M)~1, v(M~1) = v(M)~ 1,
BM*) = (B(M))*, v(M*) = *(v(M)). 0

Consequently, we can identify GL(n,H), SL(n, H) and Sp(n) with their images under /3 or +, thus
uncovering their Lie group structures.

Spectral Theory.

When discussing spectral theory, already from the outset one is compelled to look at either left or right
eigenvalues and no clear relation between the two sides is available. Looking at H" as a right H-module
and assuming linear operators act on the left, the natural notion to take into account is that of a right
etgenvalue, on which we shall focus. With this choice, the theory is almost entirely understood and it
has a fairly nice description which goes back to Jacobson [187], Lee [206] and Brenner [53] (an earlier
appearance of the Spectral Theorem for normal endomorphisms on quaternionic Hilbert spaces is in
Teichmiiller’s paper [283]). On the other hand, as of today, left eigenvalues are still quite obscure and
their theory is not fully explored. Our primary source for this treatment is the excellent survey of
Farenick-Pidkowich [122].

Definition 1.29. Let A € H™™ be a quaternionic matrix. A non-zero vector g € H™ is called a right
eigenvector with right eigenvalue \ € H if it satisfies

Aq = q\.

Remark 1.30. Left eigenvalues, i.e. quaternions A € H for which the equation Aqg = A¢ admits a
non-zero solution ¢ € H", are less easy to investigate. The fact that left eigenvalues can even be
taken into account is solely a consequence of the fact that H" is a bimodule. Besides the algebraic
inconsistency of considering left eigenvalues on a right module, some issues arising in quaternionic
quantum mechanics have been pointed out in [98]. Moreover, finding and studying left eigenvalues is
more subtle then right ones. After a wrong affirmation by Lee in a footnote of [206] that left eigenvalues
do not exist, Cohn [94, p. 217] was the first to raise the question whether or not they always occur. A
positive answer came from Wood [326] with a topological proof (see also [330, Theorem 5.3]).

For further information on the left eigenvalue problem we suggest the reader to consult [123, 181,
183, 214, 219, 262, 330, 331].

The lack of commutativity implies that whenever a matrix has a non-real right eigenvalue it actually
allows an infinite family of them. Suppose ¢ € H" satisfies Aqg = ¢\ then for every p € H* we have

Agp = qhp = qp(p~ ' Ap)

showing that p~!Ap is another right eigenvalue. From this point of view it makes sense to consider the
conjugacy class 8(\) of an eigenvalue A rather than the eigenvalue itself.

From Lemma 1.3 it follows that there is a one-to-one correspondence between conjugacy classes of
quaternions and complex numbers with non-negative imaginary part, which we denote by C¥.

14
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Proposition 1.31. Let A € H"™. Then A\ € H is such that 0(\) is a conjugacy class of right
eigenvalues for A if and only if i is an eigenvalue for B(A), where pn € O(N\) NCt. Moreover, if X is
non-real then also i is an eigenvalue of B(A), while if \ is real it has even geometric multiplicity as an
eigenvalue of B(A).

Proof. Suppose A is a right eigenvalue for A, then it follows from the discussion above that Ag = gA
if and only if A¢’ = ¢'u for some ¢, ¢ € H. Via the isomorphism 3: H* — C?" (and the induced
monomorphism (: H™™ — C2™2") this is equivalent to 3(A)B(¢’) = B(¢')u. If X is non-real we might
replace p with i to show that this is also an eigenvalue of S(A). Finally if A = p = [ is real call V' the
eigenspace of 3(A) corresponding to A. Define a map o: V — C?" as follows. Any eigenvector in V
is of the form B(q) = (z,w) for ¢ = z + wj € H", where z, w € C". Set 0(8(q)) := (w, —Z). Then it
is easily checked that o(V) C V and o(8(q)) is C-linearly independent from S(g). The fact that o is
C-antilinear and 02 = — Idy automatically implies that V is even-dimensional. O

Theorem 1.32. FEvery A € H™" has at most n distinct conjugacy classes of right eigenvalues and
precisely n of them if counted with multiplicities.

Proof. We know that 5(A) has at most 2n distinct eigenvalues, furthermore, each conjugate pair of
complex eigenvalues of B(A) and each real eigenvalue identifies a conjugacy class of right eigenvalues
of A by Proposition 1.31. But again, non-real eigenvalues of 5(A) always appear in conjugate pairs,
while real eigenvalues always have even geometric multiplicity. Therefore the distinct conjugacy classes
of right eigenvalues of A are at most half of the distinct eigenvalues of S(A). O

The existence of a right eigenvalue can also be achieved via topological methods as done by Baker
[26] who was inspired by the analogue proof of Wood for left eigenvalues (see Remark 1.30).

Now, we shall proceed to establish the Spectral Theorem. The first step in this direction is
represented by Schur’s triangularization result.

Proposition 1.33 (Schur’s triangularization). Let A € H™"™, then there exist T, U € H™™ with T
upper triangular and U € Sp(n), such that

A=U'TU.

Furthermore, each entry on the diagonal of T can be chosen to be the unique element in CT of a
conjugacy class of eigenvalues for A.

Proof. The result is obvious for n = 1. We assume that the proposition is true for n — 1 and we prove
it for n.

Let A; € C* be a right eigenvalue of A and choose a corresponding eigenvector q; € H"™ such that
|g1] = 1. With the Gram-Schimdt process, extend this to a hyperunitary basis q1, ..., ¢, of H". The
matrix V with ¢; as its i*" column is then unitary. By construction we have that the first column
of V*AV is (\1,0,...,0). Let B € H* %"~! be the matrix obtained from V*AV removing the first
row and the first column. Then by the inductive hypothesis there exist W € Sp(n — 1) such that
S = W*BW is upper triangular with diagonal entries in C*. Set U =V (} 3.) € Sp(n), then clearly

e (1 0\ . 1 0Y (/1 0\ /A *\/1 0\ [\ =
vav=(o w) var(s w)=( w) (5 5) 6 w)=(0 3
which has the desired form. O

Recall that a matrix A is normal if it commutes with its conjugate transpose. Hyperhermitian
and hyperunitary matrices are instances of normal matrices.

Theorem 1.34 (Spectral Theorem). If A € H™" is normal, then there exist U € Sp(n) such that
D := U*AU 1is diagonal with entries in CT and A\ € H is a right eigenvalue of A if and only if it
belongs to the conjugacy class of some diagonal element of D. Furthermore

1. if A is hyperhermitian then D has real entries;

2. if A is hyperunitary then D has complex entries with unit norm.
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Proof. By Proposition 1.33 there exists U € Sp(n) such that T = U*AU is upper triangular with
diagonal entries in C*. Since we assumed A to be normal, so is T' = (t;;), implying the identity

n

k
Stk = It
i=1

i=k

for every k = 1,...,n. Starting from k = 1 this implies |t1;|> = 0 for all j > 1, then for k = 2 the
equation implies \t2j|2 = 0 for all j > 2. Repeating this argument for all k’s shows that T is actually
diagonal. This concludes the first part of the theorem.

If A € H is a right eigenvalue for A and ¢ € H" is one of the corresponding eigenvectors, then
DU*q=U*Aq = U*g\, i.e. \is a right eigenvalue for D with eigenvector p = U*q. Let py,..., u, be
the diagonal elements of D and write p = (p1,...,pn), then there exists at least one index ¢ for which
pi # 0, implying 11;p; = p; A and thus p; = piAp; ' € O(N).

Conversely, if 4 € CT is a diagonal element of D, which we may assume to be in the (1, 1)-entry,
then, setting ¢ = (1,0, ...,0), we have Dg = qu. In terms of A such equation reads AUq = Uqu so
that p is a right eigenvalue for A.

Finally, the remaining part of the theorem follows from the observation that whenever A is
hyperhermitian or hyperunitary, so is D. O

As an interesting application we prove that two hyperhermitian matrices, one of which is positive
definite, can always be simultaneously diagonalized via an invertible matrix.

Proposition 1.35. Let Hy, Hy € Hyp(n) with Hy positive definite. Then there exists P € GL(n,H)
such that P*H1 P 1is the identity matriz and P*HyP is diagonal.

Proof. From the Law of Inertia (Proposition 1.21) there exists a matrix @; € GL(n,H) such that
Q71 H1Q1 is the identity. Since Q% H2Q)1 is hyperhermitian it can be diagonalized via a matrix Q2 € Sp(n).
Setting P = Q1Q2 € GL(n,H) we have P*H; P = 1 and P*HoP = D, where D is diagonal. O

For further canonical forms and decompositions, such as the Jordan normal form or the polar
decomposition see [79, 122, 163, 180, 182, 190, 216, 250, 324, 325, 332].

1.2 Moore determinant.

The naive approach to define the determinant of a quaternionic matrix simply adopting the usual
formula for matrices with entries in a field is patently flawed. The formula we are referring to is usually
called Laplace formula and, when commutativity does not hold, the application of the formula on
different rows or columns leads to different results.

Nonetheless, this was the road taken up by Cayley [75] who decided to define the determinant by
expanding the Laplace formula along the first column. Let us explain this on a sample 2 x 2 matrix.
The definition of Cayley is simply

Cdet (Z Z) :=ad—cb.

Cayley observes that if the rows of A are equal the determinant is zero, but if the columns are, in
general the determinant need not vanish:

a b a a
Cdet(a b) =ab—ab=0, Cdet(b b> = ab—ba.

If we try to ignore this warning we will be forced to face more compelling reasons to reject such an
approach. For instance, one of the most important properties about usual determinants is that they
vanish exactly on the subset of singular matrices. The Cayley determinant spectacularly fails to do
kg ) is easily checked to be invertible but with zero Cayley determinant,

so; for example the matrix ( i
whereas its transpose is singular but has non-zero Cayley determinant.
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1.2. Moore determinant.

Two quaternionic determinants.

From this discussion is apparent that one needs a cleverer definition of the determinant. Pursuing an
axiomatic approach, by singling out some desirable properties of the usual determinant one can indeed
have some partially satisfactory notions of determinant. Since we are not particularly interested in
this path we refer the reader to Aslaksen [23] for a discussion of this axiomatic perspective. Here, we
limit ourselves to briefly present two possible outcomes of this method.

The first determinant function we present was introduced by Dieudonné in 1943. Dieudonné [102]
proved that for any division ring R there is an isomorphism

GL(n, R)/[GL(n, R),GL(n, R)] = R*/[R*, R

This isomorphism induces a map detp: GL(n, R) — R*/[R*, R*] defined by setting
detp(A) := detp(Bnn(ga)Ba) = qa[R", R"],

where we used Lemma 1.14 to express A as a product By, (g4)Ba for some B € [GL(n, R), GL(n, R)].
Dieudonné shows that this is a well defined homomorphism with the commutator subgroup as its
kernel. The map is easily extended to non-invertible matrices by adjoining the zero to R*/[R*, R*]
and declaring that detp vanishes on every singular matrix.

Even though detp becomes exactly the usual determinant when R = K is a field, the reader might
find this extension of the determinant unsatisfactory, as it does not take values in R itself. However, in
the special case of quaternions, due to Proposition 1.4 we see that H* /[H*, H*] is isomorphic to RT,
the set of positive real numbers, via the map n: ¢[H*, H*] — |g| (actually any power of the norm here
will do, yielding a different determinant function). The (quaternionic) Dieudonné determinant is
the map Ddet: H™™ — [0, 400) defined as

Ddet(A) :=n(detp(A4)).

The Dieudonné determinant has been studied quite extensively in the literature. We suggest the
interested reader to consult [9, 22, 23, 54, 95, 101, 213, 244] and the references cited therein (be aware
that [9, 54] contain some wrong statements about transpose matrices as pointed out in [213]).

Earlier than Dieudonné, Study had introduced in 1920 [274] another determinant that takes
advantage of the representation of quaternionic matrices as complex ones described in section 1.1.2.
The Study determinant is the map Sdet: H™"™ — [0, +00) defined as

Sdet(M) := det(8(M)) .

The fact that the Study determinant only takes non-negative real values is a consequence of the fact
that (M) is similar to its conjugate, indeed we have seen that S(H™") = {A € C*™?" | A =T AT},
where Z = (> 75" ). This means that if X is an eigenvalue of 3(M) then also A is such.

What happens if we use the representation v: H™" — R*"4" instead of ? By switching the
middle block of rows and columns and then exchanging signs to the last block of rows and columns we
observe that

A -B —-C -D A -C -B D
B A -D C C A D B

det(y(M)) = det c D A -Bl|~T det B -D A —cl|~= det(a(B(M)))
D -Cc B A -D -B C A

but since, for every Z = X + Y1 € C™" we have

det(a(Z)) = det @ _Y) — det (X AR Y) — det (}Z, g) — det(Z) det(Z) = |det(Z)P?

for Z = (M) we get
det(y(M)) = | det(B(M))[? = Sdet(M)?.
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This observation is due to Bagazgoitia and Lewis [24, 209].

Both determinants are multiplicative and they vanish if and only if evaluated on singular matrices.
They actually are one the square of the other, which follows from the following interesting description
in terms of the eigenvalues:

Lemma 1.36. For every M € H™"™ we have

Ddet(M) = [\ [[Ael -+l (18)
Sdet(M) = [\12Pral - [Aaf?, (L9)

where O(\;) are all the conjugacy classes of eigenvalues of M, with multiplicity.

Proof. Observe that all elements within a given conjugacy class have the same norm, therefore the
expressions (1.8), (1.9) do not depend on the choice of the A;’s but only on their conjugacy classes
O(\;).

Formula (1.9) follows immediately from Proposition 1.31. Let us prove (1.8). Multiplying any
row on the left or any column on the right by ¢ € H has the effect of multiplying the Dieudonné
determinant by |g| this is because Ddet(B;;(q)) = Ddet(Bnn(q)) = |g| as it is easily checked. As a
consequence, the Dieudonné determinant of any diagonal matrix is the product of the norms of the
elements on the diagonal and this fact immediately extends to upper (or lower) triangular matrices
because Ddet(B;;(q)) = 1 for i # j. Using Schur’s triangularization (Proposition 1.33), multiplicativity
of Ddet and the fact that Ddet(Sp(n)) = 1 we achieve (1.8). O

Definition of Moore determinant.

If we are willing to restrict the domain of definition of the determinant function there is a really
nice candidate, especially for geometric applications. Moore [229] showed that on the space of
hyperhermitian matrices Hyp(n) the definition given by Cayley makes sense, if we specify a certain
ordering of the factors in the formula. This kind of determinant is the one we are interested in for
future applications, therefore, we give here a detailed presentation.

Fix H = (h;;) € H™™. For any cycle ¢ = (¢1 --- ¢) € S, written so that ¢; > ¢, for all r > 1,
define
H. = H(cl R hc1czhc2C3 T hck,lckhckcl .

Now, any permutation o € S,, can be written uniquely as a product of s(o) disjoint cycles
, O’T:(O'I oh - crﬁ),(rzl,...,s(a))

where the factors are arranged so that of > o] forallt > 1 and o > 0} > -+ > Uf(g).

Definition 1.37. The Moore determinant of a quaternionic matrix H € H™" is defined as the sum

det(H) := > |o| Hyr Hy2 -+ Hyuto ,
oeS,

where |o| = [o!]|o?| - |0°()| = (1)1 (=1)2~1... (1)@~ = (=1)"~*(?) denotes the sign of the
permutation o.

Observe that, whenever H € C™" its entries commute and the Moore determinant coincides with
the usual determinant, this justifies our use of the notation det for the Moore determinant.

It will be useful to rewrite the Moore determinant in a slightly different form. Consider the following
set of ordered partitions of {1,...,n}

S
P(n) = {(Xl,...,Xs) | X1 #0, ]_[X;€ ={1,...,n}, max X; > max Xy > --- >maXXs} ,
k=1
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and, given any subset X C {1,...,n}, let us denote C(X) the set of all cycles of elements in X with
the condition to be written so that the first element in the cycle is the biggest. In other words

c=(c1 - q)elC(X) < X={a,...,aq}, g =maxX. (1.10)

With this piece of notation we can write

det(H) = > > lo| Hyr Hyo - - - Hye

(X1,...,.Xs)EP(n) o=0c'c?---0°€S,

ofeC(Xy)
D S D SEEIT A N ST N A S
(X1,....X.)EP(n) \ol€C(X1) o2€0(X2) o5 €C(X,)

and thus, setting Hx, = Y rco(x,) 0% Hor = (=)Mo k) Hor, we have
det(H) = > Hx Hx,---Hx, . (1.11)
(X1,e,X5)EP(n)
Lemma 1.38. If H € Hyp(n) then det(H) € R.

Proof. From (1.11) it is enough to prove that for any fixed §) # X C {1,...,n} the sum Hx is real.
This is a consequence of the observation that for any cycle c = (¢; --- ¢;) we have

H.= h6162h0203 t hCzC1 = hCzC1 hczfﬂil to hclcz = hclckhclcl—l to hc261 = H(C1 cocl—1

02) .
Indeed, if [ = 1,2 then H, is real, while if [ > 2, H, is another element in the sum Hx, therefore
1 _
Hy = > el (He+He) = Y e[ Re(H.)
ceC(X) ceC(X)

is real. O

Remark 1.39. In view of this lemma, whenever we consider the Moore determinant of a hyperhermitian
matrix, which we always will from now on, some of the restrictions imposed on the definition can be
modified without affecting the determinant. For instance, when computing Hy for § # X C {1,...,n}
we imposed in (1.10) that the first element of the cycle be the maximum of X, however, this condition
can now be dropped and all we need is to pair the cycles as in the lemma above. Indeed for every
c=(c1 -+ @)

Re(He) =Re (H(c, ¢ o)) =Re(Hiey c5 o er o) = =Re(Hie, ¢ e5 o e11)) -

In general, it will be useful in the future to choose suitably the first element of the cycles, say c1, then
we can clearly also compute Hx as follows

Hy = (-1)"! Z Hie, r(ca) r(cs) ~ () >
Te€S(X\{c1})

where S(Y') denotes the set of permutations of elements in the set Y.

Properties and axiomatic description.
The Moore determinant also allows an axiomatic definition:

Definition 1.40. A function d: Hyp(n) — R is called a hyperhermitian determinant if it satisfies
the following axioms:
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CHAPTER 1. Quaternionic linear algebra

e Axiom 1. If H' € Hyp(n) is obtained from H € Hyp(n) by multiplying the i*" row on the left
by ¢ € H and the i*" column on the right by ¢ (i.e. H' = By;i(q)H B;;(q)), then d(H') = |q|?d(H).

« Axiom 2. If H' € Hyp(n) is obtained from H € Hyp(n) by adding the j** row to the i*" and
then the j* column to the i for i # j (i.e. H' = B;;(1)HBj;(1)), then d(H') = d(H).

e Axiom 3. d (]lok —Jl?kk) = (=1)"*.

We shall prove in the following that the Moore determinant is the unique hyperhermitian determinant.
Along the way we establish some other interesting properties.

Proposition 1.41. The Moore determinant is a hyperhermitian determinant.

Proof. We start by proving that it satisfies axiom 1. Fix a matrix H € Hyp(n) and an index
i € {1,...,n}. For every partition (X1,...,Xs) € P(n) there is only one set X} containing i. Then,
Hy = Hx, for every r # k, where H' = B;;(¢)HB;;(q). It is therefore enough to prove that
HY, =lq|*Hx,. In view of Remark 1.39, for all cycles ¢ = (¢; --- ¢;) € C(X}) we may assume ¢; = i,
so that we have

Hy = Z |c| h;;CQ ;zc;; T héli = Z el qhicyheyey -~ heiq = GHx, q = |q‘2HXk :
c€C(Xk) c€C(Xk)

Now we prove that axiom 2 is satisfies. Let H' = B;;(1)HB;;(1) for i # j. For every partition
(Xq,...,Xs) € P(n), since the terms H}Q are all real, up to renaming the sets forming the partition
we may always assume without loss of generality that i € X;. Observe that HY = Hx, for every
k > 1. Similarly, whenever j ¢ X; we may assume j € Xo. Then we split the sum as follows

> Hig HY, - HY, = 3 HHx,--Hx,+ Y.  Hi Hy,---Hy,
(X1,...,X5)EP(n) (X1,...,X5)EP(n) (Y1,...,Y,)eP(n)
X131,] Y134, Y255

and, changing names of the sets in the partitions involved in the second sum on the right-hand side,
we regroup it as

> HY Hy, ---Hy = > Hy + > HyHz|Hx, - Hx, . (112)
(X1,..,Xs)EP(n) (X1,...,Xs)EP(n) Y 3i, Z3j
X13i,j YUZ=X1

Now, fixing the partition, suppose X = X; = {4, j,a1,...,a,} possibly with » = 0. Fix a permutation
7€ S(X \ {i,7}) and consider the following quantities

Apr i =H; r(a1) r(az) = (ap) § 7(aps1) - 7(@r) = Nir(an)Pr@n)r(a) * Priap)ifirtapsn) ~ Prianyi
= (Pir(a) T hjr(a)) Pranyr(az) = hriap)ifir(apn) = hr(ar)r(an) (Rrcanyi + Prans) 5
Bpr i =H{; r(a,11) (apsa) = 7(ar) § 7(a1) - 7(ap)
= (Pir(apss)  Pirapsen) Prtapsiir(apsa) Pertaniltr(an) = hrtap-1)r(ap) (hr(ap)i + irgay)) »
Cpr i = Hii r(a)) r(a2) ~ (@) HG 7(apen) m(apsa) — r(ar))
= (hir(ar) + hjr(an) Praryriaz) ** Prapon)r(an) (Rrtapi + hr(ap)s) Rirapsn) = hrans»

D H(; 2(aps1) r(apsa) - r@)HG ma) 7(az) = 7(ap)

p,T
= (hir(apn) + Pirapen) Praper(apss) = Prary)r(an) (Rrtanys + hr(an)i) Rjrga) =+ Pray); -

Observe that

Apr+Bpr=Cpr=Dpr = hira,)  Pra,)ilir(@pen) - Prayithir(ayin) - Pran)ilira) = Priay)is

therefore, multiplying by (—1)"~!, summing over p € {0,1,...,r} and 7 € S(X \ {i,j}) and using
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1.2. Moore determinant.

again Remark 1.39 we obtain

2\ Hx+ D> HyHz | =(=1)"" Y > (Apr+Bpr = Cpr = Dpr) = 2Hx
Y'3i, Z3j T€S(X\{i,5}) p=0
YUzZ=X
which, substituted in (1.12) allows us to conclude.
The fact that axiom 3 is satisfied is obvious. O

Proposition 1.42. Let d: Hyp(n) — R be a hyperhermitian determinant then for every B € SL(n,H)
and H € Hyp(n) we have d(B*HB) = d(H).

Proof. Since SL(n,H) is generated by elementary matrices it is enough to prove the proposition for
them. In other words we need to check that whenever H' € Hyp(n) is obtained from H € Hyp(n) by
adding to the i*" row the ;" multiplied on the left by ¢ € H and adding to the i*" column the j*"
multiplied on the right by ¢, then d(H') = d(H). This follows from axioms 1 and 2, indeed, H' is
obtained from H by performing the following operations:

o Multiply the i*? row on the left by ¢~ and the i*" column on the right by g—'.

o Add the j* row to the i*" and then the j** column to the ",
o Multiply the i*" row on the left by ¢ and the i*" column on the right by g.

In terms of the determinant the first operation rescales it by a factor |¢~1|? = |q| =2, the second does

not affect it and the third rescales it by a factor |q|2. O

As a consequence, simultaneous switching of two rows and the corresponding columns does not
affect the value of a hyperhermitian determinant. This is because the matrices S, encoding the
operation of switching rows or columns according to the side of the multiplication, lie in SL(n,H) (and
actually in Sp(n)).

Corollary 1.43. The Moore determinant is the unique hyperhermitian determinant and for every
H € Hyp(n)
det(H) = /\1/\2 e /\n 5

where the \;’s are the eigenvalues of H.

Proof. Let d be a hyperhermitian determinant and H € Hyp(n). It follows from the Spectral Theorem
(Theorem 1.34) that there exists P € Sp(n) such that P*H P is diagonal. Let Ay, ..., A, be the diagonal
entries, then by Proposition 1.42 and axioms 1 and 3 we have d(H) = d(S*HS) = A1 - - - Ay, Therefore
the hyperhermitian determinant is unique and necessarily equal to the Moore determinant. O

Corollary 1.44. For every M € H™" and H € Hyp(n) we have
|det(H)| = Ddet(H), Sdet(M) = Ddet(M)?, det(M*M) = Sdet(M).

Proof. The first two formulas are an immediate consequence of Proposition 1.36. To prove the third
observe that Ddet(M*) = Ddet(M) and that M*M is positive semi-definite, hence det(M*M) > 0
(see Proposition 1.45), therefore

det(M* M) = | det(M*M)| = Ddet(M* M) = Ddet(M*)Ddet(M) = Ddet(M)? = Sdet(M). O

The identity between Moore and Study determinants can be used to extend the Study determinant
to non-square matrices M € H™™ by setting Sdet(M) := det(M*M). This is sometimes called the
double determinant (see [330] and references therein).

Further references discussing properties of the Moore determinant and its relations with other
determinants are [9, 78, 188, 230, 243, 297, 298, 299]. Finally, we mention that the Moore determinant
also admits a definition in terms of the Pfaffian (see [115, 116, 271]).
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CHAPTER 1. Quaternionic linear algebra

Eigenvalues of hyperhermitian matrices.

Proposition 1.45. A matriz H € Hyp(n) is positive semidefinite (resp. definite) f and only if all its
eigenvalues are non-negative (resp. positive).

Proof. The proposition follows from Lemma 1.28, Proposition 1.31 and the analogue result for complex
matrices, however, we shall give here a direct proof.

If H is positive semidefinite (resp. definite) and A € R is one of its eigenvalues with eigenvector
q € H", then \||¢||? = (g,q\) = (g, Hq) > 0 (resp. > 0) implying A > 0 (resp. A > 0).

Conversely, suppose all eigenvalues A1, ..., A\, of H are non-negative (resp. positive). Let U € Sp(n)
be such that D = U*HU is diagonal with Ai,..., A\, as its entries. For a non-zero ¢ € H" let
p=U*q = U""q, then we have (¢, Hq) = (Up, HUp) = (p,U*HUp) = (p, Dp) = >_1_; Melpx|* = 0
(resp. > 0), where p = (p1,...,Pn)- O

Sometimes, we shall write H > 0 and H > 0 to mean that the matrix H € Hyp(n) is positive
definite and positive semidefinite respectively. On the set of hyperhermitian matrices we can thus
define a partial order relation by setting

Hy>Hy <= H;—Hy>0,

from Lemma 1.28 it is clear that Hy > Hs if and only if S(H;) > 8(Hz) if and only if y(H;) > 'y(HQ).
The inequality H; > Hs imposes the following constraint in terms of the eigenvalues: denote A} >
Ab > ... > )\ the eigenvalues of H; for i = 1,2 then

A > A2) forallr=1,...,n. (1.13)

Be aware that the converse does not hold, for instance Hy = (3 9) and Hy = (} ) satisfy the inequality
(1.13) but it is not true that Hy — Hy > 0.

The sum of the eigenvalues of a hyperhermitian matrices is equal to its trace. This is evidently
true for real diagonal matrices. Given any hyperhermitian matrix H € Hyp(n), from the Spectral
Theorem there exists a matrix P € Sp(n) such that D = P*HP = P~1HP is real diagonal with the
eigenvalues \1,..., A\, on the diagonal. However, for matrices over the quaternions the usual identity
tr(AB) = tr(BA) is no longer true in general. On the other side, if we take real parts it does become
true, as a consequence of the fact that Re(pg) = Re(gp) for every p,q € H. Therefore

tr(H) = Retr(H) = Retr(PDP™') = Retr(DP™'P) = tr(D) = zn: Ai .

In particular the eigenvalues and the diagonal entries of a hyperhermitian matrix are strictly related.
Wondering whether or not it is possible to construct a hyperhermitian matrix with arbitrary eigenvalues
and diagonal, one is led to the following:

Proposition 1.46 (Schur-Horn Theorem). Let pp = (p1, ..., fin), A = (A1,...,Ap) € R™ be such that
w1 > - > pp and Ay > -+ > N\,. There exists a hyperhermitian matriz B with diagonal p and
eigenvalues A if and only if

J J n n
ZMSZM, forallj=1,...,n and Zm:Z)\i. (1.14)
i=1 i=1 i=1 i=1

Proof. A hyperhermitian matrix B satisfies the assumptions of the lemma if and only if there exists
C € Sp(n) such that B = C*DC where D is the diagonal matrix with diagonal A. In particular p is
the diagonal of B if and only if s = T'A where T' = (|c,5|?). Since C' € Sp(n), the matrix 7" is doubly
stochastic. By the Birkhoff theorem [40] p = T'A\, where T is doubly stochastic, if and only if T lies in
the convex hull of the set of all permutation matrices. In other words B exists if and only if p lies in
the convex hull of the vectors obtained by permuting the entries of A, which is known to be equivalent
to (1.14) (see e.g. [164, Theorem 46]). O
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Differentiating determinants.

We shall prove a Jacobi’s formula for the Study determinant which follows from the usual Jacobi’s
formula for the complex determinant. Let A € GL(n,H) and B € H™", then

Sdet,|a(B) = %Sdet(A +tB)|,_, = %det(ﬁ(fl +tB))|,_, = det(B(A))tr (8(A)~'B(B))
= Sdet(A)tr (8 (A™*B)) = 2Sdet(A)Retr (A7'B)

We stress here that the parameter ¢ can only be real. Since the Dieudonné determinant is the positive
square root of the Study determinant we also deduce

4

Ddet,|4(B) = iDdet(A +tB)|,_, = 7

= det(A + tB)Y/?
pr Sdet(A + tB)

= Ddet(A)Retr (A7'B) .
=0 (A)Retr (

If we also assume that A and B are positive definite, then so is A + tB, for t > 0, therefore
det(A 4+ tB) = Ddet(A + tB) and we conclude

det,|a(B) = det(A)Retr (A™'B) .
Choosing A = A(t) and B = 4 A(t) we also obtain:

Proposition 1.47. Let A(t) be a curve in the cone of positive definite hyperhermitian matrices. Then
the following Jacobi’s formula holds:

%det(A(t)) = det(A(t))Retr (A(t)—ldA(t)> ) (1.15)
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CHAPTER 2

‘ HYPERCOMPLEX AND HKT MANIFOLDS

In this second chapter we introduce the kind of geometry with torsion which is the main object
of our study. HKT manifolds, where HKT is a shorthand for hyperkdhler with torsion, arose from
supersymmetric theoretical physics [178] and soon became object of study from the mathematical
point of view [148]. They belong to the realm of hypercomplex geometry and present strong and deep
similarities with Kéhler manifolds. HKT geometry is rich and worthwhile to investigate.

Here, we approach HKT manifolds from the point of view of geometrical G-structures and then
move on to describe their basic properties, describing the notion of HKT forms and HKT potentials.
Afterwards we briefly explore Hodge theory and cohomology. An important role is played by the
canonical bundle which always admits smooth global sections but these in general are not holomorphic.
Some relations between the canonical bundle and the holonomy of the Obata connection (the unique
torsion free connection preserving the hypercomplex structure [235]) are established, but their link is
not fully understood yet, hence some conjectures emerge naturally.

One of these conjectures, introduced by Alesker and Verbitsky [18], is the perfect analogue of the
Calabi conjecture and is equivalent to an equation of Monge-Ampere—type. Its solution would give a
way to find balanced HKT metrics, which play the role of “quaternionic Calabi-Yau” metrics. Attacking
the Calabi problem in HKT geometry seems to be more complicated then its complex counterpart and
is the main focus of this work.

2.1 Preliminary notions.

We briefly introduce the framework of G-structures, which essentially goes back to Cartan [70, 73] and
was carefully implemented by Chern [81, 82]. Subsequently, we describe complex and hypercomplex
structures in order to fix notations and conventions.

For more information on G-structures consult [196, 228, 272]. Essential references for quaternionic
G-structures are [4, 5, 6, 7, 8, 252, 253].

2.1.1 G-structures and integrability.

Let G be a Lie subgroup of GL(n,R). A G-structure on a smooth manifold M is a reduction of the
structure group of the frame bundle GL(M) from GL(n,R) to G.

If G can be described as the stabilizer of a tensor T' on R™ then there is a one-to-one correspondence
between G-structures on M and global tensor fields S on M that allow a pointwise identification
(TpxM, Sy) = (R, T) (see [196, Proposition 1.1]). The argument generalizes to groups G that are
common stabilizers of a finite number of tensor fields. For instance, this means that O(n)-structures
on M are in one-to-one correspondence with Riemannian metrics.
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Tensor bundles can be realized as vector bundles associated to GL(M) (via a representation induced
by the canonical representation p: GL(n,R) — Aut(R™) which, for simplicity, we still call p). In
particular there is a one-to-one correspondence between connections on the frame bundle and linear
connections on T'M. Furthermore, any linear connection V on T'M induces a linear connection on all
tensor bundles (and by abuse of notation we will still denote such connections with V).

Let m: Q@ — M be a G-structure on M. A connection on ) can always be extended to a connection
on GL(M) that in turn induces a linear connection on TM (cf. [197, Chapter II, Proposition 6.1]).
However the converse breaks down: given a linear connection V on T'M the corresponding connection
on GL(M) does not always reduce to @, when this occurs we say that V and @ are compatible and
we call V a G-connection.

Given a linear connection V on M and u € GL(M) we can find a G-structure @ compatible with
V such that u € @ if and only if the holonomy group Hol(V) is contained in G. If it exists @ is unique
(see [194, Proposition 2.6.3]).

This fact, together with the Holonomy Principle allows to deduce the following: let V be a linear
connection on T'M and assume M admits a G-structure, where G is isomorphic to the common
stabilizer of a finite number of tensor fields Sy,...,Sg. Then V is a G-connection if and only if
Si,..., Sk are parallel with respect to V, moreover whenever this happens Hol(V) C G.

Now we fix a G-structure w: Q — M and inspect the space of G-connections on Q. It is easy to see
that the difference of two linear connections is tensorial and hence it is a section of End(M) @ T*M.
We expect the difference of two G-connections to take values in a smaller space. Define the adjoint
bundle Ad(Q) as the vector bundle associated to @ via the adjoint representation Ad: G — Aut(g),
where g is the Lie algebra of G. It can be seen that the set of all G-connections is an affine space over
I'(T*M @ Ad(Q)) (see [253, p. 16]). Thus, in general, many different G-connections can be found on
Q. What about torsion-free G-connections then?

Let V and V be two G-connections, then a := V — V € T(T*M ® Ad(Q)), since Ad(Q) has
standard fiber g C gl(n,R) = End(R") = (R")* @ R™ we can regard Ad(Q) as a vector subbundle of
T*M ® TM, in particular « is a tensor field of type (1,2). It follows that TV — TV = §(a), where
§: T*"M @ Ad(Q) — A*T*M ® TM is the antisymmetrization on the covariant components. Explicitly:
0(a)(X,Y) =axY —ayX for every X,Y € TM, where we use the notation ax := a(X) € Ad(Q).

Definition 2.1. Let 7: Q — M be a G-structure and V a G-connection on TM. The intrinsic
torsion of @ is the equivalence class

7@ = (1% e (MTMETM L i) -

The G-structure @ is said to be torsion-free if 7(Q) = 0.

It follows from our discussion that the definition depends only on the G-structure Q. The set
of torsion-free G-connections on @ is in one-to-one correspondence with Ad(Q)") := Ker(d) called
the first prolongation of Ad(Q). The intrinsic torsion is thus a measure of how obstructed the
G-structure is to allow a compatible torsion-free connection. A manifold M admits a torsion-free
G-structure if and only if there is a torsion-free linear connection V on T'M such that Hol(V) C G
(see [194, Proposition 2.6.3]).

Whenever G C O(n) is a closed Lie subgroup defined as the stabilizer of some tensors Sy, ..., Sk
we can describe the intrinsic torsion of any G-structure () on M in terms of the covariant derivative of
those tensors with respect to the Levi-Civita connection of the Riemannian metric induced by the
G-structure (see [253, Corollary 2.2]).

It turns out that the intrinsic torsion is just the first of a whole family of intrinsic objects that one
can take into account on G-structures as obstructions to integrability. For instance, the difference of
the curvatures of two torsion-free G-connections V and V = V + « lies in Im(§™)), where here

W M @ Ad(Q)Y — A’T*M @ Ad(Q)

denotes the antisymmetrization on the first prolongation Ad(Q)") C T*M ® Ad(Q) of the adjoint
bundle, i.e. 6 (B)(X,Y) = BxY — By X. Moreover, the curvature of a torsion-free connection satisfies
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the Bianchi identity: §'(RY) = 0, where
& A°T*M @ Ad(Q) — A*T*M @ TM

is the map & (7)(X,Y,Z) = v(X,Y)Z + (Y, Z)X + v(Z, X)Y. Hence the equivalence class [RY]
modulo Tm(6™) in Ker(¢") does not depend on V but only on the G-structure.

Definition 2.2. Let m: Q — M be a torsion-free G-structure. The intrinsic curvature of @) is the
equivalence class

R(Q) = [RV] eT (Ker((;/)/lm((s(l))) 7

where V is any torsion-free G-connection on T'M.

An isomorphism of two G-structures my: Q1 — M; and my: Qo — Ms is a diffeomorphism
f: My — Mj such that f.(Q1) = Q2, where f, is the induced diffeomorphism between GL(M;) and
GL(M>). So, for example, an isomorphism of two O(n)-structures is an isometry. An isomorphism
of a G-structure with itself is called an automorphism. Two G-structures as above are called locally
equivalent if at any point = € M; there exists a neighborhood U and an isomorphism f such that the
restriction of Q1 over U is isomorphic to the restriction of Q2 over f(U).

A very relevant topic in the theory of G-structures is the local equivalence problem, which focuses
on characterizing the conditions under which two G-structures are locally equivalent. Of course, a case
of particular interest is that of local equivalence with the standard flat structure. The standard flat
G-structure on R™ is the set of all frames obtained from the standard one by the action of G C GL(n, R).

Definition 2.3. A G-structure is called integrable or locally flat if it is locally equivalent to the
standard flat G-structure.

Integrability of a G-structure @) can also be equivalently defined by saying that around any point
x € M one can find admissible local coordinates (x!,...,2"), where the word admissible signifies that
the corresponding frame (8%1, ces 8%) seen as a cross section of GL(M) over U actually is a cross
section of () over U.

Whenever G is the stabilizer of some tensor T € T (R™), we have the following neat description:
let m: Q@ — M be a G-structure over M, then @ is integrable if and only if each point of M allows
local coordinates with respect to which the tensor S € T7 (M) induced by T has constant components
(see [196, Proposition 1.1]).

The integrability problem is strictly related to the intrinsic torsion and curvature; as a matter of
fact, they belong to a whole tower of tensors 7%(Q), called the k*® (intrinsic) structure tensors,
the non-vanishing of which represents an obstruction for our G-structure to take locally the model
form as on R”.

Let Q be a G-structure on M. We say that @ is m-integrable if 7%(Q) = 0 for all k < m and
formally integrable if 7%(Q) = 0 for all k. The standard flat G-structure has vanishing intrinsic
structure tensors, therefore we have that formal integrability is necessary in order to have local
flatness. The converse is in general false (see [160]), however, it is true in many reasonable cases, for
instance it is true when the Lie algebra of G is of finite type. Let us explain what it means. Consider
again the map 6: (R")* ® g — A2(R")* ® R™ and define inductively the k*® prolongation of g as

glh) = (g(k’l))(l) C (R™)* @ g'*=1 then g is of finite type if g9} = 0 for some ;.

Theorem 2.4 (Guillemin [159]). If the Lie algebra g of G is of finite type, then a G-structure is
integrable if and only if it is formally integrable.

2.1.2 Complex structures.

Before discussing G-structures related to quaternionic groups, we briefly review some facts of complex
and K&hler geometry which will be helpful to fix notations and conventions.
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GL(n, C)-structures.

We recall that the group GL(n,C) can be seen as the stabilizer of a (1,1)-tensor Iy on R?" acting
on GL(2n,R) as A+ IpAI;'. Therefore a GL(n,C)-structure on a 2n-dimensional manifold M is
determined by an endomorphism of the tangent bundle I that squares to —Idrp. The (1, 1)-tensor 1
is called an almost complex structure.

The Nijenhuis tensor associated to the almost complex structure I is defined as

Ni(X,Y) = i (X, Y] + I[IX, Y] + I[X,IY] - [IX,1Y]) .

It is well-known that a GL(n,C)-structure 7: Q — M is torsion-free if and only if N; = 0, where I
is the almost complex structure induced by ). The intrinsic torsion is the only obstruction to the
integrability of the GL(n, C)-structure. This is the celebrated Theorem of Newlander and Nirenberg
[232]. Whenever a GL(n, C)-structure is torsion-free we say that the induced almost complex structure
1 is integrable, or we simply drop the term “almost” and call it a complex structure on M. The pair
(M, I) is accordingly referred to as an (almost) complex manifold.

The complexified tangent space TM¢ := T'M ®g C of an almost complex manifold (M, I') decomposes
in a direct sum of eigenbundles of I: TM¢ = T*OM & T M, where I|p1.0p, = iId and I|go1py = —ild.
Moreover

"M ={X —iIX | X € TM}, TO'M ={X +4iIX | X € TM} =TW0M.
Consequently the vector bundles of complex differential forms decompose naturally as
AFT*Me = EB APAT*M |
p+q=Fk

where AP9T*M := AP(T*M )0 @c A9(T*M)%! is the space of (complex) forms of type (or bidegree)
(p, q) (with respect to I) or simply (p, g)-forms. Note that AP-2T*M = ATPT*M. We will write
AR(M) =T (A*T*M),  AP9(M) := D(APIT*M)

for the corresponding spaces of sections, which we still call k-forms and (p, ¢)-forms respectively. When
we have multiple (almost) complex structures, we may denote with a subscript the one with respect to
which we are considering forms and fields, for instance AP?(M) and le M are the space of (p, q)-forms
and the (1,0)-tangent bundle with respect to I.

The wedge product sends a (p, gq)-form and a (r, s)-form to a (p + r,q + s)-form and the almost
complex structure extends to a map on differential k-forms as

(IB)(X1,...,Xp) = BUXy,...,1X}s).

Be aware that some authors prefer to define the action of an almost complex structure on k-forms by
setting (18)(X1,...,Xg) =B 1 X1,..., 1 Xy).
The C-linear extension d: A¥(M)c — A¥+1(M)c of the exterior differential satisfies

d: Ap,q(M) N Ap+2,q—1(M) @Ap-‘rl,q(M) @AP#H—I(M) @Ap—l,q-'rz(M).

This means that we can decompose it accordingly as d = i+ 9+ 0+ fi. On an almost complex manifold
(M, I) the following are equivalent:

(i) I is integrable;
(i) d =0+ 0;
(ifi) p=0.

When any of the previous conditions holds, then d? = 0 implies 92 = 0% = 99 + 09 = 0. We call 0 and
0 the Dolbeault operators (with respect to I).
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Sometimes it will also be useful to take into account the twisted exterior differential operator
¢ :=d§ = I'dI which satisfies d§ = i(0 — 0) as well as dd§ + dd = 0 (if and only if I is integrable).

U(n)-structures.

A complex structure Iy on the vector space R?" is compatible with an inner product gq if it is orthogonal,
i.e. go(lo, fo) = go- In this case, the tensor

wr, = go({o, *)
becomes a 2-form. The group U(n) can be seen as the stabilizer of any two of Iy, go,wr,:
U(n) = GL(n,C) N O(2n) = O(2n) N Sp(2n,R) = Sp(2n,R) N GL(n,C), (2.1)

therefore a U(n)-structure on a manifold M is given by a Riemannian metric g, a g-orthogonal almost
complex structure I and the non-degenerate 2-form wy := g(I-,-), called the fundamental form. Any
two of these objects determines the third.

Whenever g satisfies g(I-,1-) = 0 we say that it is Hermitian. An almost complex manifold always
admits a Hermitian metric as, given a Riemannian metric g the metric %(g +g(I-,1,-)) is Hermitian.
We call the triple (M, I, g), where g is Hermitian, an almost Hermitian manifold and an Hermitian
manifold whenever [ is integrable.

The intrinsic torsion of (g, I, wy) identifies with V91 or, equivalently, VIw;, where V9 is the Levi-
Civita connection with respect to g. For n > 3 representation theory allows to split the space where
the intrinsic torsion lives in the direct sum of four spaces Wy, Wy, W3, W, which are irreducible with
respect to the action of U(n). This allows to classify U(n)-structures into 2* = 16 classes determined
by suitable conditions imposed on I and wy. This has been done by Alfred Gray and Luis M. Hervella
[149].

The following conditions on an almost Hermitian manifold (M, I, g) are equivalent:
VIl =0, VIwr =0, N;y=0and dw;y =0

and they are satisfied if and only if the U(n)-structure is torsion-free, in which case it is called a Kahler
structure, (M, I,g) is called a Kdhler manifold and Hol(V9) C U(n).

By uniqueness of the Levi-Civita connection, on a Kahler manifold there is only one U(n)-connection.
Gauduchon [135] studied U(n)-connections on Hermitian manifolds showing that they form an affine
subspace of the space of linear connections. Among these, Gauduchon also singled out and studied
the so-called canonical Hermitian connections, distinguished by some constraints imposed on the
torsion tensor. Nowadays these are also known as Gauduchon connections. The space of canonical
connections is at most one dimensional and collapses to a single point if and only if the Hermitian
manifold is Kédhler. When the manifold is not Kéhler the family of Gauduchon connections includes
many distinguished interesting connections.

As an example we mention the Bismut connection. The name stems from the fact that Bismut
[41] used it to prove a local index theorem, however it has been pointed out that it was Strominger
[273] that first discussed its existence three years before, giving it the name H-connection.

The Bismut connection is the U(n)-connection V on a Hermitian manifold (M, I, g) whose torsion
is totally skew-symmetric, in the sense that the tensor

(XY, Z) = g(X,TV(Y, Z))

is a 3-form. Since V! preserves the metric, it is uniquely determined by its torsion which can be
expressed in terms of the fundamental form as

o(X,Y,Z) = d5w;(X,Y, Z). (2.2)

The Bismut connection is sometimes called by physicists the KT connection (which is a shorthand
for Kahler with torsion). If the torsion c is closed we say that the KT-structure is strong, otherwise we

29



CHAPTER 2. Hypercomplex and HK'T manifolds

call it weak. Strong Kéahler with torsion (SKT) structures represent one of the most studied classes of
U(n)-structures with non-vanishing intrinsic torsion.

SU(n)-structures.

Let us take coordinates (2!,...,2") on C", inducing the coframe (dz!,...,dz"). Define

9] .0
=1

0z" 0z"

n ~ Z n ~
<','>0:Zdzk®dzk, Iy (r=1,...,n), wIO:§Zdzk/\dzk,
k=1 k=1
where d2* ©dz" := 1 (dz* ®dz"+dz"®dz"). Then one can check that ((-, )0, o, wr,) is a U(n)-structure
and h = (-,-)g — iwy, is the standard Hermitian product on C". The Lie group of special unitary

matrices is by definition the intersection of U(n) and SL(n,C). Since SL(n,C) can be seen as the
stabilizer in GL(n, C) of the complex volume form of type (n,0)

Yo i =dzt AdZ2 A Ad2",

a SU(n)-structure (also called special Hermitian structure) on a smooth 2n-dimensional manifold
M is defined by the data of a U(n)-structure (g, I,w;) together with a nowhere vanishing complex
(n,0)-form 1) satisfying the normalization condition:

n(n+1) (20)"
n!

For n = 3 we have SU(3) = Sp(6,R) N SL(n, C) and an SU(3)-structure can be completely described in
terms of the symplectic form w and the real part of the complex volume form v (see [172]).

w™.

Y Ap=(-1)

The SU(n)-structure is torsion-free if and only if
Viw =V9% =0,

for n > 4 these conditions are also equivalent to dw = d(Re(¢))) = 0 (see [62]), while for n = 3 they are
equivalent to dw = d(Re(¢)) = d(Im(2))) = 0 (see [88]). Observe that SU(1) = 1 and SU(2) = Sp(1), to
be treated below. Whenever the SU(n)-structure is torsion-free we have Hol(g) C SU(n) and actually,
for a Kéhler manifold (M, g, J) we have Hol’(g) C SU(n) if and only if Ric, = 0 (see [194, Proposition
7.1.1]).

When a manifold M is equipped with a torsion-free SU(n)-structure it is called a Calabi-Yau
manifold this is because the groundbreaking Calabi-Yau theorem was historically crucial in order to
find compact examples (cf. Chapter 2.3).

2.1.3 Hypercomplex structures.

Here, we begin the treatment of hypercomplex structures, starting to apply the machinery of quater-
nionic linear algebra developed in the first chapter.

GL(n, H)-structures.

In this subsection we start dealing with GL(n, H)-structures. On the flat space H” we can take into
account the standard left hypercomplex structure. Choosing quaternionic coordinates (¢!,...,q"),
i.e. a basis for the left H-module H" we may write them in terms of the corresponding real coordi-
nates (xg, -+, a8, @i, -, of, 2l al al, - 2h), where ¢ = xf) + ial + jab + kaf. Under this
identification H" = R*" the hypercomplex structure (I, Jo, Ko) induced on R*" acts as Io(z}) = 7,
Io(zh) = a5, Jo(zf) = 25, Jo(2]) = —af and Ko(af) = 25§, Ko(2]) = 2} for r =1,...,n. In terms of
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(block) matrices

0 -1 0 0 0 0 -1 0 00 0 -1
1 0 0 0 0 0 0 1 00 -1 0

h=1o o o -1 =11 0 o o] K=|o 1 0o o]l (2:3)
0 0 1 0 0 -1 0 0 1 0 0 0

where 1 = 1,, is the n x n identity matrix. Equivalently, Iy, Jy, Ko correspond to the action of the
unit quaternions 7, j, k on R*” under the map ~v: H® — R*" introduced in Subsection 1.1.2. From this
perspective we can write GL(n,H) as the stabilizer of (1o, Jo, Ko):

GL(n,H) = {A € GL(4n,R) | A= Iy 'Aly = Jy 'AJy = Kj ' AKo} (2.4)

This leads to the following definition: an almost hypercomplex structure on a smooth manifold M is
a GL(n, H)-structure, i.e. a triple (I, J, K) of almost complex structures satisfying the quaternionic
relations:

IJ=-JI=K. (2.5)

A hypercomplex structure on M is an almost hypercomplex structure with I, J and K integrable. An
(almost) hypercomplex manifold is a smooth manifold equipped with an (almost) hypercomplex
structure.

Remark 2.5. In recent literature some authors prefer to choose the right action of the almost
hypercomplex structure (I, J, K) on the tangent bundle, making T'M into a right H-module. As said
in precedence, this agrees with the most common convention for H-modules, which has indeed some
practical advantages in that framework. However, the traditional choice in hypercomplex geometry is
the one that makes T'M into a left H-module. In the present work, we adhere to the second convention
and let (I, J, K) act on the left. Be aware that the choice of the side of the action results in some sign
differences in certain formulas and definitions.

If a manifold M allows an almost hypercomplex structure its dimension must be a multiple of
4. From (2.5) it is evident that almost hypercomplex structures can be defined in terms of two of
the three complex structures, being the third defined a posteriori as the product of the other two.
Furthermore, integrability of these two almost complex structures implies integrability of the third,
indeed we have the following result originally proved by Obata [235]:

Proposition 2.6. Let (M,I,J,K) be an almost hypercomplex manifold. Then, if any two of the
Nijenhuis tensors vanish then so does the third.

Proof. The proposition follows from the identities
NIZQP[(NJ+NK), NJ:2PJ(NK+N]), NKZQPK(N]+NJ),

where Py, is the projection of a tensor of type (1,2) on its (0,2)-component with respect to the almost
complex structure L:

PL(S) = i (S+ LS( L) + LS(L--) — S(L L)) . 0

We now address the integrability problem for GL(n, H)-structures. First of all, we prove that they
are of finite type. More precisely, the intrinsic torsion and curvature are the only structure tensors
that do not trivially vanish.

Lemma 2.7. Let gl(n,H) be the Lie algebra of GL(n,H). Then the first prolongation gl(n,H)™) is

ZEro.

Proof. Let §: (R¥)*®gl(n, H) — A%(R*")*®@R*" be the antisymmetrization map. From the description
(2.4) of GL(n,H) it is evident that

gl(n,H) = {A € gl(4n,R) | A= I; ALy = J; ' AJy = Ky "AK}
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Let a € gl(n, H)™ = Ker(), then we have Iyoax = axoly and Jyoax = ax oJy for every X € R*",
as well as axY = ay X for every X,Y € R*". Therefore

axY = —Joax(JoY) = —Joasy X = Joloa sy (loX) = —loJoar,x (JoY) = lhar,xY = —ay X,
ie. a=0. O

It turns out that the intrinsic torsion is encoded precisely in the integrability of the three complex
structures I, J, K:

Theorem 2.8 (Obata [235]). An almost hypercomplex structure (I,J, K) on M is hypercomplex if
and only if there exists on M a torsion-free GL(n,H)-connection, i.e. a linear connection ¥V such that

VI=VJ=VK=0.
Moreover V is necessarily unique and is called the Obata connection.

Proof. Set J;, =1, Jy =J, J3 = K and consider the connection V such that

3
(e,8,7) a=1 (2.6)

1 1

1
VxY =1 > Ja (s X, Y] = [, X, JpY]) +

for any X, Y € TM, where (o, 8,7) is a cyclic permutation of (1,2,3) and T := —%<NJ1 + Ny, +Ny,).

A tedious but straightforward calculation shows that V preserves J, for « = 1,2,3 and has torsion
TV =T.

We claim that TV can be taken as a representative for the intrinsic torsion of the GL(n, H)-structure.
Consider the projection p: T*M @ TM — Ad(Q) such that p(S) := i (S = J1SJy — JoSJy — J35J3)
and the antisymmetrization §: T*M ® Ad(Q) — A*T*M ® TM. Since the kernel of the surjective
map 6 o (Idps ® p): A2’T*M @ TM — Im(6) is a GL(n,H)-invariant complement to the image
of § in A°T*M ® TM, it is enough to prove that (Id ® p)(T) = 0. For every X € TM we have
Ny (X,Jo) = —JaNy, (X,-) which implies

3
PT(X, ) = =3 37 (N5, (X)) = 0.

a=1

This proves that 1-integrability of the GL(n, H)-structure, torsion-freeness of V and integrability of
the almost complex structures I, J and K are all equivalent to each other.
Uniqueness of the Obata connection immediately follows from Lemma 2.7. O

The identification of the intrinsic torsion of a given hypercomplex structure (I, J, K) with the sum
of the Nijenhuis tensors (up to a constant) is essentially due to Obata [236] (see also Bonan [47]). The
explicit formula (2.6) for the Obata connection, to our knowledge, was found by Alekseevsky and
Marchiafava [4], however, (when it is torsion-free) the Obata connection can also be written as

VxY == (X, Y]+ I[IX,Y] - J[X,JY] + K[IX,JY]) . (2.7)

N |

Indeed, one can easily check that VI, VJ, VK and TV can all be expressed in terms of the Nijenhuis
tensors of I, J and K. This simplified formula is due to Soldatenkov [263].

Differently from the complex case, where torsion-freeness ensures integrability of the GL(n,C)-
structure, for GL(n,H)-structures integrability is also obstructed by the intrinsic curvature. Since
the Obata connection is the unique torsion-free GL(n, H)-connection, the intrinsic curvature can be
identified with its curvature and we obtain:

Theorem 2.9 (Obata [235]). On a hypercomplex manifold (M, I, J, K) the following are equivalent:
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(i) The torsion-free GL(n,H)-structure (I, J, K) is locally flat;
(ii) The Obata connection V is flat;

(iii) M has quaternionic affine transition functions.

Proof. The equivalence of the first two assertions follows from Theorem 2.4 and Lemma 2.7, the
equivalence of the third is due to Sommese [266]. O

Locally flat hypercomplex structures were first studied by Sommese [266] and were termed “quater-
nionic”. As mentioned earlier, such a condition is equivalent to require that the hypercomplex manifolds
(M, 1,J, K) is locally isomorphic to H".

Examples.

The most trivial example of hypercomplex manifold is that of (open subsets of) H™ with the standard
left action of i, j, k, or, equivalently, R*" with the flat hypercomplex structure given by (2.3). Since
the hypercomplex structure is invariant with respect to the sum of two elements of H™ it descends to
a hypercomplex structure on the quotient by a lattice isomorphic to Z*". We thus obtain compact
hypercomplex tori.

H"™\ {0} inherits from H" the standard hypercomplex structure acting from the left. Fix a quaternion
q € H* such that |g| # 1 and consider the integer group (g) generated via right multiplication by ¢
on H™ \ {0}. Since the hypercomplex structure acts on the left, it commutes with the action of (g),
therefore it descends to a hypercomplex structure on the quotient (H™ \ {0})/{(g). This quotient is
compact, as any coset allows a representative with norm smaller than 1. The quotient (H™ \ {0})/{q)
is called the quaternionic Hopf manifold and it is diffeomorphic to S* x S4"~1 (see [240], where
the authors also compute the moduli space for the hypercomplex structures on St x §47~1).

Kato [195] studied complex Hopf surfaces determining which ones admit hypercomplex structures.
Kato showed more generally that the only compact locally flat 4-dimensional manifolds are tori and
certain Hopf surfaces.

Less trivial examples came from the works of Spindel, Sevrin, Troost, Van Proeyen [267] and Joyce
[193]. They discovered that a compact Lie group, when multiplied by a torus of a suitable dimension,
carries a hypercomplex structure. Let us briefly overview how this works. Joyce shows that, by a
covering group argument, we may further assume that the Lie group is semisimple. Let then G be a
compact semisimple Lie group and H a maximal torus in it. Within this framework, structure theory
can be performed, which allows to obtain a suitable decomposition of the Lie algebra g of G:

g=boPr P,
j=1 j=1

where b is abelian of dimension Rank(G) — m, d; C g are subalgebras isomorphic to su(2), and §; C g
are subspaces satisfying the conditions:

1. [0;,b]=0and b & 69?:1 0; contains the Lie algebra of H;
2. [D],fl] =0 fOI'j < Z,

3. [95,f;] € f; and this Lie bracket action of 9; on f; is isomorphic to the direct sum of a certain
(finite) amount of copies of the action of su(2) on C? by matrix multiplication from the left.

Such a decomposition will be called a Joyce decomposition of the Lie algebra g.
Now, let 7 = Rank(G), and denote 7%™~" =2 U(1)?™~" the 2m — r-dimensional torus, so that the
Lie algebra of T2™~" x G decomposes as

@2m-rul)eg=R"a Py e @i
j=1 j=1
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Let (e1,...,eyn) be the standard basis for R™ and let ¢; be an isomorphism from su(2) = sp(1) to 9.
Consider a basis i1, i2, i3 of su(2) such that

[i1, 2] = 2i3, [i3,11] = 2i2, li2, i3] = 2i1 . (2.8)

We can regard Spang(e;, v;(i1), ¢;j(i2), ;(i3)) as a copy of H. From here we define a hypercomplex
structure Iy, Is, I3 € End((2m — r)u(1) @ g) as follows.

(a) Let I, I5, I3 act on R™ & EBT:I 0, as

La(ej) = pj(ia),  la(pj(ia)) = —€5,  la(pj(iv)) = @j(ic),  la(pj(ic)) = —¢;(iv),
whenever (a, b, ¢) is an even permutation of (1,2, 3).
(b) Let Iy, I, I3 act on f; as I,(v) = [¢;(i), ], for each v € f; and a = 1,2, 3.

By definition, it is clear that (Iy, Is, I3) is a hypercomplex structure on R @ EB;"Zl 0;, the fact that it
is also a hypercomplex structure on @;n:l f; follows from the third property of Joyce decompositions,
as the action of 0; on f; by conjugation is isomorphic to a finite amount of copies of the action of
Im(H) on H and (b) is nothing but a way to write down this isomorphism.

At this point Joyce uses an argument due to Samelson [254] to prove that I, must be integrable
and therefore, by left-translations, induces a homogeneous complex structure on 72" ~" x G. Therefore
(I, I, I3) extends to a homogeneous hypercomplex structure on 7%™~" x G.

According to [34, 104] all invariant hypercomplex structures on compact Lie groups are obtained
from Joyce’s construction.

Example 2.10. The Lie algebra of SU(3) can be written as

su(3) = {(_I;t _tI{ZD)> . Deu®) and f e <c2} ,
therefore it splits accordingly:
su3)=bd0@f,
where
o 0 X sp(1) is the space of matrices with zero f and tr(D);
e f consists of matrices with zero D;

e b =R is the set of diagonal matrices commuting with 0.

We have
[b,D]ZO, [bvﬂzfv [Daﬂ:fv [f’ﬂ:b@a) [0,0]20.

Let us consider the following basis of su(3):

i 0 0 i 0 0 0 1 0 0 i 0

Xi=(0 i o), Xo=[0 —i o], X3=[-1 0 0o, Xi=|3 0],
00 —2 0 0 0 0 0 0 00 0
0 0 1 0 0 i 0 0 0 0 0 0

Xs=(0 00|, X¢=(0o0 0], X:=[0 0 1], Xg=[0 0 —i
~1 0 0 i 00 0 -1 0 0 —i 0

Following Joyce’s construction a hypercomplex structure (I, J, K) on SU(3) is then defined by the
following relations:

(&) onb®0= <X1,X27X3,X4> as IXl = XQ, IX3 = )(47 JXl = X3, JX2 = —X4;
(b) on f = (X5, X¢, X7, Xs) as Tv = [Xo,0], Jv = [X3,v], Kv = [X4,v] for every v € f.
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With a similar technique, Joyce also constructs hypercomplex structures on homogeneous spaces.
For instance quaternionic Hopf manifolds can be seen as a particular case of this construction when
regarded as the product U(1) x Sp(n)/Sp(n — 1).

Joyce presented other geometric constructions in [192, 193], most notably hypercomplex quotients
(in analogy to Kéahler [222], hyperkéhler [173] and quaternionic Kéhler [133] reductions) and a way
of twisting associated bundles via a quaternionic instanton, further studied by Pedersen, Poon and
Swann [241].

Twistor theory was exploited by Grantcharov, Pedersen and Poon [147, 238, 239, 240] to study
deformations of hypercomplex structures. In particular in [240] the authors use deformation theory to
construct inhomogeneous hypercomplex structures on Joyce’s examples.

Finally, we mention a series of examples due to Boyer, Galicki and Mann on Stiefel manifolds
[50, 51] and on certain circle bundles over 3-Sasakian manifolds [52].

Sp(n)-structures.

Consider again quaternionic coordinates (¢',...,q") on H" with the standard left hypercomplex
structure and let (zg,..., 28, x1,... 2% 2k, ... 2% 2l ... 2%) be the corresponding real coordinates
on R*" = H". The hypercomplex structure (Iy, Jo, Ko) defined in (2.3) is compatible with the standard
inner product (-,-)p on R, in the sense that

{(Io; Lo-)o = (Jo, Jor)o = (Ko, Ko-)o = (-, )0 -

From this compatibility condition we see that there are three fundamental forms wy,,w,,wr, on H",
furthermore there is a non-degenerate complex form

Qo = wy, + iwg, -

In this set of coordinates we have

n 3 n
<~,~>0:ZZdI§®d:p’;, wr, :Z(dxlg/\dx’qudxg/\dzg),
k=1p=0 k=1
n n
Wi, = Z(dmlg Adxh — da® A dxb) WE, = Z(dmg A dxk 4 da® A dxb)
k=1 k=1
Identifying H" with C2" with the complex coordinates (z!,...,22"), where z%*~! = zf + iz} and
22k = x5 +iz% one could easily verify that
n
Q= Z dz?P =V A d2?k (2.9)
k=1

Observe that .
(-, Vo +iwr, + jwy, +kwi, =h+Qj = qu’“ ® dg*
k=1
is the standard quaternionic inner product on H"™.
The hyperunitary group Sp(n) is the subgroup of GL(n,H) that preserves (-, -)o, in particular it

preserves all the object we hereby introduced and it can be seen as their common stabilizer. We can
therefore regard Sp(n) in multiple ways, obtaining the hypercomplex analogue of (2.1):

Sp(n) = GL(n,H) N O(4n) = O(4n) N Sp(2n,C) = Sp(2n,C) N GL(n, H).

Another possible description of Sp(n) is as the intersection of the three unitary groups Stab(ly,wy,),
Stab(Jo,wy,), Stab(Kp,wk, ), which motivates the name of hyperunitary group.
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A Sp(n)-structure on a 4n-dimensional manifold is given by the data (I, J, K, g), where (I, J, K) is
an almost hypercomplex structure and g a hyperhermitian metric, i.e. a Riemannian metric such that

g 1) =g(J,J)=g(K ,K)=g.

Of course we also have the induced fundamental forms w;,w;,wg and the non-degenerate complex
form
Q:=wy+iwg . (2.10)

The collection of these data is also called an almost hyperhermitian structure. If I, J, K are integrable
we drop the word “almost”. An (almost) hyperhermitian manifold is one equipped with an
(almost) hyperhermitian structure.

The intrinsic torsion of a Sp(n)-structure can be identified with the three tensors V91, V9J, VIK  or
equivalently, the three tensors VIw;, V9w, VIwg or else VI In other words the following conditions
are equivalent to torsion-freeness:

VII=VIJ=VIK =0, Viwr =Vw; = Viwg =0, VIiIQ=0.

In particular we have Hol(VY) C Sp(n). Whenever the Obata connection preserves some Riemannian
metric g, it automatically induces a torsion-free Sp(n)-structure also known as a hyperkdahler structure.
Accordingly, a manifold with a Sp(n)-structure with vanishing intrinsic torsion is called a hyperkéhler
manifold. The name is due to Calabi [68], who also proposed the term hypercomplez.

Since Hol(VY) C Sp(n) C SU(2n) hyperkéhler manifolds are always Calabi-Yau, and thus, Ricci-flat
(see also Subsection 2.2.4).

The conditions for the vanishing of the torsion can be slightly relaxed. Indeed Hitchin [171] showed
that the closure of wy,wy,wk implies the vanishing of the Nijenhuis tensors of I, J, K, hence (M, I,g),
(M, J,g) and (M, K, g) are automatically Kahler. In particular, if (M, I, J, K, g) is hyperhermitian the
concise condition

Q=0 (2.11)

is sufficient to give hyperkahler.

Verbitsky [303] proved that any hypercomplex manifold (M, I, J, K') that carries a Kahler metric on
(M, I) admits a hyperkéhler structure (not necessarily compatible with the original Kéahler structure).

Hypercomplex and hyperkdhler manifolds are respectively, subfamilies of the more general concepts
of quaternionic and quaternionic Kdahler manifolds. These can be described as manifolds admitting a
GL(n,H)GL(1,H) and Sp(n)Sp(1)-structure respectively. The terminology is standard, as of today,
however, some years passed before it established itself, hence, early literature might refer to a
hypercomplex structure as a quaternionic one, e.g..

Our attention is focused on hypercomplex manifolds and we shall not describe here quaternionic
structures. We only report here that the quaternionic projective space HP™ is a quaternionic manifold,
however it is not hypercomplex, as it does not even admit an almost complex structure. For n = 1 we
have HP! = §4 and it is known that the only spheres admitting almost complex structures are S2
and SO (cf. [117, 174]). The general case is due to Massey [223], although the case n > 4 was already
established by Hirzebruch [170]

Following the ideas of the Gray-Hervella classification, Cabrera and Swann [61, 63] give a nice and
detailed description of the possible classes of quaternionic geometries.

The class of Sp(n)-structures with non-vanishing intrinsic torsion which is most interesting for us
is that of hyperkdhler structures with torsion, to be introduced in the next subsection.

2.1.4 HKT structures.

Definition of HKT manifolds.

We have seen that KT geometry deals with Hermitian manifolds together with a U(n)-connection with
skew-symmetric torsion. In analogy to this, one defines hyperkahler geometry with torsion, abbreviated
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to HKT geometry, as the geometry of hyperhermitian manifolds (M, I, J, K, g) with a Sp(n)-connection
with skew-symmetric torsion, called the HKT connection. The existence of such a connection is
equivalent to require that the three Bismut connections V!, V7’ V¥ coincide.

Geometries with torsion are of particular interest for some supersymmetric sigma models in
theoretical physics, especially in presence of the so-called Wess-Zumino term [134, 177]. Indeed, in such
a case the internal space of the sigma model has a linear connection with skew-symmetric torsion and
holonomy in either U(n) or Sp(n), depending on the number of supersymmetries that leave the sigma
model action invariant. Thus, we either have KT or HKT geometry. HKT manifolds also emerged as
moduli spaces for a certain class of black holes [142], and recently, as base spaces of “timelike” solutions
of five-dimensional de Sitter supergravity [151, 161].

HKT manifolds were first studied by Howe and Papadopoulos [178]. As discovered by Grantcharov
and Poon [148], a HKT structure can also be equivalently expressed in terms of a nice differential
equation involving the complex volume form 2 defined in (2.10):

Proposition 2.11. On a hyperhermitian manifold (M, I, J, K, g) the following conditions are equiva-
lent:

(i) 09 =0;
(if) Tdwy = Jdwy = Kdwg;
(iii) VI =V’ = VE.
It is nowadays customary to use this alternative description as a definition.

Definition 2.12. Let (M, I, J, K, g) be a hyperhermitian manifold and consider the complex 2-form
Q:=ws +iwg. Then the metric g, the form €2 and the manifold M are called hyperkdhler with
torsion or, shortly, HKT if

0N=0. (2.12)

The name stems from the fact that a hyperhermitian manifold is hyperkéhler if only if (2.11) holds,
i.e. Q is closed. Therefore the intrinsic torsion of the Sp(n)-structure does not fully vanish for HKT
(non hyperkéhler) manifolds. As of today, the name hyperkéihler with torsion is generally considered
to be misleading, therefore the acronym HKT is preferred.

Since the three Bismut connections coincide the common torsion is ¢ = djw; = djw; = dwk
by (2.2). In particular, if one of the Hermitian structures (g, I), (g, J) or (g, K) on a HKT manifold
(M, I,J, K, g) is Kdhler, then the other two are also Kéhler, and thus the Sp(n)-structure is torsion-free.
The HKT-structure is called strong or weak according as the torsion is closed or not.

Cabrera and Swann [64], studying the intrinsic torsion of almost quaternionic Hermitian manifolds
were able to weaken the integrability assumptions:

Proposition 2.13. On an almost hyperhermitian manifold (M, I, J, K, g) the following conditions are
equivalent:

(i) 02 =0 and Ny =0 (or Nxk =0);

(if) Jdwy = Kdwg and Ny =0 (or Nk =0);
(iii) Idw; = Jdwy = Kdwi;

(iv) I,J, K are integrable and V! =V’ = VE.

Examples.

We already observed that HKT manifolds are a generalization of hyperkdhler manifolds. From now
on, unless declared otherwise we shall use the term HKT manifold to mean HKT non-hyperkéahler
manifold.

Every 4-dimensional hyperhermitian manifold is automatically HKT because (2.12) is trivially
satisfied. Boyer [49] classified compact hyperhermitian manifolds of dimension 4 up to conformal
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equivalence. The only possibilities are tori with the flat metric, K3 surfaces and those locally flat
quaternionic Hopf surfaces studied by Kato [195] with their standard locally conformally flat metric.
The manifolds of the first two classes are hyperkahler, while those of the third are not, however they
are always locally conformally hyperkéhler.

We have seen that compact Lie groups, whenever multiplied by a torus of a suitable dimension
always admit a homogeneous hypercomplex structure. Whenever the group G is semisimple, the
Cartan-Killing form B is a negative-definite inner product on the Lie algebra g. The (opposite of the)
Cartan-Killing form can be extended to a hyperhermitian metric on 7%~ "G (see [148, Lemma 2]),
where = Rank(G). As we now show, such hyperhermitian metric is actually HKT. This observation is
originally due to Opfermann and Papadopoulos [237], who also generalized the construction to certain
homogeneous spaces, showing that they carry HKT structures.

Let g be the left-translation on T2™~" x G of the hyperhermitian inner product on (2m —r)u(1) ®g.

Proposition 2.14. The hyperhermitian metric g on T*™™ " x G is strong HKT.

Proof. Consider the left-invariant connection V on T?™~" x @ such that all left-invariant vector
fields are parallel. Since the metric g and the hypercomplex structure (I, Iz, I3) on T?™~" x G are
left-invariant they are preserved by V. The torsion tensor is TV (X,Y) = —[X, Y], therefore

o(X,Y,Z) = -B([X,Y],2) (2.13)

which is known to be antisymmetric, i.e. a 3-form. It follows that the Bismut connections of I, Is and
I3 all coincide with V. Therefore the metric g is HKT. To see that it is strong simply compute the
exterior differential of c:

de(X,Y, Z,W) =c([X, Y], Z,W) — «([X, Z],Y, W) + ¢([X,W],Y, Z)
+ ([, Z2), X, W) — e([Y, W], X, Z) + c([Z, W], X,Y)

using the Jacobi identity and (2.13) we obtain
de(X,Y, Z, W) =c([X, Y|, W, Z)+ c([Z,W], X, Y) =c(Z,W,[Y, X]) — (Y, X, [Z,W]) =0
as desired. O

For instance the list of compact simple Lie groups yields the following list of strong HKT Lie
groups:

SU(2k+1), T'xSU(2k), TFxSO(2k+1), T*xSO(4k), T?*7'xSO(4k+2), T*xSp(k),
T? x Eg, T x B, T* x Fy, T2 x Gy.

Example 2.15. Let us give some details for the case of SU(3). In example 2.10 we described the
homogeneous hypercomplex structure in terms of a basis of the Lie algebra su(3) = (X1,..., Xg).
Let (X!,..., X8) be the dual basis of (Xi,...Xg) and let

1 1 1 1
7' = (X' +iX?), 28 =J(XP4+iXY), 20 = (X7 +iX%), Z'= (X7 +iX)

be the induced unitary coframe with respect to (g, I), where g = 22:1 X* ® X*. The HKT form can
then be expressed as
0=2z%+27".

To check that this is 0-closed we compute the non-zero brackets of vectors in {Xy,..., Xg}. They
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are
(X5, X6] = X1 + Xo, (X7, Xg] = Xo — X, (X3, X4] = 2X5,
%[X2,X4] = [X5, X7] = —[X6, Xg] = — X3,
S, Xs] = ~[X5, X] = ~[Xe, X1] = Xa,
2150, Xo] = [Xa, X] = ~[Xa, X7] = ~[X4, Xs] = X,
L1%2, Xs] = [Xa, X] = ~[Xs, Xs] = [Xa, X7] = X,
%[ths] = —[Xy, Xg] = —[X3, X5] = —[ X4, X¢] = X7,
1

3[X1’X7} = —[X2, X7] = —[X3, X¢] = [X4, X5] = — X5,

therefore we have
0Z' =0, 07% = —27'2 —273% 07% = —(1+3i)2"3, 07 = (3i —1)Z™
and ) = —%822 is evidently HKT.

Barberis and Fino [30] gave an interesting procedure that allows to construct new HKT Lie
algebras starting from others of half the dimension by using quaternionic representations. The strong
(respectively, weak, hyperkéihler, balanced) condition is preserved under this construction. Many new
examples can be produced applying their technique.

A remarkable family of left-invariant examples was detected by Dotti and Fino [112]. Let us quickly
recall that a complex structure I on a Lie algebra g is called abelian if g':* (and thus g%!) is abelian.
Equivalently 7 is “orthogonal” with respect to the Lie bracket: [I-,I:] = [-,-]. A hypercomplex structure
(I,J,K) on g is called abelian if each of I, J, K is abelian.

Dotti and Fino observed that every abelian hypercomplex structure on a (non-abelian) Lie group G
gives rise to a left-invariant weak HKT structure on G. Under the construction of Barberis and Fino
[30] abelianness of the hypercomplex structure is never preserved, unless the quaternionic representation
used to produce the new example is trivial. We will investigate the properties of these special kind of
hypercomplex structures later in Section 3.2 for the time being we limit ourselves to observe that this
kind of structures is in certain sense complementary to those found by Joyce, indeed they can only
occur on solvable Lie groups which cannot be compact, unless they are tori. More precisely, we have
the following result of Anatolii Petravchuk [242]:

Proposition 2.16. If g admits an abelian complex structure then it is 2-step solvable.

Proof. Let A= g"% and B = g*!. Since A and B are abelian it is enough to prove that
[[Aa BL [Av BH =0.

Take arbitrary aj,az € A and by, b € B and write [ay, ba] = ag + b3, [az,b1] = a4 + by with az,a4 € A
and b3, by € B. The computation is just a multiple usage of Jacobi’s identity and the fact that A and
B are abelian:

[la1,b1], [az, b2]] = [[[a1, b1], az], b2] — [[[a1, b1], ba], az] = —[[[b1, az], a1], ba] + [[[b2, a1], b1], az]
= [[ba, a1], b2] — [[as, b1], az] = —[[a1, ba], ba] + [[b1, az], as] = —[as, bs] — [bs,a3] =0,
which is the desired identity. O

Example 2.17. Dotti and Fino [110] classified non-abelian 8-dimensional 2-step nilpotent Lie groups
admitting an abelian hypercomplex structure. The only such groups are

N1:H1(2)XR37 N2:H2(1)XR27 N3:H3(1)XRa
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where H;(n) denotes the real (¢ = 1), complex (i = 2), and quaternionic (¢ = 3) Heisenberg group:

1 a 1 v w
Hi(n) = 0 1, ‘c||aceR"beR,, Hyn)= 0 1, ‘2] |v,zeC*,weCy,
0O 0 1 0O 0 1
1 p Im(q) - zlpl?
Hs(n) = 0 1, ~tp |lpeH",qeH
0 0 1

Each N; contains a canonical co-compact lattice I'; by taking integer coordinates, hence the nilmanifolds
M; = T;\N; are compact HKT.

We also remark that Dotti and Fino extended their result by classifying hypercomplex 8-dimensional
nilpotent Lie algebras [113].

Other examples were obtained by Verbitsky [302] as a by-product of hyperholomorphic bundles.

Finally, we mention some examples of hypercomplex manifolds not admitting any HKT structure.
Such manifold were initially conjectured not to exist, but the first example came from Fino and
Grantcharov [124] using a symmetrization procedure to obtain left-invariant structures from non-
invariant ones. Other examples and new obstructions to the existence of HKT metrics followed, for
instance in [29, 146, 208, 264]. We cannot fail to mention the remarkable twist construction due to
Swann [278, 279], its argument allowed to construct the first simply-connected compact hypercomplex
manifolds not admitting any HKT metric.

2.2 Potentials, cohomology and canonical bundles.

In this section we report on some basic results in HKT geometry. After some analytic preliminaries
dealing with the notions of quaternionic Hessian and Laplacian, we overview the theory of HKT
potentials whose existence was proved by Banos and Swann [27]. After this, we recall the cohomological
results of Verbitsky [301] who exploited an analogy between the Kéhler and HKT worlds to investigate
Hodge theory. Finally, we report on the interplay between the holonomy of the Obata connection, the
existence of holomorphic sections of the canonical bundle and the existence of a balanced HKT metric.

2.2.1 Quaternionic analysis.

The twisted Dolbeault operator.

On a hypercomplex manifold (M, I, J, K) there are two important differential operators acting on
forms. The first is the usual Dolbeault operator @ which we will always consider with respect to I. If
one wishes to study complex cohomology then d can be paired with its conjugate 9. However, we are
of course interested in the whole hypercomplex structure (I, J, K), therefore there is another operator
which is of the utmost importance for us, which is obtained by twisting 0 via J. We call

9y =J"10J
the twisted Dolbeault operator, being d taken with respect to I.

Let us remark a few facts regarding the operator 9;. We claim that since J anticommutes with I
it switches the type of forms, i.e. J: API(M) — AYP(M). We first prove that J: THOM — TO1M as
forany X €e TM

JX —iIX)=JX —iJIX =JX +ilJX
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is clearly of type (0,1). Since J preserves the wedge product it is enough to show the claim for
(1,0)-forms. Let o € AM°(M) and Z € T%' M, then

1(Ja)(Z) = a(JIZ) = —a(IJZ) = —ia(JZ) = —i(Ja)(Z),

ie. Ja e A%(M).

As a consequence of the claim 9 sends (p, ¢)-forms to (p + 1, ¢)-forms, just like §. Furthermore,
the pair of operators (0, 0;) resembles very closely the pair (d,d®) in complex geometry, for instance
we have the following;:

Proposition 2.18. An almost hypercomplex manifold (M, I, J, K) is hypercomplex if and only if the
operators 9,0,05,075 := 0y = J~10.J square to zero and anticommute with each other.

Proof. Since
1 = 1
we also have ) 1
05 = §(df}+id§()» 0y = §(d§_id§<)'

The proposition is thus just a consequence of the fact that integrability of I, J and K is equivalent to
(d$)? = (d9)? = (d%)* = 0 or dd§ + d5d = ddS + d5d = dd$; + dS;d = 0 (which is also equivalent to
dsdG + d5d§ = d5d5; + dS.d5 = d%.d§ + d5dS. = 0). O

Real and positive forms.

In this section we discuss the notion of g-realness and g-positivity for differential forms. These concepts
were introduced and studied by Alesker and Verbitsky [11, 17, 308] in complete analogy to the notion
of positive forms in complex geometry.

Let (M, I, J, K) be an hypercomplex manifold and recall that the anticommutation property of
I and J implies that J sends (p, q)-forms to (g, p)-forms (with respect to I). Composing with the
complex conjugation we obtain the operator

J = Jo " API(M) — APU(M).

Furthermore J2|pp.a(ary = (—1)P+71d, therefore when p+ ¢ is even 7 is an involution of A”4(M). The
eigenbundle of J corresponding to the eigenvalue 1 is of particular interest.

Definition 2.19. Let p+ ¢ be even. A form o € AP*%(M) is called quaternionic real (shortly g-real)
if 7a = a.

We shall be primarily concerned with forms of type (2k,0). In this case g-realness can be
characterized as follows: o € A2*0(M) is q-real if and only if a(Z1, T Z1,. .., Zy, T Zy) is real for any
Zi,..., 2 € D(TYOM). The equivalence follows from the identity

JAZ21, T Zr, 2, T2k) = alJ 20, T2 2n, o T 2k, T2 2y) = (20, T 21, 2, T Z) -
This allows to define a notion of positivity for g-real (2k, 0)-forms:
Definition 2.20. A g-real form a € A?%0(M) is called quaternionic (semi)positive (shortly

g-(semi)positive) if
Q(Zl,le,"' 7Zk7jZk) >0 (2 0)

for every non-vanishing 71, ..., Z; € TH"°M. Equivalently,
(X1, JJXq,. ., X, JXE) >0 (>0)

for every non-vanishing X;,..., Xy € TM.
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The equivalence of the two conditions is easily obtained by writing Z; = X; —iIX; for X; € TM
and j =1,...,k and using that « is of type (2k,0) so that

A Z1,TZv, 2, T Zi) = Aol X1, I X0, -+ X, T X)) -

The terminology we adopt may differ from the most common one used in literature. For instance
semi-positivity is generally called weak positivity and our notion of positivity is mainly called strict
weak positivity.

Example 2.21. Given any (1,0)-form § the form —8 A J 0 is always g-positive. More generally any
(2k, 0)-form of the type (—B1 A TB1) A+ A (=Bx AT B) for B € ABO(M) is g-positive.

This definition of positivity for g-real (2n,0)-forms agrees with the natural orientation on the
bundle of g-real (2n,0)-forms. To see this, fix a point € M and choose a basis (e, ..., e,) of TpuM
as a left H-module, then 20,1 = e; +ilej, 205 = J22j—1 = Je; + iKe; form a complex basis and the
corresponding coframe (dz*, ..., dz?") induces the orientation form

O=dz'A---ANd2*"

which is g-positive by Example 2.21. Choose another basis (f1, ..., fn) on T, M inducing the complex

coframe (dw!, ..., dw?") in the same fashion as before. Since the bases (eq,...,e,) and (fi,..., fn)
are related by a map A € Auty(7T, M) = GL(n,H) the corresponding complex bases (z1,..., z25),
(w1, ..., way,) are related by B(A), where 3: H™™ — C?™2" is the representation of Subsection 1.1.2.

Therefore we get
dw' A -+ A dw®™ = det(B(A))O = Sdet(A)O

and the Study determinant always takes positive values. This shows that the announced orientation is
intrinsic.
It is not hard to check that a g-real (2k,0)-form « is g-positive if and only if

alN(=PLNTBL) N AN(=Bn-k NT Brn—k)

is a positive orientation form for every Bi,. .., Bn_r € ALO(M).

Take a hyperhermitian metric g on (M, I, J, K), then we can take into account the form Q € A%9(M)
defined in (2.10), since Jw; = wy and Jwg = —wg the form  is g-real. But it is also g-positive:

NZ,T2)=9g(JZ2,]Z)+ig(KZ,JZ) = g(Z,Z) —ig(12,Z) = 2|Z| ..

Therefore any hyperhermitian metric induces a g-positive (2,0)-form and the converse is also true,
indeed if  is such a form, we can define a metric polarizing the quadratic form Q(X) = Q(X, JX), i.e.

g(X,Y) = %(Q(X FY,J(X +Y)) - QX, JX) - QY,JY)) = %(Q(X, JY) +Q(Y, JX)).

Such expression is clearly symmetric, moreover g is real-valued because € is g-real, it is [-Hermitian
because Q is of type (2,0):

g(IX,IY) = %(Q(IX, JIY) + Q(IY, JIX)) = —% (UIX, LTY) + QIY, 1JX)) = g(X,Y)

and it is clearly J-Hermitian:

9(JX,JY) = = (QJX,J?Y) + QJY, J?X)) = g(X,Y)

N | =

therefore it is also K-Hermitian:
g(KX,KY) = g(LIX,1JY) = g(JX,JY) = g(X,Y),

Finally, g is positive (semi)definite if and only if Q is g-(semi)positive, because g(X, X) = Q(X, JX).
We thus have showed:
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Theorem 2.22 (Alesker-Verbitsky [17]). On a hypercomplex manifold (M, I, J, K) there is a one-to-one
correspondence between the bundle of (real parts of) hyperhermitian forms on TM and the bundle of
g-real (2,0)-forms on M. Such correspondence is explicitly given by

{hyperhermitian forms on TM} — {q-real (2,0) forms on M}
9= 9(J-y) +ig(K--)

Q) = Q1) < Q

N =

Furthermore a hyperhermitian form is positive (semi)definite if and only if the corresponding (2,0)-form
is q-(semi)positive.

In view of this correspondence the form Q defined in (2.10) completely determines the metric,
therefore we shall often forget the metric and refer to (M, I, J, K,Q) as a (almost) hyperhermitian
manifold.

Quaternionic Hessian.

Take real coordinates (x;), p=0,1,2,3, r=1,...n, on R = H" corresponding to quaternionic
coordinates: ,
q" = Z T, ep,
p=0

where, in order to simplify the notation, we denote the unit quaternions 1,7, j, k with eg, e1, e, e3.
We can then introduce the quaternionic derivatives O~ and Oys, sometimes also called Cauchy-
Riemann-Fueter operators, acting on smooth H-valued functions as follows

3 3
Ogrus 1= E €; Ozru, Ogru := Oyrueg — E Bm;-u ei;
i=0

i=1

The operators J,» and Jg+ commute, but they do not satisfy the Leibniz rule nor the chain rule, so
care must be taken during computations.

For any real-valued u: H" — R, the matrix of second derivatives

Hessgu := i(a@raqsu)fs
is called the quaternionic Hessian of u. The reason of the normalization constant %
in the future (cf. Lemma 2.23). This is a hyperhermitian matrix, because 0z~ and Jgs commute.
Using the vector fields d, corresponding in the natural way to the operator 0, we can locally regard
every g-real (2,0)-form © on M as a hyperhermitian matrix (Qz) € Hyp(n). Indeed, Q corresponds
bijectively to a hyperhermitian form g, which we can extend H-sesquilinearly, i.e.

will become clear

g\ X,Y) = \g(X,Y), g(X,\Y) =g(X,Y)A, for every \e H, X, Y € TM .

Then, ¢ induces the hyperhermitian matrix grs := g(9qr, Ogs ).
Observe that on a hypercomplex manifold (M, I, J, K) for any real-valued v € C*°(M,R) the
(2,0)-form 90 u is g-real:

JOOu = JoJ 1ou=—J"10J0u = —9;0u = dd;u.
The hyperhermitian matrix associated to d0;u whenever M is locally flat, is the quaternionic Hessian:

Lemma 2.23. Let (M,I,J,K) be a locally flat hypercomplex manifold, u € C°°(M,R). Then the
hyperhermitian matriz associated to 00 u is Hessgu. In particular 00 u is g-(semi)positive if and only
if Hessyu is (semi)positive definite.
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For a proof see [17].

Without the assumption of local flatness there is no possibility to construct the quaternionic Hessian
in the sense above, however the hyperhermitian form associated to 0d;u can still be viewed as an
Hessian:

Lemma 2.24. Let (M, I,J, K) be a hypercomplex manifold, u € C°(M,R) and h the hyperhermitian
form associated to 00 u (via Theorem 2.22). Then

1
h:i(1+I+J+K)V2u,

where V2u is the Hessian of u with respect to the Obata connection.

Proof. Since both sides of the identity are hyperhermitian forms, it is enough to show it along the
diagonal, i.e. h(X,X) = 3(1+1+J+ K)V2u(X,X) for each X € I'(T'M). Clearly

4h(X, X) =400 u(X, JX) = (d+idf)(d5+idf)u(X, JX) = (dd5 + d%d] + iddf +id7d5) u(X, JX).
We now treat the first term separately

ddSu(X,JX) = dJ tdu(X,JX) = —dJdu(X, JX)
= —X(Jdu(JX)) + JX (Jdu(X)) + Jdu([X, JX])
= Vx(Vxu) + Vx(Vyxu) + Vix sxju
=Vx(Vxu)+ Vix(Vixu) + Viviixu — Vv, xu
= V2u(X, X) + V?u(JX, JX)
where we used that V is torsion-free and VJ = 0. With a similar computation we arrive at the
identities
dSedsu(X, JX) = V2u(IX, I1X) + Viu(KX,KX),
ddS;u(X, JX) = Vu(X,IX) + V2u(JX,KX),
d$d5u(X, JX) = —V2u(X,IX) - V2u(J X, KX)

which imply the result. O

It will be convenient to have the explicit pointwise expression of 09 u in holomorphic coordinates

(z',...,2%") around some given point. We may assume that Jdz?*~! = —dz?* for k = 1,...,n, then
B 2n 2n 2n
Baju :8J_18u = 8J_1 Zu;d? = (Q)Z(—I)TUWCZZT = Z (—1)T'usmdzs ANdz"
r=1 r=1 r,s=1
n
= Z (Ugy_y 377 + Us,35)d2>" " Ad2™ + Z(uzrq% —Upy_y37)d2® T A dZTT
r,s=1 s<r

+ Z(U’Qsm — Uy, 23—1)dz2s A dZZr

s<r

in particular, at a point where the complex Hessian (us7) is diagonal we have

00 u = Z(uzrflm + Uy, 52 )d2? T A d2?T (2.14)

r=1

We can also link the n'" wedge power of 00;u with the Moore determinant of the quaternionic
Hessian:
(00 u)™ = det(Hessgu) Q" .
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For future reference we establish a more general result involving the elementary symmetric functions
or. Recall that for each r =1,...,n

OV YD VARPED Vi for all A = (A1,...,\,) € R,

1<ii << <n

Lemma 2.25. Let (M,I,J, K, g,Q) be a locally flat hyperhermitian manifold. Let A = (A1,...,\,) be
the n-tuple of eigenvalues of Hessgu with respect to g, where u: M — R. Then

n\ (00 u)k A QPF
()@ o,
Proof. We work in holomorphic coordinates (z!,...,22") at a point where (the hermitian matrix

associated to) g is half of the identity and the complex Hessian of u is diagonal. Let ¢" = 22"~1 + j22"
be quaternionic coordinates. If the complex Hessian is diagonal, then so is the quaternionic Hessian,
because in general for a real-valued u it takes the form

1 _ . .
Hessgu = E&;r@qsu = (Oz2r-1 + JOz2r)(0y20-1 — JOz2 )U = Ugy—g 951 + Ug, 55 + J(Ugrog_1 — Usy_133) -

This implies, by using (2.14), that Q and 99 u at the given point take the form

0= Z dz2"V A d2? 98 u = Z Ndz2 NN d2?

i=1 i=1
With these assumptions we compute

(00 u)* NQ"F = > Xiy -+ Niyd2® TN NPT N N dZT T AP

{81,050k 5015005 dn—k }={1,...,n}
n

==K D A Apde A Ad”

i1yennyip=1
i1,...,0% distinct
(n —k)k! " 1 n
=T 2 et = o0
’ 1<ii < <ip<n k
which is the desired formula. O

Quaternionic Laplacian.

A straightforward verification shows that the diagonal elements of the quaternionic Hessian of a
function u: H" — R are 0gr0gru = Z;:o 8§£u7 in particular the trace of the quaternionic Hessian is,
up to a constant, the usual Laplacian:

n n 3
1 1 1
tr(HeSSHU) = Z E aqraqsu = Z E E ai;u = ZAU .
r=1

r=1p=0

As observed in the first chapter the trace of a hyperhermitian matrix coincides with the sum of the
eigenvalues. So, the Laplacian represents the sum of the eigenvalues of the quaternionic Hessian.

If the inner product g is not the standard one, the trace of Hessyu with respect to g need not be
real, and in order to retain the interpretation of the Laplacian as the sum of the eigenvalues we need
to take the real part. Let us explain this point in more detail. If G, B € Hyp(n) are hyperhermitian
matrices then A = G~!B is hyperhermitian with respect to G, i.e. A = G"1A*G. In this case the
eigenvalues of A are still well-defined and real, but the trace of A is in general no longer real, however,
it is straightforward to verify that Retr(A4) = Retrg(B) is still the sum of the eigenvalues of A.
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We thus may define the quaternionic Laplacian Ay on H"™ with respect to the inner product g on
H™ to be the operator acting on smooth functions u: H” — R as

Agu = Retr,(Hessyu) = Re tr(G~'Hessgu),

where G is the hyperhermitian matrix associated to g.

All of the above has of course a local definition on locally flat hyperhermitian manifolds, once we
have chosen a coordinate neighborhood corresponding to quaternionic local coordinates. However,
there is also an intrinsic description, thanks to Lemma 2.25, which allows to generalize the concept on
hyperhermitian manifolds that are not locally flat.

Definition 2.26. On a hyperhermitian manifold (M, I, J, K, g, ) the quaternionic Laplacian with
respect to g is the second order linear operator

00yu N Qn-1
n———_—.

Agu = an

From Lemma 2.24 and Lemma 2.25 we can also express the quaternionic Laplacian as the Laplacian
of the Obata connection:

Corollary 2.27. On a hyperhermitian manifold (M, 1,J, K, g,<)
Agu = try(V2u),

where try(V2u) = iil V2u(e, ex), where ey is an adapted orthonormal basis with respect to g, i.e.
eqr_o = leqpr_3, €41 = Jesy_y, €4r = Keyr_3 for r = 1,...,n. In particular, the quaternionic
Laplacian is a uniformly elliptic operator.

Proof. The expression for A, is clear. To see that it is an elliptic operator we compute its symbol
oA, " M — R:
on,(§) = g7&& = [€]2, for all £ € T*M ,

therefore A, is uniformly elliptic with ellipticity constant 1. O

Unfortunately, in general, the quaternionic Laplacian is not self-adjoint (with respect to the L?
product), and its integral does not vanish. However, under the additional assumption that the canonical
bundle K of (M, I) allows a g-positive holomorphic trivialization the quaternionic Laplacian indeed
satisfies these properties. We will discuss in detail the existence of a g-positive holomorphic section of
K in subsection 2.2.4.

Lemma 2.28. Let (M,I,J,K,g,) be a compact hyperhermitian manifold such that Ky admits a
g-positive holomorphic global section ©. Then, for any u,v € C*°(M,R)

/ AguQ"ANO =0
M

and

Agqu”/\(:): uAng"/\C:).
M M

Proof. First, let us observe that Q" A © is a positive real volume because J acts trivially on top forms
and ) and O are g-real:

QPAO=Q"ANO=JA"ANJO=JQ"AO)=Q"AO.

Now, using the definition of A,4, integration by parts and Stokes’ Theorem we have

/Aqu”/\(:):/ 88JuAQ"*1/\(:):/ a(aJuAQ"*1A6)+/ Dyu NI AO) =0;
M M M M
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where, J(Q" P AO) = (n —1)IQA Q"2 A0 + Q"1 A 9O = 0 because of the HKT condition on 2
and the holomorphicity of ©.

Similarly, one can observe (again using that J acts trivially on top forms) that J; essentially
behaves as 0 and satisfies Stokes’ Theorem, hence

/Agqu"/\é:/ vac’?Ju/\Q”_l/\(:):—/ (%/\aju/\Q”_l/\(:):—/ wd O AQEAO
M M M M
:/ uaaﬂ)/\Q”_l/\(:):/ uAng”/\C:)
M M

and the lemma is proved. O

2.2.2 HKT potentials.

Definition of HKT potential.

The notion of a potential for HKT forms was proposed by Grantcharov and Poon [148] in analogy to
the usual Kéhler potential. If (M, I, g) is a Kéhler manifold with Kéhler form w = g(I-,-) a (possibly
local) potential function for w is a function w such that

w = i00u = %ddcu.

If (M,I,J,K,g) is hyperkdhler then we have three Kédhler forms and a function u is a hyperkéhler
potential if it is a potential for each of them, i.e.

1 C 1 C 1 C
wr = éddlu, wy = ideu, WK = gddKu.

Definition 2.29. Let (M, I, J, K,Q) be a HKT manifold. A (possibly local) potential for the HKT
form (or the HKT metric) is a smooth real-valued function « such that

Q:@o%u.

The definition is equivalent to require g = i(l + 1+ J+ K)V?u by Lemma 2.24 and this holds if
and only if any of the following expressions holds:

1 1 1
wr =7 (dd§ + d5d§) u, wr =g (dd§ + d%df) u, WK = (dd% + d5d5) u. (2.15)

Seeing that all expressions in (2.15) are equivalent is just a matter of calculations by expanding the
terms, the equivalence with Definition 2.29 is immediate as

1 1
00, u = 7 (d +id)(dy + idic)u = 7 (dd + dicd; + iddic + idjd5) u.

The identities (2.15) imply (after a short computation) that a hyperkéhler potential is in particular
an HKT potential.

Example 2.30. On the flat space H" the standard hyperhermitian metric g admits as HKT potential
the function

a1 1
uq:(qla7Q)'_>§||q||2:§Z|qj|27
j=1

indeed, this is actually an hyperkihler potential. Take holomorphic coordinates (z%,.. ., 2%") such that
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¢ = 2% + 22+ then u(q) = %Zjll |27|% and by (2.14) we conclude

2n n
_1 isi | _ 2j—1 2j _
38Ju—§88.] Elzjzj —Eldzj ANdz? =Q.
j= j=

Existence of local potentials.

Proposition 2.31. FEvery hypercomplex manifold (M, 1,J, K) locally admits a HKT metric.

Proof. Let u be a local Kéhler potential for (M, I), then g = %ddfu(-, I.) is a I-Hermitian metric with
respect to which (2.15) holds and thus Q = wy + iwg = 99 u locally. O

On the other hand global potentials do not always exist, for instance they never occur on compact
manifolds, as follows from a standard argument involving the maximum principle. Indeed, if u were
a global HKT potential of a HKT metric g on a compact hypercomplex manifold (M, I, J, K), then
setting = 90 u for the corresponding HKT form we would have

00 u N Qn-t

n>0.

Since the quaternionic Laplacian is a second order linear elliptic operator without free term, by the
maximum principle v must be constant, which is a contradiction.

In order to give an idea of the proof that on HKT manifolds local potentials always exist, we need
to introduce the Salamon complex. Let (M, I, J, K) be an almost hypercomplex manifold and let S be
the sphere of almost complex structures on M. While investigating the structure of the more general
class of quaternionic manifolds, Salamon [252] introduces the bundles

ANM) == ST ARTM, BE(M) = () (A’z’l’lT*M@m@Ai’k’lT*M) .
Les? Les?

Observe that for each L € S? also —L € S? and AE’%T*M = AOL’kT*M. Clearly
AM(M) = A¥(M) @ B¥ (M),

where we are denoting in the same way the bundles A*(M) and B*(M) and the relative spaces of
sections. Let m: AF(M) — A¥(M) be the orthogonal projection and consider the composition

D:=nod: A¥(M) — A*(M). (2.16)

Theorem 2.32. The almost hypercomplex structure is hypercomplex if and only if

0 A= P A 0 (2.17)

is a complex, i.e. D* = 0. In this case we call (2.17) the quaternionic Dolbeault complex or the
Salamon complex and (2.16) the Salamon differential.

We remark the analogy with the corresponding result for an almost complex structure and the
corresponding Dolbeault operator 0.

Assume from now on that (I, J, K) is hypercomplex. For simplicity we shall work with the complex
structure I, but the following would work taking any L € S2. Setting AD?(M) = APT4(M) N AP (M)
we deduce the Hodge decomposition

AF(M) = @ API(M). (2.18)
p+q=k
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Observe that A’I”O (M) = A?’O(M ). More generally, Verbitsky proved in [304] using a slightly different
formalism that A»?(M) is isomorphic to APT%(M). Actually, he proves more: let us split the Salamon
differential D = D0 + D%!1 according to the Hodge decomposition (2.18), i.e.

pLo. A’I’V‘I(M) — AIIH_LQ(M), DOl AI;’q(M) N Ai;-,q—o—l(M)’

o0

then the Salamon complex, after Hodge decomposition, becomes a bicomplex (A}*(M), D0, DO1)
and this is isomorphic to the complex (A;’O(M ),0,07). In view of the result of Verbitsky Theorem
2.32 can be seen as a consequence of Proposition 2.18.

After some partial results [226, 247] Banos and Swann were able to prove the following local
00;-lemma thus establishing existence of local HKT potentials:

Theorem 2.33 (Banos-Swann [27]). Let (M,I,J,K) be a hypercomplex manifold. A g-real form
Q€ A20(M) can be written locally as
0= 88Ju

for some smooth real-valued local function w, if and only if it is HKT, i.e. 0 = 0.

Sketch of proof. The only if part is obvious. By [301, Theorem 5.7] (see also [27]) Q is HKT if and only
if Dwy = 0, where D is the Salamon differential. The converse is thus a consequence of the following
two facts:

e Any D-closed form is locally D-exact.

e A HKT form admits a local potential if and only if w; is locally D-exact.
The first fact is due to Mamone Capria and Salamon [221] and uses twistor theory (see also [27]). The

second is proved as follows. If Q = 09u, then wy = %(dn — Jdn), where n = %d?u Since dn = %dd?u
is a (1, 1)-form with respect to I

D= w(dn) = (@) + (dn)°? + 5 ((dn) — T(dm)™") = 3 (dn — Jn) = or.

Conversely, if w; = Dn for some 7, we must have w; = 2 (dn — Jdn), because wy is of type (1, 1),
in particular also dn € Ab(M). From the local ddS-lemma, there exists a local function u such that
dn = %dd?u, implying the claim. O

2.2.3 The Dolbeault differential graded algebra of HKT manifolds.

We already observed that the triple (A*9(M),d,0;) forms a cochain complex for every fixed g. This
slightly differs from the complex case, as here we obtain a single complex, while in the complex setting
0 and 9 give rise to a double complex. In this subsection we shall study such cochain complex in detail
when ¢ = 0.

Kodaira relations.

There is a deep analogy between (A*°(M),d) and the de Rham differential graded algebra of a Kihler
manifold. The role of the de Rham differential is played by the Dolbeault differential on A*°(M) and
the Kéhler form is replaced by the (2,0)-form €. The existence of the non-degenerate d-closed form
naturally leads to consider the Lefschetz operator L = Lq = % A —. Recall the definition of the Hodge
star operator *: AP4(M) — A2"~42n=P (M) by the relation:

aAxf = g(a, B)Volg, for every o, 8 € API(M),
where g here is the Hermitian product induced by the Riemannian metric on AP¢(M) and

Q" A Qn
(n!)?
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CHAPTER 2. Hypercomplex and HK'T manifolds

is the standard Riemannian volume form. Then we actually have a Lefschetz triple (L, A, H), where
A = Aq = x"1Lx = 71 Lgx is the adjoint to L and H = [L, A].

Remark 2.34. The normalization of the Lefschetz operator as the wedge product with /2 instead of
Q) is needed to have an actual Lefschetz triple.

The Lefschetz triple generates an sl(2,C) action on A*%(M) and the following relations hold:
L0 =[Lo] =0, [Ho=0, [Ho]=0;.

Verbitsky uses these properties to shows that the Lie superalgebra generated by {L, A, H, 9, d;} is iso-
morphic to the de Rham superalgebra on a Kéhler manifold (M, I,w), generated by { Ly, Ay, H,,,d, d5}.
Let us recall here that a Lie superalgebra is a pair (A, [-,-]) such that

o Ais a Zy-graded vector space: A = A%® A! an element a € A is called pure if a € A° or A € A,
when this holds we denote deg(a) =i if a € A%;

e [,-]: Ax A — Ais a bilinear operator which is graded anti-commutative, i.e. for pure elements
a,be A
[a,b] = ab — (—1)de8(@) deg(®lp,

and satisfies the graded Jacobi identity, i.e. for pure elements a,b,c € A
[a’a [ba C]] = [[CL, b]’ C] + (_l)dcg(a) deg(®) [ba [Cl, C]] :
The operator [-, -] is called supercommutator.

e The supercommutator is compatible with the grading, in the sense that if a,b € A are pure, then
so is [a, b] and deg([a,b]) = deg(a) deg(b) mod Zs.

Verbitsky also considered the adjoints

O = — %0, 5 = — x 0%

and obtains
[3*,L] =3J—9J/\—,

where 6; = J being # the uniquely defined (1,0)-form satisfying the relation
N =0nQ".
By duality and twisting with J = J o~ this yields:
Proposition 2.35. Let (M,I,J, K,Q) be a HKT manifold. Then, the following identities hold
Lo =—5,, MO =85,  [L=6, [Ad]=—0",

where § =0+ 0N —, 65 =J 6T =0;—0; A—, 6 = — x O, 6;:—*51*.

The (1,0)-form 6.

Before we continue, let us describe more in detail the form 6. Let (M, I, J, K, g,) be a hyperhermitian
manifold and Ky, = K(M,I) = A?"9(M) the canonical bundle of (M, I). Observe that K, is always
topologically trivial because the form €) is non-degenerate and 2™ provides a nowhere vanishing global
section.
Call « the connection 1-form of the Obata connection V with respect to the trivialization determined
by Q™, in other words
V" =ae Q"

such form is real, as for any X € I'(TM)
a(X)JQ" = JVxQ" = VxJQ" = VxQ" = a(X)Q" = a(X)JQ". (2.19)
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2.2. Potentials, cohomology and canonical bundles.

Observe that the form # we encountered earlier is precisely the (1,0)-component of «, indeed, since
V is torsion-free the exterior differential of 2" coincides with the alternation of VQ", i.e. let
Alt: A*(M)® AY(M) — A*"T1(M) denote the exterior product, then dQ" = Alt(VQ") = a A Q™ and
thus

OAQ" = 00" =dQ" = Alt(VQ") =a AQ” = a0 A Q"

which means § = a0,
Such a form is 0-closed and satisfies the identity

00; = 0,0, (2.20)
where 0 := J0 in particular 970 is q-real. Let us start with the closure:
0=0°0"=09(0AQ") =00 ANQ" —AAHR",
the identity (2.20) is equally easy:
0= (90; +8,0)Q" = =00, A"+ 0,0 AQ™) = =00, NQ™ + 0, 26T + 0,0 A" + 0 p o7 Q"
thus we deduce 9,60 — 90 ; = 0, as desired. Finally (2.20) implies g-realness:

JO,0 =0J0 =00; =09,0.

The normalized HKT superalgebra.

The superalgebras (L, A, H,0,0y,8%,0%) and (L, A, H,0%,0%,6,0;) are isomorphic, however they are
distinct, hence they are not closed by the operation of duality via the Hodge star. In order to fix this,
Verbitsky considers the “normalized” superalgebra:

ge = <L’A7H7 80,83, (89)*, (83)*> ’

where
O+96 1 0y +4d; 1
9—7: —_ — 6: = _— —_
0" = 5 8+29/\ s 8J 5 Jy 29]/\ R
(89)*:—*5‘9*:8 ;_5 , (82)*:—*52*:78J—2'_5J.

In the trivialization determined by Q" we have seen that the Obata connection on Kj,; can be
written as V=d + 0 + 6. Let K}sz be a square root of Kj; determined by the above trivialization.

Then the holomorphic structure on K ]1\/;2 is defined by the connection V;/ = d+ %9 + %é. Furthermore,
with the chosen trivialization, one can identify the Dolbeault complex

1
(A"O(M) © Ky*, Vi =0+ 29)

of forms with values in K ]1\/;2 with the complex (A*°(M),d?). In other words, the Dolbeault differential
of Kjl\f is equal to the normalized HKT differential 7.

Using the properties of € it is easily checked that
[89’89]:[83783]:[89’83]:[L780]:[L’33]:0’ [Haae]:897 [Hvag}:ao]v
hence, once again, g’ is isomorphic to the de Rham superalgebra of a Kahler manifold and we have:

Proposition 2.36 (Misha Verbitsky [301]). Let (M,1I,J, K,Q) be a compact HKT manifold and Kjl\f
the square root of the canonical bundle constructed above via the trivialization determined by Q™. Then
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1. The normalized Laplacians
Do :=[0°,(0°)] = 0°(0")" +(9°)0" . Dy :=107,(95)"] = 95(97)" + (95)° 9

coincide and their kernel is identified with the cohomology of (K}»f, Vi/%) (or, equivalently, of
(A*0(M),07)).
2. The normalized Laplacian commutes with the action of the sl(2,C)-triple (L, A, H).

3. The Hard Lefschetz isomorphism L™ *: Hi(Kjlw/z) — HQ”_l(K}V;Q) holds, as well as the Serre
duality H>~*(K,)%) = H'(K,/*)*.

Other cohomological results that strengthen the parallel between Kéahler and HKT geometry
have been proved. For instance, Grantcharov, Lejmi and Verbitsky [146] proved that a quaternionic
surface with holonomy of the Obata connection inside SL(2,H) is HKT if and only if HY0(M, I) is
even-dimensional. This is the analogue of a classical result independently proved by Buchdahl [58] and
Lamari [204]. Lejmi and Weber also explored further quaternionic cohomologies [208] (see also [207])
and some obstructions they provide to the existence of HKT structures.

2.2.4 SL(n,H)-manifolds and the balanced condition.

Computations with the Hodge star operator.

Let (M,I,J, K,g,Q) be a hyperhermitian manifold. Recall that the Hodge star operator is defined by
the relation: B
QL AQ

W , for every o, 8 € AP9(M).

a A+ = g(a,B)

It is easy to compute

4 _
= —— Q" AQ"L,
(n—1)In!

We shall also need to compute the Hodge star of an arbitrary (1,0)-form «. In order to perform
this calculation we first need to establish the following:

ABA Qn—l 1 _
% = %9(04, Jp), for every a, B € AY(M), (2.21)

We have
(n—1)In!

4(n!)?

now, we compute g (a A 3, ) in local holomorphic coordinates:

aANBAQTEAQT :g(a/\,@,*((ln_l/\Q")) Vol, = g(anB,Q)Q"AQ" (2.22)

g (N B,Q) = g7 g™ i (J7gaa +iK g ) = g7 i3 (J5 — iK?) = 2g(a, J B) (2.23)

because f is of type (1,0). So, combining (2.22) and (2.23) we obtain (2.21). It is now easy to compute
the Hodge star of a form a € AM°(M):

2n

(n!)?

a A *a = g(a, a)Voly = aNJanQ EAQY

SO 9
_ n On—1
*a——i(n_l)!n!Ja/\Q AQ .
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Balanced HKT manifold.
On a Hermitian manifold (M, I, g) the Lee form is the 1-form defined by

0l = —Id*wy,

where d* = —  dx is the formal adjoint of the exterior differential and wy = g(I-,-) is the fundamental
form of the Hermitian structure. Equivalently, the Lee form is the unique form such that dw?’_l =
ON w?fl, where n is the complex dimension of M. Such form was introduced by Lee [205] and it bears
interesting properties with respect to conformal transformations. For instance, whenever 0r., = 0, i.e.
wr is coclosed we say that the Hermitian manifold is balanced. The balanced condition dw?fl =0is
the sole of the form dw¥ = 0 with k < n that does not imply that wy is Kéhler [149]. Balanced metrics
have been studied extensively since the paper of Michelsohn [225]. Alessandrini and Bassanelli [19]
proved that unlike the Kéhler condition balancedness is invariant under modifications. For further
references see the survey [128].

On a hyperhermitian manifold (M, I, J, K, g) we naturally have three Lee forms 6 ., 60/ 0K .
In some circumstances they all coincide and whenever this happens we shall call the common form
OLee = 0L = 07 . = 0K _, the Lee form of the hyperhermitian manifold. This is for instance true under
the HKT assumption (see [186]). We thus call balanced HKT an HKT manifold with vanishing Lee
form.

We have already introduced the (1, 0)-form 6 such that

N =0nQ".
We called € such form because it happens to be strictly related to the Lee form:
Lemma 2.37. On a HKT manifold (M,1,J, K,Q) we have
Orec =0+ 0.
Proof. Since Oree = —Jd*w; = —Kd*wg then
d*Q=d'wy+id*wg = JOLee + 1K0O1ce = J(O1ce + i101ee)

on the other hand using the formulas involving the Hodge star that we proved above, and the HKT
condition (2.12) we obtain

k() _ 4 On—1\ _ 4 A" On—1
4 _ _ _
hence 6 + 6 = 0 ce. O

As a consequence we recover the following result of Verbitsky [306]:

Corollary 2.38. A HKT manifold (M, 1I,J, K,Q) is balanced if and only if Q™ is holomorphic.

SL(n, H)-manifolds and their canonical bundle.

Any hyperhermitian manifold (M, I, J, K, Q) naturally admits a trivialization of the canonical bundle
Ky provided by Q™. Hence, the canonical bundle is always topologically trivial, however, it is not, in
general holomorphically trivial. In this paragraph we present the relation between some properties of
Ky (for instance flatness and more importantly holomorphic triviality) and some conditions involving
the Obata connection such as the presence of a global parallel section.

We begin with a definition. Since we can regard SL(n,H) as the intersection of GL(n,H) and
SL(2n,C) a hyperhermitian manifold admits a SL(n, H)-structure if and only if there exists a section
of K which is parallel with respect to the Obata connection, equivalently:
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Definition 2.39. A hyperhermitian manifold (M, I, J, K,) is called a SL(n,H)-manifold if the
holonomy group of the Obata connection is contained in SL(n, H).

We now prove a general lemma:

Lemma 2.40. A connection on a trivial line bundle is flat if and only if the connection 1-form is
closed. Furthermore, the bundle admits a global parallel section if and only if the connection 1-form is
ezxact.

Proof. Since the bundle is trivial any connection can be written as V = d + w, where d is the trivial
connection and w the connection 1-form. The curvature form can be expressed as RY = dw—wAw = dw,
therefore V is flat if and only if w is closed.

Now, since the bundle is trivial any section can be seen as a function T' € C*°(M,R). Let T be
a nowhere vanishing parallel section, and assume it is positive, then 0 = VT = dT + w7 implying
w=—T7YT = —d(logT), i.e. w is exact. Conversely, if w = df is exact the section e~/ satisfies
Ve f =de=/ +dfe t = —dfe=/ +dfe=7 =0. O

Proposition 2.41. On a hyperhermitian manifold (M, I, J, K,Q) the following are equivalent:
(i
(ii

(i

The Obata connection V is Ricci-flat.

The Obata connection VEM induced on the canonical bundle Ky = K (M, ) is flat.
90 + 96 = 0.

The restricted holonomy group of V is contained in SL(n,H).

—_ — ~—

(iv
If Q is HKT the above conditions are also equivalent to:
(v) The Lee form is closed.

Sketch of proof. The equivalence of (ii) and (iii) follows from the previous lemma as the connection
1-form of VXM is § + . Recall that 0 is O-closed and thus d(8 + 6) = 90 + 9. Moreover, in the HKT
case 0 + 0 = f1.c. (Lemma 2.37) hence the equivalence with (v) follows.

The equivalence of (i) and (iv) is proved by Alekseevsky and Marchiafava [8, Theorem 5.6].

We show that (ii) is equivalent to (iv). If a matrix A € GL(n,H) acts on H" = C?" the
induced map on A?"°C?" corresponds to multiplication by Sdet(A) (cf. [305]). Therefore we have
Hol’(VEM) = Sdet Hol®(V), showing that Hol’(V) C SL(n, H) = Ker(Sdet) if and only if Hol® (V)
is trivial, i.e. VEM is flat. O

As a corollary, we recover the result of Berger [36] that all hyperkéhler manifolds are Ricci-flat,
indeed in this case, the Obata connection coincides with the Levi-Civita connection.

We now discuss the global counterpart of Proposition 2.41, i.e. when the full holonomy group
lies inside SL(n,H). Before we prove such a result we need to establish a preliminary lemma due to
Barberis, Dotti and Verbitsky [29, Theorem 3.2] (see also [306, Lemma 4.3] and [278, Proposition 5.4]):

Lemma 2.42. Any g-real holomorphic (2n,0)-form on a hypercomplex manifold is parallel with respect
to the Obata connection.

Proof. Let © be a g-real holomorphic (2n,0)-form and « the connection 1-form in the trivialization of
O, ie. VO = a® O, where V is the Obata connection. Using that V is torsion-free we get

0=00=dO =Alt(VO)=arnO=a"1r0O.

But since © is g-real we see as in (2.19) that « is real, so a®! = 0 implies o = 0, meaning that © is

parallel. O
Proposition 2.43. On a hyperhermitian manifold (M, 1,J, K,Q) the following are equivalent:

(i) There exists a g-positive holomorphic (2n,0)-form on M.

(i) 0 = Of.
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(iii) The holonomy of the Obata connection is contained in SL(n,H).
If Q is HKT the above conditions are also equivalent to:
(iv) The Lee form is exact.

Proof. The equivalence of (ii) and (iii) (and also (iv), if the case) follows from Lemma 2.40.
If (iii) holds there exists a parallel section © of K. Observe that © can be assumed to be g-real,
because if it is not we can replace it with the g-real form ¥ = © + JO which is parallel:

VU =VO+VJO=JVO=JVO=0.

Being parallel it is nowhere vanishing, hence we can assume it is g-positive. Since V is torsion-free we
have (VE)01 = 3, in particular 0 = (VX)%1¥ = 9¥. Hence (iii) implies (i).

Conversely, if @ = fQ" is a q-positive holomorphic (2n, 0)-form we have 0 = 00 = (df + f) A Q™,
i.e. 8 = —0(log f). Therefore (i) implies (ii). O

The equivalence of (iii) and (iv) above on HKT manifolds is due to Ivanov and Petkov [186].

Corollary 2.44 (Misha Verbitsky [305]). A SL(n,H)-manifold has holomorphically trivial canonical
bundle

Verbitsky raised the question if the converse is true in general and no counterexamples are known
so far. We phrase this as a conjecture:

Conjecture 2.45. Every hyperhermitian manifold with holomorphically trivial canonical bundle Ky
is SL(n,H), i.e. admits a global section of Ky which is parallel with respect to the Obata connection.

The conjecture was partially confirmed by Verbitsky [305] providing a proof for compact HKT
manifolds as a consequence of the Hodge theory he developed.

Another interesting observation arises by looking at balanced HKT manifolds. By Corollary 2.38
a balanced HKT manifold has always holomorphically trivial canonical bundle, furthermore, the
trivialization is provided by 2" which is g-positive and thus, by Proposition 2.43 the manifold is
SL(n,H). The converse is false in general, as there exist compact HKT SL(n,H)-manifolds that are
not balanced [30, Examples 6.1 and 6.2]. It is for instance true for all HKT nilmanifolds and HKT
SL(n, H)-solvmanifolds with left-invariant abelian hypercomplex structure (cf. Chapter 3). However,
all known counterexamples still admit a different HK'T metric that is balanced. One is therefore led to
conjecture that this is always the case, at least in the compact setting (cf. [306]):

Conjecture 2.46. Every compact HKT SL(n,H)-manifold admits a balanced HKT metric.

We shall address this conjecture much more in detail starting from the next Section, where it will
be reinterpreted as the quaternionic analogue of the famous Calabi conjecture.

We observe here that, at least, the SL(n,H) condition implies that the metric is conformal to a
balanced hyperhermitian metric, indeed let (M, I, J, K, g,2) be a compact HKT SL(n, H)-manifold,
then by Proposition 2.43 fre. = df and the conformally rescaled metric ¢ = e~ /"=y ig still
hyperhermitian. Furthermore, all the Lee forms vanish, to see this set w) := ¢'(L-,-) = e~ //n=Vyp
for L=1,J, K, then

d(w)*" ™ = d(e Wi ™) = (Bree — df) A (w)*" ™ = 0.

However, the conformal rescaling destroys the HKT condition, indeed ¢’ is HKT if and only if f is
constant, because Q' = w’; +iw) = e~ f/2"=VQ) is HKT if and only if df = 0, which, by compactness
of M, means that f is constant.

Let us also underline that Verbitsky [306] showed that a balanced HKT manifold (M, I, J, K, Q)
with quaternionic dimension n > 3 admits no strong HKT metric of the form 2 + 900;¢ unless
dQ? =0 and M is hyperkahler. Thus, in view of Conjecture 2.46 we expect no strong HKT metric on
SL(n, H)-manifolds. We remark that examples of strong HKT manifold are very scarce, we are aware
of no other example than the examples of Joyce and the ones that can be produced via the doubling
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construction of Barberis and Fino [30]. In particular it remains an open problem whether or not there
exist solvmanifolds with strong HKT metrics.

We conclude this chapter by reporting the observation of Barberis, Dotti and Verbitsky [29] that the
hypercomplex structures on Joyce’s examples are never SL(n,H). More generally, if (M, I,J, K) is a
hypercomplex manifold such that 7: (M, I) — B is a principal torus fibration over a base B which is a
Fano manifold (the anticanonical bundle K ];1 is ample) then Kj; can never admit holomorphic sections.
Indeed, the adjunction formula yields Kj; = n*Kp because the fiber is a torus and the canonical
bundle of the torus is trivial, and since Kgl is ample W*ng has sections for some k, therefore Ky,
cannot have any. To see that Joyce’s examples belongs to this class we refer to [307] where it is proved
that they are tori fibrations over a homogeneous rational manifold.

This discussion includes the quaternionic Hopf manifold seen as the product SU(2) x U(1). Observe
that such manifold has flat Obata connection by construction, thus in particular has restricted holonomy
in SL(n,H), but, as just remarked, not the global holonomy. The only example of Joyce’s of which
we explictly know the holonomy is SU(3). Soldatenkov [263] proved that the holonomy of the Obata
connection on SU(3) with the hypercomplex structure in Example 2.10 is GL(2, H).

Conjecture 2.47. All the examples of Joyce have full holonomy of the Obata connection GL(n,H).

2.3 The quaternionic Calabi conjecture.

Since Yau proved the Calabi conjecture in [327], other Calabi-Yau-type problems have been introduced
in various geometric contexts. Here we overview the so-called quaternionic Calabi conjecture in HKT
geometry formulated by Alesker and Verbitsky [18]. Within this analogy, the “quaternionic Calabi-Yau
metrics” are the balanced HKT metrics.

2.3.1 Statement of the conjecture.

“Hyperhermitian Ricci form”.

Let (M, 1,J,K,Q) be a hyperhermitian manifold. In local holomorphic coordinates we have
— =pf(Q)dz' A Ad2"

where pf(£2) denotes the Pfaffian of the skew-symmetric complex matrix (€2,.s) induced by  in the
given holomorphic coordinates, i.e. =73 _ Q,.dz" A dz®. We define a g-real 9-closed (1,0)-form p,
which in the given holomorphic coordinates is expressed as

p = —00;logpf(Q).

Observe that this is globally defined, i.e. it does not depend on the choice of coordinates.
More generally, If ® is a g-positive (2n,0)-form then

S =pdzt Ao A2

for a locally defined smooth positive function ¢ and we may set p(®) := —00,; log ¢. We have
n )
p(2%) = p(®) = 90, log o
where 99 log(®/Q") is a globally defined 00 -exact form. Therefore, the quaternionic Bott-Chern
cohomology class of p = p(2™) does not depend on the choice of the complex volume form.

We could also consider another perspective. Let 6 be the (1,0)-form such that 0™ =0 AQ", then
one can show that p = 9;0. Since ® is g-positive there exists a smooth positive real-valued function f
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such that ® = fQ" and thus
00 = (Of + FO)NQ" = (f'of +O) AN D = (Dlog f +0) AN ®

which shows that
p((I)) = —00y logf + 050

hence, again we see that [p(®)] = [p(Q™)] in terms of quaternionic Bott-Chern cohomology classes.
We shall denote with cgg(M ):=[p] € Hé’co (M) the quaternionic Bott-Chern cohomology class of
which 9;0 is a representative.

The conjecture.

Let (M, I, g) be a Kéhler manifold. The Ricci form (of the Levi-Civita connection) is the closed (1,1)
form p := Ric(I-,-). It turns out that %p can be taken as a representative for the first Chern class
c1(M) of M. Eugenio Calabi, conjectured [67] that the Ricci form of a compact Ké&hler manifold can
be prescribed.

Theorem 2.48 (Calabi-Yau). Let (M,I) be a compact complex manifold admitting a Kihler metric g
with associated Kdhler form w. Let p’ be a closed real (1,1)-form such that its de Rham cohomology
class is [p'] = 2me1 (M) € H*(M,R), where c1(M) is the first Chern class. Then there exist a unique
Kahler metric g' in (M, I) with associated Kahler form w' such that [w'] = [w] and p’ is the Ricci form

of ¢'.

Calabi himself already proved that the conjecture has at most one solution, but a full proof of
existence had to wait more than 20 years. After some work by Calabi, Aubin, Borguignon, Nirenberg
and many others, Yau completed the proof of such a groundbreaking conjecture [327].

A full account of the proof, very close to the original one can be found in [194], however, the
treatment has become somewhat outdated in certain parts. Over the years the argument of Yau
underwent various improvements from many people and the solution has been significantly simplified.
We refer, among others, to the lecture notes [44] or the book [158].

The Calabi-Yau Theorem has important consequences, for instance, when (M, I, g) is a compact
Ké&hler manifold with vanishing first chern class. Then we may choose p’ = 0 and the theorem
guarantees the existence of a Ricci-flat Kéahler metric on M. This allows to find examples of compact
Riemannian manifolds with (Riemannian) holonomy group SU(n) and Sp(n). The first are the so-called
Calabi-Yau manifolds, the second are hyperkdhler manifolds.

One can repeat the steps leading to the Calabi conjecture in the realm of HKT geometry. First,
we take into account the space of HKT potentials. The existence of local potentials for HKT forms,
established by Banos and Swann [27] opens the possibility to investigate (pluri)potential theory on
HKT manifolds. Let (M, 1, J, K,Q) be a HKT manifold. In analogy with the complex case, the space
of quaternionic Q-plurisubharmonic functions has been introduced

Ho = {p € C*(M,R) | Q := Q+ 0059 > 0}, (2.24)

where the inequality “Q, > 07 stands for the g-positivity of {2, so that it induces a new hyperhermitian
metric on (M, I, J, K) which we denote g,,.

It is natural to wonder if, within the space (2.24) one can find a ¢ such that the HKT form €,
is in some sense preferable. We have seen that the most desirable HKT metrics one could have are
balanced ones. Alesker and Verbitsky [18, 306] proposed to mimic the approach used to prove the
Calabi-Yau theorem in order to show that a compact HKT SL(n, H)-manifold (M, I, J, K, Q) always
admits a balanced HKT form in the same Bott-Chern class of 2.

In view of the formulation above of the Calabi-Yau Theorem, we phrase the quaternionic Calabi
conjecture in a more general setting:

Conjecture 2.49. Let (M, I,J, K,Q) be a compact HKT manifold. If p' € A*>°(M) is g-real and such
that [p'] = c§S(M). Then there exists a unique HKT metric g’ with HKT-Ricci form p' and HKT

form Q' where [QV'] = [Q] € Hég(M)
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CHAPTER 2. Hypercomplex and HK'T manifolds

We know that if M is SL(n,H) the canonical bundle is holomorphically trivial, hence, necessarily
p = 0 and thus 0123’8 (M) = 0. In particular, if the conjecture is true, on a compact HKT SL(n, H)
manifold (M, I, J, K, Q) there always exists a balanced HKT metric ¢’ compatible with the hypercomplex
structure (I, J, K). Under this light, balanced HKT metrics are the perfect quaternionic parallel of
Calabi-Yau’s metrics.

We now rephrase the conjecture in terms of a fully non-linear PDE. First of all, the conditions
[p'] = 85 (M) = [p] and ['] = [©2] can be expressed by writing p' = p + 99, F and Q' = Q + 004 for
some F, ¢ € C*(M,R) unique up to an additive constant. If we impose the condition fM PQ"AQT =0
(or sup,; ¢ = 0) then ¢ is uniquely determined. Since (/)" and Q™ are both g-positive there must be
a positive function f € C°°(M,R) such that ()" = fQ", but then

nn
00y log f = 80 log (%2 = 00 log pf(Q) — 90 logpf (V) = 8,0 — 0,0 = p' — p=—00,F

it follows that log f — F = logb, i.e. f = be!” where b > 0 is a constant.

A priori one would need to require €, to be a g-positive form. Let us quickly observe that the
condition 2 + 995 > 0 is actually redundant for any solution ¢ of the conjecture. Indeed, the form
Qg = bef" Q" is nowhere vanishing and g-positive, furthermore, at a minimum point of ¢ we have
0059 > 0 and by continuity 2, must be g-positive everywhere on M.

Summing up all the above, we can restate the conjecture as follows:

Conjecture 2.50. Let (M,1,J,K,Q) be a compact HKT manifold. For any F € C*>(M,R) there
exists a unique pair (,b) € C°(M,R) x Ry such that

(Q+0050)" =bel"Q", supp = 0. (2.25)
M

Observe that when M is SL(n,H) and © is a g-positive holomorphic (2n,0)-form, the constant b is
uniquely determined by Stokes’ Theorem as

b/ eFQ"Aé:/ (Q+88J¢)"Aé:/ Q"AO,
M M M
therefore, in this case, it can be “absorbed” inside the datum F' and (2.25) can be written as

(Q+88J<p)":eFQ", supp =0,
M
where F' € C*°(M,R) satisfies the necessary condition

/ (e — 1" A0 =0.
M
These are actually the original assumptions of Alesker and Verbitsky, when they formulated the

quaternionic Calabi conjecture.

The formulation of the conjecture in terms of an equation is suitable for further generalization.
This is also motivated by the success of the complex Monge-Ampeére equation on compact (almost)
Hermitian manifolds [288, 93, 329, 92].

Conjecture 2.51. Let (M,I,J, K,Q) be a compact hyperhermitian manifold. For any F € C*(M,R)
there exists a unique pair (¢,b) € C°(M,R) x Ry such that

(Q+00;0)" =bel' Q™ supp = 0. (2.26)
M
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2.3. The quaternionic Calabi conjecture.

The quaternionic Monge-Ampeére equation.

Here, we write down the local expression for the equation
(Q+0050)" = bel Q™ (2.27)

this will motivate the terminology of quaternionic Monge-Ampére equation. We thus assume that
(M, I,J,K,Q) is a locally flat HKT manifold. Let u be a HKT potential for 2 and denote with
G = Hessygu the hyperhermitian matrix associated to 90;u = Q. From Lemma 2.25 we know that

(Q+00;0)" (005(u+ )™ _ det(G + Hesspyp)

Qn (00 u)™ det G
therefore we can write (2.27) as
det(G + Hessgy) = be’ det(G),

which is an equation of Monge-Ampere type.

The study of the quaternionic Monge-Ampeére equation in the flat case, precedes the conjecture
of Alesker and Verbitsky. Indeed, the Dirichlet problem associated to (2.27) was already considered
by Alesker in [9, 10] and solved on strictly pseudoconvex domains in quaternionic sense, when the
boundary data are continuous and the right-hand side is continuous up to the boundary. Some years
later Zhu [335], Kolodziej, Sroka [201, 270] and Wan [314] obtained weak solutions and some regularity
results.

For further references the interested reader is referred to [271].

2.3.2 Solving the quaternionic Monge-Ampeére equation.

Ellipticity and uniqueness.

First, we observe that the quaternionic Monge-Ampeére equation, although being fully non-linear, it is
elliptic, indeed the linearization of the operator

Q n
P: C=(M,R) —» C=(M,R), P(¢) = log % —log(b) - F.
is the quaternionic Laplacian A, := Ay :
9 Y N Qr-l
P,(y) = ”Tw = A1,
©

which we have seen to be elliptic.

Next, it is straightforward to show that solutions to the quaternionic Monge-Ampere equation
(2.26) on a compact hyperhermitian manifold are in general unique. This can, for instance, be observed
as follows: let (¢1,b1), (w2, b2) be two solutions to (2.26) with by > bs. Setting Q; = Q + 9dyp; we
have that

n—1
00;(p1 —p2) A Y QT AQETF = QF - QF = (b — by)e"Q" > 0.
k=0
On the left hand-side we have a second order linear elliptic operator without free term applied to
(1 — 2 and from the maximum principle and the fact that sup,,; ¢1 = sup,; w2 = 0 it follows @1 = 2.
Hence we have also by = by and the uniqueness follows.

Method of continuity.

The most natural approach to attack the problem is the method of continuity, much in the same spirit
of Yau’s proof of the Calabi conjecture [327]. The idea of such a technique is to interpolate between
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the equation

Q+ 00;0)"
( + J@) S eF
Qn
we wish to solve and another one which is easier to solve, for instance
(Q + 8&;@)” —1
Qn -

which has the obvious solution ¢ = 0. We then consider a one-parameter family of equations

(Q+ 00 )™

o =bye'l (%)

with continuous dependence on ¢ € [0, 1].
At this point, the solvability comes down to prove a connectedness argument: consider the set

S ={t€]0,1] | (%) has a solution (¢,b;) € C*(M,R) x R}

then we only need to prove that 1 € S, which will immediately follow if we show that S is connected.
As we observed 0 € S, therefore S is non-empty.

Now, two standard arguments are usually employed to show that S is both open and closed.
Openness is the easy part: take ¢ € S and let (¢, by) be the corresponding solution of ()., then, in
order to show that a small neighborhood of ¢’ is all contained in S one usually considers the linearization
of the equation at the solution (¢ ,by) between some Banach spaces and tries to apply the inverse
function theorem.

The proof of closedness is in general the hard part which requires a priori estimates. The idea is to
take an arbitrary sequence (t;) C S and show that its limit ¢’ = lim;_,, ¢; still lies in S. If we denote
(¢, bs,) the solutions of ()¢, we may wish to extract from these a subsequence which is convergent to
a solution of (x)y. This is done by proving that some Banach norms of all solutions ¢; are bounded by
a constant under control, which allows to show that they lie in a compact subset of the Banach space,
thus implying the existence of a convergent subsequence.

The a priori estimates are the core of the method of continuity and they represent the most involved
part of the proof. In general the norms adopted to start the machinery of the method of continuity
are the C*“ norms for some a. To achieve these estimates one starts from the C° bound, continues
with the gradient bound, then the Laplacian bound, equivalent to the C? bound and with standard
Evans-Krylov theory one achieves the C?®-estimate, which is improved to a C*+2?®-estimate for all k
via bootstrapping and Schauder estimates (see Subsection 2.3.3 below for further details).

Current progress towards the proof.
So far there are only partial results about the solvability of the quaternionic Calabi conjecture.

In [18], where the problem is proposed, the authors use a Moser iteration technique such as the one
originally used by Yau to obtain an a priori C° estimate for solutions to the quaternionic Monge-Ampeére
equation. This approach requires to have a holomorphic section of the canonical bundle. Later, Alesker
and Shelukhin [15] were able to prove the same estimate but under the different assumption that the
hypercomplex structure is locally flat. They generalized their work in [16] showing that the C°-estimate
holds on any compact HKT manifold. Recently, Sroka [269] provided a much shorter proof, using
a Cherrier-type inequality, following the work of Tosatti and Weinkove [287, 288] on the complex
Monge-Ampére equation, which in turn is based on a previous work of Cherrier [84]. Therefore we
have:

Theorem 2.52 (Alesker-Shelukhin-Sroka). Let (M, I, J, K,Q) be a compact HKT manifold. There
exists a constant C > 0 such that for any solution ¢ € C°(M,R) of (2.25)

lellco < C

where C depends only on the HKT structure and sup,, F.
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The higher order estimates seem to be more tricky. The first full result of solvability is due to
Alesker [14], who assumed not only that the hypercomplex structure is locally flat but that there exists
a compatible hyperkdhler metric. These two assumptions entail flatness of the hyperkédhler metric, in
the sense that the full Riemann curvature tensor vanishes. By Bieberbach’s theorem on compact, flat
Riemannian manifolds this reduces to proving the conjecture on finite covers of a torus. These severe
assumptions are fully exploited in the proof of the Laplacian estimate, where normal coordinates are
used.

Theorem 2.53 (Alesker). Let (M,I,J,K,Q) be a compact flat hyperkdhler manifold. For any
F € C*(M,R) there exists a unique pair (p,b) € C*°(M,R) x Ry such that

(Q+00;0)" = bel' Q" supp = 0.
M

However, Alesker, adapting an argument of Blocki [42] (see also [44]) was able to obtain the
C?“_estimate dropping the hyperkihler assumption, we state this as a seperate result for future
reference:

Theorem 2.54 (Alesker). Let (M,1,J,K,g) be a 4n-dimensional compact HKT manifold whose
underlying hypercomplex structure is locally flat. Suppose o € C?(M,R) is a solution to the quaternionic
Monge-Ampére equation (2.25). Then

lelloze <C

for some a € (0,1) and a positive constant C, both depending only on the HKT structure, |F| cz,
c, and ||Aypl|co, where A, is the quaternionic Laplacian.
Pl Co g% g9

In a recent paper, Dinew and Sroka [106] were able to improve the result of Alesker by giving a
complete proof of the conjecture on compact hyperkdhler manifolds, so far, this is the most general
result available regarding the solvability of the quaternionic Monge-Ampeére equation.

Theorem 2.55 (Dinew-Sroka). Let (M,I,J, K,Q) be a compact hyperkdhler manifold. For any
F € C*(M,R) there exists a unique pair (p,b) € C*°(M,R) x Ry such that

(Q+0050)" = bel Q™ supp = 0.
M

2.3.3 An analytic toolbox.

In this subsection we collect some useful results used in the proofs of the a priori estimates.

Alexandrov-Bakelman-Pucci estimate.

Historically, the C° bound for the complex Monge-Ampére equation was the last one to be proved.
This was done by Yau via Moser iteration. In the following years different techniques and various
alternative proofs have been developed.

Here we present an argument based on the Alexandrov-Bakelman-Pucci estimate. The idea goes
back to Cheng and Yau and a simpler approach has been found by Blocki [43]. The argument we
present below is the reinterpretation of Székelyhidi [280] of the Alexandrov-Bakelman-Pucci estimate,
which, as of today is the simplest and most immediate one.

Let M be a compact oriented m-dimensional manifold. Suppose ¢ € C*°(M,R) is a solution of
some partial differential equation satisfying sup,, ¢ = 0 for simplicity. Let 2o € M be a point at which
u attains its minimum and take a coordinate chart centered at xy which, without loss of generality, we
identify with a ball By (0) of radius 1 with coordinates (z?,...,2™). We now fix ¢ > 0 and define

p=p+ey (¢').
=1

The auxiliary function v satisfies the assumptions of the following Alexandrov-Bakelman-Pucci-type
estimate (see [280, Proposition 10]):
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Proposition 2.56. Let B1(0) C R™ denote the unit ball centered at the origin. Assume that
W € C?(R™) satisfies 1(0) +¢ < mingp, oy Y (x). Then there exists a constant c,, depending only on
m such that

g™ < cm/ det(D?w),
e

where D% is the (real) Hessian of ¢ and

€
r.= {x € B1(0) | v(y) = ¥(z) + Vip(x) - (y — x), Yy € B1(0), |Vi(x)| < 5} .
At this point one needs to obtain an estimate for det(D?w)) over T'., which has to be done using the
equation satisfied by ¢ together with the definition of I'c. If one manages to prove such a bound, then

e™ <O,

where |T'.| = fFa dx. Since on T'; we have ¢ < 9(0) 4+ /2 then ¢ <infy ¢ +¢/2 = ||p]lco + &/2 and
thus for any p > 0

€
lellze > (llgllco + ) Il = C (llgllco +1)
which shows that the C?-estimate follows from an LP-estimate.

A LP-estimate is generally easy to find with the aid of the following (see [143, Theorem 8.18]):

Theorem 2.57 (Weak Harnack Inequality). Let R > 0 and fiz an integer m > 2. Assume u € C%(R™)
is mon-negative on Br(0) and such that Au(z) < f(x) for some f € CO°(R™) and all x € Bg(0).
Consider 1 <p <m/(m—2), and ¢ > m. Then there exists a positive constant C = C(m, R, p, q) such
that

—m . 2—2m
il oy < € 0l) + s )

for any 0 <r < R/4.

Evans-Krylov theory.

One of the important simplifications of the proof of the Calabi conjecture came from an estimate
obtained independently by Evans [118] and Krylov [202]. The original proof required to obtain a third
order estimate, while this can now be skipped thanks to the Evans-Krylov theory.

They proved that if ¢ is a solution to a uniformly elliptic, fully non-linear, convex (or concave),
equation

P(D%*)) =0
in the ball B1(0) then ¢ € C*%(B;,2(0)) and

[¥lloze < C

where C' > 0 and a > 0 depend only on ||¢||co, | D?¥||co and the ellipticity of P.

Such a result is extremely powerful and simplifies many arguments. However, when working on
(hyper)complex manifolds one typically goes from a (quaternionic) Laplacian bound to a bound for the
(quaternionic) complex Hessian and Evans-Krylov theory cannot be directly applied.

As a workaround, two possible approaches have been pursued in the literature. Either the proof of
the Evans-Krylov Theorem is adapted to the specific setting at hand (which, for instance, has been
done by Alesker for the proof of Theorem 2.54) or an estimate for the real Hessian is obtained (as
done, e.g. by Dinew and Sroka in [106]).

We also stress that the issue with applying Evans-Krylov Theorem in this type of problems always
reduces to verifying uniform ellipticity of the operator at the function assumed to be the solution. This
is the main reason why in the literature one can find various Evans-Krylov—type results (e.g. [90, 286]).
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Schauder theory and bootstrapping.

As mentioned, when the C?*-estimate is at hand, a standard argument of bootstrapping allows to
obtain estimates of any higher order. The key result to do so is the following Schauder estimate (see
[194, Theorem 1.4.2]):

Theorem 2.58. Let M be a compact Riemannian manifold and E1, Es two vector bundles on M
of the same dimension. Let P: E1 — E5 be a linear elliptic differential operator of order k. If the
coefficients of P are of class O™ for some o € (0,1) and ¢ € C*(E}) is a solution of the equation

Py)=F
with datum F € C™%(Ey), then ¢ € C**"(E;) and

[¥llgrtra < C(|[Fllore + [[¥]lco)
for some constant C > 0 that does not depend on ¥ and F.

Suppose now we have a solution of a second order linear elliptic equation P(1)) = F with smooth
datum F € C*°(M,R) and assume there are estimates ||¢)]|co < C, ||¢||c2.« < C for a constant C
not depending on 1. We can now differentiate the equation and regard it as another linear elliptic
equation in the first derivatives of ¢ with coefficients in C%%(M) depending on the second derivatives
of 1. Schauder estimate now implies that the derivatives of 1 are bounded in C?>® norm and we can
differentiate the equation again obtaining a C?%-estimate for the second derivatives of v. Reiterating
this argument, since F' is smooth we achieve estimates for the derivatives of 1 of any given order.
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CHAPTER 3

LHODGE THEORY, FORMALITY AND BALANCED
METRICS

The purpose of this chapter is twofold: first, we aim to explore deeper cohomological properties of
HKT manifolds, especially for the subclass of balanced HKT manifolds; second, we analyse in detail
HKT structures on hypercomplex solvmanifolds and nilmanifolds which provide a useful benchmark to
use to test problems and conjectures. These two topics occupy the two sections this chapter is divided
in. We shall show that all HKT nilmanifolds are balanced, and while this is not true in general for
solvmanifolds, at least we can show that balancedness is implied by the assumption of being SL(n, H)
(when the hypercomplex structure is left-invariant). We thus have plenty of examples of balanced HKT
manifolds, to which results of the first section apply.
This chapter is essentially an account of the preprint [136].

3.1 Cohomology of balanced HKT manifolds.

The main objective of this section is to explore the analogies of HKT geometry with Kéhler geometry
from a cohomological point of view. More precisely, let (M, I, J, K, Q) be a compact HKT manifold and
denote with AP4(M) = A}Y(M) the space of (p, ¢)-forms with respect to I. We have two important
cochain complexes: (A*?(M),d,0;) and (A*(M),d,0") for every fixed g, where 9* := [9, A], being
A the adjoint of L := % A—.

In both cases, we will restrict to study the case ¢ = 0 under suitable assumptions, showing a
behavior similar to Kéhler manifolds. One can study cohomology groups and Hodge theory from a
“complex point of view” on (A*°(M),d,d;) or from a “symplectic point of view” on (A*°(M),d, ™).
Some of the analysis is essentially algebraic and relies only on few properties of the structures under
investigation. Indeed, part of the results can be contextualized in the more general setting of Lefschetz
spaces and this approach encompasses at once some of the theory of Kahler and HKT cohomology.

Building on the work of Lefschetz spaces by Tomassini and Wang [284] we define a generalization
of the Hodge star operator, which allows us to take into account formal adjoints and Laplacians.
Several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology
groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact
HKT SL(n, H)-manifold the differential graded algebra (A*?(M),d) is formal and this will lead to an
obstruction for the existence of an HKT SL(n, H)-structure (I, J, K, Q) on a compact complex manifold
(M, I).

The results presented in this section have the same spirit of (and are inspired by) the work done in
[146, 208, 284, 301].
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3.1.1 Lefschetz spaces.

The framework of Tomassini and Wang.

We start by recalling the main definitions and results from Tomassini and Wang [284] (see also [319]).

Definition 3.1. Let A = @iio AP be a direct sum of complex vector spaces. Let L be a C-linear
endomorphism of A such that L(AP) C AP*2 for p=0,...,2n — 2 and L(A?"~!) = L(A%") = 0. We
say that (A, L) is a Lefschetz space if L satisfies the Hard Lefschetz Condition (HLC), i.e.

L'P: AP 5 AP

is an isomorphism for all p =0,...,n.

If a Lefschetz space (A, L) is equipped with a C-linear endomorphism d such that d(AP) C APT!
for p=0,...,2n — 1, while d(A?") = 0 we call the triple (A, L, d) a differential Lefschetz space.
If moreover d? = 0 then the triple (A, L, d) is called a Lefschetz complex.

On a Lefschetz space we say that oo € AP is a primitive form if p < n and L P+*la = 0. By the
HLC immediately follows the decomposition into primitive forms (see [319]), more precisely, for every
a € AP there exist unique primitive a* € AP~2* such that

Lp/2] 1
a= Z yLkak. (3.1)
k=0

As a generalization of the symplectic star operator Tomassini and Wang introduced the Lefschetz
star operator xr: A — A, acting on a primitive form g € AP as follows:

o
(n—p—k)!

Clearly the definition is then extended by linearity to any a € AP via the Lefschetz decomposition
(3.1). Notice that *2 = 1.

The starting point of the discussion by Tomassini and Wang is the following general Demailly-
Griffiths-Kéahler identity [284, Theorem A].

1 n—p—
w8 = (1R Lrrhg.

Theorem 3.2. Let (A, L,d) be a differential Lefschetz space and A = *ZlL*L the dual Lefschetz
operator. Define d* € End(A) by
dA|Ap = (_1)p+1 X7, d*L s

and assume that [L,[d, L]] = 0, then
[d%, L] =d+[A.[d, L)), [d,A]=d" +[[A,d"), I].

Notice that if (A, L, d) is a Lefschetz complex then d? = 0 implies that (d*)? = 0. In case [d, L] = 0,
one also obtains that
[d,d*] = 0.

Therefore, on a Lefschetz space with [d, L] = 0 one has that the triple (A,d,d") is a double complex.
We summarize here the main consequences which we are interested in (cf. [284, Theorems 3.3, 3.5]).

Theorem 3.3. Let (A, L,d) be a Lefschetz complex. Suppose [d, L] = 0 and denote with HY the space
of Lefschetz harmonic p-forms, i.e. elements a € AP such that

da =0=d"a.
Then (HY,L) and (HY,A) satisfy the HLC. Furthermore the following are equivalent:
o (A®, L) satisfies the dd™-lemma, i.e.,

Kerd N Kerd* N (Imd + Im d*) = Im dd*
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o There is a Lefschetz harmonic representative in each cohomology class of Hy;
o (HJ3, L) satisfies the HLC;

o (Hj3.,A) satisfies the HLC.

A Hodge star-type operator.

In this paragraph, we wish to push a little further the work of Tomassini and Wang. We introduce in
the picture (a generalization of) the Hodge star operator and use it to define formal adjoints and some
Laplacians in a fairly general context. Some identities between these Laplacians are then obtained.

Definition 3.4. A Lefschetz (differential) graded algebra is a (differential) Lefschetz space A = @;277;0 AP
which is also a graded algebra that is generated by A! over C.

In order to provide the promised algebraic treatment, we need a complex structure acting on
our Lefschetz space. Let A be a Lefschetz graded algebra and assume that A' is equipped with an
endomorphism 7 such that J2 = —Id. We extend the action of 7 on A by setting on homogeneous
elements

J(arap) =T Tag, for every aq, ..., a5 € A',

and then extending by C-linearity. Let us denote with
AV ={ac Al | Ja =ia}, A% ={ac A' | Ja = —ia},
the +i-eigenspaces of J on Al. Putting
AP = Spang ((AMY)P @ (A%1)9)

we see that

Ak = @ Ave

p+q=Fk

and the complex structure J acts on AP? as Ja = i %a. In other words, considering the natural
projection I1»4: A — AP we have
J = Z iP—ATIPY,
p.q
We make the assumption that JL = LJ and consequently introduce a generalization of the Hodge
star operator by setting

FE T (3.2)
or equivalently
1 1
Bl T Py o o sl .
pbf=D =y =) JB, (3.3)

for a primitive 5 € AP and then extend the definition on all A by bilinearity via the Lefschetz
decomposition (3.1). It follows that

| ar = T = (-1)P.

Remark 3.5. Let (M, J,w) be an almost Kahler manifold, namely w is a symplectic structure on a
smooth manifold M and J is a compatible almost complex structure. Clearly when J is integrable
and so (M, J) is a complex manifold then (M, J,w) is a Kéhler manifold. Set L = w A — for the usual
Lefschetz operator and let A = 69;2)10 AP be the Lefschetz graded algebra of differential forms on M.
The almost complex structure J: TM — TM naturally induces a complex structure 7 on A'. Since
w is a (1,1)-form we have JL = LJ and the description above is coherent with the well known almost
Kéhler case. Indeed, formula (3.3), where * is the usual Hodge operator, is sometimes referred to as
the Weil relation [321].
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Now, suppose A is equipped with a differential d. Consider the dual Lefschetz operator
A= "Lap =" JLT ' =+ Lx
and define as before the “Lefschetz adjoint” of d, i.e. d* € End(A) given by d*|a» := (—=1)P*1 xp, dxp.
Then, by Theorem 3.2, if [d, L] = 0 we have d* = [d,A] and d = [d", L].
We may take the “Hodge adjoints”

d*:—*d*7 dA*:—*dA*7

and obtain also d* = [A, d*].
Now, we consider the following operators and we aim to study the relations between them:

Ag=dd* +d'd, Agn = ddM + dMdt
AdBAC :d*d+dA*dA+ddAdA*d* +dA*dd*dA+d*dAdA*d+dA*d*ddA,
AdB/g :d*d+dAdA*+ddA*dAd*+dAdd*dA*+d*dA*dAd+dAd*ddA*

We will denote with H§ and Hj, the kernels of Ay and Aja respectively. All these operators where
originally introduced for symplectic manifolds in [294].

Proposition 3.6. In the previous assumptions it holds
Ag= Ay —[A,[d,d™]].
In particular, if [d,d™] = 0 the kernels of Ay and Aga coincide, namely for every p we have
HY =W,
Proof. Using [A,d**] = d* and [d, A] = d* we obtain
Aq = [d,d"] = [d, [N, d]] = [[d, A], d] = [A, [d, d™]] = [a%, a] = [A, [d, d™]] = Aga — [A, [d,d™]],
as desired O
Proposition 3.7. If [d,d"*] =0 = [d, L], then
ALC = ApnAgn + d*d+ d*dd
= ARC 4 atat — dhdM

Proof. Notice that under our assumptions we also have [d*,d*] = 0 and [d*,d"*] = 0. We start by
considering A Aga. By Proposition 3.6

AgaAgs = AgAga = dd*dd™ + dd*d™ d™ + d*ddd™ + d*dd™d™ = (I) + (IT) + (IIT) + (IV).
We will treat the four terms separately. Using that [d,d**] = 0 and [d,d"] = 0

(I) = dd*d*d™ = —ddd*d = dd*dd*,  (I1) = dd*d*d* = —dd™ d*d" = d>dd*d
(I11) = d*dd*d™* = —d*d*dd™* = d*d*d**d, (IV)=d*dd**d" = —d*d**dd" = d**d*dd"* .

Now, putting the four terms together we have

AgpAgs = AgAgn = dd™dd* + d*dd*d* + d*d*d™d + d*d*dd® = ABY — d*d — a**d™.
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3.1. Cohomology of balanced HKT manifolds.

Furthermore using again that [d,d**] = 0 and [d,d"] = 0 we obtain
ARC =d*d + d**a® + dd*d**d* + d*dd*dt + d*d"dd + dMd*dd*
=d*d+ d"*d" + d*dd*d™* + dd“*d“d* + d*d*dd"* + d*d**d d
:dA*dA o dAdA* + Ang
as desired. 0

Remark 3.8. Let (M, J,w) be an almost Kihler manifold, then [d, d**] = 0 if and only if [d,d*] = 0
if and only if J is integrable. In such a case (M, J,w) is a Kahler manifold and we recover the usual
equalities for the Laplacians in Propositions 3.6 and 3.7.

3.1.2 Application to HKT manifolds.
Naturally, the quaternionic Dolbeault, Bott-Chern and Aeppli cohomology groups can be defined:

. KBI‘(8|Ap,0(M))

Ker(8J|Ap,0(M))
,0 . _
Hg (M) T 8Ap_1’0(M) 9

HYO(M) = ——
dy ( ) 6JAP_1’O(M) )
_ Ker(8|Ap,0(M)) N Ker(8J|Ap,0(M))
B 00y AP—2.0( M) ’
- Ker(86J|Ap,O(M))
— OAPTLO(M) + 9y AP~1O(M)
when M is compact all these groups are finite-dimensional [146], indeed, as usual, once fixed an

hyperhermitian metric, one can show that each of these cohomology groups is isomorphic to the kernel
of the following Laplacians acting on (p, 0)-forms

HEQOM)

HYO (M) :

Ay = 00" + 070, Ap, = 0,07+ 0950y,

Ape 1= 0%+ 0350, + 00,050" + 050700, + 030070, + 070,050,
Ap = 00" + 0,07 + 00,050% + 050700, + 0050,0% + 0,000 .

For each of these we denote with a calligraphic letter the corresponding space of harmonic forms, thus,
for instance, Hg’O(M) = Ker(Ap|ar.o(ar))-

It is well known that on a compact Kéhler manifold the spaces of Dolbeault, Bott-Chern and
Aeppli-harmonic forms all coincide. We exploit the general theory of Lefschetz spaces to prove that the
analogue result is also true for balanced HKT manifolds (Theorem 3.21). We remark that the equality
of Ay, and Ay on balanced HKT manifolds already follows from Proposition 2.35 by Verbitsky. Along
the way we shall also study the Hard Lefschetz condition on these spaces (see Theorems 3.9 and 3.17).

“Symplectic” Hodge theory on HKT manifolds.
Let (M,I,J,K) be a 4n-dimensional compact hypercomplex manifold and 2 € A*°(M) a non-

degenerate (2,0)-form on (M, I). As usual we set

L: A™°(M) — A"T20(M) L:=

L
2

for the Lefschetz operator. Then (A*°(M), L) is a Lefschetz space. Moreover, if we consider as differ-
ential operator d (always taken with respect to I), since I is integrable, 9> = 0 and so (A*°(M), L, d)
defines a Lefschetz complex. If 2 satisfies 02 = 0 then

[9,L] = 0.
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Denote with H2*(M) the space of Lefschetz harmonic (p,0)-forms, i.e. forms o € AP?(M) such
that da = 0 = 9", where 9* = [0, A].
We can therefore apply the results of the previous section to infer:

Theorem 3.9. Let (M,I,J,K,Q) be a compact hypercomplexr manifold and Q € A*°(M) a non-
degenerate (2,0)-form on (M, I) such that 3 = 0. Then (H}°(M), L) and (H}° (M), A) satisfy the
HLC. Furthermore the following are equivalent:

o (A*O(M), L) satisfies the O™ -lemma, i.e.,

Kerd N Kerd* N (Imd + Im 0*) = Im 99" ;

o There is a Lefschetz harmonic representative in each Dolbeault cohomology class of H(;’O(M);
o (HY(M), L) satisfies the HLC;

o (H3Y(M),A) satisfies the HLC.

Moreover, by the general results in the previous section we obtain:

Proposition 3.10. Let (M,I,J,K,Q) be a compact hypercomplex manifold and Q € A?>°(M) a
non-degenerate (2,0)-form on (M, I) such that 0Q = 0. Then,

Ay = Apa — [A,[0,0M]].

In particular, if [0,0"] =0
Ay =Apa,

and for every p we have
HE(M) = HE, (M)

Moreover, if [0,0%] =0

ABC = ABC 4+ 0™ 0N — 020™ = Agalga + 070 + 0™ 0.

“Complex” Hodge theory on HKT manifolds.

If we further assume that Q is q-positive, in the sense that JQ = Q and Q(Z,JZ) > 0 for every
Z € T}’OM, Z # 0, then it must be the HKT form corresponding to a HKT metric g on (M, I, J, K).
It (M, 1,J,K,g,Q) is HKT by Proposition 2.35 we have

0", L] =0y — 05 A —

where 6; = J0, being 6 the 1-form such that 9Q" = 6 A Q™. Notice that (M,I,J,K,g,9) is balanced
if and only if #; = 0 and so for balanced HKT manifolds we have

[0, L] =08,
and actually we can specialize Proposition 2.35 to the following:

Proposition 3.11. Let (M,I,J,K,Q) be a compact balanced HKT manifold. Then, the following
identities hold:

[0, L] =0y, [0,A] = —07, [L,07] =0, A, 05] =-0".

Now, we shall show that the framework of the previous subsection can be used to study hypercomplex
cohomologies. First of all, we set Ja = Ja for every a € AL%(M), thus J is a complex structure on
ALO(M) and naturally extends to AP°(M) by imposing compatibility with the wedge product. Since
Q is g-real we have JL = LJ and we can use (3.2) to define a Hodge-type operator.
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We warn the reader that in this framework the operator defined by (3.2) slightly differs from the
usual Hodge operator. To distinguish them, let us denote here * : AP°(M) — A2"~P:0(M) the operator
defined in (3.2) and % : AP4(M) — A?"~¢2n=P (M) the usual Hodge star operator, then one can easily
show that

n

Q
a/\*,@:g(a,ﬁ)—', for every a, B € APO(M),
n!
where g is the Hermitian product induced by the Riemannian metric on AP:°(M), while, by definition,
Q" A Qn
(nh)? 7

However, we can identify the formal adjoints of  and d; with respect to * and % in the following way.
Suppose M is a SL(n,H)-manifold and fix a g-positive holomorphic (2n,0)-form ©. Define the
following L2-products:

aAif = gla,p) for every o, B € APO(M).

Qn A QP = Qv ~
(0, B)1 = /Mg(a,ﬁ)ﬁz/Ma/\*ﬁ, (0, B)s = /Mg(a,ﬁ)ﬁ A@=/MaA*ﬁA@,

Then the adjoint of & and 9; with respect to (-,-); are 9* = —%9% and o5 = —%ds%, while those with
respect to (-, )2 are 0* = — % 0+ and 05 = — x Oy (cf. [208]). Since © is g-positive, there exists a
real-valued function f > 0 such that © = f %7 moreover, the holomorphicity of © translates into the
condition df + f6 = 0. Now, observe that (-,-)a = (f-,)1 thus

(0[78*5)2 = (0a,ﬁ)2 = (faavﬂ)l = (a(fa) - af A aaﬂ)l = (a,a;ﬁ)g + (0 A avﬂ)Q
and similarly, working with 0% and 0% one obtains
(0, 05B)2 = (,058)2 — (05 A v, B)a..

In particular if M is balanced then § = 6; = 0 and f is constant, so that the two L2-products coincide
up to a constant and 9* = 9* and 9% = d%. In particular the usual Laplacians obtained by means of
the Riemannian Hodge star operator coincide with those Laplacians considered above and the related
results can be applied.

In particular, if M is compact and if o € AP°(M) one immediately obtains

acHY' (M) <= da=0, 9a=0;

aEHS}O(M) — 0ja=0, Ha=0;

aEH%%(M) <— Jda=0, 9ja=0, 050*a=0;

ae H' (M) <= 9*a=0, da=0, dd;a=0.
Proposition 3.11 shows that 0% = —0% and we readily obtain from Proposition 3.6.

Proposition 3.12. Let (M,1,J, K,Q) be a compact balanced HKT manifold, then
Ag, =Ny
In particular, the spaces of harmonic forms coincide, namely for every p we have
HE (M) = HE°(M).

Remark 3.13. If we do not assume the compact HKT manifold (M, I, J, K,Q) to be balanced we
would have, in general
[8*,L] =05 —0;N—.

Setting 7() := 05 A a and Y («) := 6 A «, then, we would get

oM =[0,A] = =0 + 7.
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In particular [9,0%] = —96; A — and in such a case the Laplacians Ay, Aga and Ay, do not coincide,
and in fact by a direct computation one gets

A{)J =Ny — [1/}*,3] + [aJ,T*].

Notice that ¢* = 1gs and 7% = ¢4 .
J

We also observe that the condition [, 9] = 0, i.e. d; = 0 is only satisfied when the manifold is
balanced, indeed 90; = 0 is equivalent to ;0 = 0, from which we obtain

700" =050 NQ") =00 NQ" —ON 0" = —O AT LI
= —ONTHOANQY) =0NTOANQ".

Therefore by integrating, using (2.21) and the HKT condition we infer

_ _ _ 1 _
0= 5&9”/\89"’1:/ ajf)ﬂ"/\Q”’I:/ GAJG/\Q”/\Q"’I:f—/ ||0||ZQ”/\Q”
M M M 2n Jyp

and the claim follows.

As a consequence of Proposition 3.12 we obtain isomorphisms for the associated cohomology groups
(cf. [208, Proposition 2.3] where it is noticed that an isomorphism, induced by J and conjugation with
respect to I, holds in general for hypercomplex manifolds).

Corollary 3.14. Let (M,I,J, K,Q) be a compact balanced HKT manifold, then
HEO(M) ~ HE(M).

In particular, we have the equalities hg’JO(M) = hg’O(M).

Invoking Proposition 3.7 we obtain that, similarly to the Kéahler case, the Laplacians Agc and
Ay, = Ap are related.

Proposition 3.15. Let (M,I,J, K,Q) be a compact balanced HKT manifold, then
Apc = Ay, Ny, +0"0+ 070,
=ApAyg+ 070+ 050y .
In particular, the spaces of harmonic forms coincide, namely for every p we have
HEC(M) = Hy) (M)
Consequently we obtain isomorphisms for the associated cohomology groups.

Corollary 3.16. Let (M,I,J, K,Q) be a compact balanced HKT manifold, then for every p,
HEG(M) =~ HEP (M) ~ HE(M).

In particular, we have the equalities ho(M) = hgijo (M) = h5°(M).
Notice that these results are the analogue of the ones proved in [256] for compact Kéhler manifolds.

As a consequence of the previous results we prove that, under the same hypothesis, the Hard
Lefschetz condition holds for the cohomologies H(;’O(M ), H(;(’]O(M ), Hé’g(M ), thus generalizing [29,
Proposition 4.7].

Theorem 3.17. Let (M,1,J,K,Q) be a compact 4n-dimensional balanced HKT manifold, then for
every i,

L7t G (M) — M),
LM (M) = (M),
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L™ 1L (M) — Hie 0 (M)
are isomorphisms. In particular hiB’% = hgo = thO = h%%_i’o = h%"_i’o = hg?_i’o.
Proof. In view of Propositions 3.12, 3.15 it is sufficient to prove that
L0 1O (M) — HE (M)
are isomorphisms. Notice that by hypothesis 92 = 0,2 = 0, hence
[0,L] =0, [07,L] =0.
Let o € HSO(M) = HgS(M) Then,
da=0, Jdja=0, O0'a=0, o=

AS a consequence ) )
A(L"ia) = L""1da = 0,

and, using [0*, L] = 0y,
O*(L""a) = L" "0 a + (n — i) L" """ 'd a0 = 0.
Hence, L" o € Hg"_i’o(M). The result follows from {2 being non-degenerate. O

Notice that combining this result with Theorem 3.9 we have

Corollary 3.18. Let (M,I,J,K,Q) be a compact balanced HKT manifold, then the 0™ -lemma holds
and there exists a Lefschetz harmonic representative in each Dolbeault cohomology class of H(;’O(M).

Proposition 3.19. Let (M,1,J, K,Q) be a compact balanced HKT manifold, then for every p we have
Ho(M) = HY"(M).

Proof. We first show the inclusion HEo (M) C HYO(M). Let a € HEA(M). By Propositions 3.12, 3.15
a € HYO(M) = ’HS’JO(M), namely

da=0, Jja=0, 0"a=0, Jja=0.

Hence, a € HY°(M). The opposite inclusion HR°(M) C HE2 (M) follows from Theorem 3.17 and
[146, Remark 21], indeed for every p,

he (M) = hise 0 (M) = hR° (M), O
As a corollary we have
Corollary 3.20. Let (M, I,J,K,Q) be a compact balanced HKT manifold, then for every p,
HEI(M) ~ HE (M),

We summarize the results of Propositions 3.12, 3.15, 3.19 collecting them into a single theorem:
Theorem 3.21. On a compact balanced HK'T manifold M the spaces of harmonic forms all coincide:
0 ,0 ,0 ,0
Hy (M) = HE (M) = Hpe (M) = Hy ™ (M).
In particular there are isomorphisms
0 ~ 70,0 ~ 70,0 ~ 70,0
Hy (M) = Hi (M) = Hyo(M) = HR™ (M)
and equalities hg’o = hg? = h%’g = hf&’o = h?,"_p’o = h(%"_p’o = hgé_p’o = hi"_p’o for every p.

J
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3.1.3 Formality of HKT manifolds.

In this subsection we study formality for compact hypercomplex manifolds. It is well known that
formality in the sense of Sullivan is an obstruction to Kéhlerness, more precisely compact complex
manifolds satisfying the d9-lemma are formal (see [99]). However, notice that the HKT condition does
not imply formality, indeed there are examples of non tori nilmanifolds that are HKT but it is well
know that non tori nilmanifolds are not formal in the sense of Sullivan [167].

We first recall some definitions.
Let (A,d4) and (B,dg) be two differential graded algebras (DGA for short) over a field K. A
DGA-homomorphism between A and B is a K-linear map f : A — B such that

« f(A) CBY
o fla-B) = fla)- f(B);
e dgof=fody.

Any DGA-homomorphism f : (A,d4) — (B,dg) induces a DGA-homomorphism in cohomology
H(f):(H*(A,da),0) — (H*(B,dg),0).

A DGA-homomorphism f : (A,d4) — (B,dg) is called quasi-isomorphism if H(f) is an isomorphism.
Two DGA (A, d4) and (B, dp) are said to be equivalent if there exists a sequence of quasi-isomorphisms
of the following form:

(C17dcl) e (C’nvdcn,)

vd N\ vd N\ vd N\
(*Av d-A) (CQa dcz) T (B» dB) .

Finally, a DGA (A,d4) is called formal if (A,d ) is equivalent to a DGA (B, dg = 0).

We are about to show that for a compact hypercomplex manifold M instead of (A*(M),d), the
appropriate DGA to consider in this context is (A*Y(M),d) by proving the following

Theorem 3.22. Let (M,1,J,K) be a compact hypercomplex manifold satisfying the 00 -lemma, then
the DGA (A*9(M), d) is formal.

Preliminary lemmas.

In order to prove Theorem 3.22 we will need three lemmas.

Lemma 3.23. Let (M, I,J,K) be a compact hypercomplex manifold satisfying the 00 ;-lemma, then
the natural inclusion

it (A*°(M)NKerdy, 8) — (A*°(M), 0)
is a DGA quasi-isomorphism.
Proof. Notice that (A*°(M)NKerd,, ) is a DGA and the inclusion
it (A*Y(M)NKerdy, 9) — (A*°(M), 0)
is a morphism of DGAs. We are left to prove that the map induced in cohomology
Hp(i) : Hp (A*°(M) N Ker 8y, 8) — Hy°(M)

is an isomorphism.
We first prove that Hy(i) is injective. Fix k, and let [o] € Hp (A*0(M) N Kerdy;, d) such that
Hy(i)([a]) = [a@]a = 0, hence
a€KerdyNImo =1Imody,
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3.1. Cohomology of balanced HKT manifolds.

i.e., a=0(0,pB) for some form B € A¥=20(M) and clearly 9,8 € A¥=10(M) N Ker d;, hence
[a] =0 HY® (A*°(M) N Kerdy, 9)

and so Hpy(i) is injective.
We now prove that Hp(i) is surjective. Let a € Hg’O(M), a = o] with da = 0. Consider,

OjaeImoyNKerd=Imo;0

hence dya = 9500 for some B. Therefore, 9;(cv — ) = 0 and I(a — 9B) = O = 0. This means that
a — 0 defines a class in Hg,o (A"OM N Kerdy, (‘3) and

Hp(i)([e = 9p]) = [a = 0Bl = [a] = a,
concluding the proof. O

Lemma 3.24. Let (M,I,J, K) be a compact hypercomplex manifold satisfying the 00 -lemma, then
the natural projection

pi (AO(M) N Kerdy, 0) - (H5 (M), 0)
is a DGA quasi-isomorphism.

Proof. Notice that the projection
p: (A*O(M)NKerd,, ) — (H(;;O(M), a)
is a morphism of DGAs. We are left to prove that the map induced in cohomology
Hy(p) : HY® (A*°(M) N Kerdy, d) — H5® (Hg;O(M), a)

is an isomorphism.
We first prove that Hyp(p) is injective. Fix k, and let [a] € Hg,o (A*°(M) N Kerdy, 9) such that
Hy(p)([a]) = 0. Hence,
aceImonKerd; =Imod;

i.e., a=0(0,8) for some form B € A¥=20(M) and clearly 9;8 € A*=10(M) N Ker d;, hence
o] =0 ¢ H° (H;JO(M), a)

and so Hp(p) is injective.
The surjectivity of Hy(p) is immediate. O

Lemma 3.25. Let (M, I,J, K) be a compact hypercomplex manifold satisfying the 00-lemma, then O
is the trivial operator on H(;"IO(M).

Proof. Fix k and let a = [a]g, € Hg’JO(M), namely dya = 0. Now

da = [304]3J
and
daeImonKerd; =Imao;0o
so Oa = 9;00 for some B, giving da = [0;08]s, =0 € ngl’o(M)7 concluding the proof. O

Proof of formality and consequences.

Now we are able to prove Theorem 3.22.
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Proof. Under the assumptions and as a consequence of the lemmas 3.23, 3.24, 3.25 we have the following
diagram of quasi-isomorphisms of DGAs,

(A*O(M) NKerd, 0)

% P
q-is q-is

(A(a1), 9) (m50 @), 0)

hence, by definition, (A"O(M)7 6) is a formal DGA. O

In [146, Theorem 6] Grantcharov, Lejmi and Verbitsky proved that the 09 -lemma always holds on
compact HKT SL(n, H) manifolds. As a consequence of this and Theorem 3.22 we obtain:

Corollary 3.26. Let (M, 1,J,K,Q) be a compact HKT SL(n, H)-manifold, then the DGA (A*°(M),d)

is formal.
We recall now the definition of triple Massey products of a DGA in our setting.

Definition 3.27. Let a = [a] € HY'(M), b = [8] € HY°(M) and ¢ = [y] € Hy(M) such that
aUb=0¢ Hg+q’0(M) and bUc=0 € Hg+T’O(M); more precisely suppose that a A 3 = O\ and
B Ay = Ou for some X € APTa=1.0 1, ¢ A+7=10 The triple 9-Massey triple product of a, b, ¢ is defined
as

Hg+q+7‘71,0(M)
YO u HEO (M) + HY (M) U HET T (M)

Then, since for a formal DGA the associated Massey products vanish we have the following

(a,b,¢) :=[AANy—(—D)PaAp] e

Corollary 3.28. Let (M, 1I,J,K) be a compact hypercomplez manifold satisfying the 80-lemma, then
the triple 0-Massey products vanish.

Hence, we have

Theorem 3.29. Let (M,I,J,K,Q) be a compact HKT SL(n, H)-manifold, then the triple 0-Massey
products vanish.

In particular, triple 9-Massey products are an obstruction to the existence of a HKT SL(n, H)-
structure on a compact hypercomplex manifold. More precisely,

Corollary 3.30. Let (M,I) be a 4n-dimensional compact complex manifold such that there exists
a non trivial 0-Massey product, then (M,I) does not admit any complex structures J, K such that
(M, 1,J,K) is hypercomplex and admits o HKT SL(n,H)-structure.

We shall delay examples on which we could apply our results to the next section, where we deal
with nilmanifolds and solvmanifolds. Here, we only present one example which has the purpose to
show that the converse of Corollary 3.28 (and hence Theorem 3.29) does not hold in general.

Example 3.31. Consider SU(3) equipped with the homogeneous hypercomplex structure (I, .J, K) of
Example 2.10 and the compatible HKT metric of Example 2.15. By [263] the holonomy of the Obata
connection on SU(3) is GL(2,H) and, in fact, we claim that the 00-lemma cannot hold on SU(3).

To see this, we observe that from Example 2.15, there exists a unitary coframe {Z1,..., Z4} of
(1,0)-forms (with respect to I) on the Lie algebra of SU(3) such that the HKT form is

1

O=27124 7%= fiazz.

Now, if the 00 -lemma hold we would have that Q2 = 09 f for some function f, but since the HKT
form is g-positive, by E. Hopf’s maximum principle f would be constant and thus 2 = 0 which is a
contradiction.

On the other hand the triple 0-Massey products are all zero because the same coframe satisfies

07t =0, 07%=-272-27% 097 =-(1+3i)Z%,  07'=(3i—1)7",
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which shows that Hy°(M) ~ (Z') and Hy°(M) = 0 for i > 1.

3.2 HKT nilmanifolds and solvmanifolds.

In this section we briefly overview the main results of Barberis, Dotti and Verbitsky [29], dealing with
(hyper)complex nilmanifold. Some of these results is hereby extended to hypercomplex solvmanifolds. In
particular, we will see that Conjecture 2.45 is true for hypercomplex solvmanifolds (Theorem 3.39). We
also show that Conjecture 2.46 is verified for solvmanifolds with left-invariant hypercomplex structure
(Corollary 3.41). Another sufficient condition on solvmanifolds with a left-invariant hypercomplex to
have a balanced metric is given in Corollary 3.37.

The second subsection is dedicated to the study of the curvature and the holonomy group of the
Obata connection V on solvable Lie groups with an abelian hypercomplex structure. We shall prove
that the holonomy algebra of V is always abelian (Theorem 3.50).

3.2.1 Balanced HKT and SL(n, H)-solvmanifolds.

Nilmanifolds and solvmanifolds.

Let G be a Lie group with Lie algebra g and consider the lower central series and the derived series
defined inductively by = go := g =: D°(g) and

ok =lor-1.8],  D"g)=[D"(a), D" '(g)].

Recall that G (and g) is (k-step) nilpotent (resp. (k-step) solvable) if there exists a k such that
gr = 0 and gp_1 # 0 (resp. D¥(g) = 0 and D¥~1(g) # 0). Observe that any nilpotent Lie group is
solvable.

A nilmanifold (resp. solvmanifold) I'\G is the quotient of a simply connected nilpotent (resp.
solvable) Lie group G with a left-invariant Riemannian metric by a lattice T, i.e. a discrete co-compact
subgroup. There is a bijective correspondence between left-invariant tensor fields on a Lie group G
and tensors of the same type on the Lie algebra g. Furthermore, every such tensor descends to the
quotient nilmanifold (resp. solvmanifold).

The existence of lattices is not always guaranteed. For the case of nilpotent Lie groups a classical
result of Mal’cev [220] shows that a simply connected nilpotent Lie group has a lattice if and only if
there exists a basis of the Lie algebra with rational structure constants. This characterization fails for
solvable Lie groups, and no general result ensuring the existence of a lattice is known. Such a problem
is investigated by Bock [46] for low dimensions. All we know is that a necessary condition for a Lie
group G to have a lattice is unimodularity, i.e. all the adjoint operators adx must have vanishing trace
for all X € g (see [227]).

Nilmanifolds and solvmanifolds often provide fruitful examples and counterexamples because almost
everything can be regarded by looking at invariant objects, and the analysis need only to be carried
out at the Lie algebra level. For example, by a result of Nomizu [234], the de Rham cohomology
of nilmanifolds is isomorphic to the cohomology of its Lie algebra and thus can be computed using
left-invariant forms. Unfortunately there are counterexamples for what regards solvmanifolds, but it is
still true in some special cases [169, 231]. Under certain assumptions also other cohomologies can be
computed via invariant forms, we refer to the introduction of [21] for further details and references. On
the other hand both nilmanifolds and solvmanifolds present some rigidities, for instance, the well-known
result of Benson and Gordon [35] states that a nilmanifold with a K&hler structure is necessarily a
torus (see also the generalization of Hasegawa [168] for solvmanifolds).
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CHAPTER 3. Hodge theory, formality and balanced metrics

Hypercomplex nilmanifolds.

Here we summarize the main results of the paper by Barberis, Dotti and Verbitsky [29], which deals
with hypercomplex nilmanifolds.

Anytime a Lie group G is equipped with an almost complex structure I the complexification of
the Lie algebra splits into its (1,0) and (0, 1)-parts, call them g™° and g°!. By Newlander-Nirenberg
theorem I is integrable if and only if g'¥ is a complex subalgebra of g€ := g® C. It is remarkable that
complex nilmanifold always have holomorphically trivial canonical bundle [29, 74].

The complex structure I is called abelian if the subalgebra g'¥ is abelian; equivalently
[[7]} = [.’ ]

It is clear that an abelian almost complex structure is necessarily integrable. In [29] is reported that
condition of abelianity was introduced in Barberis’ Ph.D. thesis. Abelian complex structures became
particularly interesting very soon as they are easier to inspect. By the result of Petravchuk (Proposition
2.16), abelian complex structure can only occur on 2-step solvable Lie algebras.

When we equip a solvable Lie algebra with a hypercomplex structure (I, J, K) such that one of the
three complex structures, say I, is abelian, then automatically all the other ones are [111]. Since the
canonical bundle of a 4n-dimensional nilmanifold is holomorphically trivial there exists a holomorphic
global section ©, by the following result of Fino, Otal and Ugarte [125] it must be left-invariant:

Proposition 3.32. A nowhere vanishing holomorphic (n,0)-form on a solvmanifold with left-invariant
complez structure is left-invariant.

Now, going back to the holomorphic (2n,0)-form ©, we see that the form J© must again be
holomorphic because it is a left-invariant section of the canonical bundle and such section is uniquely
determined up to a multiplicative constant. It follows that © 4+ J© is q-real and holomorphic, hence
by Lemma 2.42 we deduce:

Theorem 3.33. Every hypercomplex nilmanifold is SL(n,H) and has holomorphically trivial canonical
bundle.

Dotti and Fino showed in [112] that any hyperhermitian metric on a solvable Lie algebra with
left-invariant hypercomplex structure (i.e. every complex structure is left-invariant) is weak HKT
and then, it gives rise to a left-invariant HKT structure on the corresponding solvable Lie group
by left-translation. Under this light, a stronger condition than being SL(n,H) actually holds for
hypercomplex nilmanifolds, indeed:

Theorem 3.34. Every HKT nilmanifold is balanced.

Dotti and Fino also proved that the hypercomplex structure of any 2-step nilmanifold admitting a
left-invariant HKT metric is abelian. This was generalized to any nilpotency step in [29]:

Theorem 3.35. A hypercomplex nilmanifold with an HKT structure has abelian hypercomplex structure.

Sketch of proof. Let N = T'\G a hypercomplex nilmanifold with a HKT structure and let g be the Lie
algebra of G. Suppose by contradiction that g*? is not abelian, along the lines of [35] one can show
that this implies that the Lefschetz map

L't HYyY(N) = H3"HO(N)

is not surjective, since IV is balanced this contradicts Proposition 2.36. O
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Hypercomplex solvmanifolds.
The following result can be seen as a generalization of Theorem 3.34 on solvmanifolds:

Theorem 3.36. Let (T\G,I,J, K,Q,g) be a 4n-dimensional solvmanifold with a left-invariant abelian
HKT structure. Then g is balanced.

Proof. We will denote with (1, J, K, €, g) the induced structure on G. By hypothesis,  is HKT, hence
the Bismut connections associated to I, J, K coincide and we will denote them uniquely with V2.
Since I'\G is a solvmanifold then G is unimodular. Hence, by [29, Lemma 2.4] the common Lee form
Oree of G is given by

1
Oree(X) = §tr (IVEx), for every X € g.
Now we argue as in the proof of [29, Proposition 4.11] to show that 0., = 0 and so g is balanced.

Let X1, 1X,JX,KXq,...,X,,IX,,JX,, KX, be an orthonormal basis of g. Now using that
VB preserves (I, J, K) and that g is hyperhermitian we have

<

3

tr (JVF) =D (9(IVE X, X;) + g(IVEIX;, IX)) + g(JV I IX;, T X)) + g(JV I KX, KX;))

<.
Il
-

[
M=

(9(IVTx X5, X;) + g(JIVF X5, 1X;) + (VI T X;, X;) + g(TKVF X, KX;))

<.
Il
-

[
M=

(9(IVTFxX;, X)) = g(IIVF X5, 1X;) + (VI I X, X;) — g(KIVF X, KX;))

<.
Il
-

I
M=

(9(VExIX;, X;5) — g(VEx IX;, X5) + 9(VEx X5, X5) — 9(Vix JX;, X)) =0,

<.
I
—

therefore 0y, = 0 and ¢ is balanced. O

Corollary 3.37. Let (T\G,I,J,K) be a solvmanifold with a left-invariant abelian hypercomplex
structure. Suppose that there exists an HKT structure Q on (T\G, 1, J, K). Then there exists a balanced
abelian HKT structure on T'\G.

Proof. By [124] there exists a invariant HKT structure Qon (I'\G,1,J,K). Now, by Theorem 3.36 we
have that € is balanced. O

Remark 3.38. Notice that, differently from the nilpotent case, the converse of Theorem 3.36 is not
true. Indeed, in [30] it is provided an example of a balanced HKT solvmanifold with an hypercomplex
structure that is not abelian.

We have said that Barberis, Dotti and Verbitsky proved that hypercomplex nilmanifolds are all
SL(n,H) (Theorem 3.33) and their proof actually works to show that this occurs on solvmanifolds if
and only if their canonical bundle is holomorphically trivial.

Theorem 3.39. Let (M :=T\G,1,J,K,g) be a solvmanifold with holomorphically trivial canonical
bundle, then the holonomy of the Obata connection V is contained in SL(n,H).

Proof. Let 7 be a nowhere vanishing holomorphic section of the canonical bundle, which is necessarily
invariant by Proposition 3.32. The fact that Hol(V) C SL(n, H), follows from the fact that n + J7 is
parallel with respect to V, which is a consequence of Lemma 2.42. O

Similarly to the case of nilmanifolds, when a SL(n,H)-solvmanifold admits an invariant HKT
structure it is automatically balanced:

Theorem 3.40. Let (M :=T\G,1,J,K,g) be a solvmanifold with holomorphically trivial canonical
bundle and invariant HKT structure. Then g is balanced.
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Proof. Let 77 be a non-vanishing d-closed section of A%2"(M), then by Proposition 3.32 7 is invariant,
hence -
Qn — C’f]

with ¢ constant. Since di7 = 0, then dQ™ = 0 and so 9Q" = 0 proving that g is balanced. O

As a consequence we confirm the conjecture by Verbitsky on solvmanifolds with invariant hyper-
complex structure.

Corollary 3.41. Let (M :=T\G,I,J,K) be a SL(n,H)-solvmanifold with invariant hypercomplex
structure. Suppose that there exists an HKT metric on M. Then there exists a balanced HKT structure
on M.

Proof. Since (M := T'\G,1,J,K,g) is an HKT solvmanifold with a SL(n,H) structure, then the
canonical bundle of M is holomorphically trivial and, by [124], there exists an invariant HKT structure
on M. Hence, by the previous result the associated Hermitian metric is balanced. O

Examples and triple 0-Massey products.

We begin with an example of a nilmanifold admitting hypercomplex structures but not admitting HKT
structures:

Example 3.42. Consider the nilmanifold M = I'\G whose structure equations of the Lie algebra g of
G are given by (see also [208, Example 1])

det =de®> =de® =de* =de® =0, def =e2+e3t, de” = —e?, ded =et 623,

where we use the standard notation e = e A /. Define the following complex structure
Tel =¢?, I3 =¢t, Ie®P=eb, Te"=¢8.
Then a co-frame for invariant (1,0)-forms on M is given by

7 8

ol=el —ie?, r=e3—iet, 3 =ed—iel, <p4:e — e
and the complex structure equations become

1 _ _
de' =dp® =0, dp®= —§(<p“ +¢%%), det =",

Then, the conjugate Dolbeault cohomology in bidegree (p,0) is given by (cf. [208, Example 1])
Hy' (M)~ (o',¢%¢%) . HZ"(M) =~ (0"%,9%,0",0*) . Hy"(M) =~ (", ") .

We now construct a non trivial triple d-Massey product. Take ['] € Hy*(M), [¢?] € Hy?(M) and
[¢?] € Hé’O(M). Notice that ¢! A p? = d¢* and p? A ¢? = 0. Hence, the 9-Massey product is given by

Hy(M)
(@' U HG (M) + Hy (M) U %]

[p* A €

and this class is clearly non trivial. Therefore, by Corollary 3.30 the complex manifold (M, I) does not
admit any complex structures J, K such that the nilmanifold (M, I, J, K) is hypercomplex and admits
a HKT structure (such structure should be SL(n,H) since M is a nilmanifold). One can confront this
result with [208, Example 1] where a specific hypercomplex structure (I, J, K) is constructed and it is
showed that it does not admit any HKT metric.

Notice that, in fact, if a nilmanifold N admits an invariant HKT structure (I, J, K, Q) then the
complex structures I, J, K are abelian and in such a case the triple 0-Massey products are trivial.
Indeed, we prove in general the following:
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Theorem 3.43. Let N = I'\G be a 2n-dimensional nilmanifold and let I be an invariant abelian
complex structure on N. Then, the triple 0-Massey products are all zero.

Proof. Since I is an invariant abelian complex structure on N, there exists a co-frame of invariant
(1,0)-forms {¢*} _ on (N,I) such that

dpt =0, fori=1,...,n.

Since I is abelian, by [97] the Dolbeault cohomology of N can be computed using only invariant forms,
hence
7,0 7,0 i iy
HFP(N) ~ Hy(g%) = (" AL A @)

1<i1<...<ip<n

for r =1,...,n, where, denoting with g = Lie(G), Ha'"(g(c) denotes the cohomology of the differential
bigraded algebra A**(g®)* with respect to the operator 0.
In order to construct a triple 9-Massey product let a = [o] € Hg’O(N), b= (5] € Hg’O(N) such that
aUb =0 € H (N), hence aUb = 0 € H5T%%(g®), namely there exists an invariant (p+g¢— 1, 0)-form
A such that

alp =0\

But, on invariant (r,0)-forms the operator 9 vanishes and so we can take the primitive A = 0 itself.
A similar conclusion is obtained taking the third class in the definition of 9-Massey products. This
means that we cannot construct non trivial 9-Massey products since both A and p in the definition of
0-Massey products would be zero. O

An immediate consequence of this result combined with Theorem 3.35 is the following:

Theorem 3.44. Let N = T'\G be a 4n-dimensional nilmanifold and let (I,J,K,Q) be an invariant
HKT structure on N. Then, the triple 0-Massey products are all zero.

Therefore, a relevant application of Corollary 3.30 should be given on solvmanifolds.

Example 3.45. Consider the 8-dimensional almost abelian Lie algebra g with structure equations
[es, e2] = eq, [es, €3] =es.

Let G be the associated solvable simply connected Lie group. Then, by [46] G admits a lattice I such
that S :=T'\G is a solvmanifold. Define the complex structure setting as global co-frame of (1, 0)-forms

. . - 5 .
cplzel+168, cp2:e2+163, @3:644—16‘), (p4:€6+le7.
The complex structure equations become

de' = dp? =dg* =0, dg® = ¢ + 27
We now construct a non trivial triple -Massey product. Take [¢'] € Hy*(S), [¢?] € H5(S) and
[0?] € Hé’O(S). Notice that ¢! A p? = 9(—2i ¢?) and ¢? A ¢* = 0. Hence, the -Massey product is
given by

Hy"(S)
[p!] U Hy"(S) + Hy"(S) U [p?]

and this class is clearly non trivial. Therefore, by Corollary 3.30 the complex manifold (S, I) does not
admit any complex structures J, K such that the solvmanifold (S, I, J, K) is hypercomplex and admits
a SL(n,H) HKT structure.

[—2i¢® Ap?] €

3.2.2 Curvature and holonomy.

The abelianness of a hypercomplex structure makes really simple computations involving the Obata
connection. Here we shall compute explicitly the curvature of the Obata connection on a Lie algebra g
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with abelian hypercomplex structure (I, J, K). We will then exploit this to observe that the holonomy
of the Obata connection must be abelian. The results of this subsection are part of unpublished work
together with Misha Verbitsky.

Curvature.

Recall the expression (2.7) of Soldatenkov for the Obata connection. Under the assumption of (1, J, K)
being abelian, this can be rewritten as

VxY = % ((X,Y)+IIX,) Y|+ JJX,Y]+ K[KX,Y]), for every X,Y €g.

We begin by computing the curvature:

Proposition 3.46. The Obata connection on a Lie algebra g with abelian hypercomplex structure
satisfies
[Vx,Vy]=—=Vixy]

for any X, Y € g. In particular the curvature is given by
R(X,Y) =2[Vx,Vy] = —2V[xy].

Proof. Let (J1,Jo2, J3) = (I, J, K) be the hypercomplex structure on g. First we compute

AVxVyZ =2V <[Y 7] + 23: Ja[JaY, Z])
23: ol JaY, Z] +23:J JoX,[Y, 2] + 23: T[T X, JolJoY, Z]]

a=1 a=1 a,B=1
splitting the last sum according as @ = 8 or « # [ yields

3 3
> Tl X, JalJaY, 2 = JalJa X, JulJaY, 2]+ > JalJp X, JulJaY, Z]]
a,f=1 a=1 a#pB
3
== X VT2l + > TplJads X, [JadsY, J5 2|

a=1 a#f
therefore
3 3
dVxVyZ = Z J YZ] ZJQ([JaXa [JQK JocZH - [X> [K JocZH)
a=1
+ 3 IslJads X, [JadsY, JsZ]].

a#B

Using Jacobi’s identity we then finally obtain

3

1
VxVyZ = VyVxZ = | [[X,Y], 2] - 3[[X, Y], 2] + 2 > JslIX, Y], 5 2]
B=1
1
=—3 [X,Y],Z] + ZJB Js[X.Y],Z) | = -VixyZ
B=1
which concludes the proof of the proposition. O

Endow the space gV := {Vx | X € g} C End(g) with the opposite of the commutator as a Lie
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bracket. By Proposition 3.46 it is immediate to see that the Jacobi identity of this Lie bracket follows
directly from the Jacobi identity on (g, [-,-]). Therefore gV is a Lie algebra. Furthermore, this yields a
representation p: g — End(g), naturally defined by px = Vx, which is onto gV.

Proposition 3.47. If g is nilpotent then so is g¥. Furthermore, if the nilpotency step of g is k, then
the nilpotency step of gV is at most k — 1.

Proof. The first assertion is obvious. Observe that the center 3(g) of g lies in Ker(p), hence gV =
g/Ker(p) C g/3(g) which shows that if g is k-step nilpotent gV is at most (k — 1)-step nilpotent. [

It is evident that whenever g is 2-step nilpotent the Obata connection is necessarily flat, equivalently,
gV is abelian. The converse is not true in general, we shall give a counterexample inspired by a 3-step
nilpotent non-integrable example of Dotti and Fino in [111]:

v

Example 3.48. Consider the 3-step nilpotent 12-dimensional Lie algebra g = (e1, ..., e12) with abelian
hypercomplex structure

Teg 3 =e4i2, Jeqi—3 = eqi—1, Key_3 = ey, 1=1,2,3,

and non-zero Lie brackets

[e1, e2] = —[e3, e4] = —e10,

le1,e4] = —[e2,e3] = €12,

[61,69] = [62,610] = [637611] = [64,612] = —6€6,
le1, e11] = [e2, e12] = —[es, e9] = —[es, e10] = —es.

Then one can check that [g,g] C Ker(p), therefore g¥ = g/Ker(p) C g/[g, g] is abelian and thus the
Obata connection is flat on g.

This is in contrast to what happens when the Obata connection V preserves an indefinite Riemannian
metric. Observe that the Riemannian metric has to be indefinite, otherwise the Lie algebra is abelian
[35]. In this case V coincides with the Levi-Civita connection and g is 2-step nilpotent if and only if V
is flat. This was proved by Bajo and Sanmartin [25] who also show that such structures can be at most
3-step nilpotent. The only restriction on the nilpotency step that abelianness of the hypercomplex
structure imposes is that it can be at most equal to the quaternionic dimension [110]. Dotti and
Barberis provided examples with arbitrary nilpotency step in [28]; it is easy to check that these have
flat Obata connection.

Holonomy.
We now prove a lemma that will allow us to prove abelianness of the holonomy group.

Lemma 3.49. The curvature of the Obata connection satisfies:
VxR(Y,Z) =6V x vz = —3R(X,[Y,Z]).
Proof. We use Proposition 3.46 and the Jacobi identity

VxR(Y,Z)W = Vx(R(Y, Z)W) = R(VxY, Z)W — R(Y,Vx Z)W — R(Y, Z)VxW
= 2VxVygW +2Viv v, 21\W + 2Vy, vy ziW + 2V [y, 71 Vx W
= =2[Vx,ViyzIW + 2V v 71y v ziW
=6Vix v,V -
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The last term is computed by using the explicit formula for the Obata connection:

[M]
M«

2[VxY, Z)+2[Y,VxZ] = [[X,Y], Z] + [Jo[Jo X, Y], Z]+ [V, [X, Z]] + Y, J3[JpX, Z]|
ag:l B=1
= [X, [V 2]+ Y (X, Y] JaZ] + [JaY, [X, JaZ]))
=4[X, [y, Z]], h
where we used again the Jacobi identity. O

Theorem 3.50. The restricted holonomy group of the Obata connection on a Lie group with abelian
hypercomplex structure is abelian.

Proof. From the Ambrose-Singer holonomy theorem the holonomy algebra is generated by the curvature
endomorphisms and all its covariant derivatives. But the previous lemma shows that all covariant
derivatives of the curvature are again curvature endomorphisms. Therefore the holonomy algebra is
hol(V) = [gV,gV]. Since we know by Proposition 2.16 that g is necessarily 2-step solvable then also
gV is such. In other words [hol(V), hol(V)] = 0. O
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CHAPTER 4

LTHE QUATERNIONIC CALABI CONJECTURE: TWO
RESULTS OF SOLVABILITY

Here, we present two cases on which the quaternionic Calabi conjecture can be solved. The first, deals
with specific examples of 2-step nilmanifolds viewed as tori fibrations. The solution on these examples
is new because they cannot be Kéahler due to Benson and Gordon [35], hence, they do not belong to
the spaces on which the conjecture was solved by Alesker [14] and Dinew and Sroka [106].

The second setting is, in some sense, inspired by the first, and treats compact HKT manifolds
having a foliation that is preserved by the hypercomplex structure. In order to manage the terms we
make the assumption that such a foliation is of corank 4.

The two sections collect the results of [137, 138] respectively.

4.1 Abelian hypercomplex 8-dimensional nilmanifolds viewed
as tori fibrations.

The work of the present section takes off where [59, 60, 126, 289, 291, 309] stopped. Those articles
studied the symplectic Calabi-Yau conjecture [109, 322] on torus fibrations in the case the problem’s
data admits certain symmetries. In the same spirit, we study the quaternionic Monge-Ampeére equation
on compact quotients of on 8-dimensional 2-step nilmanifolds M endowed with an abelian hypercomplex
structure. We show that on these manifolds, regarded as tori fibrations, the quaternionic Calabi-Yau
problem can always be solved for any data that is invariant under the action of a 3-torus.

4.1.1 Preliminaries.

Overview.

By a result of Dotti and Fino [110] the only non-abelian 8-dimensional 2-step nilpotent Lie groups
admitting an abelian hypercomplex structure are

N1:H1(2)XR3a NZZHQ(]-)XRgv N3:H3(1)XR7

where H;(n) denotes the real (i = 1), complex (i = 2), and quaternionic (i = 3) Heisenberg group (cf.
example 2.17). As we shall see each N; contains a canonical co-compact lattice I';, and the nilmanifold
M; = T;\N;, i.e. the quotient of N; by T';, inherits the structure of a principal T3-bundle over a
5-dimensional torus T° and also an HKT structure (I, J, K, g). In view of [35] the nilmanifolds M; are
not Kahler, since a compact nilmanifold admits a Kéhler metric if and only if it is a torus.
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Moreover, the canonical bundle of (M;,I) is holomorphically trivial (Theorem 3.33) and M;
carries a left-invariant holomorphic volume form ©. Hence it is quite natural to wonder whether the
Alesker-Verbitsky conjecture might hold on these spaces.

Our main result is the following:

Theorem 4.1. The quaternionic Monge-Ampére equation
(Q+0050)" =eF'Qm. (4.1)

on (M;,I,J,K,g) can be solved for every T3-invariant map F € C*(M;,R) satisfying
/(eF—l)Q"Aézo. (4.2)
M

Since we are assuming F is invariant under the action of the fibre T2, it can be regarded as a
smooth function on the base T°. Furthermore, we shall see that condition (4.2) can be written as

/ (ef —1)dz'---da® =0. (4.3)
T5

By imposing the same invariance property on the HKT potential ¢, we reduce the quaternionic
Monge-Ampére equation on (M;, I, J, K, g) to
(P11 + P22 + a3 + aa + 1) (55 + 1) — @15 — 035 — 035 — a5 = €', (4.4)

where ¢,.; denotes the second derivative of ¢ in the real coordinates 2", x° € {z!,...,2°} on T°. Then
we prove that equation (4.4) has a solution ¢ € C°°(T®) whenever F satisfies (4.3).

We mention that Fusi studied in [130] a class of fully non-linear elliptic equations on tori which
includes and generalizes the solvability of (4.4).

Writing the equation.

Let G be an 8-dimensional Lie group with a left-invariant hypercomplex structure (I, J, K). Assume
that I is abelian, meaning

[IX,1Y]=[X,Y], forevery X,Y €g,

where g is the Lie algebra of G. Recall that this is equivalent to requiring that the Lie algebra g'©
of left-invariant vector fields of type (1,0) on (G, I) is abelian. It also implies that any left-invariant
(p,0)-form on (G,I) is O-closed. If g is a left-invariant Riemannian metric on G compatible with
(I, J, K), the hyperhermitian structure (I, J, K, g) is HKT because the corresponding form {2 is d-closed.

As mentioned, by [110] the only 8-dimensional nilpotent, non-abelian, Lie groups carrying a
left-invariant HKT structure (I, J, K, g) such that (I, J, K) is abelian are

Ny = Hy(2) x R?, Ny = Hy(1) x R?, N3 = Hs(1) x R,
where
14 1
(1) xl xO ‘7;3 1 2t 4+ 3 +iy?
Hq(2) = S| P, H(1)=< 10 1 R Fa E
0 0 1 =z 0 0 1
0 0 0 1
1 ¢ h—3qq
Hs(1) = 0 1 —q | ¢ = 2! +izt + jad + ka? h =iy + jy* + ky'
0 0 1

Above, ', ... 2% y',y%, % € R.
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Note that each group N; is diffeomorphic to R, and there are global coordinates

Ny = H1(2)x17._,x4 gl X R3, Ny = Ho(1) 1 s x R?

y2 y3,x5 ezt Y2y yl x5
N3 = H3(1)x1,...,x4,y1,y2,y3 X Rys .
The Lie algebras of the N;’s can be characterized in terms of left-invariant frames (eq,...,es)

(corresponding to the ordered coordinates 1, x2, T3, T4, Y1, Y2, Y3, T5) satisfying the following structure
equations:

Ny: [e1,e2] = —[es, eq] = e5, and all other brackets vanish;
Ny:  [e1,e3] = [ea, e4] = e, [e1,€4] = —[ea, €3] = €7, and all other brackets vanish;
N3: [e1,e2] = —les,eq] = €5, [e1,e3] = [e2,€4] = €6, [e1,€4] = —[ea, €3] = e7, and all other brackets
vanish.
In each case, using the frame (eq, .. ., es) we can define the left-invariant HKT structure as consisting

of the standard metric .
r=1
and the hypercomplex structure (I, J, K) defined by
161:62, J61:€37 K€1:€4, 165:(367 J65:€7, K65:€8.

Let us fix co-compact lattices

1 a c
Iy =73 x 0 1 b ||abeZ? ceZy C Nyi;

0 0 1

1 z wu

0 1 w||uzw€e€Z+iZy C No;

0 0 1

1 q h—1qq

—7zx{ (o 1 i | q€ZviZ+jZ+kL, heil+jZ+kLZy C Ny.

0 0 1

For r = 1,2,3 we denote by M, = I';\ N, the compact nilmanifold obtained by quotienting N, by
;.. The left-invariant quadruple (I, J, K, g) on N, induces an HKT structure on M,.. Let {Z1,...,Z4}
indicate the left-invariant (1, 0)-frame Z, = %(egr_l —iley, 1), 7 =1,...,4, and denote by {¢!,...,(*}
the dual (1,0)-coframe. We deduce the following identity, holding for every smooth real map ¢ on M,

800 =0J 19 = =0 (Z1(p)C" + Za(op )C_Z + Z3()C* + Za(9)C)

=0 (Z1(9)C* = Za(p)C' + Z3(9)¢* = Za(9)C?)
=(212,(0) + 2222(0)) C* + (23 Z2(p) — Z124()) ¢ + (ZaZa() + 21 Z5(9)) ¢
~(2321(0) + Z2Z4(9)) C*° + (Z225(p) — ZaZ1(0)) C** + (Z3Z3() + ZaZa(y)) .

Since o
it follows that
(@ +00,0) = 2( (Z121(0) + ZaZ(p) +1) (ZSZS( )+ ZaZa(p) + 1)
— (Z32Z2(0) — Z124(9)) (Z2Z3(0) — ZaZa(0)) (4.5)
— (Z4Za(9) + 21 25(9)) (2371 (0 +ZQZ4( )))g1234.
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Furthermore, every manifold M; is naturally a principal T3-bundle over T° with projection

7w M; — Tafl’__,

7m5 .
More in detail, if n; is the Lie algebra of N; we have a short exact sequence:

0 — [ ] — i — M 1 —0 (4.6)

where [n;,n;] = Span(es, e, e7) and n;/[n;,n;] = Span(ey, ea, €3, eq, eg). Since N; is 2-step nilpotent
the commutator lies in the center, therefore both [n;,n;] and n;/[n;,n;] are abelian subalgebras.
Exponentiating and quotienting by the lattice I'; the short exact sequence 4.6 induces the principal
fibration

0— T3

yly?y3 M; ? Tz51,...,z5 — 0.

A smooth function on M; is invariant under the action of the principal fibre 7% if and only if it depends
only on the five coordinates {z!,...,2%}. What is more, T3-invariant functions on M; are naturally
identified with functions on T°. As mentioned above, for a T3-invariant real map F condition (4.2)
becomes (4.3). Further assuming that the HKT potential ¢ is T3-invariant, writing (4.5) in terms of
real derivative and renormalizing in a suitable way, the quaternionic Monge-Ampeére equation (4.1)
can be written as (4.4) on 7°.

Remark 4.2. The Lie algebras of the 2-step nilpotent Lie groups N; all have 4-dimensional center

3 = (es,e6,e7,eg). Therefore the nilmanifolds M; can be regarded in a natural way as principal

T*-bundles over a torus T* if we project onto the first four coordinates (x!,...,2%). From this point

of view, requiring all data to be invariant under the action of the fibre T implies that the resulting
equation can be written as the following Poisson equation on the base T

Ap =11+ @+ P33+ paa =€’ — 1.
And this can be solved using standard techniques.
From this point on we shall focus on equation (4.4). In order to simplify the notation let us set
A=pn+pa2+test+euatl, B=psp+1.
Lemma 4.3. If ¢ € C*(T°) is a solution to (4.4), then A > 0,B >0 and
0<2?<Ap+2. (4.7)

Proof. From equation (4.4) we infer AB > ef” > 0. Hence A and B have the same sign. At a point pg
where ¢ attains its minimum we must have s5(pg) > 0. This implies B > 0 and then A > 0. Finally,
by using A% + B2 > 2AB we obtain

(Ap+2)2 = (A4 B)? > 4AB > 4ef" > 0.
Taking the square root produces (4.7). O

Proposition 4.4. Equation (4.4) is elliptic. More precisely, if p € C*(T®) denotes a solution to (4.4)

then
4

AZ+BE+G+E+6)-2> ekl 2 A)E+8+8+4+8) (4.8)

i=1

for every (€1,62,83,84,85) € R, where
Ap) = % <A+B— (A+B)2—4eF) :
Proof. The principal symbol of the linearized equation at a solution ¢ equals
AL+ B(EF 4+ 65 + 6+ £3) — 20156165 — 20256265 — 20358385 — 20456485

88



4.1. Abelian hypercomplex 8-dimensional nilmanifolds viewed as tori fibrations.

and the corresponding matrix is

B 0 0 0 —ois
0 B 0 0 —®a5
Ple)=| 0 0 B 0 —psy
0 0 0 B —us

—p15 —p25 —@35 —p45 A
Since, by (4.4),
det(P(p) — AI) = (B — \)* ((A —A)(B =X\ — (15 + 35 + 035 + ‘Pis))
=(B-XN*(N—(A+B)A+e"),

the eigenvalues are A = B and
1
Ay = 3 <A+Bi (A+ B)? —4eF) .

Now (A + B)? — 4ef" > (A + B)? — 4AB = (A — B)?, so that
0<A <B<A,.

This proves the claim. O

4.1.2 Proof of Theorem 4.1.

CY-estimate.

Although the a priori C?-estimate for equation (4.4) can be deduced from the C%-estimate of the
quaternionic Monge-Ampére equation, as shown in [16, 18, 269], we shall prove this fact using an
argument that is specific to our setup.

Now, let us identify functions on 7° with functions ¢: R® — R that are periodic in each variable.
Denote by C™(T®) the Banach space of functions ¢: T° — R with C™-norm

leller = max sup \01g0(x)\
[T|<n eRr5

where I = {i1,...,i5}. We are adopting the multi-index notation 9’ = 9i* 95205 93 9% with |I| =
i1 +i2 +i3+is+i5. For a € (0,1) we also consider the Banach space C™%(T") of functions ¢ € C™(T®)
with Holder-continuous derivatives of order n:

lellen.e = max{|l¢llcn, lplona} < oo,
where
0" p(x + h) — 3" p()|
|p|on.« = max sup sup .
l]=n zcR3 0<|h|<1 |h|>
Set
cirt)={pecha) | [ oo
K
where

5
k[ 117
2°2

Proposition 4.5. Assume that F € C°(T°) satisfies (4.3). Let o € C2(T®) be a solution to (4.4).
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Then there is a positive constant C, depending on ||F||co only, such that
[ollce < C. (4.9)

Proof. Let o € R® be a point where ¢ attains its minimum on K. Fix € > 0 and define

u(z) = ¢(x) — max ¢ + de|x — xo)? . (4.10)
Then
u(xg) +€=p(xg) —maxp + e < min r) —maxp +e€ = min  u(x
(o) plzo) —maxp+es min p(r) - maxe o Din u(@)

and by Proposition 2.56 we have
g5 < 05/ det(D?u) . (4.11)
r

€

Differentiating (4.10) twice gives D*u = D?p + 8. Hence we may rewrite equation (4.4) as
(u11 + ugo + Uz + usg — 326 + 1) (uss — 8¢ + 1) — uls — uls — uss — uls = el | (4.12)

Now, on T'. the function u is convex, therefore the Hessian matrix D?u(z) is non-negative for all x € T'..
In particular u;;(z) > 0 for all t = 1,...,5 and every x € I'.. In addition,

wgi(x)uss(x) — u(x) >0, foralli=1,...,5, and every z € I'.. (4.13)

Set e = gy = 1/48, so that from (4.13) and (4.12) we obtain, for every z € T,

BUE) < 5 s (@) + () us0) + waa(a)) + s
4
< (un(fﬂ) + u2a(z) + uss(z) + uaa(w) + ;) (%5(1‘) + Z) - Zu?s(x) - 1%
— eF(fE) _ 3 < @MAXK F.
18 =

Using again the fact that D?u is non-negative on I';, the arithmetic-geometric mean inequality forces

5
det(D?u(z)) < (Au5(x)) < P maxi B for every z € I'y, . (4.14)

At last, (4.11) and (4.14) imply

5
1
= c5§/ det(D%u) < eP™maxx Fip_ |
48 r

€0

ie.
T (4.15)
where C' > 0 depends on maxg F.
Now observe that
u(z) < ul(zg) — Vu(z) - (zo — x) < u(zo) + % , for every z € I',,
that is
o(x) — max ¢ + deglr — zo)? < p(20) — max ¢ + % = m}}n(p —maxp + % , for every z € I', .
This implies
m}z{xxgofmlgncpgm;{mxgaf@(x)Jrl, for every z € ', .
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It follows that for every p > 1

)

1/p
s ([ foges o) =g
(m};{ixcp m&ngp)|Fgo| _(/FEO max ¢ p+1 max ¢ p+1

LP(Tey)
and since I';; C By /2(w9) € K + 0, we have
Hmaxgo—(p—&—l’ gHmaxap—go—&—l’ .
K LP(Tey) K LP(K)
Therefore, since [, ¢ =0, we have [|¢[/co < maxg ¢ — ming ¢. Then (4.15) implies
lellco < max g — ming < OV (Hmaw |+ 1) L w1l (416)
K K K LP(K)

By (4.7) we see that A(maxg ¢ —¢) < 2, and since maxx ¢ — ¢ > 0 we can apply Theorem 2.57 on a
ball centered at xo such that ¢(z¢) = maxg ¢ with maxg ¢ — ¢ in place of u, m =5, p=4/3, ¢ =6,
r =1/2 and R = 3. This eventually shows there exists a positive constant C' satisfying

_ < ; _ _
Hm}gxcp cp‘ sy S C (1%f (m}z{xxgp ga) + ||2||L3(K)) 2C'. (4.17)

Estimate (4.9) now follows from (4.16) with p = 4/3 and (4.17). O

(CC-estimate for the Laplacian.

In this section we shall prove a C%-estimate for the Laplacian of ¢. The technique we employ is an
adaptation of that found in [60].

Lemma 4.6. Let ¢ be a C? function on the n-torus T", fit u € R and pick a point py where
O = (Ap + 2)e ¥ attains its maximum value. Define

Nij = (Ap +2)(pij + ppivj) — Apij, 4,5 =1,...,n.

Then
nii(po) > 0, and /miun;; > |nij| at po,

for everyi,j=1,...,n.

Proof. We begin by differentiating ®:

O =e " (Ap; — p(Ap + 2)p;)

and
Di; = — pe " (0; Ap; + Apip;) + e M (A + 2)pip; + e (Apij; — p(Ap + 2)¢;;5) -
Since
Vé =0, Hess(®) = (®;5) <0 at po,
we infer

Ap; = p(Ap+2)p;  at po (4.18)
and thus ®;;(po) = —n;;(po). The Sylvester criterion then yields

nii(po) >0, and  n7;(po) < miiny;(po)

for every 1 < 4,5 < n and the claim follows. O
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Proposition 4.7. Let F € C?(T®) satisfy (4.3). There ewists a positive constant C, depending on
IE|lc2 only, such that
[Aglco < C(1+ llollcr) (4.19)

for any solution ¢ € CH(T®) to (4.4).
Proof. For starters,

4
Ae" = AAB+ AAB+2VA-VB -2 (IVeis|* + ¢isApis) . (4.20)
i=1

Let pp and n;; be as in Lemma 4.6 with

3

r= max(Ap + 2)

and € € (0,1) to be determined later. Then by using (4.8) with

&= Sgn(s%)\/mi? i=1,...,4, &= V155,
we find

4
#(Ap +2) <A(<p55 +ped) + BY (i + W?)) ADps; =B Z Ay —2 Z pistis > 0.

=1 =1 =1
AB N ,

AA

at po. Lemma 4.6 now implies

0is&ils = |@is|v/Miin/Ms5 > @isnis ,  at Do,
i.e.
0i5&is > pis (WA + 2)(wis + ppips) — Apis) at po -

Therefore we obtain

4
1Ay +2) (A(so5s +p3) + BY (i + 1p;) ) -2 Z @is (11(Ap + 2)(pis + ppips))

i=1
4
> AAB+ BAA -2 Z wisApis,  at po.
=1

By (4.20), and the definition of A, B, at the point py we have

Aef < u(Ap +2)(A(B—1)+B(A—1))+2VA-VB

4 4
12 (A +2) <A<p5 +BY %) —2u(Ap+2) Y (0% + ppispips)
=1 i=1
4

=2u(Ap +2) (AB - Z%%) —u(Ap +2)(A+B)+2VA-VB

=1
4
1 (Ap +2) (Aw?, + B+ 03+ 03 +9h) —2) %5%%)
=1

< 2u(Ap +2)e" — p(Ap +2)° +2VA- VB + 217 (Ap +2) (Ap? + B(o] + 03 + 03+ ¢3)) -

Observe that in the last inequality we used (4.8) with & = ¢;(pg) for i =1,...,4 and & = —p5(po)-
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By (4.18) we then have
2 (Ap +2)%|Ve|* = [VAp|? = [V(A+ B)|? = |[VA]* + |VB|* +2VA-VB > 2VA-VB, atpg,
and with the help of
Aps + B(p? + 93 + 03 + ¢3) < AlVo|? + BIVy|* = (Ap +2)|Vo|?
we deduce
u(Ap(po) +2)% < —Ae” (po) + 20(Ap(po) + 2)e” *) + 30 (Ag(po) +2)*[Veo(po) > (4.21)
Let us set
m = Ap(po) +2, o= p(po)-
Since pg is a maximum point for ®, clearly
max @ = me™H¥0 .
From (4.21) we obtain
pm? < [ Ae” || oo + 2umlle” o + 3u*m? | Vol (4.22)
Now fix a point p; where Ay + 2 reaches its maximum, and call 1 = ¢(p1). Then
m < max(Ap + 2) = et?1d < mer($1790) < pe?rliélico, (4.23)
By the definition of x4 and inequality (4.7) we have

2 1 .
< < o~ min(F/2)
max(Ap + 2) ©= gmin(F/2) - = ¢ ’

2p =
hence by (4.23)
£ exp (_e, min(F/2>||<p||CO> < ce2l9lo0 — jymax(Ap + 2)e~2#1ele0 < pm

and also _
exp (‘ef mln(F/Q)IISOIIfzo) max(Agp +2) < e ?I¢le0 max(Ap +2) <m.

Next we multiply the last two inequalities and use (4.22), recalling that um < e, to the effect that
gexp (—29* min(F/Q)HgOHCo) max(Agp +2) < HAeFHCU + 2€HeF||Co + 362\|Vg0||200 .

Put otherwise,

— min 1
|Aglion < exp (267 ™"/l o) ( || o + 20l s +3e||W|2co) ,

and by choosing
1

E= ———
L+ Vel o

the claim is straighforward. O

The next theorem will provide us with an a priori C!-estimate for ¢. Together with Proposition
4.7 it will give an a priori C%-bound for Ap.

Theorem 4.8. For all solutions ¢ € CX(T?) of equation (4.4) with F € C?(T"®) satisfying (4.3) there
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exists a positive constant C, depending on | F||cz only, such that
leller < C. (4.24)
Proof. Fix 0 < a<1andp= % > 5. Morrey’s inequality says

lellore < Crllellwzr

for some positive constant C; depending only on «. Elliptic LP-estimates for the Laplacian also
generate another constant Cy, still depending on « only, such that

lellw2r < Ca (lellr + 1A Lr) -
If p € C%(T®), the C-estimate (4.9) for ¢ and bound (4.19) for Ay imply
lellize +1A¢lle < llelloy + [[Apllco < Cs+ Ca(1+ [lellcr) -

Using standard interpolation theory (see [143, section 6.8]), for any & > 0 there is a constant P. > 0
such that
lpllor < Pellellco +ellellora,  for every g € CH(T?).

Putting all this together, we obtain
loller < PeCo + Ko (C3 + Ca(1 + [l¢llcr)) = PeCs + eC5(Cs + Ca) +eCsCallllcn

for some positive constant Cs, again depending on « only. This produces (4.24) once we choose

1

. O
CsCy

e<

Corollary 4.9. Assume that F € C*(T®) satisfies (4.3) and let o € CHT®) be a solution to (4.4).
Then there exists a positive constant C, depending on ||F||cz only, such that

[Agllco < C.

C?*“_estimate.

The C%*“-estimate for our equation (4.4) can now be deduced directly from the general result of Alesker,
Theorem 2.54. The HKT structures we are considering on M, are flat for the Obata connection because
N, is 2-step nilpotent (cf. [110, Proposition 6.1]). Hence the underlying hypercomplex structure is
locally flat. Moreover, for T3-invariant functions the quaternionic Laplacian acts as a multiple of the
usual Laplace operator, hence Theorem 2.54 and Corollary 4.9 imply:

Proposition 4.10. Assume F € C?(T®) satisfies (4.3). For every solution ¢ € C*(T®) to equation
(4.4) there exist a € (0,1) and a positive constant C, depending on | F|| cz2, ||¢|lco only, such that

lellgze < C.

Proof of Theorem 4.1.

In this section we shall use the previously established a priori estimates in order to prove the following
result. This will then imply Theorem 4.1.

Theorem 4.11. Let F € C°°(T°) satisfy (4.3). Then equation (4.4) admits a solution ¢ € C>(T®).

Proof. For t € [0,1] we define
Fy =log(1 —t + tel")
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and set

Sy = {p € C(T%) | (11 + P2 + P33 + paa + D55 + 1) — 035 — 035 — 025 — pls = e},

and S = [J;g(9,1) St- Clearly 0 € Sp, and Sy is the set of smooth solutions of (4.4). We thus need to
show that S # 0. For any t € [0,1] the map F} satisfies (4.3) and

max ||[F||cz < 00.
t€(0,1]

Proposition 4.10 therefore implies there exists « € (0,1) such that

sup [l¢]|cze < oo (4.25)
peS

Let
T =sup{t € [0,1] | S; # 0} .

We claim that S; # () and 7 = 1.

e S; # . Let {tx} C [0,1] be an increasing sequence converging to 7, and for any k € N we fix

o € Sy, Condition (4.25) implies that {¢y} is a sequence in C2*(T9), so by the Ascoli-Arzela

Theorem there exists a subsequence {4, } converging to some 1 in cxe/ 2(T5). The function

satisfies
(11 + Yoo + P33 + thaa + 1) (55 + 1) — 35 — Y35 — P35 — i = ef7.

In view of Proposition 4.4, equation (4.4) is elliptic, and elliptic regularity (see e.g. [282, Theorem
4.8, Chapter 14]) implies that 1 is in fact C°. Therefore S, # 0, as required.

e 7= 1. Assume, by contradiction, that 7 < 1, and consider the non-linear operator
T: C%*(T%) x [0,1] — C2*(T?)

defined by

T(p,t) = (p11 + a2 + P33 + pas + 1) (055 + 1) — 935 — 035 — O35 — P15 — el

Since S, # (), there exists ¢ € C°(T?) such that T'(¢,7) = 0. Let L: C2*(T?) — C*(T?) be
the first variation of T" with respect to the first variable. Then

Lu = Auss + B(ui1 + ug2 + us3 + taa) — 2C 1u1s5 — 2Cuss — 2C3uss — 2C4uas
where
A= (P11 + VY22 + Y33 + Yaa + 1), B = (¢55 + 1), Ci = s,

which implies that L is elliptic since ¥ € S.. The strong maximum principle guarantees L is
injective because Ly = 0 forces ¢ to be constant. Furthermore, ellipticity implies that L has
closed range, and Schauder Theory together with the method of continuity (see [143, Theorem
5.2]) ensures L is surjective. Hence by the Implicit Function Theorem there exists € > 0 such
that for every fixed t € (1 — €, 7 + €), equation

T(p,t) =0

has a solution ¢, which is additionally smooth by elliptic regularity. Therefore S; # @ for every
t € (1,7 + ¢€), which contradicts the maximality of 7. O
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4.1.3 Further Developments.

The manifold M, for instance, can be regarded as a T?-bundle over T, so it is quite natural to wonder
whether Theorem 4.1 might extend to T2-invariant functions (instead of T*-invariant).

T2-invariance.

We shall next describe this setup for M, and point out the differences from the T3-invariant setting
considered in Theorem 4.1.

From (4.5) the quaternionic Monge-Ampére equation (4.1) on (Ms,1,J, K, g) reduces to the
following PDE on the 6-dimensional base T° when the map F is T?-invariant

(P11 + w22 + 33 + @aa + 1) (@55 + Yes + 1)

— (35 — 926)° — (015 — ©16)> — (a6 + 015)° — (w36 + 25)” =, (4.26)
where ¢ is an unknown function in C°°(7°). By calling
A= @11+ P22+ @33+ pas +1, B = 55 + pe6 + 1
and
a1 = P35 — P26 , a2 = P45 — P16 a3 = P16 + Y15, a4 = P36 T P25,
we may rewrite (4.26) as
AB — 24: a? =eb. (4.27)
i=1
The above is elliptic and
B(&) + & + & +€7) + A& + &8) — 2a1 (€385 —Ea86) — 2a2(Eaés — E186) (4.28)

—2a3(&aé6 + £185) — 2a4(8386 + £285) > 0,

for every ¢ € RS, £ #£ 0.

In order to show that (4.26) can be solved, we need only prove an a priori C°-estimate for the
Laplacian of the solutions to (4.26). The natural approach consists in adapting the proof of Proposition
4.7 by mixing Lemma 4.6 with the ellipticity of the equation. In this case, however, it seems that
condition (4.28) should be replaced with a stronger assumption, one implied by the estimate

2(|azas| + |aras]) < e . (4.29)

Applying the Laplacian operator to both sides of (4.27) we get

4
BAA+ AAB+2VA-VB -2 ([Var* + axAag) = Ac”,
k=1
which readily implies
4

Ae” < BAA+ AAB +2VA-VB -2 apAax. (4.30)
k=1

Let pp be a maximum point for (Ag + 2)e™#%, as in Lemma 4.6, and

1 1
max(Ap +2) 1+ [[Ve|co
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Using (4.18), we see that the following relation holds at pg
w2 (Ap +2)2 Vo2 = [VAp|? = [V(A+ B)|? = [VA]? + |[VB|> +2VA-VB > 2VA - VB,

i.e.,

2VA-VB < 1i*(Ap +2)?|Ve|?. (4.31)
To produce an upper bound for BAA + AAB — 2 22:1 arAay we consider 7;; as in Lemma 4.6 and
§i = /Mii -
Then at py we have
§i&5 > migl -

Moreover,

la1](&3&s + &266) > |¢11|{|M(A<P + 2) (35 + pp3ps) — Apss| + [(Ap + 2)(p26 + p1p2606) — A<P26|}

> a1{M(A<P +2) (35 + Hp3ps) — Apas — (Ap + 2)(p26 + p206) + A<P26}
= u(Ap +2)(ai + arp(psps — p206)) — a1lar

at po, i.e.,
|a1](€a&s + E286) > u(Ap +2)(ai + pai(psps — pave)) — a1lday

at pg. Similarly,

|az|(€48s + £186) > u(Ap +2)(a5 + paz(paps — p166)) — azlay,
|as|(€486 + £1€5) > p(Ap +2)(a3 + pas(paps + p15)) — asAas
|ag| (€386 + &265) = (A + 2)(af + pas(psps + p2¢5)) — aslay

at pg. If we add up the last four inequalities and use (4.28) with &, = ¢, for k =1,...,4 and & = —ps,
&6 = —pg, we end up with

2|a1](§38s + &286) + 2]az|(E4s + £186) + 2[az|(€aés + £185) + 2]as| (€386 + E285) >

4

4
p(Ap +2) (Z(%i — uB@}) — pA(pE + w%)) —2) arAay
k=1

k=1

at po-
To handle the last inequality we need the following estimate
B(& +&+65 +€1) + A + &) =
2|a1[(€385 + &286) + 2]az|(§as + &1€6) + 2|as|(€ae + &165) + 2[aa] (€386 + &265) -

Notice this is stronger than (4.28).
In fact, if we assume (4.32), then

(4.32)

4 4 4
BY &+ A+ &) > p(Ap +2) (Z(Zai — uBe}) — nA(g3 + @%)) -2% arAay

k=1 k=1

at pg and, keeping in mind the definition of &,

4 6 4
BY G+ AE+&) = nAdp+2) (AZ Ok + 108) + B (prn + M)) — AAB — BAA,
k=1 k=5 k=1

at po.
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Therefore

6 4
1(Ap +2) (AZ Pk + 1er) + B (okk + u@i)) — AAB - BAA >
k=5 k=1

4 4

p(Ap +2) <Z 20} — pBy}) — pA(gl + <P§)> —2) arlay,
k=1

at pg, which implies

4

6 4 4
AAB + BAA -2 " apAay < p(Ap + 2) <AZ Ok +200%) + BY (orn +2u07) =2 a§>
k=1 k=5 k=1 k=1

1(Ap + 2) <2AB —(A+B)+2u(A+ B)|Vp[* =2 a§>

k=1
w(Ap +2) (26" = (Ap +2) + 2u(Ap + 2)| V)
at po. In other terms,

4
AAB + BAA -2 " apAay < p(Ap +2) (26" — (Ap +2) + 2u(Ap + 2)|V|?) (4.33)
k=1

at pg. From (4.30), (4.31) and (4.33) we finally deduce
p(Ap +2)? < —Ae” + 2u(Ap + 2)e” + 31 (Ap + 2)*| V|,

at po. At this juncture the a priori C?-estimate for Ay can be obtained as we did in Subsection 4.1.2.
Let us point out that requiring (4.32) for every & € RS is equivalent to (4.29). Indeed the quadratic
form

Q) =BE +E+&+&) + A& +&)
— 2|a1](&385 + £286) — 2|az|(€aés + &1&6) — 2|as|(§aée + £1&5) — 2|aa| (€386 + £2&5)

has matrix

B 0 0 0 7|a3| 7|ag|

0 B 0 0 —las] —laq

0 0 B 0  —la1] —la4]

0 0 0 B —|a2| —|a3| ’
—las| —las| —lar| —laz| A 0
—las| —la1| —las| —las] 0 A

which is positive definite if and only if

4 2
B* <A—B‘1Zai> — 4B~ (Jagas| + |ata4))® | >0

since B > 0. A direct computation tells that the last condition is equivalent to

2(|agas| + |aras]) < et .

Sl-invariance.

In analogy to the above discussion, the manifold M; arises as an S'-bundle over a T"-torus, and the
function F may be chosen to be S'-invariant. If so, the quaternionic Monge-Ampeére equation (4.1)
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reads

(P11 + w22 + 33 + Yaa + 1) (@55 + Ye6 + @77 + 1)
— (a5 — Y16 — 9027)2 — (35 + 17 — @26)2

— (36 + a7 + 8025)2 — (a6 — w37 + 3015)2 =el,
where ¢ is an unknown function in C°°(77).
Setting
A=pi1+ a2+ @33+ paa + 1, B = 55 + pes + 77 + 1
and
a1 = P45 — P16 — P27, Qg = P35 + P17 — P26 5
a3 = P36 + Pa7 + P25, a4 = P46 — P37 + P15,
the equation turns into
4
AB - al =e". (4.34)
i=1
The above is elliptic and
2,42 | 2 2 2 2 | ¢2
B(&+E& +&5+€5) + A& + &6 +&7) — 2a1(8aés — &6 — E267) (4.35)

—2a2(£38&s + &1&7 — &286) — 2a3(&386 + Ea&r + £285) — 2a4(&aés — §3&7 + &1&5) > 0,

for every £ € R7, € # 0.
We proceed as in the previous case, and choose py and 7;; as in Lemma 4.6 and

1 1
max(A¢ +2) 1+ [[Vellco”

u:

resulting in

4
Ae < BAA+ AAB + > (Ap +2)°|Vp> = 2) " arAay,  at po.

k=1
Set & = /1 and apply Lemma 4.6 to obtain

|a1|(€4€s + €16 + &287)
Zlall{lu(Aw +2)(ipa5 + ppaps) — Apas| + |(Ap +2)(p16 + pp1ps) — Apiel
+ [(Ap + 2)(p2r + pp2pr) — A<P27\}
Zal{u(Aso +2)(pas + ppaps) — Apas — p(Ap + 2)(p16 + wp196) + Apie

— (A + 2) (27 + ppapr) + A<P27}
=u(Ap +2)(a] + a1p(paps — 16 — P2007)) — a1lay

at po, i.e.

|a1|(E4&5 + G166 + E267) = (A + 2)(af + par(paps — p196 — P2¢7)) — a1lday
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at pg. From that we deduce

laz|(£3&5 + £1&7 + &2€6) = (A + 2)(a3 + paz(pses + p1p7 — P296)) — azlas
las|(€3€e + Ea€r + Ea€s5) > u(Ap + 2)(a2 + pas(p3ps + papr + paps)) — asAas
laa| (€& + &367 + £1&5) > (A + 2)(af + pas(paps — 307 + @195)) — aslay,

at pg. The sum of the previous four inequalities, together with (4.35), yields

2|a1|(§4&s + 186 + E2&7) + 2az|(§385 + 167 + E266)
+2|as| (€386 + Ea&7 + £285) + 2]aq|(Ea&s + E3&7 + £185)
4 7 4
> Ay +2) (Z@ai — pBgp) —pAY wi) —23 arAay
=1

k=1 k=5

at pog.
We need the following estimate

B +&E+&+&) + A+ &+ &) —2lar|(€aés + & + E267)

— 2|az|(&38s + €1€7 + &286) — 2]az|(§386 + Ear + €2&5) (4.36)
— 2|aq|(€aés + E387 + &1&5) > 0,

at pg, which is stronger than (4.35). Once this has been established, the result follows.
To prove (4.36) one has to show that the quadratic form

Q) =BT+ & + & + &) + A + & + €2) — 2|ar|(&as + &1&6 + E267)
— 2|az|(&385 + &167 + 286) — 2|as|(E38s + Eaér + 265) — 2|aa|(Eaées + E3&7 + &165)

on R7 is positive definite. This is equivalent to demanding two things:

62F — 4(|(12a3| + |a1a4|)2 > O,

e —4e ((lazas| + [araa))® + (laras| + azaal)® + (Jaraz| + lasaa)?)

— 16 (Jazas| + |aras]) (Jaras| + |azaq|) (Jaraz| + |asaq|) > 0.

We wrap up this overview of our future plans by observing that there exist torus fibrations whose
hypercomplex structure is not locally flat. On these spaces Alesker’s Theorem cannot be applied, so
once the C%estimate of the Laplacian is at hand one needs to prove the C?“-estimate by alternative
arguments.

We expect that the study of the equation on these explicit examples will give new insight for the
handling of the general case.

4.2 Foliated HKT manifolds.

Pursuing the approach of the previous section we study here the quaternionic Monge-Ampeére equation
on HKT manifolds admitting an HKT foliation having corank 4. We show that in this setting the
quaternionic Monge-Ampere equation has always a unique solution for every basic datum. This
approach includes the study of the equation on SU(3).
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4.2.1 Rewriting the equation.

Setting and statement of the main result.

When the bundles considered in the previous section are regarded as T%-bundles over a 7%, then the
equation reduces to the classical Poisson equation on the base (see Remark 4.2). Here we generalize
the construction to foliated HKT manifolds, where the foliation replaces the role of the fiber. More
precisely we consider the following setting:

We say that a foliation F on an HKT manifold (M, I, J, K, g) is an HKT foliation if
T, F is (I, J., K;)-invariant for every x in M,

where T'F denotes the vector bundle induced by F. A function f is called basic with respect to a
foliation F if X(f) = 0 for every X € I'(F), where T'(F) is the space of smooth sections of TF. We
denote by C%(M) the space of real C* basic functions on (M, F). Our main result is the following:

Theorem 4.12. Let (M,I,J, K,g) be a compact HKT manifold and let F be an HKT foliation of real
corank 4 on M. Then the quaternionic Monge-Ampére equation

(Q+0050)" =ber Q™ /M oVol, =0, FeCy(M). (4.37)

has a unique solution for every basic datum F € CF(M). Moreover the solution is necessarily basic.

Rewriting the equation.

Now we consider the framework of Theorem 4.12: let (M, I, J, K, g) be a compact HKT manifold
equipped with an HKT foliation F of real corank 4. We have the following

Lemma 4.13. Let p € C4(M). Then

(Q2+00;0)"

an =Ap+Q(Vy, V) +1,

where A is the Riemannian Laplacian of g and Q € T(T*M @ T*M) is negative semi-definite.

Proof. Since F, is I,-invariant for every z € M, then TF @ C splits as TF @ C = T F @ T®' F. Let
{Z1,...,Z2,} be a local g-unitary frame with respect to I such that

(Z3,..., Zop) =T(TOF).
Let us denote the conjugate Z, by Z for every r = 1,...,2n and suppose

J(Zag—1) = Z

55» forevery k=1,... ,n.

These assumptions imply that the HKT form of g takes its standard expression
O = ZlQ + Z34 N Z(anl)(Qn)

where {Z1,...,Z?"} is the dual coframe to {Z1,..., Zo,} and by Z¥ we mean Z' A Z7.
We can write

2n 2n
[ZT,ZS} :ZstZkv [ZT‘7ZS] :Z(Bf§Zk+BE§ZE) )
k=1 k=1

k
rs? 7-§7Br§ .

For a basic function ¢ we have

for some functions { Bk, B¥

Orp = —J0p =1 (Zi(9)2' + 2:() 2°) = Z:(¢) 2° ~ Z(¢) 2
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and
2n
00,0 = (ZnZ1(9)Z* — ZuZ3(0)Z*) + Y (= Zi(0)BLZ"™ + Z3(0) B}, Z™)
k=1 r<s
2n
= (ZnZy(9) 2" — Z),Z5(9) ZF") + Y (Z3(9) B}, — Zi(9)B})Z™
k=1 r<s
2n
=(Z1Z1(9) + Z2Z5(0)) 2" + > (Z1Z1(9) 2 — ZiZ3(9) ZF) + ) (Zs(9) Bl — Zi(9)B)Z™*
k=3 r<s

Since F is a foliation, B, = 0 = B2, for 2 < r < s, thus

2n 2n
0050 =(2121(¢) + Z22(0)) 2% + ) Y (Bl Zi(0) 2" + Bi1 Zi(0) 2™ = Bl Zi() Z*' — Bju Zy(0) ZM)
k=3 1=1
2n 2n
T (Za0)Bly — Zi(9)BR) 212 + S (Zy(9)BL, — Z1(0) )2 + S (Za(9) B, — Z1(¢) B2) 7
s=3 s=3

=(Z121() + Z2Z5(p) + B1yZ5(0) — B2 Zi()) 2"

2n
+ ) (BluZs(p) — BikZ1(0) + BipZ1(9) + Big Zi(¢) + BiaZa(p) + Bz Zs(0)) 2
k=3

2n
+ ) (B3 Z5(9) — B3, Z1 () — Bi1 Z1(p) — By Z1(9) — BiyZa() — By1 Z5()) 2" .
k=3

By setting

Pu(V) = B, Z5(p) — B Zi(p) + BliiZl(@) + B5Zi(p) + BZ§Z2(<P) =+ BIEQZ’(@) ;
Qr(Vp) = By Zs(0) — B3y Zi() — Bl Z1() — Bi1 Zi() — B Za(0) — Bl Z3()

we obtain
(Q + 881@)"

9 =1+ Z121(p) + Z2Z5(¢) + By, Z3(p) — B, Z1(¢)

+ ) (Poj(V9)Q2i-1(Ve) — Poj 1 (V) Q25 (V) -
j=3

Since the Nijenhuis tensor of J vanishes we have

0=[21,Z1) + J| 20, T Z5) + J[J 21, Z3) — [T 21, T Z4]
2n
SN B T+ B+ Bl + B IZ Bz, - BLZ)
k=1

and thus

2k—1 2k 2k—1 __
{Bu SRR SBLTS0

2k 2k—1 2k _
By + B35 - B3 =0,

2k

i1 B;gil, ng are purely imaginary, for k = 1 we deduce

Moreover, since Bf% -I'B

_ pl 1 _ 1 1 _ 2
_Bli+B2§__B11_BZ2__B21’
_ 2 2 2 2 _ 1
= —DBj; — By, = B, + B3, = =By,

,_/H
oo lllvy)
D= DI NI

=) =1
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but then B2, and B3, are both real and purely imaginary, yielding

B, =0,

B3, =0,

Bj; + By, =0,
Writing X, = Re(Z,) and Y, =Im(Z,) for r = 1,2, we see that

ZrZF(W) = (Xr + Z}/T)(XT - in)(‘ﬂ) = XTXT(SO) + i[YT7XT](<P) + YrYr((p)

and also
0="> (Bf; + BY) Zk(0) = (21, Z1) + [ Za, Zs)) () = 2i([Y1, Xu] + [Va, Xa]) ()
k=1
so that

Z175() + Z2Z5() = X1 X1(e) + Y1Y1(9) + XoXo (@) + YaYa(p) = Ap.

Furthermore, from the vanishing of the Nijenhuis tensor it easy to observe that

Q2j-1(Vp) = —Pj(Vyp),  Q2;(Vy) = Poj1(Vo).

Thus we finally obtain

(2 +09,90)" s 2
EEE2) 14 8p- 3 PV
k=3
The claim then follows by setting
Q(Ve, V) == |Pu(Ve)|*. O
k=3

4.2.2 Proof of Theorem 4.12.

From Lemma 4.13 it follows that under our assumptions for a basic datum F equation (4.37) reduces
to

Ap+Q(Vp, V) + 1 =be", / ¢Vol, = 0. (4.38)
M

We then focus on this last equation and prove its solvability in the general setting of a compact
Riemannian manifold.

CY-estimate.

In order to prove existence of solutions to (4.38) we need to show some a priori estimates. We mention
in passing that since we aim to study equation (4.38) on a compact Riemannian manifold we cannot
directly apply the known estimates for the quaternionic Monge-Ampére equation as they rely on the
HKT condition. The C° bound is obtained by using the Alexandrov-Bakelman-Pucci estimate.

Lemma 4.14. Let (M,g) be a compact Riemannian manifold, Q € T(T*M ® T*M) negative semi-
definite and F € C°(M,R). If (p,b) € C?(M,R) xR solves (4.38) then there exists a positive constant
C depending only on M, g, ||Q||co and F such that

lellce <€, < C.

Proof. First of all we bound the constant b. At a maximum point p of ¢ we have Vi = 0 and Ay <0,
therefore bef’®) —1 < 0 and thus b < e F®) < |e=||co so that the constant b is bounded.
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Let xg € M be a point where ¢ achieves its minimum and consider a coordinate chart centered at
xo. Without loss of generality we may identify this chart with a ball By (0) C R™ of unit radius, where
m = dim(M). Fix € > 0 and define

u(z) = o(x) — max ¢ + elz)?.
Applying Proposition 2.56 to u we have

e™ < cm/ det(D?u) . (4.39)
e

We aim to prove that D?u is bounded on I'.. Differentiating u we see that
Vu=Vp+2zx,  D?u=D%*p+2l,,,
where 1,, is the identity matrix. As a consequence u satisfies the following equation
Au —2me + Q(Vu — 2ex, Vu — 2ex) + 1 = be’ .

Set, for instance, € = 1. Now, since on I'; the Hessian D?u is non-negative, by the arithmetic-geometric
mean inequality we deduce

det(D?u(z)) < <Au(x)>m < ’Q(Vu(as) — 2z, Vu(z — 2x) + 2m — 1 4 bef'@ "

o .

< (IQllen [ Vu(w) — 20 + 2m + 1+ be"®

) <e

< <g||QCO +2m 4 14 b

for any « € I'y, where C' > 0 is a uniform constant.
Now we observe that

u(z) < u(0) — Vu(x) - (—z) < u(0) + % ) for every z € T'y
which implies
, 1 1
o(x) — max ¢ + |z]* < (0) — max ¢ + 5 =ming - max ¢ + 3 for every z € 'y,
and therefore )
mﬂz}xgo—mﬂ/ilncpgmﬁxcp—ap(x)—&—i, for every x € I'; .

It follows that for every p > 1 we have

1
m]\e/}xgp—go—i—i

S ‘

. 1/p< _ 1
(mﬁxgp mj\}[n@) Ty 7" < Hmﬁxcp w+ 5

Lr(T'h) Lr(B1(0)) .

Combining this with (4.39) and the fact that [, ¢ =0, we have

. <c|| |
max ¢ — ¢ < max ¢ — ¢

lellco < max g —ming < [Ty |77 5

LP(B1(0)) Lr(B1(0))

for every p > 1. In conclusion we only need to prove an LP estimate for maxy; ¢ — ¢ to obtain the
desired estimate on . Since @ is negative semidefinite we see from the equation that

AgozbeFleCeFfl,

where we used that b is uniformly bounded. This entails that A(maxy; ¢ —¢) < 1—Ce!”, and applying
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Theorem 2.57 to maxy; ¢ — ¢ with, 1 <p <m/(m —2), ¢ =2m, r =1/2 and R = 2 we infer

—

. 1 F
< _ 11 =
13, C < inf (maxgp gp) + 2”1 Ce"|

sl N Lm(Bz(o») <C,

Lr(B1(0))

as required. O

Higher order estimates.

For higher order bounds we need to recall the following two results:

Theorem 4.15 (Theorem 3.1, Chapter 4 [203]). Let Q C R™ be a bounded connected open subset.
Consider a semilinear elliptic equation of the following type

Au+ a(z,u, Vu) =0,
where the function a(x,u,p) is measurable for x € Q and arbitrary u € R, p € R™ and satisfies
(1+1pD) D Ipil + la(z, u, p)| < p(lul)(1 + |p)™
i=1

for some m > 1 and some non-decreasing continuous function p: [0,+00) — R. Let u € C?(Q) be
a solution of the given equation, then, for any connected open subset ) C § there exists a constant
C > 0 depending only on ||ul|coqy, p(||lullco)), m and d(Q',09Q) such that

lullcrany < C.

Theorem 4.16 (Theorem 6.1, Chapter 4 [203]). Let Q@ C R™ be a bounded connected open subset.
Consider a semilinear elliptic equation of the following type

Au+ a(z,u, Vu) =0,
where the function a(x,wu,p) is measurable for x € Q and arbitrary u € R, p € R™ and satisfies
lallcoy < 1,
for some constant pu; < co. Let u € C%(Q) be a solution of the given equation such that
Vullcooy < C,

then there exists a € (0,1) depending only on ||Vul|co(qy and py such that Vu € C%*(Q,R™). Moreover,

for any connected open subset Q' C €2 there ewists a constant C' > 0 depending only on ||Vullcoq), 11
and d(§Y,09) such that
HUHCI,Q(Q/) S C

We can then establish the higher order a priori estimates for solutions to (4.38).

Lemma 4.17. Let (M, g) be a compact Riemannian manifold, Q € T(T*M QT*M) and F € C°(M,R).
If (p,b) € C*(M,R) x R satisfies Ap + Q(Vip, V) + 1 = bel’, then there exists a positive constant
C' depending only on M, g, ||¢llco, b, |Qllco and F such that

[Apllco < C.

Proof. As an application of Theorem 4.15 with a = Q + 1 —bef, m =2, and p = ||Q||co + b||ef||co +
v/ + 1 we have that there exists a constant C' > 0 such that

Vellco < C.
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CHAPTER 4. The quaternionic Calabi conjecture: two results of solvability

Then from the equation we have
[Apllco <be” +1+(1Q(Ve, Vi)llco < C,

and the claim follows. O

Lemma 4.18. Let (M,g) be a compact Riemannian manifold, Q € T'(T*M @ T*M) and F €
CHB(M,R). If (p,b) € C*(M,R) x Ry solves Ap + Q(Vp, Vo) + 1 = bel, then p € C*+2:2(M,R)
for some a € (0, 3) and there is a constant C > 0 depending only on M, g, b, |[Vo|co, |Q|lco and F
such that

[ellgrrza < C.

Proof. Lemma 4.17 implies |[Vp|lco < C and we can apply Theorem 4.16 choosing the constant
w1 = |Q|lco + bllef’||co + 1 and deduce that there exist a € (0,1) and a constant C' > 0 such that

lellgre < C.

Then the equation implies the estimate ||A¢||co.« < C, which can be improved to a C%® estimate for
¢ using Schauder theory by assuming o < 3. Then ¢ € C?%(M,R) and by a bootstrapping argument
the claim follows. O

Now, we prove that equation (4.38) is always solvable.

Proposition 4.19. Let (M, g) be a compact Riemannian manifold, Q € T(T*M ® T*M) be negative
semi-definite and F € C*P(M,R). Then equation (4.38) admits a solution (¢,b) € C*+2(M,R) x Ry
for a € (0, 8).

Proof. Let F € C*#(M,R) and consider the set
S:={t'€[0,1] : (%) has a solution (i;,b;) € C**(M) x R, for t € [0,#]},

where
Apy + Q(Ver, Vipy) = bpe't —1, / ¢¢Volg =0 (+t)
M

and a € (0, B) is fixed.
S in not empty since the pair (¢g,bo) = (0, 1) solves () for ¢ = 0 and, therefore, 0 € S. In order
to prove the statement we need to show that S is open and closed in [0, 1].

To show that S is open we apply, as usual, the inverse function theorem between Banach spaces.
Let ¢ € S and (¢, b;) be solution of (x;), let By and By be the Banach spaces

Y s B

and let ¥: By x Ry — By be the operator

U(1),a) :=log (Aw + Q(vfa Vi) + 1) .

The differential \I!*wa,bf) :Bi xR — By is

An+2Q(Vn, V) ¢
Vsjpi,00) (1, €) = b b
i€ i

Since T': n +— An+ 2Q(Vn, Vy;) is a second order linear elliptic operator without terms of degree
zero, by the maximum principle its kernel is the set of constant functions on M. Moreover, since T has
the same principal symbol of the Laplacian operator it has index zero. Denoting with 7™ the formal
adjoint of T" we then have

dim ker(T™) = dim coker(T") = dim ker(7") — ind(T) = 1.
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Let p € C%%(M,R). Equation
An+2Q(Vn,Ve;) = celf 4 pb; ofF (4.40)

is solvable if and only if its right hand side is orthogonal to ker(7™), or equivalently to a generator
of ker(T*). This can always be accomplished by a suitable choice of the constant ¢ and, therefore,
there always exists a solution n € C**(M) to (4.40). Moreover the solution 7 is unique in B; because
I} a MVoly = 0. The differential Wy, 5,) is then an isomorphism and it follows by the inverse function
theorem that the operator ¥ is locally invertible around (¢;, b;), implying that there exists € > 0 such
that for t € [t,# + ¢) equation (*;) can be solved.

Next we prove that S is closed. Let {t;} be a sequence in S converging to some ¢ € [0, 1] and
consider the corresponding solutions (¢;,b;) = (¢¢;,b;) to (¥¢,). In view of Lemma 4.14 the families
{llejllco}, {b;} are uniformly bounded from above. Moreover, Lemmas 4.17 and 4.18 imply that the
family {¢;} is uniformly bounded in C*+22 norm. Consequently, by Ascoli-Arzeld Theorem, up to
a subsequence, ¢; converges to some @, € C*2%(M R) in C¥*2%norm and b; converges to some
b, € R. b; is in fact positive since from the equation we deduce that the sequence b; is uniformly
bounded from below by a positive quantity. The pair (¢y,b;) solves (;) and the closedness of S
follows. O

Proof of Theorem 4.12.
We are ready to prove Theorem 4.12.

Proof of Theorem 4.12. In view of Lemma 4.13 for every ¢ € C% (M) we have

(Q + 88J<,0)”

an =Ap+Q(Vp,Vp) +1,

where A is the Riemannian Laplacian of g and Q € T'(T*M ® T* M) is negative semi-definite.
Let F € C(M). Proposition 4.19 implies that the equation

Ap+Q(Vp, V) +1=bel", / ¢Vol, =0
M

has a solution (¢,b) € C*°(M,R) x R;. We observe that since F is basic, then ¢ is necessarily basic
too. Indeed by setting
YY) =AY+ Q(Ve, Vi) +1

we have that for every X € I'(F) condition X (F) = 0 implies

0=X(T(p) = V., (X(¥))

and since W, |, is a linear elliptic operator without free term, by the maximum principle X (¢) must be
constant and then necessarily zero. Hence (¢, b) solves the quaternionic Monge-Ampére equation and
the claim follows. O

As an explicit example we observe that Theorem 4.12 can be applied for instance to study the
quaternionic Monge-Ampére equation on SU(3) endowed with Joyce’s hypercomplex structure.

Example 4.20. Recall from Example 2.10 that Lie algebra of SU(3) splits in
su3)=bdoadf

where
[5,0]20, [bvﬂ:fv [D)ﬂ:fv [f’ﬂ:b@a’ [0,0]20.

In particular b @ 9 is a subalgebra of su(3) and induces a foliation F on SU(3).
Moreover there exists a basis (Xi,..., Xg) on su(3) such that the hypercomplex structure is given
by the following relations:
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e OnbPO= <X1,X2,X3,X4> as IXl = XQ, IX3 = X4, JXl = X3, JX2 = 7X4;
o on f= (X5, Xg, X7, Xg) as Tv = [Xy,v], Jv = [X3,v], Kv = [X4,v] for every v € .

The metric g such that (X7, ..., Xg) is an orthogonal frame is HKT with respect to (I, J, K). Hence
the foliation F induced by b @ 0 is (I, J, K)-invariant and all the assumptions of Theorem 4.12 are
satisfied. Therefore the quaternionic Calabi-Yau equation on (SU(3), I, J, K, g) can be solved for every
F-basic datum F.

For the sake of the reader we show explicitly how the proof of Lemma 4.13 works in the case of
SU(3). We have seen in Example 2.15 that the unitary coframe

1 1 1 1

A 5(X1 +iX?), 7%= §(X3 +iX4Y, 73 = —§(X5 +iX%), Z'= §(X7 +iX%)
satisfies

27t =0, 07% = —27'2 — 273 07% = —(1+30) 2", 0Z* = (3i — 1) 7.

For a basic function ¢ we have Z;(p) = Za(¢) = 0, where (Z1, ..., Z4) is the dual frame of (Z1,..., Z%),
and thus we obtain

0050 =~ 01 (Z3(¢) 2° + Z3(0) Z%) = 0 (Z3() Z* - Za(p) 2°)
= (Zs73(¢) + Z12a(9)) 2 ~ (2123(9) — (1 + 3) Zu(p)) 2"
+(Z1Z3(9) + (31 = V) Za(9)) 2 + ZaZ5(9) 72 — ZaZs ()2

which, using the following brackets (that can be deduced from those of the X;’s listed in Example
2.15):

(21,23 = Bi=1)Z3, (%1, 23] = —(1+30)Z5, (22, 25| =224, (22, 23] = =273,
simplifies to
900 = (Z3Z3() + Z1Z1()) 2 +223(p) Z%° — 2Z5(p) Z' + 224 () 2% +22Z5(0) 2% .
Taking into account that the HKT form is Q = Z12 4 Z3* we obtain

(Q+ 00,;p)>

o2 =1+ ZsZ3(p) + ZsZ5() — 41 Z3(0) 1> — 4] Z4()|?

in accordance with Lemma 4.13.
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CHAPTER B

LTHE QUATERNIONIC CALABI CONJECTURE: A
PARABOLIC APPROACH

We consider here the natural generalization of the parabolic Monge-Ampere equation to HKT geometry.
We prove that in the compact case the equation has always a short-time solution and when the
hypercomplex structure is locally flat and admits a compatible hyperkéhler metric, then the equation
has a long-time solution whose normalization converges to a solution of the quaternionic Monge-Ampere
equation. The result gives an alternative proof of Alesker’s theorem 2.53.

The results of this chapter are contained in [33]. We also mention the independent paper [333]
where the parabolic quaternionic Monge-Ampére equation is studied and its long-time behaviour is
described with techniques different from ours.

5.1 Preliminaries.

The parabolic quaternionic Monge Ampére equation.

Let (M,I,J,K,g) be a compact HKT manifold. Consider the space of smooth quaternionic €2-
plurisubharmonic functions:

Ho ={p e C°(M,R) | Q, :=Q+0d;¢ >0},

where the inequality “Q, > 0” means that €, is g-positive and therefore induces a new hyperhermitian
metric on M.
In the present chapter we approach the quaternionic Monge-Ampére equation

(Q+0050)" =bel" Q™| (5.1)
via the following geometric flow
Q+0050)"
Pt :log% 7Fa <p(:c,0) :07 (52)

where F' € C*°(M,R) is the datum and the solution ¢ is supposed to satisfy ¢(-,t) € Hq for every
t and the subscript ¢ denotes the derivative of ¢ with respect to the variable t. The same dynamic
approach was pursued on K&hler manifolds [69], on Hermitian manifolds [144, 275] and on almost
Hermitian manifolds [91].

Our main result is the following theorem which provides an alternative proof of Alesker’s Theorem
2.53.
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CHAPTER 5. The quaternionic Calabi conjecture: a parabolic approach

Theorem 5.1. Let (M,I,J, K, g) be a compact HKT manifold with (I,J, K) locally flat and assume
that there exists a hyperkdhler metric g on (M, I, J, K) with corresponding HKT form Q4. Then there
exists a long-time solution ¢ € C°(M x R, R) to the parabolic quaternionic Monge-Ampére equation
(5.2) such that

S AQz

Jar A

converges in C*-topology to a smooth function oo € C(M,R). Moreover if
ALY
S efm AQ2 ’

then (Poo,b) solves the quaternionic Monge-Ampére equation (5.1).

Now we describe the layout of the proof. Since (5.2) is strongly parabolic, it admits a unique
maximal solution ¢ € C*(M x [0,T),R).

Step 1. From the equation we directly deduce a uniform C° bound on ¢; (Lemma 5.4).

Step 2. The C? estimate for solutions of the quaternionic Calabi-Yau equation (5.1) then implies a
uniform bound on osc ¢ (Lemma 5.5).

Step 3. We use the existence of the hyperkéhler metric and the local flatness of the hypercomplex
structure in order to establish a uniform upper bound on Agzp (Lemma 5.6).

Step 4. A general result in [90] implies a uniform Holder estimate on the second derivatives of ¢,
thus a classical bootstrapping argument using Schauder estimates implies 7' = oo and a uniform
bound on [V¥yp| for k > 1 (Lemmas 5.7 and 5.8).

Step 5. We prove the convergence of ¢ using an argument due to Phong-Sturm [245] based on an
adapted Mabuchi-type functional (Lemma 5.9).

We point out that the local flatness of the hypercomplex structure plays a role in steps 3 and 4, while
the existence of a background hyperkéhler metric is only used in step 3.

Remark 5.2. Flow (5.2) can be regarded as a geometric flow in Hermitian Geometry. Here we assume
that the canonical bundle of (M, I) is trivial and we fix a g-real complex volume form © on (M, I). As
shown in [18] one has

(Q+00;0)" NO =i"(w —idIp)" AP, Q"AO =i"w" AP

where w is the fundamental form of (g, I) and ® is a real (n,n)-form which is positive in a weak sense.
By setting u = —¢ we can then rewrite (5.2) as

(w + i00u)™ \ ®

= — 1 F — . .
Ut og A +F, u(0)=0 (5.3)
Equation (5.3) reminds the parabolic k-Hessian flow
uy = log (+i09u)" Na +F, u0)=0 (5.4)

an

studied by Phong and Té on a complex n-dimensional Hermitian manifold (M, «) in [246], where
1 <k < nand x is a real k-positive (1, 1)-form. According to [246] (5.4) has always a long-time solution
whose normalization converges in C*°-topology to a solution of the k-Hessian equation. Equation
(5.3) differs from the parabolic n-Hessian flow since the role of a” is replaced by the form ® which is
positive in a weak sense and the theorem of Phong and T6 cannot be directly applied.
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Some useful identities.

We assume that the canonical bundle of (M, I) is holomorphically trivial and we let © be a g-positive
holomorphic volume form on (M, I). Note that Q™ A © is a real volume form; indeed, .J acts trivially
on top forms and thus Q" A © = JQ" A JO = Q" A ©.

The HKT metric induces the quaternionic Laplacian operator

005 N Qr-t
= nN———"

Agp = an

for ¢ € C°°(M,R). We recall that, from Lemma 2.28 we know that the integral of the quaternionic
Laplacian with respect to the volume Q™ A © is zero and it is a self-adjoint operator with respect to
the corresponding L?-product. Moreover the following formula will be useful:

OnAdgp AQP1 1 -
WAV ATE L g(on. 50). (5.5)

It is a direct consequence of 2.21.

The basic example of hyperhermitian manifold is given by an open set A of R*" with the standard
hyperhermitian structure

0 -1, 0 0 0 0 -1, O o 0 o0 -1,
1, 0 0 0 0 0 0o 1, 0o 0 -1, 0

o= 0 0 -1,/ Jo = 1, 0 0 o Ko=1o 1, 0 o |
o 0 1, 0 0 -1, 0 0 1, 0 0 0

where 1,, is the n x n identity matrix. In order to identify R*" with H", the real coordinates
on are taken as (zd,...,x0, o1, ... 2%, 24, ... 28 xi, ... 2%) and the quaternionic coordinates are
q" =z +ix] + jxh + kak.

Let Hyp™ (n) denote the set of positive-definite hyperhermitian matrices. We recall here some facts
following from the discussion carried out in Subsection 2.2.1. Any hyperhermitian Riemannian metric
g on (A, Iy, Jo, Ko) defines a smooth map G: A — Hyp™(n),

Grs = g(8q7‘, aqs) .
For instance given a local potential u for the HKT form 2 corresponding to g we have G = Hessyu,

where we recall that for any smooth function u: A — R the quaternionic Hessian matriz is defined as

1 1
(Hessgu)rs := Zu;s = Zaqraqsu.

Finally, we provide a lemma which will be helpful in the proof of the main theorem.

Lemma 5.3. Let U: A — Hyp ™' (n,H) be a smooth map and assume that there exists a point p € A
such that U(p) is diagonal. Let § be a hyperhermitian metric on A such that the induced matriz G is
the identity. Then

n 3 n
1 1 1 1
Aglogdet(U) = —= §j§j 7U”r2+§j AU,
glogdet(U) 47’st=1i:0 U Utt‘ t, 7,| 2 U..o9

at p, where the subindex “r} ” denotes the derivative with respect to the corresponding real coordinate.

Proof. Using Jacobi’s formula (1.15) we directly compute
3 3
OgrOgr log det(U) = Z 92 logdet(U) = Z d;rRetr (UﬁlU,z;;)
i=0 i=0
3
= Retr (~U U U 'WUar + U 'Usrar)
i=0
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and at the point p where U takes a diagonal form

n n 3
Aglogdet(U) = iZaqTaqr log det(U) = i > > Re(-U U urU'Upswr + U Ussarar)

r=1 r,8,t=1 =0
n 3 n
1 1 1 1
S D DS E A D DS
r,s,t=11=0 88 s=1 5%
and the claim follows. O

5.2 Proof of Theorem 5.1.

Let (M,I,J, K, g) be a HKT manifold with HKT form Q. Every ¢ € Hq induces a HKT metric g,
and a quaternionic Laplacian A, := A, . Consider the operator

(Q+0950)"

P:Hqg— C®(M,R), P(p)=Ilog an

F.

The first variation of P is

005 N (Q+ 83‘](,0)”71

P*|ga(w) =n (Q+ 00,0)"

= A1

Since A, is a strongly elliptic operator, equation (5.2) is always well-posed and it admits a unique
maximal solution ¢ € C*°(M x [0,T),R). Assume further that the canonical bundle of (M,I) is
holomorphically trivial and let © € A*%(M) be a g-real holomorphic volume form. We then denote

anpQ”/\C:)
fuQrne

CY-estimate.

We start by proving C° bounds for the time derivatives ¢, and @, and then use these to prove the
C? estimate for ¢. In what follows we denote by C all the uniform constants (which may be different
from line to line).

Lemma 5.4. There exists a uniform constant C > 0 such that
|90t($’t)‘ <C, |¢t($7t)‘ <C
for every (z,t) € M x [0,T).

Proof. Since
01, Q+0050)" 00y Q!

o118 on - on =Byt
@
we have
Pt = Aap@t
and the parabolic maximum principle implies the a priori C° estimate for ¢,. The estimate on @,
immediately follows. O

Lemma 5.5. We have
— mi <
max ¢ H]l\/l[n(p C
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and
gl < C,

for a uniform constant C' > 0.

Proof. Since |¢;| is bounded and
(Q+0050)" = "o Q"

for every fixed t, ¢(+,t) solves the quaternionic Monge-Ampere equation (5.1) with datum F + ¢;. In
view of the C estimate for solutions to the quaternionic Monge-Ampere equation (Theorem 2.52), ¢
satisfies the bound
— mi <C 5.6
max ¢ —minp < C, (5.6)

where C' depends only on (M, I, J, K, g) and an upper bound of max |F' + ¢;|. Therefore Lemma 5.4
implies that the constant C in (5.6) may be chosen so that it only depends on (M, I, J, K, g) and an
upper bound of max |F|. Now, let (x,t) € M x [0,T), since ¢ is normalized, there exist (y,t) such that
&(y,t) = 0, and thus we obtain |@(x,t)| = |g(z,t) — @(y,t)| = |¢(x,t) — p(y,t)] < C and the claim
follows. O

C%-estimate for the Laplacian.

Lemma 5.6. Assume that (I, J,K) is locally flat and that there exists a hyperkdihler metric § on
(M,1,J,K). Then
Agp < C,

for a uniform constant C'.

Proof. Let

Q = 2\/trgg, — ¢.
Fix T" < T and let (zg,to) be a point where @ achieves its maximum in M x [0,7”]. We may assume
without loss of generality that ¢ty > 0. Since (I, J, K) is locally flat, then in a neighborhood of zg we
can locally identify M with an open set A of H". Let G and G be the hyperhermitian matrices in A
induced by g and § respectively. We may further assume that G = Hessgv in A, that G is the identity
in A and that U = Hessg(v + ) is diagonal at z¢. Let u = v+ ¢. Then in A we have

Q=2/Aju—o
and the flow rewrites as

detU
det G

o = log

Computing at (xg,tg), we have

1 -1 11
ALQ = > oAy u P+ Agur ) — Avp.
- mr_luw( 2 Al Sl Bt ) o

Using (5.7) and applying Lemma 5.3 we infer
1

1
A . _ 1
VBTN T
1 1 X 5.1 1 "y

i o g 1 Agurr = Al F)| -
\/@< 4 =0 usg“ti|usmi| +;u glrr g (log det(G) + )> Pt

- T
r,s,t=11¢

0Q = Ay (logdet(U) — logdet(G) — F) — ¢4
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which implies

atQ - Ath =

n

1 1 1 1
- —|Asu > ==
VAzu <2Agu;uw| gt | 4

n

|Ust xr | AQ(IOg det(G) + F)) + App — 1

r,s,t=1 1= O
Using the Cauchy-Schwarz inequality and [14, Proposition 3.1] we obtain
n n

S [Agul?

r=1 T r=11

Il
(]
M-
S [
v

§
<

|
5|~
M-
M-
|-
il

N
(]

5
\(’;J:
»

8

;/
[ V)

IA
Sl
M- &
<
B
[
Fle S
i N
—
—~
<
»
»
Hﬂ
S~—
|
| =
>
Q
<
[
—
—
—~
<
w
w
8
~—"
n

r,s,t=1 i=0 r,s=1 =0
n 3
1 1 1
< iAqu E : Iust zT 2
Ugs U i
r,s,t=1 =0 ss Tt

i.e.

from which it follows
Ay(logdet(G) + F) Agy(logdet(G) + F)
\/A!}U \/Agu vt

at (z9,to), where we have used that it is a maximum point as well as the relation

OgatQ_AszSAtp@_

—gptSI—va—

Ayp=1-ALv

Hence
Ay(logdet(G) + F)
_—y
\/Aﬁu

at (xo,tp). Since || is uniformly bounded we obtain

Apu<1—

A@’U(l‘o,to) <C+ ¢ (58)

o uri(@o, to)

for a uniform constant C. In terms of u and G equation (5.2) writes as

uy = logdet (U) — logdet(G) — F
and then .
ut(x0,to) = log H uri (20, to) — log det(G(zg)) — F(x0) -

r=1

Lemma 5.4 implies that |u| is uniformly bounded and we deduce that

n
H Ui I]S(),to C

Thus in particular by the geometric-arithmetic mean inequality we have > ", u,7(xo,t9) > C. Since

A¢U($0, to) =

n
1
Urr(20)
r=1 )

Ury (.’Eo, tO
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by (5.8) we finally deduce

L <C.
= urr (2o, to)
Therefore
n 1 n 1 n—1 ,
Ay t = T 7t < T 7t S C.
gu(zo, to) ;U (z0,%0) < (n— 1) <; urr(wo,to)> Tl;[lu (0, 0)
It follows

2¢/Azu(z,t) < C+ o(x,t) — o(x0,t0) < C + oscp in M x [0,T'],

from which, using Lemma 5.5, we get
Agu S C

for a uniform C and the claim is proved. O

Higher order estimates and proof of Theorem 5.1.

Lemma 5.7. Assume that (I,J, K) is locally flat and that there exists a hyperhermitian metric § on
(M, I,J,K) such that Ay < C for a uniform constant C. Then for 0 < a < 1 we have

IV2¢llca < C
for a uniform constant C'.

Proof. We prove the result by applying [90, Theorem 5.1]. Note that the real representation ~v: H™" —
{H € R44A" - [0 HIy = JoHJy = KoHKy = —H } of quaternionic matrices introduced in Subsection
1.1.2 is monotonic in the sense that when Hi, Hy are hyperhermitian one has

Hy < Hy < y(H;y) <v(H2),

where H; < H; means that all the eigenvalues of Hy — H; are non-negative.
Let p: R¥4n 5 TH e R¥™4n  [(HIy = JoHJy = KoHKy = —H } be the projection defined as

1

P(N) i= 7 (N = IoNIp = JoN Jo — KoNKo).

Then for any real valued smooth function f and any hyperhermitian matrix H we have
y(Hessy f) = 16p(Hessg f), det(y(H)) = (det H)*.

Thus, once local quaternionic coordinates are fixed, working as in the proof of Lemma 5.6, we can
rewrite equation (5.2) as

1
ut =y log det (16p(Hessgu)) — log det(G) — F,
where u = v 4+ ¢ and v is a HKT potential of 2. We rewrite the last equation as
uy = P(p(Hessgu)) — logdet(G) — F (5.9)
where for N € Sym(4n,R) such that det N > 0 we set
1
P(N) = i log det(16N) .
Fix positive constants C; < Cs and let
g = {N S Sym(4n,R) : Cily, < N L CQ]].4n} .
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CHAPTER 5. The quaternionic Calabi conjecture: a parabolic approach

Then £ is a compact convex subset of Sym(4n,R). We observe that P and p satisfy the assumptions
in [90, Theorem 5.1]. Indeed

e P is uniformly elliptic in &;

e P is concave in &;

e p is linear;

e if N >0, then p(N) > 0 and C~Y|N| < ||[p(N)|| < C||N| for C uniform.

Therefore, if we show that p(Hessgu) € £ for a suitable choice of C; and C5 equation (5.9) belongs to
the class of equations considered in [90, Theorem 5.1].

Without loss of generality we can fix g € M and assume that G is the identity at zg. Our
assumption Agzp < C implies

> ur<C (5.10)
r=1
at xg for a uniform C' > 0 and thus
Hessyu < C1,, .
On the other hand, equation (5.2) writes as
uy = log det(Hessgu) — log det(G) — F'.
Thus by Lemma 5.4
H Ai = det(Hessgu) > det(G) el > o
i=1
where A1, ..., \, are the eigenvalues of Hessyu and C > 0 is a uniform constant. From (5.10) we also
infer Y | \; < C at x¢ which then implies a uniform lower bound for each \; at the point zg, but
such bound does not depend on x.

Therefore
C11,, < Hessyu < C91,, .

By applying v we get
C114, < p(Hesspu) < Colyy, .

Then we can work as in the proof of [91, Lemma 6.1].
We assume that the domain of u is B x [0,T) with B diffeomorphic to the unit ball in R4". If
T < 1, then Lemma 5.4 implies
lu <CT+C<C

for a uniform C and [90, Theorem 5.1] implies the result. If 7' > 1 we define, for any a € (0,7 — 1)

iz, t) :=u(x,t +a) — B><[ic?£+1) u(z,t)

for all ¢ € [0,1). We immediately deduce

Gy = log det(Hessy @) — log det(G) — F, sup |G(z,t)| < C.
Bx[0,1)

Invoking again [90, Theorem 5.1], chosen ¢ € (0,1) and o € (0,1) we have
IV2ullco (Bxfate.art)) = IV ca(Bxien)) < C
where the constant C' depends on € and «. As a was chosen arbitrarily in (0,7 — 1) we have

V2l

ceBxeT) <C,

and the lemma follows. O
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5.2. Proof of Theorem 5.1.

Lemma 5.8. Assume that there exists 0 < a < 1 such that ||[V2p|ce < C for a uniform constant C.
Then T = oo and for every k > 1

[VFollco < C

for a uniform constant C.

Proof. Our assumptions imply that the spatial derivatives of ¢ satisfy a uniformly parabolic equation
and uniform bounds on ||V¥¢||co with k& > 1 follow by Schauder theory and a standard bootstrapping
argument.

Now we shall prove the long-time existence. Assume by contradiction that the maximal time
interval [0,T") of existence of ¢ is bounded. Then the achieved estimates and short-time existence
would allow us to extend ¢ past T', which is a contradiction, thus 7" = cc. O

Lemma 5.9. Assume T = oo and that ||V¥¢||co is uniformly bounded for every k > 1. Then

Q" A O
@:=@—7IM

VLN C)
converges in C°°-topology to a smooth function po.. Moreover if

_ Ju 2" N0
N fMeFQ"/\é’

then (Poo,b) solves the quaternionic Monge-Ampére equation (5.1).

Proof. Let
_ Qn _ _
f(t) = /Mgotﬂw/\@z/MlogQ—iQ@/\@f/MFQ@/\@.
Using (5.5) we have
/ QZ’ n e
f = y A, + log WA“’% —FAppr | QN0
= / AL QLN O = / 00500 NQLTINO = —/ dpe NOypr NI AO
M M M
1 2 n Q)
— —% /M |6()0t ngQW A @ .

Differentiating again we obtain

1 1 _
"—_— [ 219 2(2"/\@——/ Il A QN O.
f on Ju 8t| wtlgw @ m M| ‘Ptlgw PPt iy,
Now 5
51109115, = =96 (5190, 001 @ 0p1) + 2Re g, (O, Dpr) - (5.11)

For the first term of (5.11) Cauchy-Schwarz inequality gives
~9p (5590, 001 © 1) < | Zigpla, 10012, < ClOpi]?,

because of how 2, and g, are related and the fact that €, and %Qq, are uniformly bounded in
Ck-norm for every k. For the second term of (5.11) using (5.5) again we have

1 = _ _
_—Re/ gcp((?A(pcpt, 8(,015)92 ANO = —2Re / aAwgot AN aj@t A Qg_l NS
n M M

_ ) _
= 2Re / A 00501 N Qg_l ANO = —/ (A¢<pt)2 QZ; A O
M nJm
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CHAPTER 5. The quaternionic Calabi conjecture: a parabolic approach

therefore
> _c/ Bpil2 2" 6.
M

Thus we have a non increasing smooth function f : [0, +00) — R which is bounded from below and
such that f”(t) > Cf’'(t) for some positive constant C. This implies that lim; ;. f'(t) =0, i.e.

t—o0

lim /M 0[5 QA AO=0. (5.12)

Now, ¢ has a uniform C'* bound and Ascoli-Arzela theorem implies that there exists a sequence
{tr} C R, t — oo such that @(-, ¢x) converges to some @, in C*-topology. Since

n fM(logg—%—F)Q”/\(:)
@tZIOgQi_F_ n = )
Sy mAe
by (5.12) we get

2

— 1 =12 On 0 —
0= tlggo/M |001ly, 25 A O =

M

Q2.
0 | log an —F
9¢
It follows that "

1 25, F=C
og on 1=

for some constant C', so that
n _ F+COn
Q3 =e Q.

This means that (Po,e”) solves the quaternionic Calabi-Yau equation. Finally, we prove that
lim; o P = Poo- Assume by contradiction that there exists € > 0 and a sequence t; — oo such that

[8(,tk) — Pocllo= > €
for every t;. We may assume that @(-,tx) converges in C*°-topology to ¢L . Hence

n _ _F+C'On
Q%C =e Qnr.
Since P and @ solve the same quaternionic Calabi-Yau equation, from uniqueness follows @, = @/
and the lemma is proved. O

Proof of Theorem 5.1. We put together Lemmas 5.4-5.9 proved in this section. Lemmas 5.4,5.5,5.6
imply that if ¢ solves (5.2), its quaternionic Laplacian Ay with respect to the background hyperkéhler
metric § has a uniform upper bound. Hence Lemmas 5.7 and 5.8 can be applied and (5.2) has a
long-time solution ¢ such that ||[V*p|co is bounded for every k > 1. Therefore, taking © = Q7
Lemma 5.9 implies the last part of the statement. O
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CHAPTER O

‘ MORE GENERAL ELLIPTIC EQUATIONS

Mainly motivated by a conjecture of Alesker and Verbitsky, we study a class of fully non-linear elliptic
equations on certain compact hyperhermitian manifolds. By adapting the approach of Székelyhidi
[280] to the hypercomplex setting, we prove some a priori estimates for solutions to such equations
under the assumption of existence of C-subsolutions. In the estimate of the quaternionic Laplacian, we
need to further assume the existence of a flat hyperkédhler metric. As an application of our results
we prove that the quaternionic analogue of the Hessian equation and Monge-Ampeére equation for
(n — 1)-plurisubharmonic functions can always be solved on compact flat hyperkéihler manifolds. The
results of this chapter have been obtained in [139].

6.1 Overview.

Setting of the problem.

Fix a ¢-real (2,0) form €, a smooth map ¢: M — R on a hyperhermitian manifold (M, I, J, K, g) is
called quaternionic Q-plurisubharmonic if

0, =0+ 00,0,

is positive.

Animated by the study of “canonical” HKT metrics, in analogy to the Calabi conjecture [67] proved
by Yau in [327], Alesker and Verbitsky proposed in [18] to study the quaternionic Monge-Ampére
equation:

Qr =beQf (6.1)

on a compact HKT manifold, where H € C*°(M,R) is given, while (¢,b) € C*°(M,R) x R, is the
unknown.

Following the parallelism between Hermitian and hyperhermitian geometry it is quite natural to
enlarge the study of the quaternionic Monge-Ampeére equation to a general set of fully non-linear
elliptic equations on hypercomplex manifolds. Here we adapt the description given by Székelyhidi in
[280] to the hypercomplex setting.

On a locally flat hypercomplex manifold (M, I, J, K), we can locally regard every g-real (2,0)-form
Q on M as a hyperhermitian matrix (Q7), i.e. as a n X n quaternionic matrix lying in Hyp(n).
Moreover, for a smooth real-valued function ¢ on M, the matrix associated to Q, = Q 4 99;¢ is
(QF,) = (Qs + 1057042 ). The matrix Hessuy := (prs) = (§050q4: ) is usually called the quaternionic
Hessian of .

Now we can describe the class of equations we take into account in the present paper.
Let (M,I,J,K,g) be a compact locally flat hyperhermitian manifold and let Q be a fixed g-real
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CHAPTER 6. More general elliptic equations

(2,0)-form on M (2 is not necessarily the (2,0)-form induced by g). For a smooth real function ¢ on
M let Qg :=Q+ 0050 and A = ngQ;-,';. The matrix (A7) defines a hyperhermitian endomorphism of

TM with respect to the metric g, i.e. A= g 'A*g. Note that in general, for quaternionic matrices
one does not have (right) eigenvalues in the usual sense, rather conjugacy classes of them. However
for hyperhermitian matrices there is a single real eigenvalue in each conjugacy class. Therefore, we
consider the function A: Hyp(n) — R™ which associates to a matrix A the n-tuple of its eigenvalues

A(A).

We can then consider an equation of the following type
F(A)=h, (6.2)

where h € C*°(M,R) is given and F(A) = f(A(A)) is a smooth symmetric operator of the eigenvalues
of A. Here f: I' — R, where I is a proper convex open cone in R™ with vertex at the origin which is
symmetric (i.e. it is invariant under permutations of the A;’s) and contains the positive orthant

Fn:{)\: ()\1,...,)\n) e R" | i >0,i=1,...7n}.
We further require that f: I' — R satisfies the following assumptions:

Cl) fi:= % >0 foralli=1,...,n and f is a concave function.
C2) supyr f < infys h, where supyr f = supy, cor limsupy_,, f(A).

C3) For any o < supp f and A € T we have lim;_,, f(t\) > 0.

Assumption C1 ensures that equation (6.2) is elliptic when ¢ is T'-admissible, i.e.
A (gET(Qz;s + s%)) cl.

Assumption C2 says that the level sets of f never touch the boundary of T', which also ensures that
(6.2) is non-degenerate and then uniformly elliptic once we have established the C? estimate.

An analogue framework was firstly considered by Caffarelli, Nirenberg and Spruck [66] in R™ and
later by Li [210], Urbas [296], Guan [152, 153] and Guan and Jiao [154] on Riemannian manifolds.
Székelyhidi [280] studied this framework in Hermitian Geometry for elliptic equations and Phong and
T6 [246] for parabolic equations. Székelyhidi’s work has been recently generalized in [92, 179] to the
almost Hermitian setting.

Statement of the main result.

Our main result is the following:

Theorem 6.1. Let (M,I,J,K,g) be a compact flat hyperkihler manifold, Q a g-real (2,0)-form, and
¢ a C-subsolution of (6.2). Then there exist o € (0,1) and a constant C > 0, depending only on

(M,I,J,K,qg), Q, h and ¢, such that any I'-admissible solution ¢ to (6.2) with sup,, ¢ = 0 satisfies
the estimate
[elloza < C.

In the above statement the notion of subsolution is the following;:

Definition 6.2. A function ¢ € C?(M,R) is a C-subsolution of (6.2) if for every x € M the set
(A (977 (@ +¢;,)) +Tw) nor"®

is bounded, where for any o > supyp f, I'? denotes the convex superlevel set T = {\ €T | f(\) > o}.

We remark that the assumption of admitting a flat hyperkdhler metric in particular implies that
(M, I,J,K) is locally flat.
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6.2. A priori estimates.

6.2 A priori estimates.

6.2.1 (%-estimate.

The C%-estimate for solutions to (6.2) is obtained by adapting [280, Proposition 10] to our setting and
by using the ABP method.

As a preliminary step, we prove an LP-estimate. From here on, we will always denote with C a
positive constant that only depends on background data and which may change from line to line.
It will be useful to observe that the domain I' of f satisfies

Fg{(Al,...,An)eR”|zn:/\i>O}. (6.3)

i=1
From (6.3) we have Retry(€Q,) > 0, where Q, = Q2+ 00;¢, which in turn translates into a lower bound
for the quaternionic Laplacian of ¢:
Agp = Retry(Q,) — Retry(Q) > —C'.
The next lemma gives us the desired L? estimate:

Lemma 6.3. Let (M,I,J, K, g) be a compact locally flat hyperhermitian manifold. If ¢ satisfies
Agp>C' (6.4)

for some (not necessarily positive) constant C’, then there exist p,C > 0, depending only on the
background data, such that
o —sup el < C.
M

Proof. Suppose for simplicity sup,; ¢ = 0. An L!-bound for ¢ can be obtained by using the Green
operator as in [15]. We give here some details for convenience of the reader. By a quaternionic
version of Gauduchon theorem [15, Proposition 2.2], there exists a g-positive (2n,0)-form O (which
might not be holomorphic) such that 99, (ngl A (:)) = 0. In addition, we may normalize © so that
S QA © = 1. By [15, Lemma 23], the quaternionic Laplacian admits a non-negative Green function
G(p,q) > 0, namely, for each function u of class C? and each point p € M,

[ G080 006 =uip) - [ w6,
qeM M

Choose a point p € M such that ¢ attains its maximum at p. Since we assumed sup,,; ¢ = 0 we have
el za =/ (o)W AO =~ G(p,0)Agp(a) % AO < C Glp,g) U AO<C.
M qeEM qeEM

Alternatively an LP-bound can be obtained by using the weak Harnack inequality as follows. Take
an open cover of M made of coordinate balls By, (x;) such that {B; = B,,(x;)} still covers M. Since
 is non-positive and it satisfies the elliptic inequality (6.4), the weak Harnack inequality (Theorem

2.57) implies
1/p
el = ([ -or) < (intt-)+1)
B; v

where p, C' > 0 depend only on the cover and the background metric. Since sup,; ¢ = 0 there is at
least one index j such that infp, (=) = —supp. ¢ = 0, and thus ||| z»(,) < C. This bound can
be extended to all balls B; such that B, N B; # Qj, indeed the estimate on ||| L»(p,) yields an upper
bound for infp, (—¢) as

inf(—¢) < inf (—¢) < ! llll < ! el
m - m - X7 17 1 — 1 N1 P . . _—_— P .
B\ = mine, P = Nol(B; 0 B;) e I BNED = Ny B A By ie | F I (B
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We can now reiterate the argument and in a finite number of steps we will have bound [|¢||zr(p,) for
each 7, and thus also ||| L (ar)-

Proposition 6.4. Let (M,I,.J, K, g) be a compact locally flat hyperhermitian manifold. If o,y are a
C-subsolution and a solution to (6.2) respectively, with sup,; ¢ = 0, then there is a constant C > 0,
depending only on the background data and the subsolution ¢, such that

lellco < C.

Proof. Without loss of generality we may assume that ¢ = 0, otherwise we could modify 2 to simplify
the equation. Since sup,; ¢ = 0, we only need to bound S = inf,; ¢ from below. For convenience, we
may assume S < —1, otherwise we are done.

Since ¢ is a C-subsolution there exist §, R > 0 such that

()\ (g;TQES) -1+ Fn> N or™® c Bxr(0), at every x € M, (6.5)

where 1 = (1,1,...,1).
Consider quaternionic local coordinates (q',...,¢") centered at the point where ¢ attains its
minimum S. We may identify such coordinate neighborhood with the open ball of unit radius
By = B1(0) € H" centered at the origin. Let v(z) = ¢(x) + ¢|x|? be defined on B; for some small

fixed € > 0. Observe that infp, v = v(0) = ¢(0) = S and infyp, v > v(0) + . These conditions allow
us to apply the ABP method (see Proposition 2.56) to obtain

Coe™ < / det(D?v), (6.6)
P
where Cy > 0 is a dimensional constant,

P= {xeBl | |Du(z)| < £

5 v(y) > v(x) + Du(z) - (y — x) for all y € Bl} ,

and Dv, D?v are the gradient and the (real) Hessian of v. Note that P C {z € By | D?*v(z) > 0} and
since convexity implies quaternionic plurisubharmonicity (see e.g. [9]), at any point « € P we have

Hessgv(z) > 0. Therefore Hessgp(x) > —51, where 1 is the n x n identity matrix. Choosing ¢ small
enough depending on g and &, we have

A (giT(Qis + w33)> €A (girﬂjs) —-01+4+71,, at every v € P.
On the other hand, equation (6.2) also gives
A (gjr(st + (p;s)) e i@ at every z € P.
These two facts, together with (6.5) imply |prs] < C on P and thus also vz < C. Combining a

calculation in [43] with [270, Lemma 2], or alternatively using directly a computation in the proof of
[15, Proposition 2.1], at any point € P we have

det(D%v) < 2*" det(Hessy(v))?,
where, on the right-hand side, “det” denotes the Moore determinant. Therefore, from (6.6) we see that
Coe®™ < OVOI(P) .

The definition of P entails that v(0) > v(x) — Dv(z) - > v(z) — /2, i.e. v(z) < S+¢/2 <0 for all
x € P. As a consequence for any p > 0

c|p
[ o / (—0)? = |+ 2| Vol(P).
P
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6.2. A priori estimates.

From the previous lemma we know that there is a p > 0 such that ||v||z» is bounded, therefore also
S = infps ¢ must be bounded. O

6.2.2 Laplacian estimate.

This section is devoted to derive a C°-estimate for the quaternionic Laplacian of solutions to (6.2) in
terms of the squared norm of the gradient. This step is the most involved in terms of calculations and
it is here that we use our strongest assumptions to have a locally flat hypercomplex structure and a
hyperkédhler metric compatible with it.

We follow Székelyhidi [280] and Hou-Ma-Wu [176], which in turn is based on an idea of Chou
and Wang [89] for the real Hessian equation. Our restrictive assumptions simplify quite a bit the
computations.

Preliminary results.
As declared in the overview, let F(A) = f(A(A)) be a symmetric function of the eigenvalues of

Apg = ngQ;—: = gh’(Qjs + ¢;55). We denote the derivatives of F' by

oF pest  O°F
8Ars ’ N aflrsaAAlt .

FT‘S —
Let Q)5 be the standard quaternionic coordinates on H™™ and let E®, be the real coordinates underlying
Qrs, .. Qrs = EX + El i+ E2j + E2 k. We have the following:
Lemma 6.5. The linearization of F' at ¢ is the operator
n —
B =Te Y Py,
r,s=1

Proof. With respect to the real coordinates ET; we decompose a matrix A € H™" as AJ*EP,. Define

the derivatives F* := % and the matrix H = (F"*). For a curve of hyperhermitian matrices A;
p

with respect to g we have

—F (Ay) = Z ZF” (A¢)(A})rs = Re F™* (Ag)(A})rs
r,8= p=0

Now, for each 1) € C?(M,R) and t € (—¢,¢), let (t) be a curve of I'-admissible functions in C%(M,R)
with ¢(0) = ¢ and ¢’(0) =+ and set A; = g~ (Q + Hessup(t)), then

d TS - s 7‘,,.
L{y) = @F (4¢) |t o = Re F"*(Ao)(A)rs = Re Z F"(Ao)g’ s - O
r,s=1

In order to prove the desired bound we will need the following preliminary lemma.

Lemma 6.6. Let supyr f < a < b <supp f and §, R > 0. Then there exists a constant k > 0 such
that for any o € [a,b], B € Hyp(n,H) satisfying

(M(B) —201+T,)Nnor? C Bgr(0),
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A € Hyp(n) satisfying AN(A) € OT'7 and |A(A)| > R, we have

cither Re F"*(A) (Bys — Aps) > £ Y F'"(4),
r=1
or FSS(A)>F«'ZFM(A), foralls=1,...,n.
r=1

Proof. The lemma follows from the very same argument as [280, Proposition 6] together with the
quaternionic analogue of the Schur-Horn theorem (Proposition 1.46). O

The main result of this section is the following:

Proposition 6.7. Let (M, 1,J, K, g) be a compact flat hyperkihler manifold. If @, ¢ are a C-subsolution
and a solution to (6.2) respectively, then there is a constant C' > 0, depending only on (M, I, J, K),
glicz. [Ihllcz, €2, [lellco and @, such that

1Agellco < C([IVellEo +1) -

Here V denotes the Obata connection on M.

Perturbation of A.

We observe that at a point where A is diagonal with distinct eigenvalues we have

0N
A= D = 5,8,

rstl __ 9%Ny -\ 9is0itdr ) 94i19ir0st
© A= gaaay = (U 0 S (1= 0i) R

(see e.g. [141, 268]). Furthermore, since F(A) = f(A(A)) for f symmetric, then F"® = §,f,, and since
f is concave and satisfies f; > 0 (assumption C1 in the overview), then F is concave and % <0.
In particular f, > fs anytime )\, < )\s. Finally, we observe that by [280, Lemma 9 (b)] for any fixed
x € M there is a constant 7 > 0 depending on h(z) such that

iF““(x) >7>0. (6.7)

We will mainly be interested in the largest eigenvalue A; of the matrix A around some fixed point .
As pointed out by Székelyhidi [280] in order for A;: M — R to define a smooth function at z¢ we need
the eigenvalues to be distinct; to be sure of that, we perturb the matrix A.

At any fixed point £y € M we can perturb A in order to have a matrix with distinct eigenvalues.
Indeed, fix quaternionic local coordinates around the point xg such that, at zq, A is diagonal and its
eigenvalues satisfy

A=A > 2 A (6.8)

take a constant diagonal matrix D whose entries satisfy
0=D11 < Doy <-+-< Dy .
The matrix A = A — D has, at z¢, the eigenvalues
M= M1, Ni=XN—Dy, fori=2,...,n,

which are distinct by construction.
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6.2. A priori estimates.

C%-estimate for the Laplacian.

We will make use of the linearized operator L defined by L(u) = 4Re Za 1 g% uzp, where
Ugp = %6qcaqbu. First of all, we prove the following inequality for L (2\/ /\1).
Lemma 6.8. With respect to quaternionic local coordinates around xo such that (grs) is the identity
at To and (QF,) is diagonal at zo, we have

2

. F‘m|Q11 CF
L2vA ) >— 2 ,
( 1) 2 SRV VAL

where F = Y0 F*(z), Qfl “ 8anif1 and C' > 0 is a positive constant depending only on

(M, I, J, K), [|Q]c> and [|h]c=

Proof. We have for the perturbed matrix Apg = Apg — Dyybrg = 93 TQ;fS — D,..0,5 at the point x¢ where
(grs) is the identity and A (and thus (F"*)) is diagonal

3

(o) s (1), - () -5 () o

a p=0 THTH p=0

where the subscript z;; denotes the real derivative with respect to the corresponding coordinate. Using
the formulas for the derivatives of the eigenvalues we obtain at xg

3 __\rs jA ©
Mz = Ni* Ay o = OF

11 Ty

rl x“Alr 3 + Alr xP Arl Ly

rs,lt § :
)\1 zgxs = )\ Ars zg Alt g + )\1 A’r‘s zgxd = + stl raga
r>1 )\1 o AT e
® 2
rl T Alr g + Alr maArl 3 i1 |QF1,x;‘ ©
=2 90 e = 2D S T
_ >\r Jjlagx )\1 o )\r TG T

r>1

where we used that the derivatives of D vanish because it is a constant matrix.
Differentiating the equation F(A) = h twice with respect to x}) gives, at the point xg,

Re F™* tleT ) th L + Ferfr zlzl = hr:})ré . (610)
We observe that
3 3
Z Qfl,zgzg = Z (Qil,zgz; + @ilzgzg) = 4911,&(1 + 4()0&ail = 4911,&11 - 4Q&a 11 + Z Qaa a: z
p=0 p=0

and thus, by (6.10) and (6.7)

Fee ZA1 —— ZQH vy = —Re FT ZQTS ¥ —CF > -CF

p=0
where we also used the concavity of F. Finally from (6.9) we have the desired inequality
N Fes Zp O(Q%Ol,xa)2 CF
L (2\/ )\1> > — £ — . O
221V VA1

Proof of Proposition 6.7. We have already seen that the Laplacian is bounded from below, as a
consequence of (6.3), therefore it is enough to obtain a bound of the form

At
o T S
IVellgo +1
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Define the function
G =2\ M+ a(|[Vel?) + B(e),

where
a)=-zho(1-55) . N=IVelEo+1,
1
B(t) = =25t + 5252 , S > |l¢llco , large constant to be chosen later,

and \; is, as before, the highest eigenvalue of the perturbed matrix A around a point xg, which we
choose to be a maximum point of G. The derivative of the functions a and § satisfy

— <d(|Vy¢]*) < ==, o =2(a)?, (6.11)

S<—p(¢) <38, g =1. (6.12)

At 29 we have L(G) < 0. Choose quaternionic local coordinates such that (grs) is the identity in
the whole neighborhood of o and (Q%,) is diagonal at zo. This is possible because we are assuming g
hyperkahler and flat. Then

3
0> 4Re PGy, = 4F**Gaq = F* > Gaope (6.13)
p=0

because F is diagonal at z9. We compute the derivatives of G at x:

0=Gas = (2\/&)
p § ,
ngzg = (2 5\1) + a// (Z((przg ©r + aprgomg)>

r=1

n
+a Z(@Fmg Pr + @F‘Prmg) + ﬂ/@xg )
r=1

+ o Z(@M’gmg@r + 2|90m:g |2 + SOFSDTI;:L’;) + ﬂﬂﬂoig + ﬁ/@xgxg .

r=1
Differentiating the equation F'(A) = h yields

FeeQ? = har at xp.

aa,z;

Using this, Cauchy-Schwarz inequality and (6.11) we have

n n

Q' F (praar + Prraa) = &' F* Y (Paarpr + PrPaar)

r=1 r=1

n
= O/ Z ((h’7_ - FaaQ{_la,T_')QOT + 907_(]7'7 - FaaQ&a,r))
r=1

> —%(Nl/z +NY2F) > —CF,

where we used (6.7) to absorb the constants into CF. Again using (6.11) we also obtain

n 3 n 3 3
1 1 8
! Thaa 2 aa 2 aa 2 _ aa, 2
200F E E |90ng| 2 ﬁF E E 903::1'30; > ﬁF @xga:g - NF ¥aa
r=1 p=0 r=1 p,q=0 p=0
= B peagy, - 0u)2 > 2PN _OF
- N a aa) Z N a )
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6.2. A priori estimates.

where, for the last inequality we used that (a + b)% > %aQ — b2, Thanks to the last two inequalities,
from our main inequality (6.13) we get

3 n 2
= 2Faa>\2
0>1 <2 )\1> +a/ F* § <2§ :Re(gomggor)> +B"F | @a|? +48' F*pgq + —="% —CF. (6.14)
p=0 r=1
By Gua(z9) = 0 we have
n 2 (9} 2
11,z
O//Faa (2 E Re(@mg%-)) — 9Faa ( \/)TP +6/§0xz>
r=1 ! , (6.15)
Faa(inl ) 2e
> 9 Ty _ / 2Faa 2a
Z 2e—r N COR

where we used the inequality (a + b)? > ea® — $5-b*, which holds for ¢ € (0,1). Summing (6.15) over
p and combining it with Lemma 6.8 we obtain from (6.14)

Fee|Qf) 2 2¢(B)? 2[aa )2
0> (4ey/M —1) ——2Le ) Rl 2 4 48" FOa, « _CoF. (6.16
> (1ev/h - 1) 2\ VAL +(ﬁ 1—s> pal” + 45 F paa + = F. (616)

Choosing e = 1/(185? + 1) < 1, (6.12) implies

2e
1—¢

ﬁﬁ_ (6/)2 20.

Furthermore, we can assume without loss of generality A1 > ﬁ and deduce

Faa'QSf |2
4e/Ar — 1) — el oy
( fvAL v
Then we obtain from (6.16)
! aaq 2Faa>\3
0> 48" F*pgzq + N - CF. (6.17)

As before, we can assume ¢ = 0, otherwise we could choose a suitable background form 2 in order
to simplify the equation. Set B,s = ¢/"Q;, and let 6, R > 0 be such that

(M(B) — 201 +T,,)nar*® c BR(0),  ateveryxe M,

which exist because of the definition of C-subsolution. Supposing A1 > R we have [A(4)| > R and we
can then apply Lemma 6.6 according to which there exists £ > 0 such that one of the following two
cases occur:

o First case:

Re F™*(A)(Bys — Ays) = —Re Y F*(A)g/ g5, > 1Y F"(A),

r,s=1 r=1

ie. —F%yp;, > kF at xg, which for a choice of S large enough implies 45’ F%pz, — CF > 0
allowing us to deduce from (6.17) 0 > £ F**A2 which is a contradiction.

¢ Second case:

n
FSS(A)>K,ZFTT(A), forall s=1,...,n,
r=1

and in particular F'! > kF. Therefore F9)\2 > F11)\2 > xF)\?. Moreover, we can assume
Faa), < F*)\2/(12NS) for otherwise we would have kK FA3 < 12NSFA; and we would conclude.
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Then we have
aa )2

F
4P F " paa > —125F "\, = OF 2 ———=¢ —~ CF .

Substituting this last inequality into (6.17) we get

2

)\1

This gives the bound we were searching for at the maximum point ¢ of G, but by monotony of the
square root such bound holds globally, depending additionally on a bound for ||¢||co. O

Remark 6.9. Removing the hypothesis that the metric g is hyperkédhler one has to deal with its
derivatives. Most of the terms are not an issue and can be easily controlled, however those terms that
contain the third derivative of ¢ seem not to be straightforwardly manageable.

Remark 6.10. The function G used in the proof of Proposition 6.7 is basically the same as the one
used in [280], however we replaced the logarithm with the square root, a trick which is inspired by the
work of Alesker [14]. It seems that using the square root allows to simplify the argument.

Remark 6.11. Under an additional assumption the Laplacian can be controlled linearly by the
gradient. Indeed, if we further assume
F\, < ¢, (6.18)

which is the case for the quaternionic Monge-Ampere, the quaternionic Hessian, and the quaternionic
Monge-Ampeére equation for (n — 1)-quaternionic plurisubharmonic functions, we obtain the following
sharper estimate in the second case above, more precisely, from (6.17), F'' > xF and (6.18) we get

1142 2
0>48'F (N, — 1) + 2E N oF > agFee, + 2’;\1I+ (—48' —C) F
2K \2 2612 45’
>48'co + /;Vl]:+(—4ﬂ’—0)}'2 ’;V1f+<—4ﬂ’—c+ 5TC°>f,

where we have used F > 7 > 0 in the last inequality. Then we have

2

!
0> 2L _ <4ﬂ’+0—4600) ,
N T

which gives a sharper bound
A < C(1+[[Vellco) .

6.2.3 Gradient estimate.

In this section we show that a bound for the gradient of solutions to (6.2) can be obtained by using
a Liouville-type theorem. We adapt the approach of Dinew and Kotodziej [103] to our setting. The
blow-up argument was introduced in the setting of fully non-linear complex equations by Chen [80,
Section 3.2]. See also [108, Proposition 8] for an earlier similar rescaling argument (we also mention its
improvement in [255, Proposition 33]).

Blow-up analysis.
We introduce the following:

Definition 6.12. A continuous function u: H" — R is a (viscosity) I'-subsolution (resp. supersolution)
if for all ¢: H" — R of class C? such that u — v has a local maximum (resp. minimum) at p, we have
A(Hessgtp) € T' (vesp. A\(Hessgep) € R™\ T') at p. We say that u is a (viscosity) T-solution if it is both
a subsolution and a supersolution.
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6.2. A priori estimates.

We show that if the gradient bound for solutions to (6.2) does not hold, we are able to find a
bounded C1@ viscosity I'-solution u: H" — R with bounded gradient and such that |Vu(0)| = 1. In
particular u is non-constant. In the next section we prove a Liouville-type theorem for this kind of
functions, thus yielding a contradiction and showing implicitly that the gradient bound holds.

Let (M,I,J,K,g) be a compact locally flat hyperhermitian manifold. Consider a sequence (¢.);,

(©5)j, (hj); of real smooth functions on M and a sequence (2;); of g-real (2,0)-forms on M such that
p, are C-subsolutions and ¢;, h;, §2; satisfy

F (g7 (@) + ()8)) = hs
supyy 5 = 0. (6.19)
IVesllco >3-

Assume further that (fj)j’ (h;); and (;); are uniformly bounded in C?-norm.

Set Nj = [|[Vy;l|20, 9j = N;g and let z; € M be such that [V, (z;)[* = N; for each j > 0. Choose

quaternionic local coordinates (¢',...,¢") around z; for |¢*| < le/Q such that

(95)7s = 0rs + O(Nj|z]), ()rs = O(N;), hj = hy(x;) + O(N; Hal) -
Then |Vy; (xj)|§j = 1 and by Propositions 6.4 and 6.7 we have in this coordinates

||90j||C0 <, |A990j|9j <, on BN;/Z(xj)7
where C' > 0 is uniform in j. It follows by [143, Theorem 8.32] that (y;); is uniformly bounded in
Cl-norm for any « € (0,1). Furhermore, letting j — oo, we see that Q; tends to zero, while g; tends
to the standard Euclidean metric and (p;)rs stays bounded. Therefore

AA;) = M(j)rs) + O(N ), (6.20)

where (A;)5 = g5 ()7 + (05)%)-

By Ascoli-Arzela Theorem we can extract from (¢;); a subsequence converging uniformly in C1* to
some u: H" — R, moreover, such limiting function satisfies ||u||co < C, ||Vu||co < C and |Vu(0)| = 1.
We aim to prove that u is a I'-solution.

Suppose there exists 1 € C?, such that v — % has a local maximum at some point py € H". By
construction of u, for any € > 0 there are a j large enough, a € (—¢,¢) and a point p; with |p; —po| < €
such that p; — ¢ — ez — po|*> + a has a local maximum at p;. As a consequence the quaternionic
Hessian of v satisfies

€
Hessyy + 5]1 > Hessnyp; , at py,

where 1 is the n x n identity matrix. By (6.20), if j is large enough we see that A(Hessgvy) € I' — €1 at
p1 and letting £ — 0 we deduce A\(Hessyt)) € I at po because p; — po. This shows that u is a viscosity
I'-subsolution.

To see that w is also a I'-supersolution we proceed similarly. Suppose that u — 1) has a local
minimum at pg € H", then for any € > 0 there are j large enough, a € (—¢,¢) and p; € H" such that

©j — ¥ +elr — pol® + a has a local minimum at p;. Hence
Hessyy — %]1 < Hesspp; , at py .
By contradiction, suppose A(Hessgt)(p1)) € T’ + 2¢1, then A(Hessgy;(p1)) € I' + 2¢1 and for j large

enough (6.20) we have A\(4;) € T +¢1. By [280, Lemma 9 (a)] it follows that for N; large enough
T + Njel C Thi(P1) and consequently we deduce

NjAA;) € NjT + Njel =T + Njel € Thi(Py)
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CHAPTER 6. More general elliptic equations

for j sufficiently large. On the other hand, ¢; satisfies (6.19), i.e.
NiMA7) = A (97 ()5 + (93)s) ) € oL,
which gives a contradiction. Therefore A(Hessut)(p1)) ¢ I' + 2¢1 and letting ¢ — 0 we finally obtain

A(Hessgt(po)) ¢ T and w is a viscosity I'-solution.

Liouville-type theorem.

As in Székelyhidi [280] we can interpret the notion of being a I'-subsolution (resp. solution) as that of
being a viscosity subsolution (resp. solution) of a suitable equation. Indeed, define the function Gy on
the space of hyperhermitian matrices as the function such that

AA) — Go(A)1 e T,

consider the projection p: R4 — {H € R4 | [ HIy = JoHJy = KoHKo = —H}
1
p(H) = 1(H —IyHIy — JoHJy — KoHK,),

where (Iy, Jo, Ko) is the standard hyperhermitian structure on R*" written in block form as

0 -1 0 0 0 0 -1 0 00 0 -1
1 0 0 0 0 0 0 1 00 -1 0

h=1o o o 1| =1 o o o] ®=|o1 0o ol (6.21)
0 0 1 0 0 -1 0 0 10 0 0

where 1 is the n x n identity matrix. Then, defining the function G on the space of 4n x 4n symmetric
matrices Sym(4n,R) as G(H) = Go(p(H)), we have that u is a I'-subsolution (resp. solution) if and
only if it is a viscosity subsolution (resp. solution) of the equation G(D?u) = 0.

Therefore we can take advantage from the known results regarding viscosity subsolutions and
solutions (see [65]). In particular we will use the following:

o If (u;); is a sequence of I'-subsolutions (resp. solutions) converging locally uniformly to u, then
u is a I'-subsolution (resp. solution) as well.

e If u,v are I'-subsolutions, then u + v is a I'-subsolution as well.

¢ A mollification of a I'-subsolution is again a I'-subsolution.
We will also need the following comparison result

Lemma 6.13. If u is a I'-solution and v a smooth I'-subsolution on a bounded open set U C H" such
that u =v on OU, then u > v in U.

Proof. The very same proof of [280, Lemma 17], which is the analogous result in C™, can be carried
out in our hypothesis. O

The next lemma follows from the same argument as [280, Lemmas 18-19]. The additional case
when I' =T, is quite easy and can be deduced along the same lines.

Lemma 6.14. Suppose v: H” — R is a I'-solution which is independent of the last variable q,,. Define

(6.22)

I — | ) Z'fF:an
TN {z, =0} ifT#T,,

then I’ is a symmetric proper convex open cone in R"~! containing the cone I'y,_1 and the function
w(qr, . qno1) =v(q1, .., qn_1,0) is a I'-solution on H" 1.

We remark that in view of (6.3) every I'-subsolution is subharmonic.
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6.2. A priori estimates.

Proposition 6.15 (Liouville-type Theorem). A Lipschitz bounded viscosity T'-solution u: H* — R
with ||Vul|lco < C is constant.

Proof. The result is proved by induction over n. For n = 1 the function u is harmonic and the result
is well-known.

Assume now that the result holds for n — 1 and let us prove it for n. By contradiction we suppose
that w is not constant and infy;u = 0, sup,; u = 1. We adopt the notation of [280] and, for any
function v: H™ — R we write its mollification

)= [ vl ra)uia)av.

where, here and hereafter, dV denotes the standard volume form in H” and ¢: H™ — R is a smooth
mollifier with support in By (0) such that ¢ > 0 in B;(0) and an 1 dV = 1. During the proof we will
need to regularize u, considering v = [u]. for a small € > 0. Following [103] we use Cartan’s Lemma
to deduce

lim [u?],.(q) = lim [u].(q) = 1.

700 r—00

For p > 0 and r > 0 consider the set

4
Ulpr) = {a € 1" | 2ut0) < )+ o) — 3 -

Suppose there are p > 0, ¢; — 0, ¢; € H", r; — oo and a unit vector {; € H" such that g; € U(p, ;)
and

lim |0¢,u™ |°dV =0, (6.23)

Jroo Brj (qj)
where for any vector & = (&} + &1i + &35 + &k, .. &8 + €0 + £Fj + €7k) € H™ and any function
w: H"™ — R we use the notation

n
6511) = Z (fgwwg + ginwx{l + ggwmgj + ggwxgk) .
r=1
Composing with rotations and translations, for each j we can take ¢; to the origin and assume
& = ¢ /2, obtaining a sequence (u;); of I'-solutions satisfying

[uZ]rj (0) + [u;],(0) — 2u;(0) > g , lim ’ dv =0. (6.24)

] .
J]—o0 Brj (0)

—
Oqn u;’

2

Since u has bounded gradient, by the Ascoli-Arzela Theorem, up to a subsequence, (u;); converges
locally uniformly to some v: H® — R which must be again a I'-solution with bounded gradient. Also
ujj converges to v locally uniformly and working as in [103] we infer that v does not depend on the
last variable ¢™.

Indeed, if v were not constant along lines with fixed ¢’ = (¢, ...,¢" 1), there would be a,b € H
and a positive ¢ € R such that v(g), a) — v(g},b) > 2¢. Since the gradient of v is bounded from above,
we could choose § small enough such that

inf {v(¢,¢") | l¢" — qol <6, |¢" —al] <6} —sup{v(d’,q") | |¢ — qo] <6, |[¢" —b] <6} > c.

Let £ € H™ be the unit vector with last entry (b — a)/|b — a| and all others zero. Let v be the segment
joining (¢’,a’), (¢',b") € H", where b' —a’ =b—a, |¢' —q}| <9, |’ —a| < d, |b' —b| < §, then we would
have

/ égvds' — (g ) — v(dsa)] > c.
Yy

131



CHAPTER 6. More general elliptic equations

Cauchy-Schwarz inequality would now give

| e < ( / deolac) / i) =lp-al [ e,

Let I, I5, I5 be intervals of length § all perpendicular to each other and to [a, b] in the ¢"-space. Using
Fubini’s theorem over the set B(g(,d) X [a,b] X I; x Iz x I3 we would find a strictly positive lower
bound for the integral of |5qn /2v|2dV. But this would contradict the uniform convergence as the u;’s
satisfy (6.24). Therefore v does not depend on the last variable.

The function w(q!,...,¢" %) = v(q',...,q"~%,0) is then a I'-solution, thanks to Lemma 6.14,
where I" is the cone defined in (6.22). By the induction hypothesis w is constant and then so is v. But
by Cartan’s Lemma this contradicts the first of (6.24) because

62<

4 .
3 < Iim ([, (0) + [],(0) — 2u;(0)) = 14 [0],(0) — 2v(0) = 1 = v(0) <1
as v inherits from u the property that 0 <o < 1.

This means that (6.23) cannot hold, in particular for all p > 0, there exists ¢, > 0 such that if
r > ¢p, for each g € U(p,7), € < cp_1 and unit vector £ € H” we must have

/ |0cus[*dV > ¢, . (6.25)
B(q)

Define

" 4
0'(p.r) = {a € 5" | 20t0) < 1421, (0) + i)~ 3 } € Ulpur).
We may choose the origin so that «(0) < 1/12, and p > 0 and 7 > ¢ big enough to have [u],(0) > 3/4
and [u?],-(0) > 3/4 which can be done by Cartan’s Lemma. It follows that 0 € U’(p, 7).
Since 050, (u®)? = 2ufus; + 2ufuj, proceeding similarly as in [280] we can use (6.25) to prove that
there exists a constant § > 0 small enough to guarantee that [(u¢)?], — 6|q|? is a I-subsolution over
U’(p,r). By local uniform convergence also [u?], — d|q|? is a T-subsolution. Finally consider

0" (pur) = {a € B | 20(0) < @) = 0 + Eyla) - 3} €U o)

and observe that since 0 < u < 1 this set is bounded. The fact that u is a I'-solution and yet
[u?],-(q) — 6]q|® + [ul,(q) — 3 is a smooth I'-subsolution contradicts the comparison principle of Lemma
6.13. We conclude that © must be constant. O

6.2.4 (C?*%-estimate.

The main theorem follows once we obtain the C?*-estimate. We obtain the desired bound in two
ways, by using an analogue of Evans-Krylov theory as developed in Tosatti-Wang-Weinkove-Yang [286]
and by adapting the argument of Alesker [14] for the treatment of the quaternionic Monge-Ampeére
equation.

Proposition 6.16. Let (M,I,J, K, g) be a compact locally flat hyperhermitian manifold. If ¢ is a
solution to (6.2) such that ||p||co and Agp are bounded from above, then there is o € (0,1) and a
constant C' > 0, depending only on the background data such that

lellgze < C.
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First proof of the C?“-estimate.

Let V. = {H € R | [yHIy = JoHJy = KoHKy = —H}, where (Iy, Jo, Ko) is the standard
hypercomplex structure on R%" as in (6.21). Consider the real representation of quaternionic matrices
v: H»"™ — V, defined in Subsection 1.1.2. The map ~ is an isomorphism of real algebras and
v(Hyp(n)) = V N Sym(4n,R). Let p: R*4" — V be the projection

1
p(H) = E(H - IoHIO - J()HJO - KoHKo) .

If we take on H" the real coordinates (x3,...,28, 21, ... 2% 3, ... 2% 2%, ..., 2%) underlying the
quaternionic coordinates (¢',...,q"), for a C? function u: H® — R we have

v(Hessgu) = 16p(D?u).

For any point zo € M, take a quaternionic coordinate chart centered at xy and assume that the
domain of the chart contains B (0). For any H € Sym(4n,R) we have v~ *(p(H)) € Hyp(n), therefore

Heg(x) = g7 () (v (p(H)))5,, =€ Bi(0),

is hyperhermitian with respect to g.
Define the set ~ -
€= {H € Sym(4n,R) | A(H(0)) € 7 N BQR(O)} :

where o and R are chosen below. £ is compact and also convex by convexity of I'. Possibly shrinking
B;1(0) to a smaller radius r € (0,1) we may assume that if H lies in a sufficiently close neighborhood
U of &, then \(H(z)) € T N Byr(0) for any = € B (0).

The bound Ay < C implies that ¢ and R can be chosen so that

Mo (Y +¢5.)) €T7NB(0), o Bi(0).
Therefore, by continuity of g, and possibly shrinking B (0) again, for each z € B1(0) we have
7(Qrs(2)) + 16p(D*p(2)) = 7 (s () + rs(2)) € €.

This discussion and our assumptions on f show that we can apply the main Theorem of [286] with

e P:Sym(4n,R)x B1(0) — R defined as P(H,z) = f(A(H(z))) for H € U, and extended smoothly
to all of Sym(4n,R) x B1(0) (in [286] is called F);

e S: B1(0) — Sym(4n,R) defined as S(z) = v(Qrs(x));
e T:Sym(4n,R) x B1(0) — Sym(4n,R) defined as T'(H, z) = 16p(H).
And since [|¢||co < C we obtain the desired bound ||¢||cz.« < C for some «a € (0,1).

Second proof of the C?“-estimate.

Since M is locally flat, we only need to prove the following interior C%® estimate for w = ¢ 4 u, where
u € C2.(M,R) is a local potential for Q.

Now, w € C*(O) satisfies
F(’UJFS) = h,

where O C H" is an arbitrary open subset and h € C*°(0). Let O’ C O be a relatively compact
open subset. We shall prove that there exist a constant a € (0,1) depending only on n, h, ||w||coo,
|Aw|lco(oy and a constant C' depending in addition on dist(O, 0’) such that

|wl|c2.e00) < C.

There is a difference with respect to the argument of Alesker [14]: the quaternionic Monge-Ampeére
operator can be written in the divergence form, while this might not be true for more general fully
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non-linear equations. To overcome this issue we will need a more general version of the weak Harnack
inequality for second order uniformly elliptic operators.
Let W be the quaternionic Hessian (wz;) and define a second order linear operator D by

Dv =Re F"(W)vys .

Notice that every n x n hyperhermitian matrix defines a hyperhermitian semilinear form on H". Hence
it also determines a symmetric bilinear form on R*". Let (a;;) € Sym(4n,R) be the realization of
(F7(W)). Then we can rewrite Dv in the following form

4n
Dv = Z arsDrDgv,

r,s=1

Since F' is uniformly elliptic on I'; the operator D is uniformly elliptic as well.

Let R > 0 be such that the open ball Bog of radius 2R centered at a point zg € @’ is contained in
O. For an arbitrary unitary vector { € H", we let A¢ denote the Laplacian on any translate of the
quaternionic line spanned by £. By virtue of concavity of F', for any unitary vector £ € H", we have

Re F™ (W) A¢ (wry) > Ach. (6.26)

Consider the function
W =sup Agw — Agw.
Bar

it follows from (6.26) that D < —A¢h, where we used the fact A¢(wrs) = (Acw)rs.
Then, applying the weak Harnack inequality (Theorem 2.57), there exists a positive constant C'
depending on n, [|h|c20y and ||Aul|co(o) such that

1
P — v < inf W .
Vol(Br) /BRw =¢ <g’lkw+R>

Equivalently, we have

1
—_— sup Agw — Agw | < C | supAgw — su Aw+R>. 6.27
Vol(Br) /BR (BQE ¢ ¢ > (Bzg S (6.27)

Since F' is concave on I' for any pair of A, B € Hyp(n,H), we have
F(B)— F(A) <ReF"™(A)(Brs — Ays) -
Choosing A = W(y) and B = W(z) for z,y € Bag, it follows that
Re F"* (W (y))(wrs(y) — wis(2)) < F(W(y)) — F(W(2)) = h(y) — h(z) < Clly — z|| (6.28)

for some positive constant C' depending on ||Al|c1 (o).
Now we need the following lemma from matrix theory, which is well-known in the settings of R™,
C", H" (see e.g. [143, 42, 14]).

Lemma 6.17. [14, Lemma 4.9]. Let A\, A € R satisfy 0 < A\ < A < +oo. There exist a uniform
constant N, unit vectors £1,--+ ,&n € H™ and positive numbers A, < A, < +00, depending only on
n, A, A such that any A € Hyp(n,H) with eigenvalues lying in the interval [A, A] can be written in the
form

N N
A= Z ﬁkgz ® gk y i.e. Ars = Z ﬁkékrgks ’

k=1 k=1
for some B, € [Ai, Ai].
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We apply the previous lemma with A = (F"¢(W)), obtaining immediately

Bk (y)gkrfks (wrs(y) — wrs())

-

Re F"5 (W (y))(wrs (y) — wrs (7))
k=1

k=1

for some functions S (y) € [As, As]. By (6.28), we then have

N
Y B (Aguwly) — Agw(z)) < Clly — || for a,y € Bag. (6.29)
k=1

Let us denote

N
Z(Mk,m — Mk R)

My 1r = sup Ag, w, myr = inf Ag, w, n(tR)
B:ir Bir k=1

fort =1,2.
Summing up (6.27) over & for k # [ yields

1
Vol(Br) /g, %;l (Mi2r — Agw) < C(n(2R) —n(R) + R) . (6.30)

Choosing a point © € Byg at which the infimum my o5 is attained, by (6.29) we also know that

1
Aglw(y) — M 2R < )\7 CR + A, Z(Mk72R — Agkw) (631)
* k£l

Integrating (6.31) on Bg and using (6.30) yields

1

—_ A — < 2 — + .
VOI(B ) / R( Elw ml,gR) C(’I]( R) 77(R) R)
Using (6.27) again, we then obtain

! 1
vargs | (Baw— >——— [ (Aqw— M M, op —
Vol(Bg) /BR( & = Mu2R) = Vol(Br) /BR( W 12R) + Mi2r — mu 2R

> Mo —myor — C(Mior — Mir+ R)
>C(M;r —mir) — (C —1)(M;2r —mi2r) — CR,

since my, ¢ is non-increasing with respect to ¢. Inserting this last inequality into (6.30) we get
n(2R) —n(R) = C(My,r —my,r) — (C — 1)(Mi2r — mu2r) — CR,

and summing up over [,
n(R) < (1—-1/C)n(2R) + CR.

Now applying [143, Lemma 8.23] the proof is complete.

6.3 Proof of Theorem 6.1 and consequences.

In this subsection we prove Theorem 6.1 and obtain some interesting corollaries.
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Proof of Theorem 6.1. Let (M, I,J, K, g) be a compact flat hyperkéhler manifold, ¢, ¢: M — R be a
C-subsolution and a solution to (6.2) respectively, with sup,; ¢ = 0. By Proposition 6.4 we deduce
|¢llco < C. Proposition 6.7 now implies |Agp|co < C(||Vp||Z0o +1). The blow-up argument together
with the Liouville-type Theorem 6.15 yield a gradient bound for ¢. Therefore ||Agplco < C and we
can deduce from Proposition 6.16 the desired C%“-estimate ||p||c2.« < C, where the constant C' > 0
only depends on the background data, including ¢. O

Quaternionic Hessian equation.

As an application of Theorem 6.1 we first have the solvability of the quaternionic Hessian equation on
hyperhermitian manifolds admitting a flat hyperkéhler metric.

Let (M,1,J,K,g,9Q0) be a compact hyperhermitian manifold where €q is the (2,0)-form induced
by g, fix 1 <k <n and let Q be a g-real (2,0)-form which is k-positive in the sense that

QAQE

>0 for every i =1,... k. (6.32)
%

Let ’H,’;zo be the set of smooth functions ¢ such that €, is a k-positive g-real (2,0)-form. Then the

quaternionic Hessian equation is defined as
Qk AQpF
*"Qino =befl,  peHE, . (6.33)
0

where H € C*°(M,R) is the datum and (p,b) € ’Hgo x R4 is the unknown. The constant b is uniquely
determined by

. fMQ’;/\Qg’k_/\Qg.
Jar €7 A QG
Equation (6.33) reduces to the quaternionic Monge-Ampére equation for kK = n and to the classical
Poisson equation for k = 1. Moreover equation (6.33) is the analogue of the real and complex Hessian
equations in the quaternionic setting.

The Hessian equation on manifolds has been first investigated by Li [210] and Urbas [296] in the
Riemannian case (see also the survey of Wang [320]). Later some partial results have been obtained
in the Kéhler setting by Hou [175], Jbilou [189] and Kokarev [198] independently. The solution in
its full generality on compact Kihler manifolds came by Dinew and Kolodziej [103] building on the
estimate of Hou, Ma and Wu [176]. The equation has also been solved on compact Hermitian and
almost Hermitian manifolds (see [288, 93] for the case k = n and [329, 92] for the general case).

Applying Theorem 6.1 we solve equation (6.33) on compact flat hyperkéhler manifolds:

Theorem 6.18. Let (M, 1,J,K,g,Q0) be a compact flat hyperkihler manifold and Q a g-real k-positive

(2,0)-form. Then the quaternionic Hessian equation

Qk/\Qn—k B
%:befﬂ /MmgAQg:o, peHE

has a unique smooth solution (o,b) € H¢ x Ry for every H € C*°(M,R).

For the quaternionic Hessian equation as the cone I" we consider the k-positive cone
e = {A€R" | o1(N),...,00(\) > 0},
where 1 < k < n and o, is the r-th elementary symmetric function

oM = Y A A, for all A= (A1,...,A\n) € R,

1<i1 < <ir<n

136



6.3. Proof of Theorem 6.1 and consequences.

Observe that by Lemma 2.25 on a locally flat hyperhermitian manifold (M, I, J, K, g) a g-real (2, 0)-form
Q is k-positive in the sense that it satisfies (6.32) if and only if A(¢7"€Y;,) € T'j.

Moreover, for every (A1,...,A,) € T’y we clearly have
lim O'k()\l, N )\n_l,t) =0
t—o00

and by [280, Remark 8] any I'y-admissible function is a C-subsolution. Hence for the quaternionic
Hessian equation we easily have existence of a C-subsolution.

Proof of Theorem 6.18. On I'y we define f = logoyg, in order to rewrite the quaternionic Hessian
equation as

F(A (e +050) ) =

for some positive h € C*°(M,R) depending on H. The function f satisfies conditions C1-C3 stated in
the overview (see e.g. [268]).
We apply the method of continuity. Let Hy € C*°(M,R) be the function such that

k —k
N
Qr B

and consider the ¢t-dependent family of equations

Ok /\Qn—k
2 Qg 0 = bt etH+(17t)H0a Pt € HISCZO ) te [07 1] . (*t)
Let

S = {t€[0,1] | (*/) has a solution (¢¢,b;) € C**(M,R) x R} } .

By our choice of Hy, the pair (¢,b) = (0,1) solves (%), hence the set S is non-empty.

Since we assumed {2 to be k-positive ¢ = 0 is ['p-admissible and therefore a C-subsolution. Closedness
of S now follows from the C?®-estimate of Theorem 6.1, a standard bootstrapping argument and the
Ascoli-Arzela Theorem.

Finally, in order to show that S is open, take t' € S and let (py, by) be the corresponding solution
to (#¢). Consider the Banach spaces

By = {weCQ’B(M,RHwe”H’éO,/ wggAngo}, By := C%*(M,R),
M

and the linearization of the operator

k —k
Q5 A Qp

BixRy =By, (,0) = log —
0

— log(a)

at (@, by ), which is

_ _00p AQETT AT e
L: Ty BixR—= By, Lip,c) = k- Ty by = (p) — —

where
Ty, By = {p € C*’(M,R) | / p QY A QY :0} .
M

By the maximum principle the kernel of the operator L’ over C2-# (M, R) is the set of constant functions.
Moreover the principal symbol of L’ is self-adjoint and therefore L’ has index zero, which implies that
its formal adjoint (L')* has one-dimensional kernel as well. In order to show that L is surjective, let
¢ € C%P(M,R) and choose ¢ € R such that ¢ + ¢/by is orthogonal to ker((L')*). By the Fredholm
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alternative there exists p € B; such that

L(p) = C + c/bu

and the surjectivity of L follows.

By the inverse function theorem between Banach spaces S is open. This proves the existence of a
solution to the quaternionic Hessian equation.

Finally we show uniqueness. Suppose (¢1, b1), (2, b2) are both solutions and assume by > bo; then

(95, —95) et 20,

which can be rewritten as

k—1
k—i—1 ; &
o0stes =) S 065 e, ) neg-t >0,
i=0
Since
E—1 i A i,
o (S )
p = o
is a second order linear elliptic operator without free term, by the maximum principle we deduce
1 = w2 and thus also by = ba. i

From Theorem 6.18 we recover as a special case the result of Alesker 2.53, where the quaternionic
Monge-Ampere equation is solved on compact flat hyperkdhler manifolds. We note that during the
proof of Theorem 6.1 the a priori estimates, except for the C?-estimate, are obtained without assuming
anything about the closure of )y and this suggests that it is worth studying the quaternionic Hessian
equation on non-HKT hyperhermitian manifolds.

Quaternionic Monge-Ampére equation for (n—1)-quaternionic plurisubharmonic functions.

Our second application is the quaternionic Monge-Ampére equation for (n — 1)-quaternionic plurisub-
harmonic functions. Let (M, I,J, K, g,{) be a compact hyperhermitian manifold and €y a positive
g-real (2,0)-form. We say that a C? function ¢ on M is (n — 1)-quaternionic plurisubharmonic with
respect to 1 and Q if the (2, 0)-form Q; + L5 [(Ay9)Q0 — 4] is g-positive, where A is the quater-
nionic Laplacian with respect to g. We also refer to Harvey and Lawson [165, 166] for more general
notions of plurisubharmonicity. The quaternionic Monge-Ampére equation for (n — 1)-quaternionic

plurisubharmonic functions is written as
1 " 1
(m + — [(Bg) % — aafso]) =0y, i = [(Agp)2 — 00yp] > 0. (6.34)

Here the constant b is uniquely determined by

L (O (B0 — 906))" A 0

b _
Joy €100 A Qp

Equation (6.34) is the analogue of the complex Monge-Ampere equation for (n — 1)-plurisubharmonic
functions, which originally arose from superstring theory in the works of Fu, Wang and Wu [131, 132],
and was then solved by Tosatti and Weinkove [290, 292] (see also [92, 179]).

Theorem 6.19. Let (M, I,J, K,g,Q0) be a compact flat hyperkihler manifold and Q1 a g-real positive
(2,0)-form. Then there is a unique solution (p,b) € C>°(M,R) x Ry to the equation

(0 + 25 [(Ag0)Q0 — 00,0])" = bef Oy,

1 (6.35)
Q1+ 57 [(Age) o — anS@] >0, supy, =0,
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for every given H € C*>°(M,R).

Proof of Theorem 6.19. Similarly as discussed in [280], let T' be the linear map given by

1
TA) = (TN)1,....,T(N)n) , T\ = n—lz)‘i’
i#£k
for every A € R and define
f=loga,(T), T=T"YT,).

It is straightforward to verify that the above setting satisfies the assumptions C1-C3 in the introduction.
Let

Q:=Re (935(91)35) Qo — (n— 1),

Thus, equation (6.34) can be written as
FO) = H+logh,  A=A(g" (@ +¢;,)) €T

Then, Theorem 6.19 can be proved by a similar argument of Theorem 6.18, we give some details here.
We consider the following family of equations for ¢ € [0, 1]:

(1 + 15 [(Agpe)Q0 — 0050])" = etAFTU=DHo+e O
Q1+ ﬁ (Agp)Qo — 8&7@] >0, supy =0, 0
where Hy = log g—g and ¢; : [0,1] — R is a path from ¢g = 0 to ¢; = logb. Let us define
S ={te]0,1]| there exists a pair (¢, ¢;) € C(M,R) x R solving (*); }.

Note that (¢, co) = (0,0) solves (x)g and hence S # 0. To prove the existence of solutions to (6.35),
it suffices to show that S is both closed and open.

Step 1. S is closed. We first show that {c;} is uniformly bounded. Suppose p; achieves its
maximum at the point p; € M, then the maximum principle yields that 90 ¢; is non-positive at p;.
Combining this with (x);, we obtain the upper bound for ¢:

et < (=tH + Hy) (pr) < C,

for some C depending only on H, 3 and 2. The lower bound of ¢; can be obtained similarly.

Observe that the positivity of €27 implies that ¢ = 0 is a C-subsolution of (x);. Then C* a priori
estimates of ; follow from Theorem 6.1. Combining this with the Arzela-Ascoli theorem, we conclude
that S is closed.

Step 2. S is open. Suppose there exists a pair (¢y, ¢;) satisfies (x);. We shall prove that when ¢ is
close to #, there exists a pair (p, ¢;) € C®°(M,R) x R solving (*);.

First of all, let © be a g-positive holomorphic (2n,0)-form with respect to I. For every function
Y : M — R of class C2, we define
n (A1) = 0059) A (21 + 75 [(A00)0 — 00,¢])"
n—1 (1 + 727 [(Ag9)00 — 00,0])"

Ly(y) ==

Since the operator L is second order elliptic its symbol is self-adjoint, and therefore the index is zero.
Then the classical maximum principle yields that

ker(Lg) = {const} . (6.36)

Denote by L7, the L?-adjoint operator of L4 with respect to the volume form

dvol = <Ql + ﬁ [(Ag(ﬁ)go — 8%@]) AO.

139



CHAPTER 6. More general elliptic equations

By the index theorem, we know there is a non-negative function ¢ such that
ker(Ly) = Span{(} . (6.37)

It follows from the strong maximum principle that ¢ > 0. Up to a constant, we may and do assume

/ Cdvol = 1.
M

Define a Banach space

Bri= {p € C2 LR | X (g7, + 1) €T [
M

w(dvole}.

It is easy to verify that the tangent space of By at ¢ is given by

T;B, = {w € C*“(M,R) | / ¥ ¢ dvol = o} .
M
Let us consider the map

2o (4 T [(Ag) - 00,0])"
H(@ac) —IOg Qg —C,

which maps B; x R to C%%(M,R). The linearized operator of H at (¢,%) is given by
Ly—c:TpBy xR — C"*(M,R). (6.38)

On the one hand, for any real-valued h € C%®(M,R), there exists a unique real constant ¢ such that

/ (h 4+ ¢)¢dvol = 0.
M

By (6.37) and Fredholm theorem, there exists a real function ¥ on M such that L;(¢) — c = h. Hence,
the map Ly — c is surjective. On the other hand, let (11, ¢1) be a solution of Ly(¢)) — ¢ = 0. By (6.37)
and Fredholm theorem again, we get ¢; = 0. Using (6.36) and (6.38), we also obtain 4); = 0. Therefore,
Ly — c is injective.

As a consequence, we conclude that Lgs — ¢ is bijective. By the implicit function theorem, we know
that when |t — #] is small enough, there exists a pair (p;, ¢;) satisfying

H((pt,ct) = tH + (1 — t)H()

In the general case, when we assume M is a compact manifold which admits a flat hyperkahler
metric g compatible with the underlying hypercomplex structure, we may take © = Q™ and apply the
previous procedure to show existence of solutions to (6.35).

Uniqueness can be obtained with a very similar technique as in Theorem 6.18, therefore we omit
the proof here. O

From Theorem 6.19 we can also obtain Calabi-Yau-type Theorems for quaternionic balanced,
quaternionic Gauduchon and quaternionic strongly Gauduchon metrics. We refer the reader to [207,
Table 2] for the relevant definitions, which are entirely analogous to the complex case.

Corollary 6.20. Let (M,1,J, K, g,Q0) be a compact flat hyperkihler manifold and take a quaternionic
balanced (resp. quaternionic Gauduchon, quaternionic strongly Gauduchon) metric with induced
(2,0)-form Qs. Then there is a unique positive constant b’ and a unique quaternionic balanced (resp.
quaternionic Gauduchon, quaternionic strongly Gauduchon) metric with induced (2,0)-form Q, such
that

ot = ngl + 0050 N 9872 ,
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for some p € C*°(M,R), and which solves
Qr =vet'ap,
for any given H' € C*(M,R).

Before we move on to the proof of Corollary 6.20 we need to lay down some preliminaries in
linear algebra in order to mimic the proof of [290, Corollary 1.3]. Let (M, 1, J, K, g,9Q) be a compact
hyperhermitian manifold. Let (z!,...,2%") be holomorphic coordinates with respect to I and denote
APO(M) the space of (p,0)-forms with respect to I. Consider the pointwise inner product (-, ), defined
by

1
<Oé7 B>g = ng

T181 |

_ [ 0
' 'grpspah'“?”pﬁsrusp ’ fOI‘ every Oé,ﬁ € AII) (M) )

where any (p,0)-form « is locally written as a = %ah..“ dz"™ A+ ANdz" and (¢g"%) is the inverse of
the Hermitian matrix (g,z) induced by the I-Hermitian metric g.
We will need the following Hodge star-type operator *: APO(M) — A2"~PO(M), defined by the

relation 1
a/\*ﬂ:m@,ﬁ)gﬁg, for a,BEA’I”O(M).

We fix a point 2o € M and take holomorphic coordinates (21, ..., 2?") with respect to I such that
(g9r3) is the identity at z(, then we may compute

w(d22 A2 = A2V A - A2 AR A A (6.39)

Observe that the Hodge operator sends g-real (2,0)-forms to g-real (2n — 2,0)-forms and vice
versa. Recall that, when the hypercomplex structure is locally flat, to any g-real (2,0)-form  is
associated a hyperhermitian matrix (£275), thus, we may define the determinant of  as the Moore
determinant of (7). This definition naturally extends to any g-real (2n — 2,0)-form ® by setting
det(®) = ﬁ det(*®). In particular, for any q-real Q € A%%(M), we have

det(Q"1) = det(Q)" 1, (6.40)

which can be checked by taking coordinates in which (75) is diagonal at a given point and using
(6.39). For any pair of g-real x, 2 € A¥°(M), we also have

X" _ det(x) _ det(*x)
Qr det(Q)  det(xQ)

(6.41)

A g-real (2n —2,0)-form ® is said to be g-positive if & A Q2 > 0 for all g-positive (2, 0)-forms 2. We
observe that the Hodge star maps g-positive (2,0)-forms to g-positive (2n — 2,0)-forms and conversely.
On a locally flat hyperhermitian manifold the (n — 1)™ power Q + Q"~! is a bijective correspondence
between the cone of g-positive (2,0)-forms and the cone of g-positive (2n — 2, 0)-forms. The proof of
this fact is just a matter of linear algebra and it is entirely analogous to the argument in [225, pp.
279-280], therefore we omit it.

Proof of Corollary 6.20. For starters, we claim

1
(n—1)!

1
(00,0 NQGT?) = ] [((Agp)Q0 — 00,4] , (6.42)

for any arbitrary function ¢ € C?(M,R). It is enough to prove that for every W € A?"_Q’O(M), we

have )
ne

Qg

995 1 (n—2)!

AEW) = (Agp)W AQo — W A0Dsp.
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Let Z = dz' A --- A dz*" for simplicity and fix a point 2o € M where g takes the standard form
n . .
Qo= d*"" ndz™.
i=1
Without loss of generality, we may assume W = A N2 N A AN d2 Tt s easy to see that
WAQ =2, WAIDp=(p11+¥3)Z.

As W = dz' A dz?, we obtain

0050 n B N W) =000 A B g pd2?
TP = 2)! A P
=00;0 Ny d2! AdZ2A - dz2=1 N dz2 A - A d22"
i>1
= Z((pzi_lgii_l + @22‘27)2 = (Ag@)z — (P11 + 923)Z

i>1
=(Agp)W AQo—W ANDDs0,

as claimed.
From (6.41) and (6.42), it follows that

(0 + 25 [(Ag0)2 = 0050]) " det (+ (2 + 75 [(Ag0)2 — 00,5¢]) )
o7 - det(+020)
det (37 + 00,0 A Q)

det(Qp™1)

This implies that given a positive (2,0)-form §2; and a smooth function H on M, the pair (¢,b) €
C>®(M,R) x Ry is a solution to (6.35) if and only if it solves

det(Q571 4+ 00,0 A Q872) = bel det(Qp 1), 6.43)
ngl+88J<p/\ng2>O, sup,r ¢ =0, .

where 9 is uniquely defined by
1

n—1
lei(n_l)!*QQ s

because the (n — 1) power is a bijection between the spaces of positive (2,0)-forms and positive
(2n — 2,0)-forms.

Now, let (¢,b) € C*(M,R) x R} be the solution to (6.35), or equivalently (6.43), with datum
H = (n—1)H'. Define Q as the unique (n — 1) root of Q3! + 99 p A Qu~2. Then it is clear that if
Qs is the (2,0)-form induced by a quaternionic balanced (resp. quaternionic Gauduchon, quaternionic
strongly Gauduchon) metric, then so is Q. Finally, set b" = b*/("=1) then using (6.40) we conclude

o (det(fznl)>"—1 (et (5 + 00,0 A Q5)
or det(Qn—1) B det(Qn~1)

n—1
) = (bef)TT =T . O
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MORE GENERAL PARABOLIC EQUATIONS

After Yau’s solution [327] of the Calabi conjecture, Cao [69] was able to provide a parabolic proof,
using what is now called the K&hler-Ricci flow. Ever since then, it is now a well-established practice to
design parabolic geometric flows as an alternative way to solve fully non-linear elliptic equations (see
e.g. [33, 91, 119, 120, 144, 145, 257, 265, 275, 277, 276, 334]).

Following this line of thoughts, the investigation of the previous chapter about fully non-linear
elliptic equations on hyperhermitian manifolds is hereby extended to the parabolic setting. Here we
develop the corresponding parabolic theory in the same spirit as Phong-T6 [246].

The treatment of this chapter is based on [140].

7.1 Overview.

Setting of the problem.

Let (M,I,J,K,g,€0) be a compact locally flat hyperhermitian manifold where g is the (2, 0)-form
induced by g, i.e. Qo = g(J-,-) + ig(K-,-). The assumption of local flatness allows us to represent
locally in quaternionic coordinates every g-real (2,0)-form € by a hyperhermitian matrix (7). Fix
one such form 2, which does not need to coincide with €y. For a smooth real function ¢ on M the
(2,0)-form 99, is g-real. Then we may associate a hyperhermitian matrix to the form

Q, =04+ 0059

let us denote it by (2£,). Set AZ[¢] = ger;—.’;. The matrix (A%[¢]) defines a hyperhermitian endomor-
phism of T'M with respect to the metric g and this makes it meaningful to speak about the n-tuple of
its eigenvalues A(A[y]).

The class of parabolic equations that we take into account here is the following:

Op = F(Alel) =h,  ¢(2,0) =0,  t€[0,00), (7.1)

where h € C*(M,R) is the datum and F(A[p]) = f(A(A[¢])) is a smooth symmetric operator of
the eigenvalues of Alp]| satisfying certain assumptions. Here I satisfies the same assumptions of the
previous chapter, we repeat them for convenience of the reader. I" is a proper convex open cone in R™
with vertex at the origin, containing the positive orthant

Fn=A=0A1,..., ) eR" | \;>0,i=1,...,n},
I' is symmetric and f: I' — R satisfies the following assumptions:

Cl) f;:= % >0foralli=1,...,n and f is a concave function.
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C2) supyr f < infps h, where supgp f = SUpy, cor iImsupy_, 5, fn.
C3) For any o < supp f and A € T we have lim;_, ., f(tA) > o.

Assumption C1 implies parabolicity of equation (7.1) over the space of I'-admissible functions, where a
function ¢ € C*Y(M x [0,T)) is T'-admissible if

MAlp]) €T, for all (z,t) e M x [0,T).

In particular, from standard parabolic theory, equation (7.1) admits a unique maximal smooth solution.
Assumption C2 guarantees that the level sets of f do not intersect the boundary of I', this yields
non-degeneracy of (7.1) and entails uniform parabolicity, once we obtain the C?! estimate. We also
remark that the assumptions on I" imply the inclusion

i=1

We now project I' onto a new cone in R”~!:
Too = {N = (A1, , An_1) € R"™! | there exists \, € R such that (\,\,) € T'}.

Therefore, for every A € I'y,, there exists a constant sg such that for each s > sg, we have (X, s) € T".
Let foo(N) = limg 00 f(X, 8). It is an observation of Trudinger [293] that, since f is concave on I,
there is a dichotomy:

(i) Either fo is unbounded at any point in ', and we will refer to this case by saying that f is
unbounded over T’

(ii) Or fy is bounded on ', and we will simply say that f is bounded over T'.

Statement of the main results.

Before stating our main results, we need to recall the terminology of parabolic C-subsolutions introduced
in [246].

Definition 7.1. We say that a function ¢ € C*!(M x [0,T)) is a parabolic C-subsolution for
equation (7.1) if there exist uniform constants ¢, R > 0, such that on M x [0,T),

SMA[p) +p) —dp+7=h, p+01 €T, and 7> =6 (7.3)
implies that |u| + |7| < R, where 1 = (1,1,...,1).

In the unbounded case, as we shall show, any I'-admissible function is a parabolic C-subsolution,
and we have the following result:

Theorem 7.2. Suppose f is unbounded on I'. Let (M,I,J, K,g,Q0) be a compact flat hyperkahler
manifold. Then for any T'-admissible initial datum g, the solution ¢ to (7.1) exists for all time.
Moreover, if we let

()0 - SO f]w QBL A Qg I .
then @ converges smoothly to some function ¢o, € C°(M,R) as t — oo, and there exists a constant
b € R such that

F(A[poc]) = h +b. (7.5)

In the bounded case we observe that, unfortunately, ['-admissible functions might not be C-
subsolutions. Compared to Theorem 7.2 the main result in the bounded case looks a little bit more
artificial, as it requires some additional assumptions.
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7.1. Overview.

Theorem 7.3. Suppose f is bounded on I'. Let (M,1,J,K,g,Q) be a compact flat hyperkahler
manifold. For any I'-admissible initial datum g, let ¢ € C°(M x [0,T),R) be the mazimal solution
of flow (7.1). Assume further that

(i) either it holds
Op > sup (F(Algo]) — h) : (7.6)

(ii) or there exists a non-increasing function ® of class C* on R such that

{supM (p(-,t) — (- t) — B(t)) > 0,

@
supy; (p(t) — ®(t)) < —Cinfar (o(-,t) — ®(t)) + C (7.7)

forallt € (0,T) and a time-independent positive constant C. Then T = oo, i.e. the solution ¢ exists
for all times, and the normalization ¢ converges smoothly to a function oo € C°(M,R) ast — oo,
which solves (7.5) for some b € R.

Let (M,I,J, K,g) be a locally flat hyperhermitian manifold and © a g-real (2,0)-form. Equation
(7.1) is expressed in terms of the matrix

Alg] = gm0 = 7" (D, + ¥5)

where (ap;s) denotes the hyperhermitian matrix associated to 90;p. With respect to quaternionic local
coordinates (¢!, ...,q") it is well-known that

1
Prs = Zaqraqup =: Hesspyp,

Now we briefly discuss the notion of C-subsolution. Székelyhidi introduced it in [280] for elliptic
equations. His definition is also shown to be a relaxation of that given by Guan [153]. As for the
parabolic case, Guan, Shi and Sui [155] worked on Riemannian manifolds with the classical notion of a
subsolution, while Phong and T6 provided in [246] the extension to the parabolic case of Székelyhidi’s
definition. Of course, as we shall see in a moment with a characterization of C-subsolutions, what
happens in hyperhermitian geometry is entirely parallel to the Hermitian case. Thus, Definition 7.1 is
the right extension of Definition 6.2 for the elliptic case. We shall refer to C-subsolutions in this last
sense as elliptic ones.

Lemma 7.4. Let ¢ € C**(M x [0,+00)) be such that ||¢||c21 < +oo0. Then ¢ is a parabolic
C-subsolution if and only if there exists a uniform constant p > 0 such that

liﬁm F(Mp(z, )] + se;) — Opp(x,t) > p+ h(x)
for each i = 1,...,n, where e; is the i?* standard basis vector of R"™. In particular when ¢ is

time-independent it is a C-subsolution in the parabolic sense if and only if it is such in the elliptic
sense.

Proof. The proof can be reproduced almost verbatim from [246, Lemma 8§]. O

This lemma in particular implies that when f is unbounded over I, every I'-admissible function is
a parabolic C-subsolution.

We conclude this section by fixing some notations. Unless otherwise stated we shall always denote
by ¢, ¢ and ¢ the maximal solution to flow (7.1) with initial datum ¢y, its normalization as in (7.4)
and a parabolic C-subsolution in the sense of Definition 7.1, respectively. All these functions are
assumed to be defined over M x [0,T'), where (M, I, J, K, g) is a compact locally flat hyperhermitian
manifold and T is the maximal time of existence of (.

From here on, we will always denote with C' a positive constant that only depends on background
data (not on time!), including the initial datum @g. Occasionally we might say that C' is uniform, to

145
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stress that it is time-independent. As it is customary, the constant C' may change value from line to
line.

7.2 A priori estimates and long-time existence.

7.2.1 (C° estimates.

In this section we achieve estimates of order zero for the solution ¢ and its normalization ¢. We start
by bounding their time derivatives, then, in order to treat the bounded case we need an additional
inequality proved in Lemma 7.6. Such lemma follows as an application of the parabolic version of
the Alexandroff-Bakelman-Pucci (ABP) inequality due to Tso [295, Proposition 2.1] by adapting the
argument of Phong-T6 [246, Lemma 1].

Bounds on d;p and 9;p.
Lemma 7.5. We have

inf (F(Alpo]) — h) < 0 < sup (F(Aleol) = 1) (7.8)
and
|0:p| < C, (7.9)
for a uniform constant C > 0 depending only on h and the initial datum .

Proof. Differentiating the flow (7.1) along 9; we see that 0 satisfies the following heat type equation

1 s
(9t (atgp) = ZRG (Fréaqraqs (8,:(,0)) , (710)
where F"* := %. By the parabolic maximum principle for (7.10), we know that 0;¢ hits its extremum
at t = 0. Thus,
inf Oip <Op < sup Orp,  Opp(-,0) = F(Algpo]) — h
Mx{0} M x {0}
and we then obtain (7.8). The bound (7.9) on |0;@| follows immediately. O

We remark that a direct consequence of the previous lemma is the following short-time estimate:

lp] < C6, on M x [0,4]. (7.11)

Intermediate bounds.

Lemma 7.6. If there exists a non-increasing function ® € C*([0,T),R) satisfying

sup (io(-,1) — (- t) — ®(t)) 2 0,
M

then there exists a constant C' > 0, depending only on 2, g, ¢, leollco such that
o(z,t) — p(z,t) — 2(t) > -C for all (z,t) e M x [0,T).

Proof. First, observe that the requirement ®’ < 0 implies that ¢ 4 ® is still a parabolic C-subsolution
of (7.1), therefore, as long as the involved constants do not depend on the time derivative of ¢, we
may assume ¢ = 0.
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7.2. A priori estimates and long-time existence.

Choose ¢ € (0,1) and R > 0 such that (7.3) holds for the subsolution . By (7.11), it suffices to
estimate v = p — ¢ on M x [5,T). Fix an arbitrary 77 < T and assume v achieves its minimum S at a
point (xg,to) € M x [§,T"], i.e.,

S =v(xp,tp) = min wv.
Mx[6,T"]
Now we are reduced to prove that if sup,, v > 0 for all ¢ € [4,T"], then S is bounded from below by a
constant depending only on £, g, ¢, ||¢o]| and independent of T".

Consider quaternionic local coordinates (¢!, ..., ¢") centered at the point 2. We may identify such

coordinate neighborhood with the open ball of unit radius B; = B1(0) C H™ centered at the origin.

Let
2

d
w(z,t) = v(x,t) + Z\aﬁ|2 + (t — to)?,
be a function defined on B = By x [tg — 3,to + 3]. Observe that infzw = w(0,t9) = v(0,%5) = S and

infagw > w(0,ty) + %. These conditions allow us to apply the parabolic ABP method of Tso [295,
Proposition 2.1] to obtain

0058”+2§/ |0yw| det(D*w), (7.12)
P

where Cy > 0 is a dimensional constant,

2

52 )
w(z,t) < S+ T |Dw(x,t)| < 5

w(y,s) > w(x,t) + Dw(z,t) - (y —x), Yy € By, s<t

P=((z,t)eB

is the parabolic contact set of w on B and Dw, D?w are the gradient and the (real) Hessian of w on
M with respect to the variable x.

Claim: both |9,w| and det(D?w) are bounded on P.

Let 7 = =0y + Oyp = —0pv and p = A(Al]) — A(A[g]). Observe that D*w > 0 and dyw < 0 on P.
Thus,
T=—-0w+2(t—tg) > -9, p+o1el,.

Now by Definition 7.1 we conclude that |7|+ |u| < R, then |0,w| < R and Hessgw is a bounded matrix.
But then we are done as we have

det(D*w) < 2% det(Hessgw)? on P,

This confirms the claim.

With this claim at hand, by (7.12) we have
Cd®" 2 < OVol(P). (7.13)

From (7.2) we readily obtain Retry(€2,) > 0, where Q, = Q + 005, which in turn yields a uniform
lower bound for the quaternionic Laplacian of ¢:

Agp = Retrg(Q,) — Retry () > —C.

This also gives a uniform lower bound for Ajv. By Lemma 6.3 there exist uniform p, C > 0, depending
only on the background data such that

Hv—s&vaLp(M) <C. (7.14)

The definition of P and our assumption that sup,; v > 0 on [0,7T) yield

2
v—supv <v<w<S+— onP,
M 4
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We may further assume S + % < 0, otherwise we are done. As a consequence for any p > 0

621"
545

Vol(P) < / |v — sup v|Pdzdt < /
P M [

lv — supv||? dt < C%,
to— 2, to+2] M Lr(M)

where we have used (7.14). This, together with (7.13), gives the uniform lower bound of S we were
after. O

Bounds on ¢ and ¢.

As it often happens for solutions to flows, we only manage to control the oscillation and not the
full C° norm. On the other hand, once the oscillation is under control, we immediately achieve the
C%-estimate for the normalization of the solution.

Proposition 7.7. Let f be either bounded or unbounded. In case f is bounded on I' assume that
it satisfies either one of the two conditions expressed in Theorem 7.3. Then there exists a uniform
constant C' > 0, depending only on the background data such that

oscrrp(-,t) :=sup (-, t) —inf p(-,t) < C, (7.15)
M M

and
[@llco < C. (7.16)

Proof. First, we observe that (7.16) follows from (7.15). Indeed, by the normalization of @, for any
(z,t) € M x [0,T) we can find y(z) € M such that ¢(y(x),t) = 0, therefore

||¢||CO = Ssup |()5(.13,t) - (ﬁ(y(ﬂf),t” = sup |<p($,t) - (p(y(ﬂ?),t” < OSCM()O("t) :
(z,t)eM (z,t)eM

We will prove (7.15) by rewriting the flow (7.1) as
F(ALG]) = h + i, (7.17)

and interpreting it for every fixed time as an elliptic equation with datum h 4 0;¢. We split the
argument into two cases according as f is bounded or unbounded.

e Case 1. f is unbounded on I'. In this case any I'-admissible function is a parabolic C-subsolution,
therefore we can take the initial datum ¢y as such. Since ¢q is time-independent, it can be
regarded as an elliptic C-subsolution. Furthermore, by Lemma 7.5 we know that the right-hand
side of (7.17) is uniformly bounded, therefore we may apply Proposition 6.4 to obtain (7.15).

o Case 2. f is bounded on I'. We consider two subcases. Assume that condition (i) of Theorem 7.2
holds, then (7.6) and Lemma 7.5 imply that O, > 0;¢p, this entails that ¢ is a C-subsolution of
(7.17) in the elliptic sense. Again (7.15) follows from Proposition 6.4. If, instead, condition (ii)
of Theorem 7.2 is satisfied, then there exists ® € C°°([0,7T),R) with ® < 0 satisfying (7.7) and
we can readily apply Lemma 7.6 to conclude. O

7.2.2 Laplacian estimate.

Here we adopt the technique of [89, 176] which allows to find a Laplacian bound in terms of the squared
norm of the gradient.

Before we tackle the proof, we recall the following preliminary lemma given in Phong-T6 [246,
Lemma 3], which was inspired by the elliptic version of [280, Proposition 6]. We will use the following

derivatives of F' )
rs,t .__ 0°F

B aArs ’ o aA'rsafllt .
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7.2. A priori estimates and long-time existence.

Lemma 7.8. Let 0, R be uniform constants such that on M x [0,T), if (u,7) € R™ x R satisfy
(7.3), then |u| + |7| < R. There exists a uniform constant k > 0 depending on 6 and R such that if
IA(A[]) = AA[])] > R, we have

either Re F7*(Alg]) (Arslp] — Arslg]) — (Oip = 0ip) > £y F(Al]),
r=1
or FSS(A[QD])>I€ZFTT(A[QD]), foralls=1,...,n.

Proof. Since the quaternionic analogue of the Schur-Horn theorem holds (Proposition 1.46) the proof
of the lemma can be adapted from [246, Lemma 3]. O

Proposition 7.9. Suppose (M,I,J, K,g) is a compact flat hyperkihler manifold. Then there is a
constant C > 0, depending only on (M, 1,J,K), ||gllc2, [|Rllc2, ez, [|ellc2r, [|[0cpllco and ||@]|co,
such that

1Agpllce < C (IVeliEo +1) -

Proof. By (7.2) we already know that the quaternionic Laplacian is uniformly bounded from below,
therefore it is enough to obtain a bound of the form

At
— 2L <0,
IVelZo +1

where A; is the largest eigenvalue of A[p]. Let 7" < T, all computations will be performed in
quaternionic local coordinates around some fixed point pg = (zg, to) € M x [0, T'] which we will specify
in a moment. As pointed out in Section 6.2.2 in order for A;: M — R to define a smooth function
at pop we need the eigenvalues to be distinct; to be sure of that, we perturb the matrix A as follows.
Using the assumption that g is a flat hyperkédhler metric we may take quaternionic coordinates such
that (grs) is the identity in the whole neighborhood of py and (%) is diagonal at py. In particular
Aly] is diagonal with ordered eigenvalues A\; > Ao > --- > \,,. Let D be a constant diagonal matrix
with entries satisfying 0 = Dy < Doy < -+ < an The matrix A = Alp] — D has distinct eigenvalues

Ar by construction, and its largest eigenvalue \; coincides with A at pqg.
Choose py € M x [0,7"] to be a maximum point of the function

G =2V M +a(|Vel?) + (1)
where
a(s) = —5log (1- ) » N = [Velzo +1,
B(s) = —28s + =52, S > ||9]|co, large constant to be chosen later,

and ¥ is the normalization of v = ¢ — ¢. As said, to avoid smoothness issues we shall not work with
A1. Therefore, in a small neighborhood of pg, instead of working with G we consider the function

G =2\  +a(|Ve|]?) + 8(D).
It will be useful to observe that
1 / 2 1 1 N2
= _ =9 1
i <a(1VeP) < o o = 2(al)?, (718)
S<—p(0) <38, B =1. (7.19)

We also remark that, as in [246], at the point py there exists a constant 7 > 0 depending on ||h|co
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and ||0¢pl|co such that
F = ZF““(A[QDD >T.
a=1

This will be useful to absorb some constants during our computations.
The linearized operator L is defined by

n
L(u)=14 Z F g%y — 40,u,
a,b=1
where ug, = ia@aqbu. In particular, at py the linearized operator has the simpler expression

L(u) = 4(F*ugq — Oru).
At the maximum point py we have L(G) <0 i.e.

0= £ (/A1) + L{al6) + L(3(0)). (7.20)

Bound for L(2v/);).
We claim that

- FualQ? 2 oF
L2y ) > - e’ , 7.21
( 1)— vh Y (7:21)

where QF = 05,07 and C > 0 is a positive uniform constant.
We clearly have

3

L) s (Vi) s (V) e (Vh) s (V)
" sl r (7.22)

3
_ \/% (F S Moesen — 4atﬂl> — Py

p=1 p=0

2217V

where the subscripts zj, denote the real derivative with respect to the corresponding real coordinates
underlying the chosen quaternionic local coordinates. Using the formulas for the derivatives of the
eigenvalues (see Section 6.2.2) and the fact that D is a constant matrix we obtain at pg

A1 Ty = Aqurs,xg =7

’ ll,mg
Q) .
A = N4 e Ay ge + APA =2 M +Qf
Lazgzs — N1 rs,xgilt,xg 1 TS, TETH N — 5\ il,wgwg .

r>1 r

Observe that
3 3
® _ _ _ — 40- —40- _ ®
Qh,z;z; = E (Qll,xgxg + ‘Pnacgacg) = 4911,@ +4pa.11 = 4911@(1 - 4Qaa,11 + E Q&a,m%’m;}
p=0 p=0 p=0
which implies
3
aa \ aa © .
F )\ngmg > F Qaa@;x}g CF.
p=0

Differentiating the equation 9y = F(Alp]) — h twice with respect to x;) gives, at pg,

FrotQf 2O o+ FUQ0, o = hayay + 0i(agay)

1 1
TS,T, aa,r,

150



7.2. A priori estimates and long-time existence.

by this and the concavity of F’
3 ) 3
Fae Z )\l,w;w; —40:;\1 > Z (Faaﬂfa clol — 8t((p$;1)$[1))) —-CF>-CF. (723)
=0 p=0
Substituting (7.23) into (7.22) we obtained the claimed inequality (7.21).

Bound for L (a(|Vy]?)).

First of all we compute

3 n 2
L (OZ(‘VQDF)) =a"F Z <Z(§Drmg@r + @r@rr;))
r=1

p=0

n
+aF YN (Pragesior + 2lerag + prioraga ) (7.24)
p=0r=1

—a znj (8t ©r)or + gorc‘)t(sor)) :

r=1

Differentiating the equation 0yp = F(A[yp]) — h yields
8t (SDIT) Fuqua xr - hwg s at Po -

Together with Cauchy-Schwarz inequality and (7.18) this yields

o o Z(@f&a@r"‘@?@rﬁa) — o Z (3t ((pf)(pr + SDF(r“)t(SOT))

r=1 r=1

/

I
NE

((hf - FaaQ&ai)(PT + SOF(hr - FaaQ&a,r))

ﬁ
l
—

(NY2 4+ NV2F) > —CF,

|
Z\Q

Moreover, we have

8 8
QO/FGGZZ “PTJE“‘Q Faa @i,“w,’l = *Fa%péa = S F(\s = Qa0)® >

Faa 2 _ .
N N A, —CF

2| -

r=1p=0 p=0

Combining the last two inequalities with (7.24) we get

3 n 2
4
L(a(|Ve]?)) = /" F* > (Z(cpm; ©r + aprwmg)) - NFW)‘i ~CF. (7.25)

p=0

Conclusion of the proof.
In view of (7.21) and (7.25), the main inequality (7.20) becomes
3 n 2 Faa'Q |2 aa \2
4F* )\
Il Thaa 11,a ~
0>d'F E (2 E Re(gp;xggo,.)> BTN t—x ¢+ L(B(0)—CF (7.26)

p=0 r=1
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Since pg is a maximum point for G we have

(9} n
ll,xg ~
0= Gxg = \/x +2a/ Z Re(@?wg‘ﬁr) + B/ng

r=1
and therefore, by (7.18)

2

n 2 (0)4
11,22
o"F | 2) Re(vrgapr =2F% | — 22 4 B,
(25 s =,

r=1 ) (7.27)
FW(Q% 2) 2e
> 9 Ly _ / 2Faa~2a
— € )\1 1 _ 6(5 ) /U;Ep b

where we used the inequality (a +b)® > ea® — $52b? , which holds for € € (0,1). Assuming without
loss of generality that /A > 4—15 we get

©
Fei0,

(45@ — 1) W

Putting together (7.27), (7.28) and the calculation

|2
>0. (7.28)

L(B(0)) = B"F**|a]* + 4B'F** a0 — 48'0,
(7.26) simplifies to

4Faa)2
0>
= N

2
4 (ﬁ// _ 166(6/)2) Faa‘ﬂa|2 +4ﬁ/ (Fauf)&a _ 8,5’[7) _ C]:.

If we choose ¢ = 1/(185% + 1) < 1, then (7.19) yields

2e
1—¢

ﬁ//_ (6/)2 207

therefore we finally arrive at

0>

Qe 2
NA“ + 48" (F "5y, — 040) — CF. (7.29)

Supposing A1 > R we have |A(A[g])| > R and we can then apply Lemma 7.8 according to which there
exists £ > 0 such that one of the following two cases occur:

e Case 1:
Re F™*(A[¢]) (Arsle] — Ars[0]) — (Bip — Oep) > kY F(Alg)),

r=1

ie. —F%g, 4+ Opv > RF at pg, where we recall that v = ¢ — . This immediately gives
F"%g, — 00 < —CF

where C' depends on ||0;v]|co. Choosing S so large as to have 8" (F*¥5, — 0;0) > CF we deduce
from (7.29) the inequality 0 > = F2*A2 which is a contradiction, hence this case cannot occur.

o Case 2 .
F*(Alp]) >/~@ZF"(A[<p]), forall s=1,...,n,
r=1

which in particular gives F'' > xF and thus F®)\2 > FUA2 > xF)A?. We may assume
Faa), < F2)\2/(6NS) because if this were not true we would have kK FA? < 6NSFA; and we
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would conclude. Then we have

2F**\2
4/8/ (Faaf}aa — 815’{)) Z —IQSFaa(P&a - CF Z — a C]:,
This last inequality and (7.29) finally give
AT
0 Z 2:‘{F - C,
as was to be shown.
The desired bound is valid at the maximum point zy of G, and then also globally. O

Remark 7.10. As in the elliptic case treated in the previous chapter, this is the only step of the proof
of our main results that uses the assumption that the metric g is hyperkéahler.

7.2.3 Gradient estimate.

The bound find in the previous section is well-suited for the so-called blow-up analysis. This technique
coupled with a Liouville-type theorem allows to find a non-explicit gradient bound and consequently,
also a Laplacian bound.

Proposition 7.11. Suppose there is a uniform constant C such that
[Ag¢llco < C(IVellz +1)

then there is a uniform bound
[Velleo < C.

Proof. The proof is entirely analogous to the one for the elliptic case; we shall only give an overview.
Fix T < T and suppose by contradiction that the gradient bound does not hold. Then we can find a
sequence (h;); of real smooth functions, a sequence (£2;); of g-real (2,0)-forms on M and sequences
(©5);, (gj) 4 of solutions and parabolic C-subsolutions of the equation

F (QET((QJ‘)ES + (@j)fs)) = h; + Ovp;
SuPprx 0,7 ¥5 = 0

Vil > 3.

Assume further that (fj)j’ (h;); and (2;); are uniformly bounded in C?-norm.
For each j assume that |V;|? achieves its maximum N; at (z;,t;) € M x [0,7"]. Set g; = N;

and choose quaternionic local coordinates (¢!, ...,¢") around z; for |¢*| < le/2 foreveryi=1,---,n
such that
(9j)rs = Ors + O(N; Hz]) (Q))rs = O(N; 1), hj = hj(z;) + O(N; H|z]) . (7.30)

We may assume lim;_,o(z;,t;) = (0,17). Clearly |V,(x;,t;)|
we have in this coordinates

52” =1 and by Propositions 7.7 and 7.9

”‘Pj("tj)HCO <C, |A990j('7tj)|gj <C, on BN?/Q(xj%

J

where C' > 0 is uniform in j and does not depend on 7”. By (7.30) we then have, for j — oo

MM (@i + (036 8)8) ) = M2 t)r) + O a). (7.31)
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By [143, Theorem 8.32] and Arzela-Ascoli Theorem, for any a € (0,1), the sequence (¢;(-,t;));
admits subsequence uniformly convergent in C to some u: H” — R. The function u satisfies
llullco + [Vullco < C and |Vu(0)| = 1, in particular u is non-constant. However, using (7.31) and
proceeding similarly to Section 6.2.3 one can easily show that u is a I-solution in the sense of Definition
6.12. The proof is now concluded by applying the Liouville-type theorem (Proposition 6.15) for this
kind of functions, which contradicts the fact that u is non-constant. O

7.2.4 Higher order estimates and long-time existence.

Here we improve the Laplacian estimate to a Holder estimate of the quaternionic Hessian of ¢. We do
o in two ways as in Section 6.2.4, which can both be seen as analogues of the Evans-Krylov theory. By
bootstrapping we then obtain estimates of any order on the solution of (7.1) and thus also long-time
existence.

Proposition 7.12. For each k > 0, there exists a uniform constant Cy, depending on the allowed data,
k, ||[Vo|co and an upper bound for Agp such that

IV¥gllco < C. (7.32)
where V is the Levi-Civita connection with respect to g. Moreover we have long-time existence for p,
i.e. T = o00.

Proof. Assume (7.32) and suppose T' < oo. It follows from (7.8) that there exists a uniform constant
C such that
o] <T sup |Owp| <CT, on M x[0,T).
Mx[0,T)

By this, (7.32) and short-time existence, one can extend the flow to [0,T + ¢g) for some € > 0, which
yields a contradiction. The interested reader can find more details about this standard discussion in
the proof of [285, Theorem 3.1] (see also in [48, 323] and references therein).

We showed that it is enough to prove (7.32). And we claim that (7.32), follows once we have proved
a Holder bound for Hessgy of the form

| Hessul| co.o (arxfe,7)) < Ce (7.33)

where ¢ € (0,7) and C. is a uniform constant depending only on the initial data and e. Indeed,
given the Holder bound (7.33) for the matrix Hessge and the second order estimate for ¢, we can
differentiate the flow (7.1) and then bootstrap using the Schauder estimates in order to obtain the
uniform bound

Vol coa(arxferyy < Cep,  for any k>0,

where C; ;; depends on € and k. But since by standard parabolic theory the solution ¢ is uniquely
determined by the initial and background data, we also have a uniform bound

Hvk(pHCO*a(Mx[O,s)) <C.p, foranyk>0.
The estimate (7.33) is standard, we prove it as a separate proposition below. O

Proposition 7.13. For each e € (0,T) there exists « € (0,1) and a uniform constant Ce > 0 depending
only on the allowed data, €, ||0pp||co, and an upper bound for Agyp such that

| Hessml| co.o (arxfe,1)) < Ck -

We shall present two proofs of the proposition above.
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7.2. A priori estimates and long-time existence.

First proof of Proposition 7.13.

This first proof uses a general result due to Chu [91, Theorem 5.1], which is the parabolic counterpart
of the main result in [286].
Let (Io, Jo, Ko) be the standard hyperhermitian structure on R*", i.e.

0 -1 0 0 0 0 -1 0 00 0 -1
1 0 0 0 0 0 0 1 00 -1 0
=1o o o -1 =1 0 o o] ®o=lo 1 0o o
0 0 1 0 0 -1 0 0 1.0 0 0

Set V = {H € R*4" | [ HIy = JoHJy = KoHKy = —H}. We will use the isomorphism of real
algebras «: H™" — V, and the projection p: R*4" — V' defined as

A B c D
-B A -D C
-C D A —-B|’
-D -C B A

Y(A+iB+jC+ kD) :=

and
1
p(H) = E(H —IgHIy — JoHJy — KoHK)) .

We have the identity v(Hessgu) = 16p(D?u) for any function u: H* — R of class C2.
Now, since the manifold is locally flat, we can work in a coordinate chart, which we identify with
B = B1(0). The condition Ayp < C implies that there exist o and R such that

AA[¢]) eT7NBg(0),  on B,
where I' = {A € " | f(\) > o}. Therefore, setting
& = {H € sym(4n,R) | A (¢ (0)(v (p(H)));.) € T N Bar(0)} |
and shrinking the radius of B, if necessary, we can assume

v (Qrs () + prs(x)) € .

and also that there is neighborhood U of £ such that

Ao @O M (H);.) €17 NBir(0),  forany He Uand € B.

Define the following operators

e P:Sym(4n,R) x B — R defined as P(H,z) = f()\(gﬁ’“(z)(fyfl(p(H)));s)) for H € U, and
extended smoothly to all of Sym(4n,R) x B;

e S: B — Sym(4n,R) defined as S(x) = v(Qrs(x));
e T:Sym(4n,R) x B — Sym(4n,R) defined as T'(H,z) = 16p(H).

Then the setup is convenient for an application of [91, Theorem 5.1]. We shall proceed as in Lemma
5.7 to conclude. We consider two cases:

1. T < 1. We immediately obtain a C° bound for ¢ by Lemma 7.5, as

lp| <T sup |Op| <CT <C.
Mx[0,T)

With this bound [91, Theorem 5.1] can be applied and we conclude.
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2. T > 1. In this case we consider, for any a € (0,7 — 1) an auxiliary function

W(2,1) 1= o, t —  inf . telo,1).
va(z,t) = p(z,t +a) s ¢ €[0,1)

Such a function satisfies
at(Pa = F(A[(pa]) —h

hence, by previous results, it satisfies a uniform Laplacian bound and by Proposition 7.7 it also
satisfies ||¢q|lco < oscarp(-,t) < C. Applying again [91, Theorem 5.1] to ¢, we deduce that for
any fixed £ € (0, 3) we have

||v290||Ca(B><[a+s,a+1)) < ||V2(,Da||ca(3><[€71)) <C,

where C' is a uniform constant that depends on € and «. Since a € (0,7 — 1) is arbitrary we
obtain the desired estimate

V2@l ca(Bxie) < C.

Second proof of Proposition 7.13.

The second proof is more classical in flavour and represents an adaptation of Alesker’s C% estimate
for the quaternionic Monge-Ampére equation obtained in [14].
Again the proof is local, since M is locally flat. Let O C H™ be an arbitrary open subset. For each
€ (0,1), on Op := O x [0,T), we define

[] . lo(y, s) — p(x,t)] [80] —  sup [(p] )
@ eonen (v — 2l + /s — 1) “OT T @peor Y

The metric g can be locally represented by a potential w on O, possibly shrinking O if necessary, in
other words g = Hessgw. Let us denote u = w + ¢ and U = Hessgu. By concavity of F', and the mean
value theorem, for all (z,t1), (y,t2) € O x [0,T"), we have

Re " (y, ta) (urs (%, 11) — urs(y, 12)) = Oep(w, tr) — Orp(y, ta) — h(z) + h(y)

7.34
> Qyu(a,t1) — Opulyst2) — Clla— ] (734

for some constant C' depending on [|Al|c:.
At this point we recall the following algebraic lemma by Alesker [14, Lemma 4.9].

Lemma 7.14. Let A\, A € R satisfy 0 < A < A < +o0o. There exist a uniform constant N, unit
vectors &1, -+ ,&En € H™ and positive numbers Ay < A, < +00, depending only on n, A\, A such that any
hyperhermitian matriz A € H™™ with eigenvalues lying in the interval [\, A] can be written as

N N
A= Z Br&i ® &k, i.e. Are = Z Brkréns »

k=1 k=1
for some By € [As, Ai].

Applying the lemma to A = (F"*(U)), immediately yields
Re F"™* (U(y))(ufs (y) urs = Re Z IBk fk}rgkrs Urs (y) — Urs (.’B))

N
Z y) (Ae,uly) — Ag,u())

for some functions S (y) € [M«, As], where, for any unit vector & = (&1, -+ ,&,) € H", we denoted by
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7.2. A priori estimates and long-time existence.

A¢ the Laplacian on any translate of the quaternionic line spanned by &, i.e.

Retr((€" @ &) (urs)) = Retr(§" (urs)€) = Agu.
For convenience, let us set fo(y) = 1 and Ago = —0;. Then, from (7.34) we obtain

N
Zﬁk (Agru(y, tz) — Agru(z, t1)) < Cllz —yl|. (7.35)
k=0

Lemma 7.15. For any k=0,1,--- | N,
NAeru < Re F™ (Agrurg) + Agih.
Proof. For k = 0. Applying 9; to (7.1), we get
Oy (8tu) = Re F"°0, (ur—s)

and the lemma follows.
For other k > 1, write ¢¥ = (¢F,- -+, ¢F). Differentiating (7.1) along §]’§ twice and taking sum over
the index p, gives

atAgk’U, =Re F"? (A&kU;S) + Re Z Frs’tlufsglpcut‘lgg - A&kh S Re F™ (Agkuqzs) - A&kh 5
p=1
by the concavity of F. Then the lemma follows. O

Fix £ € [¢,T), and r € (0,1) such that 10r? < £. Define

P ={(x,t) € Op: |zf| <t —5r% <t <E—4r7},
Qr={(z,t) €Op ||z < —r* <t <1}

For every k =0,1,--- , N, let us denote

Mk:r mkr

Mz

My, = sup Agwu,  my, = inf Agru,
Qr @ k=1

To prove Proposition 7.13, it suffices to find a constant C' (depending only on €), 7o > 0 and 0 < § < 1
such that
n(r) < Cr°, for allr < ro.

Let us define an operator D = 1Re F"*(U)83-0g:. Let (a;;) € Sym(4n,R) be the realization of
(F"#(U)). Then we can rewrite D as

4an

D= auD.D;, (7.36)

s, t=1

Since F' is uniformly elliptic on T', then (as:) € Sym(4n,R) satisfies the uniform elliptic estimate
AEIP <32, asibsée < AJ[€]]? for some 0 < X < A < 00 and any § € R*".
The following weak parabolic Harnack inequality is well-known.

Lemma 7.16. [212, Theorem 7.37]. Ifv € W2271L1+1 is a nonnegative function and satisfies

ov
5 T z;astDsDt'U <h'" on Qy,

where h' is a bounded function and the matriz (as) is as in (7.36). Then there exist positive constants
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C,p depending on n, A\, A such that

1
s (/P vp> "<o (1;@ + rﬁil||h'||m+l> . (7.37)
For each £ =0,1,--- , N, let us denote vy := My, 2, — Agru. Then vy € WQQ,;lJrl is a non-negative
function and since Agruzs = (Agru)rs on Or it satisfies
—0wy, + Re F™(v)rs < B
for a bounded function A’. Then by Lemmas 7.15 and 7.16,

1

1
FAnt2 (/ (M 2r — Agku)p> " < O(Mygr — My + Tﬁ) ; (7.38)
Py

On the other hand, let (z,t1), (y,t2) € Qar, it then follows from (7.35) that

B (Agku(y,tg) - Agku(m,tl)) <Cr+ Z By(Agu(x,tl) - A@u(y,tg)) )
0<y<N
v#k

For each € > 0, pick a point (z,t1) € Q2. such that my 2, < Agru(z,t1) + €. As a consequence, after
dividing the inequality above by [, we obtain

Agru(y,ta) —mp2r < Cr+C E (M 2r — Agvu(y, t2)) ,
0<y<N
v#k

by arbitrariness of ¢. Integrating for (y,ts) over P, and using the fundamental inequality ||a + b||, <
llall, + 1|b]|, for every p > 1, yields

(Gt ma)) 2 ([ [+ 8 0 scsm]')

" Pr 0<y<N
v#k
© }
< Cr + pin+2 Z (/ [M’YQT - Af’yu(yat2)]p) (739)
0<y<N P
v#k
(7.38) .
= C Z (M 2 = My ) + Cr i
0<y<N
v#k

where we have used the fact 0 < r < 1 in the last inequality. In light of (7.38) and (7.39), and again
the triangle inequality |la + b||, < ||al|, + ||bllp, We obtain

C z C
Mk,2r — My 2r < M(/PT(Mk,zr - Agku)p) + m(/}j (Agku - mk,Qr)p)

r

3 =

N
<O (Myor — My,) + Crova
~=0
Summing over k we deduce

N
n(2r) < CZ(M%% = M,yy) + CrmiT,
v=0
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7.3. Convergence of the flow.

By definition, m. , is non-increasing in s, whence
N
4an 4an
1(2r) < O3 ((Myap =y o) = Moy +ma ) o Cravit = O(n(2r) = n(r) + CrovtT.
v=0

Equivalently,

n(r) < (1= 5 )n(er) + Creir.

Applying a standard iteration technique (see [143, Chapter 8] for more details), we finally infer that
there exists a dimensional constant § € (0,1) such that n(r) < Cr® as we wanted to show. This
completes the proof of Proposition 7.13.

7.3 Convergence of the flow.

Li-Yau type inequality.
Now we consider the following Li-Yau [211] type equation

(L=0)y =0, >0, (7.40)

where £ = 1Re F*93,0,, .
If we let
3 3
hP =Y ey, RO = P,
p=0 p=0
where &, 1= %, and e, denotes the quaternionic conjugate of the quaternionic unit e, for every p.
5 k

Then we can rewrite £ as 1
L = Re F*05,00,® = Fpg Cypr,

where Fi% := JRe {F*¢qe,} for simplicity.

Let B be a constant so large that ¢ = d;¢ 4+ B is a solution to (7.40). We consider the quantity
H = t(|ov]* — adw), v=log,
where a € (1,2) is a constant and
2 1 il il
|Ov|* = ZReFJ vjvp = Fl vai v, .

Lemma 7.17. There exists a constant C > 0 such that

t
(€= 0)H = - (|ov] ~ 0)° — 2(0, 0H) — (|0v]? — adyw) — tC|0v|* — Ct, (7.41)

n

where (-,-) is the inner product defined by (3f,dg) = 1Re F* fig;, = F]Z’q“ fuk Gas -

Proof. The proof is local. For each z € M, we can find quaternionic coordinates ¢, ..., g, on a local
chart around 2. Assume f € C%(M,R), let f; = % be the ordinary quaternionic derivative. Plugging
J

1 = e? into (7.40) we have

Lv — 0w = —|0v|?, (7.42)
giving
H=—tLv—tla— 1), (7.43)
and thus also 1
t0, (Lv) = EH — O,H —t(a — 1)} . (7.44)
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By a straightforward computation we get

—0pH = —(|0v]* — adw) — 2t(dv, 00,v) + tadjv — tat(F;];)vzz;vmé ,

(7.45)
LH = tL(|0v|*) — taLl(dw) .

First we deal with the term £(|0v|?). For convenience, let us define

_ ik il , _ ik il o
V= quFrs”xix’;”xgz; , W= quFrsvxix;%gzg .

By a direct calculation, we get
L»00) =V +W + LOEL) 001 0,5 + Fpg (FL)axva vy oo+ Fpg (FL) ot vat 3 v,

ik paly . ik pily . gl ) gl )
+ qu (Frs)rfzvxlrx’; Uyd + qu (Frs)mgvxﬁ\x’gvmg + Frsﬁ(vxﬁ\)vg;g + Frsvx,lrﬁ(vg;g) :

Note that ¢ has uniformly bounded C* norms for every k > 0 by Proposition 7.12. Hence, analogously
to the (almost) Hermitian case [91, 144], we deduce

|£(Fﬂ£)vmivxg\ < Clow|*. (7.46)
For each 0 < € < 1, we have that

|F£§(Fﬂﬁ)mg%g.vwgwé| | Fpg (FL2) ak Ut i U | | Fptg (L) 0 Vst a0 | + | Fopg (F28) i Ut ok U, |

C (7.47)
< ;|8v|2 +2eW + 26V
Observe that (Lv),; — L(v,;) = (Fg’;vmgmé)zi — F;gszmkzi = (F;Z)zgvzﬁzg~ It follows that
Frjslﬁ(vxzr)vzi + Fﬂivmiﬁ(vzi)—2<8v, OLv)
= = b, Bk )t vy = Flbvgs (i) vy (748)
> — g|8v\2 — eV —eW.
On the other hand,
(7.43)
2t(0v,0Lv) =" — 2(dv,0H ) — 2t(a — 1)(v, d9yv)
. -1
729 2(0v,0H) — (o — 1)9, H + QTH —ta(a —1)0%v
, (7.49)
—tla— 1)8t(F;’;)vx§vIz
-1
> —2(0v,0H) — (o — 1)0, H + QTH —ta(a — 1)0%v — Ct|0v|*.
It follows from (7.48) and (7.49) that
1 y a—1
t(FT]SE(vzz Yo, + Fily, L(v j)) >~ 2(00,0H) — (a — 1)0,H + “—H
o o t (7.50)

—ta(a —1)02v — Ct|ov|* — %\8142 —teV —teW.

160



7.3. Convergence of the flow.

Now, we treat the second term of LH in (7.45). Using the Cauchy-Schwarz inequality, at z, we deduce

—tal(Ow) = — tady(Lv) + ta@t(F;f;)vmg%
(1.44)  « i
=7 ?H + adiH + ta(a — 1)0%v + tozat(Fp’q“)vw;;zg (7.51)
t
>— %H—kaatH—kta(a —1)0%v — % —teV,

where in the last inequality we have used the fact that —CF/F < 8,(Fik) < CF/ for a uniform
constant C, which is implied by Proposition 7.12.
Plugging (7.46), (7.47), (7.50) and (7.51) into (7.45), we get

LH >tW + 1tV — Ctlow|? — t(§|8v|2 12V + 28)/\/) —2(v,0H) — (a — 1)9,H

a—1

+ H — ta(a — 1)02v — Ct|ow]? — %|8v|2 —te(V+W)

- %H + a0 H + ta(a — 1)0%v — % —teV
1N A o 1 Ct
>t(1 = 4)V + (1 = 3e)W — 20t (1 + g) 902+ 0H — L H = 2(0v,0H) = — .
Thus, if we choose % <e< %,
(L—0)H > %v — Ctloul? — (10v]? — adsw) — 2(00,0H) — Ct. (7.52)

Applying the arithmetic-geometric mean inequality, and by (7.42),

1 1
V2 (Lo)* = (O ov[?)? .
Plugging it into (7.52), we infer that
(L — 0 H > %(aﬂ; —100)? — Ctlow]? — (10v]? — adyw) — 20, OH) — Ct .

By the arbitrariness of z, this proves (7.41). O
Using the parabolic maximum principle, we can prove the following lemma.

Lemma 7.18. On M x (0,T), we have

2

8na nC??
2 < 2 — ).
|Ov| 00 < ; + \/Sna (C’ + 3o — 1)2>

Proof. Let us fix an arbitrary time tg € (0,7). Suppose H(x,t) (as in (7.43)) achieves its maximum at
the point (§,#) € M x [0,tp]. We may assume > 0, otherwise [Jv|? — adw <0 on M x [0,to] and we
are done. It follows that

H(q,t) > H(q,0)=0.

Using the maximum principle at (g, %), we deduce (£ — 9;)H < 0 and H = 0. Substituting this into
(7.41) yields

72
A%(Iav\2 — o) = CP|ow)> — H < CP*. (7.53)
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Notice that at (g, 1),

2(|ovf? = ow)® = ﬁ(|8v|2 — ad + (a — 1)|0v]?)?
t = a2 (A% [0 (
2 —1\2 — 1t
- H72 + (Ll) £2|ov|* + w‘avﬁ (7.54)
[0 « «
H? a—1\29,
a? + ( e ) tlovl®,

Y

where we have used the fact that H is nonnegative at (¢, #). Using the elementary inequality az? + bx >

b2
— 1. we get

1 /a—=1IN\25 ., 4 2 nC?a?
— (=) —i > 22 g .
4n( . ) Blovf* — EClov)? > o 17 (7.55)
Plugging (7.54) and (7.55) into (7.53) gives
H? nC?a?
<H+CP? 4+ ———12;
dna? Ot 20a—1)2"
from which we can deduce
R C2a2 \ .
§,1) < 8na’? 2 LSRN
H(g,t) < 8na” + \/Sna (C—I— o= 1)2)1?
Hence, at each point ¢ € M,
R C?a?
<H(4,1) < 8na? 2( _ntra”
H(q,to) <H(§,t) < 8na® + \/Sna C+ o= 1)2)t0
Consequently, at (g, to),
8na’? nC2a?
2
|8’U| — O[atv S to + \/8’11062 (C + m) .
Then the lemma follows by arbitrariness of tg. O
Parabolic Harnack inequality.
Let v = 9y + B for a large constant B such that ¢ > 0 on M. By (7.10) we know
Lip—0p =0. (7.56)

With the results of the previous subsection we can prove the following useful parabolic Harnack
inequality:

Proposition 7.19. Let 0 < t; < ta < T. Then there exist constants C; (i =1,2,3) depending only on
(M, I,J,K), Q and f such that

C1
t C
supp(-,t1) < infop(-,ta) (=) exp 2+ Cs(ta—t1) ). (7.57)
M M t to —t
Proof. With Lemmas 7.17 and 7.18, we can apply the procedure of [91, 144] verbatim. O
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Convergence of the parabolic flow.

Proposition 7.20. Suppose T = oo, oscarp(-,t) < C and |[V¥p||co < C for any k > 0, where C > 0
s a uniform constant. Then the normalization ¢ converges in C*° topology to a smooth function @e
that satisfies

F(Alg]) =h +b,

for some constant b € R.

Proof. Set ¢ = Oyp + B for a large constant B such that ¢ > 0. For each m € N, we define

QLm(Ivt) = Sup¢('am - 1) - ’l/)(l‘,m -1+ t)7
M

&m(xvt) = ¢($7m -1+ t) - 1]I\l4f’l/)(,m - 1) .
It is straightforward to verify that
(8t - £)¢ = (at - L)qﬁm = (at - [’)im =0.

Applying the parabolic Harnack inequality (7.57), this yields

Supi)m('vtl) < Cinfq[’m('»b) , Sup"/v)m(ﬁtl) < Cinf&m('yh) .
M M M M

Choosing t; = %, to = 1 we get
g (am=g) —mtotm—1) < C (imf o, m) — ot m —1))
S]l\14p ym= g inf (-, m < O (infy(,m) —inf (., m ,

) (7.58)
sup e 1) —igf b (sm = ) <€ (supuom— 1) —supvtem) )
M M 2 M M
In light of (7.58), if we set
H(t) = 5up¢(7t) - lnfw(ﬂf)
M M

for the oscillation, then we have

9(m—1)+0(m—;> SC(Q(m—l)—H(m))a

which implies that 6(m) < e=°6(m — 1), where 6 := —log(1 — &) > 0, and by induction
O(t) < Ce .

Since we have fM 0¢p = 0, by the mean value theorem, there exists a point z; € M such that
Orp(x¢,t) = 0. Therefore,

|8t¢(x,t)| = |6‘t<,5(x,t) — 6‘t<,5(:ct,t)| < oscprOpp(s,t) = oscprOvp(-,t) = 0(t) < Ce %,

which yields that @ + %e*‘st (resp. @ — %e"st) is non-increasing (resp. non-decreasing) with respect

to t. It then follows from the uniform bounds on ¢ that ¢ is uniformly bounded in C*° topology,

therefore there is a sequence of times ¢; — oo such that @(-,t;) converges smoothly to some smooth

function ¢ and it is fairly standard to show that actually lim; ,. @ = @oo in the C"*° topology.
Finally, the limiting function ¢, satisfies

0o Ay

0= lim 8;@(-,t) = lim [ F(A[g]) — h _ = F(A[po]) — h — b,
lim 3,5(1) Hm( (Alg)) s ) (Alpsc))
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where we set B
Oro QP N QY
b= tim D02 NG
t—o0 fM QO A QO

7.4 Proof of Theorems 7.2, 7.3 and consequences.

We are ready to complete the proofs of Theorems 7.2 and 7.3.

Proof of Theorem 7.2. Let (M,I,J, K, g) be a compact flat hyperkéhler manifold, ¢, $: M — R be the
solution to (7.1) and its normalization (defined in (7.4)). The initial datum ¢q is assumed I'-admissible
and, since f is unbounded, every I'-admissible function is automatically a parabolic C-subsolution.
Hence we may apply Proposition 7.7 and deduce oscprp(+,t) < C and ||@||co < C. This bounds allow
to obtain from Propositions 7.9 and 7.11 a uniform constant C' such that Agzp < C. Applying now
Proposition 7.12 we infer long-time existence of ¢ and uniform bounds on its derivatives of any order.
Finally, Proposition 7.20 yields smooth convergence of the normalization ¢ to some function @, which
is a solution of (7.5), i.e.
F(A[g]) =h+0b

for a suitable constant b € R. O

Proof of Theorem 7.3. The proof is quite similar to the one of Theorem 7.2. Indeed, suppose f is
bounded on I' and assume that it satisfies either one of the two conditions expressed in the statement
of Theorem 7.3, we are still able to apply Proposition 7.7 and deduce oscarp(-,t) < C and ||@||co < C.
Now we can employ the arguments in the proof of Theorem 7.2 to complete the proof. O

Quaternionic Hessian flow.

We shall present two of the many possible applications provided by Theorem 7.2, namely we show the
convergence of the quaternionic Hessian flow and of the (n — 1)-quaternionic plurisubharmonic flow on
compact flat hyperkédhler manifolds. Let us start with the former.

Let (M,I,J,K,g,Q) be a compact hyperhermitian manifold. Let 1 < k < n and fix a g-real
k-positive (2,0)-form Q, that is
QAQT!
Q>O foreveryi=1,....k.
%

Then the quaternionic Hessian flow can be written as

k —k
Q5 A Qp

Osp = log On
0

—H,  penl,, (7.59)

where H € C*°(M,R) is the datum and 7—[’&0 is the space of smooth functions ¢ such that €, is a
k-positive g-real (2,0)-form.

Theorem 7.21. Let (M,1,J,K,g,Q0) be a compact flat hyperkihler manifold and Q2 a g-real k-positive
(2,0)-form. Then for any smooth initial datum @ € 7—[60,

1. the solution ¢ to (7.59) exists for all time;

2. the normalization ¢ (defined as in (7.4)) converges smoothly as t — oo to a function Ppoe € 'HS’%U,
and there exists a constant b € R such that

k —k
N

P =bell. .
o ¢ (7.60)
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We remark that the constant b in (7.60) is uniquely determined by

Ju Ok AQETFAQp

b: —
fM eHOp A QY

Flow (7.59) provides the quaternionic counterpart of the complex Hessian flow (see e.g. [257]). For
k = 1 equation (7.59) is the parabolic Poisson equation, while for k = n it becomes the parabolic
quaternionic Monge-Ampeére equation. Thus, Theorem 7.21 generalizes the main result of Chapter 5.

Proof of Theorem 7.21. The result follows as a simple application of Theorem 7.2 once we choose
f = log oy, defined over the cone

=Ty :={AeR"|o1(N),...,0k(\) > 0},
where o, is the r-th elementary symmetric function

oM = DY A, for all A = (A1,..., ) € R,

1<iy<--<ip<n

Indeed, on a locally flat hyperhermitian manifold a C? function u lies in 7—[60 if and only if it is
I'y-admissible. The function f satisfies our structural assumptions C1-C3 (see e.g. [268]) and it is
straightforward to check that it is unbounded over I'y. Finally, with this setup, the quaternionic
Hessian flow (7.59) becomes 0y = f(A(A[p])) — H, as desired. O

(n — 1)-quaternionic plurisubharmonic flow.

Our second aforementioned application is the (n — 1)-quaternionic plurisubharmonic flow. Let
(M, 1,J,K,g,Q) be a compact hyperhermitian manifold and Q; be a positive g-real (2,0)-form.
Denote with A4 the quaternionic Laplacian with respect to g. The (n — 1)-quaternionic plurisubhar-
monic flow is encoded in the following parabolic equation:

(% + 2 [(Ay0)% - 00,¢])"

an - H, p e QPSanl(M,Ql,Qo) , (761)
0

Orp = log

where QPSH,, (M, Q,Q) denotes the space of functions ¢ that are (n — 1)-quaternionic plurisub-
harmonic with respect to Q; and Qq, i.e. Q; + —— [(Aggo)ﬂo — 88Jg0] > 0.

n—1

Theorem 7.22. Let (M,1,J,K,g,Q) be a compact flat hyperkihler manifold and Q1 a g-real positive
(2,0)-form. Then for any smooth initial datum po € QPSH,,_; (M, Q1,Q0),

1. the solution ¢ to (7.61) exists for all time;

2. the normalization ¢ of ¢ (defined as in (7.4)) converges smoothly as t — oo to a function
Poo € QPSH,,_1(M,1,9Q0), and there exists a constant b € R such that

1 n
(m + 7 [(AgPec)0 - aafsboo}) = be' Oy . (7.62)

The constant b in (7.62) is uniquely determined by

b— fM (Ql + ﬁ [(A99500)QO - 38-79500])n A Qg
fM eHQp A Qg .

The complex version of flow (7.61) was studied by Gill [145] as a parabolic approach to the complex
Monge-Ampere equation for (n — 1)-plurisubharmonic functions. As proven in the previous chapter,
the solvability of (7.62) leads to Calabi-Yau-type theorems for quaternionic balanced, quaternionic
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Gauduchon, and quaternionic strongly Gauduchon metrics. Therefore, convergence of flow (7.61)
results to be an interesting tool in the search of special metrics.

Proof of Theorem 7.22. Define
f=logo,(T), TI'=T"YT,),
where T: R™ — R"” is the linear map defined by

1 n
TA) = (TN)1,.--,T(N)a), T()\)k:n_lg)\i, for every A € R™.

An easy verification shows that assumptions C1-C3 are satisfied and that f is unbounded over T'.
Setting

Q= Re (g ()7.,) % — (n = 1,

one can easily see that u € C?(M,R) lies in QPSH,,_; (M, 2y, Qo) if and only if A(A[u]) € T, where
Alu] = ¢7" (€, + uj,). We can then rewrite the (n — 1)-quaternionic plurisubharmonic flow (7.61) as
O = f(MA]g])) — H and apply Theorem 7.2 to conclude. O

Within the bounded case various equations can be included, for instance, parabolic quaternionic
Hessian quotient equations, parabolic quaternionic mixed Hessian equations. We limit ourselves to
prove the following general result.

Theorem 7.23. Suppose [ is bounded on T'. Let (M,I,J,K,g,Q) be a compact flat hyperkahler
manifold. If there exists a I'-admissible function g and a C-subsolution of the equation

F(Alg]) = h
in the sense of Definition 6.2. Then there exists a smooth solution of the equation
F(Alp]) = h+b
for some constant b € R.

Proof. Let ¢ be an elliptic C-subsolution of the equation F(A[y]) = h, which we have shown that
can be seen as a time-independent, parabolic C-subsolution of our flow (7.1). Consider flow (7.1) with
a [-admissible initial datum ¢, then condition (7.6) of Theorem 7.3 is trivially verified, and this
concludes the proof. O
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CHAPTER 8

THE DEGENERATE QUATERNIONIC MONGE-AMPERE
EQUATION

The next natural step in the study of the conjecture is the case when the manifold is locally flat, but
does not admit any compatible hyperkédhler metric. This is the object of the present paper where we
prove that in the locally flat case the quaternionic Monge-Ampeére equation can be always solved at
least in a weak sense. So far the approach for solving the conjecture has consisted in adapting Yau’s
proof of the Calabi conjecture to the quaternionic case, hence the strategy so far has always been
purely PDE-theoretic. The main difficulty in this direction is the proof of the a priori estimates. In
the present chapter we consider an alternative method and try to tackle the problem with the different
perspective of pluripotential theory. We solve the quaternionic Monge-Ampeére equation in a weak
sense under the assumption of local flatness with a variational approach via the Ding functional in the
same spirit of the paper of Berman, Boucksom, Guedj and Zeriahi [39]. The same method was used by
Wan in [313] to study the quaternionic Monge-Ampére equation.

The variational approach has also been implemented to other settings (see e.g. [2, 38, 217, 218]),
in particular we highlight that it has been successfully applied by Wan [313] for quaternionic Monge-
Ampere equations on a domain of H"”. In order to establish analogue results and characterize the range
of the quaternionic Monge-Ampere operator we will first need to set up the ground by introducing
quaternionic pluripotential theory on HKT manifolds.

The work initiated by Bedford and Taylor [31, 32] provides perhaps one of the most remarkable
and powerful way of investigating the nature of Monge-Ampeére operators. The first to implement this
framework and obtain weak solutions of the complex Monge-Ampére equation was Kolodziej in the
seminal paper [199]. With this pluripotential point of view, here we will study the equation

(Q+00,0)" = p (8.1)

where the right-hand side is no longer a smooth volume form but merely a positive Radon measure
satisfying the necessary condition p(M) = Vol(M). Before we do this, we will need to establish a few
fact in quaternionic pluripotential theory over HKT manifolds, relating the notion of pluripolarity with
some quaternionic capacities in the same spirit of [156]. This will allow to extend the definition of the
Monge-Ampeére operator on a certain class of unbounded functions. Within this class, we will show
that equation (8.1) can be solved if and only if the right hand side is a non-pluripolar measure.

8.1 Quaternionic plurisubharmonic functions.

In this section we recall the definition and some properties of quaternionic plurisubharmonic functions
(gpsh for short) on open subset of H" and on hypercomplex manifolds.
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

The local case.

The definition of quaternionic plurisubharmonic functions on domains of H" was introduced by Alesker
in [9] and the theory of these functions was developed in [11, 12, 13, 17, 310, 311, 312, 313, 315, 316,
317, 318).

Definition 8.1. Let A C H"” be an open domain. A function ¢: A — [—00,00) is quaternionic
plurisubharmonic (qpsh for short) if it is upper semi-continuous, ¢ # —oo and it is either subharmonic
or constant —oo on each affine right quaternionic line, i.e. for every x € A and v € H the function
y — p(x + vy) is either subharmonic in the usual sense or constant —oco.

As noted by Alesker [9] qpsh functions are subharmonic and for n = 1 the two notions coincide. In
view of this fact qpsh functions inherits all the nice properties of subharmonic functions, for instance,
they are L .. Even if, for many aspects, the theory of gpsh functions is analogue to the one of
plurisubharmonic functions in the complex space, there are also some differences: for instance complex
plurisubharmonic functions are always in L{.  for any p > 1, while Sroka showed in [270] that gpsh
functions are only in L}  for p < 2 and such exponent is optimal. Moreover, another remarkable
difference is that bounded plurisubharmonic functions in C™ are necessarily constant, while bounded
gpsh functions on H"™ need not be. For example, for n = 1 we know that qpsh functions can be
regarded as subharmonic functions in R* and it is well-known that there exist bounded non-constant
subharmonic functions in R*.

The following proposition collects the essential properties of qpsh functions (see e.g. [313]):

Proposition 8.2. Let A C H"™ be an open domain. The following properties hold.

o The set of quaternionic plurisubharmonic functions on A forms a conver cone.
o If (v;) is a decreasing sequence of gpsh functions then lim; ; is either gpsh or constant —oo.

o If(pj)jes is a family of qpsh functions such that u = sup;c ; u; is locally bounded from above,
then also the upper semi-continuous regularization u* = limsup 45, _,, u(y) is qpsh.

Using convolution one can also regularize qpsh functions:

Proposition 8.3. If ¢ is quaternionic plurisubharmonic and p. = @ * X< is the standard reqularization
on A. = {z € A|dist(x,0A) > €}, then p. € C(M,R) is qpsh and decreases to ¢ as e — 0.

Closed and positive currents.

In order to introduce the definition of gpsh functions on manifolds we recall some basic facts about
currents on hypercomplex manifolds. Let (M, I, J, K) be a hypercomplex manifold of dimension 4n.
The space DP4(M) of (p, q)-currents on M is by definition the topological dual to A2*~P:2"=4(M). For
instance, any (p, ¢)-form 7 naturally defines a (p, ¢)-current T,, given by integration:

Ty(a) == /Mn/\a.

The actions of I, J, K naturally extend to currents, for example J: DP4(M) — D?P(M) acts on
T € DP(M) in the following way:
(JT)(a) =T (Ja)

for any compactly supported o € A2"~P2n=4(M). Similarly, the operators 9,9 : DP9 — DP+L4 are
extended to (p, ¢)-currents by duality as follows

OT)(e) = ()P T(0a),  (95T)(a) = (=1)PTTHT(950).
for any compactly supported oo € A2"~P:2n=4()]),
Definition 8.4. A (2p,0)-current T is called
o qg-real if JT =T, where T(a) := T(a) for any a € A2"=2P2"(M);
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8.1. Quaternionic plurisubharmonic functions.

« g-positive if it is real and additionally T'(«) > 0 for any q-semipositive o € A??=2P2n()]);
o O-closed (resp. d;-closed) if 9T =0 (resp. 9;T = 0).
e closed if it is both 9 and 0;-closed.

Notice that according to our definition a current is closed if it is closed with respect to 0 and J;
and not necessarily with respect d. This notion of closure is more useful in HKT geometry (since
d-closed currents never show up) and agrees with the definition given in [316]. Any g-real current is
O-closed if and only if it is 9j-closed. Moreover, by [316, Proposition 3.4] any g-positive current can be
regarded as a differential form with Radon measures as its coefficients.

We remark here that Wan and Wang use two anticommuting operators originally defined in [316],
which they denote do, d; and satisfy d3 = d3 = 0. However, it was proved by Sroka in [270, Proposition
1] that, after a suitable choice in the definition of these operators, we have

do=20;,  di=—20.

Since the operators 9, d; have an intrinsic meaning on any hypercomplex manifold, it is more convenient
to use those operators instead of dp, d;. For this reason, in what follows, we shall phrase all results in
terms of 0, 0;.

The definition of qpsh functions on a domain of H"™ can be characterized in terms of positivity of
the current 00 ¢.

Proposition 8.5. If ¢ is quaternionic plurisubharmonic then 00;p is a closed g-positive current.
Conversely, if ¢ € L _(A) is such that the closed current 80y is g-positive then there exists a
quaternionic plurisubharmonic function ¥ on A such that ¢ = 1 almost everywhere.

Proof. The fact that 99 ;¢ is a g-positive current for any gpsh function ¢ was proved in [316, Proposition
3.7]. Conversely, let ¢ € Ll (A) be such that 99,4 > 0 in the sense of currents. Take a regularization
Ve = @ *x Xe. Since 0050 = (005¢) * xe > 0, and since @, is C> we see that . is qpsh. Hence, for
£ — 0 the regularization ¢, decreases to a gpsh function v, but since ¢, — ¢ in Ll = we must have
o = 1 almost everywhere. O

The global case.
The above discussion motivates the following:

Definition 8.6. A function ¢ € L*(M,[—00,00)) on a hypercomplex manifold (M, I, J, K) is called
quaternionic plurisubharmonic (qpsh for short) if 99;¢ > 0 in the sense of currents.

A function ¢ € L'(M,[—00,00)) on a HKT manifold (M, I, J, K,) is called Q-quaternionic
plurisubharmonic (£2-qpsh for short) if 4+ 99;¢ > 0 in the sense of currents.

Note that in the compact case the maximum principle implies that every gpsh function is constant.

Remark 8.7. If (M, I,J, K) is locally flat, i.e. if it is locally isomorphic to a domain of H", a function
@: M — [—00,00) is qpsh if and only if for any point = € M there is a local chart ¢: U — ¢(U) C H"
around x such that ¢ o ¢~1 is gqpsh on 9 (U) in the sense of Definition 8.1.

Remark 8.8. Given a HKT manifold (M, I, J, K,Q), the HKT form can be always locally written as
00yv. The function v is called a local potential of Q. A function ¢: M — [—00,00) is Q-gpsh if and
only if locally v + ¢ is qpsh with respect to each local potential of Q. In particular if (M, I,J, K, Q) is
locally flat Proposition 8.5 implies that any gpsh function on (M, I, J, K, Q) is upper semi-continuous.

Given a HKT manifold (M, I, J, K, ), we denote by
QPSH(M, Q) := {p € L*(M,[~00,0)) | Q4+ 0950 > 0}

the space of Q-qpsh functions on (M, I, J, K,§). With the natural L!-topology QPSH(M, ) is a
closed convex cone of L'(M) which is closed under taking maximums.

Proposition 8.2 can be directly generalized to Q-qpsh functions on compact locally flat HKT
manifolds.
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

Proposition 8.9. Let (M,I,J,K,Q) be a compact locally flat HK'T manifold:

1. If (¢j) is a sequence in QPSH(M,Q) uniformly bounded from above, then either converges
uniformly to —oo or it has a convergent subsequence in L'(M).

2. If (¢;) is a decreasing sequence in QPSH(M, Q) then it either lim; ¢; € QPSH(M, Q) orlim; p; =
—00.

3. If (pj)jes is a family in QPSH(M, Q) such that ¢ = sup;c; ¢; is locally bounded from above,
then the upper semi-continuous reqularization @* is Q-qpsh.

4. Hartogs’ Lemma: If (p;) is a sequence in QPSH(M, Q) such that ¢; — ¢ in L*(M), then ¢ = ¢*
almost everywhere for a unique ¢* € QPSH(M, Q). Moreover lim;_,o Sup,,; ¢; = sup; ¢*.

The following compactness result will be very useful in the sequel.

Lemma 8.10. Let (M, I, J, K, ) be a compact locally flat HKT manifold. The set {¢ € QPSH(M, ) |
sup,; p = 0} is compact in QPSH(M, Q). Furthermore, if u is a positive Radon measure such that
QPSH(M, Q) C L'(u) then the subset {p € QPSH(M,Q) | [,, ¢du = 0} is relatively compact. In
particular there exists C' such that for any ¢ € QPSH(M,Q),

—C +supyp S/ @ dp < supp.
M M M

Here we recall that a Radon measure is a Borel measure which is inner regular and outer regular.

Proof of Lemma 8.10. By Hartogs’ lemma (Proposition 8.9(4)) {¢ € QPSH(M, Q) | sup,; ¢ = 0} is
closed and by Proposition 8.9(1) it is relatively compact.

Let (¢;) be a sequence in QPSH(M, Q) such that [, ¢; dp = 0 and let ; := ¢; —sup,, @;. There
is a convergent subsequence v;, — ¢ € L'(M). Assume that x is smooth. Then we have convergence
Vi o — Y in the weak sense of measures. Consequently fM Vi, dpp — fM ¥ dyp > —oo showing that
1911 () is bounded. But

II%HLW;L):/ %du—/ sup @; dp = —p(M) sup @;
M M M M

implying that the sequence ; is uniformly bounded from above. Therefore Proposition 8.9(1) implies
the lemma.

If pu is not smooth, it is enough to prove that |[¢);[/1(,) is uniformly bounded for every j. Suppose
by contradiction that fM 1; dp — —oo, then, up to a subsequence we may assume fM P dp < —27,
Set ¢ = Z;i1 2794;. By the first part of the proof the L' norm of ¢; with respect to a smooth
positive Radon measure is uniformly bounded. This entails that 1) # —oo and since the function v is
the limit of a decreasing sequence of functions in QPSH(M, ) it is itself a function in QPSH(M, Q).
However, we get a contradiction, because by the monotone convergence theorem we should have

Sy du=3232,27 [\ ¥y dp = —oc. H

For what regards regularization we remark that on manifolds convolution with radial smoothing
kernels may destroy plurisubharmonicity. In the complex case one can still find approximations via
regular gpsh functions, as showed by Blocki and Kolodziej [45], but their argument breaks down in the
quaternionic case, even under the assumption of local flatness. However, if the starting qpsh function
is continuous, then it can be approximated with smooth Q-gpsh functions.

Proposition 8.11. Let p € QPSH(M, Q) N C(M,R), then, for any positive function g on M there
exists ¥ € QPSH(M, Q) N C>®(M,R) such that | — ¢| < g.

Proof. One could repeat the argument of Richberg [249] for (complex) plurisubharmonic functions
(see [100, Ch. 1 §5.E]). Alternatively “the local to global” approach by Greene-Wu [150] can be easily
applied. O
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8.2. The quaternionic Monge-Ampére operator.

8.2 The quaternionic Monge-Ampere operator.

In this section we introduce the quaternionic Monge-Ampeére operator on HKT manifolds for bounded
Q-gpsh functions (we refer to [316] for the definition on a domain of H").

8.2.1 Definition and first properties of the quaternionic Monge-Ampere
operator.

Chern-Levine-Nirenberg inequality.

Let (M, I,J, K,Q) be a compact locally flat HKT manifold. The quaternionic Monge-Ampére operator
is defined on QPSH(M, Q)N C?(M,R) as

MA,, := (Q + 09,0)" € A2"O(M).

In order to extend the definition of MA to QPSH(M, Q) N L (M) we make use of currents since
for every ¢ € QPSH(M, Q) N L>(M), 950 € D>°(M). Even if in general the wedge product of two
currents is not defined, for a ¢ € QPSH(M, Q) N L (M) and k € N, we can define (2 + 00;¢)" as
follows:

Firstly, given a T' € DP9(M) and n € A™*(M) on (M,I) it is defined their wedge product as the
(p+ 7, q + s)-current acting on o € A" P2 =4=S()]) as

(T'An)(a) =T Aa);

then for ¢ € QPSH(M, Q) N L>°(M) and a closed q-positive T' € D?*0(M), it is defined the product
©T and, consequently, 907 AT via the relation 00;0 AT := 095 (¢T). Since 0;p AT is closed and
q-positive we can proceed inductively and define (Q + 99y¢)*.

Similarly, given ¢, ¢ € QPSH(M,Q) N L>®(M) and T closed and g-positive, we can define dp A
0yp AT, which is again closed and positive, and dp A dy9 AT via the identities

Op NIy AT := %83J(¢2)AT—¢88J¢/\T;
200 N0 NT =0+ V) NOj(p+ V) ANT —0p NOyjp NT —OY ANOjp AT .

Definition 8.12. The operator MA: QPSH(M, Q)N L (M) — D*%(M) given by
MA, = (24 00;¢)"
is called the quaternionic Monge-Ampére operator.

The Monge-Ampeére operator satisfies the following continuity properties analogous to the ones
proved by Bedford and Taylor [31] in the complex case:

« given a decreasing sequence (p;) in QPSH(M, Q) N L>°(M) with limit ¢, then MA,,. converges
to MA, as j — o0;

o given an increasing sequence (¢;) in QPSH(M, ) N L* (M) which is locally bounded and
converging almost everywhere to ¢, then MA . converges to MA, as j — oo.

Since we are assuming the manifold to be locally flat the continuity properties can be deduced directly
from the local theory [316, 317].

Next we focus on the Chern-Levine-Nirenberg inequality on HKT manifolds, since the inequality
has an important role in complex pluripotential theory [83]. In the quaternionic context analogue
inequalities are proved in [9, 13, 17, 316] for qpsh functions. In the present paper we need a quaternionic
Chern-Levine-Nirenberg inequality in the global setting in the same spirit of [157], where the inequality
is proved on compact Kéahler manifolds.
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Let (M,I,J, K,Q) be compact HKT manifold. We further assume that the canonical bundle of
(M, I) is holomorphically trivial and let © be the complex volume form on (M, I) such that

Vol(M) ::/ Q"ANO =1.
M

In order to simplify the notation, given a form W of type (2n,0) on (M, I) we simply write [, ¥
instead of f uZA O since the complex volume form © is always fixed (this notation is often adopted
in HKT geometry). Coherently, given a (2n,0)-current 7' we have T = p Q" for some measure p and

we may define
/ T:=p(M).
M

We also introduce the following notation: for ¢ > 1, a closed g-positive (2p,0)-current T on (M, ) and
a ¢ € QPSH(M, Q), we write ¢ € LY(T) if

1/q
ol Lacry == </ |<,0|qT/\an> < 400,
M

Notice that if we consider T' = Q", then L?(M) = L1(Q™).

Theorem 8.13 (Chern-Levine-Nirenberg inequality). Let T' be a closed g-positive (2p,0)-current and
¢ € QPSH(M, Q) N L=(M). If v € QPSH(M,Q) N LY(T), then v € L'(Q, AT) and

11 0nm) < Wollrcey + (2sups -+ supo i o) 171,
M M

where ||T|| = [,, T AQ"7P.

Proof. Clearly
192, AT :/ Q, NT AQr P71 :/ TAQ"P =|T| (8.2)
M M

by Stokes theorem. Now, set 1/3 = 1) — sup,, ¢ < 0, then the triangle inequality and (8.2) yield
1l @pa) < [Pl @ nry + sup Y AT = 9] 1 @, n1) + sup LT (8.3)
Replacing ¢ with ¢ — inf;; ¢ we may assume ¢ > 0, thus using again Stokes’ theorem
1D L1 @ty = / (=) AT AQ* P71 = 1] L1 1) +/ ()00, NT AQP!
M M
= H’LZ)”LI(T) — / Lpaa]’lﬂ ANT N Qr—r-1,
M
Since @ T A Q"~P~1 > 0 and Q + 091 > 0 we deduce
61 0y < Wl + [ o A2 < [l + (sup +supeo) 171

which, combined with (8.3) gives the desired inequality. O
Corollary 8.14. If ¢ € QPSH(M, Q) is such that 0 < ¢ <1 and ¢ € QPSH(M,Q), then

0 < l¥llsriay < Iélloian + (1 +2s;14pw) .

Proof. The result follows from the Chern-Levine-Nirenberg inequality by a simple induction. O
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Maximum and comparison principle.

We conclude this subsection proving two key results in pluripotential theory: the maximum and the
comparison principle. Here we assume that (M, I, J, K, Q) is also locally flat and, given a subset U of
M, we denote by 1y the characteristic function of U.

Proposition 8.15 (Maximum principle). Let ¢, 9 € QPSH(M, Q) N L>° (M), then

Lipsyy MAG = 15y MAgax(ep) -

Proof. Since the nature of the result is local and the manifold is locally flat, it is enough to prove the
statement on a open domain A C H". In such a case we have

Loy} (0050) AT = 11,501 (00; max{p, v })* AT

in the sense of Borel measures, where T is a closed g-positive (2n — 2k, 0)-current and ¢, € L2 (A)
are gpsh functions.

If o is continuous the statement is easy, as {¢ > 1} is an open subset of A. If ¢ is not continuous
we can take a sequence ¢; of continuous bounded qgpsh functions decreasing to ¢. Then we have

Ly, >0} (00 max{p;, v })* AT = 1y, 54y (00,0;)" AT

Let uj = (¢; — )" and u = (¢ — )T and observe that u; decreases to u. Therefore, by continuity of
the Monge-Ampere operator

u(00y max{p, Yy ¥ AT = lim u;(00; max{p;, v})* AT = lim u;(80;0;)" AT = u(@d5p)* AT
j—o0 j—o0

in the sense of Borel measures. Since 1/(u + ¢) is bounded for every € > 0 we have

i k U k
m T = T
" 5(8&; ax{p,Vv})" A " E(@&;g&) A

and this allows to conclude letting e decrease to 0 because u/(u + €) increases to 1{,sq1- O

Proposition 8.16. Let ¢, € QPSH(M,Q) N L>(M), then

/ MA, < / MA,,.
{e>v} {p>}

Proof. From the maximum principle we have

/ MA(P — / MAmax{%w} =1 —/ MAmax{%w} <1 —/ MAw = / MA¢ .
{p>9} {p>9¢} {e<v} {p<y} {p>}

The desired inequality follows by replacing ¢ with 1 4 £, so that

/ MA, < / MA, < / MA,,
{p>y+e} {p=>9+e} {¢>9}

and letting € N\, 0. 0

8.2.2 Capacities and pluripolarity.

In this section we study some notions of capacity and pluripolar sets on HKT manifolds (we refer to
[315] for the theory in domains of H™). In complex pluripotential theory, the notion of relative capacity
was introduced by Bedford-Taylor [32] and then generalized by Kolodziej on Kéhler manifolds in [200].

In the whole section we consider a compact locally flat HKT manifold (M, I, J, K, ) such that the
canonical bundle of (M, I) is holomorphically trivial and let © be the holomorphic volume form on
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(M, I) such that

/ Q"AO =1.
M

Quaternionic capacities.

For any Borel subset E C M we define the quaternionic Monge-Ampére capacity

Capg(F) := sup {/EMAW | o € QPSH(M,Q), 0 < p < 1} , (8.4)

according to the definition of MA,, given in the previous section. We extend the definition of Capg, to
arbitrary subsets E C M by

Capg(F) := sup{Capq(K) | K C F is compact}
Corollary 8.14 implies that the Monge-Ampere capacity of every set in M is finite.

Lemma 8.17. The following properties hold:
1. If By C Ey C M are Borel subsets, then

Vol(E7) < Capg(E1) < Capg(E2) < Capg(M) = Vol(M) =1.

2. If {E;} si a family of Borel subsets of M, then Capg(UE;) < > Capg(E;). Moreover, if
Ej - Ej+1, then CapQ(U Ej) = hHlj_>oo CapQ(Ej)

3. For all a > 1, Capg < Cap,q < a"Capq,. In particular if Q' is another HKT form, there exists
b > 1 such that bilCapQ < Capgr < bCapg.

Proof. Assertions (1) and (2) are straightforward, while (3) can be proved as follows:

For any a > 1, since Q < af), then QPSH(M, Q) C QPSH(M, af2) hence Capg, < Cap,q. Now, for any
v € QPSH(M, af?) such that 0 < ¢ < 1 we also have p/a € QPSH(M, Q) with 0 < ¢p/a <1/a < 1 and
(a2 + 0050)™ = a™ (2 + 095 (¢/a))™. Therefore Cap,q < a"Capgq. In particular if Q' is another HKT
form there exists a > 1 such that a1 < Q' < af) implying the desired inequality between Capg, and
Capg, with b = a”. O

In [315] Wan and Kang introduced the following notion of relative Monge-Ampére capacity on
domain of H"

(B, A) = sup{/ (995¢)" | @ apshin A, 0< < 1} ,
E

where E C A is a Borel set. Since we are assuming (M, I, J, K) locally flat, C(E, A) induces a capacity

on M. More precisely, let Uy,...,Uyx be a finite open cover of M made by quaternionic strictly
pseudoconvex open subsets U; = {x € M | p;(x) < 0}, where p; is a smooth strictly quaternionic
plurisubharmonic function defined on a neighborhood of U;. Choose another open cover Vi,...,Vy
such that V; C U; and define
N
C(EB) =Y C(ENV;,0)),
j=1

for every Borel subset £ C M. In the next lemma we observe that the two capacities are comparable.
This is analogue to what happens in Kéhler geometry [200].

Lemma 8.18. There exists a constant A > 1 such that for every Borel subset E C M

ATIC(E) < Capg(E) < AC(E).
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8.2. The quaternionic Monge-Ampére operator.

Proof. From [315] we have

C(EﬁVj,Uj):/ (00 v;)"

ENV;

where we set
v; = sup{y qpsh in U; | u < 0,u[pny, < —1}.

Observe that v} is qpsh by Proposition 8.9 and satisfies —1 < v} < 0 as well as v = 0 on oU;. The
lemma can now be proved with the same ideas used in [200]. O

Definition 8.19. The quaternionic polar (shortly g-polar) set of a gqpsh function ¢ is the set
{p = —o0}. A subset P C M is called (locally) quaternionic pluripolar (shortly g-pluripolar) if
it is (locally) contained in some g-polar set.

Let us define the outer capacity Capg, associated to Capg, as
Capg(E) := inf{Capg(U) | U is open and E C U},
similarly, one can define the outer capacity C* associated to the Wan-Wang capacity.
Corollary 8.20. For a subset P C M following are equivalent:

o P is locally q-pluripolar;

o P is negligible, i.e. of the form {p < ¢*} for some upper envelope ¢ = Sup,e s j of functions
(pj)jes in QPSH(M, Q) locally bounded from above;

o C*(P)=0;
o Capg(P) =0.
Proof. This immediately follows from the local result [315, Theorem 1.2]. O

The aim of this section is to prove that a set is locally g-pluripolar if and only if it is QPSH(M, Q)-
polar, i.e. it is contained in the —oo-locus of some Q-qpsh function. The easy implication of this fact,
i.e. that QPSH(M, Q)-polar sets are locally g-pluripolar follows from the following lemma.

Lemma 8.21. If ¢ € QPSH(M, Q) is such that ¢ <0, then for any t > 0

1
Capq({w < —}) < 3 (Iellusan + 1) -

Proof. Pick ¢ € QPSH(M, ) such that 0 < ¢ < 1. From Chebyshev inequality and Corollary 8.14 we
infer

1
n (||50||L1(M) + n)

1 1
MA(p <)< [ (00 < 5lelmom, <
{p<—t}

which gives the lemma once we take the supremum over all Q-qpsh 1 such that 0 < ¢ < 1. O

Extremal functions and Josefson’s Theorem.

A fundamental tool to understand the Monge-Ampeére capacity is that of extremal functions. The
natural extremal functions to take here into account are the relative and the global ones. The
definition of the relative extremal function is by now classical, as for the global extremal function, we
follow Guedj-Zeriahi [156], which were inspired by Siciak’s extremal function, defined and studied in
[258, 259, 260, 328].

Definition 8.22. For any Borel subset E C M we define the relative (quaternionic) extremal function
vy and the global (quaternionic) extremal function Vg of E as

vpa(r) : =sup{e(z) | ¢ € QPSH(M,Q), ¢ <0, ¢lp < -1},
Ve.a(z) : =sup{p(x) | ¢ € QPSH(M,Q), ¢|p <0} .
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

Sometimes we will use the same name for the upper semi-continuous regularizations vy, o, and
Vi o- When no confusion occurs we will drop the reference to the HKT form in the subscript. The
function vy is Q-gpsh by Proposition 8.9; furthermore, it satisfies —1 < vj < 0. We also observe that
it £y C E» then vy > vg, .

Proposition 8.23. Let E be a Borel subset of M.
1. If Ug :={x € M | vy(z) < 0} is non-empty, then

MAU;‘::O, anE\E'

2. If Vi is bounded, it satisfies B

Proof. Both assertions are a consequence of the fact that we can solve the Dirichlet problem in
sufficiently small balls (see [315, Lemma 3.2]). Indeed, if V3 is bounded it is Q-gpsh, and one can
apply a standard balayage procedure as in [156, Proposition 4.1, Theorem 5.2(2)]. O

The global extremal function characterizes QPSH(M, Q)-polar sets in the following sense.

Proposition 8.24. A Borel subset E C M is QPSH(M, Q)-polar if and only if Vi = 400 if and only
if supy, Vi = +oo.

Proof. If Vi3 = +o0o then in particular sup,,; V5 = +o0o0 and by Choquet’s lemma, we can find an
increasing sequence p; € QPSH(M, ) such that ¢; = 0 on F, Vi = (limjc0 ;)* and sup,; p; > 27.
Set 9 = Zjoozl 279(¢; —supys ¢j). Then clearly E C {¢) = —co} and 4 is either identically —co or
Q-qpsh, as a decreasing limit of Q-qpsh functions. By Lemma 8.10 for any smooth volume form pu
there exists C' > 0 such that fM(goj —sup,, ¢;j)dp > —C, therefore fM Ydyu > —C implying that
must be Q-qpsh.

Suppose now that E C {¢) = —oo} for some ¢ € QPSH(M, ). For all ¢ € R we have Vg > ¢ + ¢,
therefore we have Vg = +o00 outside {1y = —o0}, and since such set has measure zero, we get Vj; = +00
on the whole M. O

We are ready to relate the quaternionic Monge-Ampére capacity to the relative extremal function.

Proposition 8.25. For any subset E C M we have
Capp(E) = [ (~vp)MA,;
M

Furthermore, Capg, is an outer reqular Choquet capacity. More precisely if E; is an increasing sequence
of subsets of M and K; is a decreasing sequence of compact subsets of M then

Cap, | |J By | = Jim Gapo(E;),  Capg MK | = Jim Capy (K;).
=0 =0

In particular all Borel subsets E of M are capacitable, i.e. Capg(E) = Capg(E).

Proof. The proposition can be obtained by adapting the argument of [156, Theorem 4.2]. O

We can now prove the quaternionic analog of Josefson’s theorem. Such a result in the local context
is proved in [315, Theorem 1.1] following ideas of Bedford-Taylor [32] in the complex setting. The
original result shows equivalence of being locally (complex) pluripolar and globally (complex) pluripolar
in C™ and was proved by Josefson [191] with fairly involved techniques. The same result on compact
Kéhler manifolds is due to Guedj-Zeriahi [156, Theorem 7.2]. Here, we follow the proof of Lu-Nguyen
[218, Theorem 4.10].

Theorem 8.26. Then P C M is locally g-pluripolar if and only if it is QPSH(M, Q)-polar.
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8.3. Variational approach to the quaternionic Calabi conjecture.

Proof. We already have as a consequence of Lemma 8.21 that a QPSH(M, Q)-polar set is locally
g-pluripolar. Conversely, let P C M be locally g-pluripolar, by Proposition 8.24 it is enough to prove
that V5 = 4+00. Assume by contradiction that V7 is bounded, then by Proposition 8.23(2) we deduce
that V5 is non-constant. Set m = sup,, V3, then it is easy to check that v := (V5 —m)/m is the
relative extremal function v}, g, of P with respect to €2/m. Since Capgy/,, (P) = 0, from Proposition

8.25 we infer f{v<0} MA, = 0 which implies v = 0 i.e. V3 = m which contradicts the fact that V3 is
non-constant. O

8.3 Variational approach to the quaternionic Calabi conjec-
ture.

Let (M,1,J, K,Q) be a locally flat compact HKT manifold with holomorphically trivial canonical
bundle and let ©® be the holomorphic g-real g-positive volume form such that

/ Q"AO=1.
M

The definition of the Monge-Ampere operator MA,, can be extended to some unbounded €-gpsh
functions as follows.

The finite energy class.

For ¢ € QPSH(M, ), we denote by (¢;),en, the canonical approzimation, where ¢; := max{p, —j} €
QPSH(M, Q) N L>*(M). For each j € N it is defined MA,, and 1y, _;; MA, . gives a sequence of
Borel measures. The idea is to define MA,, as the weak limit of 1y,~_;; MA, .

Proposition 8.27. The sequence 1;,~_;3 MA,, . is increasing and converges weakly to a positive Borel
measure i, such that p,(M) < 1.

Proof. Proposition 8.15 implies
Ligs>—ky MAg; = 1,51} MAmax(p; k) ;
hence, for j > k we obtain
Lip>—jy MAp; 2 Lipn 1y MAg; = 1ipn k) MA,,

This shows that the sequence p; := 17,5 _j3 MA,, is increasing. Integrating by parts it is straightfor-
ward to see that the total mass p;(M) is bounded from above by MA, (M) = Vol(M) = 1. Thus, we
can define

po = m pj = Hm 1>y MA, ,
which is itself a positive Borel measure with total mass bounded by 1. O
Definition 8.28. An Q-qpsh function ¢ has finite energy if p,(M) = 1. For an Q-gpsh function ¢
with finite energy the Monge-Ampére operator MA,, is defined as j, and we set

E(M, Q) == {p € QPSH(M, Q) | MVJ(M) =1}.

The next Proposition can be proved exactly as in the Kéhler case [157, Section 1] by replacing the
role of the Kéhler form with the HKT form Q and the role of 9 with 9;.

Proposition 8.29. The following facts are true:
1. ¢ € E(M,Q) if and only if MA, ({¢ < —j}) — 0, as j — oo, if and only if MA,(B) =

J

lim; oo MA,,(B) for all Borel subsets B C M. In particular the Monge-Ampére operator does
not charge pluripolar sets.
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

2. (Comparison Principle) If p,v € E(M, ), then f{¢>w} MA, < f{¢>w} MAy;

3. (Mazimum principle) If o € E(M,Q) and tp € QPSH(M, Q), then
Lig>yy MAG = 1poyy MAmax(e,p}-

4. (Continuity of the Monge-Ampére operator) Let (¢;) be a sequence in E(M,Q) decreasing to
pe&(M,Q). Then MA,, — MA,, as j — .

5. If o, € E(M, Q) are such that MA, > p and MAy > p for some positive Borel measure p1 on
M, then also MAaxfp,p) = 1

Next we introduce the following subclass of Q2-qpsh functions with finite energy:
ENM,Q) = {p e &M, Q)| pe L' (MA,)}.

The subclass (M, ) is not affected by translations, meaning that ¢ € £(M, Q) if and only if
©+c € EYM,Q) for any constant ¢ € R.

The energy functional.

We also define the quaternionic Monge-Ampére energy functional E: QPSH(M, Q)N L>®(M) — R as

1

E(p) = —— Q+09,0) ANQVI
)= Gy 2o 2+ 0009)

The definition of the energy is extended to QPSH(M, ) by setting
E(p) :=={inf E(¥) | ¢ <+ € QPSH(M, Q) N L>(M)},

this is coherent with the monotonicity of FE proved below in Proposition 8.30.

Proposition 8.30. The energy is non-decreasing and concave, furthermore for any non-positive
p € QPSH(M, Q) N L*°(M) we have

1
MA, < FE < — MA, .
/MQO v (@)_(n"'l)/M@ v

Moreover, E is upper semi-continuous in the L'-topology and is continuous along decreasing sequences.

Proof. Let p,1 € QPSH(M, Q)N L>(M) and assume ¢ < 1. Set ¢ = (1 —t)p +t € QPSH(M, Q)N
L*°(M). From straightforward computations we obtain

d
5 Eer) :/ ¢t MA,, >0, (8.5)
t M

d? . ) n—
ﬁE(%) = —n/ O Ny AN (Q+ 0050)" ! <0,
M

showing that the energy is non-decreasing and concave.
Let now ¢ € QPSH(M, Q) N L*>°(M) be non-positive, then it is clear that E(p) < %H Jor e MA,,.
The other inequality is implied by the following

/ P(Q+ 00,0y T AQTITT = /
M

P(Q+ 00,0 A"+ / 00070 N (Q+ 00 50)7 A QI
M M

= / ©(Q+ 0050)7 ANQTI _/ Do ADsp A (2 + 00,0) AQP—I—1
M M

< [ o+ o0yep nar .
M

We prove the upper semi-continuity. Take a sequence ¢; — ¢ in L'. If lim sup E(ypj) = —oo the
proposition is clear, hence we may assume that E(y;) is uniformly bounded from below. Let 1; be the

178



8.3. Variational approach to the quaternionic Calabi conjecture.

upper semi-continuous regularization of supy; ¢x. Clearly the sequence ¢; decreases pointwise to ¢
and ¥; > ¢;. Let u € QPSH(M, Q) N L (M) be such that u > ¢. Since E is non-decreasing and by
continuity of the Monge-Ampére operator we see that

E(u) = lim E(max{u,;}) > lim sup E(y;) > lim sup E(y;)

Jj—oo j—o0 j—o0
and thus
E() = inf{E(u) | u € QPSH(M, Q) 1 L™(M), u > p} > limsup E(p;),

J]—o0

which gives upper semi-continuity. If the sequence is decreasing, by monotonicity of the energy
functional we also have E(y¢) < liminf;_, F(y;) and thus continuity. O

In particular the previous proposition shows that
El(MaQ) = {QD € g(Maﬂ) ‘ E((p) > 700})

which motivates the terminology.

The Ding functional.
The remaining part of the chapter, is devoted to the proof of the following Theorem:

Theorem 8.31. Let (M,I,J, K,Q) be a compact locally flat HKT manifold such that the canonical
bundle of (M, T) is holomorphically trivial and let © € A?"’O(M) be a g-positive and q-real holomorphic
form. Then the quaternionic Monge-Ampére equation has a unique solution p € E(M,Q).

Theorem 8.31 is obtained as a consequence of the following more general result:

Proposition 8.32. The quaternionic Monge-Ampére equation
(Q+0050)" = p
can be solved in EY(M, Q) if and only if EX(M,Q) C L*(p).
This is the quaternionic analogue of a result of Guedj and Zeriahi in [157]. One implication is easy:

Proposition 8.33. For any ¢ € £Y(M, Q)
EYM,Q) C LY (MAy).
Proof. Tt is enough to prove that every ¢ € £1(M, Q) satisfies the following inequality:

0 < [lellzrvay) < 2llellzraua,) + 2l L vay) -

We may assume ¢, 9 < 0.
0 0
- /M © MA,, = / MAy, ({p < t})dt < 2/ MA({p < 2t})dt.
By the inclusion {p < 2t} C {p < ¢ +t} U{¢ <t} we derive
0
7/(,0MA¢,S2/ MA¢({@<¢+t})dt72/¢MA¢.
M —o0 M

Invoking the comparison principle and the inclusion {¢ < ¥ 4t} C {¢ < t} we conclude

0 0

/ MA ({p < 0+ 1})dt < / MA({p < &+ t})dt < _/ o MA,

—0o0 —00 M

as desired. O
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

The other implication requires more work and will be achieved with a variational technique involving
the Ding functional F: E1(M,) — R, defined as

Flo) = Elp) - /Mwm,

where 1 is a given probability measure such that £1(M, Q) C L*(u). Since E(p + ¢) = E(p) + ¢ for
¢ € R we also have F(p + ¢) = F(p). Formula (8.5) implies that for a path ¢;: [0,1] — EL(M, Q) we
have p

%-7:(%):/ ¢ MA, —/ G dp.
M M

In particular ¢ is a critical point for F if and only if it solves the quaternionic Monge-Ampere equation
(2+0050)" = 1. (8.6)
The concavity of E readily implies that for every positive constant C' the set of
EC(M, Q) :={p e E(M,Q) | E(p) 2 ~C, 9 <0} CEY(M,Q)

is convex. Moreover Eé(M , ) is compact in L!-topology since it is closed by the upper semi-continuity
of E and it is contained in the set

{90 € QPSH(M, Q) | —C1 < supp < o}
M

which is compact in view of Hartogs’ Lemma (Proposition 8.9(4)).

Proving the main theorem.

The solvability of equation (8.6) is obtained by showing that F has a maximizer in ¢ € £1(M, Q). The
strategy to do so is the following:

o Show that F is upper semi-continuous on &4 (M, Q) with respect to the L' topology for every
fixed constant C > 0 under the additional assumption p < ACapg, for some constant A > 0.
o Show that F is proper on £4(M, Q) with respect to E for every fixed C > 0.

o From the first two steps follows that F has a maximizer in £1(M, Q) whenever p < ACapy, for
some constant A > 0. However, to achieve this result, one has to take into account the fact that
the maximizer is not smooth, implying that it might not be a critical point. This issue is resolved
applying the Projection Theorem (Proposition 8.37).

o The additional assumption that u < ACapg, is removed by means of a trick of Cegrell [77] and
the proof of Proposition 8.32 is completed.

Lemma 8.34. Under the assumptions E*(M,Q) C L' (u) and u < ACapq, for some constant A > 0,
the operator ¢ — [} @ dpu is continuous over E4(M, ).

Proof. Given a sequence (p;) in E4(M, Q) which converges in L'-topology to a ¢ € E4(M,Q), we
show that [, ¢;du — [,, ¢dp. Since p < ACapg, we have

+o0 +oo
[ Gdu=2 [ tulies < ~thir<2a [ tCapo{e; < ~thdr.
M 0 0

By [270, Lemma 3] for any fixed 1 < p < 2 there exists a constant C'(p, R) such that for any Borel
subset B C M we have
Vol(B) < C(p, R)Capg(B)”.
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8.3. Variational approach to the quaternionic Calabi conjecture.

In view of this fact, analogously to the case of the complex Hessian equation on Kéhler manifolds [218,
Lemma 6.8], we deduce

—+oo
sup {/ t Capg({¢ < —t})dt | ¢ € EL(M, Q)} < +00
0

and that the sequence |’ ez 2 dy is uniformly bounded. Invoking [313, Lemma 4.5] we are done.  [J
In particular F is upper semi-continuous on £4(M, Q), whenever u < ACapg,.

Lemma 8.35. F is proper with respect to E. More precisely there is a constant C > 0 such that

1/2
F(p) < E(p) —supp+C ’E(sa) —sup
M M

for all o € EY(M, Q)

Proof. Let p € EY(M, ), and for simplicity suppose sup,,; ¢ = 0. Without loss of generality assume
E(p) < —1. Set € = |E(¢)| /2 so that 1 = ey is still Q-qpsh.
For any 1 < j < n we have

Q{b/\Q"J Q—i—Z() (0D 5p0)* /\Q”k<Q"+Ngzﬂk/\Q”k
k=0

for some N € N, therefore

n

E@) = ﬁ > /M Q) AQTT > /M 0 Q"+ (n+1)Ne2E(p) > —C,

=0
proving that ¢ € EL(M, Q). Since EL(M, Q) is compact and convex, it is easy to show that there is a
constant C’ such that [, ¢ dpu > —C" for every ¢ € E4(M, ). Therefore

/ pdp = |E(g) 2 / bdu> —C'|E)[2,
M M

as desired. 0

Let P(v) denote the -plurisubharmonic envelope of an upper semi-continuous function

P()(x) := {supp(z) | ¢ € QPSH(M,Q), ¢ <1} .

Observe that P(%) is upper semi-continuous, as P(¢) < 4 implies P(¢)* < ¢* = 4, but then P(¢)* is
a competitor in the definition of P(v)), thus P(¢)) = P()*.

Lemma 8.36. For every continuous function ¢ € C(M,R) the Monge-Ampére measure of P(1) is
supported on {P(¢) = 1}.

Proof. Since 1) is continuous and P(1)) is upper semi-continuous the set {P()) < ¢} is open. The
Lemma follows from a balayage argument performed on small balls inside {P(¢)) < }. O

One key result to prove the existence of a critical point for the Ding functional is the following
Projection Theorem. The idea is due to Berman and Boucksom [37], the proof was later simplified by
Lu and Nguyen [218] which we follow closely.

Proposition 8.37 (Projection Theorem). For every ¢ € EY(M,Q) and v € C(M,R)

d
%E(P(g0+tv))|tzo :/ v MA,.
M
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CHAPTER 8. The degenerate quaternionic Monge-Ampeére equation

Proof. First, we show that it is enough to prove that

d
4B + )],y = /M v MA ) (8.7)

or equivalently )
B+ 0) - BPW) = [ ([ o MAp ) d

for every continuous function ¢ on M. Take a sequence ¢; of continuous functions on M that decrease
to ¢. Such a sequence exists because ¢ is upper semi-continuous (observe that the ¢;’s need not
be in QPSH(M, Q)). By continuity of the energy and the Monge Ampeére operator along decreasing
sequences we get

E(P(¢ +v)) — E(P(p)) = lim (E(P(p; +v)) — E(P(¢;)))

Jj—o0

1 1
/ (/ v MA<P> dt = lim (/ v MAP(W)> dt.
0 M I Jo M

And the desired formula follows from (8.7) and dominated convergence.
It only remains to prove (8.7), where ¢ € C'(M,R). Exchanging v with —uv it suffices to consider
t > 0. From the concavity of the energy we deduce

< E(P(y)) + E"(P())(P(¢ + tv) — P(¥)),
E(P(¢)) < E(P(¢ + tv)) + E'(P(¢ + t))(P(¢) — P( + tv)),

and

which, together with (8.5), gives

/ P(¢p +tv) — P()
M t

MApga < EPQEI) ZBPW) / POV, s

Using Lemma 8.36 and the inequality P (¢ + tv) < ¢ + tv we obtain from (8.8)

E<P(7p + tv)g — E(P(w)) < /M v MAP(¢) . (8'9)

/ v MAp(pti0) <
M
Since the projection is uniformly Lipschitz, we see that
sup [P(¢ + tv) — P(¢)[ < tsup |v|
M M
so that P(1 + tv) — P(3) uniformly as ¢ — 0. By continuity of the Monge-Ampére operator, taking

the limit in (8.9) as t — 07 yields (8.7) as desired. O

Theorem 8.38. If EY(M,Q) C L*(u) and u < ACapy, then there exists a solution ¢ € EY(M,Q) of
the quaternionic Monge-Ampére equation such that

F(p)= sup F.
E1(M,Q)

Proof. By translation invariance and properness of F there exists C' > 0 large enough to ensure

sup F = sup F.
E1(M,Q) EL(M,Q)

The upper semi-continuity of F ensures the existence of a maximizer ¢ on the compact convex set
EL(M, Q). Since ¢ is not necessarily strictly Q-qpsh, in general ¢ + tv could fall outside QPSH(M, Q),
even for small ¢, therefore ¢ may not be a critical point and we cannot conclude immediately. With
the Projection Theorem at hand we can conclude along the lines of [39, Theorem 4.1]. O
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Theorem 8.39. Let i be a probability measure. Then there exists a solution ¢ € ELX(M,) of the
quaternionic Monge-Ampére equation
MA, =pu

if and only if EL(M, Q) C L (u).

Proof. The strategy of the proof takes advantage from a decomposition trick that goes back to Cegrell
[77].
Consider the set P(M) of positive Radon measures on M and its subset

P/(M) = {v € P(M) | v < Capg}

which is clearly convex. Moreover, by outer regularity of the quaternionic Monge-Ampere capacity
(Proposition 8.25), P'(M) is also a compact subset of P(M). We can then apply Rainwater’s generalized
Radon-Nikodym decomposition [248] and write u = fv + v/, where v < Capg, is a positive Radon
measure, 0 < f € L*(v) and v/ is orthogonal to P’(M). Since p is non-pluripolar we have v/ = 0.
Consider normalizing constants a; > 1 decreasing to 1 such that the positive Radon measures
pj = ajmin{f,j}v still satisfy [, du; = Vol(M). Clearly u; < ja;Capg, which allows to apply
Theorem 8.38 and find ¢; € £'(M,Q) such that p; = MA,,. Without loss of generality we assume
sup,; ¢; = 0, and, up to a subsequence ¢; — ¢ in L! for some p € (M, Q). Indeed by properness of
the Ding functional and the fact that MA,, = a; min{f, j}v < 2fv = 2u for j large enough, we obtain

B(p)] < /M(—%') MA,, < /M(—wj)du — F(g;) — Elg;) < C|E(p;)| /2

which shows that F(y;) is uniformly bounded, and thus ¢ € £*(M, ) by upper semi-continuity of the
energy.

Set ¥; = (supy>,; ¢r)*. The sequence 9; decreases to ¢ and, since for k > j we have MA,, =
ap min{ f, k}v > min{f, j}v, we also have MA,, > min{f, j}v by Proposition 8.29(5). The continuity
of the Monge-Ampére operator then yields

MA, = lim MAy,, > ]li>n010 min{f,j}v =pu

j—o0
but since these two measures have the same total mass they must be equal. O

Theorem 8.40. Let p be a probability measure. Then there exists a solution ¢ € E(M,Q) of the
quaternionic Monge-Ampére equation
MA, =pu

if and only if u is non g-pluripolar.

Proof. That Monge-Ampére measures are non g-pluripolar was observed in Proposition 8.29(1).
Suppose 1 puts no mass on g-pluripolar sets. With the same argument of the previous theorem we have
p= fv for some 0 < f € L*(v) and v < Cap,. Furthermore, we may assume there are p; € £'(M, Q)
such that sup,; ¢; = 0, ¢; — ¢ in L' for some ¢ € QPSH(M, Q) and MA,,, = a; min{f, j}v where
1 < a; <2 are decreasing to 1 and such that [,, a; min{f,j}dv = Vol(M).

Using the argument in [157, Theorem 4.6] one can show that ¢ € (M, ). Furthermore, as in
the previous theorem, we also have MA, > p and since MA, (M) = (M) the two measures must be
equal. O

Theorem 8.41. If v € E(M,Q) are such that MA, = MA,;, then ¢ — 1) is constant.

Proof. All the ideas in [105] used to prove uniqueness in the Kéhler setting can be generalized to our
framework. O

At this point one wishes to improve the regularity and show that the weak solutions found with
Theorem 8.40 are actually smooth. In the complex case this has been done by Székelyhidi and
Tosatti [281] but their proof ultimately relies on Yau’s a priori estimates for the complex Monge-
Ampere equation, hence we cannot follow this path, unless we have already solved the quaternionic
Monge-Ampere equation with the method of continuity.
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