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INTRODUCTION

The search and study of special geometric structures has long since been a fundamental research
topic in Riemannian geometry. Such a quest is strictly related to holonomy theory. For instance, the
Riemannian holonomy group of a given Riemannian manifold (M, g), that is the holonomy group of the
Levi-Civita connection with respect to g, is an important object that detects the presence of additional
structure on M as it corresponds to a reduction of the structure group of the frame bundle. The
classification of all possible holonomy groups is therefore of obvious interest and has been successfully
completed in the works of Cartan [71, 72] and Berger [36], with contributions by other mathematicians.

More in detail, Cartan dealt with Riemannian symmetric spaces, while Berger obtained the list
of possible Riemannian holonomy groups for irreducible (non locally symmetric) simply-connected
Riemannian manifolds. The possible groups are SO(n), U(n), SU(n), Sp(n)Sp(1), Sp(n), G2, Spin(7).
The group SO(n) corresponds to generic Riemannian geometry; U(n) and SU(n) represent the geome-
tries of Kähler and Calabi-Yau manifolds; Sp(n)Sp(1) and Sp(n) correspond to quaternionic Kähler
and hyperkähler geometries; and, finally, G2 and Spin(7) are exceptional groups which can only occur
in dimensions 7 and 8 respectively. The list originally included Spin(9) but later Alekseevsky [3] showed
that a manifold with Spin(9) as Riemannian holonomy group is necessarily a Riemannian symmetric
space. The classification still needed to show that all the groups in Berger’s list actually occur as
holonomy groups, a goal that was eventually completed with Bryant and Salamon’s [57] examples of
metrics with exceptional holonomy.

Such a classification can be looked from a more general perspective in two ways, both relevant
to our future discussion. The first perspective comes from looking at non-Riemannian holonomy
groups, i.e. the possible holonomy groups of a torsion-free linear connection that does not preserve
the Riemannian metric. A result of Hano and Ozeki [162] shows that any closed Lie subgroup of
GL(n,R) can occur as the holonomy group of some linear connection. Hence, it makes sense to impose
torsion-freeness and restrict the possibilities. Berger presented a list of possible irreducible holonomy
groups of a torsion-free connection claiming that at most a finite number of groups was missing from
it. Bryant [55] found the first missing group and Chi, Merkulov and Schwachhöfer [85, 86, 87] found
more, even an infinite family of them, thus proving wrong Berger’s claim. Finally, in 1999 Merkulov
and Schwachhöfer [224] reached a complete classification of possible groups and it was shown that
every group on such list actually occurs as an holonomy group. See the survey [56] for further details.

The second perspective is driven by theoretical physics, especially in the presence of supersymmetry
[173], and calls for investigation of structures with torsion. Thus Kähler, Calabi-Yau, quaternionic
Kähler and hyperkähler geometries generalize as follows: instead of looking at the Levi-Civita connection,
the focus is moved to a metric linear connection preserving the (hyper)complex structure with
holonomy contained in U(n), SU(n), Sp(n)Sp(1), Sp(n) respectively, however such a connection has
(non-vanishing) totally skew-symmetric torsion. The corresponding geometries are called Kähler with
torsion (KT), Calabi-Yau with torsion (CYT), quaternionic Kähler with torsion (QKT) and hyperkähler
with torsion (HKT).

The last one, namely HKT geometry, is the object of the present work and it was introduced by
Howe and Papadopoulos in [178] as it arose on some internal spaces of certain supersymmetric sigma
models with Wess-Zumino term. HKT manifolds also play a role as moduli spaces for black holes
[142], and later they were detected as solutions of five-dimensional de Sitter supergravity [151, 161].
The mathematical interest of HKT geometry is also supported by the necessity of weakening the
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INTRODUCTION

compatibility conditions of hyperkähler geometry, which tends to be very rigid and restrictive, resulting
in a relatively limited number of examples. HKT structures represent a natural class which is larger
than hyperkähler ones.

HKT manifolds belong to the family of hypercomplex manifolds, so let us briefly discuss these first.
A 4n-dimensional smooth manifoldM is hypercomplex if it allows a GL(n,H)-structure, where H is the
skew field of quaternions. In other words, M is equipped with a triple (I, J,K) of complex structures
behaving like the purely imaginary unit quaternions. Obata [235] showed that the integrability of I,
J and K is equivalent to the existence of a torsion-free connection that preserves (I, J,K), which is
now called the Obata connection. Studying the properties of the Obata connection (and its holonomy)
is part of the first perspective mentioned above. For instance, it is known [305] that when M has
holomorphically trivial canonical bundle K(M, I), the holonomy of the Obata connection lies in
SL(n,H). Such manifolds are called SL(n,H)-manifolds. The converse is still an open problem in
general, but it is indeed true by a result of Verbitsky [305] when M is compact and admits a HKT
structure. The study of complex manifolds with holomorphically trivial canonical bundle has attracted
much attention over the years (see e.g. [20, 29, 107, 124, 125, 127, 129, 131, 185, 215, 251]).

Let us now introduce HKT manifolds. As mentioned, a HKT structure on M is the data of
a Riemannian metric g which is hyperhermitian, i.e. it is Hermitian with respect to I, J and
K together with a linear connection with skew-symmetric torsion that preserves both g and the
hypercomplex structure (I, J,K). Such a connection is necessarily the common Bismut connection
with respect to I, J and K. Moreover, a result of Grantcharov and Poon [148] shows that a HKT
structure on a hypercomplex manifold is equivalently defined by a hyperhermitian metric g such that
Ω := g(J ·, ·) + ig(K·, ·) satisfies the condition

∂Ω = 0 ,

where the operator ∂ is taken with respect to I. Already from the outset we observe similarities
with the Kähler setting. It is believed that HKT geometry represents the hypercomplex analogue of
Kähler geometry and abundance of evidence has been found in this direction. The role of the two
operators d, dcI := I−1dI is played on hypercomplex manifolds by the two operators ∂ and ∂J := J−1∂̄J .
Indeed, they anticommute and square to zero, so that cohomology can be performed, as firstly done by
Verbitsky [301]. Other interesting cohomologically related results that deepen the similarities with
Kähler manifolds have been obtained in [146, 208].

On HKT manifolds a local ∂∂J -lemma holds, i.e. locally there always exists a smooth real-valued
function u such that Ω = ∂∂Ju, this is due to Banos and Swann [27] whom proved it under a different
formalism. The result was spelled out in terms of the operators ∂, ∂J by Alesker and Verbitsky [17].

As in the Kähler case it becomes natural to wonder if, on a given HKT manifold (M, I, J,K, g,Ω)
one could find special metrics belonging to the same “HKT class” of Ω:

HΩ = {ϕ ∈ C∞(M,R) | Ω + ∂∂Jϕ > 0} ,

where the inequality means that Ωϕ := Ω + ∂∂Jϕ induces a new HKT metric gϕ on (M, I, J,K).
It turns out that in the HKT world the “nicest possible” HKT metric is one that is balanced with
respect to all I, J and K, equivalently ∂Ω̄nϕ = 0 (see [306]). The existence of such a special metric
is related to the holonomy of the Obata connection ∇ as it clearly implies holomorphic triviality of
the canonical bundle and thus Hol(∇) ⊆ SL(n,H). A very natural and captivating conjecture emerges
as whether or not the converse is true, at least in the compact setting, namely if a compact HKT
SL(n,H)-manifold always admits a balanced HKT metric. Such a conjecture can be viewed as the
HKT version of the conjecture of Calabi [67] on compact Kähler manifolds, proved by Yau [327] with
the method of continuity. As a matter of fact, Alesker and Verbitsky [18] formulated the quaternionic
Calabi conjecture by wondering if on a HKT SL(n,H)-manifold any complex volume form is the wedge
nth power of a HKT metric Ωϕ for some ϕ ∈ HΩ. This problem leads and is equivalent to the so-called
quaternionic Monge-Ampère equation:

(Ω + ∂∂Jϕ)n = eFΩn , F ∈ C∞(M,R) , (1)
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where the datum F satisfies the necessary condition∫
M

(eF − 1)Ωn ∧ Θ̄ = 0 , (2)

being Θ a fixed positive (in a quaternionic sense) holomorphic trivialization of the canonical bundle
K(M, I). Equation (1) is fully non-linear elliptic of the second order and discussing its solvability lies
at the core of this work. Later, the assumption of being a SL(n,H)-manifold was dropped (see [16])
and equation (1) was studied on a general compact HKT manifold, but now it must have the form

(Ω + ∂∂Jϕ)n = b eFΩn , F ∈ C∞(M,R) ,

for some positive constant b, because the necessary condition (2) does no longer make sense. Going a
little step further, we observe that the equation can also be studied merely on compact hyperhermitian
manifolds.

The most natural approach to tackle the conjecture is by adapting the known results for the complex
Monge-Ampère equation. From this point of view, establishing a priori estimates becomes crucial. The
C0 estimates has been proved on general compact HKT manifolds by Alesker and Shelukhin [16] and,
with an alternative, much simpler proof, by Sroka [269]. Before that, Alesker was able to show that
the conjecture is true on compact flat hyperkähler manifolds [14] and a recent paper by Dinew and
Sroka [106] significantly improved this result by removing the assumption of flatness. So far, this is
the most general framework under which the quaternionic Monge-Ampère equation has been solved.

The fact that equation (1) appears to be more difficult than the complex Monge Ampère equation
is essentially motivated by two facts. First of all, in general there are no “quaternionic coordinates”, in
the sense that it is not true, for a hypercomplex manifold, that each point allows a neighbourhood
isomorphic to an open subset of the flat space Hn. Such a condition, known as local flatness, entails
the full integrability of the GL(n,H)-structure and is equivalent to flatness of the Obata connection.
Furthermore, even if we assume such a condition, working with “quaternionic derivatives” is not
particularly nice, as these do not satisfy neither the Leibniz rule, nor the chain rule, in general. Second,
a non-hyperkähler HKT manifold cannot be Kähler (see [303]), hence even working from the complex
point of view one cannot consider normal coordinates, furthermore the coordinate expression of the
equation involves not only the coefficients of the metric but also of the complex structure J , whose
presence causes some troubles.

We now outline the content of this thesis.
The first chapter is meant as an introduction to quaternionic linear algebra. The non-commutativity
of quaternions imposes to be delicate in the development of linear algebra, however, this is not a major
issue and most of the essential theory can be reproved for the skew field of quaternions. On the other
hand, a very interesting “breaking point” emerges when dealing with determinants, which cannot be
defined coherently via the usual definition. A few possible definitions of quaternionic determinants have
been proposed but we shall only be interested in the Moore determinant [229]. The Moore determinant
compels to restrict to hyperhermitian matrices, i.e. matrices that are Hermitian in a quaternionic
sense. Such matrices have well-defined real (right) eigenvalues and the Moore determinant can be
defined as the product of them, hence it captures the positivity or negativity of the eigenvalues, which
is not the case for other determinants.

In the second chapter, after a brief discussion of G-structures, which we use to quickly review
complex structures as a way to fix some notations, we discuss hypercomplex structures and their
integrability. We then introduce HKT manifolds and start to study their geometry, giving more details
on the argument touched upon in this introduction, i.e. HKT potentials, cohomology and the relation
between the holonomy of the Obata connection and the canonical bundle. This leads to consider
balanced HKT metrics and the quaternionic Calabi conjecture which is carefully stated along with a
description of the current “state of the art” for what regards its solution.

The cohomology of HKT manifolds, especially under the assumption of balancedness resembles quite
closely that of Kähler manifolds. The third chapter explores the relation between the cohomologies of
∂ and ∂J as well as the quaternionic Bott-Chern and Aeppli cohomologies introduced by Grantcharov,
Lejmi and Verbitsky [146]. We prove that on a compact balanced HKT manifold all these cohomology
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INTRODUCTION

groups are isomorphic (Theorem 3.21). Afterwards, we prove formality of the differential graded
algebra (Λ•,0(M, I), ∂), provided the (global) ∂∂J -lemma holds (Theorem 3.22), which is true for HKT
SL(n,H)-manifolds by a result in [146], this allows to find an obstruction to the existence of a HKT
SL(n,H)-structure on complex manifolds (Corollary 3.30). In Section 3.2 we put nilmanifolds and
solvmanifolds under our lens and we study the relation between HKT geometry and the presence of
an abelian hypercomplex structure. Recall that a hypercomplex structure (I, J,K) on a Lie algebra
(g, [·, ·]) is called abelian if it satisfies [I·, I·] = [J ·, J ·] = [K·,K·] = [·, ·]. We recall the results of
Barberis, Dotti and Verbitsky [29] for nilmanifolds and we generalize some of them to solvmanifolds,
providing evidence for some of the conjectures stated before. For instance we prove that a solvmanifold
is SL(n,H) if and only if its canonical bundle has holomorphic sections (Theorem 3.39). We also
show that if a solvmanifold M with a left-invariant hypercomplex structure (I, J,K) such that that
either (I, J,K) is abelian or M is SL(n,H), admits a compatible HKT metric then it also admits
a left-invariant balanced HKT metric (Corollaries 3.37 and 3.41). This provides evidence for the
quaternionic Calabi conjecture. In a final subsection we also prove that on a Lie group with abelian
hypercomplex structure, the restricted holonomy group of the Obata connection is abelian (Theorem
3.50), an interesting fact related to the Merkulov-Schwachhöfer classification.

The remaining chapters are all devoted to solvability results of the quaternionic Monge-Ampère
equation. Chapter 4 studies the problem in two cases. The first section focuses on the equation on
some 2-step nilmanifolds of (real) dimension 8 which can be naturally viewed as toric fibrations over
tori. Under the assumptions that all the data are invariant by the action of the fiber, we prove that the
quaternionic Monge-Ampère equation can always be solved (Theorem 4.1). On a related note, in the
second section we treat compact HKT manifolds having a foliation of corank 4 that is preserved by the
hypercomplex structure. Assuming that the datum is basic with respect to the foliation, the equation
rewrites as a semilinear elliptic equation, which is solved by a unique basic function (Theorem 4.12).

In the fifth chapter, inspired by a long-tradition of designing geometric flows as a way to attack
partial differential equations, we consider the natural parabolic version of the quaternionic Monge-
Ampère equation. More generally, whenever we have an elliptic partial differential equation (PDE)
P (ϕ, F ) = 0 with datum F ∈ C∞(M,R) and unknown ϕ ∈ C∞(M,R), the associated parabolic
flow is ∂

∂tϕ = P (ϕ, F ), which is set up by adding time dependence to the unknown, i.e. now
ϕ ∈ C∞(M × [0, T ),R). By standard parabolic theory, there always exists a unique maximal solution
and one might hope to establish long-time existence and convergence of the flow to a solution of the
related elliptic PDE. We proceed in this way, introducing the parabolic quaternionic Monge-Ampère
equation and proving that on a compact flat hyperkähler manifold there exists a long-time solution
whose normalization converges to a solution of (1) (Theorem 5.1).

One can observe that the quaternionic Monge-Ampère equation belongs to a whole family of fully non-
linear elliptic equations which can be treated simultaneously. This approach has a long lasting tradition
and goes back to the work of Caffarelli, Nirenberg and Spruck [66]. Inspired by the work of Székelyhidi
[280] who studies a class of equations on compact Hermitian manifolds, the sixth chapter deals with a
family of equations on compact locally flat hyperhermitian manifolds. Under the assumptions of local
flatness, the metric g and the form Ω + ∂∂Jϕ induce hyperhermitian matrices gr̄s, Ωϕr̄s. The equations
we take into account are of the form f(λ(A)) = F , where F ∈ C∞(M,R) is the datum, Ars = gj̄rΩϕ

j̄s

is a hyperhermitian matrix with respect to g with n-tuple of eigenvalues λ(A) and f is a real-valued
function satisfying some structural assumptions which ensure non-degeneracy and ellipticity of the
equation. For instance, for the quaternionic Monge-Ampère equation f(λ1, . . . , λn) = log(λ1 · · ·λn).
We establish C0, Laplacian and C2,α a priori estimates for this class of equations under the assumption
of having a certain type of subsolution (Propositions 6.4, 6.7 and 6.16). Unfortunately during the
Laplacian estimate we need the severe assumption of having a compatible hyperkähler metric.

Similarly to what we discussed above for the parabolic quaternionic Monge-Ampère equation, one
can consider the parabolic counterpart of the class of elliptic equations studied in chapter 6. This
is done in the seventh chapter following the approach of Phong and Tô [246] who generalized the
work of Székelyhidi to the parabolic framework. Our assumptions are essentially the same as for
the elliptic case, but here there is a dichotomy and the structural function f can present either a
“bounded” behaviour or an “unbounded” one. The bounded case is slightly less nicer, as it requires
some additional assumption in order to show the C0 estimate. Nonetheless, in both cases we prove
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long-time existence and we show that (the normalization of) its solution converges to a solution of the
corresponding elliptic equation (Theorems 7.2 and 7.3).

The last chapter tries to attack the quaternionic Calabi conjecture from a different angle. It is
inspired by the variational approach of Berman, Boucksom, Guedj and Zeriahi [39] to the complex
Monge-Ampère equation. The underlying idea is that the critical points of the Ding functional are
solutions of the Monge-Ampère equation and the problem of solvability is then translated into the
variational problem of showing that such a functional admits a maximizer. All this machinery works on
plurisubharmonic functions with very weak regularity assumptions, indeed by reducing the smoothness
of the family of functions considered, we gain in compactness, making it easier to find maximizers.
In order to take advantage of the needed pluripotential environment we need some preliminary work,
analogue to the theory developed by Guedj and Zeriahi [156] on compact Kähler manifolds. Eventually
we are able to show that the quaternionic Monge-Ampère equation on compact locally flat HKT
manifolds always admits a unique weak solution (Theorem 8.31).
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CHAPTER 1
QUATERNIONIC LINEAR ALGEBRA

The first chapter serves the purpose of introducing the basic framework of quaternionic linear algebra.
Even though quaternions are not a field, once we fix a side for scalar multiplication, the theory goes
through almost unaffected, and very many results which are true for vector spaces over a field still
hold in the non-commutative setting. Indeed, most of the theory developed in this initial chapter is
not a special feature of quaternions and the majority of the results can be extended to more general
types of rings. Several results hold in the category of skew fields, sometimes with the requirement that
they carry an anti-involution (which plays the role of conjugation). Beside some minor exceptions, we
decided to phrase the results in terms of quaternions, leaving aside full generality and keeping the
focus on the division ring of quaternions, which is the one of our interest.

As mentioned, the known theory of vector spaces is barely altered by the lack of commutativity,
and with little more effort one can still introduce the notions of invertibility of a matrix, linear
(in)dependence of vectors, general linear group or special linear group and all these concepts behave
very much like the familiar linear algebra. However, sometimes subtle differences emerge. A striking
example is the spectral theory, studied at the end of the first section. Within this framework, (right)
eigenvalues are not uniquely defined as any other element in the same conjugacy class is again an
eigenvalue. On the other hand, the Spectral Theorem for normal matrices can still be obtained.

The determinant is another notion that is heavily affected by the absence of commutativity, indeed,
we will see that it is non-trivial to find a satisfactory definition of a determinant, unless we are
prepared to give up some properties. Some interesting approaches to these issues have been proposed
by Dieudonné [102], Study [274] and other mathematicians, but the determinant that provides the
most useful tool in view of Riemannian geometry is the one introduced by Moore [229]. Moore’s
determinant is the only one that is capable to encompass the positivity (or negativity) of an inner
product, but its application is limited to hyperhermitian matrices. For this kind of matrices, which are
the quaternionic analogue of Hermitian matrices each conjugacy class of eigenvalues, contains a single
real element. This behaviour of the eigenvalues is exactly the reason why the Moore determinant is
only valuable on the space of hyperhermitian matrices.

Even though it has attracted the attention of many researchers in the field of Quantum Mechanics
(renewed by the book [1]), there is not so much literature dealing carefully with the foundations of
quaternionic linear algebra. Our main references for this chapter include the book of Rodman [250],
which collects a thorough exposition of quaternionic linear algebra, and the survey of Zhang [330].
We cannot fail to mention the expository article of Farenick and Pidkowich [122] for what regards
spectral theory and the excellent survey of Aslaksen [23] which is also our prime source for the topic of
quaternionic determinants.
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CHAPTER 1. Quaternionic linear algebra

1.1 Basic theory
The present section is divided into two parts. The first one deals with quaternionic modules, linear
maps and inner products; the second develops the theory of quaternionic matrices, shedding some
light on the structures of the first part and presenting a solid linear algebraic groundwork. In the
second part we will deal with the notion of invertibility and the general linear group. The definition of
the special linear group is interesting, as, at this level, we do not have at our disposal a determinant
function, hence, an alternative definition than the usual one must be adopted. Special importance is
then given to hyperhermitian matrices and the notion of (semi)definiteness. We also discuss possible
representations of quaternionic matrices into the real algebras of complex and real matrices, which will
be incredibly helpful, for instance, in the spectral theory.

1.1.1 Quaternionic modules.
The discovery of quaternions dates back to 1843 and is due to Sir William Rowan Hamilton. The
history of how Hamilton came up with the idea of quaternions is well-known and told in innumerable
sources and it is not the place here to recall it (among others, we refer the interested reader to [300]).
In this subsection we begin with a brief treatment of the basic features of the algebra of quaternions,
describe their relation with three-dimensional rotations and build up our way into non-commutative
linear algebra.

The algebra of quaternions.

As usual, we will denote by R and C the fields of real and complex numbers respectively. The space H of
quaternions can be defined as the non-commutative associative algebra over R which is 4-dimensional
as a vector space, with basis (1, i, j, k):

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}, ,

where i, j, k are the quaternion units satisfying the fundamental relations

i2 = j2 = k2 = −1 , ij = −ji = k .

The product operation on H is completely determined by (the distribution laws together with) the
relations above, the usual product of real numbers and the condition that these commute with the
quaternion units. The center of H coincides with R, embedded in H as {a+ 0i+ 0j + 0k | a ∈ R}.

With this product H has also the structure of a division ring (or skew field), i.e. a non-
commutative ring where every non-zero element has an inverse (see [96, 114]). To see this consider the
quaternionic conjugate of q = a+ bi+ cj + dk, defined as

q̄ := a− bi− cj − dk

and its norm
|q| :=

√
qq̄ =

√
q̄q =

√
a2 + b2 + c2 + d2 ,

then if q 6= 0, its inverse is
q−1 = q̄

|q|2
.

Checking that | · | : H→ R is indeed a norm is straightforward, furthermore |q| = |q̄| for any q ∈ H and
|pq| = |p||q| for any p, q ∈ H. Observe that conjugation satisfies pq = q̄p̄ and q = q̄ if and only if q ∈ R.

The field of complex numbers naturally embeds into H in many ways, we shall fix the identification
C ∼= {a+ bi+ 0j + 0k | a, b ∈ R}. We can also write a quaternion q = a+ bi+ cj + dk in one of the
following two forms

q = (a+ bi) + (c+ di)j , q = (a+ bi) + j(c− di) ,

2



1.1. Basic theory

emphasizing that H can also be seen as a vector space over C, however, be aware that H is not an
algebra over C (because the product of two quaternions is not a C-bilinear operation). Fixing this
embedding of C into H we have that every z ∈ C satisfies zj = jz̄.

Rotations and conjugation.

For any quaternion q = a + bi + cj + dk ∈ H we call Re(q) := a its real (or scalar) part and
Im(q) := bi+ cj + dk its imaginary (or vector) part. A purely imaginary quaternion can be seen as a
vector in R3 and under this identification one can define a dot product and a cross product as follows:
let qr = bri+ crj + drk for r = 1, 2 be purely imaginary quaternions, then we define

q1 · q2 := b1b2 + c1c2 + d1d2 , q1 × q2 := (c1d2 − d1c2)i+ (d1b2 − b1d2)j + (b1c2 − c1b2)k .

An interesting feature is that the product of q1 and q2 can be expressed in terms of the dot product
and the cross product:

q1q2 = −q1 · q2 + q1 × q2 . (1.1)

Similarly to complex numbers, quaternions allow a polar representation. For every q ∈ H with
non-zero imaginary part there exists α ∈ [0, 2π) such that

q = |q|
(

cos α2 + Im(q)
|Im(q)| sin

α

2

)
. (1.2)

To see this it is enough to observe that Re(q)2 + |Im(q)|2 = |q|2, therefore, choosing α such that
cos(α/2) = Re(q)/|q| we also have sin(α/2) = |Im(q)|/|q|. Such an observation makes quaternions into
an extremely useful tool to model spatial rotations due to the following result:

Theorem 1.1. The action ρq : H→ H of a unit norm quaternion q ∈ H by conjugation

ρq(p) := qpq̄ ,

fixes the real axis and on Ri+ Rj + Rk ∼= R3 acts as a rotation of angle α = 2 arctan(|Im(q)|/Re(q))
around the axis Im(q). Such a rotation is clockwise if our line of sight points in the same direction as
Im(q).

Proof. If Im(q) = 0 the statement is trivial, therefore we may assume that q is a non-real quaternion.
Furthermore, the fact that the real axis remains fixed is obvious, thus it is enough to prove the theorem
assuming p = p is a purely imaginary quaternion.

We have

ρq(p) = (Re(q) + Im(q))p(Re(q)− Im(q)) = Re(q)2p + Re(q) (Im(q)p− pIm(q))− Im(q)pIm(q) ,

but from (1.1) we deduce Im(q)p−pIm(q) = 2Im(q)×p as well as Im(q)pIm(q) = −Im(q)(p · Im(q))+
Im(q)× p× Im(q), therefore

ρq(p) = Re(q)2p + 2Re(q)Im(q)× p + Im(q)(p · Im(q))− Im(q)× p× Im(q) .

From this formula it follows that ρq(p) = p whenever p is along Im(q), i.e. p = aIm(q) for some a ∈ R.
If p is normal to Im(q), letting u = Im(q)/|Im(q)| we obtain instead

ρq(p) = Re(q)2p+2Re(q)|Im(q)|u×p−|Im(q)|2u×p×u =
(
Re(q)2 − |Im(q)|2

)
p+2Re(q)|Im(q)|u×p .

Now, from (1.2) we deduce

ρq(p) =
(
cos(α/2)2 − sin(α/2)2)p + 2 cos(α/2) sin(α/2)u× p = cos(α)p + sin(α)u× p .

Therefore ρq rotates p on the plane defined by p and u× p through an angle α.
For a general p the theorem follows by using R-linearity of ρq and decomposing p into its component

along Im(q) and its component normal to it.

3



CHAPTER 1. Quaternionic linear algebra

An automorphism given by conjugation action is called inner ; on H it turns out that all automor-
phisms are of this type. This is a particular case of the Skolem-Noether Theorem [261, 233] which
establishes this property for finite-dimensional central simple algebras.

Proposition 1.2. All automorphisms of the algebra of quaternions are inner.

Proof. Any automorphism η : H→ H must satisfy η(1) = 1 and thus fixes the real line. By Theorem
1.1 it is therefore enough to show that the restriction of η to Ri+ Rj + Rk ∼= R3 acts as a rotation.

As η preserves real parts we have from (1.1) that η preserves the dot product:

η(p) · η(q) = −Re(η(p)η(q)) = −Re(η(pq)) = −η(Re(pq)) = η(p · q) = p · q .

This implies that η restricted to imaginary parts is an element of O(3). But, again from (1.1) we see
that

η(p)× η(q) = η(p)η(q) + η(p) · η(q) = η(pq) + η(p · q) = η(p× q) ,

whence η|R3 ∈ SO(3) as desired.

Observe that when q ∈ H has unit norm its action by conjugation coincides with its action by
similarity: ρq(p) = qpq̄ = qpq−1. Set

θ(p) := {qpq−1 | q ∈ H∗} = {qpq̄ | q ∈ H, |q| = 1}

for the conjugacy class of p ∈ H. It will be useful in the future to have a criterion to decide if two
quaternions are conjugate. Clearly, if p is real it is the only element in its conjugacy class and conversely.
If p is non-real its conjugacy class is infinite and contains exactly two mutually conjugate purely
complex elements and all other elements are non-complex quaternions. This last observation, proved
below, goes back to Cayley [76]. Our proof follows [23, p. 63], which is geometric in flavour. For other
proofs see [53, 330].

Lemma 1.3. For any non-real p ∈ H we have θ(p) ∩ C = {µ, µ̄} for some µ ∈ C.

Proof. For any q ∈ H with unit norm we know that the conjugation map ρq : H → H, ρq(p) = qpq̄
fixes the real axis and can be thought of as a rotation of iR+ jR+ kR ∼= R3 around the axis defined
by Im(q). Therefore, for any non-real p ∈ H with unit norm, θ(p) describes a 2-dimensional sphere
orthogonal to the real axis. Clearly ρq(p) = Re(p) + qIm(p)q−1 and by our discussion the conjugacy
class of Im(p) intersects the i-axis only at two points which must have the same norm of |Im(p)|, hence
they are ±|Im(p)|i. We conclude that θ(p) ∩ C = {Re(p)± |Im(p)|i}.

As an application of the lemma above we prove:

Proposition 1.4. The commutator subgroup of H∗ := H \ {0} coincides with the set of quaternions of
unit norm.

Proof. The fact that a commutator has unit norm is obvious. Conversely, let q ∈ H∗ have unit norm. If
q = 1 then it is clearly a commutator, if q = −1 we can write q = iji−1j−1, otherwise by the previous
lemma there exists a µ ∈ C such that q = aµa−1 for some a ∈ H. Observe that from formula (1.1) it can
be deduced that every quaternion can be written as the product of two purely imaginary quaternions.
Let z ∈ C be such that z2 = µ and choose p1, p2 purely imaginary and such that z = p1p2. The fact
that q has unit norm implies that all µ, z, p1 and p2 have unit norm, in particular p−1

i = p̄i = −pi for
i = 1, 2. From this we conclude

q = aµa−1 = ap1p2p1p2a
−1 = ap1p2p

−1
1 p−1

2 a−1 = (ap1a
−1)(ap2a

−1)(ap1a
−1)−1(ap2a

−1)−1

which is a commutator.

See also [101, 102] for different proofs of Proposition 1.4.
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1.1. Basic theory

H-modules.

We now enter into the realm of non-commutative linear algebra. A right module over H (shortly, a
right H-module) is an additive abelian group V together with a function V ×H→ V , (v, q) 7→ vq
such that for all p, q ∈ H and u, v ∈ V

1. (u+ v)q = uq + vq;
2. v(p+ q) = vp+ vq;
3. (vp)q = v(pq);
4. v1 = v.

Sometimes, modules over a skew field are still called vector spaces. We prefer to keep calling them
modules to emphasize the lack of commutativity of scalars.

A left H-module is defined similarly via a function H×V → V , (q, v) 7→ qv satisfying the obvious
analogues of the properties listed above. Here we will talk about right modules, everything we say has
an obvious analogue for left modules.

Example 1.5. The n-fold direct product Hn = H×H× · · · ×H is both a left and a right H-module
with the natural actions

q(v1, v2, . . . , vn) := (qv1, qv2, . . . , qvn) , (v1, v2, . . . , vn)q := (v1q, v2q, . . . , vnq) .

A H-module which is both left and right is called a H-bimodule.

A map α : V →W between two (right) H-modules is called a (right) H-module homomorphism
if is additive and preserves rescalings, more precisely for all q ∈ H and u, v ∈ V

α(u+ v) = α(u) + α(v) , α(vq) = α(v)q .

We will also say that α is H-linear. A bijective H-linear map is called an isomorphism (of H-modules).

Let V be a right H-module and X ⊆ V a subset. Denote SpanH(X) the smallest submodule of V
containing X, if V = SpanH(X) we say that V is spanned by X. The module V is spanned by a subset
X ⊆ V if and only if every element of V may be written as a linear combination v1q1 +v2q2 + · · ·+vkqk
for qi ∈ H, vi ∈ X and k ∈ N. If there exists a finite subset spanning V , then V is said to be finitely
generated.

A subset X ⊆ V is said to be right linearly dependent if there exists a collection of distinct
elements v1, . . . , vm ∈ X and a non-zero q = (q1, . . . , qm) ∈ Hm such that

∑m
i=1 viqi = 0, while is called

right linearly independent if it is not right linearly dependent. A linearly independent subset of V
that spans V is called a basis of V .

Theorem 1.6. Every H-module V satisfies the following properties:

1. V has a basis and any two bases of V have the same cardinality. The cardinal number of any
basis of V is called the dimension of V , denoted dim(V ).

2. Every subset of V that spans it contains a basis of V .
3. Every linearly independent subset of V is contained in a basis of V .
4. V is free, i.e. it is isomorphic to Hdim(V ).

Proof. The proof is practically identical to the one for vector spaces over a field, we refer, for instance,
to [184, Chaper IV, Section 2].

The isomorphism of V with Hdim(V ) is not unique. Any choice of a basis of V determines one such
isomorphism as follows. Suppose for simplicity that V has finite dimension n and let B = (e1, . . . , en)
be a basis. Any vector v ∈ V can be written as v =

∑n
k=1 ekvk for unique v1, . . . , vn ∈ H called the

components of v with respect to B. The correspondence v 7→ (v1, . . . , vn) determines the isomorphism
between V and Hn.
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CHAPTER 1. Quaternionic linear algebra

Quaternionic inner products.

Definition 1.7. A hyperhermitian (sesquilinear) form over V is a map g : V × V → H that

• is additive: g(u1 + u2, v) = g(u1, v) + g(u2, v);
• is H-linear in the second entry g(u, vq) = g(u, v)q;
• is hyperhermitian: g(u, v) = g(v, u).

A hyperhermitian form is non-degenerate if g(u, v) = 0 for all v ∈ V implies u = 0 and it is positive
definite (resp. semidefinite) if g(u, u) > 0 (resp. g(u, u) ≥ 0) for all u 6= 0. A positive definite
hyperhermitian form g will be called a (quaternionic) inner product and the pair (V, g) is called a
(quaternionic) inner product space.

Example 1.8. The standard inner product 〈·, ·〉 on Hn is defined as

〈u, v〉 :=
n∑
k=1

ūivi

for every u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Hn.

Remark 1.9. Unlike the complex setting, non-zero symmetric and skew-symmetric bilinear forms do
not exist on H-modules. Indeed, if V is a right H-module and g a bilinear form, either symmetric or
skew-symmetric, for every u, v ∈ V and p, q ∈ H

g(up, vq) = g(up, v)q = ±g(v, up)q = ±g(v, u)pq = g(u, v)pq

but also
g(up, vq) = ±g(vq, up) = ±g(vq, u)p = g(u, vq)p = g(u, v)qp

hence g ≡ 0.

Every inner product g : V × V → H on a right H-module V induces a norm ‖ · ‖g : V → [0,+∞)
naturally defined as ‖v‖g :=

√
g(v, v) for every v ∈ V . The usual Cauchy-Schwartz inequality is true:

Lemma 1.10 (Cauchy-Schwartz inequality). Let g : V × V → H be an inner product on the right
H-module V , then

|g(u, v)| ≤ ‖u‖g‖v‖g.

Proof. Take u, v ∈ V and p, q ∈ H, then

0 ≤ ‖up− vq‖2g = p̄‖u‖2g p− p̄g(u, v)q − q̄g(v, u)p+ q̄‖v‖2g q .

Choosing p = ‖v‖2g and q = g(v, u) one obtains

0 ≤ ‖v‖2g
(
‖u‖2g‖v‖2g − |g(u, v)|2

)
and thus the desired inequality.

On a quaternionic inner product space (V, g) we say that a basis (v1, . . . , vn) is hyperunitary
(with respect to g) if g(vi, vj) = δij , where δij is the Kronecker delta. As usual, one can always adjust
a basis to obtain a hyperunitary one:

Proposition 1.11 (Gram-Schmidt process). Let (V, g) be a quaternionic inner product space and
v1, . . . , vn a basis. Then there exists a hyperunitary basis u1, . . . , un such that for every k = 1, . . . , n
we have SpanH(v1, . . . , vk) = SpanH(u1, . . . , uk).

Proof. Define u1 = v1/‖v1‖g and then inductively

uk := vk −
∑k−1
r=1 ur〈ur, vk〉∥∥∥vk −∑k−1
r=1 ur〈ur, vk〉

∥∥∥
g

, k = 2, . . . , n .
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1.1. Basic theory

It is clear that the vectors u1, . . . , un form a hyperunitary basis and that for each k we have
SpanH(v1, . . . , vk) = SpanH(u1, . . . , uk).

1.1.2 Quaternionic matrices.
Let V , W be right H-modules of dimension n and m respectively. The set HomH(V,W ) of H-linear
homomorphisms between V and W is a real vector space (a subspace of HomR(V,W )). The choice of
bases of V and W induces a isomorphism of real vector spaces between HomH(V,W ) and the space
Hm,n of m × n matrices with coefficients in H. Be aware that there is no H-module structure on
HomH(V,W ) that makes this into an isomorphism of H-modules.

More precisely, to any linear map α : V →W we associate the matrix M(α) ∈ Hm,n with respect
to bases B = (e1, . . . , en), C = (f1, . . . , fm) of V and W respectively, with entries defined as

M(α)ij := f∗i (α(ej)) ,

where (f∗i ) ⊆ HomH(W,H) is the dual basis to (fi), i.e. f∗i (fj) = δij . As usual, we may compute the
components of the image of a vector v ∈ V with respect to C as the product of the matrix M(α) with
the column vector of components of v with respect to B:

α(v)C = M(α)vB , for every v ∈ V . (1.3)

Also, for any pair of H-linear maps α : V →W and β : W → Z we have

M(β ◦ α) = M(β)M(α) . (1.4)

A word of caution is needed here. If we take into account left H-modules instead of right ones we
need to adjust things a little. Indeed (1.3), (1.4) and all formulas to come are only true if we define
the product of two matrices M ∈ Hm,n, N ∈ Hn,k as MN := M ·op N , where ·op is induced by the
opposite product p ·op q := qp for every p, q ∈ H. Explicitly, if M = (mij) and N = (nrs) then

(MN)ab =
n∑
l=1

mal ·op nlb =
n∑
l=1

nlbmal . (1.5)

With this adjustment for the matrix product, we can make use of the same formulas of the case of
right modules, keeping in mind that if we choose to look at left module structures, products have to
be intended as in (1.5). In view of this consideration, it is convenient and customary to work with
right modules, which has considerable practical advantage.

Quaternionic linear groups.

We now address the important matter of invertibility of matrices. We say that a matrix A ∈ Hn,m is
left (resp. right) invertible if there exists a matrix B ∈ Hm,n called the left (resp. right) inverse
of A, such that BA = 1m (resp. AB = 1n), where 1m denotes the identity matrix of order m. When
no confusion can occur we will drop the subscript and simply denote 1m by 1. A priori we do not
know if a left inverse is automatically a right inverse and viceversa. Clearly, if a matrix A ∈ Hn,m has
both a left inverse B ∈ Hm,n and a right inverse C ∈ Hm,n then they are unique and they coincide:

C = C1n = CAB = 1mB = B ;

when this occurs, we call A invertible or non-singular and A−1 := B = C the inverse of A.

Example 1.12. If we choose two bases B = (e1, . . . , en) and C = (f1, . . . , fn) of a right H-module V
we obtain two isomorphisms between V and Hn and it is easy to see that fj =

∑n
i=1 eiaij for some

aij ∈ H. With little effort, we obtain the formula of change of coordinates

vB = PvC , for every v ∈ V ,

7
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where the matrix P = (aij) ∈ Hn,n must be invertible and is called the matrix of change of basis
from B to C.

In particular, the example above shows that for square matrices there is no distinction between left
and right invertibility.

Definition 1.13. The quaternionic general linear group of order n, denoted GL(n,H), is the
group of invertible matrices in Hn,n.

We do not have yet at our disposal the notion of a determinant, for this reason we cannot define
the special linear subgroup SL(n,H) ⊆ GL(n,H) of matrices with determinant equal to 1. A possible
alternative definition is offered by looking at elementary transformations.

Define Bij(q) ∈ Hn,n to be the square matrix obtained from the identity matrix by replacing the
(i, j)-entry with q ∈ H. We distinguish two cases:

• For i 6= j multiplying a matrix on the left by Bij(q) amounts to adding to the ith row the jth

row multiplied on the left by q. Similarly multiplying a matrix on the right by Bij(q) amounts
to adding to the jth column the ith column multiplied on the right by q. We call Bij(q) an
elementary matrix. These matrices are invertible because Bij(q)−1 = Bij(−q).

• For i = j multiplication on the left by Bii(q) amounts to multiplying the ith row on the left by q
while multiplication on the right amounts to multiplying the ith column on the right by q. If
q 6= 0 these matrices are invertible because Bii(q)−1 = Bii(q−1).

We first prove a very useful factorization formula.

Lemma 1.14. Every A ∈ GL(n,H) can be factorized as

A = Bnn(q)B

for some q ∈ H∗, where B is a product of elementary matrices.

Proof. Since A ∈ GL(n,H) we can find a non-zero element a1j in the first row. We may assume a12 6= 0
because if this is not the case by summing the jth column to the second we achieve a12 6= 0. Now,
summing the second column multiplied on the right by a−1

12 (1− a11) to the first column we obtain a
new matrix with (1, 1)-entry equal to 1 and with suitable operations we can now make all other entries
in the first row equal to zero.

Proceeding iteratively for the 2nd, . . . , n− 1th rows we obtain ajj = 1 and ajk = 0 for k 6= j. For
the last row we cannot accomplish this task, however we must have ann 6= 0, for otherwise the last
column would be zero which is not possible because A is non-singular. We can then make all the other
entries in the last row equal to zero.

Examples 1.15.

(1) For i 6= j and q ∈ H∗ denote Mij(q) the matrix obtained from the identity matrix by replacing
the (i, i)-entry with q and the (j, j)-entry with q−1. Then Mij(q) is a product of elementary
matrices. It is enough to observe that for i < j we have

Mij(q) = Bji(−q−1)Bij(q − 1)Bji(1)Bij(q−1 − 1) ,

indeed, if i > j we conclude from the identity Mij(q) = Mji(q−1).
(2) Whenever q ∈ H∗ is a commutator, i.e. q = aba−1b−1 then Bkk(q) can be decomposed as

Bkk(q) = Mrk(a−1)Mrk(b−1)Mrk(ba) ,

for any r 6= k, which shows that Bkk(q) is a product of elementary matrices.

8
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(3) Let Sij be the square matrices obtained by exchanging the ith and the jth rows (equivalently
columns) of the identity matrix. In other words the entries of Sij are defined as

(Sij)rs :=


δrs if r 6= i and s 6= j ,
δjs if r = i ,
δri if s = j .

(1.6)

Now, multiplication on the left by Sij amounts to exchanging its ith and jth rows, while
multiplication on the right amounts to exchanging the ith and jth columns. Since (Sij)2 = 1

clearly these matrices are invertible. Furthermore, they are generated by elementary matrices as
we have the following decomposition

Sij = Bjj(−1)Bij(1)Bji(−1)Bij(1) .

Everything we proved so far only uses the division ring structure of H, in particular, the general
linear group makes sense for matrices with coefficients in any division ring R and the analogue of
Lemma 1.14 still holds. The following proposition clarifies the relation between the commutator
subgroup of GL(n,R) and the group generated by elementary matrices, hinting to a general definition
of the special linear group.

Proposition 1.16. Let R be a division ring. Let S ⊆ GL(n,R) be the subgroup generated by all
elementary matrices Bij(q) for i 6= j, then S = [GL(n,R),GL(n,R)], except when n = 2 and R ∼= Z2.
Moreover, if R = K is a field S = SL(n,K).

Proof. We want to show that elementary matrices are commutators for R 6∼= Z2. For distinct i, j, k (we
need n ≥ 3 here) it is straightforward to check that Bij(p) = [Bik(p), Bkj(1)]. When n = 2 and R 6∼= Z2
there is an element q ∈ R such that q 6= 0, 1. Set c = p(q−1 − 1)−1, then B12(p) = [B22(q), B12(c)] and
a similar identity holds for B21(p), then we see that S ⊆ [GL(n,R),GL(n,R)].

Conversely, to prove that [GL(n,R),GL(n,R)] ⊆ S, by Lemma 1.14 we only need to show that
for every non-zero p, q ∈ R we have [Bnn(p), Bnn(q)] = Bnn([p, q]) ∈ S and [Bnn(p), Bij(q)] ∈ S for
i 6= j. The first fact was already observed in example 1.15(2). To prove the second, simply observe
that [Bnn(p), Bij(q)] = 1 if i 6= n and j 6= n while we have [Bnn(p), Bin(q)] = Bin(pq−1 − p) and
[Bnn(p), Bnj(q)] = Bjn(qp− p).

Finally, if R = K is a field, by the usual properties of the determinant we know that elementary
operations do not affect the determinant, therefore S ⊆ SL(n,K). Conversely, from the previous lemma
we see that any A ∈ SL(n,K) decomposes as A = Bnn(p)B where B is a product of elementary matrices,
computing the determinant we necessarily have p = 1, hence A = B and thus SL(n,K) = S.

In view of this result the definition of the special linear group can be extended to any division ring.
Coherently to our interest, we state it in terms of quaternions.

Definition 1.17. The quaternionic special linear group of order n, denoted SL(n,H), is the
subgroup of GL(n,H) generated by elementary matrices, or, equivalently, the commutator subgroup of
GL(n,H).

For future reference we state the following technical lemma according to which a matrix of the form
Bnn(q) lies in the commutator subgroup of GL(n,R) if and only if q lies in the commutator subgroup
of R∗. We omit the proof, which can be found in [244, §16.5].

Lemma 1.18. Let R be a division ring and q ∈ R∗, where R∗ = R \ {0} is the multiplicative group of
R. Then Bnn(q) ∈ [GL(n,R),GL(n,R)] if and only if q ∈ [R∗, R∗].

Hyperhermitian and hyperunitary matrices.

Transposition and conjugation are not automorphisms nor antiautomorphisms of Hn,n, i.e., in general,
for A,B ∈ Hn,n

tA tB 6= t(AB) 6= tB tA , ĀB̄ 6= AB 6= B̄Ā .

9
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Furthermore, they are not well-behaved operations with respect to inverses. However, the two operations
combined give rise to an antiautomorphism of Hn,n which commutes with the inversion. Indeed, it is
straightforward to check that

(AB)∗ = B∗A∗ , (A−1)∗ = (A∗)−1 ,

where A∗ = tĀ denotes the conjugate transpose of the matrix A.

Definition 1.19. A matrix A ∈ Hn,n is called

• hyperhermitian if A = A∗;
• hyperunitary if AA∗ = 1.

We denote with Hyp(n) and Sp(n) the real vector space of n × n hyperhermitian matrices and the
group of n× n hyperunitary matrices respectively.

Lemma 1.20. Let 〈·, ·〉 be the standard quaternionic inner product on Hn. Then, the following
conditions are equivalent for H ∈ Hn,n:

(i) H is hyperhermitian;
(ii) 〈Hu, v〉 = 〈u,Hv〉 for every u, v ∈ Hn;
(iii) 〈v,Hv〉 is real, for every v ∈ Hn.

Proof. Since 〈Hu, v〉 = 〈u,H∗v〉 the equivalence of the first two assertion is immediate and since
〈v,Hv〉 = 〈Hv, v〉 it is also clear that they imply the third one.

Conversely, if 〈v,Hv〉 is real for every v ∈ Hn, since for every u, v ∈ Hn

〈u+ v,H(u+ v)〉 = 〈u,Hu〉+ 〈u,Hv〉+ 〈v,Hu〉+ 〈v,Hv〉

we have 〈u,Hv〉+〈u,H∗v〉 ∈ R. Let (e1, . . . , en) be the standard basis of Hn. Choosing (u, v) = (er, es)
and (u, v) = (eri, esj) we get {

hrs + hsr ∈ R ,
ihrsj + jhsri ∈ R ,

or, equivalently {
Im(hrs) + Im(hsr) = 0 ,
Im(ihrsj) + Im(jhsri) = 0 .

Using the first identity we obtain Im(ihrsj)+Im(jhsri) = (Re(hrs)− Re(hsr)) k so that hrs = hsr.

Arguably, hyperhermitian matrices represent the most interesting class of quaternionic matrices
from the geometric point of view. Their geometric interest is evident from the fact that they are in
one-to-one correspondence with hyperhermitian forms on a right H-module V . The correspondence is
as follows: let B = (e1, . . . , en) be a basis for V , then a hyperhermitian form g : V × V → H induces
the hyperhermitian matrix M(g) with entries M(g)ij = g(ei, ej). Therefore we have

g(u, v) = u∗BM(g)vB .

Furthermore, g is positive (semi)definite if and only if the matrix M(g) is positive (semi)definite,
i.e. w∗M(g)w = 〈w,M(g)w〉 > 0 (resp. ≥ 0) for every non-zero w ∈ Hn.

If we take a different basis C and P ∈ GL(n,H) is the matrix of change of basis from B to C, then
uB = PuC, hence g(u, v) = u∗CP

∗M(g)PvC so that the matrix M ′(g) associated to g with respect to
C is M ′(g) = P ∗M(g)P . Two matrices A,B ∈ Hn,n such that there exist Q ∈ GL(n,H) satisfying
A = Q∗BQ are called congruent. With a suitable choice of basis we can obtain a simple representative
in the congruency class, yielding a convenient choice for the associated matrix.

Proposition 1.21 (Law of Inertia). For every H ∈ Hyp(n) there exists a matrix P ∈ SL(n,H) such
that P ∗HP is diagonal with p positive entries and q negative entries along the diagonal, where the

10



1.1. Basic theory

pair of numbers (p, q), called the signature is uniquely determined by H. Furthermore, there exists
Q ∈ GL(n,H) such that

Q∗HQ =

1p −1q
0

 . (1.7)

In particular, two hyperhermitian matrices are congruent if and only if they have the same signature.

Proof. We first prove by induction that there exists P ∈ SL(n,H) such that P ∗HP is diagonal. The
case n = 1 is trivial. Assume H 6= 0, so that there is at least a non-zero row and thus a non-zero
corresponding column. Possibly exchanging simultaneously such non-zero row and column with the
firsts by means of the matrices S1j ∈ SL(n,H) of example 1.15(3), we may assume that the first row
and column are non-zero. We may further assume that the first diagonal entry is non-zero, indeed if
h11 = 0 and h1k 6= 0 choosing any q ∈ H such that Re(h1kq) 6= 0 the matrix B1k(q̄)HBk1(q) is again
hyperhermitian and has first diagonal entry 2Re(h1kq) 6= 0.

Knowing that h11 6= 0 we can use it to kill all other entries in the first row and column by left
multiplication with Bi1(−hi1h−1

11 ) and right multiplication with Bi1(−hi1h−1
11 )∗ = B1i(−h−1

11 h1i) for
all i > 1. We thus have found a matrix S ∈ SL(n,H) such that

S∗HS =
(
h11 0
0 H ′

)
where H ′ ∈ Hyp(n − 1). By the inductive hypothesis and possibly further switching of rows and
columns we conclude that there exists P ∈ SL(n,H) such that

P ∗HP =



d1
. . .

dp
−dp+1

. . .
−dp+q

0


with d1, . . . , dp+q > 0.

To obtain the form (1.7) we need to rescale the diagonal entries, which can be done by left and
right multiplication with the matrices Bjj(|dj |−1/2) ∈ GL(n,H) for all j = 1, . . . , p+ q. Observe that
in general this step can only be achieved in GL(n,H), as, by Lemma 1.18 the matrices Bjj(q) lie inside
SL(n,H) if and only if q is a commutator (i.e. has unit norm by Proposition 1.4).

Now we prove that the numbers p, q are invariant and do not depend on the matrix P . First of
all, p + q = Rank(H), which is uniquely determined by H. Let (e1, . . . , en) be the standard basis
of Hn and define the submodules U = SpanH(Pe1, . . . , P ep) and V = SpanH(Pep+1, . . . , P en). we
have u∗Hu > 0 and v∗Hv ≤ 0 for every u ∈ U and v ∈ V . Finally, p is the maximal dimension of
a submodule of Hn where H is positive definite, because if there were a larger space, it would have
non-zero intersection with V , leading to a contradiction.

Now we move on to give a brief description of the hyperunitary group Sp(n) = {A ∈ Hn,n | AA∗ = 1}
which can be equivalently defined as the group of matrices preserving the standard quaternionic inner
product in Hn:

Sp(n) = {A ∈ Hn,n | 〈A·, A·〉 = 〈·, ·〉} .

The hyperunitary group is sometimes denoted U(n,H) or HU(n) in the literature, but the notation
Sp(n), to which we adhere, is much more common. This is because such a group is also called the
(compact) symplectic group, however, even though it can be regarded as a subgroup of the complex
symplectic group (cf. Subsection 2.1.3), it is not itself “quaternionic symplectic”, in the sense of
preserving a non-degenerate skew-symmetric H-bilinear form on Hn (such a form does not exists by
Remark 1.9). For this reason we prefer to call it the hyperunitary group, name that is justified at least
by two additional reasons, the first one is the next lemma, the second lies in the fact that Sp(n) can

11
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be regarded as the intersection of the three unitary groups determined by i, j and k (see Subsection
2.1.3 for more details).
Lemma 1.22. For a matrix A ∈ Hn,n the following are equivalent:
(i) A ∈ Sp(n);
(ii) A sends hyperunitary bases of (Hn, 〈·, ·〉) to hyperunitary bases;
(iii) the columns (and/or the rows) of A form a hyperunitary basis of (Hn, 〈·, ·〉).
Proof. If A ∈ Sp(n) and B = (e1, . . . , en) is a hyperunitary basis of Hn with respect to the standard
inner product 〈·, ·〉 then 〈Aei, Aej〉 = 〈ei, ej〉 = δij so that C = (Ae1, . . . , Aen) is again hyperunitary,
thus (i) implies (ii).

When B is the canonical basis of Hn, then vectors of C are columns of A, hence (ii) implies (iii).
Finally if (iii) holds and B is the canonical basis ofHn for any u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Hn

we have

〈Au,Av〉 =
n∑

i,j=1
〈Aeiui, Aejvj〉 =

n∑
i,j=1

ūi〈Aei, Aej〉vj =
n∑

i,j=1
ūiδijvj =

n∑
i=1

ūivi = 〈u, v〉

i.e. A ∈ Sp(n). The equivalence of the fact that the rows of A form a hyperunitary basis follows
immediately as A ∈ Sp(n) if and only if A∗ ∈ Sp(n).

One interesting fact that distinguishes Sp(n) from its real and complex analogues O(n) and U(n) is
that the notion of “special hyperunitary group” is meaningless:
Lemma 1.23. Sp(n) is a subgroup of SL(n,H).
Proof. Let A ∈ Sp(n), then by Lemma 1.14 we can write A = Bnn(q)B for some q ∈ H∗ and
B ∈ SL(n,H), therefore

1 = A∗A = B∗Bnn(q̄)Bnn(q)B = B∗Bnn(|q|2)B

which implies Bnn(|q|2) = (B∗)−1B−1 ∈ SL(n,H) and by applying Lemma 1.18 we deduce |q| = 1 and
thus, from Proposition 1.4 and again Lemma 1.18 we have Bnn(q) ∈ SL(n,H) from which we conclude
A ∈ SL(n,H).

Remark 1.24. More in general one could define hyperhermitian, skew-hyperhermitian and hyperunitary
matrices with respect to any non-degenerate hyperhermitian form g(·, ·). For example a matrix H is
hyperhermitian with respect to g if g(Hp, q) = g(p,Hq). If G is the hyperhermitian matrix associated
to g, this is equivalent to the condition H∗ = GHG−1.

Representations.

In order to overcome some difficulties of working with quaternionic matrices, it will be extremely
useful in the future to have a description of them in terms of complex or real matrices. We start by
representing complex matrices with real matrices as a preliminary argument, and then move on to
present the description of quaternionic matrices.

As usual, there is a vector space isomorphism α : Cn → R2n given by

α : (z1, . . . , zn) 7→ (x1, . . . , xn, y1, . . . , yn) , where zr = xr + yri , r = 1, . . . , n .

Any matrix Z ∈ Cn,n can be seen as a complex endomorphism of Cn, which in particular is R-linear.
Under the isomorphism α, this defines a real endomorphism of R2n represented by a matrix α ◦Z ◦α−1.
By a slight abuse of notation we still denote the map that sends Z to α ◦ Z ◦ α−1 with α:

Cn Z //

α
��

Cn

α
��

R2n α(Z) // R2n

12



1.1. Basic theory

Proposition 1.25. α : Cn,n → R2n,2n is an injective morphism of real algebras. Furthermore, if
Z = X + Y i ∈ Cn,n with X, Y ∈ Rn,n, then in the standard bases

α(Z) =
(
X −Y
Y X

)
.

Proof. It is straightforward to check that α is a morphism of real algebras and injectivity is obvious.
The explicit form of α(Z) follows directly from the definition looking at the image of the standard
basis. For example if e1 = (1, 0 . . . , 0) ∈ R2n then α−1(e1) = (1, 0 . . . , 0) ∈ Cn and thus Zα−1(e1) is
the first column of Z = X + Y i so that applying α we obtain the first column of α(Z).

The same approach can be pursued on Hn seen as a complex vector space with right scalar
multiplication, i.e. a scalar a ∈ C acts on z + wj ∈ Hn with the right product: (z + wj)a = za+ wāj.
In this case we consider the isomorphism

β : (q1, . . . , qn) 7→ (z1, . . . , zn, w̄1, . . . , w̄n) , where qr = zr + wrj , r = 1, . . . , n .

One could also consider the composition α ◦ β as an isomorphism of real vector spaces between Hn
and R4n, but we believe it is more natural to choose the following one

γ : (q1, . . . , qn) 7→ (x1
0, . . . , x

n
0 , x

1
1, . . . , x

n
1 , x

1
2, . . . , x

n
2 , x

1
3, . . . , x

n
3 ) ,

where qr = xr0 + xr1i+ xr2j + xr3k , r = 1, . . . , n .

In the same spirit of Proposition 1.25 we obtain:

Proposition 1.26. The induced maps β : Hn,n → C2n,2n and γ : Hn,n → R4n,4n are injective mor-
phisms of real algebras. Furthermore, if M = Z +Wj = A+Bi+ Cj +Dk ∈ Hn,n with Z, W ∈ Cn,n
and A, B, C, D ∈ Rn,n, then in the standard basis

β(M) =
(
Z −W
W̄ Z̄

)
, γ(M) =


A −B −C −D
B A −D C
C D A −B
D −C B A

 .

Remark 1.27. Here, we have fixed some choices. For instance we could have taken into account the
isomorphism Hn → C2n, (q1, . . . , qn) 7→ (z1, . . . , zn,−w̄1, . . . ,−w̄n) instead of the one we chose. One
can easily check that there are 2 possible choices for α, 2 choices for β (if fixing right scalar multiplication
of C on Hn) and 48 choices for γ if we want the image of these morphisms of real algebras to be block
matrices corresponding to the writings Z = X +Y i ∈ Cn,n, M = Z +Wj = A+Bi+Cj+Dk ∈ Hn,n
(cf. [121]).

The isomorphism α : Cn → R2n induces on R2n a structure of a complex vector space, where
multiplication by i is given by multiplication with the matrix I := α(i1n) =

( 0 −1n
1n 0

)
. In the same

way β : Hn → C2n endows C2n with a structure of a right H-module, where the action of j is given
by the map β ◦ j ◦ β−1, which is easily checked to be equal to the map J (z) := I z̄, where z ∈ C2n.
Finally, γ : Hn,n → R4n,4n induces on R4n the H-bimodule structure with action of i, j, k given by left
or right multiplication with I0 := γ(i1n), J0 := γ(j1n), K0 := γ(k1n), i.e.

I0 =


0 −1n 0 0
1n 0 0 0
0 0 0 −1n
0 0 1n 0

 , J0 =


0 0 −1n 0
0 0 0 1n

1n 0 0 0
0 −1n 0 0

 , K0 =


0 0 0 −1n
0 0 −1n 0
0 1n 0 0
1n 0 0 0

 .

With this additional structures, we can characterize the images of α, β and γ. Indeed, for example,
a matrix A ∈ R2n,2n corresponds to a C-linear endomorphism of R2n if and only if it commutes with
the action of i on R2n. Reasoning similarly for C2n and R4n as H-modules, we reach the following

13
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description:

α(Cn,n) =
{
A ∈ R2n,2n | IA = AI

}
,

β(Hn,n) =
{
A ∈ C2n,2n | JA = AJ

}
=
{
A ∈ C2n,2n | IĀ = AI

}
,

γ(Hn,n) =
{
A ∈ R4n,4n | I0A = AI0 , J0A = AJ0 , K0A = AK0

}
.

Lemma 1.28. For a matrix M ∈ Hn,n the following are equivalent:

(i) M is invertible (resp. hyperhermitian, hyperunitary, positive (semi)definite);
(ii) β(M) is invertible (resp. Hermitian, unitary, positive (semi)definite);
(iii) γ(M) is invertible (resp. symmetric, orthogonal, positive (semi)definite).

Proof. The lemma follows immediately from the relations β(M−1) = β(M)−1, γ(M−1) = γ(M)−1,
β(M∗) = (β(M))∗, γ(M∗) = t(γ(M)).

Consequently, we can identify GL(n,H), SL(n,H) and Sp(n) with their images under β or γ, thus
uncovering their Lie group structures.

Spectral Theory.

When discussing spectral theory, already from the outset one is compelled to look at either left or right
eigenvalues and no clear relation between the two sides is available. Looking at Hn as a right H-module
and assuming linear operators act on the left, the natural notion to take into account is that of a right
eigenvalue, on which we shall focus. With this choice, the theory is almost entirely understood and it
has a fairly nice description which goes back to Jacobson [187], Lee [206] and Brenner [53] (an earlier
appearance of the Spectral Theorem for normal endomorphisms on quaternionic Hilbert spaces is in
Teichmüller’s paper [283]). On the other hand, as of today, left eigenvalues are still quite obscure and
their theory is not fully explored. Our primary source for this treatment is the excellent survey of
Farenick-Pidkowich [122].

Definition 1.29. Let A ∈ Hn,n be a quaternionic matrix. A non-zero vector q ∈ Hn is called a right
eigenvector with right eigenvalue λ ∈ H if it satisfies

Aq = qλ .

Remark 1.30. Left eigenvalues, i.e. quaternions λ ∈ H for which the equation Aq = λq admits a
non-zero solution q ∈ Hn, are less easy to investigate. The fact that left eigenvalues can even be
taken into account is solely a consequence of the fact that Hn is a bimodule. Besides the algebraic
inconsistency of considering left eigenvalues on a right module, some issues arising in quaternionic
quantum mechanics have been pointed out in [98]. Moreover, finding and studying left eigenvalues is
more subtle then right ones. After a wrong affirmation by Lee in a footnote of [206] that left eigenvalues
do not exist, Cohn [94, p. 217] was the first to raise the question whether or not they always occur. A
positive answer came from Wood [326] with a topological proof (see also [330, Theorem 5.3]).

For further information on the left eigenvalue problem we suggest the reader to consult [123, 181,
183, 214, 219, 262, 330, 331].

The lack of commutativity implies that whenever a matrix has a non-real right eigenvalue it actually
allows an infinite family of them. Suppose q ∈ Hn satisfies Aq = qλ then for every p ∈ H∗ we have

Aqp = qλp = qp(p−1λp)

showing that p−1λp is another right eigenvalue. From this point of view it makes sense to consider the
conjugacy class θ(λ) of an eigenvalue λ rather than the eigenvalue itself.

From Lemma 1.3 it follows that there is a one-to-one correspondence between conjugacy classes of
quaternions and complex numbers with non-negative imaginary part, which we denote by C+.
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Proposition 1.31. Let A ∈ Hn,n. Then λ ∈ H is such that θ(λ) is a conjugacy class of right
eigenvalues for A if and only if µ is an eigenvalue for β(A), where µ ∈ θ(λ) ∩ C+. Moreover, if λ is
non-real then also µ̄ is an eigenvalue of β(A), while if λ is real it has even geometric multiplicity as an
eigenvalue of β(A).

Proof. Suppose λ is a right eigenvalue for A, then it follows from the discussion above that Aq = qλ
if and only if Aq′ = q′µ for some q, q′ ∈ H. Via the isomorphism β : Hn → C2n (and the induced
monomorphism β : Hn,n → C2n,2n) this is equivalent to β(A)β(q′) = β(q′)µ. If λ is non-real we might
replace µ with µ̄ to show that this is also an eigenvalue of β(A). Finally if λ = µ = µ̄ is real call V the
eigenspace of β(A) corresponding to λ. Define a map σ : V → C2n as follows. Any eigenvector in V
is of the form β(q) = (z, w̄) for q = z + wj ∈ Hn, where z, w ∈ Cn. Set σ(β(q)) := (w,−z̄). Then it
is easily checked that σ(V ) ⊆ V and σ(β(q)) is C-linearly independent from β(q). The fact that σ is
C-antilinear and σ2 = − IdV automatically implies that V is even-dimensional.

Theorem 1.32. Every A ∈ Hn,n has at most n distinct conjugacy classes of right eigenvalues and
precisely n of them if counted with multiplicities.

Proof. We know that β(A) has at most 2n distinct eigenvalues, furthermore, each conjugate pair of
complex eigenvalues of β(A) and each real eigenvalue identifies a conjugacy class of right eigenvalues
of A by Proposition 1.31. But again, non-real eigenvalues of β(A) always appear in conjugate pairs,
while real eigenvalues always have even geometric multiplicity. Therefore the distinct conjugacy classes
of right eigenvalues of A are at most half of the distinct eigenvalues of β(A).

The existence of a right eigenvalue can also be achieved via topological methods as done by Baker
[26] who was inspired by the analogue proof of Wood for left eigenvalues (see Remark 1.30).

Now, we shall proceed to establish the Spectral Theorem. The first step in this direction is
represented by Schur’s triangularization result.

Proposition 1.33 (Schur’s triangularization). Let A ∈ Hn,n, then there exist T, U ∈ Hn,n with T
upper triangular and U ∈ Sp(n), such that

A = U∗TU .

Furthermore, each entry on the diagonal of T can be chosen to be the unique element in C+ of a
conjugacy class of eigenvalues for A.

Proof. The result is obvious for n = 1. We assume that the proposition is true for n− 1 and we prove
it for n.

Let λ1 ∈ C+ be a right eigenvalue of A and choose a corresponding eigenvector q1 ∈ Hn such that
|q1| = 1. With the Gram-Schimdt process, extend this to a hyperunitary basis q1, . . . , qn of Hn. The
matrix V with qi as its ith column is then unitary. By construction we have that the first column
of V ∗AV is (λ1, 0, . . . , 0). Let B ∈ Hn−1,n−1 be the matrix obtained from V ∗AV removing the first
row and the first column. Then by the inductive hypothesis there exist W ∈ Sp(n − 1) such that
S = W ∗BW is upper triangular with diagonal entries in C+. Set U = V ( 1 0

0 W ) ∈ Sp(n), then clearly

U∗AU =
(

1 0
0 W

)∗
V ∗AV

(
1 0
0 W

)
=
(

1 0
0 W ∗

)(
λ1 ∗
0 B

)(
1 0
0 W

)
=
(
λ1 ∗
0 S

)
which has the desired form.

Recall that a matrix A is normal if it commutes with its conjugate transpose. Hyperhermitian
and hyperunitary matrices are instances of normal matrices.

Theorem 1.34 (Spectral Theorem). If A ∈ Hn,n is normal, then there exist U ∈ Sp(n) such that
D := U∗AU is diagonal with entries in C+ and λ ∈ H is a right eigenvalue of A if and only if it
belongs to the conjugacy class of some diagonal element of D. Furthermore

1. if A is hyperhermitian then D has real entries;
2. if A is hyperunitary then D has complex entries with unit norm.
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Proof. By Proposition 1.33 there exists U ∈ Sp(n) such that T = U∗AU is upper triangular with
diagonal entries in C+. Since we assumed A to be normal, so is T = (tij), implying the identity

k∑
i=1
|tik|2 =

n∑
j=k
|tkj |2 .

for every k = 1, . . . , n. Starting from k = 1 this implies |t1j |2 = 0 for all j > 1, then for k = 2 the
equation implies |t2j |2 = 0 for all j > 2. Repeating this argument for all k’s shows that T is actually
diagonal. This concludes the first part of the theorem.

If λ ∈ H is a right eigenvalue for A and q ∈ Hn is one of the corresponding eigenvectors, then
DU∗q = U∗Aq = U∗qλ, i.e. λ is a right eigenvalue for D with eigenvector p = U∗q. Let µ1, . . . , µn be
the diagonal elements of D and write p = (p1, . . . , pn), then there exists at least one index i for which
pi 6= 0, implying µipi = piλ and thus µi = piλp

−1
i ∈ θ(λ).

Conversely, if µ ∈ C+ is a diagonal element of D, which we may assume to be in the (1, 1)-entry,
then, setting q = (1, 0, . . . , 0), we have Dq = qµ. In terms of A such equation reads AUq = Uqµ so
that µ is a right eigenvalue for A.

Finally, the remaining part of the theorem follows from the observation that whenever A is
hyperhermitian or hyperunitary, so is D.

As an interesting application we prove that two hyperhermitian matrices, one of which is positive
definite, can always be simultaneously diagonalized via an invertible matrix.

Proposition 1.35. Let H1, H2 ∈ Hyp(n) with H1 positive definite. Then there exists P ∈ GL(n,H)
such that P ∗H1P is the identity matrix and P ∗H2P is diagonal.

Proof. From the Law of Inertia (Proposition 1.21) there exists a matrix Q1 ∈ GL(n,H) such that
Q∗1H1Q1 is the identity. SinceQ∗1H2Q1 is hyperhermitian it can be diagonalized via a matrixQ2 ∈ Sp(n).
Setting P = Q1Q2 ∈ GL(n,H) we have P ∗H1P = 1 and P ∗H2P = D, where D is diagonal.

For further canonical forms and decompositions, such as the Jordan normal form or the polar
decomposition see [79, 122, 163, 180, 182, 190, 216, 250, 324, 325, 332].

1.2 Moore determinant.
The naive approach to define the determinant of a quaternionic matrix simply adopting the usual
formula for matrices with entries in a field is patently flawed. The formula we are referring to is usually
called Laplace formula and, when commutativity does not hold, the application of the formula on
different rows or columns leads to different results.

Nonetheless, this was the road taken up by Cayley [75] who decided to define the determinant by
expanding the Laplace formula along the first column. Let us explain this on a sample 2× 2 matrix.
The definition of Cayley is simply

Cdet
(
a b
c d

)
:= ad− cb .

Cayley observes that if the rows of A are equal the determinant is zero, but if the columns are, in
general the determinant need not vanish:

Cdet
(
a b
a b

)
:= ab− ab = 0 , Cdet

(
a a
b b

)
:= ab− ba .

If we try to ignore this warning we will be forced to face more compelling reasons to reject such an
approach. For instance, one of the most important properties about usual determinants is that they
vanish exactly on the subset of singular matrices. The Cayley determinant spectacularly fails to do
so; for example the matrix

(
k j
i 1
)
is easily checked to be invertible but with zero Cayley determinant,

whereas its transpose is singular but has non-zero Cayley determinant.
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1.2. Moore determinant.

Two quaternionic determinants.

From this discussion is apparent that one needs a cleverer definition of the determinant. Pursuing an
axiomatic approach, by singling out some desirable properties of the usual determinant one can indeed
have some partially satisfactory notions of determinant. Since we are not particularly interested in
this path we refer the reader to Aslaksen [23] for a discussion of this axiomatic perspective. Here, we
limit ourselves to briefly present two possible outcomes of this method.

The first determinant function we present was introduced by Dieudonné in 1943. Dieudonné [102]
proved that for any division ring R there is an isomorphism

GL(n,R)�[GL(n,R),GL(n,R)] ∼=
R∗�[R∗, R∗] .

This isomorphism induces a map detD : GL(n,R)→ R∗/[R∗, R∗] defined by setting

detD(A) := detD(Bnn(qA)BA) = qA[R∗, R∗] ,

where we used Lemma 1.14 to express A as a product Bnn(qA)BA for some BA ∈ [GL(n,R),GL(n,R)].
Dieudonné shows that this is a well defined homomorphism with the commutator subgroup as its
kernel. The map is easily extended to non-invertible matrices by adjoining the zero to R∗/[R∗, R∗]
and declaring that detD vanishes on every singular matrix.

Even though detD becomes exactly the usual determinant when R = K is a field, the reader might
find this extension of the determinant unsatisfactory, as it does not take values in R itself. However, in
the special case of quaternions, due to Proposition 1.4 we see that H∗/[H∗,H∗] is isomorphic to R+,
the set of positive real numbers, via the map η : q[H∗,H∗]→ |q| (actually any power of the norm here
will do, yielding a different determinant function). The (quaternionic) Dieudonné determinant is
the map Ddet: Hn,n → [0,+∞) defined as

Ddet(A) := η(detD(A)) .

The Dieudonné determinant has been studied quite extensively in the literature. We suggest the
interested reader to consult [9, 22, 23, 54, 95, 101, 213, 244] and the references cited therein (be aware
that [9, 54] contain some wrong statements about transpose matrices as pointed out in [213]).

Earlier than Dieudonné, Study had introduced in 1920 [274] another determinant that takes
advantage of the representation of quaternionic matrices as complex ones described in section 1.1.2.
The Study determinant is the map Sdet : Hn,n → [0,+∞) defined as

Sdet(M) := det(β(M)) .

The fact that the Study determinant only takes non-negative real values is a consequence of the fact
that β(M) is similar to its conjugate, indeed we have seen that β(Hn,n) = {A ∈ C2n,2n | Ā = I−1AI},
where I =

( 0 −1n
1n 0

)
. This means that if λ is an eigenvalue of β(M) then also λ̄ is such.

What happens if we use the representation γ : Hn,n → R4n,4n instead of β? By switching the
middle block of rows and columns and then exchanging signs to the last block of rows and columns we
observe that

det(γ(M)) = det


A −B −C −D
B A −D C
C D A −B
D −C B A

 = det


A −C −B D
C A D B
B −D A −C
−D −B C A

 = det(α(β(M)))

but since, for every Z = X + Y i ∈ Cn,n we have

det(α(Z)) = det
(
X −Y
Y X

)
= det

(
X + Y i Xi− Y
Y X

)
= det

(
Z 0
Y Z̄

)
= det(Z) det(Z̄) = |det(Z)|2 ,

for Z = β(M) we get
det(γ(M)) = |det(β(M))|2 = Sdet(M)2 .
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This observation is due to Bagazgoitia and Lewis [24, 209].

Both determinants are multiplicative and they vanish if and only if evaluated on singular matrices.
They actually are one the square of the other, which follows from the following interesting description
in terms of the eigenvalues:

Lemma 1.36. For every M ∈ Hn,n we have

Ddet(M) = |λ1||λ2| · · · |λn| , (1.8)
Sdet(M) = |λ1|2|λ2|2 · · · |λn|2 , (1.9)

where θ(λi) are all the conjugacy classes of eigenvalues of M , with multiplicity.

Proof. Observe that all elements within a given conjugacy class have the same norm, therefore the
expressions (1.8), (1.9) do not depend on the choice of the λi’s but only on their conjugacy classes
θ(λi).

Formula (1.9) follows immediately from Proposition 1.31. Let us prove (1.8). Multiplying any
row on the left or any column on the right by q ∈ H has the effect of multiplying the Dieudonné
determinant by |q| this is because Ddet(Bii(q)) = Ddet(Bnn(q)) = |q| as it is easily checked. As a
consequence, the Dieudonné determinant of any diagonal matrix is the product of the norms of the
elements on the diagonal and this fact immediately extends to upper (or lower) triangular matrices
because Ddet(Bij(q)) = 1 for i 6= j. Using Schur’s triangularization (Proposition 1.33), multiplicativity
of Ddet and the fact that Ddet(Sp(n)) = 1 we achieve (1.8).

Definition of Moore determinant.

If we are willing to restrict the domain of definition of the determinant function there is a really
nice candidate, especially for geometric applications. Moore [229] showed that on the space of
hyperhermitian matrices Hyp(n) the definition given by Cayley makes sense, if we specify a certain
ordering of the factors in the formula. This kind of determinant is the one we are interested in for
future applications, therefore, we give here a detailed presentation.

Fix H = (hij) ∈ Hn,n. For any cycle c = (c1 · · · ck) ∈ Sn written so that c1 > cr for all r > 1,
define

Hc := H(c1 ··· ck) := hc1c2hc2c3 · · ·hck−1ckhckc1 .

Now, any permutation σ ∈ Sn can be written uniquely as a product of s(σ) disjoint cycles

σ = σ1σ2 · · ·σs(σ) , σr =
(
σr1 σr2 · · · σrlr

)
, (r = 1, . . . , s(σ))

where the factors are arranged so that σr1 > σrt for all t > 1 and σ1
1 > σ2

1 > · · · > σ
s(σ)
1 .

Definition 1.37. The Moore determinant of a quaternionic matrix H ∈ Hn,n is defined as the sum

det(H) :=
∑
σ∈Sn

|σ|Hσ1Hσ2 · · ·Hσs(σ) ,

where |σ| = |σ1||σ2| · · · |σs(σ)| = (−1)l1−1(−1)l2−1 · · · (−1)ls(σ)−1 = (−1)n−s(σ) denotes the sign of the
permutation σ.

Observe that, whenever H ∈ Cn,n its entries commute and the Moore determinant coincides with
the usual determinant, this justifies our use of the notation det for the Moore determinant.

It will be useful to rewrite the Moore determinant in a slightly different form. Consider the following
set of ordered partitions of {1, . . . , n}

P(n) :=
{

(X1, . . . , Xs) | Xk 6= ∅ ,
s∐

k=1
Xk = {1, . . . , n} , maxX1 > maxX2 > · · · > maxXs

}
,
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1.2. Moore determinant.

and, given any subset X ⊆ {1, . . . , n}, let us denote C(X) the set of all cycles of elements in X with
the condition to be written so that the first element in the cycle is the biggest. In other words

c = (c1 · · · cl) ∈ C(X) ⇐⇒ X = {c1, . . . , cl} , c1 = maxX . (1.10)

With this piece of notation we can write

det(H) =
∑

(X1,...,Xs)∈P(n)

∑
σ=σ1σ2···σs∈Sn

σk∈C(Xk)

|σ|Hσ1Hσ2 · · ·Hσs

=
∑

(X1,...,Xs)∈P(n)

 ∑
σ1∈C(X1)

|σ1|Hσ1

 ∑
σ2∈C(X2)

|σ2|Hσ2

 · · ·
 ∑
σs∈C(Xs)

|σs|Hσs

 ,

and thus, setting HXk :=
∑
σk∈C(Xk) |σk|Hσk = (−1)|Xk|−1∑

σk∈C(Xk)Hσk , we have

det(H) =
∑

(X1,...,Xs)∈P(n)

HX1HX2 · · ·HXs . (1.11)

Lemma 1.38. If H ∈ Hyp(n) then det(H) ∈ R.

Proof. From (1.11) it is enough to prove that for any fixed ∅ 6= X ⊆ {1, . . . , n} the sum HX is real.
This is a consequence of the observation that for any cycle c = (c1 · · · cl) we have

Hc = hc1c2hc2c3 · · ·hclc1 = h̄clc1 h̄cl−1cl · · · h̄c1c2 = hc1ckhclcl−1 · · ·hc2c1 = H(c1 cl cl−1 ··· c2) .

Indeed, if l = 1, 2 then Hc is real, while if l > 2, Hc is another element in the sum HX , therefore

HX = 1
2
∑

c∈C(X)

|c|
(
Hc +Hc

)
=

∑
c∈C(X)

|c|Re(Hc)

is real.

Remark 1.39. In view of this lemma, whenever we consider the Moore determinant of a hyperhermitian
matrix, which we always will from now on, some of the restrictions imposed on the definition can be
modified without affecting the determinant. For instance, when computing HX for ∅ 6= X ⊆ {1, . . . , n}
we imposed in (1.10) that the first element of the cycle be the maximum of X, however, this condition
can now be dropped and all we need is to pair the cycles as in the lemma above. Indeed for every
c = (c1 · · · cl)

Re(Hc) = Re
(
H(c1 c2 ··· cl)

)
= Re

(
H(c2 c3 ··· cl c1)

)
= · · · = Re

(
H(cl c1 c2 ··· cl−1)

)
.

In general, it will be useful in the future to choose suitably the first element of the cycles, say c1, then
we can clearly also compute HX as follows

HX = (−1)l−1
∑

τ∈S(X\{c1})

H(c1 τ(c2) τ(c3) ··· τ(cl)) ,

where S(Y ) denotes the set of permutations of elements in the set Y .

Properties and axiomatic description.

The Moore determinant also allows an axiomatic definition:

Definition 1.40. A function d : Hyp(n)→ R is called a hyperhermitian determinant if it satisfies
the following axioms:
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• Axiom 1. If H ′ ∈ Hyp(n) is obtained from H ∈ Hyp(n) by multiplying the ith row on the left
by q ∈ H and the ith column on the right by q̄ (i.e. H ′ = Bii(q)HBii(q̄)), then d(H ′) = |q|2d(H).

• Axiom 2. If H ′ ∈ Hyp(n) is obtained from H ∈ Hyp(n) by adding the jth row to the ith and
then the jth column to the ith for i 6= j (i.e. H ′ = Bij(1)HBji(1)), then d(H ′) = d(H).

• Axiom 3. d
(
1k 0
0 −1n−k

)
= (−1)n−k.

We shall prove in the following that the Moore determinant is the unique hyperhermitian determinant.
Along the way we establish some other interesting properties.

Proposition 1.41. The Moore determinant is a hyperhermitian determinant.

Proof. We start by proving that it satisfies axiom 1. Fix a matrix H ∈ Hyp(n) and an index
i ∈ {1, . . . , n}. For every partition (X1, . . . , Xs) ∈ P(n) there is only one set Xk containing i. Then,
H ′Xr = HXr for every r 6= k, where H ′ = Bii(q)HBii(q̄). It is therefore enough to prove that
H ′Xk = |q|2HXk . In view of Remark 1.39, for all cycles c = (c1 · · · cl) ∈ C(Xk) we may assume c1 = i,
so that we have

H ′X =
∑

c∈C(Xk)

|c|h′ic2h
′
c2c3 · · ·h

′
cli

=
∑

c∈C(Xk)

|c| q̄hic2hc2c3 · · ·hcliq = q̄HXkq = |q|2HXk .

Now we prove that axiom 2 is satisfies. Let H ′ = Bij(1)HBji(1) for i 6= j. For every partition
(X1, . . . , Xs) ∈ P(n), since the terms H ′Xk are all real, up to renaming the sets forming the partition
we may always assume without loss of generality that i ∈ X1. Observe that H ′Xk = HXk for every
k > 1. Similarly, whenever j /∈ X1 we may assume j ∈ X2. Then we split the sum as follows∑

(X1,...,Xs)∈P(n)

H ′X1
H ′X2

· · ·H ′Xs =
∑

(X1,...,Xs)∈P(n)
X13i,j

H ′X1
HX2 · · ·HXs +

∑
(Y1,...,Yr)∈P(n)
Y13i, Y23j

H ′Y1
HY2 · · ·HYr

and, changing names of the sets in the partitions involved in the second sum on the right-hand side,
we regroup it as

∑
(X1,...,Xs)∈P(n)

H ′X1
H ′X2

· · ·H ′Xs =
∑

(X1,...,Xs)∈P(n)
X13i,j

H ′X1
+

∑
Y 3i, Z3j
Y ∪Z=X1

H ′YHZ

HX2 · · ·HXs . (1.12)

Now, fixing the partition, suppose X = X1 = {i, j, a1, . . . , ar} possibly with r = 0. Fix a permutation
τ ∈ S(X \ {i, j}) and consider the following quantities

Ap,τ : = H ′(i τ(a1) τ(a2) ··· τ(ap) j τ(ap+1) ··· τ(ar)) = h′iτ(a1)h
′
τ(a1)τ(a2) · · ·h

′
τ(ap)jh

′
jτ(ap+1) · · ·h

′
τ(ar)i

=
(
hiτ(a1) + hjτ(a1)

)
hτ(a1)τ(a2) · · ·hτ(ap)jhjτ(ap+1) · · ·hτ(ar−1)τ(ar)

(
hτ(ar)i + hτ(ar)j

)
,

Bp,τ : = H ′(i τ(ap+1) τ(ap+2) ··· τ(ar) j τ(a1) ··· τ(ap))

=
(
hiτ(ap+1) + hjτ(ap+1)

)
hτ(ap+1)τ(ap+2) · · ·hτ(ar)jhjτ(a1) · · ·hτ(ap−1)τ(ap)

(
hτ(ap)i + hτ(ap)j

)
,

Cp,τ : = H ′(i τ(a1) τ(a2) ··· τ(ap))H(j τ(ap+1) τ(ap+2) ··· τ(ar))

=
(
hiτ(a1) + hjτ(a1)

)
hτ(a1)τ(a2) · · ·hτ(ap−1)τ(ap)

(
hτ(ap)i + hτ(ap)j

)
hjτ(ap+1) · · ·hτ(ar)j ,

Dp,τ : = H ′(i τ(ap+1) τ(ap+2) ··· τ(ar))H(j τ(a1) τ(a2) ··· τ(ap))

=
(
hiτ(ap+1) + hjτ(ap+1)

)
hτ(ap+1)τ(ap+2) · · ·hτ(ar−1)τ(ar)

(
hτ(ar)i + hτ(ar)j

)
hjτ(a1) · · ·hτ(ap)j .

Observe that

Ap,τ +Bp,τ −Cp,τ −Dp,τ = hiτ(a1) · · ·hτ(ap)jhjτ(ap+1) · · ·hτ(ar)i+hiτ(ap+1) · · ·hτ(ar)jhjτ(a1) · · ·hτ(ap)i ,

therefore, multiplying by (−1)r−1, summing over p ∈ {0, 1, . . . , r} and τ ∈ S(X \ {i, j}) and using
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again Remark 1.39 we obtain

2

H ′X +
∑

Y 3i, Z3j
Y ∪Z=X

H ′YHZ

 = (−1)r−1
∑

τ∈S(X\{i,j})

r∑
p=0

(Ap,τ +Bp,τ − Cp,τ −Dp,τ ) = 2HX

which, substituted in (1.12) allows us to conclude.
The fact that axiom 3 is satisfied is obvious.

Proposition 1.42. Let d : Hyp(n)→ R be a hyperhermitian determinant then for every B ∈ SL(n,H)
and H ∈ Hyp(n) we have d(B∗HB) = d(H).

Proof. Since SL(n,H) is generated by elementary matrices it is enough to prove the proposition for
them. In other words we need to check that whenever H ′ ∈ Hyp(n) is obtained from H ∈ Hyp(n) by
adding to the ith row the jth multiplied on the left by q ∈ H and adding to the ith column the jth

multiplied on the right by q̄, then d(H ′) = d(H). This follows from axioms 1 and 2, indeed, H ′ is
obtained from H by performing the following operations:

• Multiply the ith row on the left by q−1 and the ith column on the right by q̄−1.
• Add the jth row to the ith and then the jth column to the ith.
• Multiply the ith row on the left by q and the ith column on the right by q̄.

In terms of the determinant the first operation rescales it by a factor |q−1|2 = |q|−2, the second does
not affect it and the third rescales it by a factor |q|2.

As a consequence, simultaneous switching of two rows and the corresponding columns does not
affect the value of a hyperhermitian determinant. This is because the matrices Sij , encoding the
operation of switching rows or columns according to the side of the multiplication, lie in SL(n,H) (and
actually in Sp(n)).

Corollary 1.43. The Moore determinant is the unique hyperhermitian determinant and for every
H ∈ Hyp(n)

det(H) = λ1λ2 · · ·λn ,

where the λi’s are the eigenvalues of H.

Proof. Let d be a hyperhermitian determinant and H ∈ Hyp(n). It follows from the Spectral Theorem
(Theorem 1.34) that there exists P ∈ Sp(n) such that P ∗HP is diagonal. Let λ1, . . . , λn be the diagonal
entries, then by Proposition 1.42 and axioms 1 and 3 we have d(H) = d(S∗HS) = λ1 · · ·λn. Therefore
the hyperhermitian determinant is unique and necessarily equal to the Moore determinant.

Corollary 1.44. For every M ∈ Hn,n and H ∈ Hyp(n) we have

|det(H)| = Ddet(H) , Sdet(M) = Ddet(M)2 , det(M∗M) = Sdet(M) .

Proof. The first two formulas are an immediate consequence of Proposition 1.36. To prove the third
observe that Ddet(M∗) = Ddet(M) and that M∗M is positive semi-definite, hence det(M∗M) ≥ 0
(see Proposition 1.45), therefore

det(M∗M) = |det(M∗M)| = Ddet(M∗M) = Ddet(M∗)Ddet(M) = Ddet(M)2 = Sdet(M) .

The identity between Moore and Study determinants can be used to extend the Study determinant
to non-square matrices M ∈ Hn,m by setting Sdet(M) := det(M∗M). This is sometimes called the
double determinant (see [330] and references therein).

Further references discussing properties of the Moore determinant and its relations with other
determinants are [9, 78, 188, 230, 243, 297, 298, 299]. Finally, we mention that the Moore determinant
also admits a definition in terms of the Pfaffian (see [115, 116, 271]).
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Eigenvalues of hyperhermitian matrices.

Proposition 1.45. A matrix H ∈ Hyp(n) is positive semidefinite (resp. definite) f and only if all its
eigenvalues are non-negative (resp. positive).

Proof. The proposition follows from Lemma 1.28, Proposition 1.31 and the analogue result for complex
matrices, however, we shall give here a direct proof.

If H is positive semidefinite (resp. definite) and λ ∈ R is one of its eigenvalues with eigenvector
q ∈ Hn, then λ‖q‖2 = 〈q, qλ〉 = 〈q,Hq〉 ≥ 0 (resp. > 0) implying λ ≥ 0 (resp. λ > 0).

Conversely, suppose all eigenvalues λ1, . . . , λn of H are non-negative (resp. positive). Let U ∈ Sp(n)
be such that D = U∗HU is diagonal with λ1, . . . , λn as its entries. For a non-zero q ∈ Hn let
p = U∗q = U−1q, then we have 〈q,Hq〉 = 〈Up,HUp〉 = 〈p, U∗HUp〉 = 〈p,Dp〉 =

∑n
k=1 λk|pk|2 ≥ 0

(resp. > 0), where p = (p1, . . . , pn).

Sometimes, we shall write H > 0 and H ≥ 0 to mean that the matrix H ∈ Hyp(n) is positive
definite and positive semidefinite respectively. On the set of hyperhermitian matrices we can thus
define a partial order relation by setting

H1 ≥ H2 ⇐⇒ H1 −H2 ≥ 0 ,

from Lemma 1.28 it is clear that H1 ≥ H2 if and only if β(H1) ≥ β(H2) if and only if γ(H1) ≥ γ(H2).
The inequality H1 ≥ H2 imposes the following constraint in terms of the eigenvalues: denote λi1 ≥
λi2 ≥ · · · ≥ λin the eigenvalues of Hi for i = 1, 2 then

λ1
r ≥ λ2

r , for all r = 1, . . . , n . (1.13)

Be aware that the converse does not hold, for instance H1 = ( 4 0
0 2 ) and H2 = ( 1 0

0 3 ) satisfy the inequality
(1.13) but it is not true that H1 −H2 ≥ 0.

The sum of the eigenvalues of a hyperhermitian matrices is equal to its trace. This is evidently
true for real diagonal matrices. Given any hyperhermitian matrix H ∈ Hyp(n), from the Spectral
Theorem there exists a matrix P ∈ Sp(n) such that D = P ∗HP = P−1HP is real diagonal with the
eigenvalues λ1, . . . , λn on the diagonal. However, for matrices over the quaternions the usual identity
tr(AB) = tr(BA) is no longer true in general. On the other side, if we take real parts it does become
true, as a consequence of the fact that Re(pq) = Re(qp) for every p, q ∈ H. Therefore

tr(H) = Re tr(H) = Re tr(PDP−1) = Re tr(DP−1P ) = tr(D) =
n∑
i=1

λi .

In particular the eigenvalues and the diagonal entries of a hyperhermitian matrix are strictly related.
Wondering whether or not it is possible to construct a hyperhermitian matrix with arbitrary eigenvalues
and diagonal, one is led to the following:

Proposition 1.46 (Schur-Horn Theorem). Let µ = (µ1, . . . , µn), λ = (λ1, . . . , λn) ∈ Rn be such that
µ1 ≥ · · · ≥ µn and λ1 ≥ · · · ≥ λn. There exists a hyperhermitian matrix B with diagonal µ and
eigenvalues λ if and only if

j∑
i=1

µi ≤
j∑
i=1

λi , for all j = 1, . . . , n and
n∑
i=1

µi =
n∑
i=1

λi . (1.14)

Proof. A hyperhermitian matrix B satisfies the assumptions of the lemma if and only if there exists
C ∈ Sp(n) such that B = C∗DC where D is the diagonal matrix with diagonal λ. In particular µ is
the diagonal of B if and only if µ = Tλ where T = (|crs|2). Since C ∈ Sp(n), the matrix T is doubly
stochastic. By the Birkhoff theorem [40] µ = Tλ, where T is doubly stochastic, if and only if T lies in
the convex hull of the set of all permutation matrices. In other words B exists if and only if µ lies in
the convex hull of the vectors obtained by permuting the entries of λ, which is known to be equivalent
to (1.14) (see e.g. [164, Theorem 46]).
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Differentiating determinants.

We shall prove a Jacobi’s formula for the Study determinant which follows from the usual Jacobi’s
formula for the complex determinant. Let A ∈ GL(n,H) and B ∈ Hn,n, then

Sdet∗|A(B) = d

dt
Sdet(A+ tB)

∣∣
t=0 = d

dt
det(β(A+ tB))

∣∣
t=0 = det(β(A))tr

(
β(A)−1β(B)

)
= Sdet(A)tr

(
β
(
A−1B

))
= 2 Sdet(A)Re tr

(
A−1B

)
We stress here that the parameter t can only be real. Since the Dieudonné determinant is the positive
square root of the Study determinant we also deduce

Ddet∗|A(B) = d

dt
Ddet(A+ tB)

∣∣
t=0 = d

dt
Sdet(A+ tB)1/2∣∣

t=0 = Ddet(A)Re tr
(
A−1B

)
.

If we also assume that A and B are positive definite, then so is A + tB, for t > 0, therefore
det(A+ tB) = Ddet(A+ tB) and we conclude

det∗|A(B) = det(A)Re tr
(
A−1B

)
.

Choosing A = A(t) and B = d
dtA(t) we also obtain:

Proposition 1.47. Let A(t) be a curve in the cone of positive definite hyperhermitian matrices. Then
the following Jacobi’s formula holds:

d

dt
det(A(t)) = det(A(t))Re tr

(
A(t)−1 d

dt
A(t)

)
. (1.15)
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CHAPTER 2
HYPERCOMPLEX AND HKT MANIFOLDS

In this second chapter we introduce the kind of geometry with torsion which is the main object
of our study. HKT manifolds, where HKT is a shorthand for hyperkähler with torsion, arose from
supersymmetric theoretical physics [178] and soon became object of study from the mathematical
point of view [148]. They belong to the realm of hypercomplex geometry and present strong and deep
similarities with Kähler manifolds. HKT geometry is rich and worthwhile to investigate.

Here, we approach HKT manifolds from the point of view of geometrical G-structures and then
move on to describe their basic properties, describing the notion of HKT forms and HKT potentials.
Afterwards we briefly explore Hodge theory and cohomology. An important role is played by the
canonical bundle which always admits smooth global sections but these in general are not holomorphic.
Some relations between the canonical bundle and the holonomy of the Obata connection (the unique
torsion free connection preserving the hypercomplex structure [235]) are established, but their link is
not fully understood yet, hence some conjectures emerge naturally.

One of these conjectures, introduced by Alesker and Verbitsky [18], is the perfect analogue of the
Calabi conjecture and is equivalent to an equation of Monge-Ampère–type. Its solution would give a
way to find balanced HKT metrics, which play the role of “quaternionic Calabi-Yau” metrics. Attacking
the Calabi problem in HKT geometry seems to be more complicated then its complex counterpart and
is the main focus of this work.

2.1 Preliminary notions.
We briefly introduce the framework of G-structures, which essentially goes back to Cartan [70, 73] and
was carefully implemented by Chern [81, 82]. Subsequently, we describe complex and hypercomplex
structures in order to fix notations and conventions.

For more information on G-structures consult [196, 228, 272]. Essential references for quaternionic
G-structures are [4, 5, 6, 7, 8, 252, 253].

2.1.1 G-structures and integrability.
Let G be a Lie subgroup of GL(n,R). A G-structure on a smooth manifold M is a reduction of the
structure group of the frame bundle GL(M) from GL(n,R) to G.

If G can be described as the stabilizer of a tensor T on Rn then there is a one-to-one correspondence
between G-structures on M and global tensor fields S on M that allow a pointwise identification
(TxM,Sx) ∼= (Rn, T ) (see [196, Proposition 1.1]). The argument generalizes to groups G that are
common stabilizers of a finite number of tensor fields. For instance, this means that O(n)-structures
on M are in one-to-one correspondence with Riemannian metrics.
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Tensor bundles can be realized as vector bundles associated to GL(M) (via a representation induced
by the canonical representation ρ : GL(n,R) → Aut(Rn) which, for simplicity, we still call ρ). In
particular there is a one-to-one correspondence between connections on the frame bundle and linear
connections on TM . Furthermore, any linear connection ∇ on TM induces a linear connection on all
tensor bundles (and by abuse of notation we will still denote such connections with ∇).

Let π : Q→M be a G-structure on M . A connection on Q can always be extended to a connection
on GL(M) that in turn induces a linear connection on TM (cf. [197, Chapter II, Proposition 6.1]).
However the converse breaks down: given a linear connection ∇ on TM the corresponding connection
on GL(M) does not always reduce to Q, when this occurs we say that ∇ and Q are compatible and
we call ∇ a G-connection.

Given a linear connection ∇ on M and u ∈ GL(M) we can find a G-structure Q compatible with
∇ such that u ∈ Q if and only if the holonomy group Hol(∇) is contained in G. If it exists Q is unique
(see [194, Proposition 2.6.3]).

This fact, together with the Holonomy Principle allows to deduce the following: let ∇ be a linear
connection on TM and assume M admits a G-structure, where G is isomorphic to the common
stabilizer of a finite number of tensor fields S1, . . . , Sk. Then ∇ is a G-connection if and only if
S1, . . . , Sk are parallel with respect to ∇, moreover whenever this happens Hol(∇) ⊆ G.

Now we fix a G-structure π : Q→M and inspect the space of G-connections on Q. It is easy to see
that the difference of two linear connections is tensorial and hence it is a section of End(M)⊗ T ∗M .
We expect the difference of two G-connections to take values in a smaller space. Define the adjoint
bundle Ad(Q) as the vector bundle associated to Q via the adjoint representation Ad: G→ Aut(g),
where g is the Lie algebra of G. It can be seen that the set of all G-connections is an affine space over
Γ(T ∗M ⊗Ad(Q)) (see [253, p. 16]). Thus, in general, many different G-connections can be found on
Q. What about torsion-free G-connections then?

Let ∇ and ∇̃ be two G-connections, then α := ∇ − ∇̃ ∈ Γ(T ∗M ⊗ Ad(Q)), since Ad(Q) has
standard fiber g ⊆ gl(n,R) ∼= End(Rn) ∼= (Rn)∗ ⊗ Rn we can regard Ad(Q) as a vector subbundle of
T ∗M ⊗ TM , in particular α is a tensor field of type (1, 2). It follows that T∇ − T ∇̃ = δ(α), where
δ : T ∗M ⊗Ad(Q)→ Λ2T ∗M ⊗ TM is the antisymmetrization on the covariant components. Explicitly:
δ(α)(X,Y ) = αXY − αYX for every X,Y ∈ TM , where we use the notation αX := α(X) ∈ Ad(Q).

Definition 2.1. Let π : Q → M be a G-structure and ∇ a G-connection on TM . The intrinsic
torsion of Q is the equivalence class

τ(Q) :=
[
T∇
]
∈ Γ

(
Λ2T ∗M ⊗ TM�δ(T ∗M ⊗Ad(Q))

)
.

The G-structure Q is said to be torsion-free if τ(Q) = 0.

It follows from our discussion that the definition depends only on the G-structure Q. The set
of torsion-free G-connections on Q is in one-to-one correspondence with Ad(Q)(1) := Ker(δ) called
the first prolongation of Ad(Q). The intrinsic torsion is thus a measure of how obstructed the
G-structure is to allow a compatible torsion-free connection. A manifold M admits a torsion-free
G-structure if and only if there is a torsion-free linear connection ∇ on TM such that Hol(∇) ⊆ G
(see [194, Proposition 2.6.3]).

Whenever G ⊆ O(n) is a closed Lie subgroup defined as the stabilizer of some tensors S1, . . . , Sk
we can describe the intrinsic torsion of any G-structure Q on M in terms of the covariant derivative of
those tensors with respect to the Levi-Civita connection of the Riemannian metric induced by the
G-structure (see [253, Corollary 2.2]).

It turns out that the intrinsic torsion is just the first of a whole family of intrinsic objects that one
can take into account on G-structures as obstructions to integrability. For instance, the difference of
the curvatures of two torsion-free G-connections ∇ and ∇̃ = ∇+ α lies in Im(δ(1)), where here

δ(1) : T ∗M ⊗Ad(Q)(1) → Λ2T ∗M ⊗Ad(Q)

denotes the antisymmetrization on the first prolongation Ad(Q)(1) ⊆ T ∗M ⊗ Ad(Q) of the adjoint
bundle, i.e. δ(1)(β)(X,Y ) = βXY −βYX. Moreover, the curvature of a torsion-free connection satisfies
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the Bianchi identity: δ′(R∇) = 0, where

δ′ : Λ2T ∗M ⊗Ad(Q)→ Λ3T ∗M ⊗ TM

is the map δ′(γ)(X,Y, Z) := γ(X,Y )Z + γ(Y, Z)X + γ(Z,X)Y. Hence the equivalence class [R∇]
modulo Im(δ(1)) in Ker(δ′) does not depend on ∇ but only on the G-structure.

Definition 2.2. Let π : Q→M be a torsion-free G-structure. The intrinsic curvature of Q is the
equivalence class

R(Q) :=
[
R∇
]
∈ Γ

(
Ker(δ′)�Im(δ(1))

)
,

where ∇ is any torsion-free G-connection on TM .

An isomorphism of two G-structures π1 : Q1 → M1 and π2 : Q2 → M2 is a diffeomorphism
f : M1 →M2 such that f∗(Q1) = Q2, where f∗ is the induced diffeomorphism between GL(M1) and
GL(M2). So, for example, an isomorphism of two O(n)-structures is an isometry. An isomorphism
of a G-structure with itself is called an automorphism. Two G-structures as above are called locally
equivalent if at any point x ∈M1 there exists a neighborhood U and an isomorphism f such that the
restriction of Q1 over U is isomorphic to the restriction of Q2 over f(U).

A very relevant topic in the theory of G-structures is the local equivalence problem, which focuses
on characterizing the conditions under which two G-structures are locally equivalent. Of course, a case
of particular interest is that of local equivalence with the standard flat structure. The standard flat
G-structure on Rn is the set of all frames obtained from the standard one by the action of G ⊆ GL(n,R).

Definition 2.3. A G-structure is called integrable or locally flat if it is locally equivalent to the
standard flat G-structure.

Integrability of a G-structure Q can also be equivalently defined by saying that around any point
x ∈M one can find admissible local coordinates (x1, . . . , xn), where the word admissible signifies that
the corresponding frame ( ∂

∂x1 , . . . ,
∂
∂xn ) seen as a cross section of GL(M) over U actually is a cross

section of Q over U .
Whenever G is the stabilizer of some tensor T ∈ T rs (Rn), we have the following neat description:

let π : Q → M be a G-structure over M , then Q is integrable if and only if each point of M allows
local coordinates with respect to which the tensor S ∈ T rs (M) induced by T has constant components
(see [196, Proposition 1.1]).

The integrability problem is strictly related to the intrinsic torsion and curvature; as a matter of
fact, they belong to a whole tower of tensors τk(Q), called the kth (intrinsic) structure tensors,
the non-vanishing of which represents an obstruction for our G-structure to take locally the model
form as on Rn.

Let Q be a G-structure on M . We say that Q is m-integrable if τk(Q) = 0 for all k < m and
formally integrable if τk(Q) = 0 for all k. The standard flat G-structure has vanishing intrinsic
structure tensors, therefore we have that formal integrability is necessary in order to have local
flatness. The converse is in general false (see [160]), however, it is true in many reasonable cases, for
instance it is true when the Lie algebra of G is of finite type. Let us explain what it means. Consider
again the map δ : (Rn)∗ ⊗ g → Λ2(Rn)∗ ⊗ Rn and define inductively the kth prolongation of g as
g(k) :=

(
g(k−1))(1) ⊆ (Rn)∗ ⊗ g(k−1), then g is of finite type if g(j) = 0 for some j.

Theorem 2.4 (Guillemin [159]). If the Lie algebra g of G is of finite type, then a G-structure is
integrable if and only if it is formally integrable.

2.1.2 Complex structures.
Before discussing G-structures related to quaternionic groups, we briefly review some facts of complex
and Kähler geometry which will be helpful to fix notations and conventions.
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GL(n,C)-structures.

We recall that the group GL(n,C) can be seen as the stabilizer of a (1, 1)-tensor I0 on R2n acting
on GL(2n,R) as A 7→ I0AI

−1
0 . Therefore a GL(n,C)-structure on a 2n-dimensional manifold M is

determined by an endomorphism of the tangent bundle I that squares to − IdTM . The (1, 1)-tensor I
is called an almost complex structure.

The Nijenhuis tensor associated to the almost complex structure I is defined as

NI(X,Y ) := 1
4 ([X,Y ] + I[IX, Y ] + I[X, IY ]− [IX, IY ]) .

It is well-known that a GL(n,C)-structure π : Q→ M is torsion-free if and only if NI = 0, where I
is the almost complex structure induced by Q. The intrinsic torsion is the only obstruction to the
integrability of the GL(n,C)-structure. This is the celebrated Theorem of Newlander and Nirenberg
[232]. Whenever a GL(n,C)-structure is torsion-free we say that the induced almost complex structure
I is integrable, or we simply drop the term “almost” and call it a complex structure on M . The pair
(M, I) is accordingly referred to as an (almost) complex manifold.

The complexified tangent space TMC := TM⊗RC of an almost complex manifold (M, I) decomposes
in a direct sum of eigenbundles of I: TMC = T 1,0M⊕T 0,1M, where I|T 1,0M = i Id and I|T 0,1M = −i Id.
Moreover

T 1,0M = {X − iIX | X ∈ TM} , T 0,1M = {X + iIX | X ∈ TM} = T 1,0M .

Consequently the vector bundles of complex differential forms decompose naturally as

ΛkT ∗MC =
⊕
p+q=k

Λp,qT ∗M ,

where Λp,qT ∗M := Λp(T ∗M)1,0 ⊗C Λq(T ∗M)0,1 is the space of (complex) forms of type (or bidegree)
(p, q) (with respect to I) or simply (p, q)-forms. Note that Λp,qT ∗M = Λq,pT ∗M . We will write

Λk(M) := Γ(ΛkT ∗M) , Λp,q(M) := Γ(Λp,qT ∗M)

for the corresponding spaces of sections, which we still call k-forms and (p, q)-forms respectively. When
we have multiple (almost) complex structures, we may denote with a subscript the one with respect to
which we are considering forms and fields, for instance Λp,qI (M) and T 1,0

I M are the space of (p, q)-forms
and the (1, 0)-tangent bundle with respect to I.

The wedge product sends a (p, q)-form and a (r, s)-form to a (p + r, q + s)-form and the almost
complex structure extends to a map on differential k-forms as

(Iβ)(X1, . . . , Xk) = β(IX1, . . . , IXk) .

Be aware that some authors prefer to define the action of an almost complex structure on k-forms by
setting (Iβ)(X1, . . . , Xk) = β(I−1X1, . . . , I

−1Xk).
The C-linear extension d : Λk(M)C → Λk+1(M)C of the exterior differential satisfies

d : Λp,q(M)→ Λp+2,q−1(M)⊕ Λp+1,q(M)⊕ Λp,q+1(M)⊕ Λp−1,q+2(M).

This means that we can decompose it accordingly as d = µ+∂+ ∂̄+ µ̄. On an almost complex manifold
(M, I) the following are equivalent:

(i) I is integrable;
(ii) d = ∂ + ∂̄;
(iii) µ = 0.

When any of the previous conditions holds, then d2 = 0 implies ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0. We call ∂ and
∂̄ the Dolbeault operators (with respect to I).
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Sometimes it will also be useful to take into account the twisted exterior differential operator
dcI := dcI = I−1dI which satisfies dcI = i(∂̄ − ∂) as well as ddcI + dcId = 0 (if and only if I is integrable).

U(n)-structures.

A complex structure I0 on the vector space R2n is compatible with an inner product g0 if it is orthogonal,
i.e. g0(I0·, I0·) = g0. In this case, the tensor

ωI0 := g0(I0·, ·)

becomes a 2-form. The group U(n) can be seen as the stabilizer of any two of I0, g0, ωI0 :

U(n) = GL(n,C) ∩O(2n) = O(2n) ∩ Sp(2n,R) = Sp(2n,R) ∩GL(n,C) , (2.1)

therefore a U(n)-structure on a manifold M is given by a Riemannian metric g, a g-orthogonal almost
complex structure I and the non-degenerate 2-form ωI := g(I·, ·), called the fundamental form. Any
two of these objects determines the third.

Whenever g satisfies g(I·, I·) = 0 we say that it is Hermitian. An almost complex manifold always
admits a Hermitian metric as, given a Riemannian metric g the metric 1

2 (g + g(I·, I, ·)) is Hermitian.
We call the triple (M, I, g), where g is Hermitian, an almost Hermitian manifold and an Hermitian
manifold whenever I is integrable.

The intrinsic torsion of (g, I, ωI) identifies with ∇gI or, equivalently, ∇gωI , where ∇g is the Levi-
Civita connection with respect to g. For n ≥ 3 representation theory allows to split the space where
the intrinsic torsion lives in the direct sum of four spaces W1,W2,W3,W4 which are irreducible with
respect to the action of U(n). This allows to classify U(n)-structures into 24 = 16 classes determined
by suitable conditions imposed on I and ωI . This has been done by Alfred Gray and Luis M. Hervella
[149].

The following conditions on an almost Hermitian manifold (M, I, g) are equivalent:

∇gI = 0 , ∇gωI = 0 , NI = 0 and dωI = 0

and they are satisfied if and only if the U(n)-structure is torsion-free, in which case it is called a Kähler
structure, (M, I, g) is called a Kähler manifold and Hol(∇g) ⊆ U(n).

By uniqueness of the Levi-Civita connection, on a Kähler manifold there is only one U(n)-connection.
Gauduchon [135] studied U(n)-connections on Hermitian manifolds showing that they form an affine
subspace of the space of linear connections. Among these, Gauduchon also singled out and studied
the so-called canonical Hermitian connections, distinguished by some constraints imposed on the
torsion tensor. Nowadays these are also known as Gauduchon connections. The space of canonical
connections is at most one dimensional and collapses to a single point if and only if the Hermitian
manifold is Kähler. When the manifold is not Kähler the family of Gauduchon connections includes
many distinguished interesting connections.

As an example we mention the Bismut connection. The name stems from the fact that Bismut
[41] used it to prove a local index theorem, however it has been pointed out that it was Strominger
[273] that first discussed its existence three years before, giving it the name H-connection.

The Bismut connection is the U(n)-connection ∇I on a Hermitian manifold (M, I, g) whose torsion
is totally skew-symmetric, in the sense that the tensor

c(X,Y, Z) := g(X,T∇(Y,Z))

is a 3-form. Since ∇I preserves the metric, it is uniquely determined by its torsion which can be
expressed in terms of the fundamental form as

c(X,Y, Z) = dcIωI(X,Y, Z) . (2.2)

The Bismut connection is sometimes called by physicists the KT connection (which is a shorthand
for Kähler with torsion). If the torsion c is closed we say that the KT-structure is strong, otherwise we
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CHAPTER 2. Hypercomplex and HKT manifolds

call it weak. Strong Kähler with torsion (SKT) structures represent one of the most studied classes of
U(n)-structures with non-vanishing intrinsic torsion.

SU(n)-structures.

Let us take coordinates (z1, . . . , zn) on Cn, inducing the coframe (dz1, . . . , dzn). Define

〈·, ·〉0 =
n∑
k=1

dzk � dz̄k , I0
∂

∂zr
= i

∂

∂zr
(r = 1, . . . , n) , ωI0 = i

2

n∑
k=1

dzk ∧ dz̄k ,

where dzk�dz̄k := 1
2 (dzk⊗dz̄k+dz̄k⊗dzk). Then one can check that (〈·, ·〉0, I0, ωI0) is a U(n)-structure

and h = 〈·, ·〉0 − iωI0 is the standard Hermitian product on Cn. The Lie group of special unitary
matrices is by definition the intersection of U(n) and SL(n,C). Since SL(n,C) can be seen as the
stabilizer in GL(n,C) of the complex volume form of type (n, 0)

ψ0 := dz1 ∧ dz2 ∧ · · · ∧ dzn ,

a SU(n)-structure (also called special Hermitian structure) on a smooth 2n-dimensional manifold
M is defined by the data of a U(n)-structure (g, I, ωI) together with a nowhere vanishing complex
(n, 0)-form ψ satisfying the normalization condition:

ψ ∧ ψ̄ = (−1)
n(n+1)

2
(2i)n
n! ωn.

For n = 3 we have SU(3) = Sp(6,R)∩ SL(n,C) and an SU(3)-structure can be completely described in
terms of the symplectic form ω and the real part of the complex volume form ψ (see [172]).

The SU(n)-structure is torsion-free if and only if

∇gω = ∇gψ = 0 ,

for n ≥ 4 these conditions are also equivalent to dω = d(Re(ψ)) = 0 (see [62]), while for n = 3 they are
equivalent to dω = d(Re(ψ)) = d(Im(ψ)) = 0 (see [88]). Observe that SU(1) = 1 and SU(2) ∼= Sp(1), to
be treated below. Whenever the SU(n)-structure is torsion-free we have Hol(g) ⊆ SU(n) and actually,
for a Kähler manifold (M, g, J) we have Hol0(g) ⊆ SU(n) if and only if Ricg ≡ 0 (see [194, Proposition
7.1.1]).

When a manifold M is equipped with a torsion-free SU(n)-structure it is called a Calabi-Yau
manifold this is because the groundbreaking Calabi-Yau theorem was historically crucial in order to
find compact examples (cf. Chapter 2.3).

2.1.3 Hypercomplex structures.
Here, we begin the treatment of hypercomplex structures, starting to apply the machinery of quater-
nionic linear algebra developed in the first chapter.

GL(n,H)-structures.

In this subsection we start dealing with GL(n,H)-structures. On the flat space Hn we can take into
account the standard left hypercomplex structure. Choosing quaternionic coordinates (q1, . . . , qn),
i.e. a basis for the left H-module Hn we may write them in terms of the corresponding real coordi-
nates (x1

0, · · · , xn0 , x1
1, · · · , xn1 , x1

2, · · · , xn2 , x1
3, · · · , xn3 ), where qr = xr0 + ixr1 + jxr2 + kxr3. Under this

identification Hn ∼= R4n the hypercomplex structure (I0, J0,K0) induced on R4n acts as I0(xr0) = xr1,
I0(xr2) = xr3, J0(xr0) = xr2, J0(xr1) = −xr3 and K0(xr0) = xr3, K0(xr1) = xr2 for r = 1, . . . , n. In terms of
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(block) matrices

I0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , J0 =


0 0 −1 0
0 0 0 1

1 0 0 0
0 −1 0 0

 , K0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , (2.3)

where 1 = 1n is the n × n identity matrix. Equivalently, I0, J0,K0 correspond to the action of the
unit quaternions i, j, k on R4n under the map γ : Hn → R4n introduced in Subsection 1.1.2. From this
perspective we can write GL(n,H) as the stabilizer of (I0, J0,K0):

GL(n,H) =
{
A ∈ GL(4n,R) | A = I−1

0 AI0 = J−1
0 AJ0 = K−1

0 AK0
}
. (2.4)

This leads to the following definition: an almost hypercomplex structure on a smooth manifold M is
a GL(n,H)-structure, i.e. a triple (I, J,K) of almost complex structures satisfying the quaternionic
relations:

IJ = −JI = K . (2.5)

A hypercomplex structure on M is an almost hypercomplex structure with I, J and K integrable. An
(almost) hypercomplex manifold is a smooth manifold equipped with an (almost) hypercomplex
structure.

Remark 2.5. In recent literature some authors prefer to choose the right action of the almost
hypercomplex structure (I, J,K) on the tangent bundle, making TM into a right H-module. As said
in precedence, this agrees with the most common convention for H-modules, which has indeed some
practical advantages in that framework. However, the traditional choice in hypercomplex geometry is
the one that makes TM into a left H-module. In the present work, we adhere to the second convention
and let (I, J,K) act on the left. Be aware that the choice of the side of the action results in some sign
differences in certain formulas and definitions.

If a manifold M allows an almost hypercomplex structure its dimension must be a multiple of
4. From (2.5) it is evident that almost hypercomplex structures can be defined in terms of two of
the three complex structures, being the third defined a posteriori as the product of the other two.
Furthermore, integrability of these two almost complex structures implies integrability of the third,
indeed we have the following result originally proved by Obata [235]:

Proposition 2.6. Let (M, I, J,K) be an almost hypercomplex manifold. Then, if any two of the
Nijenhuis tensors vanish then so does the third.

Proof. The proposition follows from the identities

NI = 2PI(NJ +NK) , NJ = 2PJ(NK +NI) , NK = 2PK(NI +NJ) ,

where PL is the projection of a tensor of type (1, 2) on its (0, 2)-component with respect to the almost
complex structure L:

PL(S) := 1
4 (S + LS(·, L·) + LS(L·, ·)− S(L·, L·)) .

We now address the integrability problem for GL(n,H)-structures. First of all, we prove that they
are of finite type. More precisely, the intrinsic torsion and curvature are the only structure tensors
that do not trivially vanish.

Lemma 2.7. Let gl(n,H) be the Lie algebra of GL(n,H). Then the first prolongation gl(n,H)(1) is
zero.

Proof. Let δ : (R4n)∗⊗gl(n,H)→ Λ2(R4n)∗⊗R4n be the antisymmetrization map. From the description
(2.4) of GL(n,H) it is evident that

gl(n,H) = {A ∈ gl(4n,R) | A = I−1
0 AI0 = J−1

0 AJ0 = K−1
0 AK0} .
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Let α ∈ gl(n,H)(1) = Ker(δ), then we have I0 ◦αX = αX ◦ I0 and J0 ◦αX = αX ◦J0 for every X ∈ R4n,
as well as αXY = αYX for every X,Y ∈ R4n. Therefore

αXY = −J0αX(J0Y ) = −J0αJ0YX = J0I0αJ0Y (I0X) = −I0J0αI0X(J0Y ) = I0αI0XY = −αYX ,

i.e. α = 0.

It turns out that the intrinsic torsion is encoded precisely in the integrability of the three complex
structures I, J,K:

Theorem 2.8 (Obata [235]). An almost hypercomplex structure (I, J,K) on M is hypercomplex if
and only if there exists on M a torsion-free GL(n,H)-connection, i.e. a linear connection ∇ such that

∇I = ∇J = ∇K = 0 .

Moreover ∇ is necessarily unique and is called the Obata connection.

Proof. Set J1 = I, J2 = J , J3 = K and consider the connection ∇ such that

∇XY := 1
12

∑
(α,β,γ)

Jα ([JβX,JγY ]− [JγX, JβY ]) + 1
6

3∑
α=1

Jα ([JαX,Y ]− [X, JαY ])

+ 1
2 [X,Y ] + 1

2T (X,Y ) ,

(2.6)

for any X,Y ∈ TM , where (α, β, γ) is a cyclic permutation of (1, 2, 3) and T := − 2
3 (NJ1 +NJ2 +NJ3).

A tedious but straightforward calculation shows that ∇ preserves Jα for α = 1, 2, 3 and has torsion
T∇ = T .

We claim that T∇ can be taken as a representative for the intrinsic torsion of the GL(n,H)-structure.
Consider the projection p : T ∗M ⊗ TM → Ad(Q) such that p(S) := 1

4 (S − J1SJ1 − J2SJ2 − J3SJ3)
and the antisymmetrization δ : T ∗M ⊗ Ad(Q) → Λ2T ∗M ⊗ TM . Since the kernel of the surjective
map δ ◦ (IdT∗M ⊗ p) : Λ2T ∗M ⊗ TM → Im(δ) is a GL(n,H)-invariant complement to the image
of δ in Λ2T ∗M ⊗ TM , it is enough to prove that (Id ⊗ p)(T ) = 0. For every X ∈ TM we have
NJα(X, Jα·) = −JαNJα(X, ·) which implies

p(T (X, ·)) = −2
3

3∑
α=1

p(NJα(X, ·)) = 0 .

This proves that 1-integrability of the GL(n,H)-structure, torsion-freeness of ∇ and integrability of
the almost complex structures I, J and K are all equivalent to each other.

Uniqueness of the Obata connection immediately follows from Lemma 2.7.

The identification of the intrinsic torsion of a given hypercomplex structure (I, J,K) with the sum
of the Nijenhuis tensors (up to a constant) is essentially due to Obata [236] (see also Bonan [47]). The
explicit formula (2.6) for the Obata connection, to our knowledge, was found by Alekseevsky and
Marchiafava [4], however, (when it is torsion-free) the Obata connection can also be written as

∇XY = 1
2 ([X,Y ] + I[IX, Y ]− J [X, JY ] +K[IX, JY ]) . (2.7)

Indeed, one can easily check that ∇I, ∇J , ∇K and T∇ can all be expressed in terms of the Nijenhuis
tensors of I, J and K. This simplified formula is due to Soldatenkov [263].

Differently from the complex case, where torsion-freeness ensures integrability of the GL(n,C)-
structure, for GL(n,H)-structures integrability is also obstructed by the intrinsic curvature. Since
the Obata connection is the unique torsion-free GL(n,H)-connection, the intrinsic curvature can be
identified with its curvature and we obtain:

Theorem 2.9 (Obata [235]). On a hypercomplex manifold (M, I, J,K) the following are equivalent:
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(i) The torsion-free GL(n,H)-structure (I, J,K) is locally flat;
(ii) The Obata connection ∇ is flat;
(iii) M has quaternionic affine transition functions.

Proof. The equivalence of the first two assertions follows from Theorem 2.4 and Lemma 2.7, the
equivalence of the third is due to Sommese [266].

Locally flat hypercomplex structures were first studied by Sommese [266] and were termed “quater-
nionic”. As mentioned earlier, such a condition is equivalent to require that the hypercomplex manifolds
(M, I, J,K) is locally isomorphic to Hn.

Examples.

The most trivial example of hypercomplex manifold is that of (open subsets of) Hn with the standard
left action of i, j, k, or, equivalently, R4n with the flat hypercomplex structure given by (2.3). Since
the hypercomplex structure is invariant with respect to the sum of two elements of Hn it descends to
a hypercomplex structure on the quotient by a lattice isomorphic to Z4n. We thus obtain compact
hypercomplex tori.

Hn\{0} inherits from Hn the standard hypercomplex structure acting from the left. Fix a quaternion
q ∈ H∗ such that |q| 6= 1 and consider the integer group 〈q〉 generated via right multiplication by q
on Hn \ {0}. Since the hypercomplex structure acts on the left, it commutes with the action of 〈q〉,
therefore it descends to a hypercomplex structure on the quotient (Hn \ {0})/〈q〉. This quotient is
compact, as any coset allows a representative with norm smaller than 1. The quotient (Hn \ {0})/〈q〉
is called the quaternionic Hopf manifold and it is diffeomorphic to S1 × S4n−1 (see [240], where
the authors also compute the moduli space for the hypercomplex structures on S1 × S4n−1).

Kato [195] studied complex Hopf surfaces determining which ones admit hypercomplex structures.
Kato showed more generally that the only compact locally flat 4-dimensional manifolds are tori and
certain Hopf surfaces.

Less trivial examples came from the works of Spindel, Sevrin, Troost, Van Proeyen [267] and Joyce
[193]. They discovered that a compact Lie group, when multiplied by a torus of a suitable dimension,
carries a hypercomplex structure. Let us briefly overview how this works. Joyce shows that, by a
covering group argument, we may further assume that the Lie group is semisimple. Let then G be a
compact semisimple Lie group and H a maximal torus in it. Within this framework, structure theory
can be performed, which allows to obtain a suitable decomposition of the Lie algebra g of G:

g = b⊕
m⊕
j=1

dj ⊕
m⊕
j=1

fj ,

where b is abelian of dimension Rank(G)−m, dj ⊆ g are subalgebras isomorphic to su(2), and fj ⊆ g
are subspaces satisfying the conditions:

1. [dj , b] = 0 and b⊕
⊕n

j=1 dj contains the Lie algebra of H;

2. [dj , fi] = 0 for j < i;

3. [dj , fj ] ⊆ fj and this Lie bracket action of dj on fj is isomorphic to the direct sum of a certain
(finite) amount of copies of the action of su(2) on C2 by matrix multiplication from the left.

Such a decomposition will be called a Joyce decomposition of the Lie algebra g.
Now, let r = Rank(G), and denote T 2m−r ∼= U(1)2m−r the 2m− r-dimensional torus, so that the

Lie algebra of T 2m−r ×G decomposes as

(2m− r)u(1)⊕ g ∼= Rm ⊕
m⊕
j=1

dj ⊕
m⊕
j=1

fj .
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Let (e1, . . . , en) be the standard basis for Rn and let ϕj be an isomorphism from su(2) = sp(1) to dj .
Consider a basis i1, i2, i3 of su(2) such that

[i1, i2] = 2i3 , [i3, i1] = 2i2 , [i2, i3] = 2i1 . (2.8)

We can regard SpanH(ej , ϕj(i1), ϕj(i2), ϕj(i3)) as a copy of H. From here we define a hypercomplex
structure I1, I2, I3 ∈ End((2m− r)u(1)⊕ g) as follows.

(a) Let I1, I2, I3 act on Rm ⊕
⊕m

j=1 dj as

Ia(ej) = ϕj(ia), Ia(ϕj(ia)) = −ej , Ia(ϕj(ib)) = ϕj(ic), Ia(ϕj(ic)) = −ϕj(ib),

whenever (a, b, c) is an even permutation of (1, 2, 3).

(b) Let I1, I2, I3 act on fj as Ia(v) = [ϕj(ia), v], for each v ∈ fj and a = 1, 2, 3.

By definition, it is clear that (I1, I2, I3) is a hypercomplex structure on Rm ⊕
⊕m

j=1 dj , the fact that it
is also a hypercomplex structure on

⊕m
j=1 fj follows from the third property of Joyce decompositions,

as the action of dj on fj by conjugation is isomorphic to a finite amount of copies of the action of
Im(H) on H and (b) is nothing but a way to write down this isomorphism.

At this point Joyce uses an argument due to Samelson [254] to prove that Ia must be integrable
and therefore, by left-translations, induces a homogeneous complex structure on T 2m−r ×G. Therefore
(I1, I2, I3) extends to a homogeneous hypercomplex structure on T 2m−r ×G.

According to [34, 104] all invariant hypercomplex structures on compact Lie groups are obtained
from Joyce’s construction.

Example 2.10. The Lie algebra of SU(3) can be written as

su(3) =
{(

D f

−f̄ t −tr(D)

)
: D ∈ u(2) and f ∈ C2

}
,

therefore it splits accordingly:
su(3) = b⊕ d⊕ f ,

where

• d ∼= sp(1) is the space of matrices with zero f and tr(D);
• f consists of matrices with zero D;
• b ∼= R is the set of diagonal matrices commuting with d.

We have
[b, d] = 0 , [b, f] = f , [d, f] = f , [f, f] = b⊕ d , [d, d] = d .

Let us consider the following basis of su(3):

X1 =

i 0 0
0 i 0
0 0 −2i

 , X2 =

i 0 0
0 −i 0
0 0 0

 , X3 =

 0 1 0
−1 0 0
0 0 0

 , X4 =

0 i 0
i 0 0
0 0 0

 ,

X5 =

 0 0 1
0 0 0
−1 0 0

 , X6 =

0 0 i
0 0 0
i 0 0

 , X7 =

0 0 0
0 0 1
0 −1 0

 , X8 =

0 0 0
0 0 −i
0 −i 0

 .

Following Joyce’s construction a hypercomplex structure (I, J,K) on SU(3) is then defined by the
following relations:

(a) on b⊕ d = 〈X1, X2, X3, X4〉 as IX1 = X2, IX3 = X4, JX1 = X3, JX2 = −X4;
(b) on f = 〈X5, X6, X7, X8〉 as Iv = [X2, v], Jv = [X3, v], Kv = [X4, v] for every v ∈ f.
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With a similar technique, Joyce also constructs hypercomplex structures on homogeneous spaces.
For instance quaternionic Hopf manifolds can be seen as a particular case of this construction when
regarded as the product U(1)× Sp(n)/Sp(n− 1).

Joyce presented other geometric constructions in [192, 193], most notably hypercomplex quotients
(in analogy to Kähler [222], hyperkähler [173] and quaternionic Kähler [133] reductions) and a way
of twisting associated bundles via a quaternionic instanton, further studied by Pedersen, Poon and
Swann [241].

Twistor theory was exploited by Grantcharov, Pedersen and Poon [147, 238, 239, 240] to study
deformations of hypercomplex structures. In particular in [240] the authors use deformation theory to
construct inhomogeneous hypercomplex structures on Joyce’s examples.

Finally, we mention a series of examples due to Boyer, Galicki and Mann on Stiefel manifolds
[50, 51] and on certain circle bundles over 3-Sasakian manifolds [52].

Sp(n)-structures.

Consider again quaternionic coordinates (q1, . . . , qn) on Hn with the standard left hypercomplex
structure and let (x1

0, . . . , x
n
0 , x

1
1, . . . , x

n
1 , x

1
2, . . . , x

n
2 , x

1
3, . . . , x

n
3 ) be the corresponding real coordinates

on R4n ∼= Hn. The hypercomplex structure (I0, J0,K0) defined in (2.3) is compatible with the standard
inner product 〈·, ·〉0 on R4n, in the sense that

〈I0·, I0·〉0 = 〈J0·, J0·〉0 = 〈K0·,K0·〉0 = 〈·, ·〉0 .

From this compatibility condition we see that there are three fundamental forms ωI0 , ωJ0 , ωK0 on Hn,
furthermore there is a non-degenerate complex form

Ω0 := ωJ0 + iωK0 .

In this set of coordinates we have

〈·, ·〉0 =
n∑
k=1

3∑
p=0

dxkp ⊗ dxkp , ωI0 =
n∑
k=1

(dxk0 ∧ dxk1 + dxk2 ∧ dxk3) ,

ωJ0 =
n∑
k=1

(dxk0 ∧ dxk2 − dxk1 ∧ dxk3) , ωK0 =
n∑
k=1

(dxk0 ∧ dxk3 + dxk1 ∧ dxk2) ,

Identifying Hn with C2n with the complex coordinates (z1, . . . , z2n), where z2k−1 = xk0 + ixk1 and
z2k = xk2 + ixk3 , one could easily verify that

Ω =
n∑
k=1

dz2k−1 ∧ dz2k . (2.9)

Observe that
〈·, ·〉0 + iωI0 + jωJ0 + kωK0 = h̄+ Ωj =

n∑
k=1

dqk ⊗ dq̄k

is the standard quaternionic inner product on Hn.
The hyperunitary group Sp(n) is the subgroup of GL(n,H) that preserves 〈·, ·〉0, in particular it

preserves all the object we hereby introduced and it can be seen as their common stabilizer. We can
therefore regard Sp(n) in multiple ways, obtaining the hypercomplex analogue of (2.1):

Sp(n) = GL(n,H) ∩O(4n) = O(4n) ∩ Sp(2n,C) = Sp(2n,C) ∩GL(n,H) .

Another possible description of Sp(n) is as the intersection of the three unitary groups Stab(I0, ωI0),
Stab(J0, ωJ0), Stab(K0, ωK0), which motivates the name of hyperunitary group.
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A Sp(n)-structure on a 4n-dimensional manifold is given by the data (I, J,K, g), where (I, J,K) is
an almost hypercomplex structure and g a hyperhermitian metric, i.e. a Riemannian metric such that

g(I·, I·) = g(J ·, J ·) = g(K·,K·) = g .

Of course we also have the induced fundamental forms ωI , ωJ , ωK and the non-degenerate complex
form

Ω := ωJ + iωK . (2.10)

The collection of these data is also called an almost hyperhermitian structure. If I, J,K are integrable
we drop the word “almost”. An (almost) hyperhermitian manifold is one equipped with an
(almost) hyperhermitian structure.

The intrinsic torsion of a Sp(n)-structure can be identified with the three tensors ∇gI,∇gJ,∇gK, or
equivalently, the three tensors ∇gωI ,∇gωJ ,∇gωK or else ∇gΩ. In other words the following conditions
are equivalent to torsion-freeness:

∇gI = ∇gJ = ∇gK = 0 , ∇gωI = ∇gωJ = ∇gωK = 0 , ∇gΩ = 0 .

In particular we have Hol(∇g) ⊆ Sp(n). Whenever the Obata connection preserves some Riemannian
metric g, it automatically induces a torsion-free Sp(n)-structure also known as a hyperkähler structure.
Accordingly, a manifold with a Sp(n)-structure with vanishing intrinsic torsion is called a hyperkähler
manifold. The name is due to Calabi [68], who also proposed the term hypercomplex.

Since Hol(∇g) ⊆ Sp(n) ⊆ SU(2n) hyperkähler manifolds are always Calabi-Yau, and thus, Ricci-flat
(see also Subsection 2.2.4).

The conditions for the vanishing of the torsion can be slightly relaxed. Indeed Hitchin [171] showed
that the closure of ωI , ωJ , ωK implies the vanishing of the Nijenhuis tensors of I, J,K, hence (M, I, g),
(M,J, g) and (M,K, g) are automatically Kähler. In particular, if (M, I, J,K, g) is hyperhermitian the
concise condition

dΩ = 0 (2.11)

is sufficient to give hyperkähler.
Verbitsky [303] proved that any hypercomplex manifold (M, I, J,K) that carries a Kähler metric on

(M, I) admits a hyperkähler structure (not necessarily compatible with the original Kähler structure).
Hypercomplex and hyperkähler manifolds are respectively, subfamilies of the more general concepts

of quaternionic and quaternionic Kähler manifolds. These can be described as manifolds admitting a
GL(n,H)GL(1,H) and Sp(n)Sp(1)-structure respectively. The terminology is standard, as of today,
however, some years passed before it established itself, hence, early literature might refer to a
hypercomplex structure as a quaternionic one, e.g..

Our attention is focused on hypercomplex manifolds and we shall not describe here quaternionic
structures. We only report here that the quaternionic projective space HPn is a quaternionic manifold,
however it is not hypercomplex, as it does not even admit an almost complex structure. For n = 1 we
have HP1 ∼= S4 and it is known that the only spheres admitting almost complex structures are S2

and S6 (cf. [117, 174]). The general case is due to Massey [223], although the case n ≥ 4 was already
established by Hirzebruch [170]

Following the ideas of the Gray-Hervella classification, Cabrera and Swann [61, 63] give a nice and
detailed description of the possible classes of quaternionic geometries.

The class of Sp(n)-structures with non-vanishing intrinsic torsion which is most interesting for us
is that of hyperkähler structures with torsion, to be introduced in the next subsection.

2.1.4 HKT structures.

Definition of HKT manifolds.

We have seen that KT geometry deals with Hermitian manifolds together with a U(n)-connection with
skew-symmetric torsion. In analogy to this, one defines hyperkähler geometry with torsion, abbreviated
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to HKT geometry, as the geometry of hyperhermitian manifolds (M, I, J,K, g) with a Sp(n)-connection
with skew-symmetric torsion, called the HKT connection. The existence of such a connection is
equivalent to require that the three Bismut connections ∇I ,∇J ,∇K coincide.

Geometries with torsion are of particular interest for some supersymmetric sigma models in
theoretical physics, especially in presence of the so-called Wess-Zumino term [134, 177]. Indeed, in such
a case the internal space of the sigma model has a linear connection with skew-symmetric torsion and
holonomy in either U(n) or Sp(n), depending on the number of supersymmetries that leave the sigma
model action invariant. Thus, we either have KT or HKT geometry. HKT manifolds also emerged as
moduli spaces for a certain class of black holes [142], and recently, as base spaces of “timelike” solutions
of five-dimensional de Sitter supergravity [151, 161].

HKT manifolds were first studied by Howe and Papadopoulos [178]. As discovered by Grantcharov
and Poon [148], a HKT structure can also be equivalently expressed in terms of a nice differential
equation involving the complex volume form Ω defined in (2.10):

Proposition 2.11. On a hyperhermitian manifold (M, I, J,K, g) the following conditions are equiva-
lent:

(i) ∂Ω = 0;
(ii) IdωI = JdωJ = KdωK ;
(iii) ∇I = ∇J = ∇K .

It is nowadays customary to use this alternative description as a definition.

Definition 2.12. Let (M, I, J,K, g) be a hyperhermitian manifold and consider the complex 2-form
Ω := ωJ + iωK . Then the metric g, the form Ω and the manifold M are called hyperkähler with
torsion or, shortly, HKT if

∂Ω = 0 . (2.12)

The name stems from the fact that a hyperhermitian manifold is hyperkähler if only if (2.11) holds,
i.e. Ω is closed. Therefore the intrinsic torsion of the Sp(n)-structure does not fully vanish for HKT
(non hyperkähler) manifolds. As of today, the name hyperkähler with torsion is generally considered
to be misleading, therefore the acronym HKT is preferred.

Since the three Bismut connections coincide the common torsion is c = dcIωI = dcJωJ = dcKωK
by (2.2). In particular, if one of the Hermitian structures (g, I), (g, J) or (g,K) on a HKT manifold
(M, I, J,K, g) is Kähler, then the other two are also Kähler, and thus the Sp(n)-structure is torsion-free.
The HKT-structure is called strong or weak according as the torsion is closed or not.

Cabrera and Swann [64], studying the intrinsic torsion of almost quaternionic Hermitian manifolds
were able to weaken the integrability assumptions:

Proposition 2.13. On an almost hyperhermitian manifold (M, I, J,K, g) the following conditions are
equivalent:

(i) ∂Ω = 0 and NJ = 0 (or NK = 0);
(ii) JdωJ = KdωK and NJ = 0 (or NK = 0);
(iii) IdωI = JdωJ = KdωK ;
(iv) I, J,K are integrable and ∇I = ∇J = ∇K .

Examples.

We already observed that HKT manifolds are a generalization of hyperkähler manifolds. From now
on, unless declared otherwise we shall use the term HKT manifold to mean HKT non-hyperkähler
manifold.

Every 4-dimensional hyperhermitian manifold is automatically HKT because (2.12) is trivially
satisfied. Boyer [49] classified compact hyperhermitian manifolds of dimension 4 up to conformal
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equivalence. The only possibilities are tori with the flat metric, K3 surfaces and those locally flat
quaternionic Hopf surfaces studied by Kato [195] with their standard locally conformally flat metric.
The manifolds of the first two classes are hyperkähler, while those of the third are not, however they
are always locally conformally hyperkähler.

We have seen that compact Lie groups, whenever multiplied by a torus of a suitable dimension
always admit a homogeneous hypercomplex structure. Whenever the group G is semisimple, the
Cartan-Killing form B is a negative-definite inner product on the Lie algebra g. The (opposite of the)
Cartan-Killing form can be extended to a hyperhermitian metric on T 2m−rG (see [148, Lemma 2]),
where r = Rank(G). As we now show, such hyperhermitian metric is actually HKT. This observation is
originally due to Opfermann and Papadopoulos [237], who also generalized the construction to certain
homogeneous spaces, showing that they carry HKT structures.

Let g be the left-translation on T 2m−r×G of the hyperhermitian inner product on (2m− r)u(1)⊕g.

Proposition 2.14. The hyperhermitian metric g on T 2m−r ×G is strong HKT.

Proof. Consider the left-invariant connection ∇ on T 2m−r × G such that all left-invariant vector
fields are parallel. Since the metric g and the hypercomplex structure (I1, I2, I3) on T 2m−r ×G are
left-invariant they are preserved by ∇. The torsion tensor is T∇(X,Y ) = −[X,Y ], therefore

c(X,Y, Z) = −B([X,Y ], Z) (2.13)

which is known to be antisymmetric, i.e. a 3-form. It follows that the Bismut connections of I1, I2 and
I3 all coincide with ∇. Therefore the metric g is HKT. To see that it is strong simply compute the
exterior differential of c:

dc(X,Y, Z,W ) = c([X,Y ], Z,W )− c([X,Z], Y,W ) + c([X,W ], Y, Z)
+ c([Y,Z], X,W )− c([Y,W ], X, Z) + c([Z,W ], X, Y )

using the Jacobi identity and (2.13) we obtain

dc(X,Y, Z,W ) = c([X,Y ],W,Z) + c([Z,W ], X, Y ) = c(Z,W, [Y,X])− c(Y,X, [Z,W ]) = 0

as desired.

For instance the list of compact simple Lie groups yields the following list of strong HKT Lie
groups:

SU(2k+1) , T 1×SU(2k) , T k×SO(2k+1) , T 2k×SO(4k) , T 2k−1×SO(4k+2) , T k×Sp(k) ,

T 2 × E6 , T 7 × E7 , T 4 × F4 , T 2 ×G2 .

Example 2.15. Let us give some details for the case of SU(3). In example 2.10 we described the
homogeneous hypercomplex structure in terms of a basis of the Lie algebra su(3) = 〈X1, . . . , X8〉.

Let (X1, . . . , X8) be the dual basis of (X1, . . . X8) and let

Z1 = 1
2(X1 + iX2) , Z2 = 1

2(X3 + iX4) , Z3 = −1
2(X5 + iX6) , Z4 = 1

2(X7 + iX8)

be the induced unitary coframe with respect to (g, I), where g =
∑8
k=1X

k ⊗Xk. The HKT form can
then be expressed as

Ω = Z12 + Z34 .

To check that this is ∂-closed we compute the non-zero brackets of vectors in {X1, . . . , X8}. They
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are

[X5, X6] = X1 +X2 , [X7, X8] = X2 −X1 , [X3, X4] = 2X2 ,

1
2 [X2, X4] = [X5, X7] = −[X6, X8] = −X3 ,

1
2 [X2, X3] = −[X5, X8] = −[X6, X7] = X4 ,

1
3 [X1, X6] = [X2, X6] = −[X3, X7] = −[X4, X8] = −X5 ,

1
3 [X1, X5] = [X2, X5] = −[X3, X8] = [X4, X7] = X6 ,

1
3 [X1, X8] = −[X2, X8] = −[X3, X5] = −[X4, X6] = X7 ,

1
3 [X1, X7] = −[X2, X7] = −[X3, X6] = [X4, X5] = −X8 ,

therefore we have

∂Z1 = 0 , ∂Z2 = −2Z12 − 2Z34 , ∂Z3 = −(1 + 3i)Z13 , ∂Z4 = (3i− 1)Z14

and Ω = − 1
2∂Z

2 is evidently HKT.

Barberis and Fino [30] gave an interesting procedure that allows to construct new HKT Lie
algebras starting from others of half the dimension by using quaternionic representations. The strong
(respectively, weak, hyperkähler, balanced) condition is preserved under this construction. Many new
examples can be produced applying their technique.

A remarkable family of left-invariant examples was detected by Dotti and Fino [112]. Let us quickly
recall that a complex structure I on a Lie algebra g is called abelian if g1,0 (and thus g0,1) is abelian.
Equivalently I is “orthogonal” with respect to the Lie bracket: [I·, I·] = [·, ·]. A hypercomplex structure
(I, J,K) on g is called abelian if each of I, J,K is abelian.

Dotti and Fino observed that every abelian hypercomplex structure on a (non-abelian) Lie group G
gives rise to a left-invariant weak HKT structure on G. Under the construction of Barberis and Fino
[30] abelianness of the hypercomplex structure is never preserved, unless the quaternionic representation
used to produce the new example is trivial. We will investigate the properties of these special kind of
hypercomplex structures later in Section 3.2 for the time being we limit ourselves to observe that this
kind of structures is in certain sense complementary to those found by Joyce, indeed they can only
occur on solvable Lie groups which cannot be compact, unless they are tori. More precisely, we have
the following result of Anatol̄ı̆ı Petravchuk [242]:

Proposition 2.16. If g admits an abelian complex structure then it is 2-step solvable.

Proof. Let A = g1,0 and B = g0,1. Since A and B are abelian it is enough to prove that

[[A,B], [A,B]] = 0 .

Take arbitrary a1, a2 ∈ A and b1, b2 ∈ B and write [a1, b2] = a3 + b3, [a2, b1] = a4 + b4 with a3, a4 ∈ A
and b3, b4 ∈ B. The computation is just a multiple usage of Jacobi’s identity and the fact that A and
B are abelian:

[[a1, b1], [a2, b2]] = [[[a1, b1], a2], b2]− [[[a1, b1], b2], a2] = −[[[b1, a2], a1], b2] + [[[b2, a1], b1], a2]
= [[b4, a1], b2]− [[a3, b1], a2] = −[[a1, b2], b4] + [[b1, a2], a3] = −[a3, b4]− [b4, a3] = 0 ,

which is the desired identity.

Example 2.17. Dotti and Fino [110] classified non-abelian 8-dimensional 2-step nilpotent Lie groups
admitting an abelian hypercomplex structure. The only such groups are

N1 = H1(2)× R3 , N2 = H2(1)× R2 , N3 = H3(1)× R ,
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where Hi(n) denotes the real (i = 1), complex (i = 2), and quaternionic (i = 3) Heisenberg group:

H1(n) =


1 a b

0 1n
tc

0 0 1

 | a, c ∈ Rn , b ∈ R
 , H2(n) =


1 v w

0 1n
tz

0 0 1

 | v, z ∈ Cn , w ∈ C
 ,

H3(n) =


1 p Im(q)− 1

2‖p‖
2

0 1n −tp̄
0 0 1

 | p ∈ Hn , q ∈ H
 .

Each Ni contains a canonical co-compact lattice Γi by taking integer coordinates, hence the nilmanifolds
Mi = Γi\Ni are compact HKT.

We also remark that Dotti and Fino extended their result by classifying hypercomplex 8-dimensional
nilpotent Lie algebras [113].

Other examples were obtained by Verbitsky [302] as a by-product of hyperholomorphic bundles.

Finally, we mention some examples of hypercomplex manifolds not admitting any HKT structure.
Such manifold were initially conjectured not to exist, but the first example came from Fino and
Grantcharov [124] using a symmetrization procedure to obtain left-invariant structures from non-
invariant ones. Other examples and new obstructions to the existence of HKT metrics followed, for
instance in [29, 146, 208, 264]. We cannot fail to mention the remarkable twist construction due to
Swann [278, 279], its argument allowed to construct the first simply-connected compact hypercomplex
manifolds not admitting any HKT metric.

2.2 Potentials, cohomology and canonical bundles.
In this section we report on some basic results in HKT geometry. After some analytic preliminaries
dealing with the notions of quaternionic Hessian and Laplacian, we overview the theory of HKT
potentials whose existence was proved by Banos and Swann [27]. After this, we recall the cohomological
results of Verbitsky [301] who exploited an analogy between the Kähler and HKT worlds to investigate
Hodge theory. Finally, we report on the interplay between the holonomy of the Obata connection, the
existence of holomorphic sections of the canonical bundle and the existence of a balanced HKT metric.

2.2.1 Quaternionic analysis.

The twisted Dolbeault operator.

On a hypercomplex manifold (M, I, J,K) there are two important differential operators acting on
forms. The first is the usual Dolbeault operator ∂ which we will always consider with respect to I. If
one wishes to study complex cohomology then ∂ can be paired with its conjugate ∂̄. However, we are
of course interested in the whole hypercomplex structure (I, J,K), therefore there is another operator
which is of the utmost importance for us, which is obtained by twisting ∂̄ via J . We call

∂J := J−1∂̄J

the twisted Dolbeault operator, being ∂̄ taken with respect to I.

Let us remark a few facts regarding the operator ∂J . We claim that since J anticommutes with I
it switches the type of forms, i.e. J : Λp,qI (M)→ Λq,pI (M). We first prove that J : T 1,0M → T 0,1M as
for any X ∈ TM

J(X − iIX) = JX − iJIX = JX + iIJX
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is clearly of type (0, 1). Since J preserves the wedge product it is enough to show the claim for
(1, 0)-forms. Let α ∈ Λ1,0(M) and Z ∈ T 0,1M , then

I(Jα)(Z) = α(JIZ) = −α(IJZ) = −iα(JZ) = −i(Jα)(Z) ,

i.e. Jα ∈ Λ0,1(M).
As a consequence of the claim ∂J sends (p, q)-forms to (p+ 1, q)-forms, just like ∂. Furthermore,

the pair of operators (∂, ∂J) resembles very closely the pair (d, dc) in complex geometry, for instance
we have the following:

Proposition 2.18. An almost hypercomplex manifold (M, I, J,K) is hypercomplex if and only if the
operators ∂, ∂̄, ∂J , ∂̄J := ∂J = J−1∂J square to zero and anticommute with each other.

Proof. Since
∂ = 1

2(d+ idcI) , ∂̄ = 1
2(d− idcI)

we also have
∂J = 1

2(dcJ + idcK) , ∂̄J = 1
2(dcJ − idcK) .

The proposition is thus just a consequence of the fact that integrability of I, J and K is equivalent to
(dcI)2 = (dcJ)2 = (dcK)2 = 0 or ddcI + dcId = ddcJ + dcJd = ddcK + dcKd = 0 (which is also equivalent to
dcId

c
J + dcJd

c
I = dcJd

c
K + dcKd

c
J = dcKd

c
I + dcId

c
K = 0).

Real and positive forms.

In this section we discuss the notion of q-realness and q-positivity for differential forms. These concepts
were introduced and studied by Alesker and Verbitsky [11, 17, 308] in complete analogy to the notion
of positive forms in complex geometry.

Let (M, I, J,K) be an hypercomplex manifold and recall that the anticommutation property of
I and J implies that J sends (p, q)-forms to (q, p)-forms (with respect to I). Composing with the
complex conjugation we obtain the operator

J := J ◦¯: Λp,q(M)→ Λp,q(M) .

Furthermore J 2|Λp,q(M) = (−1)p+q Id, therefore when p+ q is even J is an involution of Λp,q(M). The
eigenbundle of J corresponding to the eigenvalue 1 is of particular interest.

Definition 2.19. Let p+ q be even. A form α ∈ Λp,q(M) is called quaternionic real (shortly q-real)
if Jα = α.

We shall be primarily concerned with forms of type (2k, 0). In this case q-realness can be
characterized as follows: α ∈ Λ2k,0(M) is q-real if and only if α(Z1,JZ1, . . . , Zk,JZk) is real for any
Z1, . . . , Zk ∈ Γ(T 1,0M). The equivalence follows from the identity

Jα(Z1,JZ1, · · · , Zk,JZk) = ᾱ(JZ1, J
2Z̄1, · · · , JZk, J2Z̄k) = α(Z1,JZ1, · · · , Zk,JZk) .

This allows to define a notion of positivity for q-real (2k, 0)-forms:

Definition 2.20. A q-real form α ∈ Λ2k,0(M) is called quaternionic (semi)positive (shortly
q-(semi)positive) if

α(Z1,JZ1, · · · , Zk,JZk) > 0 (≥ 0)

for every non-vanishing Z1, . . . , Zk ∈ T 1,0M . Equivalently,

α(X1, JX1, . . . , Xk, JXk) > 0 (≥ 0)

for every non-vanishing X1, . . . , Xk ∈ TM .
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The equivalence of the two conditions is easily obtained by writing Zj = Xj − iIXj for Xj ∈ TM
and j = 1, . . . , k and using that α is of type (2k, 0) so that

α(Z1,JZ1, · · · , Zk,JZk) = 4kα(X1, JX1, · · · , Xk, JXk) .

The terminology we adopt may differ from the most common one used in literature. For instance
semi-positivity is generally called weak positivity and our notion of positivity is mainly called strict
weak positivity.

Example 2.21. Given any (1, 0)-form β the form −β ∧ J β is always q-positive. More generally any
(2k, 0)-form of the type (−β1 ∧ J β1) ∧ · · · ∧ (−βk ∧ J βk) for βj ∈ Λ1,0(M) is q-positive.

This definition of positivity for q-real (2n, 0)-forms agrees with the natural orientation on the
bundle of q-real (2n, 0)-forms. To see this, fix a point x ∈M and choose a basis (e1, . . . , en) of TxM
as a left H-module, then z2j−1 = ej + iIej , z2j = J z2j−1 = Jej + iKej form a complex basis and the
corresponding coframe (dz1, . . . , dz2n) induces the orientation form

Θ = dz1 ∧ · · · ∧ dz2n

which is q-positive by Example 2.21. Choose another basis (f1, . . . , fn) on TxM inducing the complex
coframe (dw1, . . . , dw2n) in the same fashion as before. Since the bases (e1, . . . , en) and (f1, . . . , fn)
are related by a map A ∈ AutH(TxM) ∼= GL(n,H) the corresponding complex bases (z1, . . . , z2n),
(w1, . . . , w2n) are related by β(A), where β : Hn,n → C2n,2n is the representation of Subsection 1.1.2.
Therefore we get

dw1 ∧ · · · ∧ dw2n = det(β(A))Θ = Sdet(A)Θ

and the Study determinant always takes positive values. This shows that the announced orientation is
intrinsic.

It is not hard to check that a q-real (2k, 0)-form α is q-positive if and only if

α ∧ (−β1 ∧ J β1) ∧ · · · ∧ (−βn−k ∧ J βn−k)

is a positive orientation form for every β1, . . . , βn−k ∈ Λ1,0(M).
Take a hyperhermitian metric g on (M, I, J,K), then we can take into account the form Ω ∈ Λ2,0(M)

defined in (2.10), since JωJ = ωJ and JωK = −ωK the form Ω is q-real. But it is also q-positive:

Ω(Z,JZ) = g(JZ, JZ̄) + ig(KZ, JZ̄) = g(Z, Z̄)− ig(IZ, Z̄) = 2|Z|2g .

Therefore any hyperhermitian metric induces a q-positive (2, 0)-form and the converse is also true,
indeed if Ω is such a form, we can define a metric polarizing the quadratic form Q(X) = Ω(X, JX), i.e.

g(X,Y ) := 1
2
(
Ω(X + Y, J(X + Y ))− Ω(X, JX)− Ω(Y, JY )

)
= 1

2
(
Ω(X, JY ) + Ω(Y, JX)

)
.

Such expression is clearly symmetric, moreover g is real-valued because Ω is q-real, it is I-Hermitian
because Ω is of type (2, 0):

g(IX, IY ) = 1
2
(
Ω(IX, JIY ) + Ω(IY, JIX)

)
= −1

2
(
Ω(IX, IJY ) + Ω(IY, IJX)

)
= g(X,Y )

and it is clearly J-Hermitian:

g(JX, JY ) = 1
2
(
Ω(JX, J2Y ) + Ω(JY, J2X)

)
= g(X,Y )

therefore it is also K-Hermitian:

g(KX,KY ) = g(IJX, IJY ) = g(JX, JY ) = g(X,Y ) ,

Finally, g is positive (semi)definite if and only if Ω is q-(semi)positive, because g(X,X) = Ω(X, JX).
We thus have showed:
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Theorem 2.22 (Alesker-Verbitsky [17]). On a hypercomplex manifold (M, I, J,K) there is a one-to-one
correspondence between the bundle of (real parts of) hyperhermitian forms on TM and the bundle of
q-real (2, 0)-forms on M . Such correspondence is explicitly given by

{hyperhermitian forms on TM} → {q-real (2, 0) forms on M}
g 7→ g(J ·, ·) + ig(K·, ·)

1
2
(
Ω(·, J ·)− Ω(J ·, ·)

)
←[ Ω

Furthermore a hyperhermitian form is positive (semi)definite if and only if the corresponding (2, 0)-form
is q-(semi)positive.

In view of this correspondence the form Ω defined in (2.10) completely determines the metric,
therefore we shall often forget the metric and refer to (M, I, J,K,Ω) as a (almost) hyperhermitian
manifold.

Quaternionic Hessian.

Take real coordinates (xrp), p = 0, 1, 2, 3, r = 1, . . . n, on R4n ∼= Hn corresponding to quaternionic
coordinates:

qr :=
3∑
p=0

xrp ep ,

where, in order to simplify the notation, we denote the unit quaternions 1, i, j, k with e0, e1, e2, e3.
We can then introduce the quaternionic derivatives ∂q̄r and ∂qs , sometimes also called Cauchy-

Riemann-Fueter operators, acting on smooth H-valued functions as follows

∂q̄ru :=
3∑
i=0

ei ∂xr
i
u , ∂qru := ∂xr0u e0 −

3∑
i=1

∂xr
i
u ei ;

The operators ∂qr and ∂q̄s commute, but they do not satisfy the Leibniz rule nor the chain rule, so
care must be taken during computations.

For any real-valued u : Hn → R, the matrix of second derivatives

HessHu := 1
4(∂q̄r∂qsu)r̄s

is called the quaternionic Hessian of u. The reason of the normalization constant 1
4 will become clear

in the future (cf. Lemma 2.23). This is a hyperhermitian matrix, because ∂q̄r and ∂qs commute.
Using the vector fields ∂qr corresponding in the natural way to the operator ∂qr we can locally regard

every q-real (2, 0)-form Ω on M as a hyperhermitian matrix (Ωr̄s) ∈ Hyp(n). Indeed, Ω corresponds
bijectively to a hyperhermitian form g, which we can extend H-sesquilinearly, i.e.

g(λX, Y ) = λ̄g(X,Y ) , g(X,λY ) = g(X,Y )λ , for every λ ∈ H , X, Y ∈ TM .

Then, g induces the hyperhermitian matrix gr̄s := g(∂qr , ∂qs).
Observe that on a hypercomplex manifold (M, I, J,K) for any real-valued u ∈ C∞(M,R) the

(2, 0)-form ∂∂Ju is q-real:

J∂∂Ju = J∂̄J−1∂u = −J−1∂̄J∂u = −∂J∂u = ∂∂Ju .

The hyperhermitian matrix associated to ∂∂Ju whenever M is locally flat, is the quaternionic Hessian:

Lemma 2.23. Let (M, I, J,K) be a locally flat hypercomplex manifold, u ∈ C∞(M,R). Then the
hyperhermitian matrix associated to ∂∂Ju is HessHu. In particular ∂∂Ju is q-(semi)positive if and only
if HessHu is (semi)positive definite.
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For a proof see [17].

Without the assumption of local flatness there is no possibility to construct the quaternionic Hessian
in the sense above, however the hyperhermitian form associated to ∂∂Ju can still be viewed as an
Hessian:

Lemma 2.24. Let (M, I, J,K) be a hypercomplex manifold, u ∈ C∞(M,R) and h the hyperhermitian
form associated to ∂∂Ju (via Theorem 2.22). Then

h = 1
4(1 + I + J +K)∇2u ,

where ∇2u is the Hessian of u with respect to the Obata connection.

Proof. Since both sides of the identity are hyperhermitian forms, it is enough to show it along the
diagonal, i.e. h(X,X) = 1

4 (1 + I + J +K)∇2u(X,X) for each X ∈ Γ(TM). Clearly

4h(X,X) = 4∂∂Ju(X, JX) = (d+idcI)(dcJ+idcK)u(X, JX) = (ddcJ + dcKd
c
I + iddcK + idcId

c
J)u(X, JX) .

We now treat the first term separately

ddcJu(X, JX) = dJ−1du(X, JX) = −dJdu(X, JX)
= −X(Jdu(JX)) + JX(Jdu(X)) + Jdu([X, JX])
= ∇X(∇Xu) +∇JX(∇JXu) +∇J[X,JX]u

= ∇X(∇Xu) +∇JX(∇JXu) +∇J∇XJXu−∇J∇JXXu
= ∇2u(X,X) +∇2u(JX, JX)

where we used that ∇ is torsion-free and ∇J = 0. With a similar computation we arrive at the
identities

dcKd
c
Iu(X, JX) = ∇2u(IX, IX) +∇2u(KX,KX) ,

ddcKu(X, JX) = ∇2u(X, IX) +∇2u(JX,KX) ,
dcId

c
Ju(X, JX) = −∇2u(X, IX)−∇2u(JX,KX)

which imply the result.

It will be convenient to have the explicit pointwise expression of ∂∂Ju in holomorphic coordinates
(z1, . . . , z2n) around some given point. We may assume that Jdz2k−1 = −dz̄2k for k = 1, . . . , n, then

∂∂Ju =∂J−1∂̄u = ∂J−1
2n∑
r=1

ur̄dz̄
r = ∂

2n∑
r=1

(−1)ru
r−(−1)rdz

r =
2n∑

r,s=1
(−1)ru

s r−(−1)rdz
s ∧ dzr

=
n∑

r,s=1
(u2s−1 2r−1 + u2r 2s)dz

2s−1 ∧ dz2r +
∑
s<r

(u2r−1 2s − u2s−1 2r)dz
2s−1 ∧ dz2r−1

+
∑
s<r

(u2s 2r−1 − u2r 2s−1)dz2s ∧ dz2r

in particular, at a point where the complex Hessian (usr̄) is diagonal we have

∂∂Ju =
n∑
r=1

(u2r−1 2r−1 + u2r 2r)dz
2r−1 ∧ dz2r (2.14)

We can also link the nth wedge power of ∂∂Ju with the Moore determinant of the quaternionic
Hessian:

(∂∂Ju)n = det(HessHu) Ωn .
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For future reference we establish a more general result involving the elementary symmetric functions
σr. Recall that for each r = 1, . . . , n

σr(λ) =
∑

1≤i1<···<ir≤n
λi1 · · ·λir , for all λ = (λ1, . . . , λn) ∈ Rn .

Lemma 2.25. Let (M, I, J,K, g,Ω) be a locally flat hyperhermitian manifold. Let λ = (λ1, . . . , λn) be
the n-tuple of eigenvalues of HessHu with respect to g, where u : M → R. Then(

n

k

)
(∂∂Ju)k ∧ Ωn−k

Ωn = σk(λ) .

Proof. We work in holomorphic coordinates (z1, . . . , z2n) at a point where (the hermitian matrix
associated to) g is half of the identity and the complex Hessian of u is diagonal. Let qr = z2r−1 + jz2r

be quaternionic coordinates. If the complex Hessian is diagonal, then so is the quaternionic Hessian,
because in general for a real-valued u it takes the form

HessHu = 1
4∂q̄

r∂qsu = (∂z̄2r−1 + j∂z̄2r )(∂z2s−1 − j∂z̄2s)u = u2r−1 2s−1 + u2r 2s + j(u2r 2s−1 − u2r−1 2s) .

This implies, by using (2.14), that Ω and ∂∂Ju at the given point take the form

Ω =
n∑
i=1

dz2i−1 ∧ dz2i , ∂∂Ju =
n∑
i=1

λidz
2i−1 ∧ dz2i .

With these assumptions we compute

(∂∂Ju)k ∧ Ωn−k =
∑

{i1,...,ik,j1,...,jn−k}={1,...,n}

λi1 · · ·λikdz2i1−1 ∧ dz2i1 ∧ · · · ∧ dz2jn−k−1 ∧ dz2jn−k

= (n− k)!
n∑

i1,...,ik=1
i1,...,ik distinct

λi1 · · ·λikdz1 ∧ · · · ∧ dz2n

= (n− k)!k!
n!

∑
1≤i1<···<ik≤n

λi1 · · ·λikΩn = 1(
n
k

)σk(λ)Ωn

which is the desired formula.

Quaternionic Laplacian.

A straightforward verification shows that the diagonal elements of the quaternionic Hessian of a
function u : Hn → R are ∂q̄r∂qru =

∑3
p=0 ∂

2
xrp
u, in particular the trace of the quaternionic Hessian is,

up to a constant, the usual Laplacian:

tr(HessHu) = 1
4

n∑
r=1

∂q̄r∂qsu = 1
4

n∑
r=1

3∑
p=0

∂2
xrp
u = 1

4∆u .

As observed in the first chapter the trace of a hyperhermitian matrix coincides with the sum of the
eigenvalues. So, the Laplacian represents the sum of the eigenvalues of the quaternionic Hessian.

If the inner product g is not the standard one, the trace of HessHu with respect to g need not be
real, and in order to retain the interpretation of the Laplacian as the sum of the eigenvalues we need
to take the real part. Let us explain this point in more detail. If G,B ∈ Hyp(n) are hyperhermitian
matrices then A = G−1B is hyperhermitian with respect to G, i.e. A = G−1A∗G. In this case the
eigenvalues of A are still well-defined and real, but the trace of A is in general no longer real, however,
it is straightforward to verify that Re tr(A) = Re trG(B) is still the sum of the eigenvalues of A.
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We thus may define the quaternionic Laplacian ∆g on Hn with respect to the inner product g on
Hn to be the operator acting on smooth functions u : Hn → R as

∆gu := Re trg(HessHu) = Re tr(G−1HessHu) ,

where G is the hyperhermitian matrix associated to g.

All of the above has of course a local definition on locally flat hyperhermitian manifolds, once we
have chosen a coordinate neighborhood corresponding to quaternionic local coordinates. However,
there is also an intrinsic description, thanks to Lemma 2.25, which allows to generalize the concept on
hyperhermitian manifolds that are not locally flat.

Definition 2.26. On a hyperhermitian manifold (M, I, J,K, g,Ω) the quaternionic Laplacian with
respect to g is the second order linear operator

∆gu := n
∂∂Ju ∧ Ωn−1

Ωn .

From Lemma 2.24 and Lemma 2.25 we can also express the quaternionic Laplacian as the Laplacian
of the Obata connection:

Corollary 2.27. On a hyperhermitian manifold (M, I, J,K, g,Ω)

∆gu = trg(∇2u) ,

where trg(∇2u) =
∑4n
k=1∇2u(ek, ek), where ek is an adapted orthonormal basis with respect to g, i.e.

e4r−2 = Ie4r−3, e4r−1 = Je4r−r, e4r = Ke4r−3 for r = 1, . . . , n. In particular, the quaternionic
Laplacian is a uniformly elliptic operator.

Proof. The expression for ∆g is clear. To see that it is an elliptic operator we compute its symbol
σ∆g

: T ∗M → R:
σ∆g

(ξ) = gijξiξj = |ξ|2g , for all ξ ∈ T ∗M ,

therefore ∆g is uniformly elliptic with ellipticity constant 1.

Unfortunately, in general, the quaternionic Laplacian is not self-adjoint (with respect to the L2

product), and its integral does not vanish. However, under the additional assumption that the canonical
bundle KM of (M, I) allows a q-positive holomorphic trivialization the quaternionic Laplacian indeed
satisfies these properties. We will discuss in detail the existence of a q-positive holomorphic section of
KM in subsection 2.2.4.

Lemma 2.28. Let (M, I, J,K, g,Ω) be a compact hyperhermitian manifold such that KM admits a
q-positive holomorphic global section Θ. Then, for any u, v ∈ C∞(M,R)∫

M

∆guΩn ∧ Θ̄ = 0

and ∫
M

∆guvΩn ∧ Θ̄ =
∫
M

u∆gvΩn ∧ Θ̄ .

Proof. First, let us observe that Ωn ∧ Θ̄ is a positive real volume because J acts trivially on top forms
and Ω and Θ are q-real:

Ωn ∧ Θ̄ = Ω̄n ∧Θ = JΩn ∧ JΘ̄ = J(Ωn ∧ Θ̄) = Ωn ∧ Θ̄ .

Now, using the definition of ∆g, integration by parts and Stokes’ Theorem we have∫
M

∆guΩn ∧ Θ̄ =
∫
M

∂∂Ju ∧ Ωn−1 ∧ Θ̄ =
∫
M

∂
(
∂Ju ∧ Ωn−1 ∧ Θ̄

)
+
∫
M

∂Ju ∧ ∂(Ωn−1 ∧ Θ̄) = 0 ;
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where, ∂(Ωn−1 ∧ Θ̄) = (n− 1)∂Ω ∧ Ωn−2 ∧ Θ̄ + Ωn−1 ∧ ∂Θ̄ = 0 because of the HKT condition on Ω
and the holomorphicity of Θ.

Similarly, one can observe (again using that J acts trivially on top forms) that ∂J essentially
behaves as ∂ and satisfies Stokes’ Theorem, hence∫
M

∆guvΩn ∧ Θ̄ =
∫
M

v∂∂Ju ∧ Ωn−1 ∧ Θ̄ = −
∫
M

∂v ∧ ∂Ju ∧ Ωn−1 ∧ Θ̄ = −
∫
M

u∂J∂v ∧ Ωn−1 ∧ Θ̄

=
∫
M

u∂∂Jv ∧ Ωn−1 ∧ Θ̄ =
∫
M

u∆gvΩn ∧ Θ̄

and the lemma is proved.

2.2.2 HKT potentials.

Definition of HKT potential.

The notion of a potential for HKT forms was proposed by Grantcharov and Poon [148] in analogy to
the usual Kähler potential. If (M, I, g) is a Kähler manifold with Kähler form ω = g(I·, ·) a (possibly
local) potential function for ω is a function u such that

ω = i∂∂̄u = 1
2dd

cu .

If (M, I, J,K, g) is hyperkähler then we have three Kähler forms and a function u is a hyperkähler
potential if it is a potential for each of them, i.e.

ωI = 1
2dd

c
Iu , ωJ = 1

2dd
c
Ju , ωK = 1

2dd
c
Ku .

Definition 2.29. Let (M, I, J,K,Ω) be a HKT manifold. A (possibly local) potential for the HKT
form (or the HKT metric) is a smooth real-valued function u such that

Ω = ∂∂Ju .

The definition is equivalent to require g = 1
4 (1 + I + J +K)∇2u by Lemma 2.24 and this holds if

and only if any of the following expressions holds:

ωI = 1
4 (ddcI + dcJd

c
K)u , ωJ = 1

4 (ddcJ + dcKd
c
I)u , ωK = 1

4 (ddcK + dcId
c
J)u . (2.15)

Seeing that all expressions in (2.15) are equivalent is just a matter of calculations by expanding the
terms, the equivalence with Definition 2.29 is immediate as

∂∂Ju = 1
4(d+ idcI)(dcJ + idcK)u = 1

4 (ddcJ + dcKd
c
I + iddcK + idcId

c
J)u .

The identities (2.15) imply (after a short computation) that a hyperkähler potential is in particular
an HKT potential.

Example 2.30. On the flat space Hn the standard hyperhermitian metric g admits as HKT potential
the function

u : q = (q1, . . . , qn) 7→ 1
2‖q‖

2 = 1
2

n∑
j=1
|qj |2 ,

indeed, this is actually an hyperkähler potential. Take holomorphic coordinates (z1, . . . , z2n) such that
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qj = z2j + z2j+1j then u(q) = 1
2
∑2n
j=1 |zj |2 and by (2.14) we conclude

∂∂Ju = 1
2∂∂J

 2n∑
j=1

zj z̄j

 =
n∑
j=1

dz2j−1 ∧ dz2j = Ω .

Existence of local potentials.

Proposition 2.31. Every hypercomplex manifold (M, I, J,K) locally admits a HKT metric.

Proof. Let u be a local Kähler potential for (M, I), then g = 1
2dd

c
Iu(·, I·) is a I-Hermitian metric with

respect to which (2.15) holds and thus Ω = ωJ + iωK = ∂∂Ju locally.

On the other hand global potentials do not always exist, for instance they never occur on compact
manifolds, as follows from a standard argument involving the maximum principle. Indeed, if u were
a global HKT potential of a HKT metric g on a compact hypercomplex manifold (M, I, J,K), then
setting Ω = ∂∂Ju for the corresponding HKT form we would have

∆gu = n
∂∂Ju ∧ Ωn−1

Ωn ≡ n ≥ 0 .

Since the quaternionic Laplacian is a second order linear elliptic operator without free term, by the
maximum principle u must be constant, which is a contradiction.

In order to give an idea of the proof that on HKT manifolds local potentials always exist, we need
to introduce the Salamon complex. Let (M, I, J,K) be an almost hypercomplex manifold and let S2 be
the sphere of almost complex structures on M . While investigating the structure of the more general
class of quaternionic manifolds, Salamon [252] introduces the bundles

Ak(M) :=
∑
L∈S2

Λk,0L T ∗M , Bk(M) :=
⋂
L∈S2

(
Λk−1,1
L T ∗M ⊕ · · · ⊕ Λ1,k−1

L T ∗M
)
.

Observe that for each L ∈ S2 also −L ∈ S2 and Λk,0−LT ∗M = Λ0,k
L T ∗M . Clearly

Λk(M) = Ak(M)⊕Bk(M) ,

where we are denoting in the same way the bundles Ak(M) and Bk(M) and the relative spaces of
sections. Let π : Λk(M)→ Ak(M) be the orthogonal projection and consider the composition

D := π ◦ d : Ak(M)→ Ak+1(M) . (2.16)

Theorem 2.32. The almost hypercomplex structure is hypercomplex if and only if

0 // A0 D=d // A1 D // · · · // A2n // 0 (2.17)

is a complex, i.e. D2 = 0. In this case we call (2.17) the quaternionic Dolbeault complex or the
Salamon complex and (2.16) the Salamon differential.

We remark the analogy with the corresponding result for an almost complex structure and the
corresponding Dolbeault operator ∂̄.

Assume from now on that (I, J,K) is hypercomplex. For simplicity we shall work with the complex
structure I, but the following would work taking any L ∈ S2. Setting Ap,qI (M) = Ap+q(M) ∩ Λp,qI (M)
we deduce the Hodge decomposition

Ak(M) =
⊕
p+q=k

Ap,qI (M) . (2.18)
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Observe that Ap,0I (M) = Λp,0I (M). More generally, Verbitsky proved in [304] using a slightly different
formalism that Ap,qI (M) is isomorphic to Λp+q,0I (M). Actually, he proves more: let us split the Salamon
differential D = D1,0 +D0,1 according to the Hodge decomposition (2.18), i.e.

D1,0 : Ap,qI (M)→ Ap+1,q
I (M) , D0,1 : Ap,qI (M)→ Ap,q+1

I (M) ,

then the Salamon complex, after Hodge decomposition, becomes a bicomplex (A•,•I (M), D1,0, D0,1)
and this is isomorphic to the complex (Λ•,0I (M), ∂, ∂J). In view of the result of Verbitsky Theorem
2.32 can be seen as a consequence of Proposition 2.18.

After some partial results [226, 247] Banos and Swann were able to prove the following local
∂∂J -lemma thus establishing existence of local HKT potentials:

Theorem 2.33 (Banos-Swann [27]). Let (M, I, J,K) be a hypercomplex manifold. A q-real form
Ω ∈ Λ2,0(M) can be written locally as

Ω = ∂∂Ju

for some smooth real-valued local function u, if and only if it is HKT, i.e. ∂Ω = 0.

Sketch of proof. The only if part is obvious. By [301, Theorem 5.7] (see also [27]) Ω is HKT if and only
if DωI = 0, where D is the Salamon differential. The converse is thus a consequence of the following
two facts:

• Any D-closed form is locally D-exact.
• A HKT form admits a local potential if and only if ωI is locally D-exact.

The first fact is due to Mamone Capria and Salamon [221] and uses twistor theory (see also [27]). The
second is proved as follows. If Ω = ∂∂Ju, then ωI = 1

2 (dη − Jdη), where η = 1
2d
c
Iu. Since dη = 1

2dd
c
Iu

is a (1, 1)-form with respect to I

Dη = π(dη) = (dη)2,0 + (dη)0,2 + 1
2
(
(dη)1,1 − J(dη)1,1) = 1

2 (dη − Jdη) = ωI .

Conversely, if ωI = Dη for some η, we must have ωI = 1
2 (dη − Jdη), because ωI is of type (1, 1),

in particular also dη ∈ Λ1,1(M). From the local ddcI -lemma, there exists a local function u such that
dη = 1

2dd
c
Iu, implying the claim.

2.2.3 The Dolbeault differential graded algebra of HKT manifolds.
We already observed that the triple (Λ•,q(M), ∂, ∂J) forms a cochain complex for every fixed q. This
slightly differs from the complex case, as here we obtain a single complex, while in the complex setting
∂ and ∂̄ give rise to a double complex. In this subsection we shall study such cochain complex in detail
when q = 0.

Kodaira relations.

There is a deep analogy between (Λ•,0(M), ∂) and the de Rham differential graded algebra of a Kähler
manifold. The role of the de Rham differential is played by the Dolbeault differential on Λ•,0(M) and
the Kähler form is replaced by the (2, 0)-form Ω. The existence of the non-degenerate ∂-closed form Ω
naturally leads to consider the Lefschetz operator L = LΩ = Ω

2 ∧−. Recall the definition of the Hodge
star operator ∗ : Λp,q(M)→ Λ2n−q,2n−p(M) by the relation:

α ∧ ∗β̄ = g(α, β)Volg , for every α, β ∈ Λp,q(M) ,

where g here is the Hermitian product induced by the Riemannian metric on Λp,q(M) and

Volg = Ωn ∧ Ω̄n
(n!)2
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is the standard Riemannian volume form. Then we actually have a Lefschetz triple (L,Λ, H), where
Λ = ΛΩ = ∗−1L̄∗ = ∗−1LΩ̄∗ is the adjoint to L and H = [L,Λ].

Remark 2.34. The normalization of the Lefschetz operator as the wedge product with Ω/2 instead of
Ω is needed to have an actual Lefschetz triple.

The Lefschetz triple generates an sl(2,C) action on Λ•,0(M) and the following relations hold:

[L, ∂] = [L, ∂J ] = 0 , [H, ∂] = ∂ , [H, ∂J ] = ∂J .

Verbitsky uses these properties to shows that the Lie superalgebra generated by {L,Λ, H, ∂, ∂J} is iso-
morphic to the de Rham superalgebra on a Kähler manifold (M, I, ω), generated by {Lω,Λω, Hω, d, d

c
I}.

Let us recall here that a Lie superalgebra is a pair (A, [·, ·]) such that

• A is a Z2-graded vector space: A = A0⊕A1 an element a ∈ A is called pure if a ∈ A0 or A ∈ A1,
when this holds we denote deg(a) = i if a ∈ Ai;

• [·, ·] : A×A→ A is a bilinear operator which is graded anti-commutative, i.e. for pure elements
a, b ∈ A

[a, b] = ab− (−1)deg(a) deg(b)ba ,

and satisfies the graded Jacobi identity, i.e. for pure elements a, b, c ∈ A

[a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]] .

The operator [·, ·] is called supercommutator.

• The supercommutator is compatible with the grading, in the sense that if a, b ∈ A are pure, then
so is [a, b] and deg([a, b]) = deg(a) deg(b) mod Z2.

Verbitsky also considered the adjoints

∂∗ = − ∗ ∂̄ ∗ , ∂∗J = − ∗ ∂̄J∗

and obtains
[∂∗, L] = ∂J − θJ ∧ − ,

where θJ = Jθ̄ being θ the uniquely defined (1, 0)-form satisfying the relation

∂Ω̄n = θ ∧ Ω̄n .

By duality and twisting with J = J ◦¯ this yields:

Proposition 2.35. Let (M, I, J,K,Ω) be a HKT manifold. Then, the following identities hold

[L, ∂∗] = −δJ , [Λ, ∂] = δ∗J , [L, ∂∗J ] = δ , [Λ, ∂J ] = −δ∗ ,

where δ = ∂ + θ ∧ −, δJ = J−1δ̄J = ∂J − θJ ∧ −, δ∗ = − ∗ δ̄∗, δ∗J = − ∗ δ̄J∗.

The (1, 0)-form θ.

Before we continue, let us describe more in detail the form θ. Let (M, I, J,K, g,Ω) be a hyperhermitian
manifold and KM = K(M, I) = Λ2n,0(M) the canonical bundle of (M, I). Observe that KM is always
topologically trivial because the form Ω is non-degenerate and Ωn provides a nowhere vanishing global
section.

Call α the connection 1-form of the Obata connection ∇ with respect to the trivialization determined
by Ωn, in other words

∇Ωn = α⊗ Ωn

such form is real, as for any X ∈ Γ(TM)

α(X)JΩn = J∇XΩn = ∇XJΩn = ∇XΩ̄n = ᾱ(X)Ω̄n = ᾱ(X)JΩn . (2.19)
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Observe that the form θ we encountered earlier is precisely the (1, 0)-component of α, indeed, since
∇ is torsion-free the exterior differential of Ω̄n coincides with the alternation of ∇Ω̄n, i.e. let
Alt : Λ2n(M)⊗Λ1(M)→ Λ2n+1(M) denote the exterior product, then dΩ̄n = Alt(∇Ω̄n) = α∧ Ω̄n and
thus

θ ∧ Ω̄n = ∂Ω̄n = dΩ̄n = Alt(∇Ω̄n) = α ∧ Ω̄n = α1,0 ∧ Ω̄n

which means θ = α1,0.
Such a form is ∂-closed and satisfies the identity

∂θJ = ∂Jθ , (2.20)

where θJ := Jθ̄ in particular ∂Jθ is q-real. Let us start with the closure:

0 = ∂2Ω̄n = ∂(θ ∧ Ω̄n) = ∂θ ∧ Ω̄n −(((((θ ∧ θ ∧ Ω̄n ,

the identity (2.20) is equally easy:

0 = (∂∂J + ∂J∂)Ω̄n = −∂(θJ ∧ Ω̄n) + ∂J(θ∧ Ω̄n) = −∂θJ ∧ Ω̄n +���
���θJ ∧ θ ∧ Ω̄n + ∂Jθ∧ Ω̄n +���

���θ ∧ θJ ∧ Ω̄n

thus we deduce ∂Jθ − ∂θJ = 0, as desired. Finally (2.20) implies q-realness:

J∂Jθ = ∂Jθ̄ = ∂θJ = ∂Jθ .

The normalized HKT superalgebra.

The superalgebras 〈L,Λ, H, ∂, ∂J , δ∗, δ∗J〉 and 〈L,Λ, H, ∂∗, ∂∗J , δ, δJ〉 are isomorphic, however they are
distinct, hence they are not closed by the operation of duality via the Hodge star. In order to fix this,
Verbitsky considers the “normalized” superalgebra:

gθ :=
〈
L,Λ, H, ∂θ, ∂θJ , (∂θ)∗, (∂θJ)∗

〉
,

where

∂θ = ∂ + δ

2 = ∂ + 1
2θ ∧ − , ∂θJ = ∂J + δJ

2 = ∂J −
1
2θJ ∧ − ,

(∂θ)∗ = − ∗ ∂̄θ∗ = ∂∗ + δ∗

2 , (∂θJ)∗ = − ∗ ∂̄θJ∗ = ∂∗J + δ∗J
2 .

In the trivialization determined by Ωn we have seen that the Obata connection on KM can be
written as ∇ = d+ θ + θ̄. Let K1/2

M be a square root of KM determined by the above trivialization.
Then the holomorphic structure on K1/2

M is defined by the connection ∇1/2 = d+ 1
2θ+ 1

2 θ̄. Furthermore,
with the chosen trivialization, one can identify the Dolbeault complex(

Λ•,0(M)⊗K1/2
M ,∇1,0

1/2 = ∂ + 1
2θ
)

of forms with values in K1/2
M with the complex (Λ•,0(M), ∂θ). In other words, the Dolbeault differential

of K1/2
M is equal to the normalized HKT differential ∂θ.

Using the properties of θ it is easily checked that

[∂θ, ∂θ] = [∂θJ , ∂θJ ] = [∂θ, ∂θJ ] = [L, ∂θ] = [L, ∂θJ ] = 0 , [H, ∂θ] = ∂θ , [H, ∂θJ ] = ∂θJ ,

hence, once again, gθ is isomorphic to the de Rham superalgebra of a Kähler manifold and we have:

Proposition 2.36 (Misha Verbitsky [301]). Let (M, I, J,K,Ω) be a compact HKT manifold and K1/2
M

the square root of the canonical bundle constructed above via the trivialization determined by Ωn. Then
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1. The normalized Laplacians

∆∂θ := [∂θ, (∂θ)∗] = ∂θ(∂θ)∗ + (∂θ)∗∂θ , ∆∂θ
J

:= [∂θJ , (∂θJ)∗] = ∂θJ(∂θJ)∗ + (∂θJ)∗∂θJ

coincide and their kernel is identified with the cohomology of (K1/2
M ,∇1,0

1/2) (or, equivalently, of
(Λ•,0(M), ∂θ)).

2. The normalized Laplacian commutes with the action of the sl(2,C)-triple (L,Λ, H).

3. The Hard Lefschetz isomorphism Ln−i : Hi(K1/2
M )→ H2n−1(K1/2

M ) holds, as well as the Serre
duality H2n−i(K1/2

M ) ∼= Hi(K1/2
M )∗.

Other cohomological results that strengthen the parallel between Kähler and HKT geometry
have been proved. For instance, Grantcharov, Lejmi and Verbitsky [146] proved that a quaternionic
surface with holonomy of the Obata connection inside SL(2,H) is HKT if and only if H1,0(M, I) is
even-dimensional. This is the analogue of a classical result independently proved by Buchdahl [58] and
Lamari [204]. Lejmi and Weber also explored further quaternionic cohomologies [208] (see also [207])
and some obstructions they provide to the existence of HKT structures.

2.2.4 SL(n,H)-manifolds and the balanced condition.

Computations with the Hodge star operator.

Let (M, I, J,K, g,Ω) be a hyperhermitian manifold. Recall that the Hodge star operator is defined by
the relation:

α ∧ ∗β̄ = g(α, β)Ωn ∧ Ω̄n
(n!)2 , for every α, β ∈ Λp,q(M) .

It is easy to compute
∗Ω = 4

(n− 1)!n!Ω
n ∧ Ω̄n−1 .

We shall also need to compute the Hodge star of an arbitrary (1, 0)-form α. In order to perform
this calculation we first need to establish the following:

α ∧ β ∧ Ωn−1

Ωn = 1
2ng(α, Jβ̄) , for every α, β ∈ Λ1,0(M) , (2.21)

We have

α ∧ β ∧ Ωn−1 ∧ Ω̄n = g
(
α ∧ β, ∗(Ω̄n−1 ∧ Ωn)

)
Volg = (n− 1)!n!

4(n!)2 g (α ∧ β,Ω) Ωn ∧ Ω̄n (2.22)

now, we compute g (α ∧ β,Ω) in local holomorphic coordinates:

g (α ∧ β,Ω) = gij̄grs̄αiβr(J āj gsā + iK b̄
jgsb̄) = gij̄αiβr(Jrj̄ − iK

r
j̄ ) = 2g(α, Jβ̄) (2.23)

because β is of type (1, 0). So, combining (2.22) and (2.23) we obtain (2.21). It is now easy to compute
the Hodge star of a form α ∈ Λ1,0(M):

α ∧ ∗ᾱ = g(α, α)Volg = − 2n
(n!)2α ∧ Jᾱ ∧ Ωn−1 ∧ Ω̄n

so
∗α = − 2

(n− 1)!n!Jα ∧ Ωn ∧ Ω̄n−1 .
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Balanced HKT manifold.

On a Hermitian manifold (M, I, g) the Lee form is the 1-form defined by

θILee := −Id∗ωI ,

where d∗ = − ∗ d∗ is the formal adjoint of the exterior differential and ωI = g(I·, ·) is the fundamental
form of the Hermitian structure. Equivalently, the Lee form is the unique form such that dωn−1

I =
θ ∧ωn−1

I , where n is the complex dimension of M . Such form was introduced by Lee [205] and it bears
interesting properties with respect to conformal transformations. For instance, whenever θLee = 0, i.e.
ωI is coclosed we say that the Hermitian manifold is balanced. The balanced condition dωn−1

I = 0 is
the sole of the form dωkI = 0 with k < n that does not imply that ωI is Kähler [149]. Balanced metrics
have been studied extensively since the paper of Michelsohn [225]. Alessandrini and Bassanelli [19]
proved that unlike the Kähler condition balancedness is invariant under modifications. For further
references see the survey [128].

On a hyperhermitian manifold (M, I, J,K, g) we naturally have three Lee forms θILee, θ
J
Lee, θ

K
Lee.

In some circumstances they all coincide and whenever this happens we shall call the common form
θLee = θILee = θJLee = θKLee, the Lee form of the hyperhermitian manifold. This is for instance true under
the HKT assumption (see [186]). We thus call balanced HKT an HKT manifold with vanishing Lee
form.

We have already introduced the (1, 0)-form θ such that

∂Ω̄n = θ ∧ Ω̄n .

We called θ such form because it happens to be strictly related to the Lee form:

Lemma 2.37. On a HKT manifold (M, I, J,K,Ω) we have

θLee = θ + θ̄ .

Proof. Since θLee = −Jd∗ωJ = −Kd∗ωK then

d∗Ω = d∗ωJ + id∗ωK = JθLee + iKθLee = J(θLee + iIθLee) ,

on the other hand using the formulas involving the Hodge star that we proved above, and the HKT
condition (2.12) we obtain

d∗Ω = − ∗ d ∗ Ω = − 4
(n− 1)!n! ∗ d

(
Ωn ∧ Ω̄n−1) = − 4

(n− 1)!n! ∗
(
∂̄Ωn ∧ Ω̄n−1)

= − 4
(n− 1)!n! ∗

(
θ̄ ∧ Ωn ∧ Ω̄n−1) = 2Jθ̄

hence θ + θ̄ = θLee.

As a consequence we recover the following result of Verbitsky [306]:

Corollary 2.38. A HKT manifold (M, I, J,K,Ω) is balanced if and only if Ωn is holomorphic.

SL(n,H)-manifolds and their canonical bundle.

Any hyperhermitian manifold (M, I, J,K,Ω) naturally admits a trivialization of the canonical bundle
KM provided by Ωn. Hence, the canonical bundle is always topologically trivial, however, it is not, in
general holomorphically trivial. In this paragraph we present the relation between some properties of
KM (for instance flatness and more importantly holomorphic triviality) and some conditions involving
the Obata connection such as the presence of a global parallel section.

We begin with a definition. Since we can regard SL(n,H) as the intersection of GL(n,H) and
SL(2n,C) a hyperhermitian manifold admits a SL(n,H)-structure if and only if there exists a section
of KM which is parallel with respect to the Obata connection, equivalently:
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Definition 2.39. A hyperhermitian manifold (M, I, J,K,Ω) is called a SL(n,H)-manifold if the
holonomy group of the Obata connection is contained in SL(n,H).

We now prove a general lemma:

Lemma 2.40. A connection on a trivial line bundle is flat if and only if the connection 1-form is
closed. Furthermore, the bundle admits a global parallel section if and only if the connection 1-form is
exact.

Proof. Since the bundle is trivial any connection can be written as ∇ = d+ ω, where d is the trivial
connection and ω the connection 1-form. The curvature form can be expressed as R∇ = dω−ω∧ω = dω,
therefore ∇ is flat if and only if ω is closed.

Now, since the bundle is trivial any section can be seen as a function T ∈ C∞(M,R). Let T be
a nowhere vanishing parallel section, and assume it is positive, then 0 = ∇T = dT + ωT implying
ω = −T−1dT = −d(log T ), i.e. ω is exact. Conversely, if ω = df is exact the section e−f satisfies
∇e−f = de−f + dfe−f = −dfe−f + dfe−f = 0.

Proposition 2.41. On a hyperhermitian manifold (M, I, J,K,Ω) the following are equivalent:

(i) The Obata connection ∇ is Ricci-flat.
(ii) The Obata connection ∇KM induced on the canonical bundle KM = K(M, I) is flat.
(iii) ∂̄θ + ∂θ̄ = 0.
(iv) The restricted holonomy group of ∇ is contained in SL(n,H).

If Ω is HKT the above conditions are also equivalent to:

(v) The Lee form is closed.

Sketch of proof. The equivalence of (ii) and (iii) follows from the previous lemma as the connection
1-form of ∇KM is θ + θ̄. Recall that θ is ∂-closed and thus d(θ + θ̄) = ∂̄θ + ∂θ̄. Moreover, in the HKT
case θ + θ̄ = θLee (Lemma 2.37) hence the equivalence with (v) follows.

The equivalence of (i) and (iv) is proved by Alekseevsky and Marchiafava [8, Theorem 5.6].
We show that (ii) is equivalent to (iv). If a matrix A ∈ GL(n,H) acts on Hn ∼= C2n the

induced map on Λ2n,0C2n corresponds to multiplication by Sdet(A) (cf. [305]). Therefore we have
Hol0(∇KM ) = Sdet Hol0(∇), showing that Hol0(∇) ⊆ SL(n,H) = Ker(Sdet) if and only if Hol0(∇KM )
is trivial, i.e. ∇KM is flat.

As a corollary, we recover the result of Berger [36] that all hyperkähler manifolds are Ricci-flat,
indeed in this case, the Obata connection coincides with the Levi-Civita connection.

We now discuss the global counterpart of Proposition 2.41, i.e. when the full holonomy group
lies inside SL(n,H). Before we prove such a result we need to establish a preliminary lemma due to
Barberis, Dotti and Verbitsky [29, Theorem 3.2] (see also [306, Lemma 4.3] and [278, Proposition 5.4]):

Lemma 2.42. Any q-real holomorphic (2n, 0)-form on a hypercomplex manifold is parallel with respect
to the Obata connection.

Proof. Let Θ be a q-real holomorphic (2n, 0)-form and α the connection 1-form in the trivialization of
Θ, i.e. ∇Θ = α⊗Θ, where ∇ is the Obata connection. Using that ∇ is torsion-free we get

0 = ∂̄Θ = dΘ = Alt(∇Θ) = α ∧Θ = α0,1 ∧Θ .

But since Θ is q-real we see as in (2.19) that α is real, so α0,1 = 0 implies α = 0, meaning that Θ is
parallel.

Proposition 2.43. On a hyperhermitian manifold (M, I, J,K,Ω) the following are equivalent:

(i) There exists a q-positive holomorphic (2n, 0)-form on M .
(ii) θ = ∂f .
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(iii) The holonomy of the Obata connection is contained in SL(n,H).

If Ω is HKT the above conditions are also equivalent to:

(iv) The Lee form is exact.

Proof. The equivalence of (ii) and (iii) (and also (iv), if the case) follows from Lemma 2.40.
If (iii) holds there exists a parallel section Θ of KM . Observe that Θ can be assumed to be q-real,

because if it is not we can replace it with the q-real form Ψ = Θ + JΘ̄ which is parallel:

∇Ψ =��∇Θ +∇JΘ̄ = J∇Θ̄ = J∇Θ = 0 .

Being parallel it is nowhere vanishing, hence we can assume it is q-positive. Since ∇ is torsion-free we
have (∇K)0,1 = ∂̄, in particular 0 = (∇K)0,1Ψ = ∂̄Ψ. Hence (iii) implies (i).

Conversely, if Θ = fΩn is a q-positive holomorphic (2n, 0)-form we have 0 = ∂̄Θ = (∂̄f + fθ̄) ∧ Ωn,
i.e. θ = −∂(log f). Therefore (i) implies (ii).

The equivalence of (iii) and (iv) above on HKT manifolds is due to Ivanov and Petkov [186].

Corollary 2.44 (Misha Verbitsky [305]). A SL(n,H)-manifold has holomorphically trivial canonical
bundle

Verbitsky raised the question if the converse is true in general and no counterexamples are known
so far. We phrase this as a conjecture:

Conjecture 2.45. Every hyperhermitian manifold with holomorphically trivial canonical bundle KM

is SL(n,H), i.e. admits a global section of KM which is parallel with respect to the Obata connection.

The conjecture was partially confirmed by Verbitsky [305] providing a proof for compact HKT
manifolds as a consequence of the Hodge theory he developed.

Another interesting observation arises by looking at balanced HKT manifolds. By Corollary 2.38
a balanced HKT manifold has always holomorphically trivial canonical bundle, furthermore, the
trivialization is provided by Ωn which is q-positive and thus, by Proposition 2.43 the manifold is
SL(n,H). The converse is false in general, as there exist compact HKT SL(n,H)-manifolds that are
not balanced [30, Examples 6.1 and 6.2]. It is for instance true for all HKT nilmanifolds and HKT
SL(n,H)-solvmanifolds with left-invariant abelian hypercomplex structure (cf. Chapter 3). However,
all known counterexamples still admit a different HKT metric that is balanced. One is therefore led to
conjecture that this is always the case, at least in the compact setting (cf. [306]):

Conjecture 2.46. Every compact HKT SL(n,H)-manifold admits a balanced HKT metric.

We shall address this conjecture much more in detail starting from the next Section, where it will
be reinterpreted as the quaternionic analogue of the famous Calabi conjecture.

We observe here that, at least, the SL(n,H) condition implies that the metric is conformal to a
balanced hyperhermitian metric, indeed let (M, I, J,K, g,Ω) be a compact HKT SL(n,H)-manifold,
then by Proposition 2.43 θLee = df and the conformally rescaled metric g′ = e−f/(2n−1)g is still
hyperhermitian. Furthermore, all the Lee forms vanish, to see this set ω′L := g′(L·, ·) = e−f/(2n−1)ωL
for L = I, J,K, then

d(ω′L)2n−1 = d(e−fω2n−1
L ) = (θLee − df) ∧ (ω′L)2n−1 = 0 .

However, the conformal rescaling destroys the HKT condition, indeed g′ is HKT if and only if f is
constant, because Ω′ = ω′J + iω′K = e−f/(2n−1)Ω is HKT if and only if ∂f = 0, which, by compactness
of M , means that f is constant.

Let us also underline that Verbitsky [306] showed that a balanced HKT manifold (M, I, J,K,Ω)
with quaternionic dimension n ≥ 3 admits no strong HKT metric of the form Ω + ∂∂Jϕ unless
dΩ = 0 and M is hyperkähler. Thus, in view of Conjecture 2.46 we expect no strong HKT metric on
SL(n,H)-manifolds. We remark that examples of strong HKT manifold are very scarce, we are aware
of no other example than the examples of Joyce and the ones that can be produced via the doubling
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construction of Barberis and Fino [30]. In particular it remains an open problem whether or not there
exist solvmanifolds with strong HKT metrics.

We conclude this chapter by reporting the observation of Barberis, Dotti and Verbitsky [29] that the
hypercomplex structures on Joyce’s examples are never SL(n,H). More generally, if (M, I, J,K) is a
hypercomplex manifold such that π : (M, I)→ B is a principal torus fibration over a base B which is a
Fano manifold (the anticanonical bundle K−1

B is ample) then KM can never admit holomorphic sections.
Indeed, the adjunction formula yields KM

∼= π∗KB because the fiber is a torus and the canonical
bundle of the torus is trivial, and since K−1

B is ample π∗K−kB has sections for some k, therefore KM

cannot have any. To see that Joyce’s examples belongs to this class we refer to [307] where it is proved
that they are tori fibrations over a homogeneous rational manifold.

This discussion includes the quaternionic Hopf manifold seen as the product SU(2)×U(1). Observe
that such manifold has flat Obata connection by construction, thus in particular has restricted holonomy
in SL(n,H), but, as just remarked, not the global holonomy. The only example of Joyce’s of which
we explictly know the holonomy is SU(3). Soldatenkov [263] proved that the holonomy of the Obata
connection on SU(3) with the hypercomplex structure in Example 2.10 is GL(2,H).

Conjecture 2.47. All the examples of Joyce have full holonomy of the Obata connection GL(n,H).

2.3 The quaternionic Calabi conjecture.
Since Yau proved the Calabi conjecture in [327], other Calabi-Yau-type problems have been introduced
in various geometric contexts. Here we overview the so-called quaternionic Calabi conjecture in HKT
geometry formulated by Alesker and Verbitsky [18]. Within this analogy, the “quaternionic Calabi-Yau
metrics” are the balanced HKT metrics.

2.3.1 Statement of the conjecture.

“Hyperhermitian Ricci form”.

Let (M, I, J,K,Ω) be a hyperhermitian manifold. In local holomorphic coordinates we have

Ωn
n! = pf(Ω)dz1 ∧ · · · ∧ dz2n

where pf(Ω) denotes the Pfaffian of the skew-symmetric complex matrix (Ωrs) induced by Ω in the
given holomorphic coordinates, i.e. Ω =

∑
r<s Ωrsdzr ∧ dzs. We define a q-real ∂-closed (1, 0)-form ρ,

which in the given holomorphic coordinates is expressed as

ρ = −∂∂J log pf(Ω) .

Observe that this is globally defined, i.e. it does not depend on the choice of coordinates.
More generally, If Φ is a q-positive (2n, 0)-form then

Φ = ϕdz1 ∧ · · · ∧ dz2n

for a locally defined smooth positive function ϕ and we may set ρ(Φ) := −∂∂J logϕ. We have

ρ(Ωn)− ρ(Φ) = ∂∂J log Φ
Ωn

where ∂∂J log(Φ/Ωn) is a globally defined ∂∂J -exact form. Therefore, the quaternionic Bott-Chern
cohomology class of ρ = ρ(Ωn) does not depend on the choice of the complex volume form.

We could also consider another perspective. Let θ be the (1, 0)-form such that ∂Ω̄n = θ ∧ Ω̄n, then
one can show that ρ = ∂Jθ. Since Φ is q-positive there exists a smooth positive real-valued function f
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such that Φ = fΩn and thus

∂Φ̄ = (∂f + fθ) ∧ Ω̄n = (f−1∂f + θ) ∧ Φ̄ = (∂ log f + θ) ∧ Φ̄

which shows that
ρ(Φ) = −∂∂J log f + ∂Jθ

hence, again we see that [ρ(Φ)] = [ρ(Ωn)] in terms of quaternionic Bott-Chern cohomology classes.
We shall denote with cBC

2,0 (M) := [ρ] ∈ H2,0
BC(M) the quaternionic Bott-Chern cohomology class of

which ∂Jθ is a representative.

The conjecture.

Let (M, I, g) be a Kähler manifold. The Ricci form (of the Levi-Civita connection) is the closed (1, 1)
form ρ := Ric(I·, ·). It turns out that 1

2πρ can be taken as a representative for the first Chern class
c1(M) of M . Eugenio Calabi, conjectured [67] that the Ricci form of a compact Kähler manifold can
be prescribed.

Theorem 2.48 (Calabi-Yau). Let (M, I) be a compact complex manifold admitting a Kähler metric g
with associated Kähler form ω. Let ρ′ be a closed real (1, 1)-form such that its de Rham cohomology
class is [ρ′] = 2πc1(M) ∈ H2(M,R), where c1(M) is the first Chern class. Then there exist a unique
Kähler metric g′ in (M, I) with associated Kähler form ω′ such that [ω′] = [ω] and ρ′ is the Ricci form
of g′.

Calabi himself already proved that the conjecture has at most one solution, but a full proof of
existence had to wait more than 20 years. After some work by Calabi, Aubin, Borguignon, Nirenberg
and many others, Yau completed the proof of such a groundbreaking conjecture [327].

A full account of the proof, very close to the original one can be found in [194], however, the
treatment has become somewhat outdated in certain parts. Over the years the argument of Yau
underwent various improvements from many people and the solution has been significantly simplified.
We refer, among others, to the lecture notes [44] or the book [158].

The Calabi-Yau Theorem has important consequences, for instance, when (M, I, g) is a compact
Kähler manifold with vanishing first chern class. Then we may choose ρ′ = 0 and the theorem
guarantees the existence of a Ricci-flat Kähler metric on M . This allows to find examples of compact
Riemannian manifolds with (Riemannian) holonomy group SU(n) and Sp(n). The first are the so-called
Calabi-Yau manifolds, the second are hyperkähler manifolds.

One can repeat the steps leading to the Calabi conjecture in the realm of HKT geometry. First,
we take into account the space of HKT potentials. The existence of local potentials for HKT forms,
established by Banos and Swann [27] opens the possibility to investigate (pluri)potential theory on
HKT manifolds. Let (M, I, J,K,Ω) be a HKT manifold. In analogy with the complex case, the space
of quaternionic Ω-plurisubharmonic functions has been introduced

HΩ = {ϕ ∈ C∞(M,R) | Ωϕ := Ω + ∂∂Jϕ > 0} , (2.24)

where the inequality “Ωϕ > 0” stands for the q-positivity of Ωϕ, so that it induces a new hyperhermitian
metric on (M, I, J,K) which we denote gϕ.

It is natural to wonder if, within the space (2.24) one can find a ϕ such that the HKT form Ωϕ

is in some sense preferable. We have seen that the most desirable HKT metrics one could have are
balanced ones. Alesker and Verbitsky [18, 306] proposed to mimic the approach used to prove the
Calabi-Yau theorem in order to show that a compact HKT SL(n,H)-manifold (M, I, J,K,Ω) always
admits a balanced HKT form in the same Bott-Chern class of Ω.

In view of the formulation above of the Calabi-Yau Theorem, we phrase the quaternionic Calabi
conjecture in a more general setting:

Conjecture 2.49. Let (M, I, J,K,Ω) be a compact HKT manifold. If ρ′ ∈ Λ2,0(M) is q-real and such
that [ρ′] = cBC

2,0 (M). Then there exists a unique HKT metric g′ with HKT-Ricci form ρ′ and HKT
form Ω′, where [Ω′] = [Ω] ∈ H2,0

BC(M).

57



CHAPTER 2. Hypercomplex and HKT manifolds

We know that if M is SL(n,H) the canonical bundle is holomorphically trivial, hence, necessarily
ρ = 0 and thus cBC

2,0 (M) = 0. In particular, if the conjecture is true, on a compact HKT SL(n,H)
manifold (M, I, J,K,Ω) there always exists a balanced HKT metric g′ compatible with the hypercomplex
structure (I, J,K). Under this light, balanced HKT metrics are the perfect quaternionic parallel of
Calabi-Yau’s metrics.

We now rephrase the conjecture in terms of a fully non-linear PDE. First of all, the conditions
[ρ′] = cBC

2,0 (M) = [ρ] and [Ω′] = [Ω] can be expressed by writing ρ′ = ρ+ ∂∂JF and Ω′ = Ω + ∂∂Jϕ for
some F,ϕ ∈ C∞(M,R) unique up to an additive constant. If we impose the condition

∫
M
ϕΩn∧Ω̄n = 0

(or supM ϕ = 0) then ϕ is uniquely determined. Since (Ω′)n and Ωn are both q-positive there must be
a positive function f ∈ C∞(M,R) such that (Ω′)n = fΩn, but then

∂∂J log f = ∂∂J log (Ω′)n
Ωn = ∂∂J log pf(Ω)− ∂∂J log pf(Ω′) = ∂Jθ

′ − ∂Jθ = ρ′ − ρ = −∂∂JF

it follows that log f − F = log b, i.e. f = b eF where b > 0 is a constant.
A priori one would need to require Ωϕ to be a q-positive form. Let us quickly observe that the

condition Ω + ∂∂Jϕ > 0 is actually redundant for any solution ϕ of the conjecture. Indeed, the form
Ωn
ϕ = b eFΩn is nowhere vanishing and q-positive, furthermore, at a minimum point of ϕ we have

∂∂Jϕ ≥ 0 and by continuity Ωϕ must be q-positive everywhere on M .
Summing up all the above, we can restate the conjecture as follows:

Conjecture 2.50. Let (M, I, J,K,Ω) be a compact HKT manifold. For any F ∈ C∞(M,R) there
exists a unique pair (ϕ, b) ∈ C∞(M,R)× R+ such that

(Ω + ∂∂Jϕ)n = b eFΩn , sup
M

ϕ = 0 . (2.25)

Observe that when M is SL(n,H) and Θ is a q-positive holomorphic (2n, 0)-form, the constant b is
uniquely determined by Stokes’ Theorem as

b

∫
M

eFΩn ∧ Θ̄ =
∫
M

(Ω + ∂∂Jϕ)n ∧ Θ̄ =
∫
M

Ωn ∧ Θ̄ ,

therefore, in this case, it can be “absorbed” inside the datum F and (2.25) can be written as

(Ω + ∂∂Jϕ)n = eFΩn , sup
M

ϕ = 0 ,

where F ∈ C∞(M,R) satisfies the necessary condition∫
M

(eF − 1)Ωn ∧ Θ̄ = 0 .

These are actually the original assumptions of Alesker and Verbitsky, when they formulated the
quaternionic Calabi conjecture.

The formulation of the conjecture in terms of an equation is suitable for further generalization.
This is also motivated by the success of the complex Monge-Ampère equation on compact (almost)
Hermitian manifolds [288, 93, 329, 92].

Conjecture 2.51. Let (M, I, J,K,Ω) be a compact hyperhermitian manifold. For any F ∈ C∞(M,R)
there exists a unique pair (ϕ, b) ∈ C∞(M,R)× R+ such that

(Ω + ∂∂Jϕ)n = b eFΩn , sup
M

ϕ = 0 . (2.26)
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The quaternionic Monge-Ampère equation.

Here, we write down the local expression for the equation

(Ω + ∂∂Jϕ)n = b eFΩn , (2.27)

this will motivate the terminology of quaternionic Monge-Ampère equation. We thus assume that
(M, I, J,K,Ω) is a locally flat HKT manifold. Let u be a HKT potential for Ω and denote with
G = HessHu the hyperhermitian matrix associated to ∂∂Ju = Ω. From Lemma 2.25 we know that

(Ω + ∂∂Jϕ)n
Ωn = (∂∂J(u+ ϕ))n

(∂∂Ju)n = det(G+ HessHϕ)
detG

therefore we can write (2.27) as

det(G+ HessHϕ) = b eF det(G) ,

which is an equation of Monge-Ampère type.
The study of the quaternionic Monge-Ampère equation in the flat case, precedes the conjecture

of Alesker and Verbitsky. Indeed, the Dirichlet problem associated to (2.27) was already considered
by Alesker in [9, 10] and solved on strictly pseudoconvex domains in quaternionic sense, when the
boundary data are continuous and the right-hand side is continuous up to the boundary. Some years
later Zhu [335], Kołodziej, Sroka [201, 270] and Wan [314] obtained weak solutions and some regularity
results.

For further references the interested reader is referred to [271].

2.3.2 Solving the quaternionic Monge-Ampère equation.

Ellipticity and uniqueness.

First, we observe that the quaternionic Monge-Ampère equation, although being fully non-linear, it is
elliptic, indeed the linearization of the operator

P : C∞(M,R)→ C∞(M,R) , P (ϕ) = log (Ω + ∂∂Jϕ)n
Ωn − log(b)− F .

is the quaternionic Laplacian ∆ϕ := ∆gϕ :

P∗|ϕ(ψ) = n
∂∂Jψ ∧ Ωn−1

ϕ

Ωnϕ
= ∆ϕψ ,

which we have seen to be elliptic.
Next, it is straightforward to show that solutions to the quaternionic Monge-Ampère equation

(2.26) on a compact hyperhermitian manifold are in general unique. This can, for instance, be observed
as follows: let (ϕ1, b1), (ϕ2, b2) be two solutions to (2.26) with b1 ≥ b2. Setting Ωi = Ω + ∂∂Jϕi we
have that

∂∂J(ϕ1 − ϕ2) ∧
n−1∑
k=0

Ωk1 ∧ Ωn−1−k
2 = Ωn1 − Ωn2 = (b1 − b2)eFΩn ≥ 0 .

On the left hand-side we have a second order linear elliptic operator without free term applied to
ϕ1−ϕ2 and from the maximum principle and the fact that supM ϕ1 = supM ϕ2 = 0 it follows ϕ1 = ϕ2.
Hence we have also b1 = b2 and the uniqueness follows.

Method of continuity.

The most natural approach to attack the problem is the method of continuity, much in the same spirit
of Yau’s proof of the Calabi conjecture [327]. The idea of such a technique is to interpolate between
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the equation
(Ω + ∂∂Jϕ)n

Ωn = b eF

we wish to solve and another one which is easier to solve, for instance

(Ω + ∂∂Jϕ)n
Ωn = 1 ,

which has the obvious solution ϕ ≡ 0. We then consider a one-parameter family of equations

(Ω + ∂∂Jϕt)n
Ωn = bt etF (∗t)

with continuous dependence on t ∈ [0, 1].
At this point, the solvability comes down to prove a connectedness argument: consider the set

S = {t ∈ [0, 1] | (∗t) has a solution (ϕt, bt) ∈ C∞(M,R)× R+}

then we only need to prove that 1 ∈ S, which will immediately follow if we show that S is connected.
As we observed 0 ∈ S, therefore S is non-empty.

Now, two standard arguments are usually employed to show that S is both open and closed.
Openness is the easy part: take t′ ∈ S and let (ϕt′ , bt′) be the corresponding solution of (∗)t′ , then, in
order to show that a small neighborhood of t′ is all contained in S one usually considers the linearization
of the equation at the solution (ϕt′ , bt′) between some Banach spaces and tries to apply the inverse
function theorem.

The proof of closedness is in general the hard part which requires a priori estimates. The idea is to
take an arbitrary sequence (tj) ⊆ S and show that its limit t′ = limj→∞ tj still lies in S. If we denote
(ϕtj , btj ) the solutions of (∗)tj we may wish to extract from these a subsequence which is convergent to
a solution of (∗)t′ . This is done by proving that some Banach norms of all solutions ϕt are bounded by
a constant under control, which allows to show that they lie in a compact subset of the Banach space,
thus implying the existence of a convergent subsequence.

The a priori estimates are the core of the method of continuity and they represent the most involved
part of the proof. In general the norms adopted to start the machinery of the method of continuity
are the Ck,α norms for some α. To achieve these estimates one starts from the C0 bound, continues
with the gradient bound, then the Laplacian bound, equivalent to the C2 bound and with standard
Evans-Krylov theory one achieves the C2,α-estimate, which is improved to a Ck+2,α-estimate for all k
via bootstrapping and Schauder estimates (see Subsection 2.3.3 below for further details).

Current progress towards the proof.

So far there are only partial results about the solvability of the quaternionic Calabi conjecture.

In [18], where the problem is proposed, the authors use a Moser iteration technique such as the one
originally used by Yau to obtain an a priori C0 estimate for solutions to the quaternionic Monge-Ampère
equation. This approach requires to have a holomorphic section of the canonical bundle. Later, Alesker
and Shelukhin [15] were able to prove the same estimate but under the different assumption that the
hypercomplex structure is locally flat. They generalized their work in [16] showing that the C0-estimate
holds on any compact HKT manifold. Recently, Sroka [269] provided a much shorter proof, using
a Cherrier-type inequality, following the work of Tosatti and Weinkove [287, 288] on the complex
Monge-Ampère equation, which in turn is based on a previous work of Cherrier [84]. Therefore we
have:

Theorem 2.52 (Alesker-Shelukhin-Sroka). Let (M, I, J,K,Ω) be a compact HKT manifold. There
exists a constant C > 0 such that for any solution ϕ ∈ C∞(M,R) of (2.25)

‖ϕ‖C0 ≤ C

where C depends only on the HKT structure and supM F .
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The higher order estimates seem to be more tricky. The first full result of solvability is due to
Alesker [14], who assumed not only that the hypercomplex structure is locally flat but that there exists
a compatible hyperkähler metric. These two assumptions entail flatness of the hyperkähler metric, in
the sense that the full Riemann curvature tensor vanishes. By Bieberbach’s theorem on compact, flat
Riemannian manifolds this reduces to proving the conjecture on finite covers of a torus. These severe
assumptions are fully exploited in the proof of the Laplacian estimate, where normal coordinates are
used.
Theorem 2.53 (Alesker). Let (M, I, J,K,Ω) be a compact flat hyperkähler manifold. For any
F ∈ C∞(M,R) there exists a unique pair (ϕ, b) ∈ C∞(M,R)× R+ such that

(Ω + ∂∂Jϕ)n = b eFΩn , sup
M

ϕ = 0 .

However, Alesker, adapting an argument of Błocki [42] (see also [44]) was able to obtain the
C2,α-estimate dropping the hyperkähler assumption, we state this as a seperate result for future
reference:
Theorem 2.54 (Alesker). Let (M, I, J,K, g) be a 4n-dimensional compact HKT manifold whose
underlying hypercomplex structure is locally flat. Suppose ϕ ∈ C2(M,R) is a solution to the quaternionic
Monge-Ampère equation (2.25). Then

‖ϕ‖C2,α ≤ C

for some α ∈ (0, 1) and a positive constant C, both depending only on the HKT structure, ‖F‖C2 ,
‖ϕ‖C0 and ‖∆gϕ‖C0 , where ∆g is the quaternionic Laplacian.

In a recent paper, Dinew and Sroka [106] were able to improve the result of Alesker by giving a
complete proof of the conjecture on compact hyperkähler manifolds, so far, this is the most general
result available regarding the solvability of the quaternionic Monge-Ampère equation.
Theorem 2.55 (Dinew-Sroka). Let (M, I, J,K,Ω) be a compact hyperkähler manifold. For any
F ∈ C∞(M,R) there exists a unique pair (ϕ, b) ∈ C∞(M,R)× R+ such that

(Ω + ∂∂Jϕ)n = b eFΩn , sup
M

ϕ = 0 .

2.3.3 An analytic toolbox.
In this subsection we collect some useful results used in the proofs of the a priori estimates.

Alexandrov-Bakelman-Pucci estimate.

Historically, the C0 bound for the complex Monge-Ampère equation was the last one to be proved.
This was done by Yau via Moser iteration. In the following years different techniques and various
alternative proofs have been developed.

Here we present an argument based on the Alexandrov-Bakelman-Pucci estimate. The idea goes
back to Cheng and Yau and a simpler approach has been found by Błocki [43]. The argument we
present below is the reinterpretation of Székelyhidi [280] of the Alexandrov-Bakelman-Pucci estimate,
which, as of today is the simplest and most immediate one.

Let M be a compact oriented m-dimensional manifold. Suppose ϕ ∈ C∞(M,R) is a solution of
some partial differential equation satisfying supM ϕ = 0 for simplicity. Let x0 ∈M be a point at which
u attains its minimum and take a coordinate chart centered at x0 which, without loss of generality, we
identify with a ball B1(0) of radius 1 with coordinates (x1, . . . , xm). We now fix ε > 0 and define

ψ = ϕ+ ε

m∑
i=1

(xi)2 .

The auxiliary function ψ satisfies the assumptions of the following Alexandrov-Bakelman-Pucci–type
estimate (see [280, Proposition 10]):
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Proposition 2.56. Let B1(0) ⊆ Rm denote the unit ball centered at the origin. Assume that
ψ ∈ C2(Rm) satisfies ψ(0) + ε ≤ min∂B1(0) ψ(x). Then there exists a constant cm depending only on
m such that

εm ≤ cm
∫

Γε
det(D2ψ) ,

where D2ψ is the (real) Hessian of ψ and

Γε =
{
x ∈ B1(0) | ψ(y) ≥ ψ(x) +∇ψ(x) · (y − x), ∀y ∈ B1(0), |∇ψ(x)| < ε

2

}
.

At this point one needs to obtain an estimate for det(D2ψ) over Γε, which has to be done using the
equation satisfied by ϕ together with the definition of Γε. If one manages to prove such a bound, then

εm ≤ C|Γε| ,

where |Γε| =
∫

Γε dx. Since on Γε we have ψ ≤ ψ(0) + ε/2 then ϕ ≤ infM ϕ+ ε/2 = ‖ϕ‖C0 + ε/2 and
thus for any p > 0

‖ϕ‖Lp ≥
(
‖ϕ‖C0 + ε

2

)
|Γε| ≥ C (‖ϕ‖C0 + 1)

which shows that the C0-estimate follows from an Lp-estimate.

A Lp-estimate is generally easy to find with the aid of the following (see [143, Theorem 8.18]):

Theorem 2.57 (Weak Harnack Inequality). Let R > 0 and fix an integer m > 2. Assume u ∈ C2(Rm)
is non-negative on BR(0) and such that ∆u(x) ≤ f(x) for some f ∈ C0(Rm) and all x ∈ BR(0).
Consider 1 ≤ p < m/(m− 2), and q > m. Then there exists a positive constant C = C(m,R, p, q) such
that

r−m/p‖u‖Lp(B2r(0)) ≤ C
(

inf
x∈Br(0)

u(x) + r2−2m/q‖f‖Lq/2(BR(0))

)
,

for any 0 < r < R/4.

Evans-Krylov theory.

One of the important simplifications of the proof of the Calabi conjecture came from an estimate
obtained independently by Evans [118] and Krylov [202]. The original proof required to obtain a third
order estimate, while this can now be skipped thanks to the Evans-Krylov theory.

They proved that if ψ is a solution to a uniformly elliptic, fully non-linear, convex (or concave),
equation

P (D2ψ) = 0

in the ball B1(0) then ψ ∈ C2,α(B1/2(0)) and

‖ψ‖C2,α ≤ C

where C > 0 and α > 0 depend only on ‖ψ‖C0 , ‖D2ψ‖C0 and the ellipticity of P .

Such a result is extremely powerful and simplifies many arguments. However, when working on
(hyper)complex manifolds one typically goes from a (quaternionic) Laplacian bound to a bound for the
(quaternionic) complex Hessian and Evans-Krylov theory cannot be directly applied.

As a workaround, two possible approaches have been pursued in the literature. Either the proof of
the Evans-Krylov Theorem is adapted to the specific setting at hand (which, for instance, has been
done by Alesker for the proof of Theorem 2.54) or an estimate for the real Hessian is obtained (as
done, e.g. by Dinew and Sroka in [106]).

We also stress that the issue with applying Evans-Krylov Theorem in this type of problems always
reduces to verifying uniform ellipticity of the operator at the function assumed to be the solution. This
is the main reason why in the literature one can find various Evans-Krylov–type results (e.g. [90, 286]).
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Schauder theory and bootstrapping.

As mentioned, when the C2,α-estimate is at hand, a standard argument of bootstrapping allows to
obtain estimates of any higher order. The key result to do so is the following Schauder estimate (see
[194, Theorem 1.4.2]):

Theorem 2.58. Let M be a compact Riemannian manifold and E1, E2 two vector bundles on M
of the same dimension. Let P : E1 → E2 be a linear elliptic differential operator of order k. If the
coefficients of P are of class Cr,α for some α ∈ (0, 1) and ψ ∈ Ck,α(E1) is a solution of the equation

P (ψ) = F

with datum F ∈ Cr,α(E2), then ψ ∈ Ck+r,α(E1) and

‖ψ‖Ck+r,α ≤ C (‖F‖Cr,α + ‖ψ‖C0)

for some constant C > 0 that does not depend on ψ and F .

Suppose now we have a solution of a second order linear elliptic equation P (ψ) = F with smooth
datum F ∈ C∞(M,R) and assume there are estimates ‖ψ‖C0 ≤ C, ‖ψ‖C2,α ≤ C for a constant C
not depending on ψ. We can now differentiate the equation and regard it as another linear elliptic
equation in the first derivatives of ψ with coefficients in C0,α(M) depending on the second derivatives
of ψ. Schauder estimate now implies that the derivatives of ψ are bounded in C2,α norm and we can
differentiate the equation again obtaining a C2,α-estimate for the second derivatives of ψ. Reiterating
this argument, since F is smooth we achieve estimates for the derivatives of ψ of any given order.
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CHAPTER 3
HODGE THEORY, FORMALITY AND BALANCED

METRICS

The purpose of this chapter is twofold: first, we aim to explore deeper cohomological properties of
HKT manifolds, especially for the subclass of balanced HKT manifolds; second, we analyse in detail
HKT structures on hypercomplex solvmanifolds and nilmanifolds which provide a useful benchmark to
use to test problems and conjectures. These two topics occupy the two sections this chapter is divided
in. We shall show that all HKT nilmanifolds are balanced, and while this is not true in general for
solvmanifolds, at least we can show that balancedness is implied by the assumption of being SL(n,H)
(when the hypercomplex structure is left-invariant). We thus have plenty of examples of balanced HKT
manifolds, to which results of the first section apply.

This chapter is essentially an account of the preprint [136].

3.1 Cohomology of balanced HKT manifolds.
The main objective of this section is to explore the analogies of HKT geometry with Kähler geometry
from a cohomological point of view. More precisely, let (M, I, J,K,Ω) be a compact HKT manifold and
denote with Λp,q(M) = Λp,qI (M) the space of (p, q)-forms with respect to I. We have two important
cochain complexes: (Λ•,q(M), ∂, ∂J) and (Λ•,q(M), ∂, ∂Λ) for every fixed q, where ∂Λ := [∂,Λ], being
Λ the adjoint of L := Ω

2 ∧ −.
In both cases, we will restrict to study the case q = 0 under suitable assumptions, showing a

behavior similar to Kähler manifolds. One can study cohomology groups and Hodge theory from a
“complex point of view” on (Λ•,0(M), ∂, ∂J ) or from a “symplectic point of view” on (Λ•,0(M), ∂, ∂Λ).
Some of the analysis is essentially algebraic and relies only on few properties of the structures under
investigation. Indeed, part of the results can be contextualized in the more general setting of Lefschetz
spaces and this approach encompasses at once some of the theory of Kähler and HKT cohomology.

Building on the work of Lefschetz spaces by Tomassini and Wang [284] we define a generalization
of the Hodge star operator, which allows us to take into account formal adjoints and Laplacians.
Several relations among the Laplacians, the spaces of harmonic forms and the associated cohomology
groups, together with Hard Lefschetz properties, are proved. Moreover, we show that for a compact
HKT SL(n,H)-manifold the differential graded algebra (Λ•,0(M), ∂) is formal and this will lead to an
obstruction for the existence of an HKT SL(n,H)-structure (I, J,K,Ω) on a compact complex manifold
(M, I).

The results presented in this section have the same spirit of (and are inspired by) the work done in
[146, 208, 284, 301].
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3.1.1 Lefschetz spaces.

The framework of Tomassini and Wang.

We start by recalling the main definitions and results from Tomassini and Wang [284] (see also [319]).

Definition 3.1. Let A =
⊕2n

p=0A
p be a direct sum of complex vector spaces. Let L be a C-linear

endomorphism of A such that L(Ap) ⊆ Ap+2 for p = 0, . . . , 2n− 2 and L(A2n−1) = L(A2n) = 0. We
say that (A,L) is a Lefschetz space if L satisfies the Hard Lefschetz Condition (HLC), i.e.

Ln−p : Ap → A2n−p

is an isomorphism for all p = 0, . . . , n.
If a Lefschetz space (A,L) is equipped with a C-linear endomorphism d such that d(Ap) ⊆ Ap+1

for p = 0, . . . , 2n− 1, while d(A2n) = 0 we call the triple (A,L, d) a differential Lefschetz space.
If moreover d2 = 0 then the triple (A,L, d) is called a Lefschetz complex.

On a Lefschetz space we say that α ∈ Ap is a primitive form if p ≤ n and Ln−p+1α = 0. By the
HLC immediately follows the decomposition into primitive forms (see [319]), more precisely, for every
α ∈ Ap there exist unique primitive αk ∈ Ap−2k such that

α =
bp/2c∑
k=0

1
k!L

kαk . (3.1)

As a generalization of the symplectic star operator Tomassini and Wang introduced the Lefschetz
star operator ∗L : A→ A, acting on a primitive form β ∈ Ap as follows:

∗L
1
k!L

kβ := (−1)1+2+···+p 1
(n− p− k)!L

n−p−kβ .

Clearly the definition is then extended by linearity to any α ∈ Ap via the Lefschetz decomposition
(3.1). Notice that ∗2L = 1.

The starting point of the discussion by Tomassini and Wang is the following general Demailly-
Griffiths-Kähler identity [284, Theorem A].

Theorem 3.2. Let (A,L, d) be a differential Lefschetz space and Λ = ∗−1
L L∗L the dual Lefschetz

operator. Define dΛ ∈ End(A) by
dΛ|Ap := (−1)p+1 ∗L d∗L ,

and assume that [L, [d, L]] = 0, then

[dΛ, L] = d+ [Λ, [d, L]] , [d,Λ] = dΛ + [[Λ, dΛ], L] .

Notice that if (A,L, d) is a Lefschetz complex then d2 = 0 implies that (dΛ)2 = 0. In case [d, L] = 0,
one also obtains that

[d, dΛ] = 0.

Therefore, on a Lefschetz space with [d, L] = 0 one has that the triple (A, d, dΛ) is a double complex.
We summarize here the main consequences which we are interested in (cf. [284, Theorems 3.3, 3.5]).

Theorem 3.3. Let (A,L, d) be a Lefschetz complex. Suppose [d, L] = 0 and denote with HpL the space
of Lefschetz harmonic p-forms, i.e. elements α ∈ Ap such that

dα = 0 = dΛα.

Then (H•L, L) and (H•L,Λ) satisfy the HLC. Furthermore the following are equivalent:

• (A•, L) satisfies the ddΛ-lemma, i.e.,

Ker d ∩Ker dΛ ∩ (Im d+ Im dΛ) = Im ddΛ
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• There is a Lefschetz harmonic representative in each cohomology class of H•d ;
• (H•d , L) satisfies the HLC;
• (H•

dΛ ,Λ) satisfies the HLC.

A Hodge star-type operator.

In this paragraph, we wish to push a little further the work of Tomassini and Wang. We introduce in
the picture (a generalization of) the Hodge star operator and use it to define formal adjoints and some
Laplacians in a fairly general context. Some identities between these Laplacians are then obtained.

Definition 3.4. A Lefschetz (differential) graded algebra is a (differential) Lefschetz space A =
⊕2n

p=0A
p

which is also a graded algebra that is generated by A1 over C.

In order to provide the promised algebraic treatment, we need a complex structure acting on
our Lefschetz space. Let A be a Lefschetz graded algebra and assume that A1 is equipped with an
endomorphism J such that J 2 = − Id. We extend the action of J on A by setting on homogeneous
elements

J (α1 · · ·αk) = Jα1 · · · Jαk , for every α1, . . . , αk ∈ A1 ,

and then extending by C-linearity. Let us denote with

A1,0 := {α ∈ A1 | Jα = iα} , A0,1 := {α ∈ A1 | Jα = −iα} ,

the ±i-eigenspaces of J on A1. Putting

Ap,q := SpanC
(
(A1,0)p ⊗ (A0,1)q

)
we see that

Ak =
⊕
p+q=k

Ap,q

and the complex structure J acts on Ap,q as Jα = ip−qα. In other words, considering the natural
projection Πp,q : A→ Ap,q, we have

J =
∑
p,q

ip−qΠp,q.

We make the assumption that JL = LJ and consequently introduce a generalization of the Hodge
star operator by setting

∗ := J ∗L = ∗LJ (3.2)

or equivalently
∗ 1
k!L

kβ := (−1)1+2+···+p 1
(n− p− k)!L

n−p−kJ β , (3.3)

for a primitive β ∈ Ap and then extend the definition on all A by bilinearity via the Lefschetz
decomposition (3.1). It follows that

∗2|Ap = J 2|Ap = (−1)p .

Remark 3.5. Let (M,J, ω) be an almost Kähler manifold, namely ω is a symplectic structure on a
smooth manifold M and J is a compatible almost complex structure. Clearly when J is integrable
and so (M,J) is a complex manifold then (M,J, ω) is a Kähler manifold. Set L = ω ∧ − for the usual
Lefschetz operator and let A =

⊕2n
p=0A

p be the Lefschetz graded algebra of differential forms on M .
The almost complex structure J : TM → TM naturally induces a complex structure J on A1. Since
ω is a (1, 1)-form we have JL = LJ and the description above is coherent with the well known almost
Kähler case. Indeed, formula (3.3), where ∗ is the usual Hodge operator, is sometimes referred to as
the Weil relation [321].
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Now, suppose A is equipped with a differential d. Consider the dual Lefschetz operator

Λ = ∗−1
L L∗L = ∗−1JLJ−1∗ = ∗−1L∗

and define as before the “Lefschetz adjoint” of d, i.e. dΛ ∈ End(A) given by dΛ|Ap := (−1)p+1 ∗L d∗L.
Then, by Theorem 3.2, if [d, L] = 0 we have dΛ = [d,Λ] and d = [dΛ, L].

We may take the “Hodge adjoints”

d∗ = − ∗ d∗ , dΛ∗ = − ∗ dΛ∗ ,

and obtain also d∗ = [Λ, dΛ∗].
Now, we consider the following operators and we aim to study the relations between them:

∆d = dd∗ + d∗d , ∆dΛ = dΛdΛ∗ + dΛ∗dΛ ,

∆BC
dΛ = d∗d+ dΛ∗dΛ + ddΛdΛ∗d∗ + dΛ∗dd∗dΛ + d∗dΛdΛ∗d+ dΛ∗d∗ddΛ ,

∆BC
dΛ∗ = d∗d+ dΛdΛ∗ + ddΛ∗dΛd∗ + dΛdd∗dΛ∗ + d∗dΛ∗dΛd+ dΛd∗ddΛ∗ .

We will denote with H•d and H•
dΛ the kernels of ∆d and ∆dΛ respectively. All these operators where

originally introduced for symplectic manifolds in [294].

Proposition 3.6. In the previous assumptions it holds

∆d = ∆dΛ − [Λ, [d, dΛ∗]] .

In particular, if [d, dΛ∗] = 0 the kernels of ∆d and ∆dΛ coincide, namely for every p we have

Hpd = Hp
dΛ .

Proof. Using [Λ, dΛ∗] = d∗ and [d,Λ] = dΛ we obtain

∆d = [d, d∗] = [d, [Λ, dΛ∗]] = [[d,Λ], dΛ∗]− [Λ, [d, dΛ∗]] = [dΛ, dΛ∗]− [Λ, [d, dΛ∗]] = ∆dΛ − [Λ, [d, dΛ∗]] ,

as desired

Proposition 3.7. If [d, dΛ∗] = 0 = [d, L], then

∆BC
dΛ = ∆dΛ∆dΛ + d∗d+ dΛ∗dΛ

= ∆BC
dΛ∗ + dΛ∗dΛ − dΛdΛ∗ .

Proof. Notice that under our assumptions we also have [d∗, dΛ] = 0 and [d∗, dΛ∗] = 0. We start by
considering ∆dΛ∆dΛ . By Proposition 3.6

∆dΛ∆dΛ = ∆d∆dΛ = dd∗dΛdΛ∗ + dd∗dΛ∗dΛ + d∗ddΛdΛ∗ + d∗ddΛ∗dΛ = (I) + (II) + (III) + (IV ) .

We will treat the four terms separately. Using that [d, dΛ∗] = 0 and [d, dΛ] = 0

(I) = dd∗dΛdΛ∗ = −ddΛd∗dΛ∗ = ddΛdΛ∗d∗ , (II) = dd∗dΛ∗dΛ = −ddΛ∗d∗dΛ = dΛ∗dd∗dΛ ,

(III) = d∗ddΛdΛ∗ = −d∗dΛddΛ∗ = d∗dΛdΛ∗d , (IV ) = d∗ddΛ∗dΛ = −d∗dΛ∗ddΛ = dΛ∗d∗ddΛ .

Now, putting the four terms together we have

∆dΛ∆dΛ = ∆d∆dΛ = ddΛdΛ∗d∗ + dΛ∗dd∗dΛ + d∗dΛdΛ∗d+ dΛ∗d∗ddΛ = ∆BC
dΛ − d∗d− dΛ∗dΛ .
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Furthermore using again that [d, dΛ∗] = 0 and [d, dΛ] = 0 we obtain

∆BC
dΛ =d∗d+ dΛ∗dΛ + ddΛdΛ∗d∗ + dΛ∗dd∗dΛ + d∗dΛdΛ∗d+ dΛ∗d∗ddΛ

=d∗d+ dΛ∗dΛ + dΛdd∗dΛ∗ + ddΛ∗dΛd∗ + dΛd∗ddΛ∗ + d∗dΛ∗dΛd

=dΛ∗dΛ − dΛdΛ∗ + ∆BC
dΛ∗

as desired.

Remark 3.8. Let (M,J, ω) be an almost Kähler manifold, then [d, dΛ∗] = 0 if and only if [d, dc] = 0
if and only if J is integrable. In such a case (M,J, ω) is a Kähler manifold and we recover the usual
equalities for the Laplacians in Propositions 3.6 and 3.7.

3.1.2 Application to HKT manifolds.
Naturally, the quaternionic Dolbeault, Bott-Chern and Aeppli cohomology groups can be defined:

Hp,0
∂ (M) :=

Ker(∂|Λp,0(M))
∂Λp−1,0(M) , Hp,0

∂J
(M) :=

Ker(∂J |Λp,0(M))
∂JΛp−1,0(M) ,

Hp,0
BC(M) :=

Ker(∂|Λp,0(M)) ∩Ker(∂J |Λp,0(M))
∂∂JΛp−2,0(M) ,

Hp,0
A (M) :=

Ker(∂∂J |Λp,0(M))
∂Λp−1,0(M) + ∂JΛp−1,0(M) ,

when M is compact all these groups are finite-dimensional [146], indeed, as usual, once fixed an
hyperhermitian metric, one can show that each of these cohomology groups is isomorphic to the kernel
of the following Laplacians acting on (p, 0)-forms

∆∂ := ∂∂∗ + ∂∗∂ , ∆∂J := ∂J∂
∗
J + ∂∗J∂J ,

∆BC := ∂∗∂ + ∂∗J∂J + ∂∂J∂
∗
J∂
∗ + ∂∗J∂

∗∂∂J + ∂∗J∂∂
∗∂J + ∂∗∂J∂

∗
J∂ ,

∆A := ∂∂∗ + ∂J∂
∗
J + ∂∂J∂

∗
J∂
∗ + ∂∗J∂

∗∂∂J + ∂∂∗J∂J∂
∗ + ∂J∂

∗∂∂∗J .

For each of these we denote with a calligraphic letter the corresponding space of harmonic forms, thus,
for instance, Hp,0∂ (M) := Ker(∆∂ |Λp,0(M)).

It is well known that on a compact Kähler manifold the spaces of Dolbeault, Bott-Chern and
Aeppli-harmonic forms all coincide. We exploit the general theory of Lefschetz spaces to prove that the
analogue result is also true for balanced HKT manifolds (Theorem 3.21). We remark that the equality
of ∆∂J and ∆∂ on balanced HKT manifolds already follows from Proposition 2.35 by Verbitsky. Along
the way we shall also study the Hard Lefschetz condition on these spaces (see Theorems 3.9 and 3.17).

“Symplectic” Hodge theory on HKT manifolds.

Let (M, I, J,K) be a 4n-dimensional compact hypercomplex manifold and Ω ∈ Λ2,0(M) a non-
degenerate (2, 0)-form on (M, I). As usual we set

L : Λr,0(M)→ Λr+2,0(M) , L := Ω
2 ∧ −

for the Lefschetz operator. Then (Λ•,0(M), L) is a Lefschetz space. Moreover, if we consider as differ-
ential operator ∂ (always taken with respect to I), since I is integrable, ∂2 = 0 and so (Λ•,0(M), L, ∂)
defines a Lefschetz complex. If Ω satisfies ∂Ω = 0 then

[∂, L] = 0.
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Denote with Hp,0L (M) the space of Lefschetz harmonic (p, 0)-forms, i.e. forms α ∈ Λp,0(M) such
that ∂α = 0 = ∂Λα, where ∂Λ = [∂,Λ].

We can therefore apply the results of the previous section to infer:

Theorem 3.9. Let (M, I, J,K,Ω) be a compact hypercomplex manifold and Ω ∈ Λ2,0(M) a non-
degenerate (2, 0)-form on (M, I) such that ∂Ω = 0. Then (H•,0L (M), L) and (H•,0L (M),Λ) satisfy the
HLC. Furthermore the following are equivalent:

• (Λ•,0(M), L) satisfies the ∂∂Λ-lemma, i.e.,

Ker ∂ ∩Ker ∂Λ ∩ (Im ∂ + Im ∂Λ) = Im ∂∂Λ ;

• There is a Lefschetz harmonic representative in each Dolbeault cohomology class of H•,0∂ (M);

• (H•,0∂ (M), L) satisfies the HLC;

• (H•,0
∂Λ (M),Λ) satisfies the HLC.

Moreover, by the general results in the previous section we obtain:

Proposition 3.10. Let (M, I, J,K,Ω) be a compact hypercomplex manifold and Ω ∈ Λ2,0(M) a
non-degenerate (2, 0)-form on (M, I) such that ∂Ω = 0. Then,

∆∂ = ∆∂Λ − [Λ, [∂, ∂Λ∗]] .

In particular, if [∂, ∂Λ∗] = 0
∆∂ = ∆∂Λ ,

and for every p we have
Hp∂(M) = Hp

∂Λ(M) .

Moreover, if [∂, ∂Λ∗] = 0

∆BC
∂Λ = ∆BC

∂Λ∗ + ∂Λ∗∂Λ − ∂Λ∂Λ∗ = ∆∂Λ∆∂Λ + ∂∗∂ + ∂Λ∗∂Λ .

“Complex” Hodge theory on HKT manifolds.

If we further assume that Ω is q-positive, in the sense that JΩ = Ω̄ and Ω(Z, JZ̄) > 0 for every
Z ∈ T 1,0

I M , Z 6= 0, then it must be the HKT form corresponding to a HKT metric g on (M, I, J,K).
If (M, I, J,K, g,Ω) is HKT by Proposition 2.35 we have

[∂∗, L] = ∂J − θJ ∧ −

where θJ = Jθ̄, being θ the 1-form such that ∂Ω̄n = θ ∧ Ω̄n. Notice that (M, I, J,K, g,Ω) is balanced
if and only if θJ = 0 and so for balanced HKT manifolds we have

[∂∗, L] = ∂J

and actually we can specialize Proposition 2.35 to the following:

Proposition 3.11. Let (M, I, J,K,Ω) be a compact balanced HKT manifold. Then, the following
identities hold:

[∂∗, L] = ∂J , [∂,Λ] = −∂∗J , [L, ∂∗J ] = ∂ , [Λ, ∂J ] = −∂∗ .

Now, we shall show that the framework of the previous subsection can be used to study hypercomplex
cohomologies. First of all, we set Jα = Jᾱ for every α ∈ Λ1,0(M), thus J is a complex structure on
Λ1,0(M) and naturally extends to Λp,0(M) by imposing compatibility with the wedge product. Since
Ω is q-real we have JL = LJ and we can use (3.2) to define a Hodge-type operator.
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We warn the reader that in this framework the operator defined by (3.2) slightly differs from the
usual Hodge operator. To distinguish them, let us denote here ∗ : Λp,0(M)→ Λ2n−p,0(M) the operator
defined in (3.2) and ∗̂ : Λp,q(M)→ Λ2n−q,2n−p(M) the usual Hodge star operator, then one can easily
show that

α ∧ ∗β = g(α, β)Ωn
n! , for every α, β ∈ Λp,0(M) ,

where g is the Hermitian product induced by the Riemannian metric on Λp,0(M), while, by definition,

α ∧ ∗̂β̄ = g(α, β)Ωn ∧ Ω̄n
(n!)2 , for every α, β ∈ Λp,0(M) .

However, we can identify the formal adjoints of ∂ and ∂J with respect to ∗ and ∗̂ in the following way.
Suppose M is a SL(n,H)-manifold and fix a q-positive holomorphic (2n, 0)-form Θ. Define the

following L2-products:

(α, β)1 :=
∫
M

g(α, β)Ωn ∧ Ω̄n
(n!)2 =

∫
M

α ∧ ∗̂β̄ , (α, β)2 :=
∫
M

g(α, β)Ωn
n! ∧ Θ̄ =

∫
M

α ∧ ∗β ∧ Θ̄ ,

Then the adjoint of ∂ and ∂J with respect to (·, ·)1 are ∂∗̂ = −∗̂∂̄∗̂ and ∂∗̂J = −∗̂∂̄J ∗̂, while those with
respect to (·, ·)2 are ∂∗ = − ∗ ∂∗ and ∂∗J = − ∗ ∂J∗ (cf. [208]). Since Θ is q-positive, there exists a
real-valued function f > 0 such that Θ = f Ωn

n! , moreover, the holomorphicity of Θ translates into the
condition ∂f + fθ = 0. Now, observe that (·, ·)2 = (f ·, ·)1 thus

(α, ∂∗β)2 = (∂α, β)2 = (f∂α, β)1 = (∂(fα)− ∂f ∧ α, β)1 = (α, ∂∗̂β)2 + (θ ∧ α, β)2

and similarly, working with ∂∗J and ∂∗̂J one obtains

(α, ∂∗Jβ)2 = (α, ∂∗̂Jβ)2 − (θJ ∧ α, β)2 .

In particular if M is balanced then θ = θJ = 0 and f is constant, so that the two L2-products coincide
up to a constant and ∂∗ = ∂∗̂ and ∂∗J = ∂∗̂J . In particular the usual Laplacians obtained by means of
the Riemannian Hodge star operator coincide with those Laplacians considered above and the related
results can be applied.

In particular, if M is compact and if α ∈ Λp,0(M) one immediately obtains
α ∈ Hp,0∂ (M) ⇐⇒ ∂α = 0 , ∂∗α = 0 ;
α ∈ Hp,0∂J (M) ⇐⇒ ∂Jα = 0 , ∂∗Jα = 0 ;
α ∈ Hp,0BC(M) ⇐⇒ ∂α = 0 , ∂Jα = 0 , ∂∗J∂

∗α = 0 ;
α ∈ Hp,0A (M) ⇐⇒ ∂∗α = 0 , ∂∗Jα = 0 , ∂∂Jα = 0 .

Proposition 3.11 shows that ∂Λ = −∂∗J and we readily obtain from Proposition 3.6.

Proposition 3.12. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then

∆∂J = ∆∂ .

In particular, the spaces of harmonic forms coincide, namely for every p we have

Hp,0∂J (M) = Hp,0∂ (M) .

Remark 3.13. If we do not assume the compact HKT manifold (M, I, J,K,Ω) to be balanced we
would have, in general

[∂∗, L] = ∂J − θJ ∧ − .

Setting τ(α) := θJ ∧ α and ψ(α) := θ ∧ α, then, we would get

∂Λ = [∂,Λ] = −∂∗J + τ∗ .
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In particular [∂, ∂Λ∗] = −∂θJ ∧− and in such a case the Laplacians ∆∂ , ∆∂Λ and ∆∂J do not coincide,
and in fact by a direct computation one gets

∆∂J = ∆∂ − [ψ∗, ∂] + [∂J , τ∗].

Notice that ψ∗ = ιθ] and τ∗ = ιθ]
J
.

We also observe that the condition [∂, ∂Λ∗] = 0, i.e. ∂θJ = 0 is only satisfied when the manifold is
balanced, indeed ∂θJ = 0 is equivalent to ∂Jθ = 0, from which we obtain

∂J∂Ω̄n = ∂J(θ ∧ Ω̄n) = ∂Jθ ∧ Ω̄n − θ ∧ ∂J Ω̄n = −θ ∧ J−1∂̄Ωn

= − θ ∧ J−1(θ̄ ∧ Ωn) = θ ∧ Jθ̄ ∧ Ω̄n .

Therefore by integrating, using (2.21) and the HKT condition we infer

0 =
∫
M

∂J Ω̄n ∧ ∂Ωn−1 =
∫
M

∂J∂Ω̄n ∧ Ωn−1 =
∫
M

θ ∧ Jθ̄ ∧ Ω̄n ∧ Ωn−1 = − 1
2n

∫
M

‖θ‖2g Ωn ∧ Ω̄n

and the claim follows.

As a consequence of Proposition 3.12 we obtain isomorphisms for the associated cohomology groups
(cf. [208, Proposition 2.3] where it is noticed that an isomorphism, induced by J and conjugation with
respect to I, holds in general for hypercomplex manifolds).

Corollary 3.14. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then

Hp,0
∂J

(M) ' Hp,0
∂ (M) .

In particular, we have the equalities hp,0∂J (M) = hp,0∂ (M).

Invoking Proposition 3.7 we obtain that, similarly to the Kähler case, the Laplacians ∆BC and
∆∂J = ∆∂ are related.

Proposition 3.15. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then

∆BC = ∆∂J∆∂J + ∂∗∂ + ∂∗J∂J

= ∆∂∆∂ + ∂∗∂ + ∂∗J∂J .

In particular, the spaces of harmonic forms coincide, namely for every p we have

Hp,0BC(M) = Hp,0∂J (M) .

Consequently we obtain isomorphisms for the associated cohomology groups.

Corollary 3.16. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then for every p,

Hp,0
BC(M) ' Hp,0

∂J
(M) ' Hp,0

∂ (M) .

In particular, we have the equalities hp,0BC(M) = hp,0∂J (M) = hp,0∂ (M).

Notice that these results are the analogue of the ones proved in [256] for compact Kähler manifolds.

As a consequence of the previous results we prove that, under the same hypothesis, the Hard
Lefschetz condition holds for the cohomologies H•,0∂ (M), H•,0∂J

(M), H•,0BC(M), thus generalizing [29,
Proposition 4.7].

Theorem 3.17. Let (M, I, J,K,Ω) be a compact 4n-dimensional balanced HKT manifold, then for
every i,

Ln−i : Hi,0∂ (M)→ H2n−i,0
∂ (M),

Ln−i : Hi,0∂J (M)→ H2n−i,0
∂J

(M) ,
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Ln−i : Hi,0BC(M)→ H2n−i,0
BC (M)

are isomorphisms. In particular hi,0BC = hi,0∂ = hi,0∂J = h2n−i,0
BC = h2n−i,0

∂ = h2n−i,0
∂J

.

Proof. In view of Propositions 3.12, 3.15 it is sufficient to prove that

Ln−i : Hi,0∂ (M)→ H2n−i,0
∂ (M)

are isomorphisms. Notice that by hypothesis ∂Ω = ∂JΩ = 0, hence

[∂, L] = 0 , [∂J , L] = 0 .

Let α ∈ Hi,0∂ (M) = Hi,0∂J (M). Then,

∂α = 0 , ∂Jα = 0 , ∂∗α = 0 , ∂∗Jα = 0.

As a consequence
∂(Ln−iα) = Ln−i∂α = 0,

and, using [∂∗, L] = ∂J ,

∂∗(Ln−iα) = Ln−i∂∗α+ (n− i)Ln−i−1∂Jα = 0.

Hence, Ln−iα ∈ H2n−i,0
∂ (M). The result follows from Ω being non-degenerate.

Notice that combining this result with Theorem 3.9 we have

Corollary 3.18. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then the ∂∂Λ-lemma holds
and there exists a Lefschetz harmonic representative in each Dolbeault cohomology class of H•,0∂ (M).

Proposition 3.19. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then for every p we have

Hp,0BC(M) = Hp,0A (M).

Proof. We first show the inclusion Hp,0BC(M) ⊆ Hp,0A (M). Let α ∈ Hp,0BC(M). By Propositions 3.12, 3.15
α ∈ Hp,0∂ (M) = Hp,0∂J (M), namely

∂α = 0 , ∂Jα = 0 , ∂∗α = 0 , ∂∗Jα = 0.

Hence, α ∈ Hp,0A (M). The opposite inclusion Hp,0A (M) ⊆ Hp,0BC(M) follows from Theorem 3.17 and
[146, Remark 21], indeed for every p,

hp,0BC(M) = h2n−p,0
BC (M) = hp,0A (M).

As a corollary we have

Corollary 3.20. Let (M, I, J,K,Ω) be a compact balanced HKT manifold, then for every p,

Hp,0
BC(M) ' Hp,0

A (M).

We summarize the results of Propositions 3.12, 3.15, 3.19 collecting them into a single theorem:

Theorem 3.21. On a compact balanced HKT manifold M the spaces of harmonic forms all coincide:

Hp,0∂ (M) = Hp,0∂J (M) = Hp,0BC(M) = Hp,0A (M) .

In particular there are isomorphisms

Hp,0
∂ (M) ∼= Hp,0

∂J
(M) ∼= Hp,0

BC(M) ∼= Hp,0
A (M)

and equalities hp,0∂ = hp,0∂J = hp,0BC = hp,0A = h2n−p,0
∂ = h2n−p,0

∂J
= h2n−p,0

BC = h2n−p,0
A for every p.
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3.1.3 Formality of HKT manifolds.
In this subsection we study formality for compact hypercomplex manifolds. It is well known that
formality in the sense of Sullivan is an obstruction to Kählerness, more precisely compact complex
manifolds satisfying the ∂∂̄-lemma are formal (see [99]). However, notice that the HKT condition does
not imply formality, indeed there are examples of non tori nilmanifolds that are HKT but it is well
know that non tori nilmanifolds are not formal in the sense of Sullivan [167].

We first recall some definitions.
Let (A, dA) and (B, dB) be two differential graded algebras (DGA for short) over a field K. A
DGA-homomorphism between A and B is a K-linear map f : A → B such that

• f(Ai) ⊂ Bi;
• f(α · β) = f(α) · f(β);
• dB ◦ f = f ◦ dA.

Any DGA-homomorphism f : (A, dA)→ (B, dB) induces a DGA-homomorphism in cohomology

H(f) : (H•(A, dA), 0)→ (H•(B, dB), 0) .

A DGA-homomorphism f : (A, dA)→ (B, dB) is called quasi-isomorphism if H(f) is an isomorphism.
Two DGA (A, dA) and (B, dB) are said to be equivalent if there exists a sequence of quasi-isomorphisms
of the following form:

(C1, dC1) · · · (Cn, dCn)
↙ ↘ ↙ ↘ ↙ ↘

(A, dA) (C2, dC2) · · · (B, dB) .

Finally, a DGA (A, dA) is called formal if (A, dA) is equivalent to a DGA (B, dB = 0).

We are about to show that for a compact hypercomplex manifold M instead of (Λ•(M), d), the
appropriate DGA to consider in this context is (Λ•,0(M), ∂) by proving the following

Theorem 3.22. Let (M, I, J,K) be a compact hypercomplex manifold satisfying the ∂∂J -lemma, then
the DGA (Λ•,0(M), ∂) is formal.

Preliminary lemmas.

In order to prove Theorem 3.22 we will need three lemmas.

Lemma 3.23. Let (M, I, J,K) be a compact hypercomplex manifold satisfying the ∂∂J -lemma, then
the natural inclusion

i :
(
Λ•,0(M) ∩Ker ∂J , ∂

)
→
(
Λ•,0(M), ∂

)
is a DGA quasi-isomorphism.

Proof. Notice that
(
Λ•,0(M) ∩Ker ∂J , ∂

)
is a DGA and the inclusion

i :
(
Λ•,0(M) ∩Ker ∂J , ∂

)
→
(
Λ•,0(M), ∂

)
is a morphism of DGAs. We are left to prove that the map induced in cohomology

H∂(i) : H∂

(
Λ•,0(M) ∩Ker ∂J , ∂

)
→ H•,0∂ (M)

is an isomorphism.
We first prove that H∂(i) is injective. Fix k, and let [α] ∈ H∂

(
Λk,0(M) ∩Ker ∂J , ∂

)
such that

H∂(i)([α]) = [α]∂ = 0, hence
α ∈ Ker ∂J ∩ Im ∂ = Im ∂∂J
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i.e., α = ∂ (∂Jβ) for some form β ∈ Λk−2,0(M) and clearly ∂Jβ ∈ Λk−1,0(M) ∩Ker ∂J , hence

[α] = 0 ∈ Hk,0
∂

(
Λ•,0(M) ∩Ker ∂J , ∂

)
and so H∂(i) is injective.

We now prove that H∂(i) is surjective. Let a ∈ Hk,0
∂ (M), a = [α] with ∂α = 0. Consider,

∂Jα ∈ Im ∂J ∩Ker ∂ = Im ∂J∂

hence ∂Jα = ∂J∂β for some β. Therefore, ∂J (α− ∂β) = 0 and ∂(α− ∂β) = ∂α = 0. This means that
α− ∂β defines a class in Hk,0

∂

(
Λ•,0M ∩Ker ∂J , ∂

)
and

H∂(i)([α− ∂β]) = [α− ∂β]∂ = [α] = a ,

concluding the proof.

Lemma 3.24. Let (M, I, J,K) be a compact hypercomplex manifold satisfying the ∂∂J -lemma, then
the natural projection

p :
(
Λ•,0(M) ∩Ker ∂J , ∂

)
→
(
H•,0∂J

(M), ∂
)

is a DGA quasi-isomorphism.

Proof. Notice that the projection

p :
(
Λ•,0(M) ∩Ker ∂J , ∂

)
→
(
H•,0∂J

(M), ∂
)

is a morphism of DGAs. We are left to prove that the map induced in cohomology

H∂(p) : H•,0∂

(
Λ•,0(M) ∩Ker ∂J , ∂

)
→ H•,0∂

(
H•,0∂J

(M), ∂
)

is an isomorphism.
We first prove that H∂(p) is injective. Fix k, and let [α] ∈ Hk,0

∂

(
Λ•,0(M) ∩Ker ∂J , ∂

)
such that

H∂(p)([α]) = 0. Hence,
α ∈ Im ∂ ∩Ker ∂J = Im ∂∂J

i.e., α = ∂ (∂Jβ) for some form β ∈ Λk−2,0(M) and clearly ∂Jβ ∈ Λk−1,0(M) ∩Ker ∂J , hence

[α] = 0 ∈ H•,0∂

(
H•,0∂J

(M), ∂
)

and so H∂(p) is injective.
The surjectivity of H∂(p) is immediate.

Lemma 3.25. Let (M, I, J,K) be a compact hypercomplex manifold satisfying the ∂∂J -lemma, then ∂
is the trivial operator on H•,0∂J

(M).

Proof. Fix k and let a = [α]∂J ∈ H
k,0
∂J

(M), namely ∂Jα = 0. Now

∂a = [∂α]∂J

and
∂α ∈ Im ∂ ∩Ker ∂J = Im ∂J∂

so ∂α = ∂J∂β for some β, giving ∂a = [∂J∂β]∂J = 0 ∈ Hk+1,0
∂J

(M), concluding the proof.

Proof of formality and consequences.

Now we are able to prove Theorem 3.22.
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Proof. Under the assumptions and as a consequence of the lemmas 3.23, 3.24, 3.25 we have the following
diagram of quasi-isomorphisms of DGAs,(

Λ•,0(M) ∩Ker ∂J , ∂
)

i

q-is
vv

p

q-is (((
Λ•,0(M), ∂

) (
H•,0∂J

(M), 0
)
.

hence, by definition,
(
Λ•,0(M), ∂

)
is a formal DGA.

In [146, Theorem 6] Grantcharov, Lejmi and Verbitsky proved that the ∂∂J -lemma always holds on
compact HKT SL(n,H) manifolds. As a consequence of this and Theorem 3.22 we obtain:

Corollary 3.26. Let (M, I, J,K,Ω) be a compact HKT SL(n,H)-manifold, then the DGA (Λ•,0(M), ∂)
is formal.

We recall now the definition of triple Massey products of a DGA in our setting.

Definition 3.27. Let a = [α] ∈ Hp,0
∂ (M), b = [β] ∈ Hq,0

∂ (M) and c = [γ] ∈ Hr,0
∂ (M) such that

a ∪ b = 0 ∈ Hp+q,0
∂ (M) and b ∪ c = 0 ∈ Hq+r,0

∂ (M); more precisely suppose that α ∧ β = ∂λ and
β ∧ γ = ∂µ for some λ ∈ Λp+q−1,0, µ ∈ Λq+r−1,0. The triple ∂-Massey triple product of a, b, c is defined
as

〈a, b, c〉 := [λ ∧ γ − (−1)pα ∧ µ] ∈ Hp+q+r−1,0
∂ (M)

Hp+q−1,0
∂ (M) ∪Hr,0

∂ (M) +Hp,0
∂ (M) ∪Hq+r−1,0

∂ (M)
.

Then, since for a formal DGA the associated Massey products vanish we have the following

Corollary 3.28. Let (M, I, J,K) be a compact hypercomplex manifold satisfying the ∂∂J -lemma, then
the triple ∂-Massey products vanish.

Hence, we have

Theorem 3.29. Let (M, I, J,K,Ω) be a compact HKT SL(n,H)-manifold, then the triple ∂-Massey
products vanish.

In particular, triple ∂-Massey products are an obstruction to the existence of a HKT SL(n,H)-
structure on a compact hypercomplex manifold. More precisely,

Corollary 3.30. Let (M, I) be a 4n-dimensional compact complex manifold such that there exists
a non trivial ∂-Massey product, then (M, I) does not admit any complex structures J,K such that
(M, I, J,K) is hypercomplex and admits a HKT SL(n,H)-structure.

We shall delay examples on which we could apply our results to the next section, where we deal
with nilmanifolds and solvmanifolds. Here, we only present one example which has the purpose to
show that the converse of Corollary 3.28 (and hence Theorem 3.29) does not hold in general.

Example 3.31. Consider SU(3) equipped with the homogeneous hypercomplex structure (I, J,K) of
Example 2.10 and the compatible HKT metric of Example 2.15. By [263] the holonomy of the Obata
connection on SU(3) is GL(2,H) and, in fact, we claim that the ∂∂J -lemma cannot hold on SU(3).

To see this, we observe that from Example 2.15, there exists a unitary coframe {Z1, . . . , Z4} of
(1, 0)-forms (with respect to I) on the Lie algebra of SU(3) such that the HKT form is

Ω = Z12 + Z34 = −1
2∂Z

2.

Now, if the ∂∂J -lemma hold we would have that Ω = ∂∂Jf for some function f , but since the HKT
form is q-positive, by E. Hopf’s maximum principle f would be constant and thus Ω = 0 which is a
contradiction.

On the other hand the triple ∂-Massey products are all zero because the same coframe satisfies

∂Z1 = 0, ∂Z2 = −2Z12 − 2Z34, ∂Z3 = −(1 + 3i)Z13, ∂Z4 = (3i− 1)Z14,
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which shows that H1,0
∂ (M) ' 〈Z1〉 and Hi,0

∂ (M) = 0 for i > 1.

3.2 HKT nilmanifolds and solvmanifolds.
In this section we briefly overview the main results of Barberis, Dotti and Verbitsky [29], dealing with
(hyper)complex nilmanifold. Some of these results is hereby extended to hypercomplex solvmanifolds. In
particular, we will see that Conjecture 2.45 is true for hypercomplex solvmanifolds (Theorem 3.39). We
also show that Conjecture 2.46 is verified for solvmanifolds with left-invariant hypercomplex structure
(Corollary 3.41). Another sufficient condition on solvmanifolds with a left-invariant hypercomplex to
have a balanced metric is given in Corollary 3.37.

The second subsection is dedicated to the study of the curvature and the holonomy group of the
Obata connection ∇ on solvable Lie groups with an abelian hypercomplex structure. We shall prove
that the holonomy algebra of ∇ is always abelian (Theorem 3.50).

3.2.1 Balanced HKT and SL(n,H)-solvmanifolds.

Nilmanifolds and solvmanifolds.

Let G be a Lie group with Lie algebra g and consider the lower central series and the derived series
defined inductively by = g0 := g =: D0(g) and

gk = [gk−1, g] , Dk(g) = [Dk−1(g),Dk−1(g)] .

Recall that G (and g) is (k-step) nilpotent (resp. (k-step) solvable) if there exists a k such that
gk = 0 and gk−1 6= 0 (resp. Dk(g) = 0 and Dk−1(g) 6= 0). Observe that any nilpotent Lie group is
solvable.

A nilmanifold (resp. solvmanifold) Γ\G is the quotient of a simply connected nilpotent (resp.
solvable) Lie group G with a left-invariant Riemannian metric by a lattice Γ, i.e. a discrete co-compact
subgroup. There is a bijective correspondence between left-invariant tensor fields on a Lie group G
and tensors of the same type on the Lie algebra g. Furthermore, every such tensor descends to the
quotient nilmanifold (resp. solvmanifold).

The existence of lattices is not always guaranteed. For the case of nilpotent Lie groups a classical
result of Mal’cev [220] shows that a simply connected nilpotent Lie group has a lattice if and only if
there exists a basis of the Lie algebra with rational structure constants. This characterization fails for
solvable Lie groups, and no general result ensuring the existence of a lattice is known. Such a problem
is investigated by Bock [46] for low dimensions. All we know is that a necessary condition for a Lie
group G to have a lattice is unimodularity, i.e. all the adjoint operators adX must have vanishing trace
for all X ∈ g (see [227]).

Nilmanifolds and solvmanifolds often provide fruitful examples and counterexamples because almost
everything can be regarded by looking at invariant objects, and the analysis need only to be carried
out at the Lie algebra level. For example, by a result of Nomizu [234], the de Rham cohomology
of nilmanifolds is isomorphic to the cohomology of its Lie algebra and thus can be computed using
left-invariant forms. Unfortunately there are counterexamples for what regards solvmanifolds, but it is
still true in some special cases [169, 231]. Under certain assumptions also other cohomologies can be
computed via invariant forms, we refer to the introduction of [21] for further details and references. On
the other hand both nilmanifolds and solvmanifolds present some rigidities, for instance, the well-known
result of Benson and Gordon [35] states that a nilmanifold with a Kähler structure is necessarily a
torus (see also the generalization of Hasegawa [168] for solvmanifolds).
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Hypercomplex nilmanifolds.

Here we summarize the main results of the paper by Barberis, Dotti and Verbitsky [29], which deals
with hypercomplex nilmanifolds.

Anytime a Lie group G is equipped with an almost complex structure I the complexification of
the Lie algebra splits into its (1, 0) and (0, 1)-parts, call them g1,0 and g0,1. By Newlander-Nirenberg
theorem I is integrable if and only if g1,0 is a complex subalgebra of gC := g⊗C. It is remarkable that
complex nilmanifold always have holomorphically trivial canonical bundle [29, 74].

The complex structure I is called abelian if the subalgebra g1,0 is abelian; equivalently

[I·, I·] = [·, ·] .

It is clear that an abelian almost complex structure is necessarily integrable. In [29] is reported that
condition of abelianity was introduced in Barberis’ Ph.D. thesis. Abelian complex structures became
particularly interesting very soon as they are easier to inspect. By the result of Petravchuk (Proposition
2.16), abelian complex structure can only occur on 2-step solvable Lie algebras.

When we equip a solvable Lie algebra with a hypercomplex structure (I, J,K) such that one of the
three complex structures, say I, is abelian, then automatically all the other ones are [111]. Since the
canonical bundle of a 4n-dimensional nilmanifold is holomorphically trivial there exists a holomorphic
global section Θ, by the following result of Fino, Otal and Ugarte [125] it must be left-invariant:

Proposition 3.32. A nowhere vanishing holomorphic (n, 0)-form on a solvmanifold with left-invariant
complex structure is left-invariant.

Now, going back to the holomorphic (2n, 0)-form Θ, we see that the form JΘ̄ must again be
holomorphic because it is a left-invariant section of the canonical bundle and such section is uniquely
determined up to a multiplicative constant. It follows that Θ + JΘ̄ is q-real and holomorphic, hence
by Lemma 2.42 we deduce:

Theorem 3.33. Every hypercomplex nilmanifold is SL(n,H) and has holomorphically trivial canonical
bundle.

Dotti and Fino showed in [112] that any hyperhermitian metric on a solvable Lie algebra with
left-invariant hypercomplex structure (i.e. every complex structure is left-invariant) is weak HKT
and then, it gives rise to a left-invariant HKT structure on the corresponding solvable Lie group
by left-translation. Under this light, a stronger condition than being SL(n,H) actually holds for
hypercomplex nilmanifolds, indeed:

Theorem 3.34. Every HKT nilmanifold is balanced.

Dotti and Fino also proved that the hypercomplex structure of any 2-step nilmanifold admitting a
left-invariant HKT metric is abelian. This was generalized to any nilpotency step in [29]:

Theorem 3.35. A hypercomplex nilmanifold with an HKT structure has abelian hypercomplex structure.

Sketch of proof. Let N = Γ\G a hypercomplex nilmanifold with a HKT structure and let g be the Lie
algebra of G. Suppose by contradiction that g1,0 is not abelian, along the lines of [35] one can show
that this implies that the Lefschetz map

Ln−1 : H1,0
∂ (N)→ H2n−1,0

∂ (N)

is not surjective, since N is balanced this contradicts Proposition 2.36.
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Hypercomplex solvmanifolds.

The following result can be seen as a generalization of Theorem 3.34 on solvmanifolds:

Theorem 3.36. Let (Γ\G, I, J,K,Ω, g) be a 4n-dimensional solvmanifold with a left-invariant abelian
HKT structure. Then g is balanced.

Proof. We will denote with (I, J,K,Ω, g) the induced structure on G. By hypothesis, Ω is HKT, hence
the Bismut connections associated to I, J, K coincide and we will denote them uniquely with ∇B.
Since Γ\G is a solvmanifold then G is unimodular. Hence, by [29, Lemma 2.4] the common Lee form
θLee of G is given by

θLee(X) = 1
2tr
(
J∇BJX

)
, for every X ∈ g .

Now we argue as in the proof of [29, Proposition 4.11] to show that θLee = 0 and so g is balanced.
Let X1, IX1, JX1,KX1, . . . , Xn, IXn, JXn,KXn be an orthonormal basis of g. Now using that

∇B preserves (I, J,K) and that g is hyperhermitian we have

tr
(
J∇BJX

)
=

n∑
j=1

(
g(J∇BJXXj , Xj) + g(J∇BJXIXj , IXj) + g(J∇BJXJXj , JXj) + g(J∇BJXKXj ,KXj)

)
=

n∑
j=1

(
g(J∇BJXXj , Xj) + g(JI∇BJXXj , IXj) + g(∇BJXJXj , Xj) + g(JK∇BJXXj ,KXj)

)
=

n∑
j=1

(
g(J∇BJXXj , Xj)− g(IJ∇BJXXj , IXj) + g(∇BJXJXj , Xj)− g(KJ∇BJXXj ,KXj)

)
=

n∑
j=1

(
g(∇BJXJXj , Xj)− g(∇BJXJXj , Xj) + g(∇BJXJXj , Xj)− g(∇BJXJXj , Xj)

)
= 0 ,

therefore θLee = 0 and g is balanced.

Corollary 3.37. Let (Γ\G, I, J,K) be a solvmanifold with a left-invariant abelian hypercomplex
structure. Suppose that there exists an HKT structure Ω on (Γ\G, I, J,K). Then there exists a balanced
abelian HKT structure on Γ\G.

Proof. By [124] there exists a invariant HKT structure Ω̃ on (Γ\G, I, J,K). Now, by Theorem 3.36 we
have that Ω̃ is balanced.

Remark 3.38. Notice that, differently from the nilpotent case, the converse of Theorem 3.36 is not
true. Indeed, in [30] it is provided an example of a balanced HKT solvmanifold with an hypercomplex
structure that is not abelian.

We have said that Barberis, Dotti and Verbitsky proved that hypercomplex nilmanifolds are all
SL(n,H) (Theorem 3.33) and their proof actually works to show that this occurs on solvmanifolds if
and only if their canonical bundle is holomorphically trivial.

Theorem 3.39. Let (M := Γ\G, I, J,K, g) be a solvmanifold with holomorphically trivial canonical
bundle, then the holonomy of the Obata connection ∇ is contained in SL(n,H).

Proof. Let η be a nowhere vanishing holomorphic section of the canonical bundle, which is necessarily
invariant by Proposition 3.32. The fact that Hol(∇) ⊆ SL(n,H), follows from the fact that η + Jη̄ is
parallel with respect to ∇, which is a consequence of Lemma 2.42.

Similarly to the case of nilmanifolds, when a SL(n,H)-solvmanifold admits an invariant HKT
structure it is automatically balanced:

Theorem 3.40. Let (M := Γ\G, I, J,K, g) be a solvmanifold with holomorphically trivial canonical
bundle and invariant HKT structure. Then g is balanced.
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Proof. Let η̄ be a non-vanishing ∂-closed section of Λ0,2n(M), then by Proposition 3.32 η̄ is invariant,
hence

Ω̄n = c η̄

with c constant. Since dη̄ = 0, then dΩ̄n = 0 and so ∂Ω̄n = 0 proving that g is balanced.

As a consequence we confirm the conjecture by Verbitsky on solvmanifolds with invariant hyper-
complex structure.

Corollary 3.41. Let (M := Γ\G, I, J,K) be a SL(n,H)-solvmanifold with invariant hypercomplex
structure. Suppose that there exists an HKT metric on M . Then there exists a balanced HKT structure
on M .

Proof. Since (M := Γ\G, I, J,K, g) is an HKT solvmanifold with a SL(n,H) structure, then the
canonical bundle of M is holomorphically trivial and, by [124], there exists an invariant HKT structure
on M . Hence, by the previous result the associated Hermitian metric is balanced.

Examples and triple ∂-Massey products.

We begin with an example of a nilmanifold admitting hypercomplex structures but not admitting HKT
structures:

Example 3.42. Consider the nilmanifold M = Γ\G whose structure equations of the Lie algebra g of
G are given by (see also [208, Example 1])

de1 = de2 = de3 = de4 = de5 = 0 , de6 = e12 + e34 , de7 = e13 − e24 , de8 = e14 + e23 ,

where we use the standard notation eij = ei ∧ ej . Define the following complex structure

Ie1 = e2 , Ie3 = e4 , Ie5 = e6 , Ie7 = e8 .

Then a co-frame for invariant (1, 0)-forms on M is given by

ϕ1 = e1 − ie2 , ϕ2 = e3 − ie4 , ϕ3 = e5 − ie6 , ϕ4 = e7 − ie8

and the complex structure equations become

dϕ1 = dϕ2 = 0 , dϕ3 = −1
2(ϕ11̄ + ϕ22̄) , dϕ4 = ϕ12 .

Then, the conjugate Dolbeault cohomology in bidegree (p, 0) is given by (cf. [208, Example 1])

H1,0
∂ (M) '

〈
ϕ1, ϕ2, ϕ3〉 , H2,0

∂ (M) '
〈
ϕ13, ϕ23, ϕ14, ϕ24〉 , H3,0

∂ (M) '
〈
ϕ134, ϕ234, ϕ124〉 .

We now construct a non trivial triple ∂-Massey product. Take [ϕ1] ∈ H1,0
∂ (M), [ϕ2] ∈ H1,0

∂ (M) and
[ϕ2] ∈ H1,0

∂ (M). Notice that ϕ1 ∧ϕ2 = ∂ϕ4 and ϕ2 ∧ϕ2 = 0. Hence, the ∂-Massey product is given by

[ϕ4 ∧ ϕ2] ∈ H2,0
∂ (M)

[ϕ1] ∪H1,0
∂ (M) +H1,0

∂ (M) ∪ [ϕ2]
.

and this class is clearly non trivial. Therefore, by Corollary 3.30 the complex manifold (M, I) does not
admit any complex structures J,K such that the nilmanifold (M, I, J,K) is hypercomplex and admits
a HKT structure (such structure should be SL(n,H) since M is a nilmanifold). One can confront this
result with [208, Example 1] where a specific hypercomplex structure (I, J,K) is constructed and it is
showed that it does not admit any HKT metric.

Notice that, in fact, if a nilmanifold N admits an invariant HKT structure (I, J,K,Ω) then the
complex structures I, J,K are abelian and in such a case the triple ∂-Massey products are trivial.
Indeed, we prove in general the following:
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Theorem 3.43. Let N = Γ\G be a 2n-dimensional nilmanifold and let I be an invariant abelian
complex structure on N . Then, the triple ∂-Massey products are all zero.

Proof. Since I is an invariant abelian complex structure on N , there exists a co-frame of invariant
(1, 0)-forms

{
ϕi
}
i=1,...,n on (N, I) such that

∂ϕi = 0 , for i = 1, . . . , n .

Since I is abelian, by [97] the Dolbeault cohomology of N can be computed using only invariant forms,
hence

Hr,0
∂ (N) ' Hr,0

∂ (gC) =
〈
ϕi1 ∧ . . . ∧ ϕir

〉
1≤i1<...<ir≤n

for r = 1, . . . , n, where, denoting with g = Lie(G), H•,•∂ (gC) denotes the cohomology of the differential
bigraded algebra Λ•,•(gC)∗ with respect to the operator ∂.
In order to construct a triple ∂-Massey product let a = [α] ∈ Hp,0

∂ (N), b = [β] ∈ Hq,0
∂ (N) such that

a∪b = 0 ∈ Hp+q,0
∂ (N), hence a∪b = 0 ∈ Hp+q,0

∂ (gC), namely there exists an invariant (p+q−1, 0)-form
λ such that

α ∧ β = ∂λ .

But, on invariant (r, 0)-forms the operator ∂ vanishes and so we can take the primitive λ = 0 itself.
A similar conclusion is obtained taking the third class in the definition of ∂-Massey products. This
means that we cannot construct non trivial ∂-Massey products since both λ and µ in the definition of
∂-Massey products would be zero.

An immediate consequence of this result combined with Theorem 3.35 is the following:

Theorem 3.44. Let N = Γ\G be a 4n-dimensional nilmanifold and let (I, J,K,Ω) be an invariant
HKT structure on N . Then, the triple ∂-Massey products are all zero.

Therefore, a relevant application of Corollary 3.30 should be given on solvmanifolds.

Example 3.45. Consider the 8-dimensional almost abelian Lie algebra g with structure equations

[e8, e2] = e4, [e8, e3] = e5.

Let G be the associated solvable simply connected Lie group. Then, by [46] G admits a lattice Γ such
that S := Γ\G is a solvmanifold. Define the complex structure setting as global co-frame of (1, 0)-forms

ϕ1 = e1 + ie8 , ϕ2 = e2 + ie3 , ϕ3 = e4 + ie5 , ϕ4 = e6 + ie7 .

The complex structure equations become

dϕ1 = dϕ2 = dϕ4 = 0 , dϕ3 = i

2ϕ
12 + i

2ϕ
21̄ .

We now construct a non trivial triple ∂-Massey product. Take [ϕ1] ∈ H1,0
∂ (S), [ϕ2] ∈ H1,0

∂ (S) and
[ϕ2] ∈ H1,0

∂ (S). Notice that ϕ1 ∧ ϕ2 = ∂(−2i ϕ3) and ϕ2 ∧ ϕ2 = 0. Hence, the ∂-Massey product is
given by

[−2i ϕ3 ∧ ϕ2] ∈ H2,0
∂ (S)

[ϕ1] ∪H1,0
∂ (S) +H1,0

∂ (S) ∪ [ϕ2]
.

and this class is clearly non trivial. Therefore, by Corollary 3.30 the complex manifold (S, I) does not
admit any complex structures J,K such that the solvmanifold (S, I, J,K) is hypercomplex and admits
a SL(n,H) HKT structure.

3.2.2 Curvature and holonomy.
The abelianness of a hypercomplex structure makes really simple computations involving the Obata
connection. Here we shall compute explicitly the curvature of the Obata connection on a Lie algebra g
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with abelian hypercomplex structure (I, J,K). We will then exploit this to observe that the holonomy
of the Obata connection must be abelian. The results of this subsection are part of unpublished work
together with Misha Verbitsky.

Curvature.

Recall the expression (2.7) of Soldatenkov for the Obata connection. Under the assumption of (I, J,K)
being abelian, this can be rewritten as

∇XY = 1
2 ([X,Y ] + I[IX, Y ] + J [JX, Y ] +K[KX,Y ]) , for every X,Y ∈ g .

We begin by computing the curvature:

Proposition 3.46. The Obata connection on a Lie algebra g with abelian hypercomplex structure
satisfies

[∇X ,∇Y ] = −∇[X,Y ]

for any X,Y ∈ g. In particular the curvature is given by

R(X,Y ) = 2[∇X ,∇Y ] = −2∇[X,Y ] .

Proof. Let (J1, J2, J3) = (I, J,K) be the hypercomplex structure on g. First we compute

4∇X∇Y Z = 2∇X

(
[Y,Z] +

3∑
α=1

Jα[JαY, Z]
)

= [X, [Y,Z]] +
3∑

α=1
[X, Jα[JαY,Z]] +

3∑
α=1

Jα[JαX, [Y,Z]] +
3∑

α,β=1
Jβ [JβX,Jα[JαY, Z]]

splitting the last sum according as α = β or α 6= β yields

3∑
α,β=1

Jβ [JβX, Jα[JαY,Z]] =
3∑

α=1
Jα[JαX, Jα[JαY, Z]] +

∑
α6=β

Jβ [JβX, Jα[JαY,Z]]

= −
3∑

α=1
Jα[X, [Y, JαZ]] +

∑
α6=β

Jβ [JαJβX, [JαJβY, JβZ]]

therefore

4∇X∇Y Z = [X, [Y, Z]]−
3∑

α=1
[JαX, [JαY,Z]] +

3∑
α=1

Jα ([JαX, [JαY, JαZ]]− [X, [Y, JαZ]])

+
∑
α6=β

Jβ [JαJβX, [JαJβY, JβZ]] .

Using Jacobi’s identity we then finally obtain

∇X∇Y Z −∇Y∇XZ = 1
4

[[X,Y ], Z]− 3[[X,Y ], Z] + 2
3∑

β=1
Jβ [[X,Y ], JβZ]


= −1

2

[[X,Y ], Z] +
3∑

β=1
Jβ [Jβ [X,Y ], Z]

 = −∇[X,Y ]Z

which concludes the proof of the proposition.

Endow the space g∇ := {∇X | X ∈ g} ⊆ End(g) with the opposite of the commutator as a Lie
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bracket. By Proposition 3.46 it is immediate to see that the Jacobi identity of this Lie bracket follows
directly from the Jacobi identity on (g, [·, ·]). Therefore g∇ is a Lie algebra. Furthermore, this yields a
representation ρ : g→ End(g), naturally defined by ρX = ∇X , which is onto g∇.

Proposition 3.47. If g is nilpotent then so is g∇. Furthermore, if the nilpotency step of g is k, then
the nilpotency step of g∇ is at most k − 1.

Proof. The first assertion is obvious. Observe that the center z(g) of g lies in Ker(ρ), hence g∇ ∼=
g/Ker(ρ) ⊆ g/z(g) which shows that if g is k-step nilpotent g∇ is at most (k − 1)-step nilpotent.

It is evident that whenever g is 2-step nilpotent the Obata connection is necessarily flat, equivalently,
g∇ is abelian. The converse is not true in general, we shall give a counterexample inspired by a 3-step
nilpotent non-integrable example of Dotti and Fino in [111]:

Example 3.48. Consider the 3-step nilpotent 12-dimensional Lie algebra g = 〈e1, . . . , e12〉 with abelian
hypercomplex structure

Ie4i−3 = e4i−2 , Je4i−3 = e4i−1 , Ke4i−3 = e4i , i = 1, 2, 3 ,

and non-zero Lie brackets

[e1, e2] = −[e3, e4] = −e10 ,

[e1, e4] = −[e2, e3] = e12 ,

[e1, e9] = [e2, e10] = [e3, e11] = [e4, e12] = −e6 ,

[e1, e11] = [e2, e12] = −[e3, e9] = −[e4, e10] = −e8 .

Then one can check that [g, g] ⊆ Ker(ρ), therefore g∇ ∼= g/Ker(ρ) ⊆ g/[g, g] is abelian and thus the
Obata connection is flat on g.

This is in contrast to what happens when the Obata connection∇ preserves an indefinite Riemannian
metric. Observe that the Riemannian metric has to be indefinite, otherwise the Lie algebra is abelian
[35]. In this case ∇ coincides with the Levi-Civita connection and g is 2-step nilpotent if and only if ∇
is flat. This was proved by Bajo and Sanmartín [25] who also show that such structures can be at most
3-step nilpotent. The only restriction on the nilpotency step that abelianness of the hypercomplex
structure imposes is that it can be at most equal to the quaternionic dimension [110]. Dotti and
Barberis provided examples with arbitrary nilpotency step in [28]; it is easy to check that these have
flat Obata connection.

Holonomy.

We now prove a lemma that will allow us to prove abelianness of the holonomy group.

Lemma 3.49. The curvature of the Obata connection satisfies:

∇XR(Y, Z) = 6∇[X,[Y,Z]] = −3R(X, [Y, Z]) .

Proof. We use Proposition 3.46 and the Jacobi identity

∇XR(Y, Z)W = ∇X(R(Y,Z)W )−R(∇XY,Z)W −R(Y,∇XZ)W −R(Y,Z)∇XW
= −2∇X∇[Y,Z]W + 2∇[∇XY,Z]W + 2∇[Y,∇XZ]W + 2∇[Y,Z]∇XW
= −2[∇X ,∇[Y,Z]]W + 2∇[∇XY,Z]+[Y,∇XZ]W

= 6∇[X,[Y,Z]]W .
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The last term is computed by using the explicit formula for the Obata connection:

2[∇XY,Z] + 2[Y,∇XZ] = [[X,Y ], Z] +
3∑

α=1
[Jα[JαX,Y ], Z] + [Y, [X,Z]] +

3∑
β=1

[Y, Jβ [JβX,Z]]

= [X, [Y,Z]] +
3∑

α=1
([[X, JαY ], JαZ] + [JαY, [X,JαZ]])

= 4[X, [Y,Z]] ,

where we used again the Jacobi identity.

Theorem 3.50. The restricted holonomy group of the Obata connection on a Lie group with abelian
hypercomplex structure is abelian.

Proof. From the Ambrose-Singer holonomy theorem the holonomy algebra is generated by the curvature
endomorphisms and all its covariant derivatives. But the previous lemma shows that all covariant
derivatives of the curvature are again curvature endomorphisms. Therefore the holonomy algebra is
hol(∇) = [g∇, g∇]. Since we know by Proposition 2.16 that g is necessarily 2-step solvable then also
g∇ is such. In other words [hol(∇), hol(∇)] = 0.
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CHAPTER 4
THE QUATERNIONIC CALABI CONJECTURE: TWO

RESULTS OF SOLVABILITY

Here, we present two cases on which the quaternionic Calabi conjecture can be solved. The first, deals
with specific examples of 2-step nilmanifolds viewed as tori fibrations. The solution on these examples
is new because they cannot be Kähler due to Benson and Gordon [35], hence, they do not belong to
the spaces on which the conjecture was solved by Alesker [14] and Dinew and Sroka [106].

The second setting is, in some sense, inspired by the first, and treats compact HKT manifolds
having a foliation that is preserved by the hypercomplex structure. In order to manage the terms we
make the assumption that such a foliation is of corank 4.

The two sections collect the results of [137, 138] respectively.

4.1 Abelian hypercomplex 8-dimensional nilmanifolds viewed
as tori fibrations.

The work of the present section takes off where [59, 60, 126, 289, 291, 309] stopped. Those articles
studied the symplectic Calabi-Yau conjecture [109, 322] on torus fibrations in the case the problem’s
data admits certain symmetries. In the same spirit, we study the quaternionic Monge-Ampère equation
on compact quotients of on 8-dimensional 2-step nilmanifoldsM endowed with an abelian hypercomplex
structure. We show that on these manifolds, regarded as tori fibrations, the quaternionic Calabi-Yau
problem can always be solved for any data that is invariant under the action of a 3-torus.

4.1.1 Preliminaries.

Overview.

By a result of Dotti and Fino [110] the only non-abelian 8-dimensional 2-step nilpotent Lie groups
admitting an abelian hypercomplex structure are

N1 = H1(2)× R3 , N2 = H2(1)× R2 , N3 = H3(1)× R ,

where Hi(n) denotes the real (i = 1), complex (i = 2), and quaternionic (i = 3) Heisenberg group (cf.
example 2.17). As we shall see each Ni contains a canonical co-compact lattice Γi, and the nilmanifold
Mi = Γi\Ni, i.e. the quotient of Ni by Γi, inherits the structure of a principal T 3-bundle over a
5-dimensional torus T 5 and also an HKT structure (I, J,K, g). In view of [35] the nilmanifolds Mi are
not Kähler, since a compact nilmanifold admits a Kähler metric if and only if it is a torus.
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Moreover, the canonical bundle of (Mi, I) is holomorphically trivial (Theorem 3.33) and Mi

carries a left-invariant holomorphic volume form Θ. Hence it is quite natural to wonder whether the
Alesker-Verbitsky conjecture might hold on these spaces.

Our main result is the following:

Theorem 4.1. The quaternionic Monge-Ampère equation

(Ω + ∂∂Jϕ)n = eFΩn . (4.1)

on (Mi, I, J,K, g) can be solved for every T 3-invariant map F ∈ C∞(Mi,R) satisfying∫
M

(eF − 1) Ωn ∧ Θ̄ = 0 . (4.2)

Since we are assuming F is invariant under the action of the fibre T 3, it can be regarded as a
smooth function on the base T 5. Furthermore, we shall see that condition (4.2) can be written as∫

T 5
(eF − 1)dx1 · · · dx5 = 0 . (4.3)

By imposing the same invariance property on the HKT potential ϕ, we reduce the quaternionic
Monge-Ampère equation on (Mi, I, J,K, g) to

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 = eF , (4.4)

where ϕrs denotes the second derivative of ϕ in the real coordinates xr, xs ∈ {x1, . . . , x5} on T 5. Then
we prove that equation (4.4) has a solution ϕ ∈ C∞(T 5) whenever F satisfies (4.3).

We mention that Fusi studied in [130] a class of fully non-linear elliptic equations on tori which
includes and generalizes the solvability of (4.4).

Writing the equation.

Let G be an 8-dimensional Lie group with a left-invariant hypercomplex structure (I, J,K). Assume
that I is abelian, meaning

[IX, IY ] = [X,Y ], for every X,Y ∈ g ,

where g is the Lie algebra of G. Recall that this is equivalent to requiring that the Lie algebra g1,0

of left-invariant vector fields of type (1, 0) on (G, I) is abelian. It also implies that any left-invariant
(p, 0)-form on (G, I) is ∂-closed. If g is a left-invariant Riemannian metric on G compatible with
(I, J,K), the hyperhermitian structure (I, J,K, g) is HKT because the corresponding form Ω is ∂-closed.

As mentioned, by [110] the only 8-dimensional nilpotent, non-abelian, Lie groups carrying a
left-invariant HKT structure (I, J,K, g) such that (I, J,K) is abelian are

N1 = H1(2)× R3 , N2 = H2(1)× R2 , N3 = H3(1)× R ,

where

H1(2) =




1 x1 x4 y1

0 1 0 x3

0 0 1 x2

0 0 0 1


 , H2(1) =


1 x1 + ix2 y3 + iy2

0 1 x4 + ix3

0 0 1

 ,

H3(1) =


1 q h− 1

2qq̄
0 1 −q̄
0 0 1

 | q = x1 + ix4 + jx3 + kx2, h = iy3 + jy2 + ky1

 .

Above, x1, . . . , x4, y1, y2, y3 ∈ R.
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Note that each group Ni is diffeomorphic to R8, and there are global coordinates

N1 = H1(2)x1,...,x4,y1 × R3
y2,y3,x5 , N2 = H2(1)x1,...,x4,y2,y3 × R2

y1,x5 ,

N3 = H3(1)x1,...,x4,y1,y2,y3 × Rx5 .

The Lie algebras of the Ni’s can be characterized in terms of left-invariant frames (e1, . . . , e8)
(corresponding to the ordered coordinates x1, x2, x3, x4, y1, y2, y3, x5) satisfying the following structure
equations:

N1: [e1, e2] = −[e3, e4] = e5, and all other brackets vanish;

N2: [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all other brackets vanish;

N3: [e1, e2] = −[e3, e4] = e5, [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all other brackets
vanish.

In each case, using the frame (e1, . . . , e8) we can define the left-invariant HKT structure as consisting
of the standard metric

g =
8∑
r=1

er ⊗ er

and the hypercomplex structure (I, J,K) defined by

Ie1 = e2 , Je1 = e3 , Ke1 = e4 , Ie5 = e6 , Je5 = e7 , Ke5 = e8 .

Let us fix co-compact lattices

Γ1 = Z3 ×


1 a c

0 1 bt

0 0 1

 | a, b ∈ Z2, c ∈ Z

 ⊂ N1 ;

Γ2 = Z2 ×


1 z u

0 1 w
0 0 1

 | u, z, w ∈ Z+ iZ

 ⊂ N2 ;

Γ3 = Z×


1 q h− 1

2qq̄
0 1 −q̄
0 0 1

 | q ∈ Z+ iZ+ jZ+ kZ , h ∈ iZ+ jZ+ kZ

 ⊂ N3 .

For r = 1, 2, 3 we denote by Mr = Γr\Nr the compact nilmanifold obtained by quotienting Nr by
Γr. The left-invariant quadruple (I, J,K, g) on Nr induces an HKT structure on Mr. Let {Z1, . . . , Z4}
indicate the left-invariant (1, 0)-frame Zr = 1

2 (e2r−1−iIe2r−1), r = 1, . . . , 4, and denote by {ζ1, . . . , ζ4}
the dual (1, 0)-coframe. We deduce the following identity, holding for every smooth real map ϕ on Mr:

∂∂Jϕ =∂J−1∂̄ϕ = −∂J
(
Z̄1(ϕ)ζ̄1 + Z̄2(ϕ)ζ̄2 + Z̄3(ϕ)ζ̄3 + Z̄4(ϕ)ζ̄4)

=∂
(
Z̄1(ϕ)ζ2 − Z̄2(ϕ)ζ1 + Z̄3(ϕ)ζ4 − Z̄4(ϕ)ζ3)

=
(
Z1Z̄1(ϕ) + Z2Z̄2(ϕ)

)
ζ12 +

(
Z3Z̄2(ϕ)− Z1Z̄4(ϕ)

)
ζ13 +

(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

)
ζ14

−
(
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

)
ζ23 +

(
Z2Z̄3(ϕ)− Z4Z̄1(ϕ)

)
ζ24 +

(
Z3Z̄3(ϕ) + Z4Z̄4(ϕ)

)
ζ34 .

Since
Ω = ζ12 + ζ34 ,

it follows that

(Ω + ∂∂Jϕ)2 = 2
( (
Z1Z̄1(ϕ) + Z2Z̄2(ϕ) + 1

) (
Z3Z̄3(ϕ) + Z4Z̄4(ϕ) + 1

)
−
(
Z3Z̄2(ϕ)− Z1Z̄4(ϕ)

) (
Z2Z̄3(ϕ)− Z4Z̄1(ϕ)

)
−
(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

) (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

))
ζ1234 .

(4.5)
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Furthermore, every manifold Mi is naturally a principal T 3-bundle over T 5 with projection

π : Mi → T 5
x1,...,x5 .

More in detail, if ni is the Lie algebra of Ni we have a short exact sequence:

0 −→ [ni, ni] −→ ni −→ ni�[ni, ni] −→ 0 (4.6)

where [ni, ni] = Span(e5, e6, e7) and ni/[ni, ni] ∼= Span(e1, e2, e3, e4, e8). Since Ni is 2-step nilpotent
the commutator lies in the center, therefore both [ni, ni] and ni/[ni, ni] are abelian subalgebras.
Exponentiating and quotienting by the lattice Γi the short exact sequence 4.6 induces the principal
fibration

0 −→ T 3
y1,y2,y3 −→Mi −→ T 5

x1,...,x5 −→ 0.

A smooth function on Mi is invariant under the action of the principal fibre T 3 if and only if it depends
only on the five coordinates {x1, . . . , x5}. What is more, T 3-invariant functions on Mi are naturally
identified with functions on T 5. As mentioned above, for a T 3-invariant real map F condition (4.2)
becomes (4.3). Further assuming that the HKT potential ϕ is T 3-invariant, writing (4.5) in terms of
real derivative and renormalizing in a suitable way, the quaternionic Monge-Ampère equation (4.1)
can be written as (4.4) on T 5.
Remark 4.2. The Lie algebras of the 2-step nilpotent Lie groups Ni all have 4-dimensional center
z = 〈e5, e6, e7, e8〉. Therefore the nilmanifolds Mi can be regarded in a natural way as principal
T 4-bundles over a torus T 4 if we project onto the first four coordinates (x1, . . . , x4). From this point
of view, requiring all data to be invariant under the action of the fibre T 4 implies that the resulting
equation can be written as the following Poisson equation on the base T 4

∆ϕ = ϕ11 + ϕ22 + ϕ33 + ϕ44 = eF − 1 .

And this can be solved using standard techniques.

From this point on we shall focus on equation (4.4). In order to simplify the notation let us set

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + 1 .

Lemma 4.3. If ϕ ∈ C2(T 5) is a solution to (4.4), then A > 0, B > 0 and

0 < 2eF/2 ≤ ∆ϕ+ 2 . (4.7)

Proof. From equation (4.4) we infer AB ≥ eF > 0. Hence A and B have the same sign. At a point p0
where ϕ attains its minimum we must have ϕ55(p0) ≥ 0. This implies B > 0 and then A > 0. Finally,
by using A2 +B2 ≥ 2AB we obtain

(∆ϕ+ 2)2 = (A+B)2 ≥ 4AB ≥ 4eF > 0 .

Taking the square root produces (4.7).

Proposition 4.4. Equation (4.4) is elliptic. More precisely, if ϕ ∈ C2(T 5) denotes a solution to (4.4)
then

Aξ2
5 +B(ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4)− 2

4∑
i=1

ϕi5ξiξ5 ≥ λ(ϕ)(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + ξ2
5) (4.8)

for every (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R5, where

λ(ϕ) = 1
2

(
A+B −

√
(A+B)2 − 4eF

)
.

Proof. The principal symbol of the linearized equation at a solution ϕ equals

Aξ2
5 +B(ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4)− 2ϕ15ξ1ξ5 − 2ϕ25ξ2ξ5 − 2ϕ35ξ3ξ5 − 2ϕ45ξ4ξ5
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and the corresponding matrix is

P (ϕ) =


B 0 0 0 −ϕ15
0 B 0 0 −ϕ25
0 0 B 0 −ϕ35
0 0 0 B −ϕ45
−ϕ15 −ϕ25 −ϕ35 −ϕ45 A

 .

Since, by (4.4),

det(P (ϕ)− λI) = (B − λ)3 ((A− λ)(B − λ)− (ϕ2
15 + ϕ2

25 + ϕ2
35 + ϕ2

45)
)

= (B − λ)3 (λ2 − (A+B)λ+ eF
)
,

the eigenvalues are λ = B and

λ± = 1
2

(
A+B ±

√
(A+B)2 − 4eF

)
.

Now (A+B)2 − 4eF ≥ (A+B)2 − 4AB = (A−B)2, so that

0 < λ− ≤ B ≤ λ+ .

This proves the claim.

4.1.2 Proof of Theorem 4.1.

C0-estimate.

Although the a priori C0-estimate for equation (4.4) can be deduced from the C0-estimate of the
quaternionic Monge-Ampère equation, as shown in [16, 18, 269], we shall prove this fact using an
argument that is specific to our setup.

Now, let us identify functions on T 5 with functions ϕ : R5 → R that are periodic in each variable.
Denote by Cn(T 5) the Banach space of functions ϕ : T 5 → R with Cn-norm

‖ϕ‖Cn = max
|I|≤n

sup
x∈R5

|∂Iϕ(x)|

where I = {i1, . . . , i5}. We are adopting the multi-index notation ∂I = ∂i11 ∂
i2
2 ∂

i3
3 ∂

i4
4 ∂

i5
5 with |I| =

i1 + i2 + i3 + i4 + i5. For α ∈ (0, 1) we also consider the Banach space Cn,α(T 5) of functions ϕ ∈ Cn(T 5)
with Hölder-continuous derivatives of order n:

‖ϕ‖Cn,α = max{‖ϕ‖Cn , |ϕ|Cn,α} <∞ ,

where
|ϕ|Cn,α = max

|I|=n
sup
x∈R3

sup
0<|h|≤1

|∂Iϕ(x+ h)− ∂Iϕ(x)|
|h|α

.

Set
Ck∗ (T 5) =

{
ϕ ∈ Ck(T 5) |

∫
K

ϕ = 0
}

where
K =

[
−1

2 ,
1
2

]5
.

Proposition 4.5. Assume that F ∈ C0(T 5) satisfies (4.3). Let ϕ ∈ C2
∗(T 5) be a solution to (4.4).
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Then there is a positive constant C, depending on ‖F‖C0 only, such that

‖ϕ‖C0 ≤ C . (4.9)

Proof. Let x0 ∈ R5 be a point where ϕ attains its minimum on K. Fix ε > 0 and define

u(x) = ϕ(x)−max
K

ϕ+ 4ε|x− x0|2 . (4.10)

Then
u(x0) + ε = ϕ(x0)−max

K
ϕ+ ε ≤ min

|x−x0|=1/2
ϕ(x)−max

K
ϕ+ ε = min

|x−x0|=1/2
u(x)

and by Proposition 2.56 we have
ε5 ≤ c5

∫
Γε

det(D2u) . (4.11)

Differentiating (4.10) twice gives D2u = D2ϕ+ 8εI. Hence we may rewrite equation (4.4) as

(u11 + u22 + u33 + u44 − 32ε+ 1)(u55 − 8ε+ 1)− u2
15 − u2

25 − u2
35 − u2

45 = eF . (4.12)

Now, on Γε the function u is convex, therefore the Hessian matrix D2u(x) is non-negative for all x ∈ Γε.
In particular uii(x) ≥ 0 for all i = 1, . . . , 5 and every x ∈ Γε. In addition,

uii(x)u55(x)− u2
i5(x) ≥ 0, for all i = 1, . . . , 5, and every x ∈ Γε . (4.13)

Set ε = ε0 = 1/48, so that from (4.13) and (4.12) we obtain, for every x ∈ Γε0 ,

∆u(x)
5 ≤ 5

6(u11(x) + u22(x) + u33(x) + u44(x)) + 1
3u55(x)

≤
(
u11(x) + u22(x) + u33(x) + u44(x) + 1

3

)(
u55(x) + 5

6

)
−

4∑
i=1

u2
i5(x)− 5

18

= eF (x) − 5
18 ≤ emaxK F .

Using again the fact that D2u is non-negative on Γε, the arithmetic-geometric mean inequality forces

det(D2u(x)) ≤
(

∆u(x)
5

)5
≤ e5 maxK F , for every x ∈ Γε0 . (4.14)

At last, (4.11) and (4.14) imply(
1
48

)5
c5 ≤

∫
Γε0

det(D2u) ≤ e5 maxK F |Γε0 | ,

i.e.
|Γε0 | ≥ C , (4.15)

where C > 0 depends on maxK F .
Now observe that

u(x) ≤ u(x0)−∇u(x) · (x0 − x) ≤ u(x0) + ε0

4 , for every x ∈ Γε0 ,

that is

ϕ(x)−max
K

ϕ+ 4ε0|x− x0|2 ≤ ϕ(x0)−max
K

ϕ+ ε0

4 = min
K

ϕ−max
K

ϕ+ ε0

4 , for every x ∈ Γε0 .

This implies
max
K

ϕ−min
K

ϕ ≤ max
K

ϕ− ϕ(x) + 1 , for every x ∈ Γε0 .
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It follows that for every p ≥ 1

(
max
K

ϕ−min
K

ϕ
)
|Γε0 |1/p ≤

(∫
Γε0

(
max
K

ϕ− ϕ+ 1
)p)1/p

=
∥∥∥max

K
ϕ− ϕ+ 1

∥∥∥
Lp(Γε0 )

,

and since Γε0 ⊆ B1/2(x0) ⊆ K + x0, we have∥∥∥max
K

ϕ− ϕ+ 1
∥∥∥
Lp(Γε0 )

≤
∥∥∥max

K
ϕ− ϕ+ 1

∥∥∥
Lp(K)

.

Therefore, since
∫
K
ϕ = 0, we have ‖ϕ‖C0 ≤ maxK ϕ−minK ϕ. Then (4.15) implies

‖ϕ‖C0 ≤ max
K

ϕ−min
K

ϕ ≤ C−1/p
(∥∥∥max

K
ϕ− ϕ

∥∥∥
Lp(K)

+ 1
)
, ∀p ≥ 1 . (4.16)

By (4.7) we see that ∆(maxK ϕ− ϕ) ≤ 2, and since maxK ϕ− ϕ ≥ 0 we can apply Theorem 2.57 on a
ball centered at x0 such that ϕ(x0) = maxK ϕ with maxK ϕ− ϕ in place of u, m = 5, p = 4/3, q = 6,
r = 1/2 and R = 3. This eventually shows there exists a positive constant C satisfying∥∥∥max

K
ϕ− ϕ

∥∥∥
L4/3(K)

≤ C
(

inf
K

(
max
K

ϕ− ϕ
)

+ ‖2‖L3(K)

)
= 2C . (4.17)

Estimate (4.9) now follows from (4.16) with p = 4/3 and (4.17).

C0-estimate for the Laplacian.

In this section we shall prove a C0-estimate for the Laplacian of ϕ. The technique we employ is an
adaptation of that found in [60].

Lemma 4.6. Let ϕ be a C2 function on the n-torus Tn, fix µ ∈ R and pick a point p0 where
Φ = (∆ϕ+ 2)e−µϕ attains its maximum value. Define

ηij = µ(∆ϕ+ 2)(ϕij + µϕiϕj)−∆ϕij , i, j = 1, . . . , n .

Then
ηii(p0) ≥ 0 , and √ηiiηjj ≥ |ηij | at p0 ,

for every i, j = 1, . . . , n.

Proof. We begin by differentiating Φ:

Φj = e−µϕ (∆ϕj − µ(∆ϕ+ 2)ϕj)

and

Φij =− µe−µϕ
(
ϕi∆ϕj + ∆ϕiϕj

)
+ µ2e−µϕ(∆ϕ+ 2)ϕiϕj + e−µϕ

(
∆ϕij − µ(∆ϕ+ 2)ϕij

)
.

Since
∇Φ = 0 , Hess(Φ) = (Φij) ≤ 0 at p0 ,

we infer
∆ϕj = µ(∆ϕ+ 2)ϕj at p0 (4.18)

and thus Φij(p0) = −ηij(p0). The Sylvester criterion then yields

ηii(p0) ≥ 0 , and η2
ij(p0) ≤ ηiiηjj(p0)

for every 1 ≤ i, j ≤ n and the claim follows.
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Proposition 4.7. Let F ∈ C2(T 5) satisfy (4.3). There exists a positive constant C, depending on
‖F‖C2 only, such that

‖∆ϕ‖C0 ≤ C(1 + ‖ϕ‖C1) (4.19)

for any solution ϕ ∈ C4
∗(T 5) to (4.4).

Proof. For starters,

∆eF = ∆AB +A∆B + 2∇A · ∇B − 2
4∑
i=1

(
|∇ϕi5|2 + ϕi5∆ϕi5

)
. (4.20)

Let p0 and ηij be as in Lemma 4.6 with

µ = ε

max(∆ϕ+ 2)

and ε ∈ (0, 1) to be determined later. Then by using (4.8) with

ξi = sgn(ϕi5)√ηii, i = 1, . . . , 4 , ξ5 = √η55 ,

we find

µ(∆ϕ+ 2)
(
A(ϕ55 + µϕ2

5) +B

4∑
i=1

(ϕii + µϕ2
i )
)
−A∆ϕ55︸ ︷︷ ︸

∆B

−B
4∑
i=1

∆ϕii︸ ︷︷ ︸
∆A

−2
4∑
i=1

ϕi5ξiξ5 ≥ 0 .

at p0. Lemma 4.6 now implies

ϕi5ξiξ5 = |ϕi5|
√
ηii
√
η55 ≥ ϕi5ηi5 , at p0 ,

i.e.
ϕi5ξiξ5 ≥ ϕi5 (µ(∆ϕ+ 2)(ϕi5 + µϕiϕ5)−∆ϕi5) at p0 .

Therefore we obtain

µ(∆ϕ+ 2)
(
A(ϕ55 + µϕ2

5) +B

4∑
i=1

(ϕii + µϕ2
i )
)
− 2

4∑
i=1

ϕi5 (µ(∆ϕ+ 2)(ϕi5 + µϕiϕ5))

≥ A∆B +B∆A− 2
4∑
i=1

ϕi5∆ϕi5 , at p0 .

By (4.20), and the definition of A,B, at the point p0 we have

∆eF ≤ µ(∆ϕ+ 2) (A(B − 1) +B(A− 1)) + 2∇A · ∇B

+ µ2(∆ϕ+ 2)
(
Aϕ2

5 +B

4∑
i=1

ϕ2
i

)
− 2µ(∆ϕ+ 2)

4∑
i=1

(
ϕ2
i5 + µϕi5ϕiϕ5

)
= 2µ(∆ϕ+ 2)

(
AB −

4∑
i=1

ϕ2
i5

)
− µ(∆ϕ+ 2)(A+B) + 2∇A · ∇B

+ µ2(∆ϕ+ 2)
(
Aϕ2

5 +B(ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4)− 2
4∑
i=1

ϕi5ϕiϕ5

)
≤ 2µ(∆ϕ+ 2)eF − µ(∆ϕ+ 2)2 + 2∇A · ∇B + 2µ2(∆ϕ+ 2)

(
Aϕ2

5 +B(ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4)
)
.

Observe that in the last inequality we used (4.8) with ξi = ϕi(p0) for i = 1, . . . , 4 and ξ5 = −ϕ5(p0).
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By (4.18) we then have

µ2(∆ϕ+ 2)2|∇ϕ|2 = |∇∆ϕ|2 = |∇(A+B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B , at p0 ,

and with the help of

Aϕ2
5 +B(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) ≤ A|∇ϕ|2 +B|∇ϕ|2 = (∆ϕ+ 2)|∇ϕ|2

we deduce

µ(∆ϕ(p0) + 2)2 ≤ −∆eF (p0) + 2µ(∆ϕ(p0) + 2)eF (p0) + 3µ2(∆ϕ(p0) + 2)2|∇ϕ(p0)|2. (4.21)

Let us set

m = ∆ϕ(p0) + 2 , ϕ0 = ϕ(p0) .

Since p0 is a maximum point for Φ, clearly

max Φ = me−µϕ0 .

From (4.21) we obtain

µm2 ≤
∥∥∆eF

∥∥
C0 + 2µm‖eF ‖C0 + 3µ2m2‖∇ϕ‖2C0 . (4.22)

Now fix a point p1 where ∆ϕ+ 2 reaches its maximum, and call ϕ1 = ϕ(p1). Then

m ≤ max(∆ϕ+ 2) = eµϕ1Φ ≤ meµ(ϕ1−ϕ0) ≤ me2µ‖ϕ‖C0 . (4.23)

By the definition of µ and inequality (4.7) we have

2µ = 2
max(∆ϕ+ 2) ε ≤

1
emin(F/2) ε ≤ e−min(F/2) ,

hence by (4.23)

ε exp
(
−e−min(F/2)‖ϕ‖C0

)
≤ εe−2µ‖ϕ‖C0 = µmax(∆ϕ+ 2)e−2µ‖ϕ‖C0 ≤ µm

and also
exp

(
−e−min(F/2)‖ϕ‖C0

)
max(∆ϕ+ 2) ≤ e−2µ‖ϕ‖C0 max(∆ϕ+ 2) ≤ m.

Next we multiply the last two inequalities and use (4.22), recalling that µm ≤ ε, to the effect that

ε exp
(
−2e−min(F/2)‖ϕ‖C0

)
max(∆ϕ+ 2) ≤

∥∥∆eF
∥∥
C0 + 2ε‖eF ‖C0 + 3ε2‖∇ϕ‖2C0 .

Put otherwise,

‖∆ϕ‖C0 ≤ exp
(

2e−min(F/2)‖ϕ‖C0

)(1
ε

∥∥∆eF
∥∥
C0 + 2‖eF ‖C0 + 3ε‖∇ϕ‖2C0

)
,

and by choosing
ε = 1

1 + ‖∇ϕ‖C0

the claim is straighforward.

The next theorem will provide us with an a priori C1-estimate for ϕ. Together with Proposition
4.7 it will give an a priori C0-bound for ∆ϕ.

Theorem 4.8. For all solutions ϕ ∈ C4
∗(T 5) of equation (4.4) with F ∈ C2(T 5) satisfying (4.3) there
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exists a positive constant C, depending on ‖F‖C2 only, such that

‖ϕ‖C1 ≤ C. (4.24)

Proof. Fix 0 < α < 1 and p = 5
1−α > 5. Morrey’s inequality says

‖ϕ‖C1,α ≤ C1‖ϕ‖W 2,p

for some positive constant C1 depending only on α. Elliptic Lp-estimates for the Laplacian also
generate another constant C2, still depending on α only, such that

‖ϕ‖W 2,p ≤ C2 (‖ϕ‖Lp + ‖∆ϕ‖Lp) .

If ϕ ∈ C2(T 5), the C0-estimate (4.9) for ϕ and bound (4.19) for ∆ϕ imply

‖ϕ‖Lp + ‖∆ϕ‖Lp ≤ ‖ϕ‖C0 + ‖∆ϕ‖C0 ≤ C3 + C4(1 + ‖ϕ‖C1) .

Using standard interpolation theory (see [143, section 6.8]), for any ε > 0 there is a constant Pε > 0
such that

‖ϕ‖C1 ≤ Pε‖ϕ‖C0 + ε‖ϕ‖C1,α , for every ϕ ∈ C1,α(T 5) .

Putting all this together, we obtain

‖ϕ‖C1 ≤ PεC0 + εK0 (C3 + C4(1 + ‖ϕ‖C1)) = PεC3 + εC5(C3 + C4) + εC5C4‖ϕ‖C1 ,

for some positive constant C5, again depending on α only. This produces (4.24) once we choose

ε <
1

C5C1
.

Corollary 4.9. Assume that F ∈ C2(T 5) satisfies (4.3) and let ϕ ∈ C4
∗(T 5) be a solution to (4.4).

Then there exists a positive constant C, depending on ‖F‖C2 only, such that

‖∆ϕ‖C0 ≤ C .

C2,α-estimate.

The C2,α-estimate for our equation (4.4) can now be deduced directly from the general result of Alesker,
Theorem 2.54. The HKT structures we are considering onMr are flat for the Obata connection because
Nr is 2-step nilpotent (cf. [110, Proposition 6.1]). Hence the underlying hypercomplex structure is
locally flat. Moreover, for T 3-invariant functions the quaternionic Laplacian acts as a multiple of the
usual Laplace operator, hence Theorem 2.54 and Corollary 4.9 imply:

Proposition 4.10. Assume F ∈ C2(T 5) satisfies (4.3). For every solution ϕ ∈ C4
∗(T 5) to equation

(4.4) there exist α ∈ (0, 1) and a positive constant C, depending on ‖F‖C2 , ‖ϕ‖C0 only, such that

‖ϕ‖C2,α ≤ C .

Proof of Theorem 4.1.

In this section we shall use the previously established a priori estimates in order to prove the following
result. This will then imply Theorem 4.1.

Theorem 4.11. Let F ∈ C∞(T 5) satisfy (4.3). Then equation (4.4) admits a solution ϕ ∈ C∞∗ (T 5).

Proof. For t ∈ [0, 1] we define
Ft = log(1− t+ teF )
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and set

St =
{
ϕ ∈ C∞∗ (T 5) | (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2

15 − ϕ2
25 − ϕ2

35 − ϕ2
45 = eFt

}
,

and S =
⋃
t∈[0,1] St. Clearly 0 ∈ S0, and S1 is the set of smooth solutions of (4.4). We thus need to

show that S1 6= ∅. For any t ∈ [0, 1] the map Ft satisfies (4.3) and

max
t∈[0,1]

‖Ft‖C2 <∞ .

Proposition 4.10 therefore implies there exists α ∈ (0, 1) such that

sup
ϕ∈S
‖ϕ‖C2,α <∞ . (4.25)

Let
τ = sup{t ∈ [0, 1] | St 6= ∅} .

We claim that Sτ 6= ∅ and τ = 1.

• Sτ 6= ∅. Let {tk} ⊆ [0, 1] be an increasing sequence converging to τ , and for any k ∈ N we fix
ϕk ∈ Stk . Condition (4.25) implies that {ϕk} is a sequence in C2,α

∗ (T 5), so by the Ascoli-Arzelà
Theorem there exists a subsequence {ϕkj} converging to some ψ in C2,α/2

∗ (T 5). The function ψ
satisfies

(ψ11 + ψ22 + ψ33 + ψ44 + 1)(ψ55 + 1)− ψ2
15 − ψ2

25 − ψ2
35 − ψ2

45 = eFτ .

In view of Proposition 4.4, equation (4.4) is elliptic, and elliptic regularity (see e.g. [282, Theorem
4.8, Chapter 14]) implies that ψ is in fact C∞. Therefore Sτ 6= ∅, as required.

• τ = 1. Assume, by contradiction, that τ < 1, and consider the non-linear operator

T : C2,α
∗ (T 5)× [0, 1]→ C0,α

∗ (T 5)

defined by

T (ϕ, t) = (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 − eFt .

Since Sτ 6= ∅, there exists ψ ∈ C∞∗ (T 5) such that T (ψ, τ) = 0. Let L : C2,α
∗ (T 5)→ C0,α

∗ (T 5) be
the first variation of T with respect to the first variable. Then

Lu = Au55 +B(u11 + u22 + u33 + u44)− 2C1u15 − 2C2u25 − 2C3u35 − 2C4u45

where

A = (ψ11 + ψ22 + ψ33 + ψ44 + 1) , B = (ψ55 + 1) , Ci = ψi5 ,

which implies that L is elliptic since ψ ∈ Sτ . The strong maximum principle guarantees L is
injective because Lϕ = 0 forces ϕ to be constant. Furthermore, ellipticity implies that L has
closed range, and Schauder Theory together with the method of continuity (see [143, Theorem
5.2]) ensures L is surjective. Hence by the Implicit Function Theorem there exists ε > 0 such
that for every fixed t ∈ (τ − ε, τ + ε), equation

T (ϕ, t) = 0

has a solution ϕ, which is additionally smooth by elliptic regularity. Therefore St 6= ∅ for every
t ∈ (τ, τ + ε), which contradicts the maximality of τ .
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4.1.3 Further Developments.
The manifold M2, for instance, can be regarded as a T 2-bundle over T 6, so it is quite natural to wonder
whether Theorem 4.1 might extend to T 2-invariant functions (instead of T 3-invariant).

T 2-invariance.

We shall next describe this setup for M2 and point out the differences from the T 3-invariant setting
considered in Theorem 4.1.

From (4.5) the quaternionic Monge-Ampère equation (4.1) on (M2, I, J,K, g) reduces to the
following PDE on the 6-dimensional base T 6 when the map F is T 2-invariant

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + 1)
− (ϕ35 − ϕ26)2 − (ϕ45 − ϕ16)2 − (ϕ46 + ϕ15)2 − (ϕ36 + ϕ25)2 = eF ,

(4.26)

where ϕ is an unknown function in C∞(T 6). By calling

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + 1

and

a1 = ϕ35 − ϕ26 , a2 = ϕ45 − ϕ16 , a3 = ϕ46 + ϕ15 , a4 = ϕ36 + ϕ25 ,

we may rewrite (4.26) as

AB −
4∑
i=1

a2
i = eF . (4.27)

The above is elliptic and

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6)− 2a1(ξ3ξ5−ξ2ξ6)− 2a2(ξ4ξ5 − ξ1ξ6)
− 2a3(ξ4ξ6 + ξ1ξ5)− 2a4(ξ3ξ6 + ξ2ξ5) > 0 ,

(4.28)

for every ξ ∈ R6, ξ 6= 0.
In order to show that (4.26) can be solved, we need only prove an a priori C0-estimate for the

Laplacian of the solutions to (4.26). The natural approach consists in adapting the proof of Proposition
4.7 by mixing Lemma 4.6 with the ellipticity of the equation. In this case, however, it seems that
condition (4.28) should be replaced with a stronger assumption, one implied by the estimate

2(|a2a3|+ |a1a4|) < eF . (4.29)

Applying the Laplacian operator to both sides of (4.27) we get

B∆A+A∆B + 2∇A·∇B − 2
4∑
k=1

(
|∇ak|2 + ak∆ak

)
= ∆eF ,

which readily implies

∆eF ≤ B∆A+A∆B + 2∇A·∇B − 2
4∑
k=1

ak∆ak . (4.30)

Let p0 be a maximum point for (∆ϕ+ 2)e−µϕ, as in Lemma 4.6, and

µ = 1
max(∆ϕ+ 2)

1
1 + ‖∇ϕ‖C0

.
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Using (4.18), we see that the following relation holds at p0

µ2(∆ϕ+ 2)2|∇ϕ|2 = |∇∆ϕ|2 = |∇(A+B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B ,

i.e.,
2∇A · ∇B ≤ µ2(∆ϕ+ 2)2|∇ϕ|2 . (4.31)

To produce an upper bound for B∆A+A∆B − 2
∑4
k=1 ak∆ak we consider ηij as in Lemma 4.6 and

ξi = √ηii .

Then at p0 we have
ξiξj ≥ |ηij | .

Moreover,

|a1|(ξ3ξ5 + ξ2ξ6) ≥ |a1|
{
|µ(∆ϕ+ 2)(ϕ35 + µϕ3ϕ5)−∆ϕ35|+ |µ(∆ϕ+ 2)(ϕ26 + µϕ2ϕ6)−∆ϕ26|

}
≥ a1

{
µ(∆ϕ+ 2)(ϕ35 + µϕ3ϕ5)−∆ϕ35 − µ(∆ϕ+ 2)(ϕ26 + µϕ2ϕ6) + ∆ϕ26

}
= µ(∆ϕ+ 2)(a2

1 + a1µ(ϕ3ϕ5 − ϕ2ϕ6))− a1∆a1

at p0, i.e.,
|a1|(ξ3ξ5 + ξ2ξ6) ≥ µ(∆ϕ+ 2)(a2

1 + µa1(ϕ3ϕ5 − ϕ2ϕ6))− a1∆a1

at p0. Similarly,

|a2|(ξ4ξ5 + ξ1ξ6) ≥ µ(∆ϕ+ 2)(a2
2 + µa2(ϕ4ϕ5 − ϕ1ϕ6))− a2∆a2 ,

|a3|(ξ4ξ6 + ξ1ξ5) ≥ µ(∆ϕ+ 2)(a2
3 + µa3(ϕ4ϕ6 + ϕ1ϕ5))− a3∆a3 ,

|a4|(ξ3ξ6 + ξ2ξ5) ≥ µ(∆ϕ+ 2)(a2
4 + µa4(ϕ3ϕ6 + ϕ2ϕ5))− a4∆a4 ,

at p0. If we add up the last four inequalities and use (4.28) with ξk = ϕk for k = 1, . . . , 4 and ξ5 = −ϕ5,
ξ6 = −ϕ6, we end up with

2|a1|(ξ3ξ5 + ξ2ξ6) + 2|a2|(ξ4ξ5 + ξ1ξ6) + 2|a3|(ξ4ξ6 + ξ1ξ5) + 2|a4|(ξ3ξ6 + ξ2ξ5) ≥

µ(∆ϕ+ 2)
( 4∑
k=1

(2a2
k − µBϕ2

k)− µA(ϕ2
5 + ϕ2

6)
)
− 2

4∑
k=1

ak∆ak

at p0.
To handle the last inequality we need the following estimate

B(ξ2
1 + ξ2

2+ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6) ≥
2|a1|(ξ3ξ5 + ξ2ξ6) + 2|a2|(ξ4ξ5 + ξ1ξ6) + 2|a3|(ξ4ξ6 + ξ1ξ5) + 2|a4|(ξ3ξ6 + ξ2ξ5) .

(4.32)

Notice this is stronger than (4.28).
In fact, if we assume (4.32), then

B

4∑
k=1

ξ2
k +A(ξ2

5 + ξ2
6) ≥ µ(∆ϕ+ 2)

( 4∑
k=1

(2a2
k − µBϕ2

k)− µA(ϕ2
5 + ϕ2

6)
)
− 2

4∑
k=1

ak∆ak

at p0 and, keeping in mind the definition of ξk,

B

4∑
k=1

ξ2
k + A(ξ2

5 + ξ2
6) = µ(∆ϕ + 2)

(
A

6∑
k=5

(ϕkk + µϕ2
k) +B

4∑
k=1

(ϕkk + µϕ2
k)
)
− A∆B − B∆A ,

at p0.
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Therefore

µ(∆ϕ+ 2)
(
A

6∑
k=5

(ϕkk + µϕ2
k) +B

4∑
k=1

(ϕkk + µϕ2
k)
)
−A∆B −B∆A ≥

µ(∆ϕ+ 2)
( 4∑
k=1

(2a2
k − µBϕ2

k)− µA(ϕ2
5 + ϕ2

6)
)
− 2

4∑
k=1

ak∆ak ,

at p0, which implies

A∆B +B∆A− 2
4∑
k=1

ak∆ak ≤ µ(∆ϕ+ 2)
(
A

6∑
k=5

(ϕkk + 2µϕ2
k) +B

4∑
k=1

(ϕkk + 2µϕ2
k)− 2

4∑
k=1

a2
k

)

≤ µ(∆ϕ+ 2)
(

2AB − (A+B) + 2µ(A+B)|∇ϕ|2 − 2
4∑
k=1

a2
k

)
= µ(∆ϕ+ 2)

(
2eF − (∆ϕ+ 2) + 2µ(∆ϕ+ 2)|∇ϕ|2

)
,

at p0. In other terms,

A∆B +B∆A− 2
4∑
k=1

ak∆ak ≤ µ(∆ϕ+ 2)
(
2eF − (∆ϕ+ 2) + 2µ(∆ϕ+ 2)|∇ϕ|2

)
(4.33)

at p0. From (4.30), (4.31) and (4.33) we finally deduce

µ(∆ϕ+ 2)2 ≤ −∆eF + 2µ(∆ϕ+ 2)eF + 3µ2(∆ϕ+ 2)2|∇ϕ|2,

at p0. At this juncture the a priori C0-estimate for ∆ϕ can be obtained as we did in Subsection 4.1.2.
Let us point out that requiring (4.32) for every ξ ∈ R6 is equivalent to (4.29). Indeed the quadratic

form

Q(ξ) = B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6)
− 2|a1|(ξ3ξ5 + ξ2ξ6)− 2|a2|(ξ4ξ5 + ξ1ξ6)− 2|a3|(ξ4ξ6 + ξ1ξ5)− 2|a4|(ξ3ξ6 + ξ2ξ5)

has matrix 
B 0 0 0 −|a3| −|a2|
0 B 0 0 −|a4| −|a1|
0 0 B 0 −|a1| −|a4|
0 0 0 B −|a2| −|a3|

−|a3| −|a4| −|a1| −|a2| A 0
−|a2| −|a1| −|a4| −|a3| 0 A

 ,

which is positive definite if and only if

B4

(A−B−1
4∑
k=1

a2
k

)2

− 4B−2 (|a2a3|+ |a1a4|)2

 > 0

since B > 0. A direct computation tells that the last condition is equivalent to

2(|a2a3|+ |a1a4|) < eF .

S1-invariance.

In analogy to the above discussion, the manifold M1 arises as an S1-bundle over a T 7-torus, and the
function F may be chosen to be S1-invariant. If so, the quaternionic Monge-Ampère equation (4.1)
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reads

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + ϕ77 + 1)
− (ϕ45 − ϕ16 − ϕ27)2 − (ϕ35 + ϕ17 − ϕ26)2

− (ϕ36 + ϕ47 + ϕ25)2 − (ϕ46 − ϕ37 + ϕ15)2 = eF ,

where ϕ is an unknown function in C∞(T 7).
Setting

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + ϕ77 + 1

and

a1 = ϕ45 − ϕ16 − ϕ27 , a2 = ϕ35 + ϕ17 − ϕ26 ,

a3 = ϕ36 + ϕ47 + ϕ25 , a4 = ϕ46 − ϕ37 + ϕ15 ,

the equation turns into

AB −
4∑
i=1

a2
i = eF . (4.34)

The above is elliptic and

B(ξ2
1+ξ2

2 + ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6 + ξ2
7)− 2a1(ξ4ξ5 − ξ1ξ6 − ξ2ξ7)

− 2a2(ξ3ξ5 + ξ1ξ7 − ξ2ξ6)− 2a3(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)− 2a4(ξ4ξ6 − ξ3ξ7 + ξ1ξ5) > 0 ,
(4.35)

for every ξ ∈ R7, ξ 6= 0.
We proceed as in the previous case, and choose p0 and ηij as in Lemma 4.6 and

µ = 1
max(∆ϕ+ 2)

1
1 + ‖∇ϕ‖C0

,

resulting in

∆eF ≤ B∆A+A∆B + µ2(∆ϕ+ 2)2|∇ϕ|2 − 2
4∑
k=1

ak∆ak , at p0 .

Set ξi = √ηii and apply Lemma 4.6 to obtain

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

≥|a1|
{
|µ(∆ϕ+ 2)(ϕ45 + µϕ4ϕ5)−∆ϕ45|+ |µ(∆ϕ+ 2)(ϕ16 + µϕ1ϕ6)−∆ϕ16|

+ |µ(∆ϕ+ 2)(ϕ27 + µϕ2ϕ7)−∆ϕ27|
}

≥a1

{
µ(∆ϕ+ 2)(ϕ45 + µϕ4ϕ5)−∆ϕ45 − µ(∆ϕ+ 2)(ϕ16 + µϕ1ϕ6) + ∆ϕ16

− µ(∆ϕ+ 2)(ϕ27 + µϕ2ϕ7) + ∆ϕ27

}
=µ(∆ϕ+ 2)(a2

1 + a1µ(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7))− a1∆a1

at p0, i.e.

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) ≥ µ(∆ϕ+ 2)(a2
1 + µa1(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7))− a1∆a1
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at p0. From that we deduce

|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6) ≥ µ(∆ϕ+ 2)(a2
2 + µa2(ϕ3ϕ5 + ϕ1ϕ7 − ϕ2ϕ6))− a2∆a2 ,

|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5) ≥ µ(∆ϕ+ 2)(a2
3 + µa3(ϕ3ϕ6 + ϕ4ϕ7 + ϕ2ϕ5))− a3∆a3 ,

|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5) ≥ µ(∆ϕ+ 2)(a2
4 + µa4(ϕ4ϕ6 − ϕ3ϕ7 + ϕ1ϕ5))− a4∆a4 ,

at p0. The sum of the previous four inequalities, together with (4.35), yields

2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) + 2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6)
+2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5) + 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5)

≥ µ(∆ϕ+ 2)
( 4∑
k=1

(2a2
k − µBϕ2

k)− µA
7∑
k=5

ϕ2
k

)
− 2

4∑
k=1

ak∆ak

at p0.
We need the following estimate

B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6 + ξ2
7)− 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

− 2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6)− 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)
− 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5) > 0 ,

(4.36)

at p0, which is stronger than (4.35). Once this has been established, the result follows.
To prove (4.36) one has to show that the quadratic form

Q(ξ) = B(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) +A(ξ2
5 + ξ2

6 + ξ2
7)− 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

− 2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6)− 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)− 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5)

on R7 is positive definite. This is equivalent to demanding two things:

e2F − 4(|a2a3|+ |a1a4|)2 > 0 ,

e3F − 4eF
(

(|a2a3|+ |a1a4|)2 + (|a1a3|+ |a2a4|)2 + (|a1a2|+ |a3a4|)2
)

− 16 (|a2a3|+ |a1a4|) (|a1a3|+ |a2a4|) (|a1a2|+ |a3a4|) > 0 .

We wrap up this overview of our future plans by observing that there exist torus fibrations whose
hypercomplex structure is not locally flat. On these spaces Alesker’s Theorem cannot be applied, so
once the C0-estimate of the Laplacian is at hand one needs to prove the C2,α-estimate by alternative
arguments.

We expect that the study of the equation on these explicit examples will give new insight for the
handling of the general case.

4.2 Foliated HKT manifolds.
Pursuing the approach of the previous section we study here the quaternionic Monge-Ampère equation
on HKT manifolds admitting an HKT foliation having corank 4. We show that in this setting the
quaternionic Monge-Ampère equation has always a unique solution for every basic datum. This
approach includes the study of the equation on SU(3).

100



4.2. Foliated HKT manifolds.

4.2.1 Rewriting the equation.

Setting and statement of the main result.

When the bundles considered in the previous section are regarded as T 4-bundles over a T 4, then the
equation reduces to the classical Poisson equation on the base (see Remark 4.2). Here we generalize
the construction to foliated HKT manifolds, where the foliation replaces the role of the fiber. More
precisely we consider the following setting:

We say that a foliation F on an HKT manifold (M, I, J,K, g) is an HKT foliation if

TxF is (Ix, Jx,Kx)-invariant for every x in M,

where TF denotes the vector bundle induced by F . A function f is called basic with respect to a
foliation F if X(f) = 0 for every X ∈ Γ(F), where Γ(F) is the space of smooth sections of TF . We
denote by CkB(M) the space of real Ck basic functions on (M,F). Our main result is the following:

Theorem 4.12. Let (M, I, J,K, g) be a compact HKT manifold and let F be an HKT foliation of real
corank 4 on M . Then the quaternionic Monge-Ampère equation

(Ω + ∂∂Jϕ)n = b eFΩn ,
∫
M

ϕVolg = 0 , F ∈ C∞B (M). (4.37)

has a unique solution for every basic datum F ∈ C∞B (M). Moreover the solution is necessarily basic.

Rewriting the equation.

Now we consider the framework of Theorem 4.12: let (M, I, J,K, g) be a compact HKT manifold
equipped with an HKT foliation F of real corank 4. We have the following

Lemma 4.13. Let ϕ ∈ C2
B(M). Then

(Ω + ∂∂Jϕ)n
Ωn = ∆ϕ+Q(∇ϕ,∇ϕ) + 1 ,

where ∆ is the Riemannian Laplacian of g and Q ∈ Γ(T ∗M ⊗ T ∗M) is negative semi-definite.

Proof. Since Fx is Ix-invariant for every x ∈M , then TF ⊗C splits as TF ⊗C = T 1,0F ⊗ T 0,1F . Let
{Z1, . . . , Z2n} be a local g-unitary frame with respect to I such that

〈Z3, . . . , Z2n〉 = Γ(T 1,0F) .

Let us denote the conjugate Z̄r by Zr̄ for every r = 1, . . . , 2n and suppose

J(Z2k−1) = Z2k , for every k = 1, . . . , n.

These assumptions imply that the HKT form of g takes its standard expression

Ω = Z12 + Z34 + · · ·+ Z(2n−1)(2n)

where {Z1, . . . , Z2n} is the dual coframe to {Z1, . . . , Z2n} and by Zij we mean Zi ∧ Zj .
We can write

[Zr, Zs] =
2n∑
k=1

BkrsZk , [Zr, Z̄s] =
2n∑
k=1

(
Bkrs̄Zk +Bk̄rs̄Zk̄

)
,

for some functions {Bkrs, Bkrs̄, Bk̄rs̄}.
For a basic function ϕ we have

∂Jϕ = −J∂̄ϕ = −J
(
Z1̄(ϕ)Z 1̄ + Z2̄(ϕ)Z 2̄

)
= Z1̄(ϕ)Z2 − Z2̄(ϕ)Z1;
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and

∂∂Jϕ =
2n∑
k=1

(ZkZ1̄(ϕ)Zk2 − ZkZ2̄(ϕ)Zk1) +
∑
r<s

(−Z1̄(ϕ)B2
rsZ

rs + Z2̄(ϕ)B1
rsZ

rs)

=
2n∑
k=1

(ZkZ1̄(ϕ)Zk2 − ZkZ2̄(ϕ)Zk1) +
∑
r<s

(Z2̄(ϕ)B1
rs − Z1̄(ϕ)B2

rs)Zrs

=(Z1Z1̄(ϕ) + Z2Z2̄(ϕ))Z12 +
2n∑
k=3

(ZkZ1̄(ϕ)Zk2 − ZkZ2̄(ϕ)Zk1) +
∑
r<s

(Z2̄(ϕ)B1
rs − Z1̄(ϕ)B2

rs)Zrs ,

Since F is a foliation, B1
rs = 0 = B2

rs for 2 < r < s, thus

∂∂Jϕ =(Z1Z1̄(ϕ) + Z2Z2̄(ϕ))Z12 +
2n∑
k=3

2n∑
l=1

(Blk1̄Zl(ϕ)Zk2 +B l̄k1̄Zl̄(ϕ)Zk2 −Blk2̄Zl(ϕ)Zk1 −B l̄k2̄Zl̄(ϕ)Zk1)

+ (Z2̄(ϕ)B1
12 − Z1̄(ϕ)B2

12)Z12 +
2n∑
s=3

(Z2̄(ϕ)B1
1s − Z1̄(ϕ)B2

1s)Z1s +
2n∑
s=3

(Z2̄(ϕ)B1
2s − Z1̄(ϕ)B2

2s)Z2s

=(Z1Z1̄(ϕ) + Z2Z2̄(ϕ) +B1
12Z2̄(ϕ)−B2

12Z1̄(ϕ))Z12

+
2n∑
k=3

(B1
1kZ2̄(ϕ)−B2

1kZ1̄(ϕ) +B1
k2̄Z1(ϕ) +B1̄

k2̄Z1̄(ϕ) +B2
k2̄Z2(ϕ) +B2̄

k2̄Z2̄(ϕ))Z1k

+
2n∑
k=3

(B1
2kZ2̄(ϕ)−B2

2kZ1̄(ϕ)−B1
k1̄Z1(ϕ)−B1̄

k1̄Z1̄(ϕ)−B2
k1̄Z2(ϕ)−B2̄

k1̄Z2̄(ϕ))Z2k .

By setting

Pk(∇ϕ) = B1
1kZ2̄(ϕ)−B2

1kZ1̄(ϕ) +B1
k2̄Z1(ϕ) +B1̄

k2̄Z1̄(ϕ) +B2
k2̄Z2(ϕ) +B2̄

k2̄Z2̄(ϕ) ,
Qk(∇ϕ) = B1

2kZ2̄(ϕ)−B2
2kZ1̄(ϕ)−B1

k1̄Z1(ϕ)−B1̄
k1̄Z1̄(ϕ)−B2

k1̄Z2(ϕ)−B2̄
k1̄Z2̄(ϕ) ,

we obtain
(Ω + ∂∂Jϕ)n

Ωn = 1 + Z1Z1̄(ϕ) + Z2Z2̄(ϕ) +B1
12Z2̄(ϕ)−B2

12Z1̄(ϕ)

+
n∑
j=3

(P2j(∇ϕ)Q2j−1(∇ϕ)− P2j−1(∇ϕ)Q2j(∇ϕ)) .

Since the Nijenhuis tensor of J vanishes we have

0 = [Z1, Z1̄] + J [Z1, JZ1̄] + J [JZ1, Z1̄]− [JZ1, JZ1̄]

=
2n∑
k=1

(Bk11̄Zk +Bk̄11̄Zk̄ +Bk12JZk +Bk̄2̄1̄JZk̄ −B
k
2̄2Zk −B

k̄
2̄2Zk̄)

and thus {
B2k−1

11̄ −B2k
2̄1̄ −B

2k−1
2̄2 = 0 ,

B2k
11̄ +B2k−1

2̄1̄ −B2k
2̄2 = 0 ,

k = 1, . . . , n .

Moreover, since B2k−1
11̄ , B2k

11̄ , B
2k−1
22̄ , B2k

22̄ are purely imaginary, for k = 1 we deduce{
B2̄

2̄1̄ = B1
11̄ +B1

22̄ = −B1̄
1̄1 −B

1̄
2̄2 = −B2

21 ,

B1̄
2̄1̄ = −B2

11̄ −B
2
22̄ = B2̄

1̄1 +B2̄
2̄2 = −B1

21 ,
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but then B2
21 and B1

21 are both real and purely imaginary, yielding
B1

21 = 0 ,
B2

21 = 0 ,
B1

11̄ +B1
22̄ = 0 ,

B2
11̄ +B2

22̄ = 0 .

Writing Xr = Re(Zr) and Yr = Im(Zr) for r = 1, 2, we see that

ZrZr̄(ϕ) = (Xr + iYr)(Xr − iYr)(ϕ) = XrXr(ϕ) + i[Yr, Xr](ϕ) + YrYr(ϕ)

and also

0 =
2n∑
k=1

(Bk11̄ +Bk22̄)Zk(ϕ) = ([Z1, Z1̄] + [Z2, Z2̄])(ϕ) = 2i([Y1, X1] + [Y2, X2])(ϕ)

so that
Z1Z1̄(ϕ) + Z2Z2̄(ϕ) = X1X1(ϕ) + Y1Y1(ϕ) +X2X2(ϕ) + Y2Y2(ϕ) = ∆ϕ .

Furthermore, from the vanishing of the Nijenhuis tensor it easy to observe that

Q2j−1(∇ϕ) = −P2j(∇ϕ) , Q2j(∇ϕ) = P2j−1(∇ϕ) .

Thus we finally obtain
(Ω + ∂∂Jϕ)n

Ωn = 1 + ∆ϕ−
2n∑
k=3
|Pk(∇ϕ)|2 .

The claim then follows by setting

Q(∇ϕ,∇ϕ) = −
n∑
k=3
|Pk(∇ϕ)|2 .

4.2.2 Proof of Theorem 4.12.
From Lemma 4.13 it follows that under our assumptions for a basic datum F equation (4.37) reduces
to

∆ϕ+Q(∇ϕ,∇ϕ) + 1 = b eF ,
∫
M

ϕVolg = 0 . (4.38)

We then focus on this last equation and prove its solvability in the general setting of a compact
Riemannian manifold.

C0-estimate.

In order to prove existence of solutions to (4.38) we need to show some a priori estimates. We mention
in passing that since we aim to study equation (4.38) on a compact Riemannian manifold we cannot
directly apply the known estimates for the quaternionic Monge-Ampère equation as they rely on the
HKT condition. The C0 bound is obtained by using the Alexandrov-Bakelman-Pucci estimate.
Lemma 4.14. Let (M, g) be a compact Riemannian manifold, Q ∈ Γ(T ∗M ⊗ T ∗M) negative semi-
definite and F ∈ C0(M,R). If (ϕ, b) ∈ C2(M,R)×R+ solves (4.38) then there exists a positive constant
C depending only on M , g, ‖Q‖C0 and F such that

‖ϕ‖C0 ≤ C , b ≤ C .

Proof. First of all we bound the constant b. At a maximum point p of ϕ we have ∇ϕ = 0 and ∆ϕ ≤ 0,
therefore b eF (p) − 1 ≤ 0 and thus b ≤ e−F (p) ≤ ‖e−F ‖C0 so that the constant b is bounded.
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Let x0 ∈M be a point where ϕ achieves its minimum and consider a coordinate chart centered at
x0. Without loss of generality we may identify this chart with a ball B1(0) ⊆ Rm of unit radius, where
m = dim(M). Fix ε > 0 and define

u(x) = ϕ(x)−max
M

ϕ+ ε|x|2 .

Applying Proposition 2.56 to u we have

εm ≤ cm
∫

Γε
det(D2u) . (4.39)

We aim to prove that D2u is bounded on Γε. Differentiating u we see that

∇u = ∇ϕ+ 2εx , D2u = D2ϕ+ 2ε1m ,

where 1m is the identity matrix. As a consequence u satisfies the following equation

∆u− 2mε+Q(∇u− 2εx,∇u− 2εx) + 1 = b eF .

Set, for instance, ε = 1. Now, since on Γ1 the Hessian D2u is non-negative, by the arithmetic-geometric
mean inequality we deduce

det(D2u(x)) ≤
(

∆u(x)
m

)m
≤
∣∣∣Q(∇u(x)− 2x,∇u(x− 2x) + 2m− 1 + b eF (x)

∣∣∣m
≤
(
‖Q‖C0 |∇u(x)− 2x|2 + 2m+ 1 + b

∣∣∣eF (x)
∣∣∣)m

≤
(

5
2‖Q‖C

0 + 2m+ 1 + b
∣∣∣eF (x)

∣∣∣)m ≤ C ,
for any x ∈ Γ1, where C > 0 is a uniform constant.

Now we observe that

u(x) ≤ u(0)−∇u(x) · (−x) ≤ u(0) + 1
2 , for every x ∈ Γ1 ,

which implies

ϕ(x)−max
M

ϕ+ |x|2 ≤ ϕ(0)−max
M

ϕ+ 1
2 = min

M
ϕ−max

M
ϕ+ 1

2 , for every x ∈ Γ1 ,

and therefore
max
M

ϕ−min
M

ϕ ≤ max
M

ϕ− ϕ(x) + 1
2 , for every x ∈ Γ1 .

It follows that for every p ≥ 1 we have(
max
M

ϕ−min
M

ϕ
)
|Γ1|1/p ≤

∥∥∥∥max
M

ϕ− ϕ+ 1
2

∥∥∥∥
Lp(Γ1)

≤
∥∥∥∥max

M
ϕ− ϕ+ 1

2

∥∥∥∥
Lp(B1(0))

.

Combining this with (4.39) and the fact that
∫
M
ϕ = 0, we have

‖ϕ‖C0 ≤ max
M

ϕ−min
M

ϕ ≤ |Γ1|−1/p
∥∥∥∥max

M
ϕ− ϕ+ 1

2

∥∥∥∥
Lp(B1(0))

≤ C
∥∥∥max

M
ϕ− ϕ

∥∥∥
Lp(B1(0))

,

for every p ≥ 1. In conclusion we only need to prove an Lp estimate for maxM ϕ− ϕ to obtain the
desired estimate on ϕ. Since Q is negative semidefinite we see from the equation that

∆ϕ ≥ b eF − 1 ≥ C eF − 1 ,

where we used that b is uniformly bounded. This entails that ∆(maxM ϕ−ϕ) ≤ 1−C eF , and applying

104



4.2. Foliated HKT manifolds.

Theorem 2.57 to maxM ϕ− ϕ with, 1 ≤ p ≤ m/(m− 2), q = 2m, r = 1/2 and R = 2 we infer∥∥∥max
M

ϕ− ϕ
∥∥∥
Lp(B1(0))

≤ C
(

inf
B1/2(0)

(
max
M

ϕ− ϕ
)

+ 1
2‖1− C eF ‖Lm(B2(0))

)
≤ C ,

as required.

Higher order estimates.

For higher order bounds we need to recall the following two results:

Theorem 4.15 (Theorem 3.1, Chapter 4 [203]). Let Ω ⊆ Rn be a bounded connected open subset.
Consider a semilinear elliptic equation of the following type

∆u+ a(x, u,∇u) = 0 ,

where the function a(x, u, p) is measurable for x ∈ Ω̄ and arbitrary u ∈ R, p ∈ Rn and satisfies

(1 + |p|)
n∑
i=1
|pi|+ |a(x, u, p)| ≤ µ(|u|)(1 + |p|)m ,

for some m > 1 and some non-decreasing continuous function µ : [0,+∞) → R. Let u ∈ C2(Ω) be
a solution of the given equation, then, for any connected open subset Ω′ ⊂ Ω there exists a constant
C > 0 depending only on ‖u‖C0(Ω), µ(‖u‖C0(Ω)), m and d(Ω′, ∂Ω) such that

‖u‖C1(Ω′) ≤ C .

Theorem 4.16 (Theorem 6.1, Chapter 4 [203]). Let Ω ⊆ Rn be a bounded connected open subset.
Consider a semilinear elliptic equation of the following type

∆u+ a(x, u,∇u) = 0 ,

where the function a(x, u, p) is measurable for x ∈ Ω̄ and arbitrary u ∈ R, p ∈ Rn and satisfies

‖a‖C0(Ω) < µ1 ,

for some constant µ1 <∞. Let u ∈ C2(Ω) be a solution of the given equation such that

‖∇u‖C0(Ω) < C ,

then there exists α ∈ (0, 1) depending only on ‖∇u‖C0(Ω) and µ1 such that ∇u ∈ C0,α(Ω,Rn). Moreover,
for any connected open subset Ω′ ⊂ Ω there exists a constant C > 0 depending only on ‖∇u‖C0(Ω), µ1
and d(Ω′, ∂Ω) such that

‖u‖C1,α(Ω′) ≤ C .

We can then establish the higher order a priori estimates for solutions to (4.38).

Lemma 4.17. Let (M, g) be a compact Riemannian manifold, Q ∈ Γ(T ∗M⊗T ∗M) and F ∈ C0(M,R).
If (ϕ, b) ∈ C2(M,R)× R+ satisfies ∆ϕ+Q(∇ϕ,∇ϕ) + 1 = b eF , then there exists a positive constant
C depending only on M , g, ‖ϕ‖C0 , b, ‖Q‖C0 and F such that

‖∆ϕ‖C0 ≤ C .

Proof. As an application of Theorem 4.15 with a = Q+ 1− b eF , m = 2, and µ ≡ ‖Q‖C0 + b‖eF ‖C0 +√
n+ 1 we have that there exists a constant C > 0 such that

‖∇ϕ‖C0 ≤ C .
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Then from the equation we have

‖∆ϕ‖C0 ≤ b eF + 1 + ‖Q(∇ϕ,∇ϕ)‖C0 ≤ C ,

and the claim follows.

Lemma 4.18. Let (M, g) be a compact Riemannian manifold, Q ∈ Γ(T ∗M ⊗ T ∗M) and F ∈
Ck,β(M,R). If (ϕ, b) ∈ C2(M,R) × R+ solves ∆ϕ + Q(∇ϕ,∇ϕ) + 1 = b eF , then ϕ ∈ Ck+2,α(M,R)
for some α ∈ (0, β) and there is a constant C > 0 depending only on M , g, b, ‖∇ϕ‖C0 , ‖Q‖C0 and F
such that

‖ϕ‖Ck+2,α ≤ C .

Proof. Lemma 4.17 implies ‖∇ϕ‖C0 ≤ C and we can apply Theorem 4.16 choosing the constant
µ1 = ‖Q‖C0 + b‖eF ‖C0 + 1 and deduce that there exist α ∈ (0, 1) and a constant C > 0 such that

‖ϕ‖C1,α ≤ C .

Then the equation implies the estimate ‖∆ϕ‖C0,α ≤ C, which can be improved to a C2,α estimate for
ϕ using Schauder theory by assuming α < β. Then ϕ ∈ C2,α(M,R) and by a bootstrapping argument
the claim follows.

Now, we prove that equation (4.38) is always solvable.

Proposition 4.19. Let (M, g) be a compact Riemannian manifold, Q ∈ Γ(T ∗M ⊗ T ∗M) be negative
semi-definite and F ∈ Ck,β(M,R). Then equation (4.38) admits a solution (ϕ, b) ∈ Ck+2,α(M,R)×R+
for α ∈ (0, β).

Proof. Let F ∈ Ck,β(M,R) and consider the set

S :=
{
t′ ∈ [0, 1] : (∗t) has a solution (ϕt, bt) ∈ C4,α(M)× R+ for t ∈ [0, t′]

}
,

where
∆ϕt +Q(∇ϕt,∇ϕt) = bt etF − 1 ,

∫
M

ϕtVolg = 0 (∗t)

and α ∈ (0, β) is fixed.
S in not empty since the pair (ϕ0, b0) = (0, 1) solves (∗t) for t = 0 and, therefore, 0 ∈ S. In order

to prove the statement we need to show that S is open and closed in [0, 1].

To show that S is open we apply, as usual, the inverse function theorem between Banach spaces.
Let t̂ ∈ S and (ϕt̂, bt̂) be solution of (∗t̂), let B1 and B2 be the Banach spaces

B1 :=
{
ψ ∈ C4,α(M,R) :

∫
ψVolg = 0

}
, B2 := C2,α(M,R)

and let Ψ: B1 × R+ → B2 be the operator

Ψ(ψ, a) := log
(

∆ψ +Q(∇ψ,∇ψ) + 1
a

)
.

The differential Ψ∗|(ϕt̂,bt̂) : B1 × R→ B2 is

Ψ∗|(ϕt̂,bt̂)(η, c) = ∆η + 2Q(∇η,∇ϕt̂)
bt̂ et̂F

− c

bt̂
.

Since T : η 7→ ∆η + 2Q(∇η,∇ϕt̂) is a second order linear elliptic operator without terms of degree
zero, by the maximum principle its kernel is the set of constant functions on M . Moreover, since T has
the same principal symbol of the Laplacian operator it has index zero. Denoting with T ∗ the formal
adjoint of T we then have

dim ker(T ∗) = dim coker(T ) = dim ker(T )− ind(T ) = 1 .
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Let ρ ∈ C2,α(M,R). Equation

∆η + 2Q(∇η,∇ϕt̂) = c et̂F + ρ bt̂ et̂F (4.40)

is solvable if and only if its right hand side is orthogonal to ker(T ∗), or equivalently to a generator
of ker(T ∗). This can always be accomplished by a suitable choice of the constant c and, therefore,
there always exists a solution η ∈ C4,α(M) to (4.40). Moreover the solution η is unique in B1 because∫
M
ηVolg = 0. The differential Ψ∗|(ϕt̂,bt̂) is then an isomorphism and it follows by the inverse function

theorem that the operator Ψ is locally invertible around (ϕt̂, bt̂), implying that there exists ε > 0 such
that for t ∈ [t̂, t̂+ ε) equation (∗t) can be solved.

Next we prove that S is closed. Let {tj} be a sequence in S converging to some t ∈ [0, 1] and
consider the corresponding solutions (ϕj , bj) = (ϕtj , btj ) to (∗tj ). In view of Lemma 4.14 the families
{‖ϕj‖C0}, {bj} are uniformly bounded from above. Moreover, Lemmas 4.17 and 4.18 imply that the
family {ϕj} is uniformly bounded in Ck+2,α-norm. Consequently, by Ascoli-Arzelà Theorem, up to
a subsequence, ϕj converges to some ϕt ∈ Ck+2,α(M,R) in Ck+2,α-norm and bj converges to some
bt ∈ R. bt is in fact positive since from the equation we deduce that the sequence bj is uniformly
bounded from below by a positive quantity. The pair (ϕt, bt) solves (∗t) and the closedness of S
follows.

Proof of Theorem 4.12.

We are ready to prove Theorem 4.12.

Proof of Theorem 4.12. In view of Lemma 4.13 for every ϕ ∈ C∞B (M) we have

(Ω + ∂∂Jϕ)n
Ωn = ∆ϕ+Q(∇ϕ,∇ϕ) + 1 ,

where ∆ is the Riemannian Laplacian of g and Q ∈ Γ(T ∗M ⊗ T ∗M) is negative semi-definite.
Let F ∈ C∞B (M). Proposition 4.19 implies that the equation

∆ϕ+Q(∇ϕ,∇ϕ) + 1 = b eF ,
∫
M

ϕVolg = 0

has a solution (ϕ, b) ∈ C∞(M,R)× R+. We observe that since F is basic, then ϕ is necessarily basic
too. Indeed by setting

Ψ(ψ) = ∆ψ +Q(∇ψ,∇ψ) + 1

we have that for every X ∈ Γ(F) condition X(F ) = 0 implies

0 = X(Ψ(ϕ)) = Ψ∗|ϕ(X(ϕ))

and since Ψ∗|ϕ is a linear elliptic operator without free term, by the maximum principle X(ϕ) must be
constant and then necessarily zero. Hence (ϕ, b) solves the quaternionic Monge-Ampère equation and
the claim follows.

As an explicit example we observe that Theorem 4.12 can be applied for instance to study the
quaternionic Monge-Ampère equation on SU(3) endowed with Joyce’s hypercomplex structure.

Example 4.20. Recall from Example 2.10 that Lie algebra of SU(3) splits in

su(3) = b⊕ d⊕ f

where
[b, d] = 0 , [b, f] = f , [d, f] = f , [f, f] = b⊕ d , [d, d] = d .

In particular b⊕ d is a subalgebra of su(3) and induces a foliation F on SU(3).
Moreover there exists a basis (X1, . . . , X8) on su(3) such that the hypercomplex structure is given

by the following relations:
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• on b⊕ d = 〈X1, X2, X3, X4〉 as IX1 = X2, IX3 = X4, JX1 = X3, JX2 = −X4;
• on f = 〈X5, X6, X7, X8〉 as Iv = [X2, v], Jv = [X3, v], Kv = [X4, v] for every v ∈ f.

The metric g such that (X1, . . . , X8) is an orthogonal frame is HKT with respect to (I, J,K). Hence
the foliation F induced by b⊕ d is (I, J,K)-invariant and all the assumptions of Theorem 4.12 are
satisfied. Therefore the quaternionic Calabi-Yau equation on (SU(3), I, J,K, g) can be solved for every
F-basic datum F .

For the sake of the reader we show explicitly how the proof of Lemma 4.13 works in the case of
SU(3). We have seen in Example 2.15 that the unitary coframe

Z1 = 1
2(X1 + iX2) , Z2 = 1

2(X3 + iX4) , Z3 = −1
2(X5 + iX6) , Z4 = 1

2(X7 + iX8)

satisfies

∂Z1 = 0 , ∂Z2 = −2Z12 − 2Z34 , ∂Z3 = −(1 + 3i)Z13 , ∂Z4 = (3i− 1)Z14 .

For a basic function ϕ we have Z1(ϕ) = Z2(ϕ) = 0, where (Z1, . . . , Z4) is the dual frame of (Z1, . . . , Z4),
and thus we obtain

∂∂Jϕ =− ∂J
(
Z3̄(ϕ)Z 3̄ + Z4̄(ϕ)Z 4̄

)
= ∂

(
Z3̄(ϕ)Z4 − Z4̄(ϕ)Z3)

= (Z3Z3̄(ϕ) + Z4Z4̄(ϕ))Z34 − (Z1Z4̄(ϕ)− (1 + 3i)Z4̄(ϕ))Z13

+ (Z1Z3̄(ϕ) + (3i− 1)Z3̄(ϕ))Z14 + Z2Z3̄(ϕ)Z24 − Z2Z4̄(ϕ)Z23

which, using the following brackets (that can be deduced from those of the Xi’s listed in Example
2.15):

[Z1, Z4̄] = (3i− 1)Z4̄ , [Z1, Z3̄] = −(1 + 3i)Z3̄ , [Z2, Z3̄] = 2Z4 , [Z2, Z4̄] = −2Z3 ,

simplifies to

∂∂Jϕ = (Z3Z3̄(ϕ) + Z4Z4̄(ϕ))Z34 + 2Z4̄(ϕ)Z13 − 2Z3̄(ϕ)Z14 + 2Z4(ϕ)Z24 + 2Z3(ϕ)Z23 .

Taking into account that the HKT form is Ω = Z12 + Z34 we obtain

(Ω + ∂∂Jϕ)2

Ω2 = 1 + Z3Z3̄(ϕ) + Z4Z4̄(ϕ)− 4|Z3(ϕ)|2 − 4|Z4(ϕ)|2

in accordance with Lemma 4.13.
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CHAPTER 5
THE QUATERNIONIC CALABI CONJECTURE: A

PARABOLIC APPROACH

We consider here the natural generalization of the parabolic Monge-Ampère equation to HKT geometry.
We prove that in the compact case the equation has always a short-time solution and when the
hypercomplex structure is locally flat and admits a compatible hyperkähler metric, then the equation
has a long-time solution whose normalization converges to a solution of the quaternionic Monge-Ampère
equation. The result gives an alternative proof of Alesker’s theorem 2.53.

The results of this chapter are contained in [33]. We also mention the independent paper [333]
where the parabolic quaternionic Monge-Ampère equation is studied and its long-time behaviour is
described with techniques different from ours.

5.1 Preliminaries.

The parabolic quaternionic Monge Ampère equation.

Let (M, I, J,K, g) be a compact HKT manifold. Consider the space of smooth quaternionic Ω-
plurisubharmonic functions:

HΩ = {ϕ ∈ C∞(M,R) | Ωϕ := Ω + ∂∂Jϕ > 0} ,

where the inequality “Ωϕ > 0” means that Ωϕ is q-positive and therefore induces a new hyperhermitian
metric on M .

In the present chapter we approach the quaternionic Monge-Ampère equation

(Ω + ∂∂Jϕ)n = b eF Ωn , (5.1)

via the following geometric flow

ϕt = log (Ω + ∂∂Jϕ)n
Ωn − F , ϕ(x, 0) = 0 , (5.2)

where F ∈ C∞(M,R) is the datum and the solution ϕ is supposed to satisfy ϕ(·, t) ∈ HΩ for every
t and the subscript t denotes the derivative of ϕ with respect to the variable t. The same dynamic
approach was pursued on Kähler manifolds [69], on Hermitian manifolds [144, 275] and on almost
Hermitian manifolds [91].

Our main result is the following theorem which provides an alternative proof of Alesker’s Theorem
2.53.
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Theorem 5.1. Let (M, I, J,K, g) be a compact HKT manifold with (I, J,K) locally flat and assume
that there exists a hyperkähler metric ĝ on (M, I, J,K) with corresponding HKT form Ωĝ. Then there
exists a long-time solution ϕ ∈ C∞(M × R+,R) to the parabolic quaternionic Monge-Ampère equation
(5.2) such that

ϕ̃ = ϕ−
∫
M
ϕΩn ∧ Ω̄nĝ∫

M
Ωn ∧ Ω̄nĝ

converges in C∞-topology to a smooth function ϕ̃∞ ∈ C∞(M,R). Moreover if

b :=
∫
M

Ωn ∧ Ω̄nĝ∫
M

eFΩn ∧ Ω̄nĝ
,

then (ϕ̃∞, b) solves the quaternionic Monge-Ampère equation (5.1).

Now we describe the layout of the proof. Since (5.2) is strongly parabolic, it admits a unique
maximal solution ϕ ∈ C∞(M × [0, T ),R).

Step 1. From the equation we directly deduce a uniform C0 bound on ϕt (Lemma 5.4).

Step 2. The C0 estimate for solutions of the quaternionic Calabi-Yau equation (5.1) then implies a
uniform bound on oscϕ (Lemma 5.5).

Step 3. We use the existence of the hyperkähler metric and the local flatness of the hypercomplex
structure in order to establish a uniform upper bound on ∆ĝϕ (Lemma 5.6).

Step 4. A general result in [90] implies a uniform Hölder estimate on the second derivatives of ϕ,
thus a classical bootstrapping argument using Schauder estimates implies T =∞ and a uniform
bound on |∇kϕ| for k ≥ 1 (Lemmas 5.7 and 5.8).

Step 5. We prove the convergence of ϕ̃ using an argument due to Phong-Sturm [245] based on an
adapted Mabuchi-type functional (Lemma 5.9).

We point out that the local flatness of the hypercomplex structure plays a role in steps 3 and 4, while
the existence of a background hyperkähler metric is only used in step 3.

Remark 5.2. Flow (5.2) can be regarded as a geometric flow in Hermitian Geometry. Here we assume
that the canonical bundle of (M, I) is trivial and we fix a q-real complex volume form Θ on (M, I). As
shown in [18] one has

(Ω + ∂∂Jϕ)n ∧ Θ̄ = in(ω − i∂∂̄ϕ)n ∧ Φ , Ωn ∧ Θ̄ = inωn ∧ Φ

where ω is the fundamental form of (g, I) and Φ is a real (n, n)-form which is positive in a weak sense.
By setting u = −ϕ we can then rewrite (5.2) as

ut = − log (ω + i∂∂̄u)n ∧ Φ
ωn ∧ Φ + F , u(0) = 0 . (5.3)

Equation (5.3) reminds the parabolic k-Hessian flow

ut = log (χ+ i∂∂̄u)k ∧ αn−k
αn

+ F , u(0) = 0 (5.4)

studied by Phong and Tô on a complex n-dimensional Hermitian manifold (M,α) in [246], where
1 ≤ k ≤ n and χ is a real k-positive (1, 1)-form. According to [246] (5.4) has always a long-time solution
whose normalization converges in C∞-topology to a solution of the k-Hessian equation. Equation
(5.3) differs from the parabolic n-Hessian flow since the role of αn is replaced by the form Φ which is
positive in a weak sense and the theorem of Phong and Tô cannot be directly applied.
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Some useful identities.

We assume that the canonical bundle of (M, I) is holomorphically trivial and we let Θ be a q-positive
holomorphic volume form on (M, I). Note that Ωn ∧ Θ̄ is a real volume form; indeed, J acts trivially
on top forms and thus Ωn ∧ Θ̄ = JΩn ∧ JΘ̄ = Ωn ∧ Θ̄.

The HKT metric induces the quaternionic Laplacian operator

∆gϕ := n
∂∂Jϕ ∧ Ωn−1

Ωn

for ϕ ∈ C∞(M,R). We recall that, from Lemma 2.28 we know that the integral of the quaternionic
Laplacian with respect to the volume Ωn ∧ Θ̄ is zero and it is a self-adjoint operator with respect to
the corresponding L2-product. Moreover the following formula will be useful:

∂η ∧ ∂Jψ ∧ Ωn−1

Ωn = 1
2ng(∂η, ∂̄ψ) . (5.5)

It is a direct consequence of 2.21.
The basic example of hyperhermitian manifold is given by an open set A of R4n with the standard

hyperhermitian structure

I0 =


0 −1n 0 0
1n 0 0 0
0 0 0 −1n
0 0 1n 0

 , J0 =


0 0 −1n 0
0 0 0 1n

1n 0 0 0
0 −1n 0 0

 , K0 =


0 0 0 −1n
0 0 −1n 0
0 1n 0 0
1n 0 0 0

 ,

where 1n is the n × n identity matrix. In order to identify R4n with Hn, the real coordinates
on are taken as (x1

0, . . . , x
n
0 , x

1
1, . . . , x

n
1 , x

1
2, . . . , x

n
2 , x

1
3, . . . , x

n
3 ) and the quaternionic coordinates are

qr = xr0 + ixr1 + jxr2 + kxr3.
Let Hyp+(n) denote the set of positive-definite hyperhermitian matrices. We recall here some facts

following from the discussion carried out in Subsection 2.2.1. Any hyperhermitian Riemannian metric
g on (A, I0, J0,K0) defines a smooth map G : A→ Hyp+(n),

Grs := g(∂qr , ∂qs) .

For instance given a local potential u for the HKT form Ω corresponding to g we have G = HessHu,
where we recall that for any smooth function u : A→ R the quaternionic Hessian matrix is defined as

(HessHu)r̄s := 1
4ur̄s = 1

4∂q̄
r∂qsu .

Finally, we provide a lemma which will be helpful in the proof of the main theorem.
Lemma 5.3. Let U : A→ Hyp+(n,H) be a smooth map and assume that there exists a point p ∈ A
such that U(p) is diagonal. Let ĝ be a hyperhermitian metric on A such that the induced matrix Ĝ is
the identity. Then

∆ĝ log det(U) = −1
4

n∑
r,s,t=1

3∑
i=0

1
Uss

1
Utt
|Ust,xr

i
|2 +

n∑
s=1

1
Uss

∆ĝUss

at p, where the subindex “xri ” denotes the derivative with respect to the corresponding real coordinate.
Proof. Using Jacobi’s formula (1.15) we directly compute

∂q̄r∂qr log det(U) =
3∑
i=0

∂2
xr
i

log det(U) =
3∑
i=0

∂xr
i
Re tr

(
U−1U,xr

i

)
=

3∑
i=0

Re tr
(
−U−1U,xr

i
U−1U,xr

i
+ U−1U,xr

i
xr
i

)
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and at the point p where U takes a diagonal form

∆ĝ log det(U) = 1
4

n∑
r=1

∂q̄r∂qr log det(U) = 1
4

n∑
r,s,t=1

3∑
i=0

Re
(
−UssUst,xr

i
U ttUts,xr

i
+ UssUss,xr

i
xr
i

)
= −1

4

n∑
r,s,t=1

3∑
i=0

1
Uss

1
Utt
|Ust,xr

i
|2 +

n∑
s=1

1
Uss

∆ĝUss

and the claim follows.

5.2 Proof of Theorem 5.1.
Let (M, I, J,K, g) be a HKT manifold with HKT form Ω. Every ϕ ∈ HΩ induces a HKT metric gϕ
and a quaternionic Laplacian ∆ϕ := ∆gϕ . Consider the operator

P : HΩ → C∞(M,R) , P (ϕ) = log (Ω + ∂∂Jϕ)n
Ωn − F .

The first variation of P is

P∗|ϕ(ψ) = n
∂∂Jψ ∧ (Ω + ∂∂Jϕ)n−1

(Ω + ∂∂Jϕ)n = ∆ϕψ .

Since ∆ϕ is a strongly elliptic operator, equation (5.2) is always well-posed and it admits a unique
maximal solution ϕ ∈ C∞(M × [0, T ),R). Assume further that the canonical bundle of (M, I) is
holomorphically trivial and let Θ ∈ Λ2n,0(M) be a q-real holomorphic volume form. We then denote

ϕ̃ = ϕ−
∫
M
ϕΩn ∧ Θ̄∫

M
Ωn ∧ Θ̄

.

C0-estimate.

We start by proving C0 bounds for the time derivatives ϕt and ϕ̃t and then use these to prove the
C0 estimate for ϕ̃. In what follows we denote by C all the uniform constants (which may be different
from line to line).

Lemma 5.4. There exists a uniform constant C > 0 such that

|ϕt(x, t)| ≤ C , |ϕ̃t(x, t)| ≤ C

for every (x, t) ∈M × [0, T ).

Proof. Since
∂

∂t
log (Ω + ∂∂Jϕ)n

Ωn = n
∂∂Jϕt ∧ Ωn−1

ϕ

Ωnϕ
= ∆ϕϕt ,

we have
ϕtt = ∆ϕϕt

and the parabolic maximum principle implies the a priori C0 estimate for ϕt. The estimate on ϕ̃t
immediately follows.

Lemma 5.5. We have
max
M

ϕ−min
M

ϕ ≤ C

112



5.2. Proof of Theorem 5.1.

and
|ϕ̃| ≤ C ,

for a uniform constant C > 0.

Proof. Since |ϕt| is bounded and
(Ω + ∂∂Jϕ)n = eF+ϕt Ωn ,

for every fixed t, ϕ(·, t) solves the quaternionic Monge-Ampère equation (5.1) with datum F + ϕt. In
view of the C0 estimate for solutions to the quaternionic Monge-Ampère equation (Theorem 2.52), ϕ
satisfies the bound

max
M

ϕ−min
M

ϕ ≤ C , (5.6)

where C depends only on (M, I, J,K, g) and an upper bound of max |F + ϕt|. Therefore Lemma 5.4
implies that the constant C in (5.6) may be chosen so that it only depends on (M, I, J,K, g) and an
upper bound of max |F |. Now, let (x, t) ∈M × [0, T ), since ϕ̃ is normalized, there exist (y, t) such that
ϕ̃(y, t) = 0, and thus we obtain |ϕ̃(x, t)| = |ϕ̃(x, t) − ϕ̃(y, t)| = |ϕ(x, t) − ϕ(y, t)| ≤ C and the claim
follows.

C0-estimate for the Laplacian.

Lemma 5.6. Assume that (I, J,K) is locally flat and that there exists a hyperkähler metric ĝ on
(M, I, J,K). Then

∆ĝϕ ≤ C ,

for a uniform constant C.

Proof. Let
Q = 2

√
trĝgϕ − ϕ .

Fix T ′ < T and let (x0, t0) be a point where Q achieves its maximum in M × [0, T ′]. We may assume
without loss of generality that t0 > 0. Since (I, J,K) is locally flat, then in a neighborhood of x0 we
can locally identify M with an open set A of Hn. Let G and Ĝ be the hyperhermitian matrices in A
induced by g and ĝ respectively. We may further assume that G = HessHv in A, that Ĝ is the identity
in A and that U = HessH(v + ϕ) is diagonal at x0. Let u = v + ϕ. Then in A we have

Q = 2
√

∆ĝu− ϕ

and the flow rewrites as
ϕt = log detU

detG − F . (5.7)

Computing at (x0, t0), we have

∆ϕQ = 1√
∆ĝu

n∑
r=1

1
urr̄

(
−1

2
1

∆ĝu
|∆ĝ ur|2 + ∆ĝurr̄

)
−∆ϕϕ .

Using (5.7) and applying Lemma 5.3 we infer

∂tQ = 1√
∆ĝu

∆ĝϕt − ϕt = 1√
∆ĝu

∆ĝ (log det(U)− log det(G)− F )− ϕt

= 1√
∆ĝu

(
−1

4

n∑
r,s,t=1

3∑
i=0

1
uss̄

1
utt̄
|ust̄,xr

i
|2 +

n∑
r=1

1
urr̄

∆ĝurr̄ −∆ĝ(log det(G) + F )
)
− ϕt
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which implies

∂tQ−∆ϕQ =

1√
∆ĝu

(
1

2∆ĝu

n∑
r=1

1
urr̄
|∆ĝ ur|2 −

1
4

n∑
r,s,t=1

3∑
i=0

1
uss̄

1
utt̄
|ust̄,xr

i
|2 −∆ĝ(log det(G) + F )

)
+ ∆ϕϕ− ϕt .

Using the Cauchy-Schwarz inequality and [14, Proposition 3.1] we obtain

n∑
r=1

1
urr̄
|∆ĝur|2 =

n∑
r=1

3∑
i=0

1
urr̄

(∆ĝuxr
i
)2 = 1

16

n∑
r=1

3∑
i=0

1
urr̄

(
n∑
s=1

√
uss̄√
uss̄

uss̄,xr
i

)2

≤ 1
16

n∑
r,s,t=1

utt̄

3∑
i=0

1
urr̄

1
uss̄

(uss̄,xr
i
)2 = 1

4∆ĝu

n∑
r,s=1

3∑
i=0

1
urr̄

1
uss̄

(uss̄,xr
i
)2

≤ 1
2∆ĝu

n∑
r,s,t=1

3∑
i=0

1
uss̄

1
utt̄
|ust̄,xr

i
|2

i.e.
1

2∆ĝu

n∑
r=1

1
urr̄
|∆ĝur|2 ≤

1
4

n∑
r,s,t=1

3∑
i=0

1
uss̄

1
utt̄
|ust̄,xr

i
|2 ,

from which it follows

0 ≤ ∂tQ−∆ϕQ ≤ ∆ϕϕ−
∆ĝ(log det(G) + F )√

∆ĝu
− ϕt ≤ 1−∆ϕv −

∆ĝ(log det(G) + F )√
∆ĝu

− ϕt

at (x0, t0), where we have used that it is a maximum point as well as the relation

∆ϕϕ = 1−∆ϕv .

Hence
∆ϕv ≤ 1− ∆ĝ(log det(G) + F )√

∆ĝu
− ϕt

at (x0, t0). Since |ϕt| is uniformly bounded we obtain

∆ϕv(x0, t0) ≤ C + C√∑n
r=1 urr̄(x0, t0)

(5.8)

for a uniform constant C. In terms of u and G equation (5.2) writes as

ut = log det (U)− log det(G)− F

and then
ut(x0, t0) = log

n∏
r=1

urr̄(x0, t0)− log det(G(x0))− F (x0) .

Lemma 5.4 implies that |ut| is uniformly bounded and we deduce that

1
C
≤

n∏
r=1

urr̄(x0, t0) ≤ C .

Thus in particular by the geometric-arithmetic mean inequality we have
∑n
r=1 urr̄(x0, t0) ≥ C. Since

∆ϕv(x0, t0) =
n∑
r=1

1
urr̄(x0, t0)vrr̄(x0) ,
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by (5.8) we finally deduce
n∑
r=1

1
urr̄(x0, t0) ≤ C .

Therefore

∆ĝu(x0, t0) =
n∑
r=1

urr̄(x0, t0) ≤ 1
(n− 1)!

(
n∑
r=1

1
urr̄(x0, t0)

)n−1 n∏
r=1

urr̄(x0, t0) ≤ C .

It follows
2
√

∆ĝu(x, t) ≤ C + ϕ(x, t)− ϕ(x0, t0) ≤ C + oscϕ in M × [0, T ′] ,

from which, using Lemma 5.5, we get
∆ĝu ≤ C

for a uniform C and the claim is proved.

Higher order estimates and proof of Theorem 5.1.

Lemma 5.7. Assume that (I, J,K) is locally flat and that there exists a hyperhermitian metric ĝ on
(M, I, J,K) such that ∆ĝϕ ≤ C for a uniform constant C. Then for 0 < α < 1 we have

‖∇2ϕ‖Cα ≤ C

for a uniform constant C.

Proof. We prove the result by applying [90, Theorem 5.1]. Note that the real representation γ : Hn,n →
{H ∈ R4n,4n : I0HI0 = J0HJ0 = K0HK0 = −H } of quaternionic matrices introduced in Subsection
1.1.2 is monotonic in the sense that when H1, H2 are hyperhermitian one has

H1 ≤ H2 ⇔ γ(H1) ≤ γ(H2) ,

where H1 ≤ H2 means that all the eigenvalues of H2 −H1 are non-negative.
Let p: R4n,4n → {H ∈ R4n,4n : I0HI0 = J0HJ0 = K0HK0 = −H } be the projection defined as

p(N) := 1
4(N − I0NI0 − J0NJ0 −K0NK0) .

Then for any real valued smooth function f and any hyperhermitian matrix H we have

γ(HessHf) = 16p(HessRf) , det(γ(H)) = (detH)4 .

Thus, once local quaternionic coordinates are fixed, working as in the proof of Lemma 5.6, we can
rewrite equation (5.2) as

ut = 1
4 log det (16p(HessRu))− log det(G)− F ,

where u = v + ϕ and v is a HKT potential of Ω. We rewrite the last equation as

ut = P (p(HessRu))− log det(G)− F (5.9)

where for N ∈ Sym(4n,R) such that detN > 0 we set

P (N) = 1
4 log det(16N) .

Fix positive constants C1 < C2 and let

E := {N ∈ Sym(4n,R) : C114n ≤ N ≤ C214n } .
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Then E is a compact convex subset of Sym(4n,R). We observe that P and p satisfy the assumptions
in [90, Theorem 5.1]. Indeed

• P is uniformly elliptic in E ;
• P is concave in E ;
• p is linear;
• if N ≥ 0, then p(N) ≥ 0 and C−1‖N‖ ≤ ‖p(N)‖ ≤ C‖N‖ for C uniform.

Therefore, if we show that p(HessRu) ∈ E for a suitable choice of C1 and C2 equation (5.9) belongs to
the class of equations considered in [90, Theorem 5.1].

Without loss of generality we can fix x0 ∈ M and assume that Ĝ is the identity at x0. Our
assumption ∆ĝϕ ≤ C implies

n∑
r=1

urr̄ ≤ C (5.10)

at x0 for a uniform C > 0 and thus
HessHu ≤ C1n .

On the other hand, equation (5.2) writes as

ut = log det(HessHu)− log det(G)− F .

Thus by Lemma 5.4
n∏
i=1

λi = det(HessHu) ≥ det(G) e− 1
κ |ut|+F ≥ C ,

where λ1, . . . , λn are the eigenvalues of HessHu and C > 0 is a uniform constant. From (5.10) we also
infer

∑n
i=1 λi ≤ C at x0 which then implies a uniform lower bound for each λi at the point x0, but

such bound does not depend on x0.
Therefore

C11n ≤ HessHu ≤ C21n .

By applying γ we get
C114n ≤ p(HessRu) ≤ C214n .

Then we can work as in the proof of [91, Lemma 6.1].
We assume that the domain of u is B × [0, T ) with B diffeomorphic to the unit ball in R4n. If

T < 1, then Lemma 5.4 implies
|u| ≤ CT + C ≤ C

for a uniform C and [90, Theorem 5.1] implies the result. If T ≥ 1 we define, for any a ∈ (0, T − 1)

û(x, t) := u(x, t+ a)− inf
B×[a,a+1)

u(x, t)

for all t ∈ [0, 1). We immediately deduce

ût = log det(HessHû)− log det(G)− F , sup
B×[0,1)

|û(x, t)| ≤ C .

Invoking again [90, Theorem 5.1], chosen ε ∈ (0, 1
2 ) and α ∈ (0, 1) we have

‖∇2u‖Cα(B×[a+ε,a+1)) = ‖∇2û‖Cα(B×[ε,1)) ≤ C

where the constant C depends on ε and α. As a was chosen arbitrarily in (0, T − 1) we have

‖∇2u‖Cα(B×[ε,T )) ≤ C ,

and the lemma follows.
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Lemma 5.8. Assume that there exists 0 < α < 1 such that ‖∇2ϕ‖Cα ≤ C for a uniform constant C.
Then T =∞ and for every k ≥ 1

‖∇kϕ‖C0 ≤ C

for a uniform constant C.

Proof. Our assumptions imply that the spatial derivatives of ϕ satisfy a uniformly parabolic equation
and uniform bounds on ‖∇kϕ‖C0 with k ≥ 1 follow by Schauder theory and a standard bootstrapping
argument.

Now we shall prove the long-time existence. Assume by contradiction that the maximal time
interval [0, T ) of existence of ϕ is bounded. Then the achieved estimates and short-time existence
would allow us to extend ϕ past T , which is a contradiction, thus T =∞.

Lemma 5.9. Assume T =∞ and that ‖∇kϕ‖C0 is uniformly bounded for every k ≥ 1. Then

ϕ̃ := ϕ−
∫
M
ϕΩn ∧ Θ̄∫

M
Ωn ∧ Θ̄

converges in C∞-topology to a smooth function ϕ̃∞. Moreover if

b :=
∫
M

Ωn ∧ Θ̄∫
M

eFΩn ∧ Θ̄
,

then (ϕ̃∞, b) solves the quaternionic Monge-Ampère equation (5.1).

Proof. Let
f(t) :=

∫
M

ϕt Ωnϕ ∧ Θ̄ =
∫
M

log
Ωnϕ
Ωn Ωnϕ ∧ Θ̄−

∫
M

F Ωnϕ ∧ Θ̄ .

Using (5.5) we have

f ′ =
∫
M

(
∆ϕϕt + log

Ωnϕ
Ωn∆ϕϕt − F∆ϕϕt

)
Ωnϕ ∧ Θ̄

=
∫
M

ϕt∆ϕϕt Ωnϕ ∧ Θ̄ =
∫
M

ϕt∂∂Jϕt ∧ Ωn−1
ϕ ∧ Θ̄ = −

∫
M

∂ϕt ∧ ∂Jϕt ∧ Ωn−1
ϕ ∧ Θ̄

= − 1
2n

∫
M

|∂ϕt|2gϕΩnϕ ∧ Θ̄ .

Differentiating again we obtain

f ′′ = − 1
2n

∫
M

∂
∂t |∂ϕt|

2
gϕΩnϕ ∧ Θ̄− 1

2n

∫
M

|∂ϕt|2gϕ∆ϕϕt Ωnϕ ∧ Θ̄ .

Now
∂

∂t
|∂ϕt|2gϕ = −gϕ

(
∂
∂tgϕ, ∂ϕt ⊗ ∂̄ϕt

)
+ 2Re gϕ(∂ϕtt, ∂̄ϕt) . (5.11)

For the first term of (5.11) Cauchy-Schwarz inequality gives

−gϕ
(
∂
∂tgϕ, ∂ϕt ⊗ ∂̄ϕt

)
≤ | ∂∂tgϕ|gϕ |∂ϕt|

2
gϕ ≤ C |∂ϕt|

2
gϕ

because of how Ωϕ and gϕ are related and the fact that Ωϕ and ∂
∂tΩϕ are uniformly bounded in

Ck-norm for every k. For the second term of (5.11) using (5.5) again we have

− 1
n

Re
∫
M

gϕ(∂∆ϕϕt, ∂̄ϕt)Ωnϕ ∧ Θ̄ = −2Re
∫
M

∂∆ϕϕt ∧ ∂Jϕt ∧ Ωn−1
ϕ ∧ Θ̄

= 2Re
∫
M

∆ϕϕt ∂∂Jϕt ∧ Ωn−1
ϕ ∧ Θ̄ = 2

n

∫
M

(∆ϕϕt)2 Ωnϕ ∧ Θ̄
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therefore
f ′′ ≥ −C

∫
M

|∂ϕt|2gϕ Ωnϕ ∧ Θ̄ .

Thus we have a non increasing smooth function f : [0,+∞)→ R which is bounded from below and
such that f ′′(t) ≥ Cf ′(t) for some positive constant C. This implies that limt→+∞ f ′(t) = 0, i.e.

lim
t→∞

∫
M

|∂ϕt|2gϕΩnϕ ∧ Θ̄ = 0 . (5.12)

Now, ϕ̃ has a uniform C∞ bound and Ascoli-Arzelà theorem implies that there exists a sequence
{tk} ⊆ R, tk →∞ such that ϕ̃(·, tk) converges to some ϕ̃∞ in C∞-topology. Since

ϕ̃t = log
Ωnϕ̃
Ωn − F −

∫
M

(
log Ωnϕ̃

Ωn − F
)

Ωn ∧ Θ̄∫
M

Ωn ∧ Θ̄
,

by (5.12) we get

0 = lim
t→∞

∫
M

|∂ϕ̃t|2gϕ̃Ωnϕ̃ ∧ Θ̄ =
∫
M

∣∣∣∣∂ (log
Ωnϕ̃∞
Ωn − F

)∣∣∣∣2
gϕ̃

Ωnϕ̃∞ ∧ Θ̄ .

It follows that
log

Ωnϕ̃∞
Ωn − F = C

for some constant C, so that
Ωnϕ̃∞ = eF+CΩn .

This means that (ϕ̃∞, eC) solves the quaternionic Calabi-Yau equation. Finally, we prove that
limt→∞ ϕ̃ = ϕ̃∞. Assume by contradiction that there exists ε > 0 and a sequence tk →∞ such that

‖ϕ̃(·, tk)− ϕ̃∞‖C∞ ≥ ε

for every tk. We may assume that ϕ̃(·, tk) converges in C∞-topology to ϕ̃′∞. Hence

Ωnϕ̃′∞ = eF+C′Ωn .

Since ϕ̃∞ and ϕ̃′∞ solve the same quaternionic Calabi-Yau equation, from uniqueness follows ϕ̃∞ = ϕ̃′∞
and the lemma is proved.

Proof of Theorem 5.1. We put together Lemmas 5.4–5.9 proved in this section. Lemmas 5.4,5.5,5.6
imply that if ϕ solves (5.2), its quaternionic Laplacian ∆ĝϕ with respect to the background hyperkähler
metric ĝ has a uniform upper bound. Hence Lemmas 5.7 and 5.8 can be applied and (5.2) has a
long-time solution ϕ such that ‖∇kϕ‖C0 is bounded for every k ≥ 1. Therefore, taking Θ = Ωn

ĝ ,
Lemma 5.9 implies the last part of the statement.
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CHAPTER 6
MORE GENERAL ELLIPTIC EQUATIONS

Mainly motivated by a conjecture of Alesker and Verbitsky, we study a class of fully non-linear elliptic
equations on certain compact hyperhermitian manifolds. By adapting the approach of Székelyhidi
[280] to the hypercomplex setting, we prove some a priori estimates for solutions to such equations
under the assumption of existence of C-subsolutions. In the estimate of the quaternionic Laplacian, we
need to further assume the existence of a flat hyperkähler metric. As an application of our results
we prove that the quaternionic analogue of the Hessian equation and Monge-Ampère equation for
(n− 1)-plurisubharmonic functions can always be solved on compact flat hyperkähler manifolds. The
results of this chapter have been obtained in [139].

6.1 Overview.

Setting of the problem.

Fix a q-real (2, 0) form Ω, a smooth map ϕ : M → R on a hyperhermitian manifold (M, I, J,K, g) is
called quaternionic Ω-plurisubharmonic if

Ωϕ := Ω + ∂∂Jϕ ,

is positive.
Animated by the study of “canonical” HKT metrics, in analogy to the Calabi conjecture [67] proved

by Yau in [327], Alesker and Verbitsky proposed in [18] to study the quaternionic Monge-Ampère
equation:

Ωnϕ = b eHΩn0 (6.1)

on a compact HKT manifold, where H ∈ C∞(M,R) is given, while (ϕ, b) ∈ C∞(M,R) × R+ is the
unknown.

Following the parallelism between Hermitian and hyperhermitian geometry it is quite natural to
enlarge the study of the quaternionic Monge-Ampère equation to a general set of fully non-linear
elliptic equations on hypercomplex manifolds. Here we adapt the description given by Székelyhidi in
[280] to the hypercomplex setting.

On a locally flat hypercomplex manifold (M, I, J,K), we can locally regard every q-real (2, 0)-form
Ω on M as a hyperhermitian matrix (Ωr̄s), i.e. as a n × n quaternionic matrix lying in Hyp(n).
Moreover, for a smooth real-valued function ϕ on M , the matrix associated to Ωϕ = Ω + ∂∂Jϕ is
(Ωϕr̄s) = (Ωr̄s+ 1

4∂q̄r∂qsϕ). The matrix HessHϕ := (ϕr̄s) = ( 1
4∂q̄r∂qsϕ) is usually called the quaternionic

Hessian of ϕ.
Now we can describe the class of equations we take into account in the present paper.

Let (M, I, J,K, g) be a compact locally flat hyperhermitian manifold and let Ω be a fixed q-real

119



CHAPTER 6. More general elliptic equations

(2, 0)-form on M (Ω is not necessarily the (2, 0)-form induced by g). For a smooth real function ϕ on
M let Ωϕ := Ω + ∂∂Jϕ and Ars = gj̄rΩϕ

j̄s
. The matrix (Ars) defines a hyperhermitian endomorphism of

TM with respect to the metric g, i.e. A = g−1A∗g. Note that in general, for quaternionic matrices
one does not have (right) eigenvalues in the usual sense, rather conjugacy classes of them. However
for hyperhermitian matrices there is a single real eigenvalue in each conjugacy class. Therefore, we
consider the function λ : Hyp(n)→ Rn which associates to a matrix A the n-tuple of its eigenvalues
λ(A).

We can then consider an equation of the following type

F (A) = h , (6.2)

where h ∈ C∞(M,R) is given and F (A) = f(λ(A)) is a smooth symmetric operator of the eigenvalues
of A. Here f : Γ→ R, where Γ is a proper convex open cone in Rn with vertex at the origin which is
symmetric (i.e. it is invariant under permutations of the λi’s) and contains the positive orthant

Γn = {λ = (λ1, . . . , λn) ∈ Rn | λi > 0, i = 1, . . . , n} .

We further require that f : Γ→ R satisfies the following assumptions:

C1) fi := ∂f
∂λi

> 0 for all i = 1, . . . , n and f is a concave function.
C2) sup∂Γ f < infM h, where sup∂Γ f = supλ0∈∂Γ lim supλ→λ0 f(λ).
C3) For any σ < supΓ f and λ ∈ Γ we have limt→∞ f(tλ) > σ.

Assumption C1 ensures that equation (6.2) is elliptic when ϕ is Γ-admissible, i.e.

λ
(
gk̄r(Ωk̄s + ϕk̄s)

)
∈ Γ .

Assumption C2 says that the level sets of f never touch the boundary of Γ, which also ensures that
(6.2) is non-degenerate and then uniformly elliptic once we have established the C2 estimate.

An analogue framework was firstly considered by Caffarelli, Nirenberg and Spruck [66] in Rn and
later by Li [210], Urbas [296], Guan [152, 153] and Guan and Jiao [154] on Riemannian manifolds.
Székelyhidi [280] studied this framework in Hermitian Geometry for elliptic equations and Phong and
Tô [246] for parabolic equations. Székelyhidi’s work has been recently generalized in [92, 179] to the
almost Hermitian setting.

Statement of the main result.

Our main result is the following:

Theorem 6.1. Let (M, I, J,K, g) be a compact flat hyperkähler manifold, Ω a q-real (2, 0)-form, and
ϕ a C-subsolution of (6.2). Then there exist α ∈ (0, 1) and a constant C > 0, depending only on
(M, I, J,K, g), Ω, h and ϕ, such that any Γ-admissible solution ϕ to (6.2) with supM ϕ = 0 satisfies
the estimate

‖ϕ‖C2,α ≤ C .

In the above statement the notion of subsolution is the following:

Definition 6.2. A function ϕ ∈ C2(M,R) is a C-subsolution of (6.2) if for every x ∈M the set(
λ
(
gj̄r(Ωj̄s + ϕ

j̄s
)
)

+ Γn
)
∩ ∂Γh(x)

is bounded, where for any σ > sup∂Γ f , Γσ denotes the convex superlevel set Γσ = {λ ∈ Γ | f(λ) > σ}.

We remark that the assumption of admitting a flat hyperkähler metric in particular implies that
(M, I, J,K) is locally flat.
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6.2. A priori estimates.

6.2 A priori estimates.

6.2.1 C0-estimate.
The C0-estimate for solutions to (6.2) is obtained by adapting [280, Proposition 10] to our setting and
by using the ABP method.

As a preliminary step, we prove an Lp-estimate. From here on, we will always denote with C a
positive constant that only depends on background data and which may change from line to line.

It will be useful to observe that the domain Γ of f satisfies

Γ ⊆
{

(λ1, . . . , λn) ∈ Rn |
n∑
i=1

λi > 0
}
. (6.3)

From (6.3) we have Re trg(Ωϕ) > 0, where Ωϕ = Ω +∂∂Jϕ, which in turn translates into a lower bound
for the quaternionic Laplacian of ϕ:

∆gϕ = Re trg(Ωϕ)− Re trg(Ω) ≥ −C .

The next lemma gives us the desired Lp estimate:

Lemma 6.3. Let (M, I, J,K, g) be a compact locally flat hyperhermitian manifold. If ϕ satisfies

∆gϕ ≥ C ′ (6.4)

for some (not necessarily positive) constant C ′, then there exist p, C > 0, depending only on the
background data, such that

‖ϕ− sup
M

ϕ‖Lp ≤ C .

Proof. Suppose for simplicity supM ϕ = 0. An L1-bound for ϕ can be obtained by using the Green
operator as in [15]. We give here some details for convenience of the reader. By a quaternionic
version of Gauduchon theorem [15, Proposition 2.2], there exists a q-positive (2n, 0)-form Θ (which
might not be holomorphic) such that ∂∂J

(
Ωn−1

0 ∧ Θ̄
)

= 0. In addition, we may normalize Θ so that∫
M

Ωn0 ∧ Θ̄ = 1. By [15, Lemma 23], the quaternionic Laplacian admits a non-negative Green function
G(p, q) ≥ 0, namely, for each function u of class C2 and each point p ∈M ,

−
∫
q∈M

G(p, q)∆gu(q) Ωn0 ∧ Θ̄ = u(p)−
∫
M

uΩn0 ∧ Θ̄ .

Choose a point p ∈M such that ϕ attains its maximum at p. Since we assumed supM ϕ = 0 we have

‖ϕ‖L1 =
∫
M

(−ϕ) Ωn0 ∧ Θ̄ = −
∫
q∈M

G(p, q)∆gϕ(q) Ωn0 ∧ Θ̄ ≤ C
∫
q∈M

G(p, q) Ωn0 ∧ Θ̄ ≤ C .

Alternatively an Lp-bound can be obtained by using the weak Harnack inequality as follows. Take
an open cover of M made of coordinate balls B2ri(xi) such that {Bi = Bri(xi)} still covers M . Since
ϕ is non-positive and it satisfies the elliptic inequality (6.4), the weak Harnack inequality (Theorem
2.57) implies

‖ϕ‖Lp(Bi) =
(∫

Bi

(−ϕ)p
)1/p

≤ C
(

inf
Bi

(−ϕ) + 1
)

where p, C > 0 depend only on the cover and the background metric. Since supM ϕ = 0 there is at
least one index j such that infBj (−ϕ) = − supBj ϕ = 0, and thus ‖ϕ‖Lp(Bj) ≤ C. This bound can
be extended to all balls Bi such that Bi ∩Bj 6= ∅, indeed the estimate on ‖ϕ‖Lp(Bj) yields an upper
bound for infBi(−ϕ) as

inf
Bi

(−ϕ) ≤ inf
Bi∩Bj

(−ϕ) ≤ 1
Vol(Bi ∩Bj)1/p ‖ϕ‖Lp(Bi∩Bj) ≤

1
Vol(Bi ∩Bj)1/p ‖ϕ‖Lp(Bj) .
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We can now reiterate the argument and in a finite number of steps we will have bound ‖ϕ‖Lp(Bi) for
each i, and thus also ‖ϕ‖Lp(M).

Proposition 6.4. Let (M, I, J,K, g) be a compact locally flat hyperhermitian manifold. If ϕ,ϕ are a
C-subsolution and a solution to (6.2) respectively, with supM ϕ = 0, then there is a constant C > 0,
depending only on the background data and the subsolution ϕ, such that

‖ϕ‖C0 ≤ C .

Proof. Without loss of generality we may assume that ϕ ≡ 0, otherwise we could modify Ω to simplify
the equation. Since supM ϕ = 0, we only need to bound S = infM ϕ from below. For convenience, we
may assume S ≤ −1, otherwise we are done.

Since ϕ is a C-subsolution there exist δ,R > 0 such that(
λ
(
gj̄rΩj̄s

)
− δ1 + Γn

)
∩ ∂Γh(x) ⊆ BR(0) , at every x ∈M , (6.5)

where 1 = (1, 1, . . . , 1).
Consider quaternionic local coordinates (q1, . . . , qn) centered at the point where ϕ attains its

minimum S. We may identify such coordinate neighborhood with the open ball of unit radius
B1 = B1(0) ⊆ Hn centered at the origin. Let v(x) = ϕ(x) + ε|x|2 be defined on B1 for some small
fixed ε > 0. Observe that infB1 v = v(0) = ϕ(0) = S and inf∂B1 v ≥ v(0) + ε. These conditions allow
us to apply the ABP method (see Proposition 2.56) to obtain

C0ε
4n ≤

∫
P

det(D2v) , (6.6)

where C0 > 0 is a dimensional constant,

P =
{
x ∈ B1 | |Dv(x)| < ε

2 , v(y) ≥ v(x) +Dv(x) · (y − x) for all y ∈ B1

}
,

and Dv, D2v are the gradient and the (real) Hessian of v. Note that P ⊆ {x ∈ B1 | D2v(x) ≥ 0} and
since convexity implies quaternionic plurisubharmonicity (see e.g. [9]), at any point x ∈ P we have
HessHv(x) ≥ 0. Therefore HessHϕ(x) ≥ − ε21, where 1 is the n× n identity matrix. Choosing ε small
enough depending on g and δ, we have

λ
(
gj̄r(Ωj̄s + ϕj̄s)

)
∈ λ

(
gj̄rΩj̄s

)
− δ1 + Γn , at every x ∈ P .

On the other hand, equation (6.2) also gives

λ
(
gj̄r(Ωj̄s + ϕj̄s)

)
∈ ∂Γh(x) , at every x ∈ P .

These two facts, together with (6.5) imply |ϕr̄s| ≤ C on P and thus also vr̄s ≤ C. Combining a
calculation in [43] with [270, Lemma 2], or alternatively using directly a computation in the proof of
[15, Proposition 2.1], at any point x ∈ P we have

det(D2v) ≤ 24n det(HessH(v))4 ,

where, on the right-hand side, “det” denotes the Moore determinant. Therefore, from (6.6) we see that

C0ε
4n ≤ CVol(P ) .

The definition of P entails that v(0) ≥ v(x)−Dv(x) · x > v(x)− ε/2, i.e. v(x) < S + ε/2 < 0 for all
x ∈ P . As a consequence for any p > 0

‖v‖pLp(M) ≥ ‖v‖
p
Lp(P ) =

∫
P

(−v)p ≥
∣∣∣S + ε

2

∣∣∣p Vol(P ) .
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From the previous lemma we know that there is a p > 0 such that ‖v‖Lp is bounded, therefore also
S = infM ϕ must be bounded.

6.2.2 Laplacian estimate.
This section is devoted to derive a C0-estimate for the quaternionic Laplacian of solutions to (6.2) in
terms of the squared norm of the gradient. This step is the most involved in terms of calculations and
it is here that we use our strongest assumptions to have a locally flat hypercomplex structure and a
hyperkähler metric compatible with it.

We follow Székelyhidi [280] and Hou-Ma-Wu [176], which in turn is based on an idea of Chou
and Wang [89] for the real Hessian equation. Our restrictive assumptions simplify quite a bit the
computations.

Preliminary results.

As declared in the overview, let F (A) = f(λ(A)) be a symmetric function of the eigenvalues of
Ars = gj̄rΩϕ

j̄s
= gj̄r(Ωj̄s + ϕj̄s). We denote the derivatives of F by

F rs = ∂F

∂Ars
, F rs,lt = ∂2F

∂Ars∂Alt
.

Let Qrs be the standard quaternionic coordinates on Hn,n and let Eprs be the real coordinates underlying
Qrs, i.e. Qrs = E0

rs + E1
rsi+ E2

rsj + E3
rsk. We have the following:

Lemma 6.5. The linearization of F at ϕ is the operator

L(ψ) = Re
n∑

r,s=1
F rsgj̄rψj̄s .

Proof. With respect to the real coordinates Eprs we decompose a matrix A ∈ Hn,n as Arsp Eprs. Define
the derivatives F rsp := ∂F

∂Arsp
and the matrix H = (F rs). For a curve of hyperhermitian matrices At

with respect to g we have

d

dt
F (At) =

n∑
r,s=

3∑
p=0

F rsp (At)(A′t)rsp = ReF rs(At)(A′t)rs

Now, for each ψ ∈ C2(M,R) and t ∈ (−ε, ε), let ϕ(t) be a curve of Γ-admissible functions in C2(M,R)
with ϕ(0) = ϕ and ϕ′(0) = ψ and set At = g−1 (Ω + HessHϕ(t)), then

L(ψ) = d

dt
F (At)

∣∣
t=0 = ReF rs(A0)(A′0)rs = Re

n∑
r,s=1

F rs(A0)gj̄rψj̄s .

In order to prove the desired bound we will need the following preliminary lemma.

Lemma 6.6. Let sup∂Γ f < a < b < supΓ f and δ,R > 0. Then there exists a constant κ > 0 such
that for any σ ∈ [a, b], B ∈ Hyp(n,H) satisfying

(λ(B)− 2δ1 + Γn) ∩ ∂Γσ ⊆ BR(0) ,
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A ∈ Hyp(n) satisfying λ(A) ∈ ∂Γσ and |λ(A)| > R, we have

either ReF rs(A) (Brs −Ars) > κ

n∑
r=1

F rr(A) ,

or F ss(A) > κ

n∑
r=1

F rr(A) , for all s = 1, . . . , n .

Proof. The lemma follows from the very same argument as [280, Proposition 6] together with the
quaternionic analogue of the Schur-Horn theorem (Proposition 1.46).

The main result of this section is the following:

Proposition 6.7. Let (M, I, J,K, g) be a compact flat hyperkähler manifold. If ϕ,ϕ are a C-subsolution
and a solution to (6.2) respectively, then there is a constant C > 0, depending only on (M, I, J,K),
‖g‖C2 , ‖h‖C2 , ‖Ω‖C2 , ‖ϕ‖C0 and ϕ, such that

‖∆gϕ‖C0 ≤ C
(
‖∇ϕ‖2C0 + 1

)
.

Here ∇ denotes the Obata connection on M .

Perturbation of A.

We observe that at a point where A is diagonal with distinct eigenvalues we have

• λrsi := ∂λi
∂Ars

= δirδis,

• λrs,tli := ∂2λi
∂Ars∂Atl

= (1− δir) δisδitδrlλi−λr + (1− δit) δilδirδstλi−λt

(see e.g. [141, 268]). Furthermore, since F (A) = f(λ(A)) for f symmetric, then F rs = δrsfr, and since
f is concave and satisfies fi > 0 (assumption C1 in the overview), then F is concave and fr−fs

λr−λs ≤ 0.
In particular fr ≥ fs anytime λr ≤ λs. Finally, we observe that by [280, Lemma 9 (b)] for any fixed
x ∈M there is a constant τ > 0 depending on h(x) such that

n∑
a=1

F aa(x) > τ > 0 . (6.7)

We will mainly be interested in the largest eigenvalue λ1 of the matrix A around some fixed point x0.
As pointed out by Székelyhidi [280] in order for λ1 : M → R to define a smooth function at x0 we need
the eigenvalues to be distinct; to be sure of that, we perturb the matrix A.

At any fixed point x0 ∈M we can perturb A in order to have a matrix with distinct eigenvalues.
Indeed, fix quaternionic local coordinates around the point x0 such that, at x0, A is diagonal and its
eigenvalues satisfy

λ1 ≥ λ2 ≥ · · · ≥ λn ; (6.8)

take a constant diagonal matrix D whose entries satisfy

0 = D11 < D22 < · · · < Dnn .

The matrix Ã = A−D has, at x0, the eigenvalues

λ̃1 = λ1 , λ̃i = λi −Dii , for i = 2, . . . , n ,

which are distinct by construction.
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C0-estimate for the Laplacian.

We will make use of the linearized operator L defined by L(u) = 4Re
∑n
a,b=1 F

abgc̄auc̄b, where
uc̄b = 1

4∂q̄c∂qbu. First of all, we prove the following inequality for L
(

2
√
λ̃1

)
.

Lemma 6.8. With respect to quaternionic local coordinates around x0 such that (gr̄s) is the identity
at x0 and (Ωϕr̄s) is diagonal at x0, we have

L

(
2
√
λ̃1

)
≥ −

F aa|Ωϕ1̄1,a|
2

2λ1
√
λ1

− CF√
λ1

,

where F =
∑n
a=1 F

aa(x0), Ωϕ

1̄1,a = ∂qaΩϕ

1̄1 and C > 0 is a positive constant depending only on
(M, I, J,K), ‖Ω‖C2 and ‖h‖C2 .

Proof. We have for the perturbed matrix Ãrs = Ars−Drrδrs = gj̄rΩϕ
j̄s
−Drrδrs at the point x0 where

(gr̄s) is the identity and A (and thus (F rs)) is diagonal

L

(
2
√
λ̃1

)
= 8ReF ab

(√
λ̃1

)
āb

= 2F aa
3∑
p=0

(√
λ̃1

)
xapx

a
p

= F aa
3∑
p=0

(
λ̃1,xapxap√

λ1
−

λ̃2
1,xap

2λ1
√
λ1

)
, (6.9)

where the subscript xap denotes the real derivative with respect to the corresponding coordinate. Using
the formulas for the derivatives of the eigenvalues we obtain at x0

λ̃1,xap = λ̃rs1 Ãrs,xap = Ωϕ1̄1,xap

λ̃1,xapxap = λ̃rs,lt1 Ãrs,xap Ãlt,xap + λ̃rs1 Ãrs,xapxap =
∑
r>1

Ãr1,xap Ã1r,xap + Ã1r,xap Ãr1,xap

λ1 − λ̃r
+ Ωϕ1̄1,xapxap

=
∑
r>1

Ar1,xapA1r,xap +A1r,xapAr1,xap

λ1 − λ̃r
+ gj̄1Ωϕ

j̄1,xapxap
= 2

∑
r>1

|Ωϕr̄1,xap |
2

λ1 − λ̃r
+ Ωϕ1̄1,xapxap

,

where we used that the derivatives of D vanish because it is a constant matrix.
Differentiating the equation F (A) = h twice with respect to x1

p gives, at the point x0,

ReF rs,tlΩϕs̄r,x1
p
Ωϕ
l̄t,x1

p

+ F rrΩϕr̄r,x1
px

1
p

= hx1
px

1
p
. (6.10)

We observe that
3∑
p=0

Ωϕ1̄1,xapxap
=

3∑
p=0

(
Ω1̄1,xapxap + ϕ1̄1xapxap

)
= 4Ω1̄1,āa + 4ϕāa1̄1 = 4Ω1̄1,āa − 4Ωāa,1̄1 +

3∑
p=0

Ωϕāa,x1
px

1
p

and thus, by (6.10) and (6.7)

F aa
3∑
p=0

λ̃1,xapxap ≥ F
aa

3∑
p=0

Ωϕ1̄1,xapxap
≥ −ReF rs,tl

3∑
p=0

Ωϕr̄s,x1
p
Ωϕ
t̄l,x1

p
− CF ≥ −CF

where we also used the concavity of F . Finally from (6.9) we have the desired inequality

L

(
2
√
λ̃1

)
≥ −

F aa
∑3
p=0(Ωϕ1̄1,xap

)2

2λ1
√
λ1

− CF√
λ1

.

Proof of Proposition 6.7. We have already seen that the Laplacian is bounded from below, as a
consequence of (6.3), therefore it is enough to obtain a bound of the form

λ1

‖∇ϕ‖2C0 + 1 ≤ C .
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Define the function
G = 2

√
λ̃1 + α(|∇ϕ|2) + β(ϕ) ,

where

α(t) = −1
2 log

(
1− t

2N

)
, N = ‖∇ϕ‖2C0 + 1 ,

β(t) = −2St+ 1
2 t

2 , S > ‖ϕ‖C0 , large constant to be chosen later ,

and λ̃1 is, as before, the highest eigenvalue of the perturbed matrix Ã around a point x0, which we
choose to be a maximum point of G. The derivative of the functions α and β satisfy

1
4N <α′(|∇ϕ|2) < 1

2N , α′′ = 2(α′)2 , (6.11)

S ≤− β′(ϕ) ≤ 3S , β′′ = 1 . (6.12)

At x0 we have L(G) ≤ 0. Choose quaternionic local coordinates such that (gr̄s) is the identity in
the whole neighborhood of x0 and (Ωϕr̄s) is diagonal at x0. This is possible because we are assuming g
hyperkähler and flat. Then

0 ≥ 4ReF abGāb = 4F aaGāa = F aa
3∑
p=0

Gxapxap , (6.13)

because F ab is diagonal at x0. We compute the derivatives of G at x0:

0 = Gxap =
(

2
√
λ̃1

)
xap

+ α′
n∑
r=1

(ϕr̄xapϕr + ϕr̄ϕrxap ) + β′ϕxap ,

Gxapxap =
(

2
√
λ̃1

)
xapx

a
p

+ α′′

(
n∑
r=1

(ϕr̄xapϕr + ϕr̄ϕrxap )
)2

+ α′
n∑
r=1

(ϕr̄xapxapϕr + 2|ϕrxap |
2 + ϕr̄ϕrxapxap ) + β′′ϕ2

xap
+ β′ϕxapxap .

Differentiating the equation F (A) = h yields

F aaΩϕāa,xrp = hxrp , at x0.

Using this, Cauchy-Schwarz inequality and (6.11) we have

α′F aa
n∑
r=1

(ϕr̄āaϕr + ϕr̄ϕrāa) = α′F aa
n∑
r=1

(ϕāar̄ϕr + ϕr̄ϕāar)

= α′
n∑
r=1

((hr̄ − F aaΩāa,r̄)ϕr + ϕr̄(hr − F aaΩāa,r))

≥ −C
N

(N1/2 +N1/2F) ≥ −CF ,

where we used (6.7) to absorb the constants into CF . Again using (6.11) we also obtain

2α′F aa
n∑
r=1

3∑
p=0
|ϕrxap |

2 ≥ 1
2N F aa

n∑
r=1

3∑
p,q=0

ϕ2
xrqx

a
p
≥ 1

2N F aa
3∑
p=0

ϕ2
xapx

a
p

= 8
N
F aaϕ2

āa

= 8
N
F aa(λa − Ωāa)2 ≥ 2

N
F aaλ2

a − CF ,
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where, for the last inequality we used that (a+ b)2 ≥ 1
2a

2 − b2. Thanks to the last two inequalities,
from our main inequality (6.13) we get

0 ≥ L
(

2
√
λ̃1

)
+α′′F aa

3∑
p=0

(
2

n∑
r=1

Re(ϕr̄xapϕr)
)2

+β′′F aa|ϕa|2 +4β′F aaϕāa+ 2F aaλ2
a

N
−CF . (6.14)

By Gxap (x0) = 0 we have

α′′F aa

(
2

n∑
r=1

Re(ϕr̄xapϕr)
)2

= 2F aa
(Ωϕ1̄1,xap√

λ1
+ β′ϕxap

)2

≥ 2ε
F aa(Ωϕ1̄1,xap

)2

λ1
− 2ε

1− ε (β′)2F aaϕ2
xap
,

(6.15)

where we used the inequality (a+ b)2 ≥ εa2 − ε
1−εb

2 , which holds for ε ∈ (0, 1). Summing (6.15) over
p and combining it with Lemma 6.8 we obtain from (6.14)

0 ≥
(

4ε
√
λ1 − 1

) F aa|Ωϕ1̄1,a|
2

2λ1
√
λ1

+
(
β′′ − 2ε(β′)2

1− ε

)
F aa|ϕa|2 + 4β′F aaϕāa + 2F aaλ2

a

N
− CF . (6.16)

Choosing ε = 1/(18S2 + 1) < 1, (6.12) implies

β′′ − 2ε
1− ε (β′)2 ≥ 0 .

Furthermore, we can assume without loss of generality
√
λ1 >

1
4ε and deduce

(
4ε
√
λ1 − 1

) F aa|Ωϕ1̄1,a|
2

2λ1
√
λ1

≥ 0 .

Then we obtain from (6.16)

0 ≥ 4β′F aaϕāa + 2F aaλ2
a

N
− CF . (6.17)

As before, we can assume ϕ ≡ 0, otherwise we could choose a suitable background form Ω in order
to simplify the equation. Set Brs = gj̄rΩj̄s and let δ,R > 0 be such that

(λ(B)− 2δ1 + Γn) ∩ ∂Γh(x) ⊆ BR(0) , at every x ∈M ,

which exist because of the definition of C-subsolution. Supposing λ1 > R we have |λ(A)| > R and we
can then apply Lemma 6.6 according to which there exists κ > 0 such that one of the following two
cases occur:

• First case:
ReF rs(A)(Brs −Ars) = −Re

n∑
r,s=1

F rs(A)gj̄rϕj̄s > κ

n∑
r=1

F rr(A) ,

i.e. −F aaϕāa > κF at x0, which for a choice of S large enough implies 4β′F aaϕāa − CF ≥ 0
allowing us to deduce from (6.17) 0 ≥ 2

N F
aaλ2

a which is a contradiction.

• Second case:
F ss(A) > κ

n∑
r=1

F rr(A) , for all s = 1, . . . , n ,

and in particular F 11 > κF . Therefore F aaλ2
a ≥ F 11λ2

1 ≥ κFλ2
1. Moreover, we can assume

F aaλa ≤ F aaλ2
a/(12NS) for otherwise we would have κFλ2

1 < 12NSFλ1 and we would conclude.
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Then we have
4β′F aaϕāa ≥ −12SF aaλa − CF ≥ −

F aaλ2
a

N
− CF .

Substituting this last inequality into (6.17) we get

0 ≥ κ λ
2
1

N2 − C .

This gives the bound we were searching for at the maximum point x0 of G, but by monotony of the
square root such bound holds globally, depending additionally on a bound for ‖ϕ‖C0 .

Remark 6.9. Removing the hypothesis that the metric g is hyperkähler one has to deal with its
derivatives. Most of the terms are not an issue and can be easily controlled, however those terms that
contain the third derivative of ϕ seem not to be straightforwardly manageable.

Remark 6.10. The function G used in the proof of Proposition 6.7 is basically the same as the one
used in [280], however we replaced the logarithm with the square root, a trick which is inspired by the
work of Alesker [14]. It seems that using the square root allows to simplify the argument.

Remark 6.11. Under an additional assumption the Laplacian can be controlled linearly by the
gradient. Indeed, if we further assume

F aaλa ≤ c0 , (6.18)

which is the case for the quaternionic Monge-Ampère, the quaternionic Hessian, and the quaternionic
Monge-Ampère equation for (n− 1)-quaternionic plurisubharmonic functions, we obtain the following
sharper estimate in the second case above, more precisely, from (6.17), F 11 > κF and (6.18) we get

0 ≥ 4β′F aa(λa − 1) + 2F 11λ2
1

N
− CF ≥ 4β′F aaλa + 2κλ2

1
N
F + (−4β′ − C)F

≥ 4β′c0 + 2κλ2
1

N
F + (−4β′ − C)F ≥ 2κλ2

1
N
F +

(
−4β′ − C + 4β′c0

τ

)
F ,

where we have used F ≥ τ > 0 in the last inequality. Then we have

0 ≥ 2κλ
2
1
N
−
(

4β′ + C − 4β′c0
τ

)
,

which gives a sharper bound
λ1 ≤ C(1 + ‖∇ϕ‖C0) .

6.2.3 Gradient estimate.
In this section we show that a bound for the gradient of solutions to (6.2) can be obtained by using
a Liouville-type theorem. We adapt the approach of Dinew and Kołodziej [103] to our setting. The
blow-up argument was introduced in the setting of fully non-linear complex equations by Chen [80,
Section 3.2]. See also [108, Proposition 8] for an earlier similar rescaling argument (we also mention its
improvement in [255, Proposition 33]).

Blow-up analysis.

We introduce the following:

Definition 6.12. A continuous function u : Hn → R is a (viscosity) Γ-subsolution (resp. supersolution)
if for all ψ : Hn → R of class C2 such that u− ψ has a local maximum (resp. minimum) at p, we have
λ(HessHψ) ∈ Γ̄ (resp. λ(HessHψ) ∈ Rn \ Γ) at p. We say that u is a (viscosity) Γ-solution if it is both
a subsolution and a supersolution.
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We show that if the gradient bound for solutions to (6.2) does not hold, we are able to find a
bounded C1,α viscosity Γ-solution u : Hn → R with bounded gradient and such that |∇u(0)| = 1. In
particular u is non-constant. In the next section we prove a Liouville-type theorem for this kind of
functions, thus yielding a contradiction and showing implicitly that the gradient bound holds.

Let (M, I, J,K, g) be a compact locally flat hyperhermitian manifold. Consider a sequence (ϕ
j
)j ,

(ϕj)j , (hj)j of real smooth functions on M and a sequence (Ωj)j of q-real (2, 0)-forms on M such that
ϕ
j
are C-subsolutions and ϕj , hj , Ωj satisfy

F
(
gt̄r((Ωj)t̄s + (ϕj)t̄s)

)
= hj ,

supM ϕj = 0 ,
‖∇ϕj‖C0 ≥ j .

(6.19)

Assume further that (ϕ
j
)j , (hj)j and (Ωj)j are uniformly bounded in C2-norm.

Set Nj = ‖∇ϕj‖2C0 , gj = Njg and let xj ∈M be such that |∇ϕj(xj)|2 = Nj for each j > 0. Choose
quaternionic local coordinates (q1, . . . , qn) around xj for |qi| < N

1/2
j such that

(gj)r̄s = δr̄s +O(N−1
j |x|) , (Ωj)r̄s = O(N−1

j ) , hj = hj(xj) +O(N−1
j |x|) .

Then |∇ϕj(xj)|2gj = 1 and by Propositions 6.4 and 6.7 we have in this coordinates

‖ϕj‖C0 ≤ C , |∆gϕj |gj ≤ C , on B
N

1/2
j

(xj) ,

where C > 0 is uniform in j. It follows by [143, Theorem 8.32] that (ϕj)j is uniformly bounded in
C1,α-norm for any α ∈ (0, 1). Furhermore, letting j →∞, we see that Ωj tends to zero, while gj tends
to the standard Euclidean metric and (ϕj)r̄s stays bounded. Therefore

λ(Aj) = λ((ϕj)r̄s) +O(N−1
j |x|) , (6.20)

where (Aj)rs = gt̄rj ((Ωj)t̄s + (ϕj)t̄s).
By Ascoli-Arzelà Theorem we can extract from (ϕj)j a subsequence converging uniformly in C1,α to

some u : Hn → R, moreover, such limiting function satisfies ‖u‖C0 ≤ C, ‖∇u‖C0 ≤ C and |∇u(0)| = 1.
We aim to prove that u is a Γ-solution.

Suppose there exists ψ ∈ C2, such that u− ψ has a local maximum at some point p0 ∈ Hn. By
construction of u, for any ε > 0 there are a j large enough, a ∈ (−ε, ε) and a point p1 with |p1−p0| < ε
such that ϕj − ψ − ε|x − p0|2 + a has a local maximum at p1. As a consequence the quaternionic
Hessian of ψ satisfies

HessHψ + ε

21 ≥ HessHϕj , at p1 ,

where 1 is the n×n identity matrix. By (6.20), if j is large enough we see that λ(HessHψ) ∈ Γ− ε1 at
p1 and letting ε→ 0 we deduce λ(HessHψ) ∈ Γ̄ at p0 because p1 → p0. This shows that u is a viscosity
Γ-subsolution.

To see that u is also a Γ-supersolution we proceed similarly. Suppose that u − ψ has a local
minimum at p0 ∈ Hn, then for any ε > 0 there are j large enough, a ∈ (−ε, ε) and p1 ∈ Hn such that
ϕj − ψ + ε|x− p0|2 + a has a local minimum at p1. Hence

HessHψ −
ε

21 ≤ HessHϕj , at p1 .

By contradiction, suppose λ(HessHψ(p1)) ∈ Γ + 5
2ε1, then λ(HessHϕj(p1)) ∈ Γ + 2ε1 and for j large

enough (6.20) we have λ(Aj) ∈ Γ + ε1. By [280, Lemma 9 (a)] it follows that for Nj large enough
Γ +Njε1 ⊆ Γhj(p1) and consequently we deduce

Njλ(Aj) ∈ NjΓ +Njε1 = Γ +Njε1 ⊆ Γhj(p1)
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for j sufficiently large. On the other hand, ϕj satisfies (6.19), i.e.

Njλ(Aj) = λ
(
gt̄r((Ωj)t̄s + (ϕj)t̄s)

)
∈ ∂Γhj(p1) ,

which gives a contradiction. Therefore λ(HessHψ(p1)) /∈ Γ + 5
2ε1 and letting ε→ 0 we finally obtain

λ(HessHψ(p0)) /∈ Γ and u is a viscosity Γ-solution.

Liouville-type theorem.

As in Székelyhidi [280] we can interpret the notion of being a Γ-subsolution (resp. solution) as that of
being a viscosity subsolution (resp. solution) of a suitable equation. Indeed, define the function G0 on
the space of hyperhermitian matrices as the function such that

λ(A)−G0(A)1 ∈ Γ̄,

consider the projection p: R4n,4n → {H ∈ R4n,4n | I0HI0 = J0HJ0 = K0HK0 = −H}

p(H) = 1
4(H − I0HI0 − J0HJ0 −K0HK0) ,

where (I0, J0,K0) is the standard hyperhermitian structure on R4n written in block form as

I0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , J0 =


0 0 −1 0
0 0 0 1

1 0 0 0
0 −1 0 0

 , K0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , (6.21)

where 1 is the n× n identity matrix. Then, defining the function G on the space of 4n× 4n symmetric
matrices Sym(4n,R) as G(H) = G0(p(H)), we have that u is a Γ-subsolution (resp. solution) if and
only if it is a viscosity subsolution (resp. solution) of the equation G(D2u) = 0.

Therefore we can take advantage from the known results regarding viscosity subsolutions and
solutions (see [65]). In particular we will use the following:

• If (uj)j is a sequence of Γ-subsolutions (resp. solutions) converging locally uniformly to u, then
u is a Γ-subsolution (resp. solution) as well.

• If u, v are Γ-subsolutions, then u+ v is a Γ-subsolution as well.
• A mollification of a Γ-subsolution is again a Γ-subsolution.

We will also need the following comparison result

Lemma 6.13. If u is a Γ-solution and v a smooth Γ-subsolution on a bounded open set U ⊆ Hn such
that u = v on ∂U , then u ≥ v in U .

Proof. The very same proof of [280, Lemma 17], which is the analogous result in Cn, can be carried
out in our hypothesis.

The next lemma follows from the same argument as [280, Lemmas 18-19]. The additional case
when Γ = Γn is quite easy and can be deduced along the same lines.

Lemma 6.14. Suppose v : Hn → R is a Γ-solution which is independent of the last variable qn. Define

Γ′ =
{

Γn−1 if Γ = Γn ,
Γ ∩ {xn = 0} if Γ 6= Γn ,

(6.22)

then Γ′ is a symmetric proper convex open cone in Rn−1 containing the cone Γn−1 and the function
w(q1, . . . , qn−1) = v(q1, . . . , qn−1, 0) is a Γ′-solution on Hn−1.

We remark that in view of (6.3) every Γ-subsolution is subharmonic.
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6.2. A priori estimates.

Proposition 6.15 (Liouville-type Theorem). A Lipschitz bounded viscosity Γ-solution u : Hn → R
with ‖∇u‖C0 ≤ C is constant.

Proof. The result is proved by induction over n. For n = 1 the function u is harmonic and the result
is well-known.

Assume now that the result holds for n− 1 and let us prove it for n. By contradiction we suppose
that u is not constant and infM u = 0, supM u = 1. We adopt the notation of [280] and, for any
function v : Hn → R we write its mollification

[v]r(q) =
∫
q′∈Hn

v(q + rq′)ψ(q′) dV ,

where, here and hereafter, dV denotes the standard volume form in Hn and ψ : Hn → R is a smooth
mollifier with support in B1(0) such that ψ > 0 in B1(0) and

∫
Hn ψ dV = 1. During the proof we will

need to regularize u, considering uε = [u]ε for a small ε > 0. Following [103] we use Cartan’s Lemma
to deduce

lim
r→∞

[u2]r(q) = lim
r→∞

[u]r(q) = 1 .

For ρ > 0 and r > 0 consider the set

U(ρ, r) =
{
q ∈ Hn | 2u(q) ≤ [u2]r(q) + [u]ρ(q)−

4
3

}
.

Suppose there are ρ > 0, εj → 0, qj ∈ Hn, rj →∞ and a unit vector ξj ∈ Hn such that qj ∈ U(ρ, rj)
and

lim
j→∞

∫
Brj (qj)

|∂̄ξjuεj |2dV = 0 , (6.23)

where for any vector ξ = (ξ1
0 + ξ1

1i + ξ1
2j + ξ1

3k, . . . , ξ
n
0 + ξn1 i + ξn2 j + ξn3 k) ∈ Hn and any function

w : Hn → R we use the notation

∂̄ξw =
n∑
r=1

(
ξr0wxr0 + ξr1wxr1 i+ ξr2wxr2j + ξr3wxr3k

)
.

Composing with rotations and translations, for each j we can take qj to the origin and assume
ξj = qn/2, obtaining a sequence (uj)j of Γ-solutions satisfying

[u2
j ]rj (0) + [uj ]ρ(0)− 2uj(0) ≥ 4

3 , lim
j→∞

∫
Brj (0)

∣∣∣∂̄ qn
2
u
εj
j

∣∣∣2 dV = 0 . (6.24)

Since u has bounded gradient, by the Ascoli-Arzelà Theorem, up to a subsequence, (uj)j converges
locally uniformly to some v : Hn → R which must be again a Γ-solution with bounded gradient. Also
u
εj
j converges to v locally uniformly and working as in [103] we infer that v does not depend on the

last variable qn.
Indeed, if v were not constant along lines with fixed q′ = (q1, . . . , qn−1), there would be a, b ∈ H

and a positive c ∈ R such that v(q′0, a)− v(q′0, b) > 2c. Since the gradient of v is bounded from above,
we could choose δ small enough such that

inf {v(q′, qn) | |q′ − q′0| < δ, |qn − a| < δ} − sup {v(q′, qn) | |q′ − q′0| < δ, |qn − b| < δ} > c .

Let ξ ∈ Hn be the unit vector with last entry (b− a)/|b− a| and all others zero. Let γ be the segment
joining (q′, a′), (q′, b′) ∈ Hn, where b′− a′ = b− a, |q′− q′0| < δ, |a′− a| < δ, |b′− b| < δ, then we would
have ∣∣∣∣∫

γ

∂̄ξv dξ

∣∣∣∣ = |v(q′, b′)− v(q′, a′)| > c .
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Cauchy-Schwarz inequality would now give

c2 <

∣∣∣∣∫
γ

∂̄ξv dξ

∣∣∣∣2 ≤ (∫
γ

|∂̄ξv|2dξ
)(∫

γ

dξ

)
= |b− a|

∫
γ

|∂̄ξv|2dξ .

Let I1, I2, I3 be intervals of length δ all perpendicular to each other and to [a, b] in the qn-space. Using
Fubini’s theorem over the set B(q′0, δ) × [a, b] × I1 × I2 × I3 we would find a strictly positive lower
bound for the integral of |∂̄qn/2v|2dV. But this would contradict the uniform convergence as the uj ’s
satisfy (6.24). Therefore v does not depend on the last variable.

The function w(q1, . . . , qn−1) = v(q1, . . . , qn−1, 0) is then a Γ′-solution, thanks to Lemma 6.14,
where Γ′ is the cone defined in (6.22). By the induction hypothesis w is constant and then so is v. But
by Cartan’s Lemma this contradicts the first of (6.24) because

4
3 ≤ lim

j→∞

(
[u2
j ]rj (0) + [uj ]ρ(0)− 2uj(0)

)
= 1 + [v]ρ(0)− 2v(0) = 1− v(0) ≤ 1

as v inherits from u the property that 0 ≤ v ≤ 1.
This means that (6.23) cannot hold, in particular for all ρ > 0, there exists cρ > 0 such that if

r > cρ, for each q ∈ U(ρ, r), ε < c−1
ρ and unit vector ξ ∈ Hn we must have∫

Br(q)
|∂ξuε|2dV > cρ . (6.25)

Define
U ′(ρ, r) =

{
q ∈ Hn | 2u(q) < [u2]r(q) + [u]ρ(q)−

4
3

}
⊆ U(ρ, r) .

We may choose the origin so that u(0) < 1/12, and ρ > 0 and r > c big enough to have [u]ρ(0) > 3/4
and [u2]r(0) > 3/4 which can be done by Cartan’s Lemma. It follows that 0 ∈ U ′(ρ, r).

Since ∂q̄i∂qj (uε)2 = 2uεuε
īj

+ 2uε
ī
uεj , proceeding similarly as in [280] we can use (6.25) to prove that

there exists a constant δ > 0 small enough to guarantee that [(uε)2]r − δ|q|2 is a Γ-subsolution over
U ′(ρ, r). By local uniform convergence also [u2]r − δ|q|2 is a Γ-subsolution. Finally consider

U ′′(ρ, r) =
{
q ∈ Hn | 2u(q) < [u2]r(q)− δ|q|2 + [u]ρ(q)−

4
3

}
⊆ U ′(ρ, r)

and observe that since 0 ≤ u ≤ 1 this set is bounded. The fact that u is a Γ-solution and yet
[u2]r(q)− δ|q|2 + [u]ρ(q)− 4

3 is a smooth Γ-subsolution contradicts the comparison principle of Lemma
6.13. We conclude that u must be constant.

6.2.4 C2,α-estimate.
The main theorem follows once we obtain the C2,α-estimate. We obtain the desired bound in two
ways, by using an analogue of Evans-Krylov theory as developed in Tosatti-Wang-Weinkove-Yang [286]
and by adapting the argument of Alesker [14] for the treatment of the quaternionic Monge-Ampère
equation.

Proposition 6.16. Let (M, I, J,K, g) be a compact locally flat hyperhermitian manifold. If ϕ is a
solution to (6.2) such that ‖ϕ‖C0 and ∆gϕ are bounded from above, then there is α ∈ (0, 1) and a
constant C > 0, depending only on the background data such that

‖ϕ‖C2,α ≤ C .
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6.2. A priori estimates.

First proof of the C2,α-estimate.

Let V = {H ∈ R4n,4n | I0HI0 = J0HJ0 = K0HK0 = −H}, where (I0, J0,K0) is the standard
hypercomplex structure on R4n as in (6.21). Consider the real representation of quaternionic matrices
γ : Hn,n → V , defined in Subsection 1.1.2. The map γ is an isomorphism of real algebras and
γ(Hyp(n)) = V ∩ Sym(4n,R). Let p: R4n,4n → V be the projection

p(H) := 1
4(H − I0HI0 − J0HJ0 −K0HK0) .

If we take on Hn the real coordinates (x1
0, . . . , x

n
0 , x

1
1, . . . , x

n
1 , x

1
2, . . . , x

n
2 , x

1
3, . . . , x

n
3 ) underlying the

quaternionic coordinates (q1, . . . , qn), for a C2 function u : Hn → R we have

γ(HessHu) = 16p(D2u) .

For any point x0 ∈M , take a quaternionic coordinate chart centered at x0 and assume that the
domain of the chart contains B1(0). For any H ∈ Sym(4n,R) we have γ−1(p(H)) ∈ Hyp(n), therefore

H̃rs(x) = gj̄r(x)(γ−1(p(H)))j̄s , x ∈ B1(0) ,

is hyperhermitian with respect to g.
Define the set

E =
{
H ∈ Sym(4n,R) | λ(H̃(0)) ∈ Γ̄σ ∩B2R(0)

}
,

where σ and R are chosen below. E is compact and also convex by convexity of Γ. Possibly shrinking
B1(0) to a smaller radius r ∈ (0, 1) we may assume that if H lies in a sufficiently close neighborhood
U of E , then λ(H̃(x)) ∈ Γ̄σ ∩B4R(0) for any x ∈ B1(0).

The bound ∆gϕ ≤ C implies that σ and R can be chosen so that

λ
(
gj̄r
(
Ωj̄s + ϕj̄s

))
∈ Γ̄σ ∩BR(0) , on B1(0) .

Therefore, by continuity of g, and possibly shrinking B1(0) again, for each x ∈ B1(0) we have

γ(Ωr̄s(x)) + 16p(D2ϕ(x)) = γ (Ωr̄s(x) + ϕr̄s(x)) ∈ E .

This discussion and our assumptions on f show that we can apply the main Theorem of [286] with
• P : Sym(4n,R)×B1(0)→ R defined as P (H,x) = f(λ(H̃(x))) for H ∈ U , and extended smoothly

to all of Sym(4n,R)×B1(0) (in [286] is called F );
• S : B1(0)→ Sym(4n,R) defined as S(x) = γ(Ωr̄s(x));
• T : Sym(4n,R)×B1(0)→ Sym(4n,R) defined as T (H,x) = 16p(H).

And since ‖ϕ‖C0 ≤ C we obtain the desired bound ‖ϕ‖C2,α ≤ C for some α ∈ (0, 1).

Second proof of the C2,α-estimate.

Since M is locally flat, we only need to prove the following interior C2,α estimate for w = ϕ+ u, where
u ∈ C∞loc(M,R) is a local potential for Ω.

Now, w ∈ C4(O) satisfies
F (wr̄s) = h ,

where O ⊂ Hn is an arbitrary open subset and h ∈ C∞(O). Let O′ ⊂ O be a relatively compact
open subset. We shall prove that there exist a constant α ∈ (0, 1) depending only on n, h, ‖w‖C0(O),
‖∆w‖C0(O) and a constant C depending in addition on dist(O,O′) such that

‖w‖C2,α(O) ≤ C .

There is a difference with respect to the argument of Alesker [14]: the quaternionic Monge-Ampère
operator can be written in the divergence form, while this might not be true for more general fully
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non-linear equations. To overcome this issue we will need a more general version of the weak Harnack
inequality for second order uniformly elliptic operators.

Let W be the quaternionic Hessian (wr̄s) and define a second order linear operator D by

Dv = ReF rs(W )vr̄s .

Notice that every n×n hyperhermitian matrix defines a hyperhermitian semilinear form on Hn. Hence
it also determines a symmetric bilinear form on R4n. Let (aij) ∈ Sym(4n,R) be the realization of
(F rs(W )). Then we can rewrite Dv in the following form

Dv =
4n∑

r,s=1
arsDrDsv ,

Since F is uniformly elliptic on Γ, the operator D is uniformly elliptic as well.
Let R > 0 be such that the open ball B2R of radius 2R centered at a point z0 ∈ O′ is contained in

O. For an arbitrary unitary vector ξ ∈ Hn, we let ∆ξ denote the Laplacian on any translate of the
quaternionic line spanned by ξ. By virtue of concavity of F , for any unitary vector ξ ∈ Hn, we have

ReF rs(W )∆ξ(wr̄s) ≥ ∆ξh . (6.26)

Consider the function
ŵ = sup

B2R

∆ξw −∆ξw .

it follows from (6.26) that Dŵ ≤ −∆ξh, where we used the fact ∆ξ(wr̄s) = (∆ξw)r̄s.
Then, applying the weak Harnack inequality (Theorem 2.57), there exists a positive constant C

depending on n, ‖h‖C2(O) and ‖∆u‖C0(O) such that

1
Vol(BR)

∫
BR

ŵ ≤ C
(

inf
BR

ŵ +R

)
.

Equivalently, we have

1
Vol(BR)

∫
BR

(
sup
B2R

∆ξw −∆ξw

)
≤ C

(
sup
B2R

∆ξw − sup
BR

∆ξw +R

)
. (6.27)

Since F is concave on Γ for any pair of A, B ∈ Hyp(n,H), we have

F (B)− F (A) ≤ ReF rs(A)(Brs −Ars) .

Choosing A = W (y) and B = W (x) for x, y ∈ B2R, it follows that

ReF rs(W (y))(wr̄s(y)− wr̄s(x)) ≤ F (W (y))− F (W (x)) = h(y)− h(x) ≤ C‖y − x‖ (6.28)

for some positive constant C depending on ‖h‖C1(O).
Now we need the following lemma from matrix theory, which is well-known in the settings of Rn,

Cn, Hn (see e.g. [143, 42, 14]).

Lemma 6.17. [14, Lemma 4.9]. Let λ,Λ ∈ R satisfy 0 < λ < Λ < +∞. There exist a uniform
constant N , unit vectors ξ1, · · · , ξN ∈ Hn and positive numbers λ∗ < Λ∗ < +∞, depending only on
n, λ,Λ such that any A ∈ Hyp(n,H) with eigenvalues lying in the interval [λ,Λ] can be written in the
form

A =
N∑
k=1

βkξ
∗
k ⊗ ξk , i.e. Ars =

N∑
k=1

βk ξ̄krξks ,

for some βk ∈ [λ∗,Λ∗].
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We apply the previous lemma with A = (F rs(W )), obtaining immediately

ReF rs(W (y))(wr̄s(y)− wr̄s(x)) =
N∑
k=1

βk(y)ξ̄krξks(wr̄s(y)− wr̄s(x))

=
N∑
k=1

βk(y)(∆ξkw(y)−∆ξkw(x))

for some functions βk(y) ∈ [λ∗,Λ∗]. By (6.28), we then have

N∑
k=1

βk(y)(∆ξkw(y)−∆ξkw(x)) ≤ C‖y − x‖ for x, y ∈ B2R . (6.29)

Let us denote

Mk,tR = sup
BtR

∆ξkw , mk,tR = inf
BtR

∆ξkw , η(tR) =
N∑
k=1

(Mk,tR −mk,tR) ,

for t = 1, 2.
Summing up (6.27) over ξk for k 6= l yields

1
Vol(BR)

∫
BR

∑
k 6=l

(
Mk,2R −∆ξkw

)
≤ C(η(2R)− η(R) +R) . (6.30)

Choosing a point x ∈ B2R at which the infimum ml,2R is attained, by (6.29) we also know that

∆ξlw(y)−ml,2R ≤
1
λ∗

CR+ Λ∗
∑
k 6=l

(Mk,2R −∆ξkw)

 (6.31)

Integrating (6.31) on BR and using (6.30) yields

1
Vol(BR)

∫
BR

(∆ξlw −ml,2R) ≤ C(η(2R)− η(R) +R) .

Using (6.27) again, we then obtain

1
Vol(BR)

∫
BR

(∆ξlw −ml,2R) ≥ 1
Vol(BR)

∫
BR

(∆ξlw −Ml,2R) +Ml,2R −ml,2R

≥Ml,2R −ml,2R − C(Ml,2R −Ml,R +R)
≥C(Ml,R −ml,R)− (C − 1)(Ml,2R −ml,2R)− CR ,

since mk,tR is non-increasing with respect to t. Inserting this last inequality into (6.30) we get

η(2R)− η(R) ≥ C(Ml,R −ml,R)− (C − 1)(Ml,2R −ml,2R)− CR ,

and summing up over l,
η(R) ≤ (1− 1/C)η(2R) + CR.

Now applying [143, Lemma 8.23] the proof is complete.

6.3 Proof of Theorem 6.1 and consequences.
In this subsection we prove Theorem 6.1 and obtain some interesting corollaries.
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Proof of Theorem 6.1. Let (M, I, J,K, g) be a compact flat hyperkähler manifold, ϕ,ϕ : M → R be a
C-subsolution and a solution to (6.2) respectively, with supM ϕ = 0. By Proposition 6.4 we deduce
‖ϕ‖C0 ≤ C. Proposition 6.7 now implies ‖∆gϕ‖C0 ≤ C(‖∇ϕ‖2C0 + 1). The blow-up argument together
with the Liouville-type Theorem 6.15 yield a gradient bound for ϕ. Therefore ‖∆gϕ‖C0 ≤ C and we
can deduce from Proposition 6.16 the desired C2,α-estimate ‖ϕ‖C2,α ≤ C, where the constant C > 0
only depends on the background data, including ϕ.

Quaternionic Hessian equation.

As an application of Theorem 6.1 we first have the solvability of the quaternionic Hessian equation on
hyperhermitian manifolds admitting a flat hyperkähler metric.

Let (M, I, J,K, g,Ω0) be a compact hyperhermitian manifold where Ω0 is the (2, 0)-form induced
by g, fix 1 ≤ k ≤ n and let Ω be a q-real (2, 0)-form which is k-positive in the sense that

Ωi ∧ Ωn−i0
Ωn0

> 0 for every i = 1, . . . , k . (6.32)

Let HkΩ0
be the set of smooth functions ϕ such that Ωϕ is a k-positive q-real (2, 0)-form. Then the

quaternionic Hessian equation is defined as

Ωkϕ ∧ Ωn−k0
Ωn0

= b eH , ϕ ∈ HkΩ0
, (6.33)

where H ∈ C∞(M,R) is the datum and (ϕ, b) ∈ HkΩ0
×R+ is the unknown. The constant b is uniquely

determined by

b =
∫
M

Ωkϕ ∧ Ωn−k0 ∧ Ω̄n0∫
M

eHΩn0 ∧ Ω̄n0
.

Equation (6.33) reduces to the quaternionic Monge-Ampère equation for k = n and to the classical
Poisson equation for k = 1. Moreover equation (6.33) is the analogue of the real and complex Hessian
equations in the quaternionic setting.

The Hessian equation on manifolds has been first investigated by Li [210] and Urbas [296] in the
Riemannian case (see also the survey of Wang [320]). Later some partial results have been obtained
in the Kähler setting by Hou [175], Jbilou [189] and Kokarev [198] independently. The solution in
its full generality on compact Kähler manifolds came by Dinew and Kołodziej [103] building on the
estimate of Hou, Ma and Wu [176]. The equation has also been solved on compact Hermitian and
almost Hermitian manifolds (see [288, 93] for the case k = n and [329, 92] for the general case).

Applying Theorem 6.1 we solve equation (6.33) on compact flat hyperkähler manifolds:

Theorem 6.18. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler manifold and Ω a q-real k-positive
(2, 0)-form. Then the quaternionic Hessian equation

Ωkϕ ∧ Ωn−k0
Ωn0

= b eH ,
∫
M

ϕΩn0 ∧ Ω̄n0 = 0 , ϕ ∈ HkΩ0
,

has a unique smooth solution (ϕ, b) ∈ HkΩ0
× R+ for every H ∈ C∞(M,R).

For the quaternionic Hessian equation as the cone Γ we consider the k-positive cone

Γk = {λ ∈ Rn | σ1(λ), . . . , σk(λ) > 0} ,

where 1 ≤ k ≤ n and σr is the r-th elementary symmetric function

σr(λ) =
∑

1≤i1<···<ir≤n
λi1 · · ·λir , for all λ = (λ1, . . . , λn) ∈ Rn .

136



6.3. Proof of Theorem 6.1 and consequences.

Observe that by Lemma 2.25 on a locally flat hyperhermitian manifold (M, I, J,K, g) a q-real (2, 0)-form
Ω is k-positive in the sense that it satisfies (6.32) if and only if λ(gj̄rΩj̄s) ∈ Γk.

Moreover, for every (λ1, . . . , λn) ∈ Γk we clearly have

lim
t→∞

σk(λ1, . . . , λn−1, t) =∞

and by [280, Remark 8] any Γk-admissible function is a C-subsolution. Hence for the quaternionic
Hessian equation we easily have existence of a C-subsolution.

Proof of Theorem 6.18. On Γk we define f = log σk, in order to rewrite the quaternionic Hessian
equation as

f
(
λ
(
gj̄r(Ωj̄s + ϕj̄s)

))
= h ,

for some positive h ∈ C∞(M,R) depending on H. The function f satisfies conditions C1–C3 stated in
the overview (see e.g. [268]).

We apply the method of continuity. Let H0 ∈ C∞(M,R) be the function such that

Ωk ∧ Ωn−k0
Ωn0

= eH0

and consider the t-dependent family of equations

Ωkϕt ∧ Ωn−k0
Ωn0

= bt etH+(1−t)H0 , ϕt ∈ HkΩ0
, t ∈ [0, 1] . (∗t)

Let
S =

{
t ∈ [0, 1] | (∗t) has a solution (ϕt, bt) ∈ C2,β(M,R)× R+

}
.

By our choice of H0, the pair (ϕ, b) = (0, 1) solves (∗0), hence the set S is non-empty.
Since we assumed Ω to be k-positive ϕ ≡ 0 is Γk-admissible and therefore a C-subsolution. Closedness

of S now follows from the C2,α-estimate of Theorem 6.1, a standard bootstrapping argument and the
Ascoli-Arzelà Theorem.

Finally, in order to show that S is open, take t′ ∈ S and let (ϕt′ , bt′) be the corresponding solution
to (∗t′). Consider the Banach spaces

B1 :=
{
ψ ∈ C2,β(M,R) | ψ ∈ HkΩ0

,

∫
M

ψΩn0 ∧ Ω̄n0 = 0
}
, B2 := C0,β(M,R) ,

and the linearization of the operator

B1 × R+ → B2 , (ψ, a) 7→ log
Ωkψ ∧ Ωn−k0

Ωn0
− log(a)

at (ϕt′ , bt′), which is

L : Tϕt′B1 × R→ B2 , L(ρ, c) = k
∂∂Jρ ∧ Ωk−1

ϕt′
∧ Ωn−k0

bt′ et′H+(1−t′)H0Ωn0
− c

bt′
=: L′(ρ)− c

bt′
,

where
Tϕt′B1 =

{
ρ ∈ C2,β(M,R) |

∫
M

ρΩn0 ∧ Ω̄n0 = 0
}
.

By the maximum principle the kernel of the operator L′ over C2,β(M,R) is the set of constant functions.
Moreover the principal symbol of L′ is self-adjoint and therefore L′ has index zero, which implies that
its formal adjoint (L′)∗ has one-dimensional kernel as well. In order to show that L is surjective, let
ζ ∈ C0,β(M,R) and choose c ∈ R such that ζ + c/bt′ is orthogonal to ker((L′)∗). By the Fredholm
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alternative there exists ρ ∈ B1 such that

L′(ρ) = ζ + c/bt′

and the surjectivity of L follows.
By the inverse function theorem between Banach spaces S is open. This proves the existence of a

solution to the quaternionic Hessian equation.
Finally we show uniqueness. Suppose (ϕ1, b1), (ϕ2, b2) are both solutions and assume b1 ≥ b2; then(

Ωkϕ1
− Ωkϕ2

)
∧ Ωn−k0 ≥ 0 ,

which can be rewritten as

∂∂J(ϕ1 − ϕ2) ∧
(
k−1∑
i=0

Ωk−i−1
ϕ1

∧ Ωiϕ2

)
∧ Ωn−k0 ≥ 0 .

Since

ϕ 7→
∂∂Jϕ ∧

(∑k−1
i=0 Ωk−i−1

ϕ1
∧ Ωiϕ2

)
∧ Ωn−k0

Ωn0
is a second order linear elliptic operator without free term, by the maximum principle we deduce
ϕ1 = ϕ2 and thus also b1 = b2.

From Theorem 6.18 we recover as a special case the result of Alesker 2.53, where the quaternionic
Monge-Ampère equation is solved on compact flat hyperkähler manifolds. We note that during the
proof of Theorem 6.1 the a priori estimates, except for the C2-estimate, are obtained without assuming
anything about the closure of Ω0 and this suggests that it is worth studying the quaternionic Hessian
equation on non-HKT hyperhermitian manifolds.

Quaternionic Monge-Ampère equation for (n−1)-quaternionic plurisubharmonic functions.

Our second application is the quaternionic Monge-Ampère equation for (n− 1)-quaternionic plurisub-
harmonic functions. Let (M, I, J,K, g,Ω0) be a compact hyperhermitian manifold and Ω1 a positive
q-real (2, 0)-form. We say that a C2 function ϕ on M is (n− 1)-quaternionic plurisubharmonic with
respect to Ω1 and Ω0 if the (2, 0)-form Ω1 + 1

n−1 [(∆gϕ)Ω0−∂∂Jϕ] is q-positive, where ∆g is the quater-
nionic Laplacian with respect to g. We also refer to Harvey and Lawson [165, 166] for more general
notions of plurisubharmonicity. The quaternionic Monge-Ampère equation for (n− 1)-quaternionic
plurisubharmonic functions is written as(

Ω1 + 1
n− 1

[
(∆gϕ)Ω0 − ∂∂Jϕ

])n
= b eHΩn0 , Ω1 + 1

n− 1
[
(∆gϕ)Ω0 − ∂∂Jϕ

]
> 0 . (6.34)

Here the constant b is uniquely determined by

b =
∫
M

(
Ω1 + 1

n−1
[
(∆gϕ)Ω0 − ∂∂Jϕ

])n ∧ Ω̄n0∫
M

eHΩn0 ∧ Ω̄n0
.

Equation (6.34) is the analogue of the complex Monge-Ampère equation for (n− 1)-plurisubharmonic
functions, which originally arose from superstring theory in the works of Fu, Wang and Wu [131, 132],
and was then solved by Tosatti and Weinkove [290, 292] (see also [92, 179]).

Theorem 6.19. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler manifold and Ω1 a q-real positive
(2, 0)-form. Then there is a unique solution (ϕ, b) ∈ C∞(M,R)× R+ to the equation

(
Ω1 + 1

n−1
[
(∆gϕ)Ω0 − ∂∂Jϕ

])n = b eHΩn0 ,

Ω1 + 1
n−1

[
(∆gϕ)Ω0 − ∂∂Jϕ

]
> 0 , supM ϕ = 0 ,

(6.35)

138



6.3. Proof of Theorem 6.1 and consequences.

for every given H ∈ C∞(M,R).

Proof of Theorem 6.19. Similarly as discussed in [280], let T be the linear map given by

T (λ) =
(
T (λ)1, . . . , T (λ)n

)
, T (λ)k = 1

n− 1
∑
i 6=k

λi ,

for every λ ∈ Rn and define
f = log σn(T ), Γ = T−1(Γn) .

It is straightforward to verify that the above setting satisfies the assumptions C1–C3 in the introduction.
Let

Ω := Re
(
gj̄s(Ω1)j̄s

)
Ω0 − (n− 1)Ω1 .

Thus, equation (6.34) can be written as

f(λ) = H + log b , λ = λ
(
gj̄r(Ωj̄s + ϕj̄s)

)
∈ Γ .

Then, Theorem 6.19 can be proved by a similar argument of Theorem 6.18, we give some details here.
We consider the following family of equations for t ∈ [0, 1]:

(
Ω1 + 1

n−1
[
(∆gϕt)Ω0 − ∂∂Jϕt

])n = etH+(1−t)H0+ctΩn0 ,

Ω1 + 1
n−1

[
(∆gϕt)Ω0 − ∂∂Jϕt

]
> 0 , supM ϕt = 0 ,

(∗)t

where H0 = log Ωn1
Ωn0

and ct : [0, 1]→ R is a path from c0 = 0 to c1 = log b. Let us define

S = {t ∈ [0, 1] | there exists a pair (ϕt, ct) ∈ C∞(M,R)× R solving (∗)t } .

Note that (ϕ0, c0) = (0, 0) solves (∗)0 and hence S 6= ∅. To prove the existence of solutions to (6.35),
it suffices to show that S is both closed and open.

Step 1. S is closed. We first show that {ct} is uniformly bounded. Suppose ϕt achieves its
maximum at the point pt ∈M , then the maximum principle yields that ∂∂Jϕt is non-positive at pt.
Combining this with (∗)t, we obtain the upper bound for ct:

ct ≤ (−tH +H0) (pt) ≤ C ,

for some C depending only on H, Ω1 and Ω. The lower bound of ct can be obtained similarly.
Observe that the positivity of Ω1 implies that ϕ ≡ 0 is a C-subsolution of (∗)t. Then C∞ a priori

estimates of ϕt follow from Theorem 6.1. Combining this with the Arzelà-Ascoli theorem, we conclude
that S is closed.

Step 2. S is open. Suppose there exists a pair (ϕt̂, ct̂) satisfies (∗)t̂. We shall prove that when t is
close to t̂, there exists a pair (ϕt, ct) ∈ C∞(M,R)× R solving (∗)t.

First of all, let Θ be a q-positive holomorphic (2n, 0)-form with respect to I. For every function
ψ : M → R of class C2, we define

Lϕ̂(ψ) := n

n− 1

(
(∆gψ)Ω0 − ∂∂Jψ

)
∧
(
Ω1 + 1

n−1
[
(∆gϕ̂)Ω0 − ∂∂J ϕ̂

])n−1(
Ω1 + 1

n−1
[
(∆gϕ̂)Ω0 − ∂∂J ϕ̂

])n .

Since the operator Lϕ̂ is second order elliptic its symbol is self-adjoint, and therefore the index is zero.
Then the classical maximum principle yields that

ker(Lϕ̂) = {const} . (6.36)

Denote by L∗ϕ̂ the L2-adjoint operator of Lϕ̂ with respect to the volume form

dvol =
(

Ω1 + 1
n− 1

[
(∆gϕ̂)Ω0 − ∂∂J ϕ̂

])n
∧ Θ̄ .
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By the index theorem, we know there is a non-negative function ζ such that

ker(L∗ϕ̂) = Span
{
ζ
}
. (6.37)

It follows from the strong maximum principle that ζ > 0. Up to a constant, we may and do assume∫
M

ζ dvol = 1.

Define a Banach space

B1 :=
{
ϕ ∈ C2,α(M,R) | λ

(
gj̄r(Ωj̄s + ϕj̄s)

)
∈ Γ,

∫
M

ϕ ζ dvol = 0
}
.

It is easy to verify that the tangent space of B1 at ϕ̂ is given by

Tϕ̂B1 =
{
ψ ∈ C2,α(M,R) |

∫
M

ψ ζ dvol = 0
}
.

Let us consider the map

H̃(ϕ, c) = log
(
Ω1 + 1

n−1
[
(∆gϕ)Ω0 − ∂∂Jϕ

])n
Ωn0

− c ,

which maps B1 × R to C0,α(M,R). The linearized operator of H̃ at (ϕ̂, t̂) is given by

Lϕ̂ − c : Tϕ̂B1 × R→ C0,α(M,R) . (6.38)

On the one hand, for any real-valued h ∈ C0,α(M,R), there exists a unique real constant c such that∫
M

(h+ c)ζ dvol = 0.

By (6.37) and Fredholm theorem, there exists a real function ψ on M such that Lϕ̂(ψ)− c = h. Hence,
the map Lϕ̂ − c is surjective. On the other hand, let (ψ1, c1) be a solution of Lϕ̂(ψ)− c = 0. By (6.37)
and Fredholm theorem again, we get c1 = 0. Using (6.36) and (6.38), we also obtain ψ1 = 0. Therefore,
Lϕ̂ − c is injective.

As a consequence, we conclude that Lϕ̂ − c is bijective. By the implicit function theorem, we know
that when |t− t̂| is small enough, there exists a pair (ϕt, ct) satisfying

H̃(ϕt, ct) = tH + (1− t)H0.

In the general case, when we assume M is a compact manifold which admits a flat hyperkähler
metric g compatible with the underlying hypercomplex structure, we may take Θ = Ωn and apply the
previous procedure to show existence of solutions to (6.35).

Uniqueness can be obtained with a very similar technique as in Theorem 6.18, therefore we omit
the proof here.

From Theorem 6.19 we can also obtain Calabi-Yau–type Theorems for quaternionic balanced,
quaternionic Gauduchon and quaternionic strongly Gauduchon metrics. We refer the reader to [207,
Table 2] for the relevant definitions, which are entirely analogous to the complex case.

Corollary 6.20. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler manifold and take a quaternionic
balanced (resp. quaternionic Gauduchon, quaternionic strongly Gauduchon) metric with induced
(2, 0)-form Ω2. Then there is a unique positive constant b′ and a unique quaternionic balanced (resp.
quaternionic Gauduchon, quaternionic strongly Gauduchon) metric with induced (2, 0)-form Ω̃, such
that

Ω̃n−1 = Ωn−1
2 + ∂∂Jϕ ∧ Ωn−2

0 ,
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for some ϕ ∈ C∞(M,R), and which solves

Ω̃n = b′ eH
′
Ωn0 ,

for any given H ′ ∈ C∞(M,R).

Before we move on to the proof of Corollary 6.20 we need to lay down some preliminaries in
linear algebra in order to mimic the proof of [290, Corollary 1.3]. Let (M, I, J,K, g,Ω0) be a compact
hyperhermitian manifold. Let (z1, . . . , z2n) be holomorphic coordinates with respect to I and denote
Λp,0(M) the space of (p, 0)-forms with respect to I. Consider the pointwise inner product 〈·, ·〉g defined
by

〈α, β〉g = 1
p!g

r1s̄1 · · · grps̄pαr1···rpβs1···sp , for every α, β ∈ Λp,0I (M) ,

where any (p, 0)-form α is locally written as α = 1
p!αr1···rpdz

r1 ∧ · · · ∧ dzrp and (grs̄) is the inverse of
the Hermitian matrix (grs̄) induced by the I-Hermitian metric g.

We will need the following Hodge star-type operator ∗ : Λp,0(M) → Λ2n−p,0(M), defined by the
relation

α ∧ ∗β = 1
n! 〈α, β〉gΩ

n
0 , for α, β ∈ Λp,0I (M) .

We fix a point x0 ∈M and take holomorphic coordinates (z1, . . . , z2n) with respect to I such that
(grs̄) is the identity at x0, then we may compute

∗(dz2i−1 ∧ dz2i) = dz1 ∧ · · · ∧ d̂z2i−1 ∧ d̂z2i ∧ · · · ∧ dz2n . (6.39)

Observe that the Hodge operator sends q-real (2, 0)-forms to q-real (2n − 2, 0)-forms and vice
versa. Recall that, when the hypercomplex structure is locally flat, to any q-real (2, 0)-form Ω is
associated a hyperhermitian matrix (Ωr̄s), thus, we may define the determinant of Ω as the Moore
determinant of (Ωr̄s). This definition naturally extends to any q-real (2n − 2, 0)-form Φ by setting
det(Φ) = 1

(n−1)! det(∗Φ). In particular, for any q-real Ω ∈ Λ2,0(M), we have

det(Ωn−1) = det(Ω)n−1 , (6.40)

which can be checked by taking coordinates in which (Ωr̄s) is diagonal at a given point and using
(6.39). For any pair of q-real χ,Ω ∈ Λ2,0

I (M), we also have

χn

Ωn = det(χ)
det(Ω) = det(∗χ)

det(∗Ω) . (6.41)

A q-real (2n− 2, 0)-form Φ is said to be q-positive if Φ∧Ω > 0 for all q-positive (2, 0)-forms Ω. We
observe that the Hodge star maps q-positive (2, 0)-forms to q-positive (2n− 2, 0)-forms and conversely.
On a locally flat hyperhermitian manifold the (n− 1)th power Ω 7→ Ωn−1 is a bijective correspondence
between the cone of q-positive (2, 0)-forms and the cone of q-positive (2n− 2, 0)-forms. The proof of
this fact is just a matter of linear algebra and it is entirely analogous to the argument in [225, pp.
279-280], therefore we omit it.

Proof of Corollary 6.20. For starters, we claim

1
(n− 1)! ∗

(
∂∂Jϕ ∧ Ωn−2

0
)

= 1
n− 1 [(∆gϕ)Ω0 − ∂∂Jϕ] , (6.42)

for any arbitrary function ϕ ∈ C2(M,R). It is enough to prove that for every W ∈ Λ2n−2,0
I (M), we

have
∂∂Jϕ ∧

Ωn−2
0

(n− 2)! ∧ (∗W ) = (∆gϕ)W ∧ Ω0 −W ∧ ∂∂Jϕ.
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Let Z = dz1 ∧ · · · ∧ dz2n for simplicity and fix a point x0 ∈M where Ω0 takes the standard form

Ω0 =
n∑
i=1

dz2i−1 ∧ dz2i .

Without loss of generality, we may assume W = d̂z1 ∧ d̂z2 ∧ dz3 ∧ · · · ∧ dz2n. It is easy to see that

W ∧ Ω0 = Z , W ∧ ∂∂Jϕ = (ϕ11̄ + ϕ22̄)Z .

As ∗W = dz1 ∧ dz2, we obtain

∂∂Jϕ ∧
Ωn−2

0
(n− 2)! ∧ (∗W ) =∂∂Jϕ ∧

Ωn−2
0

(n− 2)!dz
1 ∧ dz2

=∂∂Jϕ ∧
∑
i>1

dz1 ∧ dz2 ∧ · · · d̂z2i−1 ∧ d̂z2i ∧ · · · ∧ dz2n

=
∑
i>1

(ϕ2i−12i−1 + ϕ2i2i)Z = (∆gϕ)Z − (ϕ11̄ + ϕ22̄)Z

=(∆gϕ)W ∧ Ω0 −W ∧ ∂∂Jϕ ,

as claimed.
From (6.41) and (6.42), it follows that(

Ω1 + 1
n−1 [(∆gϕ)Ω− ∂∂Jϕ]

)n
Ωn0

=
det
(
∗
(

Ω1 + 1
n−1 [(∆gϕ)Ω− ∂∂Jϕ]

))
det(∗Ω0)

=
det
(
Ωn−1

2 + ∂∂Jϕ ∧ Ωn−2
0
)

det(Ωn−1
0 )

.

This implies that given a positive (2, 0)-form Ω1 and a smooth function H on M , the pair (ϕ, b) ∈
C∞(M,R)× R+ is a solution to (6.35) if and only if it solvesdet(Ωn−1

2 + ∂∂Jϕ ∧ Ωn−2
0 ) = b eH det(Ωn−1

0 ) ,

Ωn−1
2 + ∂∂Jϕ ∧ Ωn−2

0 > 0 , supM ϕ = 0 ,
(6.43)

where Ω2 is uniquely defined by
Ω1 = 1

(n− 1)! ∗ Ωn−1
2 ,

because the (n − 1)th power is a bijection between the spaces of positive (2, 0)-forms and positive
(2n− 2, 0)-forms.

Now, let (ϕ, b) ∈ C∞(M,R) × R+ be the solution to (6.35), or equivalently (6.43), with datum
H = (n− 1)H ′. Define Ω̃ as the unique (n− 1)th root of Ωn−1

2 + ∂∂Jϕ ∧Ωn−2
0 . Then it is clear that if

Ω2 is the (2, 0)-form induced by a quaternionic balanced (resp. quaternionic Gauduchon, quaternionic
strongly Gauduchon) metric, then so is Ω̃. Finally, set b′ = b1/(n−1), then using (6.40) we conclude

Ω̃n
Ωn0

=
(

det(Ω̃n−1)
det(Ωn−1

0 )

) 1
n−1

=
(

det
(
Ωn−1

2 + ∂∂Jϕ ∧ Ωn−2
0
)

det(Ωn−1
0 )

) 1
n−1

=
(
b eH

) 1
n−1 = b′ eH

′
.
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CHAPTER 7
MORE GENERAL PARABOLIC EQUATIONS

After Yau’s solution [327] of the Calabi conjecture, Cao [69] was able to provide a parabolic proof,
using what is now called the Kähler-Ricci flow. Ever since then, it is now a well-established practice to
design parabolic geometric flows as an alternative way to solve fully non-linear elliptic equations (see
e.g. [33, 91, 119, 120, 144, 145, 257, 265, 275, 277, 276, 334]).

Following this line of thoughts, the investigation of the previous chapter about fully non-linear
elliptic equations on hyperhermitian manifolds is hereby extended to the parabolic setting. Here we
develop the corresponding parabolic theory in the same spirit as Phong-Tô [246].

The treatment of this chapter is based on [140].

7.1 Overview.

Setting of the problem.

Let (M, I, J,K, g,Ω0) be a compact locally flat hyperhermitian manifold where Ω0 is the (2, 0)-form
induced by g, i.e. Ω0 = g(J ·, ·) + ig(K·, ·). The assumption of local flatness allows us to represent
locally in quaternionic coordinates every q-real (2, 0)-form Ω by a hyperhermitian matrix (Ωr̄s). Fix
one such form Ω, which does not need to coincide with Ω0. For a smooth real function ϕ on M the
(2, 0)-form ∂∂Jϕ is q-real. Then we may associate a hyperhermitian matrix to the form

Ωϕ := Ω + ∂∂Jϕ

let us denote it by (Ωϕr̄s). Set Ars[ϕ] = gj̄rΩϕ
j̄s
. The matrix (Ars[ϕ]) defines a hyperhermitian endomor-

phism of TM with respect to the metric g and this makes it meaningful to speak about the n-tuple of
its eigenvalues λ(A[ϕ]).

The class of parabolic equations that we take into account here is the following:

∂tϕ = F (A[ϕ])− h , ϕ(x, 0) = ϕ0 , t ∈ [0,∞) , (7.1)

where h ∈ C∞(M,R) is the datum and F (A[ϕ]) = f(λ(A[ϕ])) is a smooth symmetric operator of
the eigenvalues of A[ϕ] satisfying certain assumptions. Here Γ satisfies the same assumptions of the
previous chapter, we repeat them for convenience of the reader. Γ is a proper convex open cone in Rn
with vertex at the origin, containing the positive orthant

Γn = {λ = (λ1, . . . , λn) ∈ Rn | λi > 0, i = 1, . . . , n} ,

Γ is symmetric and f : Γ→ R satisfies the following assumptions:

C1) fi := ∂f
∂λi

> 0 for all i = 1, . . . , n and f is a concave function.
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C2) sup∂Γ f < infM h, where sup∂Γ f = supλ0∈∂Γ lim supλ→λ0 f(λ).
C3) For any σ < supΓ f and λ ∈ Γ we have limt→∞ f(tλ) > σ.

Assumption C1 implies parabolicity of equation (7.1) over the space of Γ-admissible functions, where a
function ϕ ∈ C2,1(M × [0, T )) is Γ-admissible if

λ(A[ϕ]) ∈ Γ , for all (x, t) ∈M × [0, T ) .

In particular, from standard parabolic theory, equation (7.1) admits a unique maximal smooth solution.
Assumption C2 guarantees that the level sets of f do not intersect the boundary of Γ, this yields
non-degeneracy of (7.1) and entails uniform parabolicity, once we obtain the C2,1 estimate. We also
remark that the assumptions on Γ imply the inclusion

Γ ⊆
{

(λ1, . . . , λn) ∈ Rn |
n∑
i=1

λi > 0
}
. (7.2)

We now project Γ onto a new cone in Rn−1:

Γ∞ = {λ′ = (λ1, · · · , λn−1) ∈ Rn−1 | there exists λn ∈ R such that (λ′, λn) ∈ Γ} .

Therefore, for every λ′ ∈ Γ∞, there exists a constant s0 such that for each s ≥ s0, we have (λ′, s) ∈ Γ.
Let f∞(λ′) = lims→∞ f(λ′, s). It is an observation of Trudinger [293] that, since f is concave on Γ,
there is a dichotomy:

(i) Either f∞ is unbounded at any point in Γ∞ and we will refer to this case by saying that f is
unbounded over Γ;

(ii) Or f∞ is bounded on Γ∞ and we will simply say that f is bounded over Γ.

Statement of the main results.

Before stating our main results, we need to recall the terminology of parabolic C-subsolutions introduced
in [246].

Definition 7.1. We say that a function ϕ ∈ C2,1(M × [0, T )) is a parabolic C-subsolution for
equation (7.1) if there exist uniform constants δ,R > 0, such that on M × [0, T ),

f(λ(A[ϕ]) + µ)− ∂tϕ+ τ = h, µ+ δ1 ∈ Γn and τ > −δ (7.3)

implies that |µ|+ |τ | < R, where 1 = (1, 1, . . . , 1).

In the unbounded case, as we shall show, any Γ-admissible function is a parabolic C-subsolution,
and we have the following result:

Theorem 7.2. Suppose f is unbounded on Γ. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler
manifold. Then for any Γ-admissible initial datum ϕ0, the solution ϕ to (7.1) exists for all time.

Moreover, if we let

ϕ̃ = ϕ−
∫
M
ϕΩn0 ∧ Ω̄n0∫

M
Ωn0 ∧ Ω̄n0

, (7.4)

then ϕ̃ converges smoothly to some function ϕ̃∞ ∈ C∞(M,R) as t→∞, and there exists a constant
b ∈ R such that

F (A[ϕ̃∞]) = h+ b . (7.5)

In the bounded case we observe that, unfortunately, Γ-admissible functions might not be C-
subsolutions. Compared to Theorem 7.2 the main result in the bounded case looks a little bit more
artificial, as it requires some additional assumptions.
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Theorem 7.3. Suppose f is bounded on Γ. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler
manifold. For any Γ-admissible initial datum ϕ0, let ϕ ∈ C∞(M × [0, T ),R) be the maximal solution
of flow (7.1). Assume further that

(i) either it holds
∂tϕ ≥ sup

M
(F (A[ϕ0])− h) ; (7.6)

(ii) or there exists a non-increasing function Φ of class C1 on R such that{
supM

(
ϕ(·, t)− ϕ(·, t)− Φ(t)

)
≥ 0 ,

supM
(
ϕ(·, t)− Φ(t)

)
≤ −C infM (ϕ(·, t)− Φ(t)) + C

(7.7)

for all t ∈ (0, T ) and a time-independent positive constant C. Then T =∞, i.e. the solution ϕ exists
for all times, and the normalization ϕ̃ converges smoothly to a function ϕ̃∞ ∈ C∞(M,R) as t→∞,
which solves (7.5) for some b ∈ R.

Let (M, I, J,K, g) be a locally flat hyperhermitian manifold and Ω a q-real (2, 0)-form. Equation
(7.1) is expressed in terms of the matrix

Ars[ϕ] = gj̄rΩϕ
j̄s

= gj̄r
(
Ωj̄s + ϕj̄s

)
where (ϕj̄s) denotes the hyperhermitian matrix associated to ∂∂Jϕ. With respect to quaternionic local
coordinates (q1, . . . , qn) it is well-known that

ϕr̄s = 1
4∂q̄

r∂qsϕ =: HessHϕ ,

Now we briefly discuss the notion of C-subsolution. Székelyhidi introduced it in [280] for elliptic
equations. His definition is also shown to be a relaxation of that given by Guan [153]. As for the
parabolic case, Guan, Shi and Sui [155] worked on Riemannian manifolds with the classical notion of a
subsolution, while Phong and Tô provided in [246] the extension to the parabolic case of Székelyhidi’s
definition. Of course, as we shall see in a moment with a characterization of C-subsolutions, what
happens in hyperhermitian geometry is entirely parallel to the Hermitian case. Thus, Definition 7.1 is
the right extension of Definition 6.2 for the elliptic case. We shall refer to C-subsolutions in this last
sense as elliptic ones.

Lemma 7.4. Let ϕ ∈ C2,1(M × [0,+∞)) be such that ‖ϕ‖C2,1 < +∞. Then ϕ is a parabolic
C-subsolution if and only if there exists a uniform constant ρ > 0 such that

lim
s→∞

f(λ[ϕ(x, t)] + sei)− ∂tϕ(x, t) > ρ+ h(x)

for each i = 1, . . . , n, where ei is the ith standard basis vector of Rn. In particular when ϕ is
time-independent it is a C-subsolution in the parabolic sense if and only if it is such in the elliptic
sense.

Proof. The proof can be reproduced almost verbatim from [246, Lemma 8].

This lemma in particular implies that when f is unbounded over Γ, every Γ-admissible function is
a parabolic C-subsolution.

We conclude this section by fixing some notations. Unless otherwise stated we shall always denote
by ϕ, ϕ̃ and ϕ the maximal solution to flow (7.1) with initial datum ϕ0, its normalization as in (7.4)
and a parabolic C-subsolution in the sense of Definition 7.1, respectively. All these functions are
assumed to be defined over M × [0, T ), where (M, I, J,K, g) is a compact locally flat hyperhermitian
manifold and T is the maximal time of existence of ϕ.

From here on, we will always denote with C a positive constant that only depends on background
data (not on time!), including the initial datum ϕ0. Occasionally we might say that C is uniform, to
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stress that it is time-independent. As it is customary, the constant C may change value from line to
line.

7.2 A priori estimates and long-time existence.

7.2.1 C0 estimates.
In this section we achieve estimates of order zero for the solution ϕ and its normalization ϕ̃. We start
by bounding their time derivatives, then, in order to treat the bounded case we need an additional
inequality proved in Lemma 7.6. Such lemma follows as an application of the parabolic version of
the Alexandroff-Bakelman-Pucci (ABP) inequality due to Tso [295, Proposition 2.1] by adapting the
argument of Phong-Tô [246, Lemma 1].

Bounds on ∂tϕ and ∂tϕ̃.

Lemma 7.5. We have

inf
M

(
F (A[ϕ0])− h

)
≤ ∂tϕ ≤ sup

M

(
F (A[ϕ0])− h

)
(7.8)

and
|∂tϕ̃| ≤ C , (7.9)

for a uniform constant C > 0 depending only on h and the initial datum ϕ0.

Proof. Differentiating the flow (7.1) along ∂t we see that ∂tϕ satisfies the following heat type equation

∂t
(
∂tϕ
)

= 1
4Re

(
F rs∂q̄r∂qs(∂tϕ)

)
, (7.10)

where F rs := ∂F
∂Ars

. By the parabolic maximum principle for (7.10), we know that ∂tϕ hits its extremum
at t = 0. Thus,

inf
M×{0}

∂tϕ ≤ ∂tϕ ≤ sup
M×{0}

∂tϕ , ∂tϕ(·, 0) = F (A[ϕ0])− h

and we then obtain (7.8). The bound (7.9) on |∂tϕ̃| follows immediately.

We remark that a direct consequence of the previous lemma is the following short-time estimate:

|ϕ| ≤ Cδ , onM × [0, δ] . (7.11)

Intermediate bounds.

Lemma 7.6. If there exists a non-increasing function Φ ∈ C1([0, T ),R) satisfying

sup
M

(
ϕ(·, t)− ϕ(·, t)− Φ(t)

)
≥ 0 ,

then there exists a constant C > 0, depending only on Ω, g, ϕ, ‖ϕ0‖C0 such that

ϕ(x, t)− ϕ(x, t)− Φ(t) ≥ −C for all (x, t) ∈M × [0, T ) .

Proof. First, observe that the requirement Φ′ ≤ 0 implies that ϕ+ Φ is still a parabolic C-subsolution
of (7.1), therefore, as long as the involved constants do not depend on the time derivative of ϕ, we
may assume Φ ≡ 0.
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Choose δ ∈ (0, 1) and R > 0 such that (7.3) holds for the subsolution ϕ. By (7.11), it suffices to
estimate v = ϕ− ϕ on M × [δ, T ). Fix an arbitrary T ′ < T and assume v achieves its minimum S at a
point (x0, t0) ∈M × [δ, T ′], i.e.,

S = v(x0, t0) = min
M×[δ,T ′]

v .

Now we are reduced to prove that if supM v ≥ 0 for all t ∈ [δ, T ′], then S is bounded from below by a
constant depending only on Ω, g, ϕ, ‖ϕ0‖ and independent of T ′.

Consider quaternionic local coordinates (q1, . . . , qn) centered at the point x0. We may identify such
coordinate neighborhood with the open ball of unit radius B1 = B1(0) ⊆ Hn centered at the origin.
Let

w(x, t) = v(x, t) + δ2

4 |x|
2 + (t− t0)2,

be a function defined on B = B1 × [t0 − δ
2 , t0 + δ

2 ]. Observe that infB w = w(0, t0) = v(0, t0) = S and
inf∂B w ≥ w(0, t0) + δ2

4 . These conditions allow us to apply the parabolic ABP method of Tso [295,
Proposition 2.1] to obtain

C0δ
8n+2 ≤

∫
P

|∂tw|det(D2w) , (7.12)

where C0 > 0 is a dimensional constant,

P =

(x, t) ∈ B
∣∣∣∣∣ w(x, t) ≤ S + δ2

4 , |Dw(x, t)| < δ2

8 ,

w(y, s) ≥ w(x, t) +Dw(x, t) · (y − x), ∀y ∈ B1, s ≤ t


is the parabolic contact set of w on B and Dw, D2w are the gradient and the (real) Hessian of w on
M with respect to the variable x.

Claim: both |∂tw| and det(D2w) are bounded on P .

Let τ = −∂tϕ+ ∂tϕ = −∂tv and µ = λ(A[ϕ])− λ(A[ϕ]). Observe that D2w ≥ 0 and ∂tw ≤ 0 on P .
Thus,

τ = −∂tw + 2(t− t0) ≥ −δ , µ+ δ1 ∈ Γn .

Now by Definition 7.1 we conclude that |τ |+ |µ| ≤ R, then |∂tw| ≤ R and HessHw is a bounded matrix.
But then we are done as we have

det(D2w) ≤ 24n det(HessHw)4 on P ,

This confirms the claim.

With this claim at hand, by (7.12) we have

C0δ
8n+2 ≤ CVol(P ) . (7.13)

From (7.2) we readily obtain Re trg(Ωϕ) > 0, where Ωϕ = Ω + ∂∂Jϕ, which in turn yields a uniform
lower bound for the quaternionic Laplacian of ϕ:

∆gϕ = Re trg(Ωϕ)− Re trg(Ω) ≥ −C .

This also gives a uniform lower bound for ∆gv. By Lemma 6.3 there exist uniform p, C > 0, depending
only on the background data such that

‖v − sup
M

v‖Lp(M) ≤ C. (7.14)

The definition of P and our assumption that supM v ≥ 0 on [0, T ) yield

v − sup
M

v ≤ v ≤ w < S + δ2

4 on P,
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We may further assume S + δ2

4 < 0, otherwise we are done. As a consequence for any p > 0∣∣∣∣S + δ2

4

∣∣∣∣p Vol(P ) ≤
∫
P

|v − sup
M

v|pdxdt ≤
∫

[t0− δ2 ,t0+ δ
2 ]
‖v − sup

M
v‖pLp(M)dt ≤ Cδ ,

where we have used (7.14). This, together with (7.13), gives the uniform lower bound of S we were
after.

Bounds on ϕ and ϕ̃.

As it often happens for solutions to flows, we only manage to control the oscillation and not the
full C0 norm. On the other hand, once the oscillation is under control, we immediately achieve the
C0-estimate for the normalization of the solution.

Proposition 7.7. Let f be either bounded or unbounded. In case f is bounded on Γ assume that
it satisfies either one of the two conditions expressed in Theorem 7.3. Then there exists a uniform
constant C > 0, depending only on the background data such that

oscMϕ(·, t) := sup
M

ϕ(·, t)− inf
M
ϕ(·, t) ≤ C , (7.15)

and
‖ϕ̃‖C0 ≤ C . (7.16)

Proof. First, we observe that (7.16) follows from (7.15). Indeed, by the normalization of ϕ̃, for any
(x, t) ∈M × [0, T ) we can find y(x) ∈M such that ϕ̃(y(x), t) = 0, therefore

‖ϕ̃‖C0 = sup
(x,t)∈M

∣∣ϕ̃(x, t)− ϕ̃(y(x), t)
∣∣ = sup

(x,t)∈M

∣∣ϕ(x, t)− ϕ(y(x), t)
∣∣ ≤ oscMϕ(·, t) .

We will prove (7.15) by rewriting the flow (7.1) as

F (A[ϕ]) = h+ ∂tϕ , (7.17)

and interpreting it for every fixed time as an elliptic equation with datum h + ∂tϕ. We split the
argument into two cases according as f is bounded or unbounded.

• Case 1. f is unbounded on Γ. In this case any Γ-admissible function is a parabolic C-subsolution,
therefore we can take the initial datum ϕ0 as such. Since ϕ0 is time-independent, it can be
regarded as an elliptic C-subsolution. Furthermore, by Lemma 7.5 we know that the right-hand
side of (7.17) is uniformly bounded, therefore we may apply Proposition 6.4 to obtain (7.15).

• Case 2. f is bounded on Γ. We consider two subcases. Assume that condition (i) of Theorem 7.2
holds, then (7.6) and Lemma 7.5 imply that ∂tϕ ≥ ∂tϕ, this entails that ϕ is a C-subsolution of
(7.17) in the elliptic sense. Again (7.15) follows from Proposition 6.4. If, instead, condition (ii)
of Theorem 7.2 is satisfied, then there exists Φ ∈ C∞([0, T ),R) with Φ′ ≤ 0 satisfying (7.7) and
we can readily apply Lemma 7.6 to conclude.

7.2.2 Laplacian estimate.
Here we adopt the technique of [89, 176] which allows to find a Laplacian bound in terms of the squared
norm of the gradient.

Before we tackle the proof, we recall the following preliminary lemma given in Phong-Tô [246,
Lemma 3], which was inspired by the elliptic version of [280, Proposition 6]. We will use the following
derivatives of F

F rs := ∂F

∂Ars
, F rs,lt := ∂2F

∂Ars∂Alt
.
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7.2. A priori estimates and long-time existence.

Lemma 7.8. Let δ,R be uniform constants such that on M × [0, T ), if (µ, τ) ∈ Rn × R satisfy
(7.3), then |µ|+ |τ | < R. There exists a uniform constant κ > 0 depending on δ and R such that if
|λ(A[ϕ])− λ(A[ϕ])| > R, we have

either ReF rs(A[ϕ])
(
Ars[ϕ]−Ars[ϕ]

)
− (∂tϕ− ∂tϕ) > κ

n∑
r=1

F rr(A[ϕ]) ,

or F ss(A[ϕ]) > κ

n∑
r=1

F rr(A[ϕ]) , for all s = 1, . . . , n .

Proof. Since the quaternionic analogue of the Schur-Horn theorem holds (Proposition 1.46) the proof
of the lemma can be adapted from [246, Lemma 3].

Proposition 7.9. Suppose (M, I, J,K, g) is a compact flat hyperkähler manifold. Then there is a
constant C > 0, depending only on (M, I, J,K), ‖g‖C2 , ‖h‖C2 , ‖Ω‖C2 , ‖ϕ‖C2,1 , ‖∂tϕ‖C0 and ‖ϕ̃‖C0 ,
such that

‖∆gϕ‖C0 ≤ C
(
‖∇ϕ‖2C0 + 1

)
.

Proof. By (7.2) we already know that the quaternionic Laplacian is uniformly bounded from below,
therefore it is enough to obtain a bound of the form

λ1

‖∇ϕ‖2C0 + 1 ≤ C ,

where λ1 is the largest eigenvalue of A[ϕ]. Let T ′ < T , all computations will be performed in
quaternionic local coordinates around some fixed point p0 = (x0, t0) ∈M × [0, T ′] which we will specify
in a moment. As pointed out in Section 6.2.2 in order for λ1 : M → R to define a smooth function
at p0 we need the eigenvalues to be distinct; to be sure of that, we perturb the matrix A as follows.
Using the assumption that g is a flat hyperkähler metric we may take quaternionic coordinates such
that (gr̄s) is the identity in the whole neighborhood of p0 and (Ωϕ

r̄s) is diagonal at p0. In particular
A[ϕ] is diagonal with ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Let D be a constant diagonal matrix
with entries satisfying 0 = D11 < D22 < · · · < Dnn. The matrix Ã = A[ϕ]−D has distinct eigenvalues
λ̃r by construction, and its largest eigenvalue λ̃1 coincides with λ1 at p0.

Choose p0 ∈M × [0, T ′] to be a maximum point of the function

Ĝ = 2
√
λ1 + α(|∇ϕ|2) + β(ṽ)

where

α(s) = −1
2 log

(
1− s

2N

)
, N = ‖∇ϕ‖2C0 + 1 ,

β(s) = −2Ss+ 1
2s

2 , S > ‖ṽ‖C0 , large constant to be chosen later ,

and ṽ is the normalization of v = ϕ− ϕ. As said, to avoid smoothness issues we shall not work with
λ1. Therefore, in a small neighborhood of p0, instead of working with Ĝ we consider the function

G = 2
√
λ̃1 + α(|∇ϕ|2) + β(ṽ) .

It will be useful to observe that
1

4N <α′(|∇ϕ|2) < 1
2N , α′′ = 2(α′)2 , (7.18)

S ≤− β′(ṽ) ≤ 3S , β′′ = 1 . (7.19)

We also remark that, as in [246], at the point p0 there exists a constant τ > 0 depending on ‖h‖C0
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and ‖∂tϕ‖C0 such that

F :=
n∑
a=1

F aa(A[ϕ]) > τ .

This will be useful to absorb some constants during our computations.
The linearized operator L is defined by

L(u) = 4
n∑

a,b=1
F abgc̄auc̄b − 4∂tu ,

where uāb = 1
4∂q̄a∂qbu. In particular, at p0 the linearized operator has the simpler expression

L(u) = 4(F aauāa − ∂tu).
At the maximum point p0 we have L(G) ≤ 0 i.e.

0 ≥ L
(

2
√
λ̃1

)
+ L

(
α(|∇ϕ|2)

)
+ L (β(ṽ)) . (7.20)

Bound for L(2
√
λ̃1).

We claim that

L

(
2
√
λ̃1

)
≥ −

F aa|Ωϕ1̄1,a|
2

2λ1
√
λ1

− CF√
λ1

, (7.21)

where Ωϕ1̄1,a = ∂qaΩϕ1̄1 and C > 0 is a positive uniform constant.
We clearly have

L

(
2
√
λ̃1

)
= 8F aa

(√
λ̃1

)
āa

− 8∂t
(√

λ̃1

)
= 2F aa

3∑
p=0

(√
λ̃1

)
xapx

a
p

− 8∂t
(√

λ̃1

)

= 1√
λ1

(
F aa

3∑
p=1

λ̃1,xapxap − 4∂tλ̃1

)
− F aa

3∑
p=0

|λ1,xap |
2

2λ1
√
λ1

,

(7.22)

where the subscripts xap denote the real derivative with respect to the corresponding real coordinates
underlying the chosen quaternionic local coordinates. Using the formulas for the derivatives of the
eigenvalues (see Section 6.2.2) and the fact that D is a constant matrix we obtain at p0

λ̃1,xap = λ̃rs1 Ãrs,xap = Ωϕ1̄1,xap

λ̃1,xapxap = λ̃rs,lt1 Ãrs,xap Ãlt,xap + λ̃rs1 Ãrs,xapxap = 2
∑
r>1

|Ωϕr̄1,xap |
2

λ1 − λ̃r
+ Ωϕ1̄1,xapxap

.

Observe that
3∑
p=0

Ωϕ1̄1,xapxap
=

3∑
p=0

(
Ω1̄1,xapxap + ϕ1̄1xapxap

)
= 4Ω1̄1,āa + 4ϕāa1̄1 = 4Ω1̄1,āa − 4Ωāa,1̄1 +

3∑
p=0

Ωϕāa,x1
px

1
p

which implies

F aaλ̃1,xapxap ≥ F
aa

3∑
p=0

Ωϕāa,x1
px

1
p
− CF .

Differentiating the equation ∂tϕ = F (A[ϕ])− h twice with respect to x1
p gives, at p0,

F rs,tlΩϕr̄s,x1
p
Ωϕ
t̄l,x1

p
+ F aaΩϕāa,x1

px
1
p

= hx1
px

1
p

+ ∂t(ϕx1
px

1
p
) .
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by this and the concavity of F

F aa
3∑
p=0

λ̃1,xapxap − 4∂tλ̃1 ≥
3∑
p=0

(
F aaΩϕāa,x1

px
1
p
− ∂t(ϕx1

px
1
p
)
)
− CF ≥ −CF . (7.23)

Substituting (7.23) into (7.22) we obtained the claimed inequality (7.21).

Bound for L
(
α(|∇ϕ|2)

)
.

First of all we compute

L
(
α(|∇ϕ|2)

)
=α′′F aa

3∑
p=0

(
n∑
r=1

(ϕr̄xapϕr + ϕr̄ϕrxap )
)2

+ α′F aa
3∑
p=0

n∑
r=1

(
ϕr̄xapxapϕr + 2|ϕrxap |

2 + ϕr̄ϕrxapxap

)
− α′

n∑
r=1

(
∂t(ϕr̄)ϕr + ϕr̄∂t(ϕr)

)
.

(7.24)

Differentiating the equation ∂tϕ = F (A[ϕ])− h yields

∂t(ϕxrp) = F aaΩϕāa,xrp − hxrp , at p0 .

Together with Cauchy-Schwarz inequality and (7.18) this yields

α′F aa
n∑
r=1

(ϕr̄āaϕr+ϕr̄ϕrāa)− α′
n∑
r=1

(
∂t(ϕr̄)ϕr + ϕr̄∂t(ϕr)

)
= α′

n∑
r=1

((hr̄ − F aaΩāa,r̄)ϕr + ϕr̄(hr − F aaΩāa,r))

≥ −C
N

(N1/2 +N1/2F) ≥ −CF ,

Moreover, we have

2α′F aa
n∑
r=1

3∑
p=0
|ϕrxap |

2 ≥ 1
2N F aa

3∑
p=0

ϕ2
xapx

a
p

= 8
N
F aaϕ2

āa = 8
N
F aa(λa − Ωāa)2 ≥ 4

N
F aaλ2

a − CF .

Combining the last two inequalities with (7.24) we get

L
(
α(|∇ϕ|2)

)
≥ α′′F aa

3∑
p=0

(
n∑
r=1

(ϕr̄xapϕr + ϕr̄ϕrxap )
)2

+ 4
N
F aaλ2

a − CF . (7.25)

Conclusion of the proof.

In view of (7.21) and (7.25), the main inequality (7.20) becomes

0 ≥ α′′F aa
3∑
p=0

(
2

n∑
r=1

Re(ϕr̄xapϕr)
)2

−
F aa|Ωϕ1̄1,a|

2

2λ1
√
λ1

+ 4F aaλ2
a

N
+ L (β(ṽ))− CF (7.26)
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Since p0 is a maximum point for G we have

0 = Gxap =
Ωϕ1̄1,xap√
λ1

+ 2α′
n∑
r=1

Re(ϕr̄xapϕr) + β′ṽxap

and therefore, by (7.18)

α′′F aa

(
2

n∑
r=1

Re(ϕr̄xapϕr)
)2

= 2F aa
(Ωϕ1̄1,xap√

λ1
+ β′ṽxap

)2

≥ 2ε
F aa(Ωϕ1̄1,xap

)2

λ1
− 2ε

1− ε (β′)2F aaṽ2
xap
,

(7.27)

where we used the inequality (a+ b)2 ≥ εa2 − ε
1−εb

2 , which holds for ε ∈ (0, 1). Assuming without
loss of generality that

√
λ1 >

1
4ε we get

(
4ε
√
λ1 − 1

) F aa|Ωϕ1̄1,a|
2

2λ1
√
λ1

≥ 0 . (7.28)

Putting together (7.27), (7.28) and the calculation

L (β(ṽ)) = β′′F aa|ṽa|2 + 4β′F aaṽāa − 4β′∂tṽ

(7.26) simplifies to

0 ≥ 4F aaλ2
a

N
+
(
β′′ − 2ε

1− ε (β′)2
)
F aa|ṽa|2 + 4β′ (F aaṽāa − ∂tṽ)− CF .

If we choose ε = 1/(18S2 + 1) < 1, then (7.19) yields

β′′ − 2ε
1− ε (β′)2 ≥ 0 ,

therefore we finally arrive at

0 ≥ 4F aaλ2
a

N
+ 4β′ (F aaṽāa − ∂tṽ)− CF . (7.29)

Supposing λ1 > R we have |λ(A[ϕ])| > R and we can then apply Lemma 7.8 according to which there
exists κ > 0 such that one of the following two cases occur:

• Case 1:
ReF rs(A[ϕ])

(
Ars[ϕ]−Ars[ϕ]

)
− (∂tϕ− ∂tϕ) > κ

n∑
r=1

F rr(A[ϕ]) ,

i.e. −F aavāa + ∂tv > κF at p0, where we recall that v = ϕ− ϕ. This immediately gives

F aaṽāa − ∂tṽ < −CF

where C depends on ‖∂tv‖C0 . Choosing S so large as to have β′ (F aaṽāa − ∂tṽ) ≥ CF we deduce
from (7.29) the inequality 0 ≥ 4

N F
aaλ2

a which is a contradiction, hence this case cannot occur.

• Case 2:
F ss(A[ϕ]) > κ

n∑
r=1

F rr(A[ϕ]) , for all s = 1, . . . , n ,

which in particular gives F 11 > κF and thus F aaλ2
a ≥ F 11λ2

1 ≥ κFλ2
1. We may assume

F aaλa ≤ F aaλ2
a/(6NS) because if this were not true we would have κFλ2

1 < 6NSFλ1 and we
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would conclude. Then we have

4β′ (F aaṽāa − ∂tṽ) ≥ −12SF aaϕāa − CF ≥ −
2F aaλ2

a

N
− CF ,

This last inequality and (7.29) finally give

0 ≥ 2κ λ
2
1

N2 − C ,

as was to be shown.

The desired bound is valid at the maximum point x0 of G, and then also globally.

Remark 7.10. As in the elliptic case treated in the previous chapter, this is the only step of the proof
of our main results that uses the assumption that the metric g is hyperkähler.

7.2.3 Gradient estimate.
The bound find in the previous section is well-suited for the so-called blow-up analysis. This technique
coupled with a Liouville–type theorem allows to find a non-explicit gradient bound and consequently,
also a Laplacian bound.

Proposition 7.11. Suppose there is a uniform constant C such that

‖∆gϕ‖C0 ≤ C
(
‖∇ϕ‖2C0 + 1

)
,

then there is a uniform bound
‖∇ϕ‖C0 ≤ C .

Proof. The proof is entirely analogous to the one for the elliptic case; we shall only give an overview.
Fix T ′ ≤ T and suppose by contradiction that the gradient bound does not hold. Then we can find a
sequence (hj)j of real smooth functions, a sequence (Ωj)j of q-real (2, 0)-forms on M and sequences
(ϕj)j , (ϕ

j
)j of solutions and parabolic C-subsolutions of the equation

F
(
gt̄r((Ωj)t̄s + (ϕj)t̄s)

)
= hj + ∂tϕj ,

supM×[0,T ′] ϕj = 0 ,
|∇ϕj | ≥ j .

Assume further that (ϕ
j
)j , (hj)j and (Ωj)j are uniformly bounded in C2-norm.

For each j assume that |∇ϕj |2 achieves its maximum Nj at (xj , tj) ∈ M × [0, T ′]. Set gj = Njg

and choose quaternionic local coordinates (q1, . . . , qn) around xj for |qi| < N
1/2
j for every i = 1, · · · , n

such that

(gj)r̄s = δr̄s +O(N−1
j |x|) , (Ωj)r̄s = O(N−1

j ) , hj = hj(xj) +O(N−1
j |x|) . (7.30)

We may assume limj→∞(xj , tj) = (0, T ′). Clearly |∇ϕj(xj , tj)|2gj = 1 and by Propositions 7.7 and 7.9
we have in this coordinates

‖ϕj(·, tj)‖C0 ≤ C , |∆gϕj(·, tj)|gj ≤ C , on B
N

1/2
j

(xj) ,

where C > 0 is uniform in j and does not depend on T ′. By (7.30) we then have, for j →∞

λ
(
gk̄rj
(
(Ωj)k̄s + (ϕj(·, tj))k̄s

))
= λ

(
(ϕj(·, tj))r̄s

)
+O(N−1

j |x|) . (7.31)
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By [143, Theorem 8.32] and Arzelà-Ascoli Theorem, for any α ∈ (0, 1), the sequence (ϕj(·, tj))j
admits subsequence uniformly convergent in C1,α to some u : Hn → R. The function u satisfies
‖u‖C0 + ‖∇u‖C0 ≤ C and |∇u(0)| = 1, in particular u is non-constant. However, using (7.31) and
proceeding similarly to Section 6.2.3 one can easily show that u is a Γ-solution in the sense of Definition
6.12. The proof is now concluded by applying the Liouville-type theorem (Proposition 6.15) for this
kind of functions, which contradicts the fact that u is non-constant.

7.2.4 Higher order estimates and long-time existence.
Here we improve the Laplacian estimate to a Hölder estimate of the quaternionic Hessian of ϕ. We do
so in two ways as in Section 6.2.4, which can both be seen as analogues of the Evans-Krylov theory. By
bootstrapping we then obtain estimates of any order on the solution of (7.1) and thus also long-time
existence.

Proposition 7.12. For each k > 0, there exists a uniform constant Ck depending on the allowed data,
k, ‖∇ϕ‖C0 and an upper bound for ∆gϕ such that

‖∇kϕ‖C0 ≤ Ck . (7.32)

where ∇ is the Levi-Civita connection with respect to g. Moreover we have long-time existence for ϕ,
i.e. T =∞.

Proof. Assume (7.32) and suppose T <∞. It follows from (7.8) that there exists a uniform constant
C such that

|ϕ| ≤ T sup
M×[0,T )

|∂tϕ| ≤ CT , on M × [0, T ) .

By this, (7.32) and short-time existence, one can extend the flow to [0, T + ε0) for some ε0 > 0, which
yields a contradiction. The interested reader can find more details about this standard discussion in
the proof of [285, Theorem 3.1] (see also in [48, 323] and references therein).

We showed that it is enough to prove (7.32). And we claim that (7.32), follows once we have proved
a Hölder bound for HessHϕ of the form

‖HessHϕ‖C0,α(M×[ε,T )) ≤ Cε (7.33)

where ε ∈ (0, T ) and Cε is a uniform constant depending only on the initial data and ε. Indeed,
given the Hölder bound (7.33) for the matrix HessHϕ and the second order estimate for ϕ, we can
differentiate the flow (7.1) and then bootstrap using the Schauder estimates in order to obtain the
uniform bound

‖∇kϕ‖C0,α(M×[ε,T )) ≤ Cε,k , for any k > 0 ,

where Cε,k depends on ε and k. But since by standard parabolic theory the solution ϕ is uniquely
determined by the initial and background data, we also have a uniform bound

‖∇kϕ‖C0,α(M×[0,ε)) ≤ Cε,k , for any k > 0 .

The estimate (7.33) is standard, we prove it as a separate proposition below.

Proposition 7.13. For each ε ∈ (0, T ) there exists α ∈ (0, 1) and a uniform constant Cε > 0 depending
only on the allowed data, ε, ‖∂tϕ‖C0 , and an upper bound for ∆gϕ such that

‖HessHϕ‖C0,α(M×[ε,T )) ≤ Cε .

We shall present two proofs of the proposition above.
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7.2. A priori estimates and long-time existence.

First proof of Proposition 7.13.

This first proof uses a general result due to Chu [91, Theorem 5.1], which is the parabolic counterpart
of the main result in [286].

Let (I0, J0,K0) be the standard hyperhermitian structure on R4n, i.e.

I0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , J0 =


0 0 −1 0
0 0 0 1

1 0 0 0
0 −1 0 0

 , K0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

Set V = {H ∈ R4n,4n | I0HI0 = J0HJ0 = K0HK0 = −H}. We will use the isomorphism of real
algebras γ : Hn,n → V , and the projection p: R4n,4n → V defined as

γ(A+ iB + jC + kD) :=


A B C D
−B A −D C
−C D A −B
−D −C B A

 ,

and
p(H) := 1

4(H − I0HI0 − J0HJ0 −K0HK0) .

We have the identity γ(HessHu) = 16p(D2u) for any function u : Hn → R of class C2.
Now, since the manifold is locally flat, we can work in a coordinate chart, which we identify with

B = B1(0). The condition ∆gϕ ≤ C implies that there exist σ and R such that

λ(A[ϕ]) ∈ Γ̄σ ∩BR(0) , on B ,

where Γσ = {λ ∈ Γ | f(λ) > σ}. Therefore, setting

E =
{
H ∈ Sym(4n,R) | λ

(
gj̄r(0)(γ−1(p(H)))j̄s

)
∈ Γ̄σ ∩B2R(0)

}
,

and shrinking the radius of B, if necessary, we can assume

γ (Ωr̄s(x) + ϕr̄s(x)) ∈ E .

and also that there is neighborhood U of E such that

λ
(
gj̄r(x)(γ−1(p(H)))j̄s

)
∈ Γ̄σ ∩B4R(0) , for any H ∈ U and x ∈ B .

Define the following operators

• P : Sym(4n,R) × B → R defined as P (H,x) = f(λ(gj̄r(x)(γ−1(p(H)))j̄s)) for H ∈ U , and
extended smoothly to all of Sym(4n,R)×B;

• S : B → Sym(4n,R) defined as S(x) = γ(Ωr̄s(x));
• T : Sym(4n,R)×B → Sym(4n,R) defined as T (H,x) = 16p(H).

Then the setup is convenient for an application of [91, Theorem 5.1]. We shall proceed as in Lemma
5.7 to conclude. We consider two cases:

1. T < 1. We immediately obtain a C0 bound for ϕ by Lemma 7.5, as

|ϕ| ≤ T sup
M×[0,T )

|∂tϕ| ≤ CT ≤ C.

With this bound [91, Theorem 5.1] can be applied and we conclude.
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2. T ≥ 1. In this case we consider, for any a ∈ (0, T − 1) an auxiliary function

ϕa(x, t) := ϕ(x, t+ a)− inf
B×[a,a+1)

ϕ , t ∈ [0, 1).

Such a function satisfies
∂tϕa = F (A[ϕa])− h

hence, by previous results, it satisfies a uniform Laplacian bound and by Proposition 7.7 it also
satisfies ‖ϕa‖C0 ≤ oscMϕ(·, t) ≤ C. Applying again [91, Theorem 5.1] to ϕa we deduce that for
any fixed ε ∈ (0, 1

2 ) we have

‖∇2ϕ‖Cα(B×[a+ε,a+1)) ≤ ‖∇2ϕa‖Cα(B×[ε,1)) ≤ C ,

where C is a uniform constant that depends on ε and α. Since a ∈ (0, T − 1) is arbitrary we
obtain the desired estimate

‖∇2ϕ‖Cα(B×[ε,1)) ≤ C .

Second proof of Proposition 7.13.

The second proof is more classical in flavour and represents an adaptation of Alesker’s C2,α estimate
for the quaternionic Monge-Ampère equation obtained in [14].

Again the proof is local, since M is locally flat. Let O ⊂ Hn be an arbitrary open subset. For each
α ∈ (0, 1), on OT := O × [0, T ), we define

[
ϕ
]
α,(x,t) := sup

(y,s)∈OT \(x,t)

|ϕ(y, s)− ϕ(x, t)|
(|y − x|+

√
|s− t|)α

,
[
ϕ
]
α,OT

:= sup
(x,t)∈OT

[
ϕ
]
α,(x,t) .

The metric g can be locally represented by a potential w on O, possibly shrinking O if necessary, in
other words g = HessHw. Let us denote u = w+ϕ and U = HessHu. By concavity of F , and the mean
value theorem, for all (x, t1), (y, t2) ∈ O × [0, T ), we have

ReF rs(y, t2)(ur̄s(x, t1)− ur̄s(y, t2)) ≥ ∂tϕ(x, t1)− ∂tϕ(y, t2)− h(x) + h(y)
≥ ∂tu(x, t1)− ∂tu(y, t2)− C‖x− y‖ ,

(7.34)

for some constant C depending on ‖h‖C1 .
At this point we recall the following algebraic lemma by Alesker [14, Lemma 4.9].

Lemma 7.14. Let λ,Λ ∈ R satisfy 0 < λ < Λ < +∞. There exist a uniform constant N , unit
vectors ξ1, · · · , ξN ∈ Hn and positive numbers λ∗ < Λ∗ < +∞, depending only on n, λ,Λ such that any
hyperhermitian matrix A ∈ Hn,n with eigenvalues lying in the interval [λ,Λ] can be written as

A =
N∑
k=1

βkξ
∗
k ⊗ ξk , i.e. Ars =

N∑
k=1

βk ξ̄krξks ,

for some βk ∈ [λ∗,Λ∗].

Applying the lemma to A = (F rs(U)), immediately yields

ReF rs(U(y))(ur̄s(y)− ur̄s(x)) = Re
N∑
k=1

βk(y)ξ̄krξks(ur̄s(y)− ur̄s(x))

=
N∑
k=1

βk(y) (∆ξku(y)−∆ξku(x))

for some functions βk(y) ∈ [λ∗,Λ∗], where, for any unit vector ξ = (ξ1, · · · , ξn) ∈ Hn, we denoted by
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∆ξ the Laplacian on any translate of the quaternionic line spanned by ξ, i.e.

Re tr((ξ∗ ⊗ ξ)(ur̄s)) = Re tr(ξ∗(ur̄s)ξ) = ∆ξu .

For convenience, let us set β0(y) ≡ 1 and ∆ξ0 = −∂t. Then, from (7.34) we obtain

N∑
k=0

βk
(
∆ξku(y, t2)−∆ξku(x, t1)

)
≤ C‖x− y‖ . (7.35)

Lemma 7.15. For any k = 0, 1, · · · , N ,

∂t∆ξku ≤ ReF rs
(
∆ξkur̄s

)
+ ∆ξkh .

Proof. For k = 0. Applying ∂t to (7.1), we get

∂t
(
∂tu
)

= ReF rs∂t
(
ur̄s
)

and the lemma follows.
For other k ≥ 1, write ξk = (ξk1 , · · · , ξkn). Differentiating (7.1) along ξkp twice and taking sum over

the index p, gives

∂t∆ξku =ReF rs
(
∆ξkur̄s

)
+ Re

n∑
p=1

F rs,tlur̄sξkput̄lξkp −∆ξkh ≤ ReF rs
(
∆ξkur̄s

)
−∆ξkh ,

by the concavity of F . Then the lemma follows.

Fix t̂ ∈ [ε, T ), and r ∈ (0, 1) such that 10r2 ≤ t̂. Define

Pr =
{

(x, t) ∈ OT : ‖x‖ ≤ r, t̂− 5r2 ≤ t ≤ t̂− 4r2},
Qr =

{
(x, t) ∈ OT : ‖x‖ ≤ r, t̂− r2 ≤ t ≤ t̂

}
.

For every k = 0, 1, · · · , N , let us denote

Mk,r = sup
Qr

∆ξku, mk,r = inf
Qr

∆ξku, η(r) =
N∑
k=1

(Mk,r −mk,r).

To prove Proposition 7.13, it suffices to find a constant C (depending only on ε), r0 > 0 and 0 < δ < 1
such that

η(r) ≤ Crδ, for all r < r0.

Let us define an operator D = 1
4ReF rs(U)∂q̄r∂qs . Let (aij) ∈ Sym(4n,R) be the realization of

(F rs(U)). Then we can rewrite D as

D =
4n∑
s,t=1

astDsDt, (7.36)

Since F is uniformly elliptic on Γ, then (ast) ∈ Sym(4n,R) satisfies the uniform elliptic estimate
λ‖ξ‖2 ≤

∑
s,t astξsξt ≤ Λ‖ξ‖2 for some 0 < λ < Λ <∞ and any ξ ∈ R4n.

The following weak parabolic Harnack inequality is well-known.

Lemma 7.16. [212, Theorem 7.37]. If v ∈W 2,1
2n+1 is a nonnegative function and satisfies

−∂v
∂t

+
∑
s,t

astDsDtv ≤ h′ on Q4r,

where h′ is a bounded function and the matrix (ast) is as in (7.36). Then there exist positive constants
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C, p depending on n, λ,Λ such that

1
r4n+2

(∫
Pr

vp
) 1
p

≤ C
(

inf
Br
v + r

4n
4n+1 ‖h′‖L2n+1

)
. (7.37)

For each k = 0, 1, · · · , N , let us denote vk := Mk,2r −∆ξku. Then vk ∈ W 2,1
2n+1 is a non-negative

function and since ∆ξkur̄s = (∆ξku)r̄s on OT it satisfies

−∂tvk + ReF rs(vk)r̄s ≤ h′

for a bounded function h′. Then by Lemmas 7.15 and 7.16,

1
r4n+2

(∫
Pr

(Mk,2r −∆ξku)p
) 1
p ≤ C

(
Mk,2r −Mk,r + r

4n
4n+1

)
, (7.38)

On the other hand, let (x, t1), (y, t2) ∈ Q2r, it then follows from (7.35) that

βk
(
∆ξku(y, t2)−∆ξku(x, t1)

)
≤ Cr +

∑
0≤γ≤N
γ 6=k

βγ
(
∆ξγu(x, t1)−∆ξγu(y, t2)

)
.

For each ε > 0, pick a point (x, t1) ∈ Q2r such that mk,2r ≤ ∆ξku(x, t1) + ε. As a consequence, after
dividing the inequality above by βk, we obtain

∆ξku(y, t2)−mk,2r ≤ Cr + C
∑

0≤γ≤N
γ 6=k

(Mγ,2r −∆ξγu(y, t2)) ,

by arbitrariness of ε. Integrating for (y, t2) over Pr, and using the fundamental inequality ‖a+ b‖p ≤
‖a‖p + ‖b‖p for every p > 1, yields

1
r4n+2

(∫
Pr

(
∆ξku(y, t2)−mk,2r

)p) 1
p ≤ C

r4n+2

(∫
Pr

[
r +

∑
0≤γ≤N
γ 6=k

(Mγ,2r −∆ξγu(y, t2))
]p) 1

p

≤ Cr + C

r4n+2

∑
0≤γ≤N
γ 6=k

(∫
Pr

[Mγ,2r −∆ξγu(y, t2)]p
) 1
p

(7.38)
≤ C

∑
0≤γ≤N
γ 6=k

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 ,

(7.39)

where we have used the fact 0 < r < 1 in the last inequality. In light of (7.38) and (7.39), and again
the triangle inequality ‖a+ b‖p ≤ ‖a‖p + ‖b‖p, we obtain

Mk,2r −mk,2r ≤
C

r4n+2

(∫
Pr

(Mk,2r −∆ξku)p
) 1
p + C

r4n+2

(∫
Pr

(∆ξku−mk,2r)p
) 1
p

≤ C
N∑
γ=0

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 .

Summing over k we deduce

η(2r) ≤ C
N∑
γ=0

(Mγ,2r −Mγ,r) + Cr
4n

4n+1 .
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By definition, m·,s is non-increasing in s, whence

η(2r) ≤ C
N∑
γ=0

(
(Mγ,2r −mγ,2r)−Mγ,r +mγ,r

)
+ Cr

4n
4n+1 = C

(
η(2r)− η(r)

)
+ Cr

4n
4n+1 .

Equivalently,
η(r) ≤

(
1− 1

C

)
η(2r) + Cr

4n
4n+1 .

Applying a standard iteration technique (see [143, Chapter 8] for more details), we finally infer that
there exists a dimensional constant δ ∈ (0, 1) such that η(r) ≤ Crδ as we wanted to show. This
completes the proof of Proposition 7.13.

7.3 Convergence of the flow.

Li-Yau type inequality.

Now we consider the following Li-Yau [211] type equation

(L − ∂t)ψ = 0 , ψ > 0 , (7.40)

where L = 1
4ReF ik∂q̄i∂qk .

If we let

∂kΦ :=
3∑
p=0

Φxkp ēp, ∂k̄Φ :=
3∑
p=0

epΦxkp ,

where Φxkp := ∂Φ
∂xkp

, and ēp denotes the quaternionic conjugate of the quaternionic unit ep for every p.
Then we can rewrite L as

LΦ = 1
4ReF ik∂q̄i∂qkΦ = F ikpq Φxkpxiq ,

where F ikpq := 1
4Re {F ikeq ēp} for simplicity.

Let B be a constant so large that ψ = ∂tϕ+B is a solution to (7.40). We consider the quantity

H = t(|∂v|2 − α∂tv) , v = logψ ,

where α ∈ (1, 2) is a constant and

|∂v|2 = 1
4ReF jlvjvl̄ = F jlrs vxlrvxjs .

Lemma 7.17. There exists a constant C > 0 such that

(L − ∂t)H ≥
t

4n
(
|∂v|2 − ∂tv

)2 − 2〈∂v, ∂H〉 −
(
|∂v|2 − α∂tv

)
− tC|∂v|2 − Ct , (7.41)

where 〈·, ·〉 is the inner product defined by 〈∂f, ∂g〉 = 1
4ReF ikfigk̄ = F ikpq fxkpgxiq .

Proof. The proof is local. For each z ∈M , we can find quaternionic coordinates q1, . . . , qn on a local
chart around z. Assume f ∈ C2(M,R), let fj = ∂f

∂qj
be the ordinary quaternionic derivative. Plugging

ψ = ev into (7.40) we have
Lv − ∂tv = −|∂v|2 , (7.42)

giving
H = −tLv − t(α− 1)∂tv , (7.43)

and thus also
t∂t
(
Lv
)

= 1
t
H − ∂tH − t(α− 1)∂2

t v . (7.44)
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By a straightforward computation we get

−∂tH = −
(
|∂v|2 − α∂tv

)
− 2t

〈
∂v, ∂∂tv

〉
+ tα∂2

t v − t∂t(F ikpq )vxkpvxiq ,
LH = tL(|∂v|2)− tαL(∂tv) .

(7.45)

First we deal with the term L(|∂v|2). For convenience, let us define

V = F ikpqF
jl
rsvxlrxkpvxjsxiq

, W = F ikpqF
jl
rsvxlrxiqvxjsxkp

.

By a direct calculation, we get

L(|∂v|2) =V +W + L(F jlrs)vxlrvxjs + F ikpq (F jlrs)xkpvxlrvxjsxiq + F ikpq (F jlrs)xkpvxlrxiqvxjs
+ F ikpq (F jlrs)xiqvxlrxkpvxjs + F ikpq (F jlrs)xiqvxlrxkpvxjs + F jlrsL(vxlr )vxjs + F jlrsvxlrL(vxjs) .

Note that ϕ has uniformly bounded Ck norms for every k > 0 by Proposition 7.12. Hence, analogously
to the (almost) Hermitian case [91, 144], we deduce

|L(F jlrs)vxlrvxjs | ≤ C|∂v|
2 . (7.46)

For each 0 < ε < 1, we have that∣∣F ikpq (F jlrs)xkpvxlrvxjsxiq |+ |F
ik
pq (F jlrs)xkpvxlrxiqvxjs

∣∣+ |F ikpq (F jlrs)xiqvxlrxkpvxjs |+ |F
ik
pq (F jlrs)xiqvxlrxkpvxjs |

≤ C

ε
|∂v|2 + 2εW + 2εV .

(7.47)

Observe that (Lv)xjs − L(vxjs) = (F ikpqvxkpxiq )xjs − F
ik
pqvxjsxkpxiq

= (F ikpq )xjsvxkpxiq . It follows that

F jlrsL(vxlr )vxjs + F jlrsvxlrL(vxjs)−2
〈
∂v, ∂Lv

〉
=F jlrsvxjs(L(vxlr )− (Lv)xlr ) + F jlrsvxlr (L(vxjs)− (Lv)xjs)
=− F jlrsvxjs(F

ik
pq )xlrvxkpxiq − F

jl
rsvxlr (F

ik
pq )xjsvxkpxiq

≥− C

ε
|∂v|2 − εV − εW .

(7.48)

On the other hand,

2t
〈
∂v, ∂Lv

〉 (7.43)= − 2
〈
∂v, ∂H

〉
− 2t(α− 1)〈∂v, ∂∂tv〉

(7.45)= − 2
〈
∂v, ∂H

〉
− (α− 1)∂tH + α− 1

t
H − tα(α− 1)∂2

t v

− t(α− 1)∂t(F ikpq )vxkpvxiq

≥− 2
〈
∂v, ∂H

〉
− (α− 1)∂tH + α− 1

t
H − tα(α− 1)∂2

t v − Ct|∂v|2 .

(7.49)

It follows from (7.48) and (7.49) that

t
(
F jlrsL(vxlr )vxjs + F jlrsvxlrL(vxjs)

)
≥− 2

〈
∂v, ∂H

〉
− (α− 1)∂tH + α− 1

t
H

− tα(α− 1)∂2
t v − Ct|∂v|2 −

Ct

ε
|∂v|2 − tεV − tεW .

(7.50)
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Now, we treat the second term of LH in (7.45). Using the Cauchy-Schwarz inequality, at z, we deduce

−tαL(∂tv) =− tα∂t(Lv) + tα∂t(F ikpq )vxkpxiq
(7.44)= − α

t
H + α∂tH + tα(α− 1)∂2

t v + tα∂t(F ikpq )vxkpxiq

≥− α

t
H + α∂tH + tα(α− 1)∂2

t v −
Ct

ε
− tεV ,

(7.51)

where in the last inequality we have used the fact that −CF ikpq ≤ ∂t(F ikpq ) ≤ CF ikpq for a uniform
constant C, which is implied by Proposition 7.12.

Plugging (7.46), (7.47), (7.50) and (7.51) into (7.45), we get

LH ≥ tW + tV − Ct|∂v|2 − t
(C
ε
|∂v|2 + 2εV + 2εW

)
− 2〈∂v, ∂H〉 − (α− 1)∂tH

+ α− 1
t

H − tα(α− 1)∂2
t v − Ct|∂v|2 −

Ct

ε
|∂v|2 − tε(V +W)

− α

t
H + α∂tH + tα(α− 1)∂2

t v −
Ct

ε
− tεV

≥ t(1− 4ε)V + t(1− 3ε)W − 2Ct
(

1 + 1
ε

)
|∂v|2 + ∂tH −

1
t
H − 2〈∂v, ∂H〉 − Ct

ε
.

Thus, if we choose 1
16 ≤ ε ≤

1
8 ,

(L − ∂t)H ≥
t

2V − Ct|∂v|
2 −

(
|∂v|2 − α∂tv

)
− 2〈∂v, ∂H〉 − Ct . (7.52)

Applying the arithmetic-geometric mean inequality, and by (7.42),

V ≥ 1
n

(Lv)2 = 1
n

(
∂tv − |∂v|2

)2
.

Plugging it into (7.52), we infer that

(L − ∂t)H ≥
t

2n
(
∂tv − |∂v|2

)2 − Ct|∂v|2 − (|∂v|2 − α∂tv)− 2〈∂v, ∂H〉 − Ct .

By the arbitrariness of z, this proves (7.41).

Using the parabolic maximum principle, we can prove the following lemma.

Lemma 7.18. On M × (0, T ), we have

|∂v|2 − α∂tv ≤
8nα2

t
+

√
8nα2

(
C + nC2α2

2(α− 1)2

)
.

Proof. Let us fix an arbitrary time t0 ∈ (0, T ). Suppose H(x, t) (as in (7.43)) achieves its maximum at
the point (q̂, t̂) ∈M × [0, t0]. We may assume t̂ > 0, otherwise |∂v|2 − α∂tv ≤ 0 on M × [0, t0] and we
are done. It follows that

H(q̂, t̂) ≥ H(q̂, 0) = 0 .

Using the maximum principle at (q̂, t̂), we deduce (L − ∂t)H ≤ 0 and ∂H = 0. Substituting this into
(7.41) yields

t̂2

4n
(
|∂v|2 − ∂tv

)2 − Ct̂2|∂v|2 −H ≤ Ct̂2 . (7.53)
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Notice that at (q̂, t̂),

t̂2
(
|∂v|2 − ∂tv

)2 = t̂2

α2

(
|∂v|2 − α∂tv + (α− 1)|∂v|2

)2
= H2

α2 +
(α− 1

α

)2
t̂2|∂v|4 + 2(α− 1)t̂H

α2 |∂v|2

≥ H2

α2 +
(α− 1

α

)2
t̂2|∂v|4 ,

(7.54)

where we have used the fact that H is nonnegative at (q̂, t̂). Using the elementary inequality ax2 +bx ≥
− b2

4a , we get
1

4n

(α− 1
α

)2
t̂2|∂v|4 − t̂2C|∂v|2 ≥ − nC2α2

2(α− 1)2 t̂
2 . (7.55)

Plugging (7.54) and (7.55) into (7.53) gives

H2

4nα2 ≤ H + Ct̂2 + nC2α2

2(α− 1)2 t̂
2 ;

from which we can deduce

H(q̂, t̂) ≤ 8nα2 +

√
8nα2

(
C + nC2α2

2(α− 1)2

)
t̂ .

Hence, at each point q ∈M ,

H(q, t0) ≤H(q̂, t̂) ≤ 8nα2 +

√
8nα2

(
C + nC2α2

2(α− 1)2

)
t0 .

Consequently, at (q, t0),

|∂v|2 − α∂tv ≤
8nα2

t0
+

√
8nα2

(
C + nC2α2

2(α− 1)2

)
.

Then the lemma follows by arbitrariness of t0.

Parabolic Harnack inequality.

Let ψ = ∂tϕ+B for a large constant B such that ψ > 0 on M . By (7.10) we know

Lψ − ∂tψ = 0 . (7.56)

With the results of the previous subsection we can prove the following useful parabolic Harnack
inequality:

Proposition 7.19. Let 0 < t1 < t2 < T . Then there exist constants Ci (i = 1, 2, 3) depending only on
(M, I, J,K), Ω and f such that

sup
M

ψ(·, t1) ≤ inf
M
ψ(·, t2)

(
t2
t1

)C1

exp
(

C2

t2 − t1
+ C3(t2 − t1)

)
. (7.57)

Proof. With Lemmas 7.17 and 7.18, we can apply the procedure of [91, 144] verbatim.
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Convergence of the parabolic flow.

Proposition 7.20. Suppose T =∞, oscMϕ(·, t) ≤ C and ‖∇kϕ‖C0 ≤ C for any k > 0, where C > 0
is a uniform constant. Then the normalization ϕ̃ converges in C∞ topology to a smooth function ϕ̃∞
that satisfies

F (A[ϕ̃∞]) = h+ b ,

for some constant b ∈ R.

Proof. Set ψ = ∂tϕ+B for a large constant B such that ψ > 0. For each m ∈ N, we define

ψ̌m(x, t) := sup
M

ψ(·,m− 1)− ψ(x,m− 1 + t) ;

ψ̂m(x, t) := ψ(x,m− 1 + t)− inf
M
ψ(·,m− 1) .

It is straightforward to verify that

(∂t − L)ψ = (∂t − L)ψ̂m = (∂t − L)ψ̌m = 0 .

Applying the parabolic Harnack inequality (7.57), this yields

sup
M

ψ̂m(·, t1) ≤ C inf
M
ψ̂m(·, t2) , sup

M
ψ̌m(·, t1) ≤ C inf

M
ψ̌m(·, t2) .

Choosing t1 = 1
2 , t2 = 1 we get

sup
M

ψ

(
·,m− 1

2

)
− inf

M
ψ(·,m− 1) ≤ C

(
inf
M
ψ(·,m)− inf

M
ψ(·,m− 1)

)
,

sup
M

ψ(·,m− 1)− inf
M
ψ

(
·,m− 1

2

)
≤ C

(
sup
M

ψ(·,m− 1)− sup
M

ψ(·,m)
)
.

(7.58)

In light of (7.58), if we set
θ(t) = sup

M
ψ(·, t)− inf

M
ψ(·, t)

for the oscillation, then we have

θ(m− 1) + θ

(
m− 1

2

)
≤ C

(
θ(m− 1)− θ(m)

)
,

which implies that θ(m) ≤ e−δθ(m− 1), where δ := − log(1− 1
C ) > 0, and by induction

θ(t) ≤ Ce−δt .

Since we have
∫
M
∂tϕ̃ = 0, by the mean value theorem, there exists a point xt ∈ M such that

∂tϕ̃(xt, t) = 0. Therefore,∣∣∂tϕ̃(x, t)
∣∣ =

∣∣∂tϕ̃(x, t)− ∂tϕ̃(xt, t)
∣∣ ≤ oscM∂tϕ̃(·, t) = oscM∂tϕ(·, t) = θ(t) ≤ Ce−δt ,

which yields that ϕ̃+ C
δ e
−δt (resp. ϕ̃− C

δ e
−δt) is non-increasing (resp. non-decreasing) with respect

to t. It then follows from the uniform bounds on ϕ that ϕ̃ is uniformly bounded in C∞ topology,
therefore there is a sequence of times tj →∞ such that ϕ̃(·, tj) converges smoothly to some smooth
function ϕ̃∞ and it is fairly standard to show that actually limt→∞ ϕ̃ = ϕ̃∞ in the C∞ topology.

Finally, the limiting function ϕ̃∞ satisfies

0 = lim
t→∞

∂tϕ̃(·, t) = lim
t→∞

(
F (A[ϕ̃])− h−

∫
M
∂tϕΩn0 ∧ Ω̄n0∫
M

Ωn0 ∧ Ω̄n0

)
= F (A[ϕ̃∞])− h− b ,
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where we set
b = lim

t→∞

∫
M
∂tϕΩn0 ∧ Ω̄n0∫
M

Ωn0 ∧ Ω̄n0
.

7.4 Proof of Theorems 7.2, 7.3 and consequences.
We are ready to complete the proofs of Theorems 7.2 and 7.3.

Proof of Theorem 7.2. Let (M, I, J,K, g) be a compact flat hyperkähler manifold, ϕ, ϕ̃ : M → R be the
solution to (7.1) and its normalization (defined in (7.4)). The initial datum ϕ0 is assumed Γ-admissible
and, since f is unbounded, every Γ-admissible function is automatically a parabolic C-subsolution.
Hence we may apply Proposition 7.7 and deduce oscMϕ(·, t) ≤ C and ‖ϕ̃‖C0 ≤ C. This bounds allow
to obtain from Propositions 7.9 and 7.11 a uniform constant C such that ∆gϕ ≤ C. Applying now
Proposition 7.12 we infer long-time existence of ϕ and uniform bounds on its derivatives of any order.
Finally, Proposition 7.20 yields smooth convergence of the normalization ϕ̃ to some function ϕ̃∞ which
is a solution of (7.5), i.e.

F (A[ϕ̃∞]) = h+ b

for a suitable constant b ∈ R.

Proof of Theorem 7.3. The proof is quite similar to the one of Theorem 7.2. Indeed, suppose f is
bounded on Γ and assume that it satisfies either one of the two conditions expressed in the statement
of Theorem 7.3, we are still able to apply Proposition 7.7 and deduce oscMϕ(·, t) ≤ C and ‖ϕ̃‖C0 ≤ C.
Now we can employ the arguments in the proof of Theorem 7.2 to complete the proof.

Quaternionic Hessian flow.

We shall present two of the many possible applications provided by Theorem 7.2, namely we show the
convergence of the quaternionic Hessian flow and of the (n− 1)-quaternionic plurisubharmonic flow on
compact flat hyperkähler manifolds. Let us start with the former.

Let (M, I, J,K, g,Ω0) be a compact hyperhermitian manifold. Let 1 ≤ k ≤ n and fix a q-real
k-positive (2, 0)-form Ω, that is

Ωi ∧ Ωn−i0
Ωn0

> 0 for every i = 1, . . . , k .

Then the quaternionic Hessian flow can be written as

∂tϕ = log
Ωkϕ ∧ Ωn−k0

Ωn0
−H , ϕ ∈ HkΩ0

, (7.59)

where H ∈ C∞(M,R) is the datum and HkΩ0
is the space of smooth functions ϕ such that Ωϕ is a

k-positive q-real (2, 0)-form.

Theorem 7.21. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler manifold and Ω a q-real k-positive
(2, 0)-form. Then for any smooth initial datum ϕ0 ∈ HkΩ0

,

1. the solution ϕ to (7.59) exists for all time;

2. the normalization ϕ̃ (defined as in (7.4)) converges smoothly as t→∞ to a function ϕ̃∞ ∈ HkΩ0
,

and there exists a constant b ∈ R such that

Ωkϕ̃∞ ∧ Ωn−k0
Ωn0

= b eH . (7.60)
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We remark that the constant b in (7.60) is uniquely determined by

b =
∫
M

Ωkϕ̃∞ ∧ Ωn−k0 ∧ Ω̄n0∫
M

eHΩn0 ∧ Ω̄n0
.

Flow (7.59) provides the quaternionic counterpart of the complex Hessian flow (see e.g. [257]). For
k = 1 equation (7.59) is the parabolic Poisson equation, while for k = n it becomes the parabolic
quaternionic Monge-Ampère equation. Thus, Theorem 7.21 generalizes the main result of Chapter 5.

Proof of Theorem 7.21. The result follows as a simple application of Theorem 7.2 once we choose
f = log σk defined over the cone

Γ = Γk := {λ ∈ Rn | σ1(λ), . . . , σk(λ) > 0} ,

where σr is the r-th elementary symmetric function

σr(λ) =
∑

1≤i1<···<ir≤n
λi1 · · ·λir , for all λ = (λ1, . . . , λn) ∈ Rn .

Indeed, on a locally flat hyperhermitian manifold a C2 function u lies in HkΩ0
if and only if it is

Γk-admissible. The function f satisfies our structural assumptions C1–C3 (see e.g. [268]) and it is
straightforward to check that it is unbounded over Γk. Finally, with this setup, the quaternionic
Hessian flow (7.59) becomes ∂tϕ = f(λ(A[ϕ]))−H, as desired.

(n− 1)-quaternionic plurisubharmonic flow.

Our second aforementioned application is the (n − 1)-quaternionic plurisubharmonic flow. Let
(M, I, J,K, g,Ω0) be a compact hyperhermitian manifold and Ω1 be a positive q-real (2, 0)-form.
Denote with ∆g the quaternionic Laplacian with respect to g. The (n− 1)-quaternionic plurisubhar-
monic flow is encoded in the following parabolic equation:

∂tϕ = log

(
Ω1 + 1

n−1
[
(∆gϕ)Ω0 − ∂∂Jϕ

])n
Ωn0

−H , ϕ ∈ QPSHn−1(M,Ω1,Ω0) , (7.61)

where QPSHn−1(M,Ω1,Ω0) denotes the space of functions ϕ that are (n− 1)-quaternionic plurisub-
harmonic with respect to Ω1 and Ω0, i.e. Ω1 + 1

n−1
[
(∆gϕ)Ω0 − ∂∂Jϕ

]
> 0.

Theorem 7.22. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler manifold and Ω1 a q-real positive
(2, 0)-form. Then for any smooth initial datum ϕ0 ∈ QPSHn−1(M,Ω1,Ω0),

1. the solution ϕ to (7.61) exists for all time;

2. the normalization ϕ̃ of ϕ (defined as in (7.4)) converges smoothly as t → ∞ to a function
ϕ̃∞ ∈ QPSHn−1(M,Ω1,Ω0), and there exists a constant b ∈ R such that(

Ω1 + 1
n− 1

[
(∆gϕ̃∞)Ω0 − ∂∂J ϕ̃∞

])n
= b eHΩn0 . (7.62)

The constant b in (7.62) is uniquely determined by

b =
∫
M

(
Ω1 + 1

n−1
[
(∆gϕ̃∞)Ω0 − ∂∂J ϕ̃∞

])n ∧ Ω̄n0∫
M

eHΩn0 ∧ Ω̄n0
.

The complex version of flow (7.61) was studied by Gill [145] as a parabolic approach to the complex
Monge-Ampère equation for (n− 1)-plurisubharmonic functions. As proven in the previous chapter,
the solvability of (7.62) leads to Calabi-Yau–type theorems for quaternionic balanced, quaternionic
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Gauduchon, and quaternionic strongly Gauduchon metrics. Therefore, convergence of flow (7.61)
results to be an interesting tool in the search of special metrics.

Proof of Theorem 7.22. Define

f = log σn(T ) , Γ = T−1(Γn) ,

where T : Rn → Rn is the linear map defined by

T (λ) =
(
T (λ)1, . . . , T (λ)n

)
, T (λ)k = 1

n− 1
∑
i 6=k

λi , for every λ ∈ Rn .

An easy verification shows that assumptions C1–C3 are satisfied and that f is unbounded over Γ.
Setting

Ω := Re
(
gj̄s(Ω1)j̄s

)
Ω0 − (n− 1)Ω1 ,

one can easily see that u ∈ C2(M,R) lies in QPSHn−1(M,Ω1,Ω0) if and only if λ(A[u]) ∈ Γ, where
A[u] = gj̄r(Ωj̄s + uj̄s). We can then rewrite the (n− 1)-quaternionic plurisubharmonic flow (7.61) as
∂tϕ = f(λ(A[ϕ]))−H and apply Theorem 7.2 to conclude.

Within the bounded case various equations can be included, for instance, parabolic quaternionic
Hessian quotient equations, parabolic quaternionic mixed Hessian equations. We limit ourselves to
prove the following general result.

Theorem 7.23. Suppose f is bounded on Γ. Let (M, I, J,K, g,Ω0) be a compact flat hyperkähler
manifold. If there exists a Γ-admissible function ϕ0 and a C-subsolution of the equation

F (A[ϕ]) = h

in the sense of Definition 6.2. Then there exists a smooth solution of the equation

F (A[ϕ]) = h+ b

for some constant b ∈ R.

Proof. Let ϕ be an elliptic C-subsolution of the equation F (A[ϕ]) = h, which we have shown that
can be seen as a time-independent parabolic C-subsolution of our flow (7.1). Consider flow (7.1) with
a Γ-admissible initial datum ϕ0, then condition (7.6) of Theorem 7.3 is trivially verified, and this
concludes the proof.
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CHAPTER 8
THE DEGENERATE QUATERNIONIC MONGE-AMPÈRE

EQUATION

The next natural step in the study of the conjecture is the case when the manifold is locally flat, but
does not admit any compatible hyperkähler metric. This is the object of the present paper where we
prove that in the locally flat case the quaternionic Monge-Ampère equation can be always solved at
least in a weak sense. So far the approach for solving the conjecture has consisted in adapting Yau’s
proof of the Calabi conjecture to the quaternionic case, hence the strategy so far has always been
purely PDE-theoretic. The main difficulty in this direction is the proof of the a priori estimates. In
the present chapter we consider an alternative method and try to tackle the problem with the different
perspective of pluripotential theory. We solve the quaternionic Monge-Ampère equation in a weak
sense under the assumption of local flatness with a variational approach via the Ding functional in the
same spirit of the paper of Berman, Boucksom, Guedj and Zeriahi [39]. The same method was used by
Wan in [313] to study the quaternionic Monge-Ampère equation.

The variational approach has also been implemented to other settings (see e.g. [2, 38, 217, 218]),
in particular we highlight that it has been successfully applied by Wan [313] for quaternionic Monge-
Ampère equations on a domain of Hn. In order to establish analogue results and characterize the range
of the quaternionic Monge-Ampère operator we will first need to set up the ground by introducing
quaternionic pluripotential theory on HKT manifolds.

The work initiated by Bedford and Taylor [31, 32] provides perhaps one of the most remarkable
and powerful way of investigating the nature of Monge-Ampère operators. The first to implement this
framework and obtain weak solutions of the complex Monge-Ampère equation was Kołodziej in the
seminal paper [199]. With this pluripotential point of view, here we will study the equation

(Ω + ∂∂Jϕ)n = µ (8.1)

where the right-hand side is no longer a smooth volume form but merely a positive Radon measure
satisfying the necessary condition µ(M) = Vol(M). Before we do this, we will need to establish a few
fact in quaternionic pluripotential theory over HKT manifolds, relating the notion of pluripolarity with
some quaternionic capacities in the same spirit of [156]. This will allow to extend the definition of the
Monge-Ampère operator on a certain class of unbounded functions. Within this class, we will show
that equation (8.1) can be solved if and only if the right hand side is a non-pluripolar measure.

8.1 Quaternionic plurisubharmonic functions.
In this section we recall the definition and some properties of quaternionic plurisubharmonic functions
(qpsh for short) on open subset of Hn and on hypercomplex manifolds.
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The local case.

The definition of quaternionic plurisubharmonic functions on domains of Hn was introduced by Alesker
in [9] and the theory of these functions was developed in [11, 12, 13, 17, 310, 311, 312, 313, 315, 316,
317, 318].

Definition 8.1. Let A ⊆ Hn be an open domain. A function ϕ : A → [−∞,∞) is quaternionic
plurisubharmonic (qpsh for short) if it is upper semi-continuous, ϕ 6≡ −∞ and it is either subharmonic
or constant −∞ on each affine right quaternionic line, i.e. for every x ∈ A and v ∈ H the function
y 7→ ϕ(x+ vy) is either subharmonic in the usual sense or constant −∞.

As noted by Alesker [9] qpsh functions are subharmonic and for n = 1 the two notions coincide. In
view of this fact qpsh functions inherits all the nice properties of subharmonic functions, for instance,
they are L1

loc. Even if, for many aspects, the theory of qpsh functions is analogue to the one of
plurisubharmonic functions in the complex space, there are also some differences: for instance complex
plurisubharmonic functions are always in Lploc for any p ≥ 1, while Sroka showed in [270] that qpsh
functions are only in Lploc for p < 2 and such exponent is optimal. Moreover, another remarkable
difference is that bounded plurisubharmonic functions in Cn are necessarily constant, while bounded
qpsh functions on Hn need not be. For example, for n = 1 we know that qpsh functions can be
regarded as subharmonic functions in R4 and it is well-known that there exist bounded non-constant
subharmonic functions in R4.

The following proposition collects the essential properties of qpsh functions (see e.g. [313]):

Proposition 8.2. Let A ⊆ Hn be an open domain. The following properties hold.

• The set of quaternionic plurisubharmonic functions on A forms a convex cone.
• If (ϕj) is a decreasing sequence of qpsh functions then limj ϕj is either qpsh or constant −∞.
• If (ϕj)j∈J is a family of qpsh functions such that u = supj∈J uj is locally bounded from above,

then also the upper semi-continuous regularization u∗ = lim supA3y→x u(y) is qpsh.

Using convolution one can also regularize qpsh functions:

Proposition 8.3. If ϕ is quaternionic plurisubharmonic and ϕε = ϕ∗χε is the standard regularization
on Aε = {x ∈ A | dist(x, ∂A) > ε}, then ϕε ∈ C∞(M,R) is qpsh and decreases to ϕ as ε→ 0.

Closed and positive currents.

In order to introduce the definition of qpsh functions on manifolds we recall some basic facts about
currents on hypercomplex manifolds. Let (M, I, J,K) be a hypercomplex manifold of dimension 4n.
The space Dp,q(M) of (p, q)-currents on M is by definition the topological dual to Λ2n−p,2n−q(M). For
instance, any (p, q)-form η naturally defines a (p, q)-current Tη given by integration:

Tη(α) :=
∫
M

η ∧ α .

The actions of I, J,K naturally extend to currents, for example J : Dp,q(M)→ Dq,p(M) acts on
T ∈ Dp,q(M) in the following way:

(JT )(α) = T (Jα)

for any compactly supported α ∈ Λ2n−p,2n−q(M). Similarly, the operators ∂, ∂J : Dp,q → Dp+1,q are
extended to (p, q)-currents by duality as follows

(∂T )(α) = (−1)p+q+1T (∂α) , (∂JT )(α) = (−1)p+q+1T (∂Jα) .

for any compactly supported α ∈ Λ2n−p,2n−q(M).

Definition 8.4. A (2p, 0)-current T is called

• q-real if JT = T̄ , where T̄ (α) := T (ᾱ) for any α ∈ Λ2n−2p,2n(M);
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8.1. Quaternionic plurisubharmonic functions.

• q-positive if it is real and additionally T (α) ≥ 0 for any q-semipositive α ∈ Λ2n−2p,2n(M);
• ∂-closed (resp. ∂J -closed) if ∂T = 0 (resp. ∂JT = 0).
• closed if it is both ∂ and ∂J -closed.

Notice that according to our definition a current is closed if it is closed with respect to ∂ and ∂J
and not necessarily with respect d. This notion of closure is more useful in HKT geometry (since
d-closed currents never show up) and agrees with the definition given in [316]. Any q-real current is
∂-closed if and only if it is ∂J -closed. Moreover, by [316, Proposition 3.4] any q-positive current can be
regarded as a differential form with Radon measures as its coefficients.

We remark here that Wan and Wang use two anticommuting operators originally defined in [316],
which they denote d0, d1 and satisfy d2

0 = d2
1 = 0. However, it was proved by Sroka in [270, Proposition

1] that, after a suitable choice in the definition of these operators, we have

d0 = 2∂J , d1 = −2∂ .

Since the operators ∂, ∂J have an intrinsic meaning on any hypercomplex manifold, it is more convenient
to use those operators instead of d0, d1. For this reason, in what follows, we shall phrase all results in
terms of ∂, ∂J .

The definition of qpsh functions on a domain of Hn can be characterized in terms of positivity of
the current ∂∂Jϕ.

Proposition 8.5. If ϕ is quaternionic plurisubharmonic then ∂∂Jϕ is a closed q-positive current.
Conversely, if ϕ ∈ L1

loc(A) is such that the closed current ∂∂Jϕ is q-positive then there exists a
quaternionic plurisubharmonic function ψ on A such that ϕ = ψ almost everywhere.

Proof. The fact that ∂∂Jϕ is a q-positive current for any qpsh function ϕ was proved in [316, Proposition
3.7]. Conversely, let ϕ ∈ L1

loc(A) be such that ∂∂Jϕ ≥ 0 in the sense of currents. Take a regularization
ϕε = ϕ ∗ χε. Since ∂∂Jϕε = (∂∂Jϕ) ∗ χε ≥ 0, and since ϕε is C∞ we see that ϕε is qpsh. Hence, for
ε→ 0 the regularization ϕε decreases to a qpsh function ψ, but since ϕε → ϕ in L1

loc we must have
ϕ = ψ almost everywhere.

The global case.

The above discussion motivates the following:

Definition 8.6. A function ϕ ∈ L1(M, [−∞,∞)) on a hypercomplex manifold (M, I, J,K) is called
quaternionic plurisubharmonic (qpsh for short) if ∂∂Jϕ ≥ 0 in the sense of currents.

A function ϕ ∈ L1(M, [−∞,∞)) on a HKT manifold (M, I, J,K,Ω) is called Ω-quaternionic
plurisubharmonic (Ω-qpsh for short) if Ω + ∂∂Jϕ ≥ 0 in the sense of currents.

Note that in the compact case the maximum principle implies that every qpsh function is constant.

Remark 8.7. If (M, I, J,K) is locally flat, i.e. if it is locally isomorphic to a domain of Hn, a function
ϕ : M → [−∞,∞) is qpsh if and only if for any point x ∈M there is a local chart ψ : U → ψ(U) ⊆ Hn
around x such that ϕ ◦ ψ−1 is qpsh on ψ(U) in the sense of Definition 8.1.

Remark 8.8. Given a HKT manifold (M, I, J,K,Ω), the HKT form can be always locally written as
∂∂Jv. The function v is called a local potential of Ω. A function ϕ : M → [−∞,∞) is Ω-qpsh if and
only if locally v + ϕ is qpsh with respect to each local potential of Ω. In particular if (M, I, J,K,Ω) is
locally flat Proposition 8.5 implies that any qpsh function on (M, I, J,K,Ω) is upper semi-continuous.

Given a HKT manifold (M, I, J,K,Ω), we denote by

QPSH(M,Ω) := {ϕ ∈ L1(M, [−∞,∞)) | Ω + ∂∂Jϕ ≥ 0}

the space of Ω-qpsh functions on (M, I, J,K,Ω). With the natural L1-topology QPSH(M,Ω) is a
closed convex cone of L1(M) which is closed under taking maximums.

Proposition 8.2 can be directly generalized to Ω-qpsh functions on compact locally flat HKT
manifolds.
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CHAPTER 8. The degenerate quaternionic Monge-Ampère equation

Proposition 8.9. Let (M, I, J,K,Ω) be a compact locally flat HKT manifold:

1. If (ϕj) is a sequence in QPSH(M,Ω) uniformly bounded from above, then either converges
uniformly to −∞ or it has a convergent subsequence in L1(M).

2. If (ϕj) is a decreasing sequence in QPSH(M,Ω) then it either limj ϕj ∈ QPSH(M,Ω) or limj ϕj ≡
−∞.

3. If (ϕj)j∈J is a family in QPSH(M,Ω) such that ϕ = supj∈J ϕj is locally bounded from above,
then the upper semi-continuous regularization ϕ∗ is Ω-qpsh.

4. Hartogs’ Lemma: If (ϕj) is a sequence in QPSH(M,Ω) such that ϕj → ϕ in L1(M), then ϕ = ϕ∗

almost everywhere for a unique ϕ∗ ∈ QPSH(M,Ω). Moreover limj→∞ supM ϕj = supM ϕ∗.

The following compactness result will be very useful in the sequel.

Lemma 8.10. Let (M, I, J,K,Ω) be a compact locally flat HKT manifold. The set {ϕ ∈ QPSH(M,Ω) |
supM ϕ = 0} is compact in QPSH(M,Ω). Furthermore, if µ is a positive Radon measure such that
QPSH(M,Ω) ⊆ L1(µ) then the subset {ϕ ∈ QPSH(M,Ω) |

∫
M
ϕdµ = 0} is relatively compact. In

particular there exists C such that for any ϕ ∈ QPSH(M,Ω),

−C + sup
M

ϕ ≤
∫
M

ϕdµ ≤ sup
M

ϕ.

Here we recall that a Radon measure is a Borel measure which is inner regular and outer regular.

Proof of Lemma 8.10. By Hartogs’ lemma (Proposition 8.9(4)) {ϕ ∈ QPSH(M,Ω) | supM ϕ = 0} is
closed and by Proposition 8.9(1) it is relatively compact.

Let (ϕj) be a sequence in QPSH(M,Ω) such that
∫
M
ϕj dµ = 0 and let ψj := ϕj − supM ϕj . There

is a convergent subsequence ψjk → ψ ∈ L1(M). Assume that µ is smooth. Then we have convergence
ψjkµ→ ψµ in the weak sense of measures. Consequently

∫
M
ψjk dµ→

∫
M
ψ dµ > −∞ showing that

‖ψj‖L1(µ) is bounded. But

‖ψj‖L1(µ) =
∫
M

ϕj dµ−
∫
M

sup
M

ϕj dµ = −µ(M) sup
M

ϕj

implying that the sequence ϕj is uniformly bounded from above. Therefore Proposition 8.9(1) implies
the lemma.

If µ is not smooth, it is enough to prove that ‖ψj‖L1(µ) is uniformly bounded for every j. Suppose
by contradiction that

∫
M
ψj dµ → −∞, then, up to a subsequence we may assume

∫
M
ψj dµ ≤ −2j .

Set ψ =
∑∞
j=1 2−jψj . By the first part of the proof the L1 norm of ψj with respect to a smooth

positive Radon measure is uniformly bounded. This entails that ψ 6≡ −∞ and since the function ψ is
the limit of a decreasing sequence of functions in QPSH(M,Ω) it is itself a function in QPSH(M,Ω).
However, we get a contradiction, because by the monotone convergence theorem we should have∫
M
ψ dµ =

∑∞
j=1 2−j

∫
M
ψj dµ = −∞.

For what regards regularization we remark that on manifolds convolution with radial smoothing
kernels may destroy plurisubharmonicity. In the complex case one can still find approximations via
regular qpsh functions, as showed by Błocki and Kołodziej [45], but their argument breaks down in the
quaternionic case, even under the assumption of local flatness. However, if the starting qpsh function
is continuous, then it can be approximated with smooth Ω-qpsh functions.

Proposition 8.11. Let ϕ ∈ QPSH(M,Ω) ∩ C(M,R), then, for any positive function g on M there
exists ψ ∈ QPSH(M,Ω) ∩ C∞(M,R) such that |ψ − ϕ| ≤ g.

Proof. One could repeat the argument of Richberg [249] for (complex) plurisubharmonic functions
(see [100, Ch. 1 §5.E]). Alternatively “the local to global” approach by Greene-Wu [150] can be easily
applied.
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8.2. The quaternionic Monge-Ampère operator.

8.2 The quaternionic Monge-Ampère operator.
In this section we introduce the quaternionic Monge-Ampère operator on HKT manifolds for bounded
Ω-qpsh functions (we refer to [316] for the definition on a domain of Hn).

8.2.1 Definition and first properties of the quaternionic Monge-Ampère
operator.

Chern-Levine-Nirenberg inequality.

Let (M, I, J,K,Ω) be a compact locally flat HKT manifold. The quaternionic Monge-Ampère operator
is defined on QPSH(M,Ω) ∩ C2(M,R) as

MAϕ := (Ω + ∂∂Jϕ)n ∈ Λ2n,0(M) .

In order to extend the definition of MA to QPSH(M,Ω) ∩ L∞(M) we make use of currents since
for every ϕ ∈ QPSH(M,Ω) ∩ L∞(M), ∂∂Jϕ ∈ D2,0(M). Even if in general the wedge product of two
currents is not defined, for a ϕ ∈ QPSH(M,Ω) ∩ L∞(M) and k ∈ N, we can define (Ω + ∂∂Jϕ)k as
follows:
Firstly, given a T ∈ Dp,q(M) and η ∈ Λr,s(M) on (M, I) it is defined their wedge product as the
(p+ r, q + s)-current acting on α ∈ Λ2n−p−r,2n−q−s(M) as

(T ∧ η)(α) = T (η ∧ α) ;

then for ϕ ∈ QPSH(M,Ω) ∩ L∞(M) and a closed q-positive T ∈ D2p,0(M), it is defined the product
ϕT and, consequently, ∂∂Jϕ ∧ T via the relation ∂∂Jϕ ∧ T := ∂∂J (ϕT ). Since ∂∂Jϕ ∧ T is closed and
q-positive we can proceed inductively and define (Ω + ∂∂Jϕ)k.

Similarly, given ϕ,ψ ∈ QPSH(M,Ω) ∩ L∞(M) and T closed and q-positive, we can define ∂ϕ ∧
∂Jϕ ∧ T , which is again closed and positive, and ∂ϕ ∧ ∂Jψ ∧ T via the identities

∂ϕ ∧ ∂Jϕ ∧ T := 1
2∂∂J(ϕ2) ∧ T − ϕ∂∂Jϕ ∧ T ;

2∂ϕ ∧ ∂Jψ ∧ T := ∂(ϕ+ ψ) ∧ ∂J(ϕ+ ψ) ∧ T − ∂ϕ ∧ ∂Jϕ ∧ T − ∂ψ ∧ ∂Jψ ∧ T .

Definition 8.12. The operator MA: QPSH(M,Ω) ∩ L∞(M)→ D2n,0(M) given by

MAϕ := (Ω + ∂∂Jϕ)n

is called the quaternionic Monge-Ampère operator.

The Monge-Ampère operator satisfies the following continuity properties analogous to the ones
proved by Bedford and Taylor [31] in the complex case:

• given a decreasing sequence (ϕj) in QPSH(M,Ω) ∩ L∞(M) with limit ϕ, then MAϕj converges
to MAϕ as j →∞;

• given an increasing sequence (ϕj) in QPSH(M,Ω) ∩ L∞(M) which is locally bounded and
converging almost everywhere to ϕ, then MAϕj converges to MAϕ as j →∞.

Since we are assuming the manifold to be locally flat the continuity properties can be deduced directly
from the local theory [316, 317].

Next we focus on the Chern-Levine-Nirenberg inequality on HKT manifolds, since the inequality
has an important role in complex pluripotential theory [83]. In the quaternionic context analogue
inequalities are proved in [9, 13, 17, 316] for qpsh functions. In the present paper we need a quaternionic
Chern-Levine-Nirenberg inequality in the global setting in the same spirit of [157], where the inequality
is proved on compact Kähler manifolds.
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Let (M, I, J,K,Ω) be compact HKT manifold. We further assume that the canonical bundle of
(M, I) is holomorphically trivial and let Θ be the complex volume form on (M, I) such that

Vol(M) :=
∫
M

Ωn ∧ Θ̄ = 1 .

In order to simplify the notation, given a form Ψ of type (2n, 0) on (M, I) we simply write
∫
M

Ψ
instead of

∫
M

Ψ ∧ Θ̄ since the complex volume form Θ̄ is always fixed (this notation is often adopted
in HKT geometry). Coherently, given a (2n, 0)-current T we have T = µΩn for some measure µ and
we may define ∫

M

T := µ(M) .

We also introduce the following notation: for q ≥ 1, a closed q-positive (2p, 0)-current T on (M, I) and
a ϕ ∈ QPSH(M,Ω), we write ϕ ∈ Lq(T ) if

‖ϕ‖Lq(T ) :=
(∫

M

|ϕ|qT ∧ Ωn−p
)1/q

< +∞ ,

Notice that if we consider T = Ωn, then Lq(M) = Lq(Ωn).

Theorem 8.13 (Chern-Levine-Nirenberg inequality). Let T be a closed q-positive (2p, 0)-current and
ϕ ∈ QPSH(M,Ω) ∩ L∞(M). If ψ ∈ QPSH(M,Ω) ∩ L1(T ), then ψ ∈ L1(Ωϕ ∧ T ) and

‖ψ‖L1(Ωϕ∧T ) ≤ ‖ψ‖L1(T ) +
(

2 sup
M

ψ + sup
M

ϕ− inf
M
ϕ

)
‖T‖ ,

where ‖T‖ =
∫
M
T ∧ Ωn−p.

Proof. Clearly
‖Ωϕ ∧ T‖ =

∫
M

Ωϕ ∧ T ∧ Ωn−p−1 =
∫
M

T ∧ Ωn−p = ‖T‖ (8.2)

by Stokes theorem. Now, set ψ̂ = ψ − supM ψ ≤ 0, then the triangle inequality and (8.2) yield

‖ψ‖L1(Ωϕ∧T ) ≤ ‖ψ̂‖L1(Ωϕ∧T ) + sup
M

ψ‖Ωϕ ∧ T‖ = ‖ψ̂‖L1(Ωϕ∧T ) + sup
M

ψ‖T‖ . (8.3)

Replacing ϕ with ϕ− infM ϕ we may assume ϕ ≥ 0, thus using again Stokes’ theorem

‖ψ̂‖L1(Ωϕ∧T ) =
∫
M

(−ψ̂)Ωϕ ∧ T ∧ Ωn−p−1 = ‖ψ̂‖L1(T ) +
∫
M

(−ψ̂)∂∂Jϕ ∧ T ∧ Ωn−p−1

= ‖ψ̂‖L1(T ) −
∫
M

ϕ∂∂Jψ ∧ T ∧ Ωn−p−1 .

Since ϕT ∧ Ωn−p−1 ≥ 0 and Ω + ∂∂Jψ ≥ 0 we deduce

‖ψ̂‖L1(Ωϕ∧T ) ≤ ‖ψ̂‖L1(T ) +
∫
M

ϕT ∧ Ωn−p ≤ ‖ψ‖L1(T ) +
(

sup
M

ψ + sup
M

ϕ

)
‖T‖ ,

which, combined with (8.3) gives the desired inequality.

Corollary 8.14. If ϕ ∈ QPSH(M,Ω) is such that 0 ≤ ϕ ≤ 1 and ψ ∈ QPSH(M,Ω), then

0 ≤ ‖ψ‖L1(MAϕ) ≤ ‖ψ‖L1(M) + n

(
1 + 2 sup

M
ψ

)
.

Proof. The result follows from the Chern-Levine-Nirenberg inequality by a simple induction.
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Maximum and comparison principle.

We conclude this subsection proving two key results in pluripotential theory: the maximum and the
comparison principle. Here we assume that (M, I, J,K,Ω) is also locally flat and, given a subset U of
M , we denote by 1U the characteristic function of U .

Proposition 8.15 (Maximum principle). Let ϕ,ψ ∈ QPSH(M,Ω) ∩ L∞(M), then

1{ϕ>ψ}MAϕ = 1{ϕ>ψ}MAmax{ϕ,ψ} .

Proof. Since the nature of the result is local and the manifold is locally flat, it is enough to prove the
statement on a open domain A ⊆ Hn. In such a case we have

1{ϕ>ψ}(∂∂Jϕ)k ∧ T = 1{ϕ>ψ}(∂∂J max{ϕ,ψ})k ∧ T

in the sense of Borel measures, where T is a closed q-positive (2n− 2k, 0)-current and ϕ,ψ ∈ L∞loc(A)
are qpsh functions.

If ϕ is continuous the statement is easy, as {ϕ > ψ} is an open subset of A. If ϕ is not continuous
we can take a sequence ϕj of continuous bounded qpsh functions decreasing to ϕ. Then we have

1{ϕj>ψ}(∂∂J max{ϕj , ψ})k ∧ T = 1{ϕj>ψ}(∂∂Jϕj)k ∧ T

Let uj = (ϕj − ψ)+ and u = (ϕ− ψ)+ and observe that uj decreases to u. Therefore, by continuity of
the Monge-Ampère operator

u(∂∂J max{ϕ,ψ})k ∧ T = lim
j→∞

uj(∂∂J max{ϕj , ψ})k ∧ T = lim
j→∞

uj(∂∂Jϕj)k ∧ T = u(∂∂Jϕ)k ∧ T

in the sense of Borel measures. Since 1/(u+ ε) is bounded for every ε > 0 we have

u

u+ ε
(∂∂J max{ϕ,ψ})k ∧ T = u

u+ ε
(∂∂Jϕ)k ∧ T

and this allows to conclude letting ε decrease to 0 because u/(u+ ε) increases to 1{ϕ>ψ}.

Proposition 8.16. Let ϕ,ψ ∈ QPSH(M,Ω) ∩ L∞(M), then∫
{ϕ>ψ}

MAϕ ≤
∫
{ϕ>ψ}

MAψ .

Proof. From the maximum principle we have∫
{ϕ>ψ}

MAϕ =
∫
{ϕ>ψ}

MAmax{ϕ,ψ} = 1−
∫
{ϕ≤ψ}

MAmax{ϕ,ψ} ≤ 1−
∫
{ϕ<ψ}

MAψ =
∫
{ϕ≥ψ}

MAψ .

The desired inequality follows by replacing ψ with ψ + ε, so that∫
{ϕ>ψ+ε}

MAϕ ≤
∫
{ϕ≥ψ+ε}

MAψ ≤
∫
{ϕ>ψ}

MAψ ,

and letting ε↘ 0.

8.2.2 Capacities and pluripolarity.
In this section we study some notions of capacity and pluripolar sets on HKT manifolds (we refer to
[315] for the theory in domains of Hn). In complex pluripotential theory, the notion of relative capacity
was introduced by Bedford-Taylor [32] and then generalized by Kołodziej on Kähler manifolds in [200].

In the whole section we consider a compact locally flat HKT manifold (M, I, J,K,Ω) such that the
canonical bundle of (M, I) is holomorphically trivial and let Θ be the holomorphic volume form on
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(M, I) such that ∫
M

Ωn ∧ Θ̄ = 1 .

Quaternionic capacities.

For any Borel subset E ⊆M we define the quaternionic Monge-Ampère capacity

CapΩ(E) := sup
{∫

E

MAϕ | ϕ ∈ QPSH(M,Ω) , 0 ≤ ϕ ≤ 1
}
, (8.4)

according to the definition of MAϕ given in the previous section. We extend the definition of CapΩ to
arbitrary subsets E ⊆M by

CapΩ(E) := sup{CapΩ(K) | K ⊆ E is compact}

Corollary 8.14 implies that the Monge-Ampère capacity of every set in M is finite.

Lemma 8.17. The following properties hold:

1. If E1 ⊆ E2 ⊆M are Borel subsets, then

Vol(E1) ≤ CapΩ(E1) ≤ CapΩ(E2) ≤ CapΩ(M) = Vol(M) = 1 .

2. If {Ej} si a family of Borel subsets of M , then CapΩ(
⋃
Ej) ≤

∑
CapΩ(Ej). Moreover, if

Ej ⊆ Ej+1, then CapΩ(
⋃
Ej) = limj→∞ CapΩ(Ej).

3. For all a ≥ 1, CapΩ ≤ CapaΩ ≤ anCapΩ. In particular if Ω′ is another HKT form, there exists
b ≥ 1 such that b−1CapΩ ≤ CapΩ′ ≤ bCapΩ.

Proof. Assertions (1) and (2) are straightforward, while (3) can be proved as follows:
For any a ≥ 1, since Ω ≤ aΩ, then QPSH(M,Ω) ⊆ QPSH(M,aΩ) hence CapΩ ≤ CapaΩ. Now, for any
ϕ ∈ QPSH(M,aΩ) such that 0 ≤ ϕ ≤ 1 we also have ϕ/a ∈ QPSH(M,Ω) with 0 ≤ ϕ/a ≤ 1/a ≤ 1 and
(aΩ + ∂∂Jϕ)n = an(Ω + ∂∂J (ϕ/a))n. Therefore CapaΩ ≤ anCapΩ. In particular if Ω′ is another HKT
form there exists a ≥ 1 such that a−1Ω ≤ Ω′ ≤ aΩ implying the desired inequality between CapΩ and
CapΩ′ with b = an.

In [315] Wan and Kang introduced the following notion of relative Monge-Ampère capacity on
domain of Hn

C(E,A) := sup
{∫

E

(∂∂Jϕ)n | ϕ qpsh in A , 0 ≤ ϕ ≤ 1
}
,

where E ⊆ A is a Borel set. Since we are assuming (M, I, J,K) locally flat, C(E,A) induces a capacity
on M . More precisely, let U1, . . . , UN be a finite open cover of M made by quaternionic strictly
pseudoconvex open subsets Uj = {x ∈ M | ρj(x) < 0}, where ρj is a smooth strictly quaternionic
plurisubharmonic function defined on a neighborhood of Ūj . Choose another open cover V1, . . . , VN
such that Vj ⊆ Uj and define

C(E) :=
N∑
j=1

C(E ∩ Vj , Uj) ,

for every Borel subset E ⊆M . In the next lemma we observe that the two capacities are comparable.
This is analogue to what happens in Kähler geometry [200].

Lemma 8.18. There exists a constant λ ≥ 1 such that for every Borel subset E ⊆M

λ−1C(E) ≤ CapΩ(E) ≤ λC(E) .
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Proof. From [315] we have
C(E ∩ Vj , Uj) =

∫
E∩Vj

(∂∂Jv∗j )n

where we set
vj := sup{ϕ qpsh in Uj | u ≤ 0, u|E∩Vj ≤ −1} .

Observe that v∗j is qpsh by Proposition 8.9 and satisfies −1 ≤ v∗j ≤ 0 as well as v∗j = 0 on ∂Uj . The
lemma can now be proved with the same ideas used in [200].

Definition 8.19. The quaternionic polar (shortly q-polar) set of a qpsh function ϕ is the set
{ϕ = −∞}. A subset P ⊆M is called (locally) quaternionic pluripolar (shortly q-pluripolar) if
it is (locally) contained in some q-polar set.

Let us define the outer capacity Cap∗Ω associated to CapΩ as

Cap∗Ω(E) := inf{CapΩ(U) | U is open and E ⊆ U} ,

similarly, one can define the outer capacity C∗ associated to the Wan-Wang capacity.

Corollary 8.20. For a subset P ⊆M following are equivalent:

• P is locally q-pluripolar;
• P is negligible, i.e. of the form {ϕ < ϕ∗} for some upper envelope ϕ = supj∈J ϕj of functions

(ϕj)j∈J in QPSH(M,Ω) locally bounded from above;
• C∗(P ) = 0;
• Cap∗Ω(P ) = 0.

Proof. This immediately follows from the local result [315, Theorem 1.2].

The aim of this section is to prove that a set is locally q-pluripolar if and only if it is QPSH(M,Ω)-
polar, i.e. it is contained in the −∞-locus of some Ω-qpsh function. The easy implication of this fact,
i.e. that QPSH(M,Ω)-polar sets are locally q-pluripolar follows from the following lemma.

Lemma 8.21. If ϕ ∈ QPSH(M,Ω) is such that ϕ ≤ 0, then for any t > 0

CapΩ({ϕ < −t}) ≤ 1
t

(
‖ϕ‖L1(M) + n

)
.

Proof. Pick ψ ∈ QPSH(M,Ω) such that 0 ≤ ψ ≤ 1. From Chebyshev inequality and Corollary 8.14 we
infer

MAψ({ϕ < −t}) ≤ 1
t

∫
{ϕ<−t}

(−ϕ)Ωnψ ≤
1
t
‖ϕ‖L1(MAψ) ≤

1
t

(
‖ϕ‖L1(M) + n

)
which gives the lemma once we take the supremum over all Ω-qpsh ψ such that 0 ≤ ψ ≤ 1.

Extremal functions and Josefson’s Theorem.

A fundamental tool to understand the Monge-Ampère capacity is that of extremal functions. The
natural extremal functions to take here into account are the relative and the global ones. The
definition of the relative extremal function is by now classical, as for the global extremal function, we
follow Guedj-Zeriahi [156], which were inspired by Siciak’s extremal function, defined and studied in
[258, 259, 260, 328].

Definition 8.22. For any Borel subset E ⊆M we define the relative (quaternionic) extremal function
vE and the global (quaternionic) extremal function VE of E as

vE,Ω(x) : = sup {ϕ(x) | ϕ ∈ QPSH(M,Ω) , ϕ ≤ 0 , ϕ|E ≤ −1} ,
VE,Ω(x) : = sup {ϕ(x) | ϕ ∈ QPSH(M,Ω) , ϕ|E ≤ 0} .
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Sometimes we will use the same name for the upper semi-continuous regularizations v∗E,Ω and
V ∗E,Ω. When no confusion occurs we will drop the reference to the HKT form in the subscript. The
function v∗E is Ω-qpsh by Proposition 8.9; furthermore, it satisfies −1 ≤ v∗E ≤ 0. We also observe that
if E1 ⊆ E2 then v∗E1

≥ v∗E2
.

Proposition 8.23. Let E be a Borel subset of M .

1. If UE := {x ∈M | v∗E(x) < 0} is non-empty, then

MAv∗
E

= 0 , in UE \ Ē.

2. If V ∗E is bounded, it satisfies
MAV ∗

E
= 0 , in M \ Ē .

Proof. Both assertions are a consequence of the fact that we can solve the Dirichlet problem in
sufficiently small balls (see [315, Lemma 3.2]). Indeed, if V ∗E is bounded it is Ω-qpsh, and one can
apply a standard balayage procedure as in [156, Proposition 4.1, Theorem 5.2(2)].

The global extremal function characterizes QPSH(M,Ω)-polar sets in the following sense.

Proposition 8.24. A Borel subset E ⊆M is QPSH(M,Ω)-polar if and only if V ∗E ≡ +∞ if and only
if supM V ∗E = +∞.

Proof. If V ∗E ≡ +∞ then in particular supM V ∗E = +∞ and by Choquet’s lemma, we can find an
increasing sequence ϕj ∈ QPSH(M,Ω) such that ϕj = 0 on E, V ∗E = (limj→∞ ϕj)∗ and supM ϕj ≥ 2j .
Set ψ :=

∑∞
j=1 2−j(ϕj − supM ϕj). Then clearly E ⊆ {ψ = −∞} and ψ is either identically −∞ or

Ω-qpsh, as a decreasing limit of Ω-qpsh functions. By Lemma 8.10 for any smooth volume form µ
there exists C > 0 such that

∫
M

(ϕj − supM ϕj)dµ ≥ −C, therefore
∫
M
ψdµ ≥ −C implying that ψ

must be Ω-qpsh.
Suppose now that E ⊆ {ψ = −∞} for some ψ ∈ QPSH(M,Ω). For all c ∈ R we have VE ≥ ψ + c,

therefore we have VE = +∞ outside {ψ = −∞}, and since such set has measure zero, we get V ∗E ≡ +∞
on the whole M .

We are ready to relate the quaternionic Monge-Ampère capacity to the relative extremal function.

Proposition 8.25. For any subset E ⊆M we have

Cap∗Ω(E) =
∫
M

(−v∗E) MAv∗
E
.

Furthermore, Cap∗Ω is an outer regular Choquet capacity. More precisely if Ej is an increasing sequence
of subsets of M and Kj is a decreasing sequence of compact subsets of M then

Cap∗Ω

 ∞⋃
j=0

Ej

 = lim
j→∞

Cap∗Ω(Ej) , Cap∗Ω

 ∞⋂
j=0

Kj

 = lim
j→∞

Cap∗Ω(Kj) .

In particular all Borel subsets E of M are capacitable, i.e. Cap∗Ω(E) = CapΩ(E).

Proof. The proposition can be obtained by adapting the argument of [156, Theorem 4.2].

We can now prove the quaternionic analog of Josefson’s theorem. Such a result in the local context
is proved in [315, Theorem 1.1] following ideas of Bedford-Taylor [32] in the complex setting. The
original result shows equivalence of being locally (complex) pluripolar and globally (complex) pluripolar
in Cn and was proved by Josefson [191] with fairly involved techniques. The same result on compact
Kähler manifolds is due to Guedj-Zeriahi [156, Theorem 7.2]. Here, we follow the proof of Lu-Nguyen
[218, Theorem 4.10].

Theorem 8.26. Then P ⊆M is locally q-pluripolar if and only if it is QPSH(M,Ω)-polar.
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Proof. We already have as a consequence of Lemma 8.21 that a QPSH(M,Ω)-polar set is locally
q-pluripolar. Conversely, let P ⊆M be locally q-pluripolar, by Proposition 8.24 it is enough to prove
that V ∗P ≡ +∞. Assume by contradiction that V ∗P is bounded, then by Proposition 8.23(2) we deduce
that V ∗P is non-constant. Set m = supM V ∗P , then it is easy to check that v := (V ∗P −m)/m is the
relative extremal function v∗P,Ω/m of P with respect to Ω/m. Since Cap∗Ω/m(P ) = 0, from Proposition
8.25 we infer

∫
{v<0}MAv = 0 which implies v ≡ 0 i.e. V ∗P ≡ m which contradicts the fact that V ∗P is

non-constant.

8.3 Variational approach to the quaternionic Calabi conjec-
ture.

Let (M, I, J,K,Ω) be a locally flat compact HKT manifold with holomorphically trivial canonical
bundle and let Θ be the holomorphic q-real q-positive volume form such that∫

M

Ωn ∧ Θ̄ = 1 .

The definition of the Monge-Ampère operator MAϕ can be extended to some unbounded Ω-qpsh
functions as follows.

The finite energy class.

For ϕ ∈ QPSH(M,Ω), we denote by (ϕj)j∈N, the canonical approximation, where ϕj := max{ϕ,−j} ∈
QPSH(M,Ω) ∩ L∞(M). For each j ∈ N it is defined MAϕj and 1{ϕ>−j}MAϕj gives a sequence of
Borel measures. The idea is to define MAϕ as the weak limit of 1{ϕ>−j}MAϕj .

Proposition 8.27. The sequence 1{ϕ>−j}MAϕj is increasing and converges weakly to a positive Borel
measure µϕ such that µϕ(M) ≤ 1.

Proof. Proposition 8.15 implies

1{ϕj>−k}MAϕj = 1{ϕj>−k}MAmax{ϕj ,−k} ;

hence, for j ≥ k we obtain

1{ϕ>−j}MAϕj ≥ 1{ϕ>−k}MAϕj = 1{ϕ>−k}MAϕk .

This shows that the sequence µj := 1{ϕ>−j}MAϕj is increasing. Integrating by parts it is straightfor-
ward to see that the total mass µj(M) is bounded from above by MAϕj (M) = Vol(M) = 1. Thus, we
can define

µϕ := lim
j→∞

µj = lim
j→∞

1{ϕ>−j}MAϕj ,

which is itself a positive Borel measure with total mass bounded by 1.

Definition 8.28. An Ω-qpsh function ϕ has finite energy if µϕ(M) = 1. For an Ω-qpsh function ϕ
with finite energy the Monge-Ampère operator MAϕ is defined as µϕ and we set

E(M,Ω) := {ϕ ∈ QPSH(M,Ω) | µϕ(M) = 1} .

The next Proposition can be proved exactly as in the Kähler case [157, Section 1] by replacing the
role of the Kähler form with the HKT form Ω and the role of ∂̄ with ∂J .

Proposition 8.29. The following facts are true:

1. ϕ ∈ E(M,Ω) if and only if MAϕj ({ϕ ≤ −j}) → 0, as j → ∞, if and only if MAϕ(B) =
limj→∞MAϕj (B) for all Borel subsets B ⊆M . In particular the Monge-Ampère operator does
not charge pluripolar sets.
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CHAPTER 8. The degenerate quaternionic Monge-Ampère equation

2. (Comparison Principle) If ϕ,ψ ∈ E(M,Ω), then
∫
{ϕ>ψ}MAϕ ≤

∫
{ϕ>ψ}MAψ;

3. (Maximum principle) If ϕ ∈ E(M,Ω) and ψ ∈ QPSH(M,Ω), then
1{ϕ>ψ}MAϕ = 1{ϕ>ψ}MAmax{ϕ,ψ}.

4. (Continuity of the Monge-Ampère operator) Let (ϕj) be a sequence in E(M,Ω) decreasing to
ϕ ∈ E(M,Ω). Then MAϕj → MAϕ, as j →∞.

5. If ϕ,ψ ∈ E(M,Ω) are such that MAϕ ≥ µ and MAψ ≥ µ for some positive Borel measure µ on
M , then also MAmax{ϕ,ψ} ≥ µ.

Next we introduce the following subclass of Ω-qpsh functions with finite energy:

E1(M,Ω) := {ϕ ∈ E(M,Ω) | ϕ ∈ L1(MAϕ)} .

The subclass E1(M,Ω) is not affected by translations, meaning that ϕ ∈ E1(M,Ω) if and only if
ϕ+ c ∈ E1(M,Ω) for any constant c ∈ R.

The energy functional.

We also define the quaternionic Monge-Ampère energy functional E : QPSH(M,Ω) ∩ L∞(M)→ R as

E(ϕ) := 1
(n+ 1)

n∑
j=0

∫
M

ϕ (Ω + ∂∂Jϕ)j ∧ Ωn−j .

The definition of the energy is extended to QPSH(M,Ω) by setting

E(ϕ) := {inf E(ψ) | ϕ ≤ ψ ∈ QPSH(M,Ω) ∩ L∞(M)} ,

this is coherent with the monotonicity of E proved below in Proposition 8.30.
Proposition 8.30. The energy is non-decreasing and concave, furthermore for any non-positive
ϕ ∈ QPSH(M,Ω) ∩ L∞(M) we have∫

M

ϕ MAϕ ≤ E(ϕ) ≤ 1
(n+ 1)

∫
M

ϕ MAϕ .

Moreover, E is upper semi-continuous in the L1-topology and is continuous along decreasing sequences.

Proof. Let ϕ,ψ ∈ QPSH(M,Ω)∩L∞(M) and assume ϕ ≤ ψ. Set ϕt = (1− t)ϕ+ tψ ∈ QPSH(M,Ω)∩
L∞(M). From straightforward computations we obtain

d

dt
E(ϕt) =

∫
M

ϕ̇t MAϕt ≥ 0 , (8.5)

d2

dt2
E(ϕt) = −n

∫
M

∂ϕ̇t ∧ ∂J ϕ̇t ∧ (Ω + ∂∂Jϕt)n−1 ≤ 0 ,

showing that the energy is non-decreasing and concave.
Let now ϕ ∈ QPSH(M,Ω) ∩ L∞(M) be non-positive, then it is clear that E(ϕ) ≤ 1

n+1
∫
M
ϕMAϕ.

The other inequality is implied by the following∫
M

ϕ(Ω + ∂∂Jϕ)j+1 ∧ Ωn−j−1 =
∫
M

ϕ(Ω + ∂∂Jϕ)j ∧ Ωn−j +
∫
M

ϕ∂∂Jϕ ∧ (Ω + ∂∂Jϕ)j ∧ Ωn−j−1

=
∫
M

ϕ(Ω + ∂∂Jϕ)j ∧ Ωn−j −
∫
M

∂ϕ ∧ ∂Jϕ ∧ (Ω + ∂∂Jϕ)j ∧ Ωn−j−1

≤
∫
M

ϕ(Ω + ∂∂Jϕ)j ∧ Ωn−j .

We prove the upper semi-continuity. Take a sequence ϕj → ϕ in L1. If lim supE(ϕj) = −∞ the
proposition is clear, hence we may assume that E(ϕj) is uniformly bounded from below. Let ψj be the
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upper semi-continuous regularization of supk≥j ϕk. Clearly the sequence ψj decreases pointwise to ϕ
and ψj ≥ ϕj . Let u ∈ QPSH(M,Ω) ∩ L∞(M) be such that u ≥ ϕ. Since E is non-decreasing and by
continuity of the Monge-Ampère operator we see that

E(u) = lim
j→∞

E(max{u, ψj}) ≥ lim sup
j→∞

E(ψj) ≥ lim sup
j→∞

E(ϕj)

and thus
E(ϕ) = inf{E(u) | u ∈ QPSH(M,Ω) ∩ L∞(M) , u ≥ ϕ} ≥ lim sup

j→∞
E(ϕj) ,

which gives upper semi-continuity. If the sequence is decreasing, by monotonicity of the energy
functional we also have E(ϕ) ≤ lim infj→∞E(ϕj) and thus continuity.

In particular the previous proposition shows that

E1(M,Ω) = {ϕ ∈ E(M,Ω) | E(ϕ) > −∞} ,

which motivates the terminology.

The Ding functional.

The remaining part of the chapter, is devoted to the proof of the following Theorem:

Theorem 8.31. Let (M, I, J,K,Ω) be a compact locally flat HKT manifold such that the canonical
bundle of (M, I) is holomorphically trivial and let Θ ∈ Λ2n,0

I (M) be a q-positive and q-real holomorphic
form. Then the quaternionic Monge-Ampère equation has a unique solution ϕ ∈ E(M,Ω).

Theorem 8.31 is obtained as a consequence of the following more general result:

Proposition 8.32. The quaternionic Monge-Ampère equation

(Ω + ∂∂Jϕ)n = µ

can be solved in E1(M,Ω) if and only if E1(M,Ω) ⊆ L1(µ).

This is the quaternionic analogue of a result of Guedj and Zeriahi in [157]. One implication is easy:

Proposition 8.33. For any ψ ∈ E1(M,Ω)

E1(M,Ω) ⊆ L1(MAψ) .

Proof. It is enough to prove that every ϕ ∈ E1(M,Ω) satisfies the following inequality:

0 ≤ ‖ϕ‖L1(MAψ) ≤ 2‖ϕ‖L1(MAϕ) + 2‖ψ‖L1(MAψ) .

We may assume ϕ,ψ ≤ 0.

−
∫
M

ϕ MAψ =
∫ 0

−∞
MAψ({ϕ < t})dt ≤ 2

∫ 0

−∞
MAψ({ϕ < 2t})dt .

By the inclusion {ϕ < 2t} ⊆ {ϕ < ψ + t} ∪ {ψ < t} we derive

−
∫
M

ϕ MAψ ≤ 2
∫ 0

−∞
MAψ({ϕ < ψ + t})dt− 2

∫
M

ψ MAψ .

Invoking the comparison principle and the inclusion {ϕ < ψ + t} ⊆ {ϕ < t} we conclude∫ 0

−∞
MAψ({ϕ < ψ + t})dt ≤

∫ 0

−∞
MAϕ({ϕ < ψ + t})dt ≤ −

∫
M

ϕ MAϕ

as desired.
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The other implication requires more work and will be achieved with a variational technique involving
the Ding functional F : E1(M,Ω)→ R, defined as

F(ϕ) = E(ϕ)−
∫
M

ϕdµ ,

where µ is a given probability measure such that E1(M,Ω) ⊆ L1(µ). Since E(ϕ+ c) = E(ϕ) + c for
c ∈ R we also have F(ϕ+ c) = F(ϕ). Formula (8.5) implies that for a path ϕt : [0, 1]→ E1(M,Ω) we
have

d

dt
F(ϕt) =

∫
M

ϕ̇t MAϕt −
∫
M

ϕ̇t dµ .

In particular ϕ is a critical point for F if and only if it solves the quaternionic Monge-Ampère equation

(Ω + ∂∂Jϕ)n = µ . (8.6)

The concavity of E readily implies that for every positive constant C the set of

E1
C(M,Ω) := {ϕ ∈ E1(M,Ω) | E(ϕ) ≥ −C , ϕ ≤ 0} ⊆ E1(M,Ω)

is convex. Moreover E1
C(M,Ω) is compact in L1-topology since it is closed by the upper semi-continuity

of E and it is contained in the set{
ϕ ∈ QPSH(M,Ω) | −C−1 ≤ sup

M
ϕ ≤ 0

}
which is compact in view of Hartogs’ Lemma (Proposition 8.9(4)).

Proving the main theorem.

The solvability of equation (8.6) is obtained by showing that F has a maximizer in ϕ ∈ E1(M,Ω). The
strategy to do so is the following:

• Show that F is upper semi-continuous on E1
C(M,Ω) with respect to the L1 topology for every

fixed constant C > 0 under the additional assumption µ ≤ ACapΩ for some constant A > 0.
• Show that F is proper on E1

C(M,Ω) with respect to E for every fixed C > 0.
• From the first two steps follows that F has a maximizer in E1(M,Ω) whenever µ ≤ ACapΩ for

some constant A > 0. However, to achieve this result, one has to take into account the fact that
the maximizer is not smooth, implying that it might not be a critical point. This issue is resolved
applying the Projection Theorem (Proposition 8.37).

• The additional assumption that µ ≤ ACapΩ is removed by means of a trick of Cegrell [77] and
the proof of Proposition 8.32 is completed.

Lemma 8.34. Under the assumptions E1(M,Ω) ⊆ L1(µ) and µ ≤ ACapΩ for some constant A > 0,
the operator ϕ 7→

∫
M
ϕdµ is continuous over E1

C(M,Ω).

Proof. Given a sequence (ϕj) in E1
C(M,Ω) which converges in L1-topology to a ϕ ∈ E1

C(M,Ω), we
show that

∫
M
ϕj dµ→

∫
M
ϕdµ. Since µ ≤ ACapΩ we have∫

M

ϕ2
jdµ = 2

∫ +∞

0
tµ({ϕj < −t})dt ≤ 2A

∫ +∞

0
tCapΩ({ϕj < −t})dt .

By [270, Lemma 3] for any fixed 1 < p < 2 there exists a constant C(p,R) such that for any Borel
subset B ⊆M we have

Vol(B) ≤ C(p,R)CapΩ(B)p .
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In view of this fact, analogously to the case of the complex Hessian equation on Kähler manifolds [218,
Lemma 6.8], we deduce

sup
{∫ +∞

0
tCapΩ({ϕ < −t})dt | ϕ ∈ E1

C(M,Ω)
}
< +∞

and that the sequence
∫
M
ϕ2
j dµ is uniformly bounded. Invoking [313, Lemma 4.5] we are done.

In particular F is upper semi-continuous on E1
C(M,Ω), whenever µ ≤ ACapΩ.

Lemma 8.35. F is proper with respect to E. More precisely there is a constant C > 0 such that

F(ϕ) ≤ E(ϕ)− sup
M

ϕ+ C

∣∣∣∣E(ϕ)− sup
M

ϕ

∣∣∣∣1/2 ,
for all ϕ ∈ E1(M,Ω)

Proof. Let ϕ ∈ E1(M,Ω), and for simplicity suppose supM ϕ = 0. Without loss of generality assume
E(ϕ) ≤ −1. Set ε = |E(ϕ)|−1/2 so that ψ = εϕ is still Ω-qpsh.

For any 1 ≤ j ≤ n we have

Ωjψ ∧ Ωn−j = Ωn +
j∑

k=1

(
j

k

)
εk(∂∂Jϕ)k ∧ Ωn−k ≤ Ωn +Nε

n∑
k=0

Ωkϕ ∧ Ωn−k

for some N ∈ N, therefore

E(ψ) = ε

(n+ 1)

n∑
j=0

∫
M

ϕΩjψ ∧ Ωn−j ≥
∫
M

ϕΩn + (n+ 1)Nε2E(ϕ) ≥ −C ,

proving that ψ ∈ E1
C(M,Ω). Since E1

C(M,Ω) is compact and convex, it is easy to show that there is a
constant C ′ such that

∫
M
ψ dµ ≥ −C ′ for every ψ ∈ E1

C(M,Ω). Therefore∫
M

ϕdµ = |E(ϕ)|1/2
∫
M

ψ dµ ≥ −C ′|E(ϕ)|1/2 ,

as desired.

Let P (ψ) denote the Ω-plurisubharmonic envelope of an upper semi-continuous function

P (ψ)(x) := {supϕ(x) | ϕ ∈ QPSH(M,Ω) , ϕ ≤ ψ} .

Observe that P (ψ) is upper semi-continuous, as P (ψ) ≤ ψ implies P (ψ)∗ ≤ ψ∗ = ψ, but then P (ψ)∗ is
a competitor in the definition of P (ψ), thus P (ψ) = P (ψ)∗.

Lemma 8.36. For every continuous function ψ ∈ C(M,R) the Monge-Ampère measure of P (ψ) is
supported on {P (ψ) = ψ}.

Proof. Since ψ is continuous and P (ψ) is upper semi-continuous the set {P (ψ) < ψ} is open. The
Lemma follows from a balayage argument performed on small balls inside {P (ψ) < ψ}.

One key result to prove the existence of a critical point for the Ding functional is the following
Projection Theorem. The idea is due to Berman and Boucksom [37], the proof was later simplified by
Lu and Nguyen [218] which we follow closely.

Proposition 8.37 (Projection Theorem). For every ϕ ∈ E1(M,Ω) and v ∈ C(M,R)

d

dt
E(P (ϕ+ tv))

∣∣
t=0 =

∫
M

v MAϕ .
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Proof. First, we show that it is enough to prove that

d

dt
E(P (ψ + tv))

∣∣
t=0 =

∫
M

v MAP (ψ) , (8.7)

or equivalently

E(P (ψ + v))− E(P (ψ)) =
∫ 1

0

(∫
M

v MAP (ψ+tv)

)
dt

for every continuous function ψ on M . Take a sequence ϕj of continuous functions on M that decrease
to ϕ. Such a sequence exists because ϕ is upper semi-continuous (observe that the ϕj ’s need not
be in QPSH(M,Ω)). By continuity of the energy and the Monge Ampère operator along decreasing
sequences we get

E(P (ϕ+ v))− E(P (ϕ)) = lim
j→∞

(
E(P (ϕj + v))− E(P (ϕj))

)
and ∫ 1

0

(∫
M

v MAϕ

)
dt = lim

j→∞

∫ 1

0

(∫
M

v MAP (ϕj)

)
dt .

And the desired formula follows from (8.7) and dominated convergence.
It only remains to prove (8.7), where ψ ∈ C(M,R). Exchanging v with −v it suffices to consider

t > 0. From the concavity of the energy we deduce

E(P (ψ + tv)) ≤ E(P (ψ)) + E′(P (ψ))(P (ψ + tv)− P (ψ)) ,
E(P (ψ)) ≤ E(P (ψ + tv)) + E′(P (ψ + tv))(P (ψ)− P (ψ + tv)) ,

which, together with (8.5), gives∫
M

P (ψ + tv)− P (ψ)
t

MAP (ψ+tv) ≤
E(P (ψ + tv))− E(P (ψ))

t
≤
∫
M

P (ψ + tv)− ψ
t

MAP (ψ) . (8.8)

Using Lemma 8.36 and the inequality P (ψ + tv) ≤ ψ + tv we obtain from (8.8)∫
M

v MAP (ψ+tv) ≤
E(P (ψ + tv))− E(P (ψ))

t
≤
∫
M

v MAP (ψ) . (8.9)

Since the projection is uniformly Lipschitz, we see that

sup
M
|P (ψ + tv)− P (ψ)| ≤ t sup

M
|v|

so that P (ψ + tv)→ P (ψ) uniformly as t→ 0+. By continuity of the Monge-Ampère operator, taking
the limit in (8.9) as t→ 0+ yields (8.7) as desired.

Theorem 8.38. If E1(M,Ω) ⊆ L1(µ) and µ ≤ ACapΩ, then there exists a solution ϕ ∈ E1(M,Ω) of
the quaternionic Monge-Ampère equation such that

F(ϕ) = sup
E1(M,Ω)

F .

Proof. By translation invariance and properness of F there exists C > 0 large enough to ensure

sup
E1(M,Ω)

F = sup
E1
C

(M,Ω)
F .

The upper semi-continuity of F ensures the existence of a maximizer ϕ on the compact convex set
E1
C(M,Ω). Since ϕ is not necessarily strictly Ω-qpsh, in general ϕ+ tv could fall outside QPSH(M,Ω),

even for small t, therefore ϕ may not be a critical point and we cannot conclude immediately. With
the Projection Theorem at hand we can conclude along the lines of [39, Theorem 4.1].
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Theorem 8.39. Let µ be a probability measure. Then there exists a solution ϕ ∈ E1(M,Ω) of the
quaternionic Monge-Ampère equation

MAϕ = µ

if and only if E1(M,Ω) ⊆ L1(µ).

Proof. The strategy of the proof takes advantage from a decomposition trick that goes back to Cegrell
[77].

Consider the set P (M) of positive Radon measures on M and its subset

P ′(M) = {ν ∈ P (M) | ν ≤ CapΩ}

which is clearly convex. Moreover, by outer regularity of the quaternionic Monge-Ampère capacity
(Proposition 8.25), P ′(M) is also a compact subset of P (M). We can then apply Rainwater’s generalized
Radon-Nikodým decomposition [248] and write µ = fν + ν′, where ν ≤ CapΩ is a positive Radon
measure, 0 ≤ f ∈ L1(ν) and ν′ is orthogonal to P ′(M). Since µ is non-pluripolar we have ν′ ≡ 0.

Consider normalizing constants aj ≥ 1 decreasing to 1 such that the positive Radon measures
µj := aj min{f, j}ν still satisfy

∫
M
dµj = Vol(M). Clearly µj ≤ jajCapΩ, which allows to apply

Theorem 8.38 and find ϕj ∈ E1(M,Ω) such that µj = MAϕj . Without loss of generality we assume
supM ϕj = 0, and, up to a subsequence ϕj → ϕ in L1 for some ϕ ∈ E1(M,Ω). Indeed by properness of
the Ding functional and the fact that MAϕj = aj min{f, j}ν ≤ 2fν = 2µ for j large enough, we obtain

|E(ϕj)| ≤
∫
M

(−ϕj) MAϕj ≤
∫
M

(−ϕj)dµ = F(ϕj)− E(ϕj) ≤ C|E(ϕj)|1/2

which shows that E(ϕj) is uniformly bounded, and thus ϕ ∈ E1(M,Ω) by upper semi-continuity of the
energy.

Set ψj = (supk≥j ϕk)∗. The sequence ψj decreases to ϕ and, since for k ≥ j we have MAϕk =
ak min{f, k}ν ≥ min{f, j}ν, we also have MAψj ≥ min{f, j}ν by Proposition 8.29(5). The continuity
of the Monge-Ampère operator then yields

MAϕ = lim
j→∞

MAψj ≥ lim
j→∞

min{f, j}ν = µ

but since these two measures have the same total mass they must be equal.

Theorem 8.40. Let µ be a probability measure. Then there exists a solution ϕ ∈ E(M,Ω) of the
quaternionic Monge-Ampère equation

MAϕ = µ

if and only if µ is non q-pluripolar.

Proof. That Monge-Ampère measures are non q-pluripolar was observed in Proposition 8.29(1).
Suppose µ puts no mass on q-pluripolar sets. With the same argument of the previous theorem we have
µ = fν for some 0 ≤ f ∈ L1(ν) and ν ≤ CapΩ. Furthermore, we may assume there are ϕj ∈ E1(M,Ω)
such that supM ϕj = 0, ϕj → ϕ in L1 for some ϕ ∈ QPSH(M,Ω) and MAϕj = aj min{f, j}ν where
1 ≤ aj ≤ 2 are decreasing to 1 and such that

∫
M
aj min{f, j}dν = Vol(M).

Using the argument in [157, Theorem 4.6] one can show that ϕ ∈ E(M,Ω). Furthermore, as in
the previous theorem, we also have MAϕ ≥ µ and since MAϕ(M) = µ(M) the two measures must be
equal.

Theorem 8.41. If ϕ,ψ ∈ E(M,Ω) are such that MAϕ = MAψ, then ϕ− ψ is constant.

Proof. All the ideas in [105] used to prove uniqueness in the Kähler setting can be generalized to our
framework.

At this point one wishes to improve the regularity and show that the weak solutions found with
Theorem 8.40 are actually smooth. In the complex case this has been done by Székelyhidi and
Tosatti [281] but their proof ultimately relies on Yau’s a priori estimates for the complex Monge-
Ampère equation, hence we cannot follow this path, unless we have already solved the quaternionic
Monge-Ampère equation with the method of continuity.
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