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1. Introduction

The notion of semi-abelian category was introduced by G. Janelidze et al. in [25] in order to capture 
typical algebraic properties valid for groups, rings and algebras. As it is said in [25], semi-abelian categories 
provide a good categorical foundation for a meaningful treatment of radical and commutator theory and 
of (co)homology theory of non-abelian structures. Semi-abelian categories have many nice properties: in 
particular in these categories it is possible to define and investigate the notions of semi-direct product, 
internal action, and internal crossed module. Some examples of semi-abelian categories are the categories 
of groups, Lie algebras, (associative) rings and compact groups. In [21] M. Gran et al. proved that the 
category of cocommutative Hopf algebras over a field k, denoted by Hopfk,coc, is semi-abelian when k has 
characteristic 0. Then, the result was extended to arbitrary characteristic in [22]. Hence it becomes natural 
to ask if this is true also for the category of cocommutative color Hopf algebras, i.e. of cocommutative Hopf 
monoids in the category VecG of G-graded vector spaces, which we denote by Hopfcoc(VecG), when G is an 
abelian group. Indeed, we know that, in this case, VecG becomes a symmetric monoidal category by using 
a skew-symmetric bicharacter on G which modifies the braiding of Veck given by the usual tensor flip. We 
show that Hopfcoc(VecG) is semi-abelian if the abelian group G is finitely generated and the characteristic 
of the field k is not 2 (not needed if G is finite of odd cardinality). This generalizes the result for ordinary 
cocommutative Hopf algebras since we can recover Hopfk,coc by taking G as the trivial group, in which case 
the symmetric monoidal category VecG is exactly Veck. Furthermore, if we consider G = Z2, we obtain 
that the category of cocommutative super Hopf algebras, extensively used in Mathematics and Physics, is 
semi-abelian if chark �= 2.

The organization of the paper is the following. After calling back some basic notions and results 
about monoidal categories and (color) Hopf algebras, we prove the completeness and cocompleteness of 
Hopfcoc(VecG) by explicitly showing limits and colimits and the protomodularity of Hopfcoc(VecG) by using 
a categorical result. We also observe that Hopfcoc(VecG) is locally presentable, which is not guaranteed in 
general for the category of (cocommutative) Hopf monoids in a symmetric monoidal category. Then, we show 
the regularity of Hopfcoc(VecG) through the same steps of [22]. In particular, we obtain a generalization 
of a theorem by K. Newman [30, Theorem 4.1] for cocommutative color Hopf algebras in case chark �= 2
and the abelian group G is finitely generated, by using [27, Theorem 3.10 (3)] about cocommutative super 
Hopf algebras together with a braided strong monoidal functor from the category VecG to the category 
VecZ2 from [7]. Then, through an equivalent characterization given in [25], we obtain that Hopfcoc(VecG)
is semi-abelian, still in case the abelian group G is finitely generated and chark �= 2. Finally, we also prove 
that, under the same assumptions on G and k, the category Hopfcoc(VecG) is action representable and lo-
cally algebraically cartesian closed (then algebraically coherent) and that the category of abelian objects in 
Hopfcoc(VecG) consists of those cocommutative color Hopf algebras which are also commutative and then, 
as a consequence, this category is abelian.



A. Sciandra / Journal of Pure and Applied Algebra 228 (2024) 107677 3
2. Preliminaries

2.1. Monoidal categories

First we recall some basic facts about monoidal categories, which can be found in [31,4]. Let 
(M, ⊗, I, a, l, r) be a monoidal category. We write (M, ⊗, I) without the constraints a, l and r if these 
are clear from the context and we usually omit to write a in the computations since it will be clear when 
it is needed, in order to have slightly more compact formulas. We know that we can consider the category 
Mon(M) of monoids in M, whose objects will be denoted as (A, m, u), and the category Comon(M) of 
comonoids in M, whose objects will be denoted as (C, Δ, ε). Recall that a monoid M ′ is a submonoid of a 
monoid M , provided there exists a monoid morphism i : M ′ → M such that it is a monomorphism in M. 
Analogously, a comonoid C ′ is a subcomonoid of a comonoid C, provided there exists a comonoid morphism 
i : C ′ → C such that it is a monomorphism in M. In case (M, ⊗, I) has a braiding c, i.e. for every X, Y ∈ M
there is an isomorphism cX,Y : X⊗Y → Y ⊗X which is natural in X and Y and it satisfies the well-known 
hexagon identities, the categories Mon(M) and Comon(M) become monoidal with the same constraints 
a, l, r. In this case, given monoids (M1, m1, u1) and (M2, m2, u2) in M, the tensor product ⊗ is such that 
we have (M1, m1, u1) ⊗ (M2, m2, u2) := (M1 ⊗M2, m, u) where

m := (m1 ⊗m2) ◦ (IdM1 ⊗ cM2,M1 ⊗ IdM2) and u := (u1 ⊗ u2) ◦ r−1
I .

The unit object of Mon(M) is given by (I, rI, IdI). Similarly, given comonoids (C1, Δ1, ε1) and (C2, Δ2, ε2)
in M, (C1, Δ1, ε1) ⊗ (C2, Δ2, ε2) := (C1 ⊗ C2, Δ, ε) is a comonoid where

Δ := (IdC1 ⊗ cC1,C2 ⊗ IdC2) ◦ (Δ1 ⊗ Δ2) and ε := rI ◦ (ε1 ⊗ ε2).

The unit object of Comon(M) is given by (I, r−1
I , IdI). When Mon(M) and Comon(M) are monoidal we 

can consider monoids and comonoids in them. Hence we have that

Bimon(M) ∼= Mon(Comon(M)) ∼= Comon(Mon(M)) (1)

where Bimon(M) is the category of bimonoids in M, since for (B, m, u, Δ, ε) the fact that m and the u
are morphisms of comonoids is equivalent to Δ and ε being morphisms of monoids (see e.g. [4, Proposition 
1.11]), while

Mon(Mon(M)) ∼= Monc(M) and Comon(Comon(M)) ∼= Comoncoc(M) (2)

which are the category of commutative monoids and of cocommutative comonoids in M, respectively, 
and this follows from the Eckmann–Hilton argument: ΔC is a morphism of comonoids if and only if C is 
cocommutative and mA is a morphism of monoids if and only if A is commutative (see e.g. [4, Section 1.2.7]). 
We recall that a monoid (A, m, u) is commutative if m = m ◦cA,A and a comonoid (C, Δ, ε) is cocommutative
if cC,C ◦ Δ = Δ. Also recall that a bimonoid B′ is a sub-bimonoid of a bimonoid B, provided there exists a 
bimonoid morphism i : B′ → B such that it is a monomorphism in M. Given (C, Δ, ε) ∈ Comon(M) and 
(A, m, u) ∈ Mon(M), HomM(C, A) is an (ordinary) monoid with convolution product such that, given f, g :
C → A in M, the product is f ∗g := m ◦ (f⊗g) ◦Δ and the unit is u ◦ε. Hence we can consider the category 
Hopf(M) of Hopf monoids in M, whose objects are bimonoids B in M equipped with a morphism S : B → B

(antipode) which is the convolution inverse of IdB . The monoidal categories Mon(M) and Comon(M) may 
fail to be braided and then the categories Hopf(M), Bimon(M), Monc(M) and Comoncoc(M) may fail to 
be monoidal but, when the braided category M is symmetric, i.e. c−1

X,Y = cY,X for every X and Y in M, 
these categories are all braided and symmetric with the same braiding c and the same constraints a, l, r of M
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(see [4, Section 1.2.7]). Indeed, if M is symmetric, given A and B monoids in M, then cA,B : A ⊗B → B⊗A

is a morphism of monoids and then Mon(M) is a symmetric monoidal category and, dually, Comon(M) 
is a symmetric monoidal category. Iterating these results and applying (1) and (2), one can deduce that 
Bimon(M), Monc(M) and Comoncoc(M) are symmetric monoidal categories as well. Furthermore, if M is 
symmetric, given (B, SB) and (B′, SB′) in Hopf(M) we have that (B, SB) ⊗ (B′, SB′) := (B⊗B′, SB ⊗SB′)
is in Hopf(M). The antipode is a bimonoid morphism S : B → Bop,cop where (Bop,cop, mop, u, Δcop, ε) is a 
bimonoid with mop = m ◦ cB,B and Δcop = cB,B ◦ Δ, hence it satisfies

m ◦ cB,B ◦ (S ⊗ S) = S ◦m and (S ⊗ S) ◦ Δ = cB,B ◦ Δ ◦ S

and so, if B is commutative, then S is a morphism of monoids while, if B is cocommutative, then S is a 
morphism of comonoids. Also note that if B is commutative or cocommutative then S2 = IdB . Indeed, for 
instance, if B is cocommutative then

m ◦ (S ⊗ S2) ◦ Δ = m ◦ (IdB ⊗ S) ◦ (S ⊗ S) ◦ Δ = m ◦ (IdB ⊗ S) ◦ cB,B ◦ Δ ◦ S = u ◦ ε ◦ S = u ◦ ε

and, analogously, m ◦ (S2 ⊗ S) ◦ Δ = u ◦ ε. Since we use several times these facts in the following and, in 
particular, the fact that Comoncoc(M) is a monoidal category is central for our proof of protomodularity, 
then we will work with a symmetric monoidal category M.

Finally, recall that, given monoidal categories (M, ⊗, I, a, l, r) and (M′, ⊗, I′, a′, l′, r′) (where we do not 
use different notations for ⊗ for notation convenience), a monoidal functor (F, φ0, φ2) : (M, ⊗, I, a, l, r) →
(M′, ⊗, I′, a′, l′, r′) consists of a functor F : M → M′, a morphism φ2

X,Y : F (X ⊗ Y ) → F (X) ⊗ F (Y ) in 
M′ for every X, Y in M which is natural in X and Y and a morphism φ0 : F (I) → I′ in M′ such that

(IdF (X) ⊗ φ2
Y,Z) ◦ φ2

X,Y⊗Z ◦ F (aX,Y,Z) = a′F (X),F (Y ),F (Z) ◦ (φ2
X,Y ⊗ IdF (Z)) ◦ φ2

X⊗Y,Z

and

l′F (X) ◦ (φ0 ⊗ IdF (X)) ◦ φ2
I,X = F (lX) and r′F (X) ◦ (IdF (X) ⊗ φ0) ◦ φ2

X,I = F (rX).

Furthermore, the functor F is called strong if φ0 and φ2
X,Y are isomorphisms for every X, Y in M and strict

if φ0 and φ2
X,Y are identities for every X, Y in M. If M and M′ are (symmetric) braided with braidings c

and c′ respectively, F is called (symmetric) braided if c′F (X),F (Y ) ◦ φ2
X,Y = φ2

Y,X ◦ F (cX,Y ).

If M is the category Veck of vector spaces over a field k, we have the usual notions of k-algebras, k-
coalgebras, k-bialgebras and k-Hopf algebras, usually denoted without k. In the following we always omit 
k but it will be understood. For classical results and notions about the theory of Hopf algebras we refer to 
[35] and [37].

2.2. Semi-abelian categories

Here we recall some definitions needed for the notion of semi-abelian category. For the notions of limits 
and colimits of a functor, as for other basic notions of category theory, we refer to [10,26].

A finitely complete category C is regular if any arrow of C factors as a regular epimorphism (i.e. the 
coequalizer of a pair of morphisms of C) followed by a monomorphism and if, moreover, regular epimorphisms 
are stable under pullbacks along any morphism. A relation on an object X of C is an equivalence class of 
triples (R, r1, r2), where R is an object of C and r1, r2 : R → X is a pair of jointly monic morphisms of 
C, and two triples (R, r1, r2) and (R′, r′1, r

′
2) are identified when they both factor through each other. An 

equivalence relation in C is a relation R on an object X which is reflexive, symmetric and transitive. A 
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regular category C is (Barr)-exact if any equivalence relation R in C is effective, i.e. it is the kernel pair of 
some morphism in C. Recall also that a category C is protomodular, in the sense of [11], if it has pullbacks of 
split epimorphisms along any morphism and all the inverse image functors of the fibration of points reflect 
isomorphisms. We know that, as it is said for instance in [11, Proposition 3.1.2], if C is pointed (i.e. it has 
a zero object) and finitely complete, the protomodularity can be expressed by simply asking that the Split 
Short Five Lemma holds in C. Finally, a category C is semi-abelian if it is pointed, finitely cocomplete, 
(Barr)-exact and protomodular. Many details and properties about semi-abelian categories can be found in 
[11].

3. Color Hopf algebras

In this section we recall what color Hopf algebras are and how they differ from common Hopf algebras. We 
consider the category VecG of G-graded vector spaces over an arbitrary field k where G is a group. We add 
conditions on the group G along the way, to make it clear why these are needed. Objects in VecG are vector 
spaces V =

⊕
g∈G Vg where Vg is a vector subspace of V for every g ∈ G and the morphisms in VecG are 

linear maps f : V → W which preserve gradings, i.e. such that f(Vg) ⊆ Wg for every g ∈ G. We know that 
this category is monoidal with ⊗ the tensor product of Veck and unit object k =

⊕
g∈G kg, where kg = {0}

if g �= 1G and k1G
= k, with 1G the identity of G. Indeed, given V =

⊕
g∈G Vg and W =

⊕
g∈G Wg, we have 

that V ⊗W =
⊕

g∈G (V ⊗W )g where (V ⊗W )g =
⊕

a∈G(Va ⊗Wa−1g). Also the associativity constraint 
and left and right unit constraints are the usual ones of Veck.

Remark 3.1. Recall that the category VecG is isomorphic to the category kGM of left comodules over the 
group algebra kG with isomorphism given by F : VecG → kGM, V =

⊕
g∈G Vg 
→ (V, ρ) with ρ(

∑
g∈G vg) =∑

g∈G g ⊗ vg and F (f) = f and inverse given by G : kGM → VecG, (V, ρ) 
→ V =
⊕

g∈G Vg, where 
Vg = {w ∈ V | ρ(w) = g ⊗ w} and G(f) = f . It is known that kGM is a Grothendieck category, then 
abelian, since this is true in general for CM (and MC) with C a coalgebra, but it is not always true 
for a coalgebra over a ring (see e.g. [16, 3.13]). So monomorphisms are exactly the injective maps and 
epimorphisms the surjective maps in VecG. Observe that, given a graded vector space V =

⊕
g∈G Vg and a 

vector subspace V ′ ⊆ V , we can always consider the graded vector space 
⊕

g∈G V ′ ∩ Vg ⊆ V ′. Furthermore, 
V ′ is a graded subspace of V if it is a graded vector space such that the inclusion i : V ′ → V is in VecG
and this happens if and only if for every x =

∑
g∈G xg ∈ V ′, with xg ∈ Vg, then xg ∈ V ′ for any g ∈ G; 

in this case V ′ has the induced grading V ′ =
⊕

g∈G V ′
g , where V ′

g = V ′ ∩ Vg. Furthermore, we can always 
consider the graded vector space 

⊕
g∈G Vg/(Vg ∩ V ′) and there is a canonical isomorphism of vector spaces 

⊕
g∈G

Vg

Vg∩V ′
∼=

⊕
g∈G Vg⊕

g∈G Vg∩V ′ and the latter is V/V ′ in case V ′ is a graded subspace of V . In this case, we 

can also consider 
⊕

g∈G (Vg + V ′)/V ′, where (Vg + V ′)/V ′ is a vector subspace of V/V ′ for every g ∈ G. 
Notice that there is a canonical isomorphism Vg/(Vg ∩ V ′) ∼= (Vg + V ′)/V ′ as vector spaces for any g ∈ G, 
and then 

⊕
g∈G (Vg + V ′)/V ′ and 

⊕
g∈G Vg/(Vg ∩ V ′) can be identified in VecG. Accordingly, when V ′ is a 

graded subspace of V , we have that V/V ′ =
⊕

g∈G (Vg + V ′)/V ′ is in VecG and it is called quotient graded 
vector space.

Remark 3.2. We recall that, if f : A → B is in VecG, then ker(f) and Im(f) are graded subspaces of A
and B, respectively. If f is surjective, the grading of B = f(A) is the unique induced by A through f , i.e. 
Bg = f(Ag) for every g ∈ G.

3.1. Graded (co)algebras

The objects of the categories Mon(VecG) and Comon(VecG) are called G-graded algebras and G-graded 
coalgebras respectively, which will be referred to as graded algebras and graded coalgebras, for short. Many 
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details and properties about graded algebras and graded coalgebras can be found in [28,29]. Note that 
graded algebras and graded coalgebras are often used to denote algebras and coalgebras graded over N, 
while here gradings will be always over G.

A graded algebra is an algebra (A, m, u) where A =
⊕

g∈G Ag is a graded vector space such that m and 
u preserve gradings, i.e. for every h, k ∈ G we have AhAk ⊆ Ahk and u(k) ⊆ A1G

and a morphism of graded 
algebras is a morphism of algebras that preserves gradings. Since monomorphisms in VecG are exactly the 
injective maps, a submonoid of a graded algebra (A, m, u), called graded subalgebra, is a graded subspace 
V ⊆ A such that 1A ∈ V and m(V ⊗ V ) ⊆ V . Then, V is a graded vector space with Vg = V ∩Ag for every 
g ∈ G, an algebra and

VgVh = m((V ∩Ag) ⊗ (V ∩Ah)) = m((V ⊗ V ) ∩ (Ag ⊗Ah)) ⊆ m(V ⊗ V ) ∩m(Ag ⊗Ah) ⊆ V ∩Agh = Vgh

for every g, h ∈ G. Furthermore, if we consider a graded two-sided ideal I of A such that A/I =⊕
g∈G (Ag + I)/I is a graded vector space, we know that (A/I, uA/I , mA/I) is an algebra with uA/I = π◦uA

and mA/I ◦ (π⊗ π) = π ◦mA where π : A → A/I is the canonical quotient morphism and it is graded since 
uA/I and mA/I are in VecG with π, uA and mA in VecG; it is called quotient graded algebra.

Similarly, a graded coalgebra is a coalgebra (C, Δ, ε) where C =
⊕

g∈G Cg is a graded vector space such 
that Δ and ε preserve gradings, i.e. Δ(Cg) ⊆

⊕
h∈G(Ch ⊗ Ch−1g) and ε(Cg) ⊆ δg,1G

k for every g ∈ G

and a morphism of graded coalgebras is a morphism of coalgebras that preserves gradings. A subcomonoid 
of a graded coalgebra (C, Δ, ε), called graded subcoalgebra, is a graded vector subspace V ⊆ C such that 
Δ(V ) ⊆ V ⊗ V (ε(V ) ⊆ k is automatic). Then, V is a graded vector space, a coalgebra and

Δ(Vg) = Δ(V ∩ Cg) ⊆ Δ(V ) ∩ Δ(Cg) ⊆ (V ⊗ V ) ∩ (C ⊗ C)g = (V ⊗ V )g,

for every g ∈ G, since, from V graded subspace of C, we have that V ⊗ V is a graded subspace of C ⊗ C. 
If I is a graded two-sided coideal of C, then C/I is a graded vector space and it is a coalgebra with 
ΔC/I ◦ π = (π ⊗ π) ◦ΔC and εC/I ◦ π = εC , where π : C → C/I is the canonical quotient morphism. Thus, 
C/I is a graded coalgebra because ΔC/I and εC/I clearly preserve gradings since εC , ΔC and π are in VecG; 
it is called quotient graded coalgebra.

3.2. Color bialgebras and color Hopf algebras

We are interested in studying Hopf monoids in VecG but, in order to do this, first we need that VecG is 
braided. One can give to VecG a braiding by using a bicharacter φ on G (see for example [7]), i.e. a map 
φ : G ×G → k − {0} such that

φ(gh, l) = φ(g, l)φ(h, l) and φ(g, hl) = φ(g, h)φ(g, l) for every g, h, l ∈ G.

It follows immediately that φ(1G, g) = φ(g, 1G) = 1k for all g ∈ G. The monoidal category VecG is braided 
with braiding cX,Y : X ⊗Y → Y ⊗X such that cX,Y (x ⊗ y) = φ(g, h)y⊗x for x ∈ Xg, y ∈ Yh and g, h ∈ G, 
defined on the components of the grading and extended by linearity, for every X and Y in VecG. In order 
to obtain that the braiding is in VecG, the group G needs to be abelian, as it is said in [7, Section 1.1] or in 
[5, pag. 193]. Hence, from now on, we will always consider G an abelian group. As we said before, we also 
need that the category VecG is symmetric and then we have to require that φ is a commutation factor on 
G that is a skew-symmetric bicharacter on G, i.e. that φ satisfies further φ(g, h)φ(h, g) = 1k for g, h ∈ G. 
We will usually work on the components of the grading and all maps will be understood to be extended 
by linearity. For the braiding we use the same notation of [7] and we write c(x ⊗ y) = φ(|x|, |y|)y ⊗ x with 
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x ∈ X and y ∈ Y , intending to work on homogeneous components and extend by linearity. Note that, given 
X, Y and Z in VecG, the hexagon relations

(IdY ⊗ cX,Z) ◦ (cX,Y ⊗ IdZ) = cX,Y⊗Z and (cX,Z ⊗ IdY ) ◦ (IdX ⊗ cY,Z) = cX⊗Y,Z

on elements x ∈ X, y ∈ Y and z ∈ Z, in terms of φ, are exactly

φ(|x|, |y|)φ(|x|, |z|) = φ(|x|, |y||z|) = φ(|x|, |y ⊗ z|) and φ(|x|, |z|)φ(|y|, |z|) = φ(|x||y|, |z|) = φ(|x⊗ y|, |z|).

Also note that, if X and Y are graded coalgebras, then

lX ◦ (εY ⊗ IdX) ◦ cX,Y = lX ◦ cX,k ◦ (IdX ⊗ εY ) = rX ◦ (IdX ⊗ εY )

and rY ◦ (IdY ⊗ εX) ◦ cX,Y = lY ◦ (εX ⊗ IdY ) which on elements x ∈ X and y ∈ Y are

φ(|x|, |y|)ε(y)x = xε(y) and φ(|x|, |y|)yε(x) = ε(x)y. (3)

Note that if y ∈ Yg with g �= 1G then ε(y) = 0 and if y ∈ Y1G
then φ(|x|, |y|) = 1k, so we still have 

that ε(y)x = xε(y) (as clearly it must be) but these relations will be useful in the computations. A graded 
algebra A is commutative if ab = φ(|a|, |b|)ba for every a, b ∈ A and a graded coalgebra C is cocommutative
if x1 ⊗ x2 = φ(|x1|, |x2|)x2 ⊗ x1 for every x ∈ C, where we shall adapt Sweedler notation and write 
Δ(x) = x1 ⊗ x2 always assuming homogeneous terms in the sum. Note that, given A and B in Mon(VecG), 
the multiplication of A ⊗B is given by (a ⊗b) ·(c ⊗d) = φ(|b|, |c|)ac ⊗bd and, given C and D in Comon(VecG), 
the comultiplication of C ⊗D is given by ΔC⊗D(c ⊗ d) = φ(|c2|, |d1|)c1 ⊗ d1 ⊗ c2 ⊗ d2.

The objects of the categories Bimon(VecG) and Hopf(VecG) are called color bialgebras and color Hopf 
algebras, respectively. A color bialgebra is a datum (B, m, u, Δ, ε) where (B, m, u) is a graded algebra, 
(B, Δ, ε) is a graded coalgebra, and the two structures are compatible in the sense that Δ and ε are graded 
algebra morphisms or, equivalently, m and u are graded coalgebra morphisms. Hence B =

⊕
g∈G Bg is an 

ordinary algebra and an ordinary coalgebra with m, u, Δ, ε which preserve gradings, but the condition of 
compatibility between the two structures differs from that in Bialgk, only for the part that involves the 
braiding. So we have that

ε(ab) = ε(a)ε(b), ε(1B) = 1k, Δ(1B) = 1B ⊗ 1B and Δ(ab) = φ(|a2|, |b1|)a1b1 ⊗ a2b2

for every a, b ∈ B. A morphism of color bialgebras is a morphism of algebras and of coalgebras which 
preserves gradings. Given a color bialgebra B, a sub-bimonoid B′ ⊆ B, called color sub-bialgebra, will be 
a graded subalgebra which is also a graded subcoalgebra (the compatibility between the two structures 
is that of B). Furthermore, given a color bialgebra B and a graded bi-ideal I (which is a two-sided ideal 
and two-sided coideal) we know that B/I is a graded algebra and a graded coalgebra and we show that 
the compatibility between the two structures is automatically maintained. In fact, given π : B → B/I the 
canonical quotient morphism, we have that

ΔB/I ◦mB/I ◦ (π ⊗ π) = ΔB/I ◦ π ◦mB = (π ⊗ π) ◦ ΔB ◦mB

and

(mB/I ⊗mB/I) ◦ (IdB/I ⊗ c
B/I,B/I

⊗ IdB/I) ◦ (ΔB/I ⊗ ΔB/I) ◦ (π ⊗ π) =

(mB/I ⊗mB/I) ◦ (IdB/I ⊗ c
B/I,B/I

⊗ IdB/I) ◦ (π ⊗ π ⊗ π ⊗ π) ◦ (ΔB ⊗ ΔB) =
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(mB/I ⊗mB/I) ◦ (π ⊗ π ⊗ π ⊗ π) ◦ (IdB ⊗ cB,B ⊗ IdB) ◦ (ΔB ⊗ ΔB) =

(π ⊗ π) ◦ (mB ⊗mB) ◦ (IdB ⊗ cB,B ⊗ IdB) ◦ (ΔB ⊗ ΔB) = (π ⊗ π) ◦ ΔB ◦mB ,

since c is natural and B is a color bialgebra. Now, since π ⊗ π is surjective, we have that

(mB/I ⊗mB/I) ◦ (IdB/I ⊗ c
B/I,B/I

⊗ IdB/I) ◦ (ΔB/I ⊗ ΔB/I) = ΔB/I ◦mB/I ,

hence B/I is a color bialgebra, called quotient color bialgebra.

Given (C, Δ, ε) ∈ Comon(VecG) and (A, m, u) ∈ Mon(VecG), we have the convolution product of two 
morphisms f, g : C → A in VecG given by f ∗ g := m ◦ (f ⊗ g) ◦Δ. A color Hopf algebra is a color bialgebra 
with a morphism S : B → B in VecG (antipode) such that S ∗ IdB = u ◦ ε = IdB ∗ S, thus it is a linear 
map which preserves gradings such that b1S(b2) = ε(b)1B = S(b1)b2 for all b ∈ B. A morphism of color 
Hopf algebras is just a morphism of color bialgebras, since the compatibility with antipodes is automatically 
guaranteed (see e.g. [4, Proposition 1.16]). Given a color Hopf algebra H, a color Hopf subalgebra H ′ ⊆ H

will be a color sub-bialgebra such that SH(H ′) ⊆ H ′. Furthermore, given a graded bi-ideal I such that 
SH(I) ⊆ I, there is a unique linear map SH/I : H/I → H/I such that SH/I ◦ π = π ◦ SH which preserves 
gradings since SH and π do. This is clearly the antipode of H/I (which is a color bialgebra), in fact as usual

mH/I ◦ (SH/I ⊗ IdH/I) ◦ ΔH/I ◦ π = mH/I ◦ (SH/I ⊗ IdH/I) ◦ (π ⊗ π) ◦ ΔH

= mH/I ◦ (π ⊗ π) ◦ (SH ⊗ IdH) ◦ ΔH

= π ◦mH ◦ (SH ⊗ IdH) ◦ ΔH = π ◦ uH ◦ εH
= uH/I ◦ εH/I ◦ π

and from the surjectivity of π we obtain mH/I ◦ (SH/I ⊗ IdH/I) ◦ ΔH/I = uH/I ◦ εH/I . Analogously for 
the other equality, so H/I is a color Hopf algebra, called quotient color Hopf algebra. Observe that the 
properties of the antipode S of a color Hopf algebra H on elements x, y ∈ H are:

S(xy) = φ(|x|, |y|)S(y)S(x), S(1B) = 1B and Δ(S(x)) = φ(|x1|, |x2|)S(x2) ⊗ S(x1), ε(S(x)) = ε(x).

If H is commutative then S(xy) = S(x)S(y) and S2 = IdH and if H is cocommutative then Δ(S(x)) =
S(x1) ⊗ S(x2) and S2 = IdH .

Clearly the category Veck is exactly VecG with G = {1G} the trivial group. Hence, motivated by the fact 
that Hopfk,coc is a semi-abelian category ([22, Theorem 2.10]), our question is now to establish whether the 
category Hopfcoc(VecG) is semi-abelian.

4. Limits, colimits and protomodularity of Hopfcoc(VecG)

In this section we show that Hopfcoc(VecG) is pointed, finitely complete, cocomplete and protomodular. 
Clearly k with the trivial grading is in Hopfcoc(VecG) and it is a zero object of the category. In fact, given 
H in Hopfcoc(VecG), we have that ε is the unique morphism of coalgebras from H to k and it is also a 
morphism of algebras and it preserves gradings. Similarly, u is the unique morphism of algebras from k to 
H, and it is also a morphism of coalgebras and it preserves gradings. Hence k is a terminal and initial object 
in Hopfcoc(VecG), so a zero object and Hopfcoc(VecG) is pointed. Note that this is true also for Hopf(VecG) 
and Bimon(VecG) while, with the same reasoning, k is initial in Mon(VecG) and terminal in Comon(VecG).

Now we show the finite completeness of Hopfcoc(VecG), by constructing equalizers and binary products 
and by using [10, Proposition 2.8.2]. Note that these limits have the same form, as vector spaces, of those 
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of Hopfk,coc, given for instance in [38] (see also [2]). The constructions given for Hopfk,coc fit with this more 
general context and the naturality of the braiding or the fact that the category is symmetric is often required 
to check what appears immediate in the Hopfk,coc case. Since we have not seen these computations in the 
literature for Hopfcoc(VecG), we give the explicit constructions of these limits, also because they will be 
used in the following.

Remark 4.1. Recall that, given a color Hopf algebra A and a graded subspace V of A, then V is a color Hopf 
subalgebra of A if it contains 1A and it is closed under mA, ΔA and SA. Observe that if A is (co)commutative, 
clearly also V is (co)commutative.

4.1. Equalizers

Let f, g : A → B in Hopfcoc(VecG), we can consider

K = {x ∈ A | (IdA ⊗ f)Δ(x) = (IdA ⊗ g)Δ(x)} ⊆ A.

Observe that, as vector space, K = ker((IdA⊗ f − IdA⊗ g) ◦Δ) and (IdA⊗ f − IdA⊗ g) ◦Δ is in VecG since 
Δ, IdA ⊗ f and IdA ⊗ g are in VecG. Thus, by Remark 3.2, K is a graded subspace of A, i.e. K =

⊕
g∈G Kg

with Kg = K ∩ Ag. By Remark 4.1 we have that, if it is closed under the operations of A, then it will be 
automatically in Hopfcoc(VecG). Clearly 1A ∈ K and, given x, y ∈ K, then xy ∈ K since (IdA ⊗ f) ◦Δ and 
(IdA ⊗ g) ◦ Δ are morphisms of graded algebras. Indeed, given x, y ∈ K, we have that

(IdA ⊗ f)Δ(xy) = (IdA ⊗ f)Δ(x) · (IdA ⊗ f)Δ(y) = (IdA ⊗ g)Δ(x) · (IdA ⊗ g)Δ(y) = (IdA ⊗ g)Δ(xy),

denoting by · the multiplication mA⊗B, hence K is closed under mA. Furthermore, since by cocommutativity 
of A we have that x1⊗x2 = φ(|x1|, |x2|)x2⊗x1 for every x ∈ A (and then for every x ∈ K), if Δ(x) ∈ A ⊗K

then we obtain that

K ⊗A � cA,K(φ(|x1|, |x2|)x2 ⊗ x1) = φ(|x1|, |x2|)φ(|x2|, |x1|)x1 ⊗ x2 = x1 ⊗ x2,

since φ is a commutation factor, thus we only have to show Δ(K) ⊆ A ⊗ K. But we have that K =
ker((IdA ⊗ (f − g)) ◦ Δ), thus

A⊗K = ker(IdA ⊗ (IdA ⊗ (f − g)) ◦ Δ),

hence we desire to show that x ∈ K implies (IdA ⊗ (IdA ⊗ (f − g))Δ)Δ(x) = 0. This is equivalent to show 
that (IdA⊗IdA⊗f)(IdA⊗Δ)Δ(x) = (IdA⊗IdA⊗g)(IdA⊗Δ)Δ(x), i.e. x1⊗x21 ⊗f(x22) = x1⊗x21⊗g(x22). 
Moreover, x1⊗x21 ⊗f(x22) = x11 ⊗x12 ⊗f(x2) and x1⊗x21 ⊗g(x22) = x11 ⊗x12 ⊗g(x2) by coassociativity 
and so we have to prove (Δ ⊗ IdB)(IdA⊗f)Δ(x) = (Δ ⊗ IdB)(IdA⊗ g)Δ(x) and this is true because x ∈ K. 
Hence K is closed under ΔA. Furthermore, since A is cocommutative we have Δ ◦SA = (SA ⊗ SA) ◦Δ and 
then, given x ∈ K, we obtain

(IdA ⊗ f)Δ(SA(x)) = (IdA ⊗ f)(SA ⊗ SA)Δ(x) = (SA ⊗ SB)(IdA ⊗ f)Δ(x) = (SA ⊗ SB)(IdA ⊗ g)Δ(x),

which is exactly (IdA ⊗ g)Δ(SA(x)). Thus, we have that K is in Hopfcoc(VecG). Now, since the inclusion 
i : K → A is in VecG and it is a morphism of algebras and coalgebras, we obtain that (K, i) is the equalizer 
in Hopfcoc(VecG) of the pair (f, g). In fact, with x ∈ K, from x1 ⊗ f(x2) = x1 ⊗ g(x2) we immediately 
obtain that f(x) = g(x) and, if h : C → A in Hopfcoc(VecG) is such that f ◦ h = g ◦ h, then the image of h
is in K. Indeed, since h is a morphism of coalgebras, we obtain
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(IdA ⊗ f) ◦ ΔA ◦ h = (IdA ⊗ f) ◦ (h⊗ h) ◦ ΔC = (IdA ⊗ g) ◦ (h⊗ h) ◦ ΔC = (IdA ⊗ g) ◦ ΔA ◦ h.

We denote the equalizer of the pair (f, g) in Hopfcoc(VecG) by (Eq(f, g), i).

4.2. Binary products

If we take A, B in Hopfcoc(VecG) we can consider (A ⊗B, πA, πB) where

πA := rA ◦ (IdA ⊗ εB) and πB := lB ◦ (εA ⊗ IdB).

In particular, (A ⊗ B, m, u, Δ, ε, S) is a cocommutative color Hopf algebra since Hopf(VecG) and 
Comoncoc(VecG) have a monoidal structure with VecG symmetric and we recall that m = (mA ⊗ mB) ◦
(IdA ⊗ cB,A ⊗ IdB), u = (uA ⊗ uB) ◦ r−1

k
, Δ = (IdA ⊗ cA,B ⊗ IdB) ◦ (ΔA ⊗ ΔB), ε = rk ◦ (εA ⊗ εB) and 

S = SA ⊗SB . Furthermore, πA and πB are algebra morphisms and coalgebra morphisms and they preserve 
gradings, since this is true for rA, lB and εA, εB and then they are morphisms in Hopfcoc(VecG). We only 
have to prove that, for every H in Hopfcoc(VecG), we have a bijection between the set of morphisms in 
Hopfcoc(VecG) from H to A ⊗ B and the cartesian product of the set of morphisms from H to A and 
that of morphisms from H to B in Hopfcoc(VecG). Given a map f : H → A ⊗ B we can consider the pair 
(πA ◦ f, πB ◦ f) and given a pair (g, h), with g : H → A and h : H → B, we can consider the morphism 
(g ⊗ h) ◦ ΔH ; this map will be the diagonal morphism of the pair (g, h), usually denoted by 〈g, h〉. It is 
in Hopfcoc(VecG) since ΔH is a morphism of coalgebras with H cocommutative (and only in this case). 
Hence it is clear that this construction is specific for the cocommutative case. Clearly, given g : H → A and 
h : H → B, we have

πA◦(g⊗h)◦ΔH = rA◦(IdA⊗εB)◦(g⊗h)◦ΔH = rA◦(g⊗Idk)◦(IdH⊗εH)◦ΔH = g◦rH ◦(IdH⊗εH)◦ΔH = g

and, analogously, πB ◦ (g ⊗ h) ◦ ΔH = h. On the other hand, given f : H → A ⊗B, we have that

((πA ◦ f) ⊗ (πB ◦ f)) ◦ ΔH = (πA ⊗ πB) ◦ (f ⊗ f) ◦ ΔH = (πA ⊗ πB) ◦ ΔA⊗B ◦ f,

by using the fact that f is a morphism of coalgebras. Now we show that (πA⊗πB) ◦ΔA⊗B = IdA⊗B . Indeed, 
we can compute

(πA ⊗ πB) ◦ ΔA⊗B = (πA ⊗ πB) ◦ (IdA ⊗ cA,B ⊗ IdB) ◦ (ΔA ⊗ ΔB)

= (rA ⊗ lB) ◦ (IdA ⊗ εB ⊗ εA ⊗ IdB) ◦ (IdA ⊗ cA,B ⊗ IdB) ◦ (ΔA ⊗ ΔB)

= (rA ⊗ lB) ◦ (IdA ⊗ ck,k ⊗ IdB) ◦ (IdA ⊗ εA ⊗ εB ⊗ IdB) ◦ (ΔA ⊗ ΔB)

= (rA ⊗ lB) ◦ (IdA ⊗ εA ⊗ εB ⊗ IdB) ◦ (ΔA ⊗ ΔB) = IdA ⊗ IdB = IdA⊗B

where we only use the naturality of c and the fact that ck,k = Idk,k. Hence (A ⊗ B, πA, πB) is the binary 
product of A and B in Hopfcoc(VecG) and we denote the object part of the categorical product of A and B
by A ×B.

We have obtained that Hopfcoc(VecG) is finitely complete and now we show the cocompleteness. To this 
aim we prove, more generally, the cocompleteness of Hopf(VecG) by constructing coequalizers and arbitrary 
coproducts and that the colimits are the same in the cocommutative case. As for limits, also colimits have 
the same form as vector spaces of those in Hopfk, which are given for instance in [3].

Remark 4.2. The fact that colimits are the same in the cocommutative case should not surprise us. In fact we 
recall that, given a symmetric monoidal category M, the forgetful functor Ua : Mon(M) → M creates limits 
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and the forgetful functor Uc : Comon(M) → M creates colimits and then Mon(M) is closed under limits in 
M as Comon(M) is closed under colimits in M (see e.g. [31, Fact 10], [32, Fact 4]). Hence also Monc(M)
is closed under limits in Mon(M) and Comoncoc(M) is closed under colimits in Comon(M). Furthermore, 
Bimoncoc(M) = Comon(Comon(Mon(M))), so Bimoncoc(M) is closed under colimits in Bimon(M). We 
will see that colimits in Hopf(VecG) are the same of those in Bimon(VecG) and then, clearly, Hopfcoc(VecG)
is closed under colimits in Hopf(VecG). Observe also that Bimon(VecG)=Comon(Mon(VecG)) is closed under 
colimits in Mon(VecG) and then colimits in Hopf(VecG) will derive from those of Mon(VecG). However, we 
show all the details in the sequel.

Remark 4.3. Recall that, given a color Hopf algebra H and a graded bi-ideal I such that S(I) ⊆ I, then 
H/I is a color Hopf algebra. Observe also that if H is (co)commutative then also H/I is (co)commutative. 
Indeed, for instance, if H is cocommutative, by naturality of c we have that

cH/I,H/I ◦ ΔH/I ◦ π = cH/I,H/I ◦ (π ⊗ π) ◦ ΔH = (π ⊗ π) ◦ cH,H ◦ ΔH = (π ⊗ π) ◦ ΔH = ΔH/I ◦ π

and then, since π : H → H/I is surjective, we obtain cH/I,H/I ◦ ΔH/I = ΔH/I .

4.3. Coequalizers

Let f, g : A → B in Hopf(VecG), we can consider I = B((f −g)(A))B, the two-sided ideal of B generated 
by the graded subspace of B given by (f − g)(A) := {f(a) − g(a) | a ∈ A}, which is graded by Remark 3.2, 
since I = mB(mB ⊗ IdB)(B ⊗ (f − g)(A) ⊗ B). Thus, in order to prove that B/I is a color Hopf algebra, 
we only have to check that I is a two-sided coideal and that S(I) ⊆ I, by Remark 4.3. Given a ∈ A, since 
f and g are morphisms of coalgebras, we obtain

Δ(f(a) − g(a)) = Δ(f(a)) − Δ(g(a)) = f(a1) ⊗ f(a2) − g(a1) ⊗ g(a2)

= f(a1) ⊗ f(a2) − g(a1) ⊗ f(a2) + g(a1) ⊗ f(a2) − g(a1) ⊗ g(a2)

= (f(a1) − g(a1)) ⊗ f(a2) + g(a1) ⊗ (f(a2) − g(a2)).

Hence we have that Δ((f − g)(A)) ⊆ (f − g)(A) ⊗ B + B ⊗ (f − g)(A) and from this, using that Δ is a 
morphism of algebras and that B is a color bialgebra, we have that

ΔB(B((f − g)(A))) = ΔB(mB(B ⊗ (f − g)(A)))

= (mB ⊗mB)(IdB ⊗ cB,B ⊗ IdB)(ΔB ⊗ ΔB)(B ⊗ (f − g)(A))

⊆ (mB ⊗mB)(IdB ⊗ cB,B ⊗ IdB)(B ⊗B ⊗ (f − g)(A) ⊗B)

+ (mB ⊗mB)(IdB ⊗ cB,B ⊗ IdB)(B ⊗B ⊗B ⊗ (f − g)(A))

⊆ B((f − g)(A)) ⊗B + B ⊗B((f − g)(A))

and then Δ(I) ⊆ I ⊗ B + B ⊗ I. Furthermore, ε(I) = 0 since ε is a morphism of algebras and thus I is a 
two-sided coideal. Furthermore, we have that

SB(I) = SBmB(mB ⊗ IdB)(B ⊗ (f − g)(A) ⊗B)

= mBcB,B(SB ⊗ SB)(mB ⊗ IdB)(B ⊗ (f − g)(A) ⊗B)

= mBcB,B(mB ⊗ IdB)(cB,B ⊗ IdB)(SB ⊗ SB ⊗ SB)(B ⊗ (f − g)(A) ⊗B)

⊆ mBcB,B(mB ⊗ IdB)(cB,B ⊗ IdB)(B ⊗ (f − g)(SA(A)) ⊗B)

⊆ m c (m ⊗ Id )(c ⊗ Id )(B ⊗ (f − g)(A) ⊗B) ⊆ I.
B B,B B B B,B B
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Hence B/I is a color Hopf algebra and π : B → B/I is in Hopf(VecG) such that clearly π ◦ f = π ◦ g. 
Now, given h : B → H in Hopf(VecG) such that h ◦ f = h ◦ g, we have that I ⊆ ker(h) and then there 
exists a unique morphism of coalgebras h′ : B/I → H such that h′ ◦ π = h which is also of algebras and 
it preserves gradings since this is true for π and h, hence it is the unique morphism in Hopf(VecG) such 
that h′ ◦ π = h. Thus, (B/I, π) is the coequalizer in Hopf(VecG) of the pair (f, g), which we denote by 
(Coeq(f, g), π). Observe here that, clearly, this is also the coequalizer for f, g in Hopfcoc(VecG) since if B is 
cocommutative also B/I is cocommutative, as said in Remark 4.3.

Remark 4.4. We know that, given V =
⊕

g∈G Vg in VecG and T p(V ) = V ⊗ · · · ⊗ V p-times with p ∈ N

(where T 0(V ) = k), we have that T p(V ) is graded with T p(V )g =
⊕

h1···hp=g Vh1 ⊗ · · · ⊗ Vhp
for every 

g ∈ G and then we have

T (V ) =
⊕

p∈N
T p(V ) =

⊕

p∈N

⊕

g∈G

T p(V )g =
⊕

g∈G

⊕

p∈N
T p(V )g =

⊕

g∈G

T (V )g,

so T (V ) is graded as vector space. But T (V ) is also an algebra and it is graded since 1k ∈ k1G
= T 0(V )1G

⊆
T (V )1G

and given x ∈ T (V )g and y ∈ T (V )h with g, h ∈ G we have that xy ∈ T (V )gh. In fact, given an 
element x = xh1 ⊗ · · · ⊗ xhp

∈ T p(V )g with h1 · · · hp = g and an element y = yk1 ⊗ · · · ⊗ yks
∈ T s(V )h with 

k1 · · ·ks = h, we have that xy = xh1 ⊗· · · ⊗xhp
⊗yk1 ⊗· · · ⊗yks

∈ T p+s(V )gh since h1 · · ·hp ·k1 · · ·ks = gh. Note 
also that the canonical inclusion i : V → T (V ) preserves gradings since i(Vg) = Vg = T 1(V )g ⊆ T (V )g.

4.4. Coproducts

Let {Hl}l∈I be a family of color Hopf algebras, we can take T (
⊕

l∈I Hl)/L where L is the two-sided ideal 
in T (

⊕
l∈I Hl) generated by the linear span of the set

J := {i(jl(xlyl)) − i(jl(xl))i(jl(yl)), 1T (
⊕

Hl) − i(jl(1Hl
)) | xl, yl ∈ Hl, l ∈ I},

where jt : Ht →
⊕

l∈I Hl sends v to the element with v as t-component, the only one not trivial and 
i :

⊕
l∈I Hl → T (

⊕
l∈I Hl) is the canonical inclusion. Now, since Hl =

⊕
g∈G Hl,g for every l ∈ I, we have 

that 
⊕

l∈I Hl =
⊕

l∈I

⊕
g∈G Hl,g =

⊕
g∈G

⊕
l∈I Hl,g, then 

⊕
l∈I Hl is in VecG and so T (

⊕
l∈I Hl) is a 

graded algebra by Remark 4.4. But now, clearly, L is graded since it is generated by homogeneous elements; 
indeed i, jl, ml and mT (

⊕
Hl) are in VecG, for every l ∈ I. Thus, also T (

⊕
l∈I Hl)/L is a graded algebra. For 

all l ∈ I define ql := ν ◦ i ◦ jl, where ν : T (
⊕

l∈I Hl) → T (
⊕

l∈I Hl)/L is the canonical quotient morphism. 
Then, ql is a morphism of algebras for every l ∈ I by the relations of J and since ν is an algebra morphism 
and it preserves gradings since this is true for the three maps. Now, given a graded algebra C and graded 
algebra morphisms gl : Hl → C for l ∈ I, there exists a unique linear map k :

⊕
i∈I Hi → C such that 

k ◦ jl = gl for every l ∈ I by the universal property of the coproduct of vector spaces and k also preserves 
gradings since jl and gl do (it is the universal property of the coproduct in VecG). By the universal property 
of the tensor algebra, there is a unique algebra morphism s : T (

⊕
l∈I Hl) → C such that s ◦ i = k and s

also preserves gradings since i and k do. Finally, we have

s(i(jl(xlyl))) = k(jl(xlyl)) = gl(xlyl) = gl(xl)gl(yl) = s(i(jl(xl)))s(i(jl(yl)))

and s(i(jl(1Hl
))) = k(jl(1Hl

)) = gl(1Hl
) = 1C = s(1T (

⊕
Hl)) since gl and s are algebra morphisms, for every 

l ∈ I. Hence L ⊆ ker(s) and then there exists a unique algebra morphism p : T (
⊕

l∈I Hl)/L → C such that 
p ◦ν = s which preserves gradings since s and ν do. We have that p ◦ql = gl and this morphism p is the unique 
in Mon(VecG) such that p ◦ ql = gl for every l ∈ I. Indeed, if there is a morphism p̃ : T (

⊕
l∈I Hl)/L → C

such that p̃ ◦ ql = gl for every l ∈ I, then from (p̃ ◦ ν ◦ i) ◦ jl = gl we obtain (p̃ ◦ ν) ◦ i = k, so p̃ ◦ ν = s
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and hence p = p̃. We have shown that (T (
⊕

l∈I Hl)/L, (ql)l∈I) is the coproduct of the family {Hl}l∈I in 
Mon(VecG), and we denote T (

⊕
l∈I Hl)/L by 

∐
l∈I Hl.

Now, since Hl is a color bialgebra for every l ∈ I, we can show that 
∐

l∈I Hl is a color bialgebra and that 
it is the coproduct of the family {Hl}l∈I in Bimon(VecG). The comultiplication and the counit are given by 
the unique graded algebra morphisms such that the following diagrams commute

Hl

∐
i∈I Hi

Hl ⊗Hl

∐
i∈I Hi ⊗

∐
i∈I Hi

ql

Δl Δ

ql⊗ql

Hl

∐
i∈I Hi

k

εl

ql

ε
(4)

by the universal property of the coproduct in Mon(VecG). Thus, we already have the compatibility and, if 
we prove that Δ is coassociative and counitary, we will have that Δ and ε make 

∐
i∈I Hi a color bialgebra 

so that the two commutative diagrams (4) will prove that ql is a coalgebra morphism for every l ∈ I and 
then a color bialgebra morphism. In order to obtain (Id⊗Δ) ◦Δ = (Δ ⊗ Id) ◦Δ it is sufficient to show that 
(Id ⊗ Δ) ◦ Δ ◦ ql = (Δ ⊗ Id) ◦ Δ ◦ ql by using the universal property, since (Id ⊗ Δ) ◦ Δ and (Δ ⊗ Id) ◦ Δ
are both graded algebra morphisms and, for the same argument, if we show l ◦ (ε ⊗ Id) ◦Δ ◦ ql = Id ◦ ql we 
obtain that l ◦ (ε ⊗ Id) ◦Δ = Id, where l : k ⊗

∐
i∈I Hi →

∐
i∈I Hi is the canonical isomorphism. So, having 

in mind the two diagrams in (4) and the fact that Hl is a coalgebra for l ∈ I, we obtain that

(Id ⊗ Δ) ◦ Δ ◦ ql =(Id ⊗ Δ) ◦ (ql ⊗ ql) ◦ Δl = (ql ⊗ ql ⊗ ql) ◦ (Id ⊗ Δl) ◦ Δl

=(ql ⊗ ql ⊗ ql) ◦ (Δl ⊗ Id) ◦ Δl = (Δ ⊗ Id) ◦ (ql ⊗ ql) ◦ Δl

=(Δ ⊗ Id) ◦ Δ ◦ ql

and

l ◦ (ε⊗ Id) ◦ Δ ◦ ql =l ◦ (ε⊗ Id) ◦ (ql ⊗ ql) ◦ Δl = l ◦ (εl ⊗ ql) ◦ Δl

=l ◦ (Id ⊗ ql) ◦ (εl ⊗ Id) ◦ Δl = ql ◦ lHl
◦ (εl ⊗ Id) ◦ Δl = Id ◦ ql.

Similarly, r◦(Id⊗ε) ◦Δ = Id where r :
∐

i∈I Hi⊗k →
∐

i∈I Hi is the canonical isomorphism. Hence 
∐

l∈I Hl

is a color bialgebra and ql is a color bialgebra morphism for every l ∈ I. Now, given a color bialgebra C and 
color bialgebra morphisms gl : Hl → C, we have a unique graded algebra morphism p :

∐
i∈I Hi → C such 

that p ◦ ql = gl for every l ∈ I by the universal property of the coproduct in Mon(VecG). We show that p
is also a coalgebra morphism in order to obtain that (

∐
l∈I Hl, (ql)l∈I) is the coproduct in Bimon(VecG) of 

the family {Hl}l∈I . By the argument used above, it is enough to show that (p ⊗ p) ◦ Δ ◦ ql = ΔC ◦ p ◦ ql
and εC ◦ p ◦ ql = ε ◦ ql. So, since gl is a coalgebra morphism for every l ∈ I, we have that

(p⊗ p) ◦ Δ ◦ ql = (p⊗ p) ◦ (ql ⊗ ql) ◦ Δl = (gl ⊗ gl) ◦ Δl = ΔC ◦ gl = ΔC ◦ p ◦ ql

and εC ◦ p ◦ ql = εC ◦ gl = εl = ε ◦ ql.

Now we let H :=
∐

i∈I Hi. Every Hl has an antipode Sl : Hl → Hl which is a color bialge-
bra morphism from Hl to Hop,cop

l where x ·op y := mcHl,Hl
(x ⊗ y) = φ(|x|, |y|)yx and Δcop(x) :=

cHl,Hl
Δ(x) = φ(|x1|, |x2|)x2⊗x1, for every x, y ∈ Hl. Since ql is a color bialgebra morphism from Hop,cop

l to 
Hop,cop, the universal property of the coproduct in Bimon(VecG) yields a unique color bialgebra morphism 
S : H → Hop,cop such that the following diagram commutes for all l ∈ I.
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Hl H

Hop,cop
l Hop,cop

ql

Sl S

ql

If we prove that S is the antipode of H, then H is a color Hopf algebra and ql is a morphism of color Hopf 
algebras for every l ∈ I. Furthermore, given C a color Hopf algebra and gl : Hl → C a color Hopf algebra 
morphism for every l ∈ I, there is a unique color bialgebra morphism t : H → C (a posteriori the unique 
color Hopf algebra morphism) such that t ◦ ql = gl for every l ∈ I. Hence, in this case, (H, (ql)l∈I) is the 
coproduct in Hopf(VecG) of the family of color Hopf algebras {Hl}l∈I . Thus, in order to conclude, we prove 
that m ◦ (Id⊗S) ◦Δ = m ◦ (S⊗ Id) ◦Δ = u ◦ ε. Since S : H → Hop,cop is a color bialgebra morphism we only 
need to prove these equalities on the generators of H as a graded algebra. Indeed, let h, k be generators in 
H for which the relations hold, we obtain

m(IdH ⊗ S)Δ(hk) = m(IdH ⊗ S)(φ(|h2|, |k1|)h1k1 ⊗ h2k2) = φ(|h2|, |k1|)h1k1S(h2k2)

= φ(|h2|, |k1|)φ(|h2|, |k2|)h1k1S(k2)S(h2) = φ(|h2|, |k|)h1ε(k)S(h2)

= h1S(h2)ε(k) = ε(h)ε(k)1H = ε(hk)1H = uε(hk)

and, similarly, m(S ⊗ Id)Δ(hk) = uε(hk), so the relations hold for hk and thus for all the elements in 
H. So, having in mind that H := T (

⊕
l∈I Hl)/L, we only need to prove the relations for the elements 

x̄ = i(x) +L ∈ H with x ∈
⊕

l∈I Hl whereas the tensor algebra T (
⊕

l∈I Hl) is the free algebra on 
⊕

l∈I Hl. 
Moreover, since elements x ∈

⊕
l∈I Hl are such that xl = 0 for every l ∈ I except for a finite number, by 

linearity it is enough to show that the relations hold for every xl ∈ Hl with l ∈ I. Using the commutativity 
of the three diagrams before, the fact that Hl is a color Hopf algebra and that ql is an algebra morphism 
for l ∈ I, we obtain

m ◦ (Id ⊗ S) ◦ Δ ◦ ql = m ◦ (Id ⊗ S) ◦ (ql ⊗ ql) ◦ Δl = m ◦ (ql ⊗ ql) ◦ (Id ⊗ Sl) ◦ Δl

= ql ◦ml ◦ (Id ⊗ Sl) ◦ Δl = ql ◦ ul ◦ εl = u ◦ εl = u ◦ ε ◦ ql,

hence m ◦ (Id⊗S) ◦Δ = u ◦ ε. In the same way it can be shown that m ◦ (S⊗ Id) ◦Δ = u ◦ ε. Thus, S is the 
antipode of H and then (H, (ql)l∈I) is the coproduct of the family {Hl}l∈I in Hopf(VecG). It is clear that if 
we consider Hl a cocommutative color Hopf algebra for every l ∈ I then (H, (ql)l∈I) will be the coproduct in 
Hopfcoc(VecG), since H is cocommutative. In fact, since VecG is symmetric, c is a braiding for Mon(VecG) 
and, in particular, cH,H is a morphism of graded algebras, so the same is true for cH,H ◦ Δ. Thus, from

cH,H ◦ Δ ◦ ql = cH,H ◦ (ql ⊗ ql) ◦ Δl = (ql ⊗ ql) ◦ cHl,Hl
◦ Δl = (ql ⊗ ql) ◦ Δl = Δ ◦ ql

we obtain that cH,H ◦ Δ = Δ by the universal property of the coproduct.

The arguments above show that Hopfcoc(VecG) (and also Hopf(VecG)) is cocomplete. Note that, even if 
only finite cocompleteness is required in the definition of a semi-abelian category, the fact that this category 
has all small colimits will be used to obtain that it is semi-abelian, through an equivalent characterization.

Remark 4.5. Note that in [33, Proposition 4.1.1] it has been proven that Hopf(M), Hopfcoc(M) and 
Hopfc(M) are always accessible categories for every symmetric monoidal category M. Hence we have 
that Hopfcoc(VecG) is accessible and then, since we have shown that it is cocomplete, we obtain that it is 
complete and locally presentable. In fact we know that, as it is said in [1, Corollary 2.47], a category is 
locally presentable if and only if it is accessible and complete if and only if it is accessible and cocomplete. 
Observe that, while accessibility is always true for the category of Hopf monoids in a symmetric monoidal 
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category, this is not the same for local presentability. As it is said in [31, Propositions 49,52,53] this is true 
when the forgetful functor Ua : Mon(M) → M is an extremally monadic functor or when the forgetful 
functor Uc : Comon(M) → M is an extremally comonadic functor, since in these cases we have that the 
category Hopf(M) is closed under colimits and limits in Bimon(M), respectively.

4.5. Protomodularity

Recall that if M is a category with binary products, i.e. there exists the binary product A ×B for every 
object A and B in M, and with terminal object I, the monoidal category (M, ×, I) is called cartesian and 
the category of internal groups in M, denoted by Grp(M), has objects which are monoids (G, m, u) in M
equipped with a morphism i : G → G in M (called inversion) such that m ◦ 〈IdG, i〉 = u ◦ tG = m ◦ 〈i, IdG〉, 
where tG is the unique morphism from G to I and 〈IdG, i〉, 〈i, IdG〉 are the diagonal morphisms.

In [14, Proposition 3.24] it is proved that, given a cartesian monoidal category M with finite limits, 
then the category Grp(M) is protomodular. Note that the same terminal object, equalizers and binary 
products given before say that Comoncoc(VecG) is finitely complete. This category is also cartesian since 
its unit object k is the terminal object and the tensor product is the binary product and then we have that 
Grp(Comoncoc(VecG)) is protomodular. Furthermore, as it is said for instance in [33, Remark 3.3], for every 
symmetric monoidal category M we have that Hopfcoc(M)=Grp(Comoncoc(M)) and then Hopfcoc(VecG) =
Grp(Comoncoc(VecG)). Indeed, we have

Mon(Comoncoc(VecG)) = Mon(Comon(Comon(VecG))) = Comon(Comon(Mon(VecG))) = Bimoncoc(VecG)

so monoids in Comoncoc(VecG) are given by cocommutative color bialgebras. Hence an object in 
Grp(Comoncoc(VecG)) is a cocommutative color bialgebra (B, m, u, Δ, ε) equipped with a morphism 
i : B → B in Comoncoc(VecG) such that m ◦ 〈IdB , i〉 = u ◦ tB = m ◦ 〈i, IdB〉. But we have seen be-
fore that tB = ε and 〈IdB , i〉 = (IdB ⊗ i) ◦ Δ, 〈i, IdB〉 = (i ⊗ IdB) ◦ Δ, thus we obtain

m ◦ (IdB ⊗ i) ◦ Δ = u ◦ ε = m ◦ (i⊗ IdB) ◦ Δ,

so i is the antipode of B. Hence we have that Grp(Comoncoc(VecG)) is exactly the category Hopfcoc(VecG). 
Thus, we have that Hopfcoc(VecG) is protomodular. Recall that here the fact that VecG is symmetric ensures 
that Comoncoc(VecG) is monoidal.

5. Regularity of Hopfcoc(VecG)

The most delicate point in the proof of the semi-abelianness of the category Hopfcoc(VecG) is the 
regularity, as in the case of Hopfk,coc. Following [22] the regularity will be shown through the following 
characterization:

Lemma 5.1. Let C be a finitely complete category. Then, C is a regular category if and only if

(1) any arrow in C factors as a regular epimorphism followed by a monomorphism;
(2) given any regular epimorphism f : A → B in C and any object E in C, the induced arrow IdE × f :
E ×A → E ×B is a regular epimorphism;
(3) regular epimorphisms are stable under pullbacks along split monomorphisms.

Since the zero morphism in Hopfcoc(VecG) between A and B is uB◦εA, the categorical kernel of f : A → B

in Hopfcoc(VecG), i.e. the equalizer of the pair (f, uB ◦ εA), is given by (Hker(f), j : Hker(f) → A) with
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Hker(f) = {x ∈ A | (IdA ⊗ f)Δ(x) = (IdA ⊗ uBεA)Δ(x)} = {x ∈ A | x1 ⊗ f(x2) = x⊗ 1B}

and j the canonical inclusion. The categorical cokernel of f in Hopfcoc(VecG), i.e. the coequalizer of the 
pair (f, uB ◦ εA), is given by (B/I, π : B → B/I) where

I = Bf(A)+B

and π is the canonical quotient morphism and where, for any coalgebra C, we write C+ = {x ∈ C | ε(x) = 0}. 
First note that for any coalgebra morphism f : C → D, f(C+) = f(C)+. Indeed, y ∈ f(C)+ if and only 
if y = f(x) for some x ∈ C and 0 = εD(y) = εD(f(x)) = εC(x) if and only if y ∈ f(C+). Now I is the 
two-sided ideal of B generated by the set {f(a) − uBεA(a) | a ∈ A} = {f(a) − εA(a)1B | a ∈ A}. But we 
have that (f − uB ◦ εA)(A) = f(A+) = f(A)+ since if x = f(a) − εA(a)1B we have x = f(a − εA(a)1A)
with εA(a − εA(a)1A) = 0 so that (f − uB ◦ εA)(A) ⊆ f(A+) and the other inclusion is trivial. Now, 
given f : A → B in Hopfcoc(VecG), we can consider the categorical cokernel of its categorical kernel in 
Hopfcoc(VecG) that is given, as a map, by p : A → A/A(Hker(f))+A. Since j is the kernel of f we have that 
f ◦ j = uB ◦ εHker(f) = f ◦uA ◦ εHker(f), thus, by the universal property of the cokernel, there exists a unique 
morphism i in Hopfcoc(VecG) such that f = i ◦ p.

Hker(f) A A
A(Hker(f))+A

B

j p

f i

If we show that i is a monomorphism we obtain the decomposition regular epimorphism-monomorphism 
of f in Hopfcoc(VecG). In the case of Hopfk,coc, Newman’s Theorem [30, Theorem 4.1] tells us that for a 
cocommutative Hopf algebra H there is a bijective correspondence between the set of Hopf subalgebras of 
H and that of left ideals which are also two-sided coideals of H: given a Hopf subalgebra K of H and a left 
ideal, two-sided coideal I of H the two maps are

K 
→ HK+ and I 
→ HcoH
I := {x ∈ H | (IdH ⊗ π)ΔH(x) = x⊗ π(1H)}

which is also {x ∈ H | (IdH ⊗π)ΔH(x) = (IdH ⊗πuHεH)ΔH(x)}, where π : H → H/I is the canonical quo-
tient morphism and this result is used in [22] to deduce that the vector space ker(f) is exactly A(Hker(f))+A
and then that the morphism i of the previous factorization is injective and so a monomorphism. We would 
like to obtain the same fact in the graded case.

Remark 5.2. Recall that given a graded algebra A =
⊕

g∈G Ag, i.e. an object in Mon(VecG), we can consider 
the category AVecG, whose objects are graded vector spaces V =

⊕
g∈G Vg that are also left A-modules such 

that the left A-action μ : A ⊗ V → V is in VecG and then μ(Ag ⊗ Vh) ⊆ Vgh for every g, h ∈ G and whose 
morphisms are linear maps which preserve gradings and are also left A-linear. If A is in Bimon(VecG), i.e. 
it is a color bialgebra, then the category AVecG is monoidal with the same tensor product, unit object and 
constraints of VecG and then of Veck. Here the unit object k has left A-action such that a ·k = ε(a)k for a ∈ A

and k ∈ k and, given V and W in AVecG, V ⊗W has left A-action given by a ·(v⊗w) = φ(|a2|, |v|)a1 ·v⊗a2 ·w, 
for a ∈ A, v ∈ V and w ∈ W . With quotient color left A-module coalgebras we mean quotient objects in 
Comon(AVecG), thus quotient graded vector spaces which are left A-modules with left A-action in VecG, 
which are also coalgebras with Δ and ε in AVecG; in particular, as coalgebras, they are quotients of a graded 
coalgebra with a graded two-sided coideal.
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Given A in Hopfcoc(VecG) we define in VecG the morphism

ξA : A⊗A → A, a⊗ x 
→ φ(|a2|, |x|)a1xS(a2),

i.e. ξA = mA ◦ (mA ⊗ SA) ◦ (IdA ⊗ cA,A) ◦ (ΔA ⊗ IdA), with c the braiding of VecG. By analogy with 
Theorem 5.6, we say that a color Hopf subalgebra K ⊆ A is normal if ξA(A ⊗K) ⊆ K. First we show some 
properties of the map ξA.

Remark 5.3. If f : A → B is in Hopfcoc(VecG) then f(A) is in Hopfcoc(VecG). In fact, by Remark 3.2, we 
know that f(A) is a graded subspace of B and, as in the usual case, it contains 1B = f(1A) and it is closed 
under mB (mB ◦ (f ⊗ f) = f ◦ mA) since f is an algebra morphism. It is closed under ΔB since f is a 
coalgebra morphism (ΔB ◦ f = (f ⊗ f) ◦ ΔA) and under the antipode SB since SB ◦ f = f ◦ SA. So f(A)
is in Hopfcoc(VecG) by Remark 4.1. Similarly, ker(f), which is graded by Remark 3.2, is a two-sided ideal 
of A (since f is an algebra morphism), a two-sided coideal of A (since f is a coalgebra morphism) and it is 
closed under SA, so that A/ker(f) is in Hopfcoc(VecG) by Remark 4.3.

Lemma 5.4. Let A and B in Hopfcoc(VecG). Then, the following properties hold:

1) ξA is a morphism of coalgebras.
2) Given p : A → B in Hopfcoc(VecG) then ξB ◦ (p ⊗ p) = p ◦ ξA. As a consequence, when p is surjective 
and D a normal color Hopf subalgebra of A, then p(D) is a normal color Hopf subalgebra of B.
3) A is commutative if and only if ξA = lA ◦ (εA ⊗ IdA). As a consequence, if A is commutative, any color 
Hopf subalgebra K of A is a normal subalgebra.

Proof. In order to prove 1) we have to show that ΔA ◦ ξA = (ξA⊗ ξA) ◦ΔA⊗A where ΔA⊗A = (IdA⊗ cA,A⊗
IdA) ◦ (ΔA ⊗ΔA) and εA ◦ ξA = εA⊗A where εA⊗A = rk ◦ (εA ⊗ εA). Given a, x ∈ A, since Δ is a morphism 
of graded algebras and A is cocommutative, we have that

ΔAξA(a⊗ x)

= ΔA(φ(|a2|, |x|)a1xS(a2)) = φ(|a2|, |x|)(mA ⊗mA)(Id ⊗ cA,A ⊗ Id)(ΔA(a1x) ⊗ ΔA(S(a2)))

= φ(|a21 ||a22 |, |x1||x2|)(mA ⊗mA)(Id ⊗ cA,A ⊗ Id)(φ(|a12 |, |x1|)a11x1 ⊗ a12x2 ⊗ S(a21) ⊗ S(a22))

= φ(|a21 ||a22 |, |x1||x2|)φ(|a12 |, |x1|)φ(|a12 ||x2|, |a21 |)a11x1S(a21) ⊗ a12x2S(a22)

= φ(|a21 |, |x1|)φ(|a22 |, |x1|)φ(|a22 |, |x2|)φ(|a12 |, |x1|)φ(|a12 |, |a21 |)a11x1S(a21) ⊗ a12x2S(a22)
(∗)= φ(|a2|, |x1|)φ(|a22 |, |x2|)φ(|a12 |, |x1|)a11x1S(a12) ⊗ a21x2S(a22)

= (ξA ⊗ ξA)(φ(|a2|, |x1|)a1 ⊗ x1 ⊗ a2 ⊗ x2) = (ξA ⊗ ξA)ΔA⊗A(a⊗ x),

where (∗) follows since A is cocommutative and then ΔA is of graded coalgebras, i.e. (ΔA ⊗ ΔA) ◦ ΔA =
ΔA⊗A◦ΔA = (IdA⊗cA,A⊗IdA) ◦(ΔA⊗ΔA) ◦ΔA, which on a ∈ A is a11⊗a12⊗a21⊗a22 = φ(|a12 |, |a21 |)a11⊗
a21 ⊗ a12 ⊗ a22 . Furthermore, we have that

εA(ξA(a⊗ x)) = εA(φ(|a2|, |x|)a1xS(a2)) = φ(|a2|, |x|)εA(a1)εA(x)εA(S(a2))

= εA(a1)εA(a2)εA(x) = εA(a)εA(x) = εA⊗A(a⊗ x).

Now, since p is a morphism of algebras and of coalgebras, we have that

ξB(p(a) ⊗ p(x)) = φ(|p(a2)|, |p(x)|)p(a1)p(x)S(p(a2)) = φ(|a2|, |x|)p(a1x)p(S(a2))

= p(φ(|a |, |x|)a xS(a )) = p(ξ (a⊗ x)).
2 1 2 A
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Suppose that p is surjective and that D is a normal color Hopf subalgebra of A. We already know that p(D)
is a color Hopf subalgebra of B by Remark 5.3, we have to show that it is normal, i.e. that, given b ∈ B and 
d ∈ D, then ξB(b ⊗ p(d)) ∈ p(D). By surjectivity of p there exists a ∈ A such that p(a) = b. Hence, since D
is normal, we obtain

ξB(b⊗ p(d)) = ξB(p⊗ p)(a⊗ d) = pξA(a⊗ d) ∈ p(D),

thus p(D) is normal in B and then also 2) is proved. Finally, if we suppose that A is commutative clearly 
we obtain that ξA(a ⊗ x) = φ(|a2|, |x|)a1xS(a2) = a1S(a2)x = ε(a)x, so ξA(A ⊗K) ⊆ K for every K ⊆ A

color Hopf subalgebra, while if φ(|a2|, |x|)a1xS(a2) = ε(a)x then we have that

xε(a) = φ(|x|, |a|)ε(a)x = φ(|x|, |a1|)φ(|x|, |a2|)φ(|a2|, |x|)a1xS(a2) = φ(|x|, |a1|)a1xS(a2),

hence

x⊗ a = x⊗ ε(a1)a2 = xε(a1) ⊗ a2 = φ(|x|, |a11 |)a11xS(a12) ⊗ a2 = φ(|x|, |a1|)a1xS(a21) ⊗ a22 .

Thus, we have

xa = φ(|x|, |a1|)a1xS(a21)a22 = φ(|x|, |a1|)a1xε(a2) = φ(|x|, |a1|)φ(|x|, |a2|)a1ε(a2)x = φ(|x|, |a|)ax,

so xa = φ(|x|, |a|)ax and then A is commutative and also 3) is shown. �
Lemma 5.5. Let i : B → A be an inclusion of a subalgebra B of A in Hopfcoc(VecG). If i is the categorical 
kernel of some morphism in Hopfcoc(VecG), then B is a normal color Hopf subalgebra of A.

Proof. Suppose that B = Hker(f) for some morphism f : A → C in Hopfcoc(VecG). We already know that 
B is a color Hopf subalgebra of A, we have to prove that it is normal, i.e. that, given x ∈ Hker(f) and 
a ∈ A, then ξA(a ⊗ x) ∈ Hker(f), i.e. (Id ⊗ f)ΔAξA(a ⊗ x) = ξA(a ⊗ x) ⊗ 1C . But f(x) = ε(x)1C with 
x ∈ Hker(f) and, since f is a morphism of graded algebras, we obtain

fξA(a⊗ x) = φ(|a2|, |x|)f(a1)f(x)f(S(a2)) = φ(|a2|, |x|)f(a1)ε(x)f(S(a2)) = f(a1)f(S(a2))ε(x)

= f(a1S(a2))ε(x) = f(ε(a)1A)ε(x) = ε(a)ε(x)1C = uCεA⊗A(a⊗ x).

As a consequence, by using 1) of Lemma 5.4, we have that

(Id ⊗ f)ΔAξA(a⊗ x) = (Id ⊗ f)(ξA ⊗ ξA)ΔA⊗A(a⊗ x) = (ξA ⊗ uC)(Id ⊗ Id ⊗ εA⊗A)ΔA⊗A(a⊗ x)

= (ξA ⊗ uC)(a⊗ x⊗ 1k) = ξA(a⊗ x) ⊗ 1C ,

thus Hker(f) is normal in A. �
A generalization of Newman’s Theorem for the category Hopfcoc(VecZ2) of cocommutative super Hopf 

algebras is proved by A. Masuoka in the case chark �= 2. The result is the following:

Theorem 5.6 (cf. [27, Theorem 3.10 (3)]). Let H be a cocommutative super Hopf algebra. Then, the super 
Hopf subalgebras K ⊆ H and the quotient super left H-module coalgebras Q of H are in 1-1 correspondence, 
and the mutually inverse bijections are given by

φH : K 
→ H/HK+ and ψH : Q 
→ coQH = HcoQ = {x ∈ H | (IdH ⊗ π)ΔH(x) = x⊗ π(1H)},
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where π : H → Q denotes the quotient. This restricts to a 1-1 correspondence between those super Hopf 
subalgebras K which are normal, i.e. that satisfy (−1)|h2||x|h1xS(h2) ∈ K for every h ∈ H and x ∈ K, and 
the quotient super Hopf algebras.

We used the notations φH and ψH for the bijections in analogy with those given for Newman’s Theorem 
in [22]. Observe that last statement in Theorem 5.6 is a generalization of the equivalence between (1) and 
(2) of [22, Corollary 2.3]. Here we immediately obtain a complete generalization of [22, Corollary 2.3] for 
cocommutative super Hopf algebras.

Corollary 5.7. For a super Hopf subalgebra B ⊆ A of a cocommutative super Hopf algebra A, the following 
conditions are equivalent:

(1) B is a normal super Hopf subalgebra;
(2) A/AB+ is a quotient super Hopf algebra;
(3) the inclusion morphism B → A is the categorical kernel of some morphism in Hopfcoc(VecZ2).

Proof. We already know that (1) and (2) are equivalent by Theorem 5.6.
(2) =⇒ (3). Since A/AB+ is a quotient super Hopf algebra, the canonical quotient morphism π : A →

A/AB+ is a morphism of cocommutative super Hopf algebras and then clearly Aco A
AB+ is exactly Hker(π)

since x ⊗ π(1A) = x ⊗ 1A/AB+ , for x ∈ A. Now, using Theorem 5.6, we obtain

Hker(π) = Aco A
AB+ = ψA(A/AB+) = ψA(φA(B)) = B.

Hence (B, j) is the kernel of π in Hopfcoc(VecZ2), where j : B → A is the canonical inclusion. We already 
know that (3) =⇒ (1) by Lemma 5.5 and then we are done. �

We will obtain a generalization of Theorem 5.6 and of Corollary 5.7 for Hopfcoc(VecG) that will be used 
to prove that Hopfcoc(VecG) is regular and semi-abelian.

5.1. From color Hopf algebras to super Hopf algebras

In order to use Theorem 5.6 we are interested in obtaining a braided strong monoidal functor from the 
category VecG to the category VecZ2 . In this subsection G and L will denote arbitrary abelian groups.

Remark 5.8. As it is said in [19, Example 2.5.2], given f : G → L a morphism of groups, any G-graded 
vector space is naturally L-graded (by pushforward of grading) and we have a natural strict monoidal 
functor (F, φ0, φ2) : VecG → VecL (also denoted by f∗). The functor F : VecG → VecL is defined, given 
V =

⊕
g∈G Vg and f in VecG, such that

F (
⊕

g∈G

Vg) =
⊕

f(g)∈L

Vf(g) where Vf(g) =
⊕

g′∈f−1f(g)

Vg′ and F (f) = f,

so Vf(g) is the direct sum of all the Vg′ ’s such that f(g′) is the same element f(g) in L and then F (V ) is 
still V as vector space but with a grading over L in which Vl = {0} if l /∈ Im(f). Observe that F (k) = k

with k1L
= k and kl = 0 if l �= 1L, so that one can define φ0 := Idk and, given V, W in VecG, we have

F (V ⊗W ) = F (
⊕

(V ⊗W )g) =
⊕

(V ⊗W )f(g) =
⊕

Vf(g) ⊗
⊕

Wf(g)

g∈G f(g)∈L f(g)∈L f(g)∈L
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which is F (V ) ⊗F (W ), so F (V ⊗W ) and F (V ) ⊗F (W ) are the same L-graded vector space and then one 
can define φ2

V,W := Id for every V, W in VecG. Clearly this remark is true also for groups G and L that are 
not necessarily abelian, in which case VecG and VecL are not braided.

In [7, Remark 1.2] it is said how to obtain a braided strong monoidal functor from VecG to VecL when 
G and L are finite abelian groups and it is not difficult to see that this works also in the case G and L
are not necessarily finite. We recall here how to do it. Clearly, if we define φ2

V,W := Id for every V and W
in VecG, we can not obtain in general a braided monoidal functor from VecG to VecL since the braiding 
of VecG and that of VecL are different. Thus, we define φ0 := Idk but we modify the morphisms φ2

V,W

that we want to be isomorphisms in VecL in order to have a strong monoidal functor and we recall that 
F (V ⊗W ) = F (V ) ⊗ F (W ) in VecL. Given a map γ : G × G → k − {0}, one can define, for every V and 
W in VecG, isomorphisms in VecG given by fV,W : V ⊗ W → V ⊗ W , v ⊗ w 
→ γ(g, h)v ⊗ w, for v ∈ Vg

and w ∈ Wh and g, h ∈ G, defined on the components of the grading and extended by linearity. We define 
φ2
V,W := F (fV,W ) = fV,W , which are isomorphisms in VecL for every V and W in VecG. In order to obtain 

a monoidal functor we need that γ is a 2-cocycle on G, i.e. that it satisfies

γ(gh, k)γ(g, h) = γ(g, hk)γ(h, k) for every g, h, k ∈ G. (5)

We immediately have that γ(g, 1G) = γ(1G, g) = γ(1G, 1G) for every g ∈ G and γ is said to be normalized if 
γ(1G, 1G) = 1k. Observe also that a bicharacter φ on G is automatically a normalized 2-cocycle on G since

φ(gh, k)φ(g, h) = φ(g, k)φ(h, k)φ(g, h) = φ(g, hk)φ(h, k) for every g, h, k ∈ G

and φ(g, 1G) = φ(1G, g) = 1k for every g ∈ G. We have the following result:

Lemma 5.9 (cf. [7, Remark 1.2]). Let f : G → L be a morphism of abelian groups, F : VecG → VecL defined 
as in Remark 5.8, φ0 := Idk and φ2

V,W defined as above for every V and W in VecG. Then, (F, φ0, φ2)
is a strong monoidal functor if and only if γ is a normalized 2-cocycle on G. Furthermore, if φ and θ
are bicharacters over G and L respectively (which give the respective braidings over VecG and VecL), then 
(F, φ0, φ2) is braided if and only if

φ(g, h) = θ(f(g), f(h))γ(g, h)
γ(h, g) for every g, h ∈ G. (6)

Remark 5.10. Consider the map ū : G → k −{0} given by g 
→ φ(g, g). Note that, since φ is a commutation 
factor, we obtain that

ū(gg′) = φ(gg′, gg′) = φ(g, g)φ(g, g′)φ(g′, g)φ(g′, g′) = φ(g, g)φ(g′, g′) = ū(g)ū(g′)

and then ū is a morphism of groups. But we also have that, again since φ is a commutation factor, 
φ(g, g)φ(g, g) = 1k, i.e. φ(g, g)2 = 1k for every g ∈ G, hence φ(g, g) ∈ {±1k}. Thus, ū(G) ⊆ {±1k} and then 
we have that, with φ a commutation factor, ū : G → {±1k} is a morphism of groups. If we consider the 
subgroup

H := ker(ū) = {g ∈ G | ū(g) = 1k} = {g ∈ G | φ(g, g) = 1k}

there are two possibilities: H = G or {±1k} ∼= G/H and then |G/H| = 2. In the second case, if G is finite 
(and so also H is finite), then |G| = 2 · |H|. In the finite case, if the cardinality of G is odd we always have 
G = H and, with G non trivial, if H = {1G} then G = Z2. Thus, if the cardinality of G is bigger than 2, 
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H can not be trivial and hence it never happens that φ(h, h) = −1k for every h �= 1G. One can find, for 
example in [6, Section 3.2], a complete classification of a nondegenerate skew-symmetric bicharacter defined 
on a finite abelian group.

In [7, Section 1.5] it is said how to obtain a braided strong monoidal functor from VecG to VecZ2 , in 
case G is a finite abelian group; this also works when G is finitely generated abelian and here we give the 
proof for completeness. If we consider Z2 := {0, 1}, by Remark 5.10 we already have a morphism of groups 
ū : G → Z2, where ū(g) = 0 if g ∈ G is such that φ(g, g) = 1k and ū(g) = 1 if φ(g, g) = −1k. We need a 
normalized 2-cocycle γ on G such that (6) is satisfied for φ and η where η : Z2 × Z2 → {±1k} ⊆ k − {0}, 
(x, y) 
→ (−1)x·y is the commutation factor on Z2.

Proposition 5.11. If G is a finitely generated abelian group then we have a braided strong monoidal functor 
(F, φ0, φ2) : VecG → VecZ2 .

Proof. Define κ : G ×G → {±1k} such that κ(g, h) = 1k if φ(g, g) = 1k or φ(h, h) = 1k and κ(g, h) = −1k
if φ(g, g) = φ(h, h) = −1k, for every g, h ∈ G. By definition of κ, which is clearly a commutation factor, 
φκ : G × G → k − {0}, (g, h) 
→ φ(g, h)κ(g, h) is a commutation factor on G. Observe that φκ(g, g) = 1k
for every g ∈ G. If we consider Ĝ := HomGrp(G, k − {0}), the character group of G, and we define the 
group morphism χ : G → Ĝ, g 
→ χg by setting χg(h) = φκ(g, h) for g, h ∈ G, we have that φκ induces 
a non-degenerate bicharacter φ′ on the group G′ := G/ker(χ) such that φ′(ḡ, ̄g) = 1k for every ḡ ∈ G′. In 
fact, we can define φ′(ḡ, ḡ′) = φκ(g, g′) for every ḡ, ḡ′ ∈ G′, which is well defined since, for g, g′ ∈ G and 
h, h′ ∈ ker(χ), we have that

φκ(h, g′) = φκ(h, h′) = 1k and 1k = φκ(g, h′)φκ(h′, g) = φκ(g, h′)

and then φκ(gh, g′h′) = φκ(g, g′). Clearly φ′ is a commutation factor and φ′(ḡ, ̄g) = 1k for every ḡ ∈ G′. 
Since G is a finitely generated abelian group the same is true for G′. Thus, by [36, Lemma 2], since 
φ′ is a commutation factor on G′ such that φ′(ḡ, ̄g) = 1k for every ḡ ∈ G′, there exists a bicharacter 
γ′ : G′ ×G′ → k − {0} on G′ (so, in particular, a normalized 2-cocycle on G′) such that

φ′(ḡ, h̄) = γ′(ḡ, h̄)
γ′(h̄, ḡ)

for every ḡ, h̄ ∈ G′.

If we call p : G → G′ the canonical projection, we have that φ′ ◦ (p × p) = φκ and we can consider the 
bicharacter (so a normalized 2-cocycle) on G given by γ := γ′ ◦ (p × p). Clearly

φκ(g, h) = φ′(ḡ, h̄) = γ′(ḡ, h̄)
γ′(h̄, ḡ)

= γ(g, h)
γ(h, g) for every g, h ∈ G.

But now, given η the bicharacter on Z2 of before, we have that κ = η ◦ (ū× ū), i.e. κ(g, h) = η(ū(g), ̄u(h))
for every g, h ∈ G. Thus, we obtain that

γ(g, h)
γ(h, g) = φκ(g, h) = φ(g, h)κ(g, h) = φ(g, h)η(ū(g), ū(h)) for every g, h ∈ G

and then that

φ(g, h) = η(ū(g), ū(h))γ(g, h)
γ(h, g) for every g, h ∈ G.

Hence, by Lemma 5.9, we have a braided strong monoidal functor (F, φ2, φ0) : VecG → VecZ2 . �
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Thus, from now on, we suppose that the abelian group G is finitely generated. We know that a braided 
strong monoidal functor preserves Hopf monoids (see [4, Propositions 3.46, 3.50]), thus, via (F, φ0, φ2), every 
color Hopf algebra becomes a super Hopf algebra and every morphism of color Hopf algebras becomes a 
morphism of super Hopf algebras (we already know that it is automatically in VecZ2, but it will be also a 
morphism of algebras and of coalgebras with respect to new products and new coproducts). Given a color 
Hopf algebra (H :=

⊕
g∈G Hg, m, u, Δ, ε, S), the super Hopf algebra will be given by

(F (H), F (m) ◦ (φ2
H,H)−1, F (u) ◦ (φ0)−1, φ2

H,H ◦ F (Δ), φ0 ◦ F (ε), F (S))

= (H0 ⊕H1,m ◦ (φ2
H,H)−1, u, φ2

H,H ◦ Δ, ε, S)

since F (f) = f for f in VecG and φ0 is the identity, where H0 =
⊕

g∈G0
Hg and H1 =

⊕
g∈G1

Hg by setting 
G0 := {g ∈ G | φ(g, g) = 1k} and G1 := {g ∈ G | φ(g, g) = −1k}.

Lemma 5.12. Given a faithful braided strong monoidal functor F : M → M′, then A is a (co)commutative 
(co)monoid in M if and only if F (A) is a (co)commutative (co)monoid in M′.

Proof. Since F is braided we have that

mF (A) ◦ c′F (A),F (A) = F (mA) ◦ (φ2
A,A)−1 ◦ c′F (A),F (A) = F (mA ◦ cA,A) ◦ (φ2

A,A)−1

so, if A is a commutative monoid in M, then F (A) is a commutative monoid in M′ and

c′F (A),F (A) ◦ ΔF (A) = c′F (A),F (A) ◦ φ2
A,A ◦ F (ΔA) = φ2

A,A ◦ F (cA,A ◦ ΔA)

so, if A is a cocommutative comonoid in M, then F (A) is a cocommutative comonoid in M′. If F (A) is 
a (co)commutative (co)monoid in M′ then, from the previous two computations, we obtain that A is a 
(co)commutative (co)monoid in M by using that F is faithful. �
Corollary 5.13. Given A in Hopfcoc(VecG), it is (co)commutative if and only if F (A) in Hopfcoc(VecZ2) is 
(co)commutative.

In the following we will often refer to the functor F restricted to the category of cocommutative color 
Hopf algebras, still calling it F .

Remark 5.14. In order to avoid confusion, in this remark we denote VecφG by indicating the bicharacter 
associated to the braiding at the top. As it is said in [7, Section 1.5], the normalized 2-cocycle γ : G ×G →
k −{0} induces an equivalence of braided monoidal categories from VecφκG to VectG, where t : G ×G → k −{0}
is the trivial bicharacter such that t(g, h) = 1k for every g, h ∈ G. Indeed, if we consider the morphism of 
groups IdG and γ, we have

φκ(g, h) = t(g, h)γ(g, h)
γ(h, g) for every g, h ∈ G

and then a braided strong monoidal functor VecφκG → VectG by Lemma 5.9. But, clearly, we can consider 
the normalized 2-cocycle γ−1 : G ×G → k − {0}, (g, h) → γ(g, h)−1 and then

t(g, h) = φκ(g, h)γ(h, g) = φκ(g, h)γ
−1(g, h)
−1 for every g, h ∈ G,
γ(g, h) γ (h, g)
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so that we have a braided strong monoidal functor VectG → VecφκG , again by Lemma 5.9. These two functors 
give an equivalence of (symmetric) braided monoidal categories between VecφκG and VectG and now there 
are two possibilities. If φ(g, g) = 1k for every g ∈ G, then clearly κ(g, h) = 1k for every g, h ∈ G and 
then φκ = φ, so that we have an equivalence of symmetric monoidal categories between VecφG and VectG. 
Indeed, observe that in this case G0 = G and then, given V in VecφG, we have V = V0, V1 = 0 and 
η(0, 0) = 1k. The objects of Hopfcoc(VectG), the category of G-graded cocommutative Hopf algebras, are 
ordinary cocommutative Hopf algebras graded over G as vector spaces with m, u, Δ, ε, S which preserve 
gradings (thus G-graded algebras and coalgebras) and the morphisms are algebra and coalgebra morphisms 
which preserve gradings. In particular, from a cocommutative color Hopf algebra we can obtain an ordinary 
cocommutative Hopf algebra and vice versa. Otherwise if φ(g, g) = −1k for some g ∈ G, we can return to the 
braided strong monoidal functor (F, φ0, φ2) : VecφG → VecηZ2

of before and, given H and f in Hopfcoc(VecφG), 
we obtain F (H) and F (f) in Hopfcoc(VecηG), the category of G-graded cocommutative super Hopf algebras, 
whose objects are G-graded algebras and coalgebras (since also φ2

H,H is in VecG), then also Z2-graded 
algebras and coalgebras by considering the new grading, with respect to which, considering the braiding of 
super vector spaces, they are cocommutative super Hopf algebras and morphisms are algebra and coalgebra 
morphisms which preserve the G-gradings (and then those over Z2).

Hence every H in Hopfcoc(VecG) can be seen as a cocommutative super Hopf algebra. If φ(g, g) = 1k for 
every g ∈ G we have that this actually is an ordinary cocommutative Hopf algebra and Newman’s Theorem 
holds true; this always happens if we have a finite group G of odd cardinality by Remark 5.10, for example. 
If φ(g, g) = −1k for some g ∈ G we can use the more general Theorem 5.6 for cocommutative super Hopf 
algebras, where chark �= 2 is needed, which allows us to deal with the more general case.

5.2. Generalized Newman’s theorem for color Hopf algebras

We can now generalize Theorem 5.6 and Corollary 5.7 to the case of cocommutative color Hopf algebras 
by using the functor F : VecG → VecZ2 , in case chark �= 2 and G is a finitely generated abelian group.

Lemma 5.15. The forgetful functor K : VecG → Veck is injective on subobjects and on quotients of the same 
object. As a consequence, the same holds true if K is restricted to the categories Mon(VecG), Comon(VecG), 
Bimon(VecG) and Hopf(VecG).

Proof. Given A in VecG and B, C graded subspaces of A, then Bg = B ∩ Ag and Cg = C ∩ Ag for every 
g ∈ G. Thus, if K(B) = K(C), i.e. B and C are the same vector space, then they must be the same object 
in VecG. Furthermore, if we consider A in Mon(VecG), Comon(VecG), Bimon(VecG) or Hopf(VecG) and B, 
C subobjects of A in these categories, we have that B and C are the same object in these categories if and 
only if they are the same object in VecG because their operations are the restrictions of those of A and 
then this happens if K(B) = K(C). Moreover, given A/B and A/C in VecG such that K(A/B) = K(A/C), 
i.e. A/B and A/C are the same vector space, then B = 0A/B = 0A/C = C. As a consequence, (A/B)g =
(Ag + B)/B = (Ag + C)/C = (A/C)g for every g ∈ G and then A/B and A/C are the same object in 
VecG. The same result holds true when A/B and A/C are in Mon(VecG), Comon(VecG), Bimon(VecG) or 
Hopf(VecG), since A/B and A/C are the same object in these categories if and only if they are the same 
object in VecG because their operations are induced by those of A through the canonical projection. �
Lemma 5.16. The functor F : VecG → VecZ2 preserves and reflects submonoids and subcomonoids, then 
sub-bimonoids and Hopf submonoids.

Proof. We consider the case of Hopf submonoids which includes all the others in itself. We already know 
that if C is a color Hopf subalgebra of A, i.e. the inclusion i : C → A is in Hopfcoc(VecG), then F (i) :
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F (C) → F (A) is in Hopfcoc(VecZ2), i.e. F (C) is a super Hopf subalgebra of F (A), so we show the other 
direction, assuming A in Hopfcoc(VecG) and C ⊆ A a graded subspace such that F (C) is a super Hopf 
subalgebra of F (A). But now we only have to observe that

mF (A)(F (C) ⊗ F (C)) = F (mA)(φ2
A,A)−1(F (C) ⊗ F (C)) = F (mA)(F (C ⊗ C)) = F (mA(C ⊗ C)),

ΔF (A)(F (C)) = φ2
A,AF (ΔA)(F (C)) = φ2

A,AF (ΔA(C))

and also uF (A)(k) = F (uA(k)), SF (A)(F (C)) = F (SA(C)) so that, since F (C) is a super Hopf subalgebra 
of F (A) (i.e. F (C) is closed under the operations of F (A)), then C is a color Hopf subalgebra of A (i.e. C
is closed under the operations of A), since F does not change the structure of vector space. �
Remark 5.17. Observe that, given π : A → A/I in VecG, then F (π) : F (A) → F (A/I) is in VecZ2 and it is 
still surjective, then by Remark 3.2 F (A/I) has the unique grading induced by F (A) through the surjection, 
i.e. F (A/I)i = F (π)(F (A)i) = (F (A)i + I)/I = (F (A)i + F (I))/F (I) for i = 0, 1 and this is exactly the 
grading in VecZ2 of the quotient of F (A) with its super subspace F (I). Thus, F (π) : F (A) → F (A/I) is 
the quotient F (A) → F (A)/F (I) in VecZ2 . Also note that, if π : A → A/I is in Hopfcoc(VecG), then F (π)
is in Hopfcoc(VecZ2) and F (A/I) has the unique structure in Hopfcoc(VecZ2) induced by F (A).

Proposition 5.18. The functor F : Hopfcoc(VecG) → Hopfcoc(VecZ2) preserves and reflects equalizers.

Proof. If we take f, g : A → B in Hopfcoc(VecG) and j : Eq(f, g) → A the equalizer of the pair (f, g) in 
Hopfcoc(VecG), then we can consider F (j) : F (Eq(f, g)) → F (A) in Hopfcoc(VecZ2) and we can show that 
F (Eq(f, g)) = Eq(F (f), F (g)). We know that Eq(F (f), F (g)) in Hopfcoc(VecZ2) is given by those x ∈ F (A)
such that (IdF (A) ⊗ F (f))ΔF (A)(x) = (IdF (A) ⊗ F (g))ΔF (A)(x). But now we have that

(IdF (A) ⊗ F (f)) ◦ ΔF (A) = (F (IdA) ⊗ F (f)) ◦ φ2
A,A ◦ F (ΔA) = φ2

A,B ◦ F (IdA ⊗ f) ◦ F (ΔA)

= φ2
A,B ◦ F ((IdA ⊗ f) ◦ ΔA)

and, similarly, (IdF (A) ⊗ F (g)) ◦ ΔF (A) = φ2
A,B ◦ F ((IdA ⊗ g) ◦ ΔA). Then, equivalently, Eq(F (f), F (g))

is composed by elements x ∈ F (A) such that F ((IdA ⊗ f)ΔA)(x) = F ((IdA ⊗ g)ΔA)(x), i.e. such that 
(IdA ⊗ f)ΔA(x) = (IdA ⊗ g)ΔA(x) and these are exactly the elements of F (Eq(f, g)). Hence we have that 
(F (Eq(f, g)), F (j)) is the equalizer of the pair (F (f), F (g)) in Hopfcoc(VecZ2), so F preserves equalizers. 
The fact that F reflects equalizers follows using that F preserves equalizers and that F reflects isomorphisms 
(see [10, Proposition 2.9.7]). �

Clearly the previous result holds true by considering F : Comoncoc(VecG) → Comoncoc(VecZ2).

Lemma 5.19. Given a graded algebra H and a color left H-module A, then F (A) is a super left F (H)-module.

Proof. Given the action μ : H ⊗ A → A in VecG, we define μ′ := F (μ) ◦ (φ2
H,A)−1 : F (H) ⊗ F (A) → F (A)

in VecZ2 . Thus, we can compute

μ′ ◦ (mF (H) ⊗ IdF (A)) = F (μ) ◦ (φ2
H,A)−1 ◦ (F (mH) ⊗ F (IdA)) ◦ ((φ2

H,H)−1 ⊗ IdF (A))

= F (μ) ◦ F (mH ⊗ IdA) ◦ (φ2
H⊗H,A)−1 ◦ ((φ2

H,H)−1 ⊗ IdF (A))

= F (μ ◦ (IdH ⊗ μ)) ◦ ((φ2
H,H ⊗ IdF (A)) ◦ φ2

H⊗H,A)−1

= F (μ) ◦ F (IdH ⊗ μ) ◦ (φ2
H,H⊗A)−1 ◦ (IdF (H) ⊗ φ2

H,A)−1

= F (μ) ◦ (φ2
H,A)−1 ◦ (IdF (H) ⊗ F (μ)) ◦ (IdF (H) ⊗ (φ2

H,A)−1)

= μ′ ◦ (Id ⊗ μ′)
F (H)
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and

μ′ ◦ (uF (H) ⊗ IdF (A)) = F (μ) ◦ (φ2
H,A)−1 ◦ (F (uH) ⊗ F (IdA)) = F (μ) ◦ F (uH ⊗ IdA) ◦ (φ2

k,A)−1

= F (lA) ◦ (φ2
k,A)−1 = lF (A). �

Theorem 5.20. Let H be a cocommutative color Hopf algebra. Then, the color Hopf subalgebras K ⊆ H

and the quotient color left H-module coalgebras Q of H are in 1-1 correspondence. The mutually inverse 
bijections are given by

φH : K 
→ H/HK+ and ψH : Q 
→ HcoQ.

Proof. First of all we show that the two maps are well-defined. So, given a color Hopf subalgebra K ⊆ H, 
we know that HK+ is a graded left ideal of H and also a two-sided coideal of H since HK+ = Im(m ◦
(IdH ⊗ i) − l ◦ (IdH ⊗ ε)), where i : K → H is the inclusion (see [37, Proposition 1.4.8]). Furthermore, 
recalling the monoidal structure of HVecG given in Remark 5.2, it is not difficult to see that ΔH/HK+ and 
εH/HK+ are morphisms of left H-modules. Indeed, given π : H → H/HK+ in Comoncoc(VecG), for every 
a, b ∈ H we have that

ΔH/HK+(h · (a + HK+)) = ΔH/HK+(ha + HK+) = (π ⊗ π)ΔH(ha)

= φ(|h2|, |a1|)(h1a1 + HK+) ⊗ (h2a2 + HK+)

= h · ΔH/HK+(a + HK+)

and

εH/HK+(h · (a + HK+)) = εH/HK+(ha + HK+) = εH(ha) = εH(h)εH(a) = h · εH/HK+(a + HK+),

thus H/HK+ is a quotient color left H-module coalgebra of H. Furthermore, let Q be a quotient color left 
H-module coalgebra of H; we show that

HcoQ = {h ∈ H | (IdH ⊗ π)Δ(h) = h⊗ π(1H)} = {h ∈ H | (IdH ⊗ π)Δ(h) = (IdH ⊗ πuε)Δ(h)}

is a color Hopf subalgebra of H. It is in Comoncoc(VecG) since it is the equalizer object of the pair (π, π ◦
uH ◦εH) in Comoncoc(VecG). In addition, by Proposition 5.18, we know that F (HcoQ) is the equalizer of the 
pair (F (π), F (π◦uH ◦εH)) = (F (π), F (π) ◦uF (H) ◦εF (H)) in Comoncoc(VecZ2), i.e. F (HcoQ) = F (H)coF (Q). 
But now F (H) is a super Hopf algebra and F (Q) is a quotient super coalgebra and a quotient super left 
F (H)-module of F (H) by Lemma 5.19. Furthermore, ΔF (Q) and εF (Q) are morphisms of left F (H)-modules. 
Indeed, recalling the hexagon relation

φ2
H⊗Q,H⊗Q ◦ F (IdH ⊗ cH,Q ⊗ IdQ) ◦ (φ2

H⊗H,Q⊗Q)−1

= ((φ2
H,Q)−1 ⊗ (φ2

H,Q)−1) ◦ (IdF (H) ⊗ c′F (H),F (Q) ⊗ IdF (Q)) ◦ (φ2
H,H ⊗ φ2

Q,Q)

which holds true since F is a braided strong monoidal functor, we obtain that

(μ′ ⊗ μ′) ◦ (IdF (H) ⊗ c′F (H),F (Q) ⊗ IdF (Q)) ◦ (ΔF (H) ⊗ IdF (Q) ⊗ IdF (Q)) ◦ (IdF (H) ⊗ ΔF (Q)) =

(F (μ) ⊗ F (μ)) ◦ ((φ2
H,Q)−1 ⊗ (φ2

H,Q)−1) ◦ (IdF (H) ⊗ c′F (H),F (Q) ⊗ IdF (Q)) ◦ (φ2
H,H ⊗ φ2

Q,Q) ◦
(F (ΔH) ⊗ F (ΔQ)) =

(F (μ) ⊗ F (μ)) ◦ φ2
H⊗Q,H⊗Q ◦ F (IdH ⊗ cH,Q ⊗ IdQ) ◦ (φ2

H⊗H,Q⊗Q)−1 ◦ (F (ΔH) ⊗ F (ΔQ)) =
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φ2
Q,Q ◦ F (μ⊗ μ) ◦ F (IdH ⊗ cH,Q ⊗ IdQ) ◦ F (ΔH ⊗ ΔQ) ◦ (φ2

H,Q)−1 =

φ2
Q,Q ◦ F (ΔQ ◦ μ) ◦ (φ2

H,Q)−1 = ΔF (Q) ◦ μ′

and

εF (Q) ◦ μ′ = F (εQ) ◦ F (μ) ◦ (φ2
H,Q)−1 = F (rk) ◦ F (εH ⊗ εQ) ◦ (φ2

H,Q)−1 = rk ◦ (εF (H) ⊗ εF (Q)).

Thus, F (Q) is a quotient super left F (H)-module coalgebra of F (H) and then, by Theorem 5.6, we have 
that F (H)coF (Q) = F (HcoQ) is a super Hopf subalgebra of F (H); thus HcoQ is a color Hopf subalgebra of 
H by Lemma 5.16. Thus, the two maps are well-defined and now we prove that they are inverse to each 
other. So we compute

K 
→ H/HK+ 
→ Hco H
HK+

and

F (Hco H
HK+ ) = F (H)coF ( H

HK+ ) = F (H)co
F (H)

F (H)F (K)+ = ψF (H)(φF (H)(F (K))) = F (K)

since F (K) is a super Hopf subalgebra of F (H) by Lemma 5.16. Thus, since K and Hco H
HK+ are color Hopf 

subalgebras of H and they are the same vector space by the previous equality because F does not change 
the structure of vector space, they must be the same object in Hopfcoc(VecG) by Lemma 5.15. Furthermore, 
we compute

Q 
→ HcoQ 
→ H/H(HcoQ)+

and

F
( H

H(HcoQ)+
)

= F (H)
F (H)F (HcoQ)+ = F (H)

F (H)(F (H)coF (Q))+
= φF (H)(ψF (H)(F (Q))) = F (Q)

since F (Q) is a quotient super left F (H)-module coalgebra of F (H). We know that Q and H/H(HcoQ)+ are 
quotient color left H-module coalgebras of H and so, since they are the same vector space by the previous 
equality, they must be the same quotient color left H-module coalgebra of H by Lemma 5.15. �

We have adopted the same notations used in Theorem 5.6 for the bijections φH and ψH . The bijective 
correspondence restricts to a 1-1 correspondence between normal color Hopf subalgebras and quotient color 
Hopf algebras as it is shown in the following result. Thus, we extend Theorem 5.6 and Corollary 5.7 to the 
case of cocommutative color Hopf algebras.

Corollary 5.21. For a color Hopf subalgebra B ⊆ A of a cocommutative color Hopf algebra A, the following 
conditions are equivalent:

(1) B is a normal color Hopf subalgebra, i.e. φ(|a2|, |b|)a1bS(a2) ∈ B for every a ∈ A and b ∈ B;
(2) A/AB+ is a quotient color Hopf algebra;
(3) the inclusion morphism B → A is the categorical kernel of some morphism in Hopfcoc(VecG).

Proof. (1) =⇒ (2). Let B be a normal color Hopf subalgebra of A and consider the quotient color left 
A-module coalgebra A/AB+. In order to show that this is a quotient color Hopf algebra we have to prove 
that AB+ is a right ideal of A and that it is closed under the antipode of A. First we show that it is a right 
ideal. For any a, a′ ∈ A and b ∈ B+, since (S ⊗ S) ◦ Δ = Δ ◦ S with A cocommutative, we obtain that
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(ab)a′ = abε(a′1)a′2 = φ(|b|, |a′1|)aε(a′1)ba′2 = φ(|b|, |a′1|)aa′11
S(a′12

)bS(S(a′2))

= φ(|b|, |a′1|)φ(|b|, |S(a′21
)|)aa′1S(a′21

)bS(S(a′22
)) = φ(|b|, |a′1|)φ(|b|, |S(a′2)1|)aa′1S(a′2)1bS(S(a′2)2)

= φ(|b|, |a′|)φ(|S(a′2)2|, |b|)aa′1S(a′2)1bS(S(a′2)2) = φ(|b|, |a′|)aa′1ξA(S(a′2) ⊗ b) ∈ AB+.

To see that AB+ is stable under the antipode, note that S(ab) = φ(|a|, |b|)S(b)S(a). From ε(S(b)) = ε(b) = 0
with b ∈ B+ it follows that S(b) ∈ B+ ⊆ AB+ and therefore φ(|a|, |b|)S(b)S(a) ∈ AB+ since we have just 
shown that AB+ is a right ideal.

(2) =⇒ (3). Since A/AB+ is a quotient color Hopf algebra and then π : A → A/AB+ is in Hopfcoc(VecG), 
we have that Aco A

AB+ = {a ∈ A | a1 ⊗ π(a2) = a ⊗ 1A/AB+} = Hker(π) in Hopfcoc(VecG). But now 

Aco A
AB+ = ψA(φA(B)) = B by Theorem 5.20 and then B = Hker(π). Hence (B, j) is the kernel of π in 

Hopfcoc(VecG), where j : B → A is the canonical inclusion.
By Lemma 5.5 we already know that (3) =⇒ (1) holds true and then we are done. �
Now we can prove (1) and (2) of Lemma 5.1. So let f : A → B be a morphism in Hopfcoc(VecG) and 

consider the factorization f = i ◦ p in Hopfcoc(VecG) obtained by taking p : A → A/A(Hker(f))+A as 
the cokernel of the kernel of f in Hopfcoc(VecG). We have that A/ker(f) is a quotient color Hopf algebra 
by Remark 5.3. Thus, since π : A → A/ker(f) is in Hopfcoc(VecG), we have that Aco A

ker(f) = Hker(π) in 
Hopfcoc(VecG). Furthermore, there exists a unique map f̄ : A/ker(f) → B, a + ker(f) 
→ f(a) in VecG, and 
then in Hopfcoc(VecG), such that f̄ ◦ π = f and f̄ is injective. Thus, Hker(π) = Hker(f) in Hopfcoc(VecG)
and so we obtain

A/ker(f) = φA(ψA(A/ker(f))) = φA(Aco A
ker(f) ) = φA(Hker(f)) = A/A(Hker(f))+.

Then, ker(f) = A(Hker(f))+ and so also ker(f) = A(Hker(f))+A, hence p = π and i = f̄ is injective and 
then a monomorphism in Hopfcoc(VecG). Observe that, clearly, Hker(f)+ ⊆ ker(f) since with x ∈ Hker(f)
we have that f(x) = ε(x)1B. Thus, we have obtained a decomposition f = i ◦ p in Hopfcoc(VecG) with i
a monomorphism in Hopfcoc(VecG) and p a regular epimorphism in Hopfcoc(VecG), so (1) of Lemma 5.1 is 
proved.

Lemma 5.22. In Hopfcoc(VecG) regular epimorphisms are exactly the surjective morphisms and monomor-
phisms are exactly the injective morphisms.

Proof. A regular epimorphism in Hopfcoc(VecG) is surjective since in Hopfcoc(VecG) every coequalizer is 
a projection and, if f in Hopfcoc(VecG) is surjective, by its decomposition f = i ◦ p in Hopfcoc(VecG) we 
obtain that i is surjective and then it is an isomorphism in Hopfcoc(VecG), hence f is a cokernel, so a 
regular epimorphism. Furthermore, in Hopfcoc(VecG) an injective map is clearly a monomorphism and also 
the vice versa is true. Indeed, given f : A → B a monomorphism in Hopfcoc(VecG) and j : Hker(f) → A the 
categorical kernel of f , from f ◦ j = f ◦ uA ◦ εA ◦ j we obtain that j = uA ◦ εA ◦ j, i.e., if a ∈ Hker(f) then 
a = εA(a)1A, hence a ∈ k1A. Clearly every x ∈ k1A is in Hker(f), so Hker(f) = k1A and then Hker(f)+ = 0. 
Hence, since ker(f) = A(Hker(f))+A, we have that ker(f) = 0, thus f is injective. �

Now condition (2) of Lemma 5.1 is easily satisfied. In Hopfcoc(VecG) binary products are tensor products, 
so E ×A = E ⊗A and E ×B = E ⊗B and the induced arrow IdE × f is IdE ⊗ f . Indeed, we have

lB ◦ (εE ⊗ IdB) ◦ (IdE ⊗ f) = lB ◦ (Idk ⊗ f) ◦ (εE ⊗ IdA) = f ◦ lA ◦ (εE ⊗ IdA)

and rE ◦ (IdE ⊗ εB) ◦ (IdE ⊗ f) = IdE ◦ rE ◦ (IdE ⊗ εA). So, given a regular epimorphism f : A → B in 
Hopfcoc(VecG), this is surjective, then IdE ⊗ f is surjective, hence a regular epimorphism by Lemma 5.22. 
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Now, in order to obtain the regularity of Hopfcoc(VecG), we show (3) of Lemma 5.1 by proving the stability 
of surjective maps along injective ones under pullbacks.

If we have a morphism p : A → B in Hopfcoc(VecG) and we consider C ⊆ B a color Hopf subalgebra of 
B, then the subspace p−1(C) of A defined as in [24] by

p−1(C) = {x ∈ A| (p⊗ IdA)Δ(x) ∈ C ⊗A}

is a color Hopf subalgebra of A. Indeed, observe that

p−1(C) = ((p⊗ IdA)Δ)−1(C ⊗A) = ((p⊗ IdA)Δ)−1(
⊕

g∈G

(C ⊗A)g) =
⊕

g∈G

((p⊗ IdA)Δ)−1((C ⊗A)g)

since the morphisms preserve gradings. Hence p−1(C) =
⊕

g∈G Pg is a graded vector space where

Pg = {x ∈ Ag | (p⊗ IdA)Δ(x) ∈ (C ⊗A)g} = ((p⊗ IdA)Δ)−1((C ⊗A)g).

By Remark 4.1, we only have to show that p−1(C) is closed under ΔA, mA and SA and that it contains 
1A. Clearly it contains 1A and it is closed under mA since (p ⊗ IdA) ◦ Δ is in Mon(VecG): indeed, for any 
x, y ∈ p−1(C),

(p⊗ IdA)Δ(xy) = mC⊗A((p⊗ IdA)Δ ⊗ (p⊗ IdA)Δ)(x⊗ y) ∈ C ⊗A.

It is also easy to check that it is closed under the antipode since, in the cocommutative case, we have that 
Δ(S(x)) = (S ⊗ S)Δ(x), so with x ∈ p−1(C) we have

(p⊗ IdA)Δ(SA(x)) = (p⊗ IdA)(SA ⊗ SA)Δ(x) = (SB ⊗ SA)(p⊗ IdA)Δ(x) ∈ SB(C) ⊗ SA(A) ⊆ C ⊗A.

Finally, we have to show that Δ(p−1(C)) ⊆ p−1(C) ⊗ p−1(C) and, since A is cocommutative, we only have 
to prove that Δ(p−1(C)) ⊆ p−1(C) ⊗A. But now, given x ∈ p−1(C), we have that

(p⊗ IdA)Δ(x1) ⊗ x2 = p(x1) ⊗ x21 ⊗ x22 = (IdB ⊗ Δ)(p⊗ IdA)Δ(x) ∈ (IdB ⊗ Δ)(C ⊗A) ⊆ C ⊗A⊗A

and then Δ(x) ∈ p−1(C) ⊗A, so that p−1(C) is closed under ΔA and hence it is a color Hopf subalgebra of 
A. Now we show some results which generalize those given in [22] for the case of Hopfk,coc. The following 
Lemma 5.23 and Lemma 5.24 correspond to [22, Lemma 2.5] and [22, Lemma 2.6], respectively, and they 
have the same proof, which we report for the sake of completeness and in order to show that there are no 
problems with the respective generalizations.

Lemma 5.23. Given a morphism p : A → B in Hopfcoc(VecG), we have the following facts:

1) For all color Hopf subalgebras C ⊆ B, p(p−1(C)) ⊆ C.
2) For all color Hopf subalgebras D ⊆ A, D ⊆ p−1(p(D)).
3) For all color Hopf subalgebras C ⊆ B, then C = p(p−1(C)) if and only if C = p(D), for some D ⊆ A

color Hopf subalgebra.

Proof. If x ∈ p−1(C), i.e. p(x1) ⊗ x2 ∈ C ⊗ A, then p(x) ∈ C, so 1) is shown. Recall that if D is a color 
Hopf subalgebra of A then p(D) is a color Hopf subalgebra of B by Remark 5.3. If d ∈ D we have that 
(p ⊗IdA)Δ(d) ∈ p(D) ⊗D ⊆ p(D) ⊗A and then also 2) is proved. Finally, if C = p(p−1(C)) clearly we can take 
D = p−1(C) while, if C = p(D) for some color Hopf subalgebra D of A, then D ⊆ p−1(p(D)) = p−1(C) by 
2) and, by applying p, one gets C = p(D) ⊆ p(p−1(C)). Since p(p−1(C)) ⊆ C by 1), we have C = p(p−1(C))
and we obtain 3). �
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Lemma 5.24. Given p : A → B in Hopfcoc(VecG) and an inclusion i : C → B in Hopfcoc(VecG), then the 
diagram

p−1(C) C

A B

p̃

j i

p

is a pullback in Hopfcoc(VecG), where j is the inclusion and p̃ is the restriction of p to p−1(C).

Proof. By 1) of Lemma 5.23 the diagram is commutative. To check the universal property, consider two 
morphisms α : T → A and β : T → C in Hopfcoc(VecG) such that p ◦ α = i ◦ β and let us show 
that α(T ) ⊆ p−1(C). Then, taken c : T → p−1(C) as α with codomain p−1(C) we have j ◦ c = α and 
i ◦ p̃ ◦ c = p ◦ j ◦ c = p ◦ α = i ◦ β, hence p̃ ◦ c = β since i is injective. This c is unique, since we must have 
j ◦ c = α.

T

p−1(C) C

A B

β

α

c

p̃

j i

p

Thus, we show that α(T ) ⊆ p−1(C). Given t ∈ T , since α is a morphism of coalgebras, we have

(p⊗ IdA)ΔA(α(t)) = (p⊗ IdA)(α⊗ α)ΔT (t) = (i⊗ IdA)(β ⊗ α)ΔT (t) ∈ C ⊗A,

then the diagram is a pullback. �
Proposition 5.25. Consider a surjective morphism p : A → B in Hopfcoc(VecG) and an inclusion i : C → B

in Hopfcoc(VecG). Then, the morphism p̃ in the pullback of Lemma 5.24 is also surjective.

Proof. If we compute the pullback of the pair (p, i) in Hopfcoc(VecG) we obtain (p−1(C), j, p̃) as in 
Lemma 5.24 and we want to show that p̃ is surjective if p is surjective. Since p̃ is just given by the re-
striction of p, we have that p̃ is surjective if and only if C = p(p−1(C)) and this is equivalent, with C a color 
Hopf subalgebra of B, to prove that C = p(D) for some color Hopf subalgebra D of A by 3) of Lemma 5.23. 
We know that π : B → B/BC+ is a quotient color left B-module coalgebra and, since p is a morphism of 
color Hopf algebras, we have that π ◦p is a morphism of color left A-module coalgebras, so that A/ker(π ◦p)
is a quotient color left A-module coalgebra. We set D := Aco A

ker(π◦p) = ψA(A/ker(π ◦ p)), which is a color 
Hopf subalgebra of A by Theorem 5.20. Then, we obtain

A/AD+ = φA(D) = φA(ψA(A/ker(π ◦ p))) = A/ker(π ◦ p)

by Theorem 5.20, hence AD+ = ker(π ◦ p). Thus, since p is a surjective morphism of algebras, we obtain

Bp(D)+ = p(A)p(D+) = p(AD+) = p(ker(π ◦ p)) = ker(π) = BC+

and then
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φB(C) = B/BC+ = B/Bp(D)+ = φB(p(D))

so that, by applying ψB and by using Theorem 5.20 again, we obtain that C = p(D). �
We have shown the stability of surjective morphisms (i.e. regular epimorphisms by Lemma 5.22) along 

inclusions under pullbacks in Hopfcoc(VecG). But every injective morphism f : C → B in Hopfcoc(VecG)
can be decomposed as i ◦ φ with φ an isomorphism between C and f(C) and i the inclusion of f(C) into 
B. Now, if we consider the pullback of p along f , we have that, since the inner right square in the following 
diagram is also a pullback by Lemma 5.24, also the left square is a pullback by [10, Proposition 2.5.9].

A×B C p−1(f(C)) A

C f(C) B

φ̃

α

j

p̃ p

φ i

Then, since φ is an isomorphism so is φ̃ and from p̃ ◦ φ̃ = φ ◦ α we obtain that α = φ−1 ◦ p̃ ◦ φ̃. But now, 
since p̃ is surjective by Proposition 5.25, then also α is surjective, thus regular epimorphisms are stable 
under pullbacks along injective morphisms (i.e. monomorphisms by Lemma 5.22) in Hopfcoc(VecG) and (3) 
of Lemma 5.1 is proved. We have obtained the following result:

Proposition 5.26. If G is a finitely generated abelian group and chark �= 2 then the category Hopfcoc(VecG)
is regular.

6. Semi-abelian condition for Hopfcoc(VecG)

Let G be a finitely generated abelian group and chark �= 2. In [25, 3.7] an equivalent characterization for 
semi-abelian categories is given. It is required that C satisfies the following properties:

1) C has binary products and coproducts and a zero object;
2) C has pullbacks of (split) monomorphisms;
3) C has cokernels of kernels and every morphism with zero kernel is a monomorphism;
4) the Split Short Five Lemma holds true in C;
5) cokernels are stable under pullback;
6) images of kernels along cokernels are kernels.

For the second part of 3) we observe that, since the categorical kernel of a morphism f : A → B in 
Hopfcoc(VecG) is given by the inclusion i : Hker(f) → A, if this is the zero morphism uA ◦ εHker(f) then, 
given x ∈ Hker(f), we have x = ε(x)1A and again Hker(f) = k1A, so Hker(f)+ = 0. Hence, since we 
know that the vector space ker(f) is A(Hker(f))+A, then f is injective or, equivalently, a monomorphism in 
Hopfcoc(VecG) by Lemma 5.22. Since we have shown that Hopfcoc(VecG) is pointed, finitely complete (also 
complete by Remark 4.5), cocomplete, protomodular and regular, properties 1)-5) follow (recall that, with 
C a pointed and finitely complete category, 4) is equivalent to the protomodularity of C) and then it only 
remains to prove that the image of a kernel along a cokernel is a kernel. Precisely, we want to show that, given 
j : Hker(g) → X a kernel of a mophism g : X → Z in Hopfcoc(VecG) and μ : X → X/Xf(A)+X a cokernel 
of a morphism f : A → X in Hopfcoc(VecG), there exist a morphism p : Hker(g) → H in Hopfcoc(VecG) and 
a kernel ι : H → X/Xf(A)+X in Hopfcoc(VecG) such that the following diagram commutes.
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A

f

Hker(g)
j

p

X
g

μ

Z

H
ι

X
Xf(A)+X

Now, we know that the morphism μ ◦ j has a factorization regular epimorphism-monomorphism in 
Hopfcoc(VecG) since this category is regular, i.e. there exist a regular epimorphism p and a monomor-
phism ι in Hopfcoc(VecG) such that μ ◦ j = ι ◦ p. But it is not true in general that every monomorphism 
is a kernel and then we do not have that ι is a kernel automatically. We know that p is surjective and ι is 
injective by Lemma 5.22, then we have ι = i ◦ ι′ where i is an inclusion and ι′ is an isomorphism between 
p(Hker(g)) and ι(p(Hker(g))) = μ(j(Hker(g))) = μ(Hker(g)).

Hker(g) X

μ(Hker(g))

p(Hker(g)) X
Xf(A)+X

ι′ i

p

j

μ

ι

By Corollary 5.21 we have that Hker(g) is a normal color Hopf subalgebra of X and then μ(Hker(g)) is a 
normal color Hopf subalgebra of X/Xf(A)+X by 2) of Lemma 5.4, since μ is surjective. So the inclusion i
is a kernel again by Corollary 5.21 and, since ι′ is an isomorphism, also ι is a kernel in Hopfcoc(VecG) and 
we are done. Finally, we have obtained the following result:

Theorem 6.1. The category Hopfcoc(VecG) is semi-abelian, if G is a finitely generated abelian group and 
chark �= 2.

6.1. Some consequences

Let G be a finitely generated abelian group and chark �= 2. We can go further and prove something else 
about Hopfcoc(VecG), which we know is semi-abelian. Recall from [11, Proposition 5.1.2] that every semi-
abelian category is a Mal’tsev category, so Hopfcoc(VecG) is an exact Mal’tsev category with coequalizers and 
zero object, thus we know by [20, Corollary 4.2] that the category of abelian objects in Hopfcoc(VecG), which 
we denote by Ab(Hopfcoc(VecG)), is abelian. Hence we want to determine the category Ab(Hopfcoc(VecG)) 
and we use the characterization given in [9, Theorem 6.9] (see also [13, Proposition 9]), which states that 
an object C in a semi-abelian category C is abelian if and only if its diagonal 〈IdC , IdC〉 : C → C × C is 
a normal monomorphism, i.e. it is the kernel of some morphism in C. But we have that C × C = C ⊗ C

and 〈IdC , IdC〉 = (IdC ⊗ IdC) ◦ ΔC = ΔC in Hopfcoc(VecG), hence Ab(Hopfcoc(VecG)) is given by those 
cocommutative color Hopf algebras whose comultiplication is a kernel in Hopfcoc(VecG).

Theorem 6.2. Ab(Hopfcoc(VecG)) is the category of commutative and cocommutative color Hopf algebras. 
In particular, this category is abelian.

Proof. Given C in Hopfcoc(VecG), we know that Δ is injective and then, if we write Δ = i ◦ Δ′ with 
Δ′ : C → Im(Δ) an isomorphism and i : Im(Δ) → C ⊗ C the inclusion, we have that Δ is a kernel in 
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Hopfcoc(VecG) if and only if i is a kernel in Hopfcoc(VecG). Furthermore, i is a kernel in Hopfcoc(VecG) if 
and only if Im(Δ) is a normal color Hopf subalgebra of C ⊗ C by Corollary 5.21. If C is a commutative 
color Hopf algebra, then also C ⊗C is a commutative color Hopf algebra and then Im(Δ), which is a color 
Hopf subalgebra of C ⊗C by Remark 5.3, is normal by 3) of Lemma 5.4. On the other hand, suppose that 
Im(Δ) is a normal color Hopf subalgebra of C ⊗ C, i.e. that we have ξC⊗C(C ⊗ C ⊗ Im(Δ)) ⊆ Im(Δ). For 
every a, b, c ∈ C we have that

ξC⊗C(c⊗ 1C ⊗ a⊗ b) = mC⊗C(mC⊗C ⊗ SC ⊗ SC)(Id ⊗ cC⊗C,C⊗C)(ΔC⊗C ⊗ Id)(c⊗ 1C ⊗ a⊗ b)

= mC⊗C(mC⊗C ⊗ SC ⊗ SC)(Id ⊗ cC⊗C,C⊗C)(φ(|c2|, 1G)c1 ⊗ 1C ⊗ c2 ⊗ 1C ⊗ a⊗ b)

= mC⊗C(mC⊗C ⊗ SC ⊗ SC)(φ(|c2 ⊗ 1C |, |a⊗ b|)c1 ⊗ 1C ⊗ a⊗ b⊗ c2 ⊗ 1C)

= mC⊗C(φ(|c2|, |a|)φ(|c2|, |b|)φ(1G, |a|)c1a⊗ b⊗ SC(c2) ⊗ SC(1C))

= φ(|c2|, |a|)φ(|c2|, |b|)φ(|b|, |c2|)c1aSC(c2) ⊗ b = φ(|c2|, |a|)c1aSC(c2) ⊗ b

= (ξC ⊗ IdC)(c⊗ a⊗ b).

Hence, for every a, c ∈ C, we have that

Im(Δ) � ξC⊗C(c⊗ 1C ⊗ Δ(a)) = (ξC ⊗ IdC)(IdC ⊗ Δ)(c⊗ a)

and then there exists x ∈ C such that

Δ(x) = (ξC ⊗ IdC)(IdC ⊗ Δ)(c⊗ a).

Thus, we obtain

x = lC(εC ⊗ IdC)Δ(x) = lC(εC ⊗ IdC)(ξC ⊗ IdC)(IdC ⊗ Δ)(c⊗ a)

= lC(εC⊗C ⊗ IdC)(IdC ⊗ Δ)(c⊗ a) = lC(εC ⊗ IdC)(c⊗ a)

but we also have that

x = rC(IdC ⊗ εC)Δ(x) = rC(IdC ⊗ εC)(ξC ⊗ IdC)(IdC ⊗ Δ)(c⊗ a) = ξC(c⊗ a1)εC(a2) = ξC(c⊗ a)

and then

ξC(c⊗ a) = lC(εC ⊗ IdC)(c⊗ a) for every a, c ∈ C.

Hence C is a commutative color Hopf algebra by 3) of Lemma 5.4. �
The notion of semi-abelian category was introduced to capture typical algebraic properties of groups but 

it was noted that there are many significant aspects of groups which are not captured in this more general 
context, then reinforcements of this notion were born. We recall that a category with finite limits C is called 
algebraically coherent if for each morphism f : X → Y in C the change-of-base functor f∗ : PtY (C) → PtX(C)
is coherent, i.e. it preserves finite limits and jointly strongly epimorphic pairs (see [18, Definition 3.1]). In 
[18, Theorems 6.18 and 6.24] it is shown that semi-abelian categories which are algebraically coherent 
satisfy both the condition (SH) and (NH) and are peri-abelian and strongly protomodular, thus they have 
significantly stronger properties than general semi-abelian categories. So it is interesting to understand if 
the category Hopfcoc(VecG) is algebraically coherent, still with G a finitely generated abelian group and 
chark �= 2. We recall from [15] that a finitely complete category C is said to be locally algebraically cartesian 
closed when, for every f : X → Y in C, the change-of-base functor f∗ : PtY (C) → PtX(C) is a left adjoint 
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and that if C is locally algebraically cartesian closed then it is algebraically coherent by [18, Theorem 4.5]. 
We conclude with the following result:

Proposition 6.3. The category of cocommutative color Hopf algebras is action representable and locally alge-
braically cartesian closed.

Proof. By [34, Proposition 3.2] (see also [8]), the category Comoncoc(VecG) is cartesian closed since VecG is 
a symmetric monoidally closed category (see e.g. [17]). Thus, since Hopfcoc(VecG) = Grp(Comoncoc(VecG)), 
we have that Hopfcoc(VecG) is locally algebraically cartesian closed by [23, Proposition 5.3]. Furthermore, 
the category of internal groups in a cartesian closed category is always action representable, provided it is 
semi-abelian, as it is shown in [12, Theorem 4.4] and then Hopfcoc(VecG) is also action representable. �
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