
Programming Multiagent Systems via Information

Protocols: the case of Jason+BSPL

APM Workshop 2024

Matteo Baldoni1, Amit K. Chopra3, Samuel H. Christie V2, Munindar P. Singh2

October 3, 2024 - The 6th International Asynchronous Programming Models Workshop 02-04.10.2024, in Turin,

Italy

1Università di Torino, Torino, Italy
2North Carolina State University, Raleigh, NC, USA
3Lancaster University, Lancaster, United Kingdom

1/19



Motivation

• An interaction protocol models the communication constraints between agents in

a multiagent system

• Engineering multiagent system based on protocols offers key benefits:

• Decentralized MAS ; without relying on a distinguished locus of state or control

• Clear implementation, separation between the coordination aspects and business

logic of an agent

• Loose coupling, changes in one agent’s implementation do not affect the

implementation of others

• Reducing agent complexity, avoiding programming errors

2/19



Motivation

• Unfortunately, leading (cognitive) programming models for MAS have a limited or
do not support protocols

• Jason [Vieira et al., 2007]

• JADEL [Bergenti et al., 2017]

• JaCaMo [Boissier et al., 2013]

• JADE [Bellifemine et al., 2007]

• SARL [Rodriguez et al., 2014]

3/19



Motivation

• Prevalent programming models are lacking, the common approach for dealing

with messages is reactive via a message handler for each incoming message, as in

message-oriented middleware [Hohpe and Woolf, 2004], they considers each

message independently

• Messages are generally related to each other and an agent usually needs to act
based on its state, which depends on messages received or sent, the agent code
reconstructs the necessary state of computation:

• tied up with the requisite business reasoning, and

• in more than one place, based on what message emissions and receptions can lead to

that state

4/19



Motivation

Synchronous

A common approach of programming languages paradigm: sends and receives must

interlock as in a zip (Hoare), assume FIFO messaging and agents selectively receive

messages

Violated despite FIFO messaging.

Choose to receive Accept before Transfer?

5/19



Motivation

Synchronous

A common approach of programming languages paradigm: sends and receives must

interlock as in a zip (Hoare), assume FIFO messaging and agents selectively receive

messages

Violated despite FIFO messaging.

Choose to receive Accept before Transfer?

5/19



Motivation

Is receiving a message an agent decision?

Results in deadlock!

6/19



Motivation

Is receiving a message an agent decision?

Results in deadlock!

6/19



Motivation

Is receiving a message an agent decision?

Results in deadlock!

6/19



Motivation

Common approach

Causality via control flow (state machine, AUML, process algebra, session types).

7/19



Jason+BSPL: Our goal

Overcome shortcomings of traditional

approaches, such as:

• Incompatibilities between agents due

to the message schemas being blended

into business logic

• Semantic errors due to a lack of a

formal model

• Inflexibility due to the programmer

having to maintain the protocol state

via a state machine

8/19



Jason+BSPL: Our proposal

• We adopt information protocols, in particular, Blindingly Simple Protocol

Language (BSPL) [Singh, 2011], a fully declarative and fully asynchronous

model for communication

• Jason+BSPL unites two aspects of autonomy:

• Cognitive autonomy, via Jason

• Social autonomy, via information protocols

Information protocols

Causality via information dependencies

9/19



Information protocols, BSPL [Singh, 2011]

• Roles

• Message schemas

• A name

• A sender role

• A receiver role

• One or more parameters

• A message may be received at any

time in any relative order with respect

to other messages

• The emission of a message depends

upon what information the agent has

10/19



Information protocols, BSPL [Singh, 2011]

• A message instance is a tuple of

bindings for the parameters of that

schema that are adorned either pinq or

poutq

• The pkeyq parameters of a schema

form a composite key and uniquify its

instances

Receiver: Sender:

11/19



Information protocols, BSPL [Singh, 2011]

12/19



Information protocols, BSPL [Singh, 2011]

• No two message instances with the

same bindings for overlapping pkeyq

parameters may have distinct bindings

for common non-key parameters

• No two message instances may have

overlapping key parameter bindings as

well as a binding of the same poutq

parameter

• The key parameters of a protocol

provides a basis for the uniqueness of

its enactments

13/19



Information protocols, BSPL [Singh, 2011]

• No two message instances with the

same bindings for overlapping pkeyq

parameters may have distinct bindings

for common non-key parameters

• No two message instances may have

overlapping key parameter bindings as

well as a binding of the same poutq

parameter

• The key parameters of a protocol

provides a basis for the uniqueness of

its enactments

13/19



Information protocols, BSPL [Singh, 2011]

• No two message instances with the

same bindings for overlapping pkeyq

parameters may have distinct bindings

for common non-key parameters

• No two message instances may have

overlapping key parameter bindings as

well as a binding of the same poutq

parameter

• The key parameters of a protocol

provides a basis for the uniqueness of

its enactments

13/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



An example

14/19



Jason+BSPL Programming Model

• Jason+BSPL focusses not on reactions to incoming messages

• Jason+BSPL focusses on computing messages enabled to be sent given the

protocol semantics and the information available to the agent

• Jason+BSPL abstracts out reasoning about the protocol into automatic

generated code (through the Orpheus Tool)

15/19



Jason+BSPL Programming Model

• An incoming message is added to the local state if it is consistent with the

local state, i.e., if no other binding is already known for any its parameters

(relative to the key)

• For outgoing messages:

• An enabled instance is a partial instance in that:

1. its pinq parameters are bound because their bindings are known, and

2. its poutq parameters are not bounded because they are not known

• An attempt is successful if the completed messages are mutually consistent in their

bindings; the sent messages are added to the local state

To achieve some goal, the agent (1) queries if there are enabled instances

corresponding to the message it wants to send, (2) completes them by producing

bindings for their poutq parameters, and (3) attempts to send them in one shot

16/19



Enabled-Based Programming Model

• Jason-BSPL supports a novel programming model based on message enablement,

in which the developer specifies plans for emitting enabled messages

• To achieve some agent-specific goal g , the agent queries if there are enabled

instances corresponding to the messages it wants to send,

• Completes them by producing bindings for their poutq parameters, and

• Attempts to send them all in one shot

17/19



Jason+BSPL Programming Model: Advantages

• Changes to protocol

• Changes to Agent Decision Making

• Changes to Communication Infrastructure

• Correlating Information

18/19



Jason+BSPL: The Orpheus Tool

• It is available here: https://di.unito.it/orpheus

19/19

https://di.unito.it/orpheus


Bellifemine, F. L., Caire, G., and Greenwood, D. (2007).

Developing Multi-Agent Systems with JADE.

Wiley-Blackwell.

Bergenti, F., Iotti, E., Monica, S., and Poggi, A. (2017).

Agent-oriented model-driven development for JADE with the JADEL

programming language.

Computer Languages, Systems & Structures, 50:142–158.

Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A. (2013).

Multi-agent oriented programming with JaCaMo.

Science of Computer Programming, 78(6):747–761.

Hohpe, G. and Woolf, B. (2004).

Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions.

19/19



Signature Series. Addison-Wesley, Boston.

Rodriguez, S., Gaud, N., and Galland, S. (2014).

Sarl: A general-purpose agent-oriented programming language.

In 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT), volume 3, pages 103–110.

Singh, M. P. (2011).

Information-driven interaction-oriented programming: BSPL, the Blindingly

Simple Protocol Language.

In Proceedings of the 10th International Conference on Autonomous Agents and

MultiAgent Systems (AAMAS), pages 491–498, Taipei. IFAAMAS.

Vieira, R., Moreira, Á. F., Wooldridge, M. J., and Bordini, R. H. (2007).

On the formal semantics of speech-act based communication in an

agent-oriented programming language.

19/19



Journal of Artificial Intelligence Research (JAIR), 29:221–267.

19/19


