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A B S T R A C T   

Insect meals (IM) are being pointed out as a promising sustainable protein source. However, chitin in IM may 
negatively interfere with fish performance and nutrient availability. Given that carnivorous fish have a low or 
inexistent ability to digest chitin, novel strategies are needed to overcome chitin-imposed bottlenecks. Carbo
hydrolytic sporeforming probiotics offer a competitive industrial approach, being able to resist the harsh feed 
manufacturing process, transport, storage, and animal's gastrointestinal tract, while being able to increase the 
digestibility of otherwise indigestible components. Aiming to increase IM chitin digestibility, two chitinolytic 
sporeforming fish isolates (Fish isolates 645 (FI645) and 658 (FI658)), closely related to Bacillus licheniformis, 
were isolated from European sea bass (ESB) gastrointestinal tract, and incorporated (individually or as a mixture) 
in ESB diets with high defatted Hermetia illucens larvae meal (HM) levels (30% inclusion). FI were evaluated 
regarding their effects on ESB growth performance and digestibility. The spores were able to maintain their 
viability throughout the 180 days of diet storage at room temperature. Dietary inclusion of FI645 led to higher 
chitin digestibility. Concomitantly, the digestibility of dry matter, protein, and energy increased, overall leading 
to higher feed efficiency and protein efficiency ratio. Dietary inclusion of FI645 led to increased plasma N- 
acetylglucosamine (GlcNAc) levels. This is the first evidence for diet-mediated modulation of plasma GlcNAc 
concentrations. Dietary inclusion of FI645 also increased the expressions of the genes coding for N-acetylglu
cosamine kinase (nagk) and GlcNAc phosphomutase (pgm3), key enzymes from the GlcNAc salvage pathway and 
the hexosamine biosynthetic pathway (HBP). On the other hand, no differences were found for the expression of 
N-acetyl-D-glucosamine-6-phosphate deacetylase (amdhd2), a precursor enzyme for GlcNAc redirection to 
glycolysis. These results hint that free GlcNAc resulting from increased chitin digestibility might be preferentially 
redirected to protein O-GlcNAcylation processes through HBP in fish cells. Additionally, when challenged with 
Vibrio anguillarum, and after being feed for one month with the same diets, D645 also increased ESB survival from 
52.5% to 77.5%, when compared to the control. Together, these results establish the potential of using FI645 as a 
probiotic for enhancing chitin digestion and acting as a prophylactic agent for ESB protection against 
V. anguillarum infection. This strategy opens novel possibilities for using commodities, including high chitin 
levels in aquafeeds, and reducing the use of antibiotics in aquaculture.   
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1. Introduction 

Insect meals (IM) have a high potential to be used as ingredient in 
aquafeeds due to their suitable protein content and amino acid profile, 
and moldable fatty acid profile and content (Hua et al., 2019; Riekkinen 
et al., 2022; Siddiqui et al., 2022; Tran et al., 2022). Among the different 
insect species authorized for use in animal feed, Hermetia illucens (HI) 
has been the most studied and reared worldwide (Tran et al., 2022; van 
Huis, 2020; Weththasinghe et al., 2022), demonstrating high potential 
as a sustainable protein source in aquafeeds (Basto et al., 2020; Caimi 
et al., 2021; Hossain et al., 2021; Melenchón et al., 2021). While in some 
cases, high HI meal inclusion (>25%) in fish diets has no apparent 
drawback (Biasato et al., 2022; Melenchón et al., 2022; Moutinho et al., 
2022; Rema et al., 2019), inclusion levels over 25% usually lead to 
poorer protein and/or lipid apparent digestibility coefficients (ADC) and 
growth performance (Dumas et al., 2018; Fisher et al., 2020; Stejskal 
et al., 2020; Stejskal et al., 2023). This is mainly attributed to the 
increased dietary chitin content, which has been negatively correlated 
with protein and lipid digestibility both in vitro (Marono et al., 2015) and 
in vivo (Eggink et al., 2022; Karlsen et al., 2017; Mastoraki et al., 2020; 
Piccolo et al., 2017). 

Chitin, a polymer mainly composed of β-1-4 linked N-acetylglucos
amine monomers (GlcNAc), is a structural component of the insect's 
exoskeleton (Muthukrishnan et al., 2016). Through a process called 
sclerotization, crystalline chitin forms a tightly bound matrix with 
cuticular proteins, severely limiting both chitin and associated protein 
enzymatic hydrolysis (Muthukrishnan et al., 2016). The breakdown of 
this chitin-protein matrix is mostly attributed to the combined action of 
two enzymes: chitinase, which, cleaves chitin into smaller molecules 
called chitooligosaccharides (COS); and chitobiase, which further hy
drolyses these molecules into GlcNAc monomers (Fines and Holt, 2010; 
Henry et al., 2015). To date, while chitinase expression was reported in 
some fish species (Gao et al., 2017a; Holen et al., 2023; Ikeda et al., 
2017; Koch et al., 2014), the extent of the potential endogenous or 
microbiota enzymatic contribution to chitin breakdown remains to be 
elucidated (Eggink et al., 2022; Hua, 2021; Panteli et al., 2021; Rangel 
et al., 2022a). Additionally, GlcNAc uptake and metabolism are also 
overlooked in fish. GlcNAc biological relevance is, however, well 
documented for prokaryotic and eukaryotic organisms where, through a 
highly conserved pathway called hexosamine biosynthetic pathway 
(HBP), GlcNAc can have a major impact on metabolic and immune gene 
expression, cellular signaling, or protein activation processes (Abdel 
Rahman et al., 2013; Chang et al., 2020; Groves et al., 2013; Hardivillé & 
Gerald, 2014; Holt et al., 1987). 

Chitin digestion can be particularly challenging for carnivorous 
species (NRC, N, 2011). Upon dietary HI meal inclusion, low or inexis
tent chitin digestibility was observed in economically important 
carnivorous fish species, like Atlantic salmon (Salmo salar) (13–40%) 
(Olsen et al., 2006), rainbow trout (Oncorhynchus mykiss) (2–5%) 
(Lindsay et al., 1984), or meagre (Argyrosomus regius) (not detected) 
(Guerreiro et al., 2021). Moreover, as HI meal seems unable to promote 
the emergence of chitinolytic bacteria in the fish gut (Rangel et al., 
2022a; Rangel et al., 2022b), alternative strategies are needed to in
crease chitin digestibility of IM-based diets. 

Probiotics with digestive-enhancing abilities have been proven to be 
an efficient strategy to improve fish performance, potentially carrying 
additional benefits for the immunological status and gut microbiota 
composition (Butt and Volkoff, 2019; Van Doan et al., 2020; Wuertz 
et al., 2021). Several bacteria belonging to the Lactobacillus, Carno
bacterium, Bacillus, Streptomyces, and Enterococcus genus have been 
successfully used as probiotics in aquaculture (Van Doan et al., 2020). 
Among these, Bacillus spp. are particularly attractive, as they can form 
spores, highly robust structures that withstand extreme conditions 
(Nicholson and Setlow, 1990; Nicholson et al., 2000; Setlow, 2006). This 
ability constitutes a potential advantage for the animal feed industry, as 
Bacillus spp. spores can resist the harsh extrusion process and 

gastrointestinal conditions (Cutting, 2011; Niu et al., 2018). 
Aiming to improve dietary chitin digestibility, a selective dietary 

pressure to modulate European sea bass (ESB) gut microbiota towards 
enrichment with chitinolytic bacteria was performed (Rangel et al., 
2022a). For that purpose, in a previous study, three IM were used and, 
through an in vitro sequential screening, two fish isolates (FI) closely 
related to Bacillus licheniformis, namely FI645 and FI658, were selected 
based on their sporeforming ability, total chitinolytic activity, hemolytic 
activity, antibiotic resistance, sporulation yield, and survival in 
gastrointestinal-like conditions (Rangel et al., 2022b). In the present 
study, the selected FI were supplemented individually or as a mixture in 
diets for ESB containing 30% inclusion of HI, to evaluate their probiotic 
potential to enhance growth performance, digestibility, and ability to 
protect fish from a Vibrio anguillarum infection. Moreover, this study also 
aimed to provide the first insights into potential routes for GlcNAc 
metabolism, in fish. 

2. Materials and methods 

2.1. Probiotic spores' production and purification 

Each fish isolate (FI645 and FI658), whose selection was previously 
described in Rangel et al. (2022b), was induced to sporulate at high 
yields in liquid Difco Sporulation Medium according to Tavares et al. 
(2013). Sporulation occurred for 48 h at 37 ◦C in an orbital shaker at 
200 rpm, and sporulation efficiency in each production cycle was 
determined by plating serial dilutions in Bott & Wilson (B&W) salts 
solution (1.24% K2HPO4, 0.76% H2PO4, 0.1% trisodium citrate, 0.6% 
[NH4]2SO4, pH 6.7) isotonic buffer on Luria Bertani (LB) agar, before 
and after 20 min heat treatment at 80 ◦C, to eliminate remaining 
vegetative cells. Following 24 h incubation at 37 ◦C, visible colonies 
were counted, and sporulation efficiency was calculated as the titer of 
Colony-Forming Units (CFU mL− 1) before and after the heat treatment. 

The preparation of highly purified spores was done according to 
Tavares et al. (2013). Briefly, spore preparations of each isolate were 
centrifuged for 10 min at 10,000 ×g and 4 ◦C. Cell pellets were sus
pended in 1 volume of 50 mM Tris-HCl (pH 7.2) containing 50 μg mL− 1 

of lysozyme, and incubated for 1 h at 37 ◦C. After a single wash with 1 
volume of distilled water (10 min at 10,000 ×g, 4 ◦C), cell pellets were 
suspended in 0.05% SDS (sodium dodecyl sulfate) solution by vortexing. 
Samples were then washed 3× with distilled water, suspended in 1 
volume of distilled water, and lyophilized. Before dietary incorporation, 
serial dilutions of the lyophilized spores were carried out in B&W salts, 
and the number of CFU mg− 1 was determined as described above. 

2.2. Experimental diets and proximate analysis 

Four experimental diets were formulated to be isoproteic (44%) and 
isolipidic (17%): a control diet, containing 30% HI meal (CTR diet); two 
CTR-like diets supplemented with 2 × 109 CFU kg− 1 of either FI645 
(D645 diet) or FI658 (D658 diet); and a CTR-like diet supplemented with 
1 × 109 CFU kg− 1 of both FI645 and FI658 (MIX diet). All dietary in
gredients were finely ground, well mixed, and dry pelleted in a labora
tory pellet mill (California Pellet Mill, CPM Crawfordsville, IN, USA) 
through a 2 mm die. The pellets were dried in an oven at 40 ◦C for 24 h 
and stored at room temperature in airtight bags until used. For the di
gestibility trial, 5 g kg − 1 chromic oxide (Cr2O3) was added to the diets as 
an inert marker, substituting the same amount of wheat meal. In
gredients and proximate composition of the experimental diets are 
presented in Table 1. Chemical characterization (dry matter, protein, 
lipid, and ash contents) of the ingredients and experimental diets was 
carried out following the guidelines of the Association of Official 
Analytical Chemists methods (AOAC, 2000). Diets were analyzed for 
chitin composition as described by Guerreiro et al. (2020). Spore 
quantification and viability were measured by collecting 100 mg of each 
diet stored in airtight bags at room temperature (20–25 ◦C) at different 
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time points (days 0, 30, 60, 120, and 180). Thereafter, each sample was 
diluted in 1 mL of B&W solution, heat-treated (20 min at 80 ◦C), and 
CFU determined as described above. Triplicates were used for each time 
point. 

2.3. Animals and growth trial conditions 

European sea bass (Dicentrarchus labrax) (ESB) juveniles were ob
tained from Portuguese Institute for Sea and Atmosphere (IPMA), Olhão, 
Portugal. After arrival at CIIMAR experimental facilities (Matosinhos, 
Portugal) the fish were submitted to a 2-week quarantine period and fed 
with a commercial diet (44% protein and 18% lipids, Aquasoja Sus
tainable Feed: Sorgal, Ovar, Portugal). After 4 weeks of acclimation to 
the experimental system, 12 groups of 20 fish with an initial mean body 
weight of 24.6 ± 0.2 g were established and the experimental diets were 
randomly allocated to triplicate tanks. The experimental system con
sisted of 12 fiberglass tanks of 100 L water capacity in a recirculating life 
support system with artificial illumination (photoperiod set to 12:12 h 
light: dark), and water parameters maintained at 35.6 ± 0.6 g L− 1 

salinity, 7.6 ± 0.4 mg L− 1 O2, 7.3 ± 0.1 pH, thermoregulated to 23 ±
0.5 ◦C. The fish were hand-fed to apparent visual satiation twice daily, 6 
days per week. The growth trial lasted 91 days. 

2.4. Digestibility trial 

At the end of the growth trial, 8 fish from each tank with a mean body 
weight of 75 ± 3 g were transferred to a digestibility system consisting 
of a battery of 12 fiberglass tanks of 60 L capacity designed according to 
Cho et al. (1982) and with a settling column connected to the outlet of 
each tank for feces collection. Tanks were supplied with a continuous 
flow of seawater (36.0 ± 0.5 g L− 1 salinity, 7 mg L− 1 oxygen) thermo- 
regulated to 23.0 ± 1.0 ◦C. The first 8 days were used for fish to adapt 
to the experimental conditions, followed by 30 days of feces collection. 
During the trial, fish were hand-fed to apparent visual satiation twice a 
day, 7 days a week, and feces were collected from the settling column 
once a day, before the morning meal. Immediately after collection, feces 
from each tank were centrifuged at 3000 ×g for 10 min and then stored 
at 4 ◦C. Before proximal analysis determinations, feces were dried at 
40 ◦C for one day, grounded, and stored at room temperature until 
analysis. 

2.5. Sampling 

Fish in each tank were bulk weighed at the beginning and end of the 
growth trial, after one day of feed deprivation. For that purpose, fish 
were anesthetized with 0.3 mL L− 1 ethylene glycol monophenyl ether. 
After the final weighing, the fish were fed for 2 more days to minimize 
the stress caused by manipulation. Then, six fish from each tank were 
sampled 5 h after the morning meal, sacrificed with a sharp blow to the 
head, and dissected on chilled trays. The whole intestine with pyloric 
caeca and contents was freed from the adjacent adipose and connective 
tissues, snap-frozen in liquid nitrogen, and stored at − 80 ◦C until 
digestive enzyme analyses. Three fish were used for measuring total 
alkaline protease, trypsin, lipase, and α-amylase activities, and the other 
three fish were for accessing total chitinase activity. Additionally, 
approximately 1 cm of the distal intestine (DI, distinct from the mid 
intestine by its darker mucosa, greater diameter, and presence of an 
annular ring) was collected from 3 of these fish for histological evalu
ation. The samples were washed in phosphate-buffered saline solution 
(PBS) and fixed in phosphate-buffered formalin (4%, pH 7.4). After 24 h, 
the samples were transferred to a 70% ethanol solution until further 
processing. The DI from the other three fish was collected, washed in 
PBS, and stored in RNA Latter for 24 h at 4 ◦C, being subsequently 
transferred at − 80 ◦C until further processing for gene expression 
analyses. 

2.6. Digestive enzymes 

For total alkaline protease (TAP), trypsin (EC3.4.21.4), lipase 
(EC3.1.1.3), and α-amylase (EC3.2.1.1) activities, samples were ho
mogenized in ice-cold 50 mM Tris-HCl buffer pH 7.5 (1:6 w:v). Ho
mogenates were centrifuged at 33,000 ×g for 15 min at 4 ◦C, and the 
resultant supernatants were stored at − 80 ◦C until digestive enzyme 
activity evaluation as described by Couto et al. (2016). Results are 
presented as specific activity. Protein concentration was ascertained as 
depicted by Bradford (1976) using bovine serum albumin (Sigma- 
Aldrich) as standard. 

For total chitinase activity, samples were homogenized (1:6 w:v) in 
ice-cold McIlvaine buffer (0.15 M citric acid, 0.3 M sodium phosphate 
dibasic, pH 7). The homogenates were centrifuged for 5 min at 5000 ×g 
and the supernatants were aliquoted and stored at − 80◦ until further 
processing. Total chitinase activity was measured as described by 
Guerreiro et al. (2021). All enzyme assays were performed at 37 ◦C with 
Multiskan GO microplate reader (Model 5111 9200; Thermo Scientific, 
Nanjing, China). 

2.7. Plasma metabolites and innate immune parameters 

Plasma glucose and cholesterol were determined using Spinreact 

Table 1 
Ingredient composition and proximate analysis of the experimental diets for the 
growth trial.   

Diets  

CTR D645 D658 MIX 

Ingredients (% dry weight basis)     
Fish meala 20.0 20.0 20.0 20.0 
Soluble fish protein concentrateb 2.0 2.0 2.0 2.0 
Hermetia illucens larvae mealc 30.0 30.0 30.0 30.0 
Corn glutend 7.5 7.5 7.5 7.5 
Soybean meale 5.6 5.6 5.6 5.6 
Wheat mealf 16.2 16.2 16.2 16.2 
Fish oil 13.1 13.1 13.1 13.1 
Vitamin premixg 1.0 1.0 1.0 1.0 
Mineral premixh 1.0 1.0 1.0 1.0 
Choline chloride (50%) 0.5 0.5 0.5 0.5 
Binderi 1.0 1.0 1.0 1.0 
Taurinej 0.5 0.5 0.5 0.5 
Dibasic calcium phosphate 1.7 1.7 1.7 1.7 

Probiotic inclusion (109 CFU Kg− 1)     
FI645 – 2 – 1 
FI658 – – 2 1 

Proximate analyses (% dry weight basis)     
Dry matter 96.0 94.1 93.5 95.2 
Crude protein 44.4 44.2 44.6 44.2 
Crude fat 17.0 17.1 17.1 17.0 
Ash 9.7 9.9 9.8 9.8 
Chitin 1.7 1.7 1.7 1.7  

a Sorgal, S.A. Ovar, Portugal (CP: 70.3% DM; GL: 12.0 %DM). 
b Sorgal, S.A. Ovar, Portugal (CP: 79.7% DM; GL: 7.14% DM). 
c Black soldier fly larvae meal (CP: 62.4% DM; GL: 6.3% DM). 
d Sorgal, S.A. Ovar, Portugal (CP: 62.8% DM; GL: 1.2% DM). 
e Sorgal, S.A. Ovar, Portugal (CP: 55.4% DM; GL: 1.9% DM). 
f Sorgal, S.A. Ovar, Portugal (CP: 15.5% DM; GL: 1.9% DM). 
g Vitamins (mg kg− 1 diet): retinol, 18,000 (IU kg− 1 diet); cholecalciferol, 2000 

(IU kg− 1 diet); α- tocopherol, 35; menadione sodium bisulphate, 10; thiamine, 
15; riboflavin, 25; Ca pantothenate, 50; nicotinic acid, 200; pyridoxine, 5; folic 
acid, 10; cyanocobalamin, 0.02; biotin, 1.5; ascorbyl monophosphate, 50; 
inositol, 400. 

h Minerals (mg kg− 1 diet): cobalt sulphate, 1.91; copper sulphate, 19.6; iron 
sulphate, 200; sodium fluoride, 2.21; potassium iodide, 0.78; magnesium oxide, 
830; manganese oxide, 26; sodium selenite, 0.66; zinc oxide, 37.5; dibasic cal
cium phosphate, 5.93 (g kg− 1 diet); potassium chloride, 1.15 (g kg− 1 diet); so
dium chloride, 0.44 (g kg− 1 diet). 

i Aquacube. Agil, UK. 
j Feed-grade taurine, Sorgal, S.A. Ovar, Portugal. 
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(Girona, Spain) commercial kits (glucose kit, ref. 1,001,191; cholesterol 
kit, ref. 1,001,091). Plasma N-acetylglucosamine (GlcNAc) was assessed 
using a colorimetric method for the determination of N-acetylamino 
sugars, as proposed by Reissig et al. (1955), with some modifications. 
Briefly, 0.05 mL of plasma was transferred to a tube containing 0.01 mL 
of 0.8 M borate buffer (K2B4O7), pH 9.3. The solution was boiled for 
exactly 3 min and thereafter it was cooled in a water bath at room 
temperature. Color development was attained by adding 0.5 mL of p- 
dimethyl-amino-benzaldehyde (DMAB) solution (15 g L− 1 DMAB in 
glacial acetic acid with 1.25% (v:v) 12 N hydrochloric acid), and incu
bated at 37 ◦C for 20 min. A GlcNAc standard curve ranging from 0.4 to 
250 μM was prepared. Plasma total proteins and total immunoglobulins 
were quantified using Pierce™ BCA Protein Assay Kit (ref. 23,225; 
Thermo Scientific) and performed as described by Siwicki (1993). 
Peroxidase and lysozyme activities were carried out as described by 
Machado et al. (2015). All metabolites concentration and enzyme ac
tivity readings were conducted in a Multiskan GO microplate reader 
(Model 5111 9200; Thermo Scientific, Nanjing, China). 

2.8. Histological processing and morphological assessment 

The DI samples were processed in a tissue processor (Model Citadel 
2000, Thermo Scientific, Nanjing, China), and sectioned with a micro
tome (Model Jung RM 2035, Leica Instruments GmbH, Wetzlar, Ger
many). The samples were stained with hematoxylin and eosin using an 
automatic slide stainer (Model Shandon Varistain 24–4, Thermo Scien
tific, Nanjing, China). A blind assessment of the DI slides was carried out 
taking particular attention to any inflammatory changes (Baeverfjord 

and Krogdahl, 1996; Krogdahl et al., 2003), namely: changes in mucosal 
folds height; width and cellularity of the lamina propria and submucosa; 
number of intraepithelial lymphocytes and eosinophilic granulocytes; 
enterocyte overall organization, including nucleus position and supra
nuclear vacuolization (Fig. 1). A semi-quantitative scale scoring was 
applied as described in Couto et al. (2016), where scores ranged from 
0 (normal) to 5 (highly modified), regarding the degree of structural 
alterations. The overall histomorphological alterations were estimated 
by averaging scores of the parameters described above. Images were 
acquired with Zen software (Blue edition; Zeiss, Jena, Germany). 

2.9. Primer design and gene expression analysis 

Pairs of oligonucleotide PCR primers were designed to target genes 
coding for key enzymes of the hexosamine biosynthetic pathway (HBP), 
namely: glutamine:fructose-6-phosphate amidotransferase (gfat; E.C. 
2.6.1.16), N-acetylglucosamine kinase (nagk; E.C. 2.7.1.59), GlcNAc 
phosphomutase (pgm3; E.C. 5.4.2.3), N-acetyl-D-glucosamine-6-phos
phate deacetylase (amdhd2; E.C. 3.5.1.25), and O-GlcNac transferase 
(ogt; E.C. 2.4.1.255). The primers were designed based on predicted 
mRNA sequences of ESB and other fish species (e.g., Salmo salar, Morone 
saxatilis, Sparus aurata, Oncorhynchus mykiss) available at the National 
Center for Biotechnology Information nucleotide database (http://www 
.ncbi.nlm.nih.gov, last access on June 15th, 2022). Primers were 
designed using Primer Blast (https://www.ncbi.nlm.nih.gov/tools/prim 
er-blast/). To avoid unspecific genomic DNA binding, primers were 
designed to span an exon-exon junction. 

For each diet, total RNA was extracted from the samples of DI using 

Fig. 1. Histological features of European seabass distal intestine fed Control (A, C) and Mix (B, D) diets. Lamina propria (lp), submucosa (SM), supranuclear 
vacuolization (*), eosinophilic granulocytes (arrows). Hematoxylin-eosin (HE) staining. 
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Direct-zol™ RNA MiniPrep Kit (Zymo Research, Irvine, CA, USA), 
following manufacturer instructions. Briefly, samples were homoge
nized in 500 μL TRI Reagent using Precellys 24 homogenizer (Bertin 
Technologies, Montigny-Le-Bretonneux, France), in a 2 mL vial, and 
then centrifuged at 13,000 ×g for 1 min at 4 ◦C. The supernatant was 
collected and mixed with an equal volume of absolute ethanol (PanReac, 
Barcelona, Spain). The mixture was transferred into a spin column 
(supplied with the kit), and centrifuged for 1 min at 13,000 ×g, at 4 ◦C. 
The samples were then washed with 400 μL of wash buffer and centri
fuged for 1 min at 13,000 ×g, followed by a DNase treatment. The 
resulting RNA was washed twice and eluted in 50 μL of DEPC-treated 
water. RNA quantity was measured spectrophotometrically using 
μDrop™ Plate (Thermo Scientific, Courtaboeuf, France) in a Multiskan 
GO microplate reader (Model 5111 9200; Thermo Scientific, Nanjing, 
China). 1 μg of total RNA was used to generate cDNA following the NZY 
First-Strand cDNA Synthesis Kit (NZYTech, Lisbon, Portugal) protocol. 
The final product was stored at − 20 ◦C until further analyses. 

Gene expression was assessed using real-time quantitative PCR (CFX 
Connect™ Real-Time System, Bio-Rad, California, USA). cDNA ampli
fication was performed using specific PCR primers (Table 2). Primer 
efficiency was determined as described by Monteiro et al. (2021). Real- 
time qPCR reactions were performed using 3.5 μL of ultrapure water 
(Sigma-Aldrich, Taufkirchen, Germany), 5 μL of SsoAdvanced Universal 
SYBR® Green supermix (Bio-Rad, California, USA), 0.5 μL of each 
primer and 0.5 μL cDNA from each sample, in a final volume of 10 μL. 
The different transcripts were amplified under the following conditions: 
95 ◦C for 30 s for denaturation, followed by 40 cycles of 95 ◦C for 15 s 
and 55 ◦C for 30 s. Melting curve analysis was performed to verify the 
presence of a specific amplicon, and that no primer dimers were formed. 
Relative expression of each transcript was normalized using the 
comparative threshold cycle (Ct) methodology with only one house
keeping gene, namely elongation-factor 1-alpha gene (ef1α), due to its 
expression and stability (Monteiro et al., 2021), and calculated using the 
Pfaffl method (Pfaffl, 2001). 

2.10. Bacterial challenge trial 

The challenge trial was performed using 10 groups of 20 fish with a 
mean body weight of 54 ± 10.6 g, in a recirculating aquaculture system 
equipped with 100 L fiberglass tanks. Four groups were fed the CTR diet 
and two groups were fed each of the tested diets (D645, D658, and MIX). 
Fish were maintained with an artificial illumination photoperiod set to 
12:12 h light:dark and controlled water parameters (35.6 ± 0.6 g L− 1 

salinity, 7.6 ± 0.4 mg L− 1 O2, 7.3 ± 0.1 pH, 23 ± 0.5 ◦C). Fish were 
hand-fed to apparent visual satiation twice daily, 6 days per week for 31 
days. Next, the fish were fasted for 24 h and then were intraperitoneally 
injected with 100 μL of a solution containing 1.5 × 107 CFU mL− 1 of 
pathogenic Vibrio anguillarum DSMZ 21597 (a concentration previously 
established as LD50). Two groups previously fed with the CTR diet were 
intraperitoneally injected with PBS and served as a negative control. 

Fish mortality was monitored for 8 days. 

2.11. Statistical analysis 

Data are represented as means ± standard deviation. All data were 
checked for normal distribution and homogeneity of variances using 
Shapiro-Wilk and Levene tests, respectively, and when necessary 
transformed. Spores' viability and variation was analyzed using a 
repeated measure analysis of variance (ANOVA). Data corresponding to 
the fish growth performance, digestibility, enzymatic activities, plasma 
metabolites and immune parameters, and gene expression was analyzed 
by two-way ANOVA with fish isolates (FI645 and FI658) as factors. 
When interaction was observed, a Dunnett's multiple comparisons test 
was performed to identify differences between the supplemented diets 
and the control. Histological data were not normal nor homogeneous 
and could not be normalized, thus the non-parametric Kruskal-Wallis 
test was performed followed by all pairwise comparisons with p values 
adjusted by the Bonferroni correction for multiple tests. The cumulative 
survival in the challenge trial was evaluated by the Kaplan-Meier 
method (Log rank), comparing each supplemented diet with the CTR. 
Differences were considered statistically significant when p < 0.05. All 
statistical analysis was done using IBM SPSS Statistics v28 (IBM Corp., 
New York, USA). 

3. Results 

Fish isolates (FI) spore quantification immediately after diet manu
facture (day 0), showed that the isolates were within the expected 
supplemented concentrations. Additionally, spores' viability was main
tained up to 180 days (Fig. 2). 

Fish promptly accepted the experimental diets, and no mortality was 
recorded throughout the growth and digestibility trials. Dietary pro
biotic supplementation did not affect final body weight, daily growth 
index, or feed intake (Table 3). In contrast, dietary supplementation 
with FI645 significantly decreased feed conversion ratio. Protein effi
ciency ratio was higher in fish fed the FI645 supplemented diets (D645 
and MIX diets). 

Total alkaline protease (TAP) activity was increased in fish fed the 
D645 diet and decreased in fish fed the D658 diet (Table 4). No effect of 
dietary probiotic supplementation was observed in trypsin, lipase, and 
α-amylase activities. 

The apparent digestibility coefficients (ADC) of dry matter, protein, 
and energy were higher in the D645 diet than in the control (Table 5). 
The ADC of chitin was significantly higher in the diets including the 
FI645 probiotic, being twice higher in the D645 diet than in the control 
(47.8% vs. 23.8%, respectively). The ADC of lipids was not affected by 
diet composition. 

No effects of diet composition were observed in any distal intestine 
histological parameter analyzed (Table 6). The mean score of all eval
uated parameters also did not differ among groups. 

Dietary supplementation with FI645 led to higher plasma N-acetyl
glucosamine levels than with the other diets (Table 7). No further dif
ferences were observed in the levels of the other plasma metabolites 
measured. Dietary supplementation with FI645 also led to higher 
plasma total immunoglobulins levels, while no differences were 
observed in lysozyme and peroxidase activities. 

Distal intestine expression of nagk and pgm3 was significantly 
induced in fish fed with diets supplemented with FI645 (Fig. 3). No 
further differences were observed in the expression of the other genes 
measured. 

No mortality was observed in the negative control group (PBS- 
treated fish) during the bacterial challenge (Fig. 4). Diet D645 signifi
cantly increased fish cumulative survival from 52.5% to 77.5%, when 
compared to the CTR diet. Additionally, while not statically different, 
diets D658 and MIX showed higher cumulative survival values (62.5% 
and 65%, respectively) than the CTR diet (52.5%). 

Table 2 
Oligonucleotide primer-pairs used in this study.  

Primer name Primer sequence (5′- 3′) Amplicon 
size (bp) 

Reference 

gfat_esb_FW CGAGGTTACGACGTGGACTG 
93 bp This study gfat_esb_REV TGCCAGGCTTTTGTTGTTAGC 

nagk_esb_FW ATCAGGGACCGGCTCTAACTG 
103 bp This study 

nagk_esb_REV CCAGAATGCTGAGCCCTCAT 
naga_esb_FW TCTGGAGGGTCCGTTCATC 219 bp This study 
naga_esb_REV GGCCACAGAGTGACCTAAGGAC 
pgm3_esb_FW AGCTCAAAGTCAAGGTGTCGG 

176 bp This study pgm3_esb_REV CCTCTGCGTAAACTCTCACGA 
ogt_esb_FW ATGCCCTGAAGGAGAAAG 

190 bp This study ogt_esb_REV AACTCTGGGAACACCTCTAGT 
ef1α_esb_FW GCTTCGAGGAAATCACCAAG 

153 bp 
Geay et al. 
(2010) ef1α_esb_REV CAACCTTCCATCCCTTGAAC  
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4. Discussion 

Dietary inclusion of Bacillus spp. as probiotics has been demonstrated 
to be an efficient strategy to increase feed digestibility, as the exo
enzymes produced by these bacteria are proficient at hydrolyzing a large 
array of carbohydrates, lipids, and proteins (Van Doan et al., 2020). 
Chitin is among the carbohydrates postulated to be hydrolyzed by pro
biotic bacteria (Tran et al., 2022). Present in insects' exoskeleton, chitin 
is considered indigestible by most fish, being the main responsible for 
the decrease in protein and energy digestibility in IM-based diets (Henry 
et al., 2015). This negative correlation between dietary chitin content 
and protein digestibility was confirmed both in vitro (Marono et al., 
2015) and in vivo (Eggink et al., 2022; Karlsen et al., 2017; Mastoraki 
et al., 2020; Piccolo et al., 2017). In fish, upon IM inclusion in the diets 
two main chitin antinutritional modes of action are proposed: chitin can 
increase viscosity within the fish intestine, decreasing feed exposure to 
digestive enzymes (Razdan and Pettersson, 1994); and/or the chitin 
matrix can entrap the sclerotized protein, thus reducing enzymatic ac
cess (De Marco et al., 2015). Removing chitin from IM, however, was 
shown to increase protein digestibility (Belghit et al., 2019). Present 
results corroborate these observations, as dietary supplementation with 
FI645 increased chitin digestibility and, concomitantly, increased pro
tein digestibility. In turn, increased chitin digestibility is most likely 
driven by an increase in the total chitinolytic activity, which, although 
no statistical differences were found (p = 0.052), shows a tendency to
wards a concomitant increase with FI645 inclusion. Coupled with 
FI658's inability to increase the fish chitinolytic activity when compared 
with fish fed the CTR diet, it is plausible to speculate that the apparent 
increase observed in the MIX and D645 diets occurred in a FI645 
concentration-dependent manner, opening promising prospects for 
further inclusion level optimization. 

On the other hand, both intestinal chitinolytic activity and chitin 
digestibility were observed in fish fed the CTR diet. While several 
carnivorous fish species possess only vestigial or even no chitin di
gestibility (Lindsay et al., 1984; Guerreiro et al., 2021), in some cases, 
species such as Atlantic salmon and rainbow trout have been verified to 
digest chitin to a reasonable extent (Eggink et al., 2022; Olsen et al., 
2006). However, whereas endogenous chitinase expression and chiti
nase activity have been detected in these species (Eggink et al., 2022; 
Holen et al., 2023) the full extent of the endogenous and microbiota 
contributions remains to be elucidated. In ESB, is plausible that chitin 
digestibility results from HI-driven ESB intestinal microbiota modula
tion, as previously shown by Rangel et al. (2022a). However, chitino
lytic activity stemming from endogenously expressed chitinases cannot 
be ruled out, as ESB is known to express acidic mammalian chitinase in 
its intestine (Calduch-Giner et al., 2016). Independently of the endog
enous and microbiota contributions, as dietary FI645 supplementation 

Fig. 2. Spores' viability in the experimental diets during storage time at room temperature for 180 days.  

Table 3 
Growth performance and feed utilization efficiency of European sea bass fed the 
experimental diets.   

Diets Two way-Anova  

CTR D645 D658 MIX FI645 FI658 INT 

FBWa 74.3 
± 1.2 

75.9 ±
1.3 

74.9 
± 1.7 

77.9 ±
4.5 

0.245 0.506 0.708 

DGIb 1.42 
± 0.03 

1.46 ±
0.03 

1.44 
± 0.03 

1.49 ±
0.09 

0.245 0.517 0.730 

FIc 13.4 
± 0.2 

13.2 ±
0.1 

13.5 
± 0.2 

13.2 ±
0.4 

0.262 0.848 0.791 

FCRd 1.20 
± 0.01 

1.18 ±
0.01 

1.21 
± 0.01 

1.16 ±
0.01 <0.001 0.389 0.070 

PERe 1.86 
± 0.00 

1.92 ±
0.02** 

1.85 
± 0.01 

1.96 ±
0.01** 

<0.001 0.145 0.040 

Mean and standard deviation (± SD) are presented for each parameter (n = 3). 
When interaction was significant, Dunnett's test was performed to compare the 
probiotic supplemented diets to the control. Statistical differences are repre
sented by asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). 

a FBW (Final body weight) (g). 
b DGI (Daily Growth Index) (%): ((final body weight1/3 

− initial body weight1/ 

3)/time in days) × 100. 
c FI (Feed intake) (g kg ABW− 1 day− 1) with ABW (Average body weight) =

(initial body weight + final body weight)/2. 
d FCR (Feed conversion ratio): feed intake/weight gain. 
e PER (Protein efficiency ratio): weight gain/protein intake. 

Table 4 
Specific activities of total alkaline protease (TAP), trypsin, lipase, α-amylase 
(mU/mg protein) and total chitinolytic activity (TCA) (μg NAG / h / g wet tissue) 
in the intestine of European sea bass fed the experimental diets.   

Diets Two way-Anova  

CTR D645 D658 MIX FI645 FI658 INT 

TAP 
481.4 
±

217.2 

551.6 
±

250.0 

379.2 
±

132.2 

408.3 
±

150.7 
0.028 0.001 0.346 

Trypsin 138.7 
± 56.4 

134.4 
± 50.5 

144.8 
± 42.5 

122.4 
± 24.2 

0.241 0.791 0.423 

Lipase 13.3 
± 2.1 

14.7 
± 4.0 

17.2 
± 9.0 

13.8 
± 3.2 

0.694 0.681 0.289 

α-Amylase 74.9 
± 25.8 

64.2 
±

29.69 

51.7 
± 25.8 

66.4 
± 25.6 

0.317 0.271 0.031 

TCA 3.04 
± 0.86 

4.34 
± 0.47 

3.17 
± 1.44 

3.61 
± 1.50 

0.052 0.484 0.323 

Mean and standard deviation (± SD) are presented for each parameter (n = 9). 
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was able to double chitin digestibility (47.8% vs. 23.8% in the CTR diet), 
these results also support the crucial role of the microbiota in the 
degradation of chitin in fish, as previously suggested by several other 
authors (Itoi et al., 2006; Ray et al., 2012; Sugita et al., 1999). Moreover, 
whereas in this study, only total chitinolytic activity was measured, to 
provide a better understanding of the enzymatic landscape present in 
the fish's digestive tract, subsequent analysis should also seek clarify 
endo- and exo-chitinases as well as chitobiase activity. 

On the other hand, while increased chitin digestibility can partially 
explain the increase in dry matter digestibility in fish fed diet D645, it is 
important to mention that the latter can also be a result of increased 
digestibility of the dietary starches and sugars, present in diets con
taining plant-based ingredients. In fact, probiotics Bacillus spp. have 
been demonstrated to increase the digestibility of plant-based diets 
(Adorian et al., 2019; Hamza et al., 2016; Serra et al., 2019). Moreover, 
as B. licheniformis spores can survive extrusion processes (Niu et al., 
2018), the digestibility of these water-soluble carbohydrates could 

potentially be further increased in extruded diets, as the high tempera
tures to which these components are exposed can increase their 
bioavailability (Enes et al., 2011). 

Finally, probiotics can also modify intestinal architecture charac
teristics by modification of enterocyte tight junctions, thus limiting or 
enhancing macromolecules and pathogen permeability through the 
paracellular diffusion route (Maas et al., 2021; Parassol et al., 2005; 
Smith et al., 2004; Ward et al., 2000); by modifying enterocytes villi 
length (Nikiforov-Nikishin et al., 2022); by altering enterocyte division 
rate (Maas et al., 2021; Rawls et al., 2004); and by maintaining or dis
rupting mucosal integrity (Butt and Volkoff, 2019; Davis et al., 2016). 
Moreover, as depending on their size, chitin can be recognized by cells 
and trigger several immunophysiologic and morphologic changes, the 
formation of smaller chitin molecules or chitooligosaccharides resulting 
from increased digestion, could imact on the ESB intestinal architecture 
(Cuesta et al., 2003; Nurmalasari et al., 2022). However, the present 
data shows that intestinal architecture was unchanged by neither di
etary probiotic supplementation nor concomitantly with chitin di
gestibility. Moreover, the lack of morphologic alterations indicates that 
the increases in feed efficiency and protein efficiency ratio in fish fed the 
diets supplemented with FI645 seem to be unrelated to modifications in 
intestinal architecture characteristics. 

Smaller molecules available after chitin digestion, such as COS and 
GlcNAc, might be used by fish although their metabolism is still poorly 
understood. While GlcNAc uptake is hypothesized to occur by passive 
diffusion through the cell membrane (Krogdahl et al., 2005) (Fig. 5), no 
pathway has been proposed for its cellular metabolic integration. In the 
present study, several genes involved in GlcNAc salvage pathway and 
HBP were for the first time detected in fish, namely nagk, pgm3, ogt, 
amdhd2, and gfat, and an overview of GlcNAc pathway is proposed. 

In humans, after entering the cells, GlcNAc can modulate the HBP 
(Abdel Rahman et al., 2013) (Fig. 5). The HBP is considered a nutrient- 
sensing pathway as it integrates glucose, amino acids, fatty acids, nu
cleotides, and energy metabolism (Hardivillé & Gerald, 2014). Alter
ations in the HBP can modulate physiological cell response to nutrients 
and infection (Chang et al., 2020; Hardivillé & Gerald, 2014). Integra
tion of GlcNAc in the HBP can be achieved by N-acetylglucosamine 

Table 5 
Apparent digestibility coefficients (%) of the European sea bass fed the experimental diets.   

Diets Two way-Anova  

CTR D645 D658 MIX FI645 FI658 INT 

Dry matter 69.8 ± 1.3 76.4 ± 1.7** 71.9 ± 1.7 72.5 ± 1.0 0.003 0.319 0.009 
Protein 90.0 ± 0.4 92.4 ± 0.6** 90.8 ± 0.5 91.1 ± 0.4 0.002 0.452 0.008 
Lipids 98.7 ± 0.0 99.0 ± 0.3 98.9 ± 0.1 98.8 ± 0.1 0.225 0.649 0.060 
Energy 83.0 ± 0.8 87.1 ± 0.9** 84.4 ± 1.1 85.0 ± 0.9 0.002 0.568 0.012 
Chitin 23.8 ± 8.9 47.8 ± 7.5 18.7 ± 9.3 34.4 ± 10.5 0.005 0.116 0.451 

Mean and standard deviation (± SD) are presented for each parameter (n = 3). When interaction was significant, a Dunnett's test was performed to compare the 
probiotic supplemented diets to the control. Statistical differences are represented by asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). 

Table 6 
Histomorphological scores of the distal intestine (DI) of the European sea bass 
fed the experimental diets.   

Diets Kruskal-Wallis  

CTR FI645 FI658 MIX P-value* 

FH 1.3 ± 0.5 1.2 ± 0.4 1.6 ± 0.7 1.6 ± 0.5 0.506 
LP 1.2 ± 0.4 1.3 ± 0.5 1.3 ± 1.0 1.2 ± 0.4 0.819 
SM 1.8 ± 0.8 2.0 ± 0.7 2.1 ± 0.8 2.7 ± 0.5 0.086 
IEL 1.9 ± 0.8 2.4 ± 0.7 1.7 ± 0.7 2.2 ± 0.7 0.144 
EGC 1.8 ± 0.4 2.2 ± 0.4 1.8 ± 0.4 2.1 ± 0.3 0.069 
ENT 1.0 ± 0.0 1.1 ± 0.3 1.0 ± 0.0 1.0 ± 0.0 0.392 
SNV 1.0 ± 0.0 1.1 ± 0.3 1.0 ± 0.0 1.0 ± 0.0 0.392 
Mean Score 1.4 ± 0.3 1.6 ± 0.2 1.5 ± 0.3 1.7 ± 0.2 0.103 

Mean values and standard deviation (± SD) are presented for each parameter (n 
= 9). Mucosal folds height (FH), width and cellularity of the lamina propria (LP) 
and submucosa (SM), number of intraepithelial lymphocytes (IELs) and eosin
ophilic granulocytes (EGC), enterocyte overall organization including nucleus 
position (ENT) and supranuclear vacuolization (SNV), and average of all the 
parameter evaluated (Mean Score). 

Table 7 
Plasma metabolites, namely glucose, cholesterol (mmol L− 1), N-acetylglucosamine (GlcNAc) (μmol L− 1), total plasma proteins (mg mL− 1) and innate immune pa
rameters, namely lysozyme (mg mL− 1), peroxidase (U mL− 1) and total plasma immunoglobulins (IGs) (mg mL− 1) of European sea bass fed the experimental diets.   

Diets Two way-Anova  

CTR D645 D658 MIX FI645 FI658 INT 

Metabolites        
Glucose 6.29 ± 0.74 6.06 ± 1.31 6.12 ± 0.63 6.69 ± 0.51 0.585 0.457 0.207 
Cholesterol 233.6 ± 40.1 235.2 ± 38.8 239.7 ± 35.7 248.7 ± 64.2 0.747 0.553 0.823 
GlcNAc 22.9 ± 4.8 32.9 ± 12.3 18.6 ± 7.3 22.4 ± 5.1 0.017 0.100 0.170 
Protein 46.9 ± 3.4 50.4 ± 7.8 48.1 ± 3.0 49.0 ± 4.7 0.209 0.964 0.449 

Innate immunity        
Lysozyme 7.57 ± 0.79 7.67 ± 1.13 7.75 ± 1.15 7.08 ± 1.23 0.583 0.656 0.093 
Peroxidase 0.34 ± 0.12 0.57 ± 0.21 0.55 ± 0.27 0.51 ± 0.28 0.459 0.256 0.115 
IGs 21.6 ± 2.6 26.8 ± 5.8 21.0 ± 2.1 22.1 ± 3.0 0.032 0.074 0.193 

Mean values and standard deviation (± SD) are presented for each parameter (n = 9). Data was analyzed using a two-way analysis of variance (ANOVA). Statistical 
significance was considered at p < 0.05. 
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kinase (NAGK), which converts GlcNAc into N-acetylglucosamine-6- 
phosphate (GlcNAc-6P) (Fig. 5) (Chang et al., 2020; Marshall et al., 
2004). Accordingly, in this study, dietary supplementation with FI645 
significantly increased nagk expression concomitantly with increased 
chitin digestibility. Given that increased chitin hydrolysis potentially 
leads to the increased free GlcNAc levels, these results hint for a po
tential modulation of this gene in a GlcNAc-dependent manner, as pre
viously reported in human cell lines Campbell et al. (2021). In fact, a 
similar hypothesis was also raised by Chien et al. (2020) which, when 
supplementing Bacillus subtilis E20 into Litopenaeus vannamei diets, 
verified a HBP enzyme expression modulation via glutamine 
metabolism. 

In the cells, GlcNAc-6P can follow two pathways (Fig. 5). It may be 
converted into fructose-6-phosphate (F-6P) and enter the glycolysis 
pathway, through a route involving the deacetylation of GlcNAc-6P into 
GlcN-6P by the enzyme N-acetylglucosamine 6-phosphate deacetylase 
(AMDHD2) (Kroef et al., 2022; Świątek et al., 2012). Alternatively, 
GlcNAc-6P can be isomerized into N-acetylglucosamine-1-phosphate 

(GlcNAc-1P) by the action of GlcNAc phosphomutase (PGM3), ulti
mately leading to the formation of uridine diphosphate N-acetylglu
cosamine (UDP-GlcNAc), a substrate of O-GlcNAc transferase (OGT). 
Ultimately, this leads to protein O-GlcNAcylation, a dynamic post- 
translational modification that impacts several important physiologic 
processes (Chang et al., 2020; Groves et al., 2013; Hardivillé & Gerald, 
2014). In the present study, while amdhd2 expression was unaffected by 
dietary probiotic supplementation, pgm3 expression was significantly 
induced by FI645 presence. Additionally, the increased expression is 
concomitant with the increased chitin digestibility and nagk expression, 
thus suggesting that GlcNAc might be channeled to UDP-GlcNAc pro
duction, although it was not possible to detect an increase of ogt 
expression. 

Plasmatic GlcNAc was also significantly affected by FI645 in D645 
diet. Independently of the absorption route, these results suggest that 
free GlcNAc resulting from chitin digestion can potentially travel 
through the blood stream to the liver and/or brain, impacting key pro
cesses such as nutrient sensing, animal behavior, energy homeostasis, 

Fig. 3. Gene expression of N-acetylglucosamine kinase (nagk), GlcNac phosphomutase (pgm3), O-GlcNac transferase (ogt), N-acetyl-D-glucosamine-6-phosphate 
deacetylase (amdhd2), and glutamine:fructose-6-phosphate amidotransferase (gfat) in fish fed the experimental diets. Values are expressed relative to the control 
group. Data are presented as mean (n = 8). The error bars represent the standard deviation. 
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cell growth and proliferation, and appetite regulation (Dai et al., 2018; 
Hardivillé & Gerald, 2014; Hwang and Rhim, 2018; Issad et al., 2022; 
Lau et al., 2007). Moreover, metabolites of chitin degradation, namely 
COS or GlcNAc, also have a broad array of biological activities, such as 
antioxidant, antimicrobial, anti-inflammatory, and immunostimulatory 
(Kumar et al., 2020; Liaqat and Eltem, 2018), thus potentially contrib
uting to improve disease resistance (Mohan et al., 2019). 

In fish, dietary supplementation with COS or GlcNAc has been 

demonstrated to be an efficient strategy to enhance fish survival against 
several bacterial pathogens (Cheng et al., 2014; Lin et al., 2017; Lin 
et al., 2012). Accordingly, in this study, diet D645 increased the survival 
of ESB when challenged with V. anguillarum, one of the most prevalent 
pathogens in ESB aquaculture (Muniesa et al., 2020). This may be 
related to the increased GlcNAc available in these fish, which could be 
entering the HBP and increasing protein O-GlcNAcylation, as indicated 
by the gene expression data. Indeed, in mammalian cells, it was shown 

Fig. 4. Cumulative survival of European sea bass (n = 40) fed the experimental diets when challenged with Vibrio anguillarum. Fish treated with PBS was used as a 
negative control (PBS). *p < 0.05; **p < 0.01; ***p < 0.001. 

Fig. 5. Overview of chitin digestion and potential pathways followed by N-Acetylglucosamine (GlcNAc) upon entering the cells. Green arrows represent the steps 
that comprise chitin digestion into GlcNAc. Purple arrows represent the potential pathway followed by GlcNAc assimilation into the glycolysis pathway. Dark blue 
arrows represent the Hexosamine Biosynthetic Pathway (HBP) and O-GlcNAcylation modifications occurring on the cell cytoplasm and/or nucleus. Dashed arrows 
represent unexplored uptake mechanisms. Blue ovals represent enzymes involved in the HBP and O-GlcNAcylation processes. Green spheres represent O-glycosylated 
proteins whereas orange spheres represent non-O-glycosylated proteins. GlcNAc - N-acetylglucosamine; G-6P – glucose-6-phosphate; F-6P – fructose-6-phosphate; 
GlcN-6P – glucosamine-6-phosphate; GlcNAc-6P – N-acetylglucosamine-6-phosphate; GlcNAc-1P – N-acetylglucosamine-1-phosphate; UTP – Uridine-5′-triphos
phate; UDP-GlcNAc - uridine diphosphate N-acetylglucosamine; CHIT - chitinase (EC: 3.2.1.14); CTB - chitobiase (EC: 3.2.1.52); HK - hexokinase (EC: 2.7.1.1); GPI - 
glucose-6-phosphate isomerase (EC: 5.3.1.9); GFAT - glutamine:fructose-6-phosphate amidotransferase (EC: 2.6.1.16); GNPNAT - glucosamine-phosphate N-ace
tyltransferase (EC: 2.3.1.4); PGM3 - GlcNAc phosphomutase (EC:5.4.2.3); UAP1 - UDP-N-acetylglucosamine (EC:2.7.7.23); OGT - O-GlcNAc transferase 
(EC:2.4.1.255); OGA -; NAGK - N-acetylglucosamine kinase (EC:2.7.1.59); AMDHD2 - N-acetylglucosamine 6-phosphate deacetylase (EC:3.5.1.25); GNPDA - 
glucosamine-6-phosphate deaminase (EC:3.5.99.6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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that O-GlcNAcylation modulates oxidative stress (Groves et al., 2013; 
Issad et al., 2022) and both the innate and adaptative immune system 
(Božič et al., 2018; de Jesus et al., 2018; Kneass and Marchase, 2004; Lee 
et al., 2020; Newsholme and Parry-Billings, 1990; Wu et al., 2017). All 
these processes have been the target of immunostimulant strategies for 
aquaculture (Huynh et al., 2017; Wang et al., 2017), as several homol
ogous mechanisms are present in fish (Bjørgen and Koppang, 2022), 
namely in ESB (Chistiakov et al., 2007; Picchietti et al., 2021). Further 
studies are however necessary to unravel the relevance of these pro
cesses on the fish's immune system. 

Probiotic-mediated effects, however, cannot be discarded. Increased 
ESB survival with diet D645 could also be the result of other probiotic 
mechanisms of action. In fact, Bacillus spp. are able to increase fish 
survivability to Vibrio spp. (Gao et al., 2017b; Kuebutornye et al., 2020; 
Monzón-Atienza et al., 2022; Santos et al., 2021) due to its well docu
mented antibiofilm, anti-adhesive and antimicrobial activities (Giri 
et al., 2019; Nithya and Pandian, 2010; Santos et al., 2021). However, 
while these claims are also documented for B. licheniformis (Hamza et al., 
2016; Vinoj et al., 2014), the closest known species of FI645, in a pre
liminary colony overlay diffusion assay, FI645 and FI658 showed no 
anti-growth effect against V. anguillarum (data not shown). This in
dicates that, in this case, any Bacillus spp. induced protection mecha
nisms against pathogens is potentially reliant on anti-quorum sensing 
mechanisms (Santos et al., 2021; Vinoj et al., 2014), modulation of 
immune gene expression (Meloni et al., 2015; Monzón-Atienza et al., 
2022), or through the enhancement of innate immune parameters 
(Akhter et al., 2015; Liu et al., 2012; Liu et al., 2017; Midhun et al., 
2019; Monzón-Atienza et al., 2022). In this study, dietary supplemen
tation of FI645 increased plasma total immunoglobulins levels. More
over, despite no statistical difference verified, when compared to the 
control group, probiotic inclusion increased plasma peroxidase activity 
by 67.6%, 61.8%, and 50% for D645, D658 and MIX diets, respectively. 
Regardless of the mechanisms, present results showed that dietary 
supplementation with 2 × 109 CFU kg− 1 of FI645 in IM containing diets 
appears to be an effective response against V. anguillarum infections in 
ESB. Thus, FI645 seemed to have potential to mitigate the economic 
losses caused by V. anguillarum in ESB (Muniesa et al., 2020), serving as 
an alternative to reduce the excessive antibiotics usage in aquaculture 
(Cabello, 2006; Dawood et al., 2018; Preena et al., 2020). 

5. Conclusion 

In this study, spores' viability was maintained for at least 180 days at 
room temperature, confirming their resilience during long storage 
stages. Overall, this study provides evidence of the potential of a chiti
nolytic probiotic bacteria (FI645) to promote chitin, protein, and energy 
digestibility in ESB, thus contributing to increasing feed efficiency and 
protein efficiency ratio in IM-based diets. Further, dietary supplemen
tation with FI645 probiotic also significantly increased ESB survival 
when challenged with V. anguillarum, ascertaining its potential as an 
effective prophylactic agent for ESB protection against this pathogen. 
This study also provides, for the first time in fish, hints at the potential 
routes for GlcNAc metabolism, and how it contributes to increase dis
ease resistance. 
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Mastoraki, M., Mollá Ferrándiz, P., Vardali, S.C., Kontodimas, D.C., Kotzamanis, Y.P., 
Gasco, L., Chatzifotis, S., Antonopoulou, E., 2020. A comparative study on the effect 
of fish meal substitution with three different insect meals on growth, body 
composition and metabolism of European sea bass (Dicentrarchus labrax L.). 
Aquaculture 528, 735511. https://doi.org/10.1016/j.aquaculture.2020.735511. 

Melenchón, F., Larrán, A.M., de Mercado, E., Hidalgo, M.C., Cardenete, G., Barroso, F.G., 
Fabrikov, D., Lourenço, H.M., Pessoa, M.F., Tomás-Almenar, C., 2021. Potential use 
of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals 
in diets for rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 27 (2), 491–505. 
https://doi.org/10.1111/anu.13201. 

Melenchón, F., de Mercado, E., Pula, H.J., Cardenete, G., Barroso, F.G., Fabrikov, D., 
Lourenço, H.M., Pessoa, M.F., Lagos, L., Weththasinghe, P., Cortés, M., Tomás- 
almenar, C., 2022. Fishmeal dietary replacement up to 50%: a comparative study of 
two insect meals for rainbow trout (Oncorhynchus mykiss). Animals 12 (2). https:// 
doi.org/10.3390/ani12020179. 

Meloni, M., Candusso, S., Galeotti, M., Volpatti, D., 2015. Preliminary study on 
expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) 
following in vivo infection with Vibrio anguillarum. A time course experiment. Fish 
Shellfish Immunol. 43 (1), 82–90. https://doi.org/10.1016/j.fsi.2014.12.016. 

Midhun, S.J., Neethu, S., Arun, D., Vysakh, A., Divya, L., Radhakrishnan, E.K., 
Jyothis, M., 2019. Dietary supplementation of Bacillus licheniformis HGA8B improves 
growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. 
Aquaculture 505, 289–296. https://doi.org/10.1016/j.aquaculture.2019.02.064. 

Mohan, K., Ravichandran, S., Muralisankar, T., Uthayakumar, V., Chandirasekar, R., 
Seedevi, P., Abirami, R.G., Rajan, D.K., 2019. Application of marine-derived 
polysaccharides as immunostimulants in aquaculture: a review of current knowledge 
and further perspectives. Fish Shellfish Immunol. 86, 1177–1193. https://doi.org/ 
10.1016/j.fsi.2018.12.072. 

Monteiro, M., Sousa, C., Coutinho, F., Castro, C., Fontinha, F., Guerreiro, I., Pousão, P., 
Matos, E., Díaz-Rosales, P., Oliva-Teles, A., Enes, P., Couto, A., 2021. Functional 
feeds to tackle meagre (Argyrosomus regius) stress: physiological responses under 
acute stressful handling conditions. Mar. Drugs 19 (11), 598. https://doi.org/ 
10.3390/md19110598. 

Monzón-Atienza, L., Bravo, J., Fernández-Montero, Á., Charlie-Silva, I., Montero, D., 
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