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A B S T R A C T   

Satellite-based multispectral remote sensing in the wine sector is expanding, aiming at improving vineyard 
management for both environmental sustainability and vine quality/yield. However, vineyards present a 
discontinuous vegetative surface, with rows of vines alternating with background areas (bare soil or other 
vegetation). This irregular pattern adversely affects multispectral satellite data from public and research missions 
(such as Sentinel 2 and Landsat 8/9, etc.), which operate at lower geometric resolutions. When inter-row spaces 
become overgrown with other vegetation that occasionally requires mowing, the average spectral response of the 
pixels changes significantly. Consequently, spectral information specific to the vines is obscured by a complex 
signal, potentially leading to incorrect conclusions if directly analyzed. To address this issue, this study in
troduces a novel method for recovering the spectral signal of vines, specifically focusing on NDVI from Sentinel-2 
data (S2).The approach relies on the estimation of the local NDVI value of vines by a least squares techniques 
based on the application of a spectral unmixing technique operated in the space domain using a moving window 
surrounding the pixel for which the estimation is required for. At each moving window step, NDVI values of only 
grapevines (at satellite resolution i.e., 10 m per 10 m) were estimated and mapped using as main inputs the S2 
NDVI values and the grapevine fraction cover values retrieved by high resolution UAV imagery. Results shows a 
16 % relative error in NDVI measurements for vines.   

1. Introduction 

Satellite-based multispectral remote sensing is heavily entering the 
viticultural context aiming at supporting improvement of vineyard 
management in terms of environmental sustainability and vines quality/ 
yield (Priori et al., 2013). In this framework, satellite-based optical 
remote sensing has already proved to be an effective technique for 
mapping vines vigor in both the space and time domains (Giovos et al., 
2021; Hall et al., 2002; Johnson et al., 2003). Maps of spectral indices 
are known to be useful to support viticultural practices, thus improving 
wine quality and mitigating environmental impacts. Nevertheless, 
vineyards represent a challenge for satellite imagery from open and 
scientific missions (e.g. Sentinel 2, Landsat 8/9, etc.) because grapevine 
canopies alternate with inter-rows background making the recorded 
signal a mixed one (Hall et al., 2008). 

Consequently, spectral-related information about vines is hidden in a 
complex signal that, if directly interpreted, could lead to wrong de
ductions (Ferreiro-Arman et al., 2006). Vineyard landscape is ordinarily 
characterized by a regular pattern of rows (i.e., grapevines) interleaved 

by inter-rows sizing always more than 1.5 m. This guarantee sunlight 
penetration needed for the development of both canopy and grapes 
(Reynolds et al., 1996; Winkler, 1969). Spontaneous vegetation sys
tematically grows within inter-row areas. A difficult situation occurs 
when inter-rows are covered by other vegetation (e.g. grass) that, time 
to time, has to be mowed, thus significantly changing the average 
spectral response of pixels along the year. It is worth to remind that grass 
maintenance in vineyards is one of the most important rules of the Eu
ropean soil conservation policy as reported in the Standards of Good 
Agricultural and Environmental Condition (GAEC) created by Council 
Regulation No. 73/2009 (Bagagiolo et al., 2018). This regulation de
termines that, continuously, more and more vineyards move to this type 
of situation. In Northern Italy, in particular, mechanization and other 
inter-rows management practices, like tillage and bare soil preservation, 
are going to be abandoned (Biddoccu et al., 2013). Unfortunately, this 
“green” trend introduce a further problem when interpreting vineyards 
behavior from satellite multi-spectral data, by substituting the “static” 
spectral contribution from soil with the more “dynamic” one from other 
vegetation. This adds confusion in the spectral interpretation of 
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differences possibly related to vines, since grass-related variations 
cannot be distinguished from the vines-related ones. This difficulty 
concerns both differences among vineyards zones as recordable at the 
same date, and differences at the same location along time. Moreover, 
one has also to consider that, from one side vegetated inter-rows express 
their own phenology, from the other one they have to be managed by 
mowing (to minimize the competition with vines) and, for sure, they are 
occasionally compacted by operative machineries (Biddoccu et al., 
2014). 

To address this problem, one possible solution relies on the adoption 
of high-resolution satellite,e.g., WorldView-2 (Karakizi et al., 2016), or 
UAV (Uncrewed Aerial Vehicle) imagery (Pádua et al., 2022). Some sat
ellite missions can acquire data with a very high geometric resolution (i. 
e., about half a meter), but these data are often offered by private com
panies with a significant cost for users. Moreover, they generally require 
high data processing skills and regularity of acquisition is not guaranteed 
(Helman et al., 2018; Rahman et al., 2018; Van Beek et al., 2013). 
Similarly, UAV acquisitions can provide images at a very high resolution 
(about 1–2 cm), but they call the users to a further higher level of tech
nical skills (included the photogrammetry-related ones) and the associ
ated costs are significant, as well (Borgogno Mondino, 2018; Borgogno 
Mondino and Gajetti, 2017). Moreover, although possible, mapping so
lutions based on high-resolution satellite images/UAV cannot be consid
ered if past acquisitions are needed for multi-temporal analysis. 

With these premises, satellites missions providing continued, free 
and scientifically processed data at a medium spatial resolution, pres
ently, appear to be the most affordable solution for a trustable tech
nology transfer. In particular, the Sentinel-2 mission (S2) by the 
European Copernicus program, can be efficiently used in agriculture 
thanks to its high spectral, geometric and temporal resolution (Giovos 
et al., 2021). S2 data are, in fact, known to be useful for: crop phenology 
monitoring (Misra et al., 2020), land use/cover mapping (Kaul and 
Sopan, 2012; Phiri et al., 2020), urban greenness mapping (Borgogno- 
Mondino and Fissore, 2022; De Petris et al., 2021); precision farming 
(Farbo et al., 2022; Segarra et al., 2020), ecosystems characterization 
(Pastick et al., 2020; Sarvia et al., 2022a), crop yield estimation 
(Marshall et al., 2022; Soriano-González et al., 2022), supporting in
surance policies in crop damage estimation (Borgogno-Mondino et al., 
2019; F et al., 2020; Greatrex et al., n.d) and Common Agricultural 
Policy controls (Filippo et al., 2022; Sarvia et al., 2022b). In spite of 
these great amount of works involving S2 data, only in few of them the 
spectral unmixing problem is considered (Clasen et al., 2015). A rare 
example comes from Borgogno-Mondino et al. (2022) concerning the 
proposal of a spectral-unmixing procedure for recovering the “pure” 
spectral response of pomegranates in Southern Italy and relating them to 
the midday stem water potential. In this work, authors proved that, if a 
theoretical fixed pattern defining rows/inter-rows spacing is considered 
results are unsatisfactory (Borgogno-Mondino et al., 2022). 

To separate the spectral mixture between vines and inter-rows from 
satellite recorded signal, in this work, with a special focus on NDVI from 
Sentinel-2 data, a possible solution for only-vines spectral signal 
recovering is proposed, based on a-priori accurate mapping of vineyard 
pattern by Uncrewed Aerial Vehicle (UAV). To ensure robustness of 
deductions, the same procedure was applied on 9 different vineyards 
spread across Piemonte Region (NW Italy). The approach relies on the 
estimation of the local NDVI value of vines by a least squares techniques 
based on the application of a spectral unmixing technique operated in 
the space domain using a moving window surrounding the pixel for 
which the estimation is required for. At each moving window step, NDVI 
values of only grapevines (at satellite resolution i.e., 10 m per 10 m) 
were estimated and mapped using as main inputs the S2 NDVI values 
and the grapevine fraction cover values retrieved by high resolution 
UAV imagery. Accuracy and sensitivity of the method were assessed by 
comparing the unmixed NDVI maps derived from S2 data with the 
correspondent ones from the available multispectral acquisitions by 
UAV. 

2. Materials and methods 

2.1. Study sites 

The area of interest (AOI) is located in the Piemonte region (NW- 
Italy) and develops across 3 provinces, namely Alessandria, Asti and 
Cuneo, and 7 municipalities (Mango, Castiglione Tinella, Loazzolo, 
Castel Rocchero, Sessame, Trezzo Tinella, Alice Bel Colle). Within AOI, 9 
sites, corresponding to 9 vineyards, were selected (Fig. 1a) as repre
sentatives of the typical landscape of Langhe-Roero and Monferrato that 
is included in the UNESCO World Heritage List (Assumma et al., 2016). 
Vineyards boundaries were obtained as a polygon vector layer from the 
Piemonte Region farming registry. These were provided with a nominal 
scale of 1:2000, updated 2022 (“Anagrafe agricola del Piemonte − Sis
tema Piemonte − Regione Piemonte. Available online: https://servizi.re 
gione.piemonte.it/catalogo/anagrafe-agricola-piemonte (Accessed on 
25/05/2023),” n.d.) and georeferenced in the WGS84 UTM 32 N coor
dinate system. Sample vineyards correspond to different vine types that 
are cultivated in diverse environmental and agronomic conditions, i.e. 
Moscato Bianco, Dolcetto, Chardonnay, Pinot Nero and Nebbiolo 
(Fig. 1b). 

2.2. Remotely sensed data 

2.2.1. Reference data 
Nowadays aerial images acquired by anUAV are adopted to accu

rately survey 3D and spectral features of vineyards. In particular, a DJI 
Phantom 4 (DJI P4) Multispectral quadcopter (DJI, 2023) was used. DJI 
P4 is equipped with an RGB CMOS camera and a multispectral sensor 
recording the following spectral ranges: blue band (450 nm ± 16 nm), 
green band (560 nm ± 16 nm), red band (650 nm ± 16 nm), red edge 
band (730 nm ± 16 nm), near infrared (NIR) band (840 nm ± 26 nm). 
An incoming Sunlight Irradiance sensor (ILS) is coupled with the sensor 
enabling a rough spectral calibration of images needed for reflectance 
recovery from raw data. These bands can be efficiently used to compute 
different spectral indices (DJI, 2023; Narmilan et al., 2022; Sakamoto 
et al., 2022; Wang et al., 2022). In addition, the DJI P4 is supplied, 
equipped with two GNSS (global navigation satellite system) receivers: 
one on board of the UAV (rover), the other located at the ground on a fix 
position (master). The system makes possible to position the UAV in RTK 
(Real Time Kinematic), solving instantaneously the relative baseline 
master-rover and linking the master station to a correction network 
operating in Virtual Reference Station mode (VRS). During all the 9 
surveys operated for this work, the GNSS master station position was 
solved using the Interregional Piemonte-Lombardia SPIN-GNSS service 
(https://www.spingnss.it/spiderweb/frmIndex.aspx). This made 
possible to position images (focal point) with a 3D precision of about 
0.037 m. Approximated attitude angles recorded by the on-board iner
tial measurement unit (IMU) were used during the image block bundle 
adjustment step. Flights were operated on the 23rd and 24th August 
2023, from an altitude AGL (above ground level) of 80 m. Forward and 
side overlap were set to 80 % and 70 %, respectively. The average GSD 
(ground sampling distance) resulted to be about 5 cm. To minimize 
shadow effects, surveys were performed between 11 AM and 2 PM local 
time (GMT + 2 in summertime). In this period of the year, in this area, 
grapevine is in its ripening phenological phase (BBCH scale = 85). This 
ensured that vines canopy and fruits area were already developed, and 
row/inter-row covers could be assumed no more significantly changing. 

2.2.2. Satellite data 
Copernicus Sentinel-2 (S2) data detected by onboard multispectral 

instrument were used for this work. It is worth noting that these data are 
provided free of charge, featuring a GSD of 10 m for both the Near- 
Infrared (NIR) and Red spectral bands. Additionally, the temporal res
olution of S2 data, at 5 days, is particularly well-suited for vineyard 
monitoring (Table 1). A single S2 Level-2A scene − T32TMQ- (calibrated 
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at the bottom of the atmosphere) was acquired on 24th August 2023 
with cloud coverage less than 5 %. This data was obtained from the 
Copernicus SciHub geoportal (www.). The date of acquisition ensures 
proper comparability with UAV data. 

2.3. Data pre-processing 

Nine blocks were acquired by DJI P4, each averagely made of about 
300 images. All image blocks were photogrammetrically processed in 
the Pix4D Mapper software (Pix4D S.A, 1008 Prilly, Switzerland) which 
allows for accurate geometric and radiometric calibration. Image block 
bundle adjustment was carried according to an “adjusted” direct 
georeferencing approaching based on GNSS and IMU measurements as 
starting estimates of Exterior Orientation Parameters (Forlani et al., 
2018; Nesbit et al., 2022; Teppati Losè et al., 2020; Westoby et al., 
2012). Internal camera orientation parameters were also re-estimated 
during the adjustment. Final image orientation resulted to have a 
theoretical (after the adjustment) horizontal and vertical mean error of 
about 0.009 m and 0.030 m, respectively. Nine dense 3D point clouds 
were generated from the blocks, with an average point density of about 
150p/m2. Point clouds were automatically classified by Pix4D software 
to separate ground from not-ground points and the correspondent Dig
ital Surface Models (DSM) and Digital Terrain Models (DTM) generated 

by regularization, setting a geometric resolution of 0.1 m. A canopy 
height model (CHM) of the vineyard was obtained for all the blocks by 
differencing DSM and DTM. The DSM was used to generate the corre
spondent multispectral orthomosaic (GSD = 0.1 m) for all the investi
gated vineyards. A spectral calibration step was achieved in Pix4D to 
recover approximated reflectance values from the raw data using the 
measurements from the available solar irradiance sensor (also called 
irradiance light sensor − ILS) plugged on the top of the UAV (PIX4D 
Support, 2023). This sensor allows to measure the sun irradiance for 
each spectral band. Finally, in PIX4D software reflectance values were 
recovered by the ratio between calibrated radiance values recorded by 
multispectral sensor and sun irradiance values recorded by ILS sensor. 
The calibrated red and NIR bands of the orthomosaics were finally 
combined to compute the Normalized Difference Vegetation Index 
(NDVI) map of sample vineyards (GSD = 0.1 m). These high resolution 
NDVI maps − hereafter called NDVIUAV(x,y) − were assumed as refer
ence data to validate the proposed approach, being able to map sepa
rately the expected NDVI value for vines and for inter-rows. 

Starting from the red and NIR S2 L2A bands, the correspondent NDVI 
map − hereafter called NDVIS2(x,y)- was computed with a geometric 
resolution of 10 m. This layer was adopted as basic input for the pro
posed method (see following sections). 

2.4. Data processing 

The workflow of this work is reported in Fig. 2 and aims at giving an 
estimate of the NDVI value of the solely grapevine plants starting from a 
mixed signal (vines + background) that ordinarily characterizes S2 
pixels. This is achieved by integrating the detailed geometric content 
from UAV acquisitions, useful for accurately mapping the vineyard 
pattern, with the spectral content (NDVI) from S2 images. UAV multi
spectral data were also used to validate the method, assuming NDVI 
values of vines from UAV data as the reference ones. 

2.4.1. Row / inter-row mapping 
The above mentioned CHMs and the correspondent NDVI calibrated 

map from UAV, were used to map vineyards pattern in terms of row and 
inter-row, with a native resolution of 0.1 m. This was achieved by testing 
the joint satisfaction of the following 2 conditions to recognize rows 
(vines): CHM > 0.5 m and NDVI > 0.3 (Burgan, 1993; Ormsby et al., 
1987; Zhang et al., 2003). The first condition takes care about the ge
ometry of rows where vegetated fraction is expected to develop about 
0.5 m above ground level. The second condition looks for only vegetated 
(from poorly to high) pixels along the row, thus limiting eventual arti
facts always present in CHM. 

Fig. 1. (a) Digital Terrain Model of AOI (SRTM 90 m) and sample vineyards location per vineyard types. Reference coordinates system is WGS84/UTM 32 N. (b) 
parallel coordinates chart showing the behavior of sample vineyards and morphological factors. 

Table 1 
S2 band technical features: central wavelength, bandwidth, GSD, radiometric 
resolution and temporal resolution.  

Spectral Band Central Wavelength 
(nm) 

Band Width 
(nm) 

GSD 
(m) 

B1 (Aerosol) 443 20 60 
B2 (Blue) 490 65 10 
B3 (Green) 560 35 10 
B4 (Red) 665 30 10 
B5 (Red Edge 5) 705 15 20 
B6 (Red Edge 6) 740 15 20 
B7 (Red Edge 7) 783 20 20 
B8 (Near Infrared) 842 115 10 
B8A (Near-Infrared 

Plateau) 
885 20 20 

B9 (Water Vapor) 945 20 60 
B10 (Cirrus) 1380 30 60 
B11 (Short-Wave 

Infrared 1) 
1610 90 20 

B12 (Short-Wave 
Infrared 2) 

2019 180 20 

Radiometric resolution 12 bits   
Nominal Temporal 

resolution 
5 days    
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This strategy made possible to separate vineyards areas with vines, 
from the ones hosting other type of surfaces (bare soil or grass), gener
ating an accurate map of vineyard layout (hereafter called G-IR classi
fication), able to address the next un-mixing operations. G-IR binary 
classification has the same geometric resolution of the NDVIUAV(x,y), i. 
e. 0.1 m. Two new raster layers mapping, separately, the NDVI of 
grapevines − NDVIUAV

G (x, y)- and background − NDVIUAV
IR (x, y) − were 

finally generated with reference to G-IR. 
Finally, to ensure a proper comparison with S2-derived NDVI values, 

a vector graticule layer (G) was created with a cell size of 10 m aligned to 
NDVIS2(x,y). The grapevine fraction cover (area percentage) was 
assigned to each G cell by zonal statistics from G-IR and G rasterized 
correspondently to finally generate the raster layer fG(x,y), mapping the 
expected vines fraction cover within each S2 pixel. 

2.4.2. Spectral linear mixture model 
Vineyards are characterized by a regular pattern of grapevine rows 

and inter-rows. S2 imagery provides a too coarse resolution if compared 
with the size of the vineyard pattern traits. Consequently, recorded 
reflectance is always something mixed as resulting from the joint 
contribution of vines and inter-rows fraction within the ground footprint 
of each S2 pixel. When longing for adoption of S2 data to describe vines 
behavior, it is mandatory a pre-processing step aimed at recovering the 
spectral contribution of the solely-vine fraction from the native mixed 
pixel. Although the mixing process could be not-linear, linear models are 
widely used (Hu et al., 1999). In this work, a spectral linear model was 
adopted, assuming that the local spectral signal only depends on 2 
endmembers that participate proportionally to their fraction cover 
(known) in the considered pixel. The first endmember is grapevine 
canopy (G); the second is inter-row cover (IR). The latter can, in general, 
results from a mixture of bare soil and grass; specifically in AOI inter- 
row tillage is rarely applied (Bagagiolo et al., 2018). One can, 

therefore, assume that inter-row zones are mainly dominated by other 
vegetation along its entire phenological active period. 

With these premises, the proposed spectral linear mixture model 
(LMM) was applied according to eq. (1). 

NDVIS2(x, y) = fG(x, y) • NDVIG +
[
1 − fG(x, y)

]
• NDVIIR (1)  

where NDVIS2(x, y) is the S2-derived NDVI at the generic position, 
fG(x, y) is the fraction cover at that position, NDVIG and NDVIIR are the 
two unknown NDVI values of grapevine and inter-row, respectively. 

To test LMM assumption, linear regression involving all vineyards 
pixels was fitted between S2-retrieved NDVI values and the correspon
dent ones computed applying eq.1 involving fG(x, y) and the corre
spondent means of NDVIUAV

G,IR (x, y) computed using G. 

2.4.3. Recovering NDVI of vines through local least squares and reverse 
unmixing 

To map separately the estimates of N̂DVIG and N̂DVIIR starting from 
the native ones from S2 imagery, an approach based on a spatial 
approach to least squares estimation was developed. It somehow re
verses the ordinary spectral un-mixing paradigm and moves from the 
space of the bands into the physical space, assuming that a spatial 
autocorrelation exists among within vineyards NDVI values at the S2 
scale. In fact, starting from the a-priori known (from UAV) fraction 
covers of the 2 involved endmembers, corresponding to an appropriate 
number (k) of neighbours surrounding the position the estimate is 
required for, the system of eq. (2) is locally solved using a moving 
window approach. The underlying (and forcing) hypothesis is that the 
local solution for the “pure” NDVI estimates of endmembers at the 
investigated position is somehow consistent (equal) to the one of its 
neighbour pixels. 

Fig. 2. Adopted workflow based on the integration of Sentinel-2 L2A and multispectral UAV images. Both the data were pre-processed to generate adequate NDVI 
maps. A spatially based local least squares estimation was used to un-mix S2 data and obtaining reliable estimates of “pure” NDVI for both vines and inter-row cover. 
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G
]
• NDVIIR

⋮
NDVIk

S2 = fk
G • NDVIG +

[
1 − fk

G

]
• NDVIIR

(2)  

where NDVIk
S2 and fk

G are the S2 NDVI values and grapevine fraction 
cover at the k-th pixel within the moving window; NDVIG and NDVIIR are 
the unknown NDVI local values, specific for vines and background 
(endmembers), assumed as equal in the involved portion of vineyard. 

The expected Least Squares solution (ϑ̂), i.e. the unmixed estimates 
of the local NDVIG and NDVIIR (namely,N̂DVIG and N̂DVIIR), is given by 
eq. (3) 

ϑ̂ =
(
ATA

)
− 1ATL =

[
N̂DVIG
N̂DVIIR

]

(3)  

where A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1
G 1 − f1

G

f2
G 1 − f2

G

⋯ ⋯
fk
G 1 − fk

G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; L =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

NDVI1
S2

NDVI2
S2

⋯
NDVIk

S2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

; T is the transpose matrix. 

Unfortunately, given the obvious correlation between vines and 
background fraction covers, a strong multicollinearity is expected for A, 
thus compromising the solution. To take care about this problem, the 
Tikhonov’s regularization (Hoerl et al., 1975; Qian, 2017; Tikhonov, 
1963) was used and eq.3 was moved to eq.4. 

ϑ̂ =
(
ATA + λI

)
− 1ATL (4)  

where, I is the identity matrix and λ is Tikhonov parameter. 
Once the system was built and solved at whatever position within the 

vineyard the N̂DVIG and N̂DVIIR maps were finally generated (hereafter 
called N̂DVIG(x, y) and N̂DVIIR(x, y) respectively) with a GSD = 10 m. 

The separability between N̂DVIG and N̂DVIIR distributions was tested 
by the Kolmogorov-Smirnov test (KS) for each sample vineyard. 

Moreover, the theoretical uncertainty of N̂DVIG, σG(x, y), and 
N̂DVIIR, σIR(x, y), were also estimated and mapped using eq. (5). 

σG,IR =

̅̅̅̅̅̅̅̅̅̅

[Σϑ]ii

√

,Σϑ =
vTv

m − n
(
ATA + λI

)
− 1ATL (5)  

where [Σϑ]ii is the i-th diagonal element of the covariance matrix (Σϑ) of 
ϑ̂; v is the vector of residuals; m and n are respectively the number of 
neighbours and unknowns (endmembers), respectively. 

2.5. Validation 

To validate N̂DVIG and N̂DVIIR estimates they were compared with 
the ones from UAV (NDVIUAV). For this task, G-IR was initially used to 
isolate grapevine and inter-row pixels in NDVIUAV. Two new raster 
layers (NDVIUAV

G and NDVIUAV
IR ) were obtained. Mean (μG and μIR) and 

standard deviation (sG, sIR) values from NDVIUAV
G and NDVIUAV

IR , respec
tively, were finally computed through ordinary zonal statistics, for all 
the G cells. Estimate errors were mapped according to eq. (6). 

εG,IR(x, y) =
⃒
⃒N̂DVIG,IR(x, y) − μG,IR(x, y)

⃒
⃒ (6)  

To investigate error type, the bias-variance decomposition (Bouckaert, 
2008; Domingos, 2000) was applied at pixel level (eq. (7). 
[
εG,IR(x, y)

]2
= Tr(Σϑ)+Bias2 (7)  

where Tr is the trace of the local Σϑ and Bias the bias term. at each 

position is known, bias term can be computed and its weight on 
[
εG,IR(x, y)

]2 evaluated simply by ratio. This analysis allows to detect the 
weights of biases or the parameters variance in proposed methods. 
Finally, the mean absolute percentage error (MAPE) was also computed 
at vineyard level to give a more effective quantification of estimate 
error. 

2.6. Sensitivity analysis 

The proposed un-mixing method requires that 2 operational pa
rameters are set: the regularization coefficient (λ) and the moving 
window size (W). A first sensitivity analysis was therefore performed 
looking for an optimal solution. This was achieved through a R v.4.1 (R 
Development Core Team, 2013) self-developed procedure in charge of 
iteratively changing the value of λ (in the range 0.01–0.1) and W. The 
latter was changed starting from 3 x 3 pixels up to the value corre
sponding to the smaller size of the investigated vineyard. For all com
binations the correspondent MAPE was computed and represented as a 
3D surface (λ, W, MAPE) looking for its minimum. 

Another sensitivity analysis was performed to assess the theoretical 
effect of the precision of fraction cover estimates (fG(x, y)) on N̂DVIG. In 
particular, this analysis was performed in order to highlight operative 
limits of proposed approach. In fact, fG(x, y) is not a direct measure but it 
resulted from a mapping procedure aiming at classifying vines canopy. 
Several methods can be used to this task affected by different fraction 
cover precisions. In this work, we used high resolution UAV images to 
retrieve such an information. Nevertheless, one can wonder about the 
effect of relative error in the fG(x, y) onto N̂DVIG. To explore this 
dependence, the condition number (Baboulin et al., 2009; Jia and Li, 
2013) was adopted. Condition number (K2) relates the upper-bound of 
the relative error of the estimates (i.e. N̂DVIG) with the expected relative 
error of coefficients (elements of A matrix, i.e., fractions cover) see eq.8. 

‖δN̂DVIG‖

‖N̂DVIG‖
≤ K2

‖δA‖
‖A‖

(8)  

where ‖ • ‖ is the Euclidean norm, δN̂DVIG is the absolute error of the 
endmember NDVI values for grapevine canopy; δA are the perturbed 
design matrix. This made possible to compute K2 for each step of W and 
mapped across the vineyard. 

3. Results 

3.1. Row /Inter-row mapping 

An example of fG(x, y) as mapped from G-IR is reported in Fig. 3. 
According to Fig. 3a it can be noticed that the vines-related fraction 

cover is always smaller than the inter-row one. Specifically, for F3, 
Fig. 3b shows that it ranges between 6 % and 25 % with a mean value of 
18 %. These values appear to be fairly stable for all the investigated 
vineyards (Fig. 3c). Two exceptions come from F4 and F6 where the 
median value of the vines fraction cover values resulted to be 45 % and 
38 %, respectively. Differently, vineyard showed significant differences 
in terms of internal variability. For example, Fig. 3c shows a small 
variability for F7 around a median value of fraction cover of about 18 %. 
Conversely, F4 shows a highly different median value associated to a 
great variability where the fraction cover of vines ranges between 20 % 
and 70 %. These differences can be probably related to different vine 
types or canopy management in vineyards. Similar mean values of fG 
were, in fact, found within Moscato and Nebbiolo corresponding to F1, 
F5, F7 and F8, F9 respectively. 

3.2. Spectral linear mixture model 

Fig. 4 shows the correlation between S2-derived NDVI, and the ones 
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computed using LMM (eq. (1). We can note that LMM NDVI values well 
fit the S2 ones (R2 = 0.87). Moreover, applying this linear model 
resulting error is low (MAE = 0.03) and no significant bias is present. In 
fact, line offset is not significantly different from 0 (t = 2.1, p > 0.05). 
These results proved that linear mixture model using 2-endmembers 
assumption can be properly applied to NDVI values. 

3.3. Recovering NDVI of vines through local least squares and reverse 
unmixing 

Starting from the S2-derived NDVI map and fG(x, y), the local esti
mates of N̂DVIG and N̂DVIIR were computed applying the spa
tially–based local least squares approach of eq. (4) (Fig. 5a and 5b 
respectively). Eq. (5) was then used to map the theoretical uncertainty of 
estimates, i.e. σG(x, y) and σIR(x, y). 

To provide an operative interpretation of these maps, F3 was selected 
as example. Considering Fig. 5a and 5b it can be noticed that NDVI es
timates of vines are, generally, higher (mean value for all vineyards was 
0.65) than the ones of inter-row zones (mean value for all vineyards was 
0.25). This highly significant difference could be explained considering 
that local biomass and leaves system of vines are well developed in 
August, while inter-rows is continuously managed by mowing and, at 

that time of the year (especially in 2022), spontaneous vegetation is 
phenologically poorly active. Consider that in this part of Italy, vine
yards are not irrigated. As far as maps of theoretical uncertainty are 
concerned (examples in Fig. 5c and 5d) these prove a direct propor
tionality between NDVI value and its uncertainty. In fact, the mean 
value of σG and σIR (in vineyard F3) were found to be 0.10 and 0.02, 
respectively. 

Looking at all the investigated vineyards, N̂DVIG and N̂DVIIR sta
tistical distributions were analyzed and the correspondent boxplot 
generated (Fig. 6a and 6b, respectively). 

According to Fig. 6a, in general, one can note that the proposed un- 
mixing method is able to recover well separated values of N̂DVIG and 
N̂DVIIR. Vines NDVI values are always > 0.3, suggesting that a medi
um–high vegetation activity is present (Burgan, 1993; Ormsby et al., 
1987; Zhang et al., 2003). Looking at Fig. 6b, it can be noticed that, in 
general, the median values of σG are always lower than 0.2 and that σIR 
are lower than σG. Specifically, the mean σG and σIR values were found 
to be 0.15 and 0.03, respectively. KS test proved that N̂DVIG and N̂DVIIR 
distributions were significantly different (Table 2) for all vineyards 
except for F6 where the separability is lower but significant. 

Finally, to assess the spatial variability of estimates the coefficient of 
variation (CV%) was locally computed for each position of the moving 
window and the related mean and standard deviation values computed 
at vineyard level (see Fig. 7). 

It can be noticed that a lower spatial variability (more homogeneous) 
is present concerning inter-row local estimates (CV% mean values al
ways lower than 15 %). Specifically, the average CV% value in G and IR 
for all analyzed vineyards result to be 10 % and 18 % respectively. 
Furthermore, it should be highlighted that the highest grapevine CV% 
values are found in F5, F7 and F9 vineyards, with an average CV% value 
of 31 %, 33 % and 29 % respectively. This result suggests a low homo
geneity within vines. Differently, inter-row CV% values appeared to be 
significantly lower compared to the row ones. 

3.4. Validation 

To test the reliability of estimates a comparison between N̂DVIG(x, y)
and μG(x, y), was performed at vineyard level. MAPE values (Fig. 8) 
proved to be always lower than 16 % with a mean value of 10 %. Spe
cifically, the vineyard showing the lowest and highest MAPE values 
were F4 (about 4 %) and F5 (about 16 %), respectively. 

Testing the correlation about estimates and reference data, a signif
icant one was found for all vineyards (Fig. 9): the majority of pixels, in 

Fig. 3. (a) G-IR binary classification (GSD = 0.05 m) and the G graticule (vineyard F3); (b) fG(x, y) raster layer of F3 mapping the vines-related fraction cover; (c) 
boxplots (from bottom to the top lines are the 5th, 25th, 50th,75th, 95th percentiles) of fG(x, y) for all investigated vineyards. Reference coordinates system is 
WGS84/UTM 32 N. 

Fig. 4. Linear regression (blue line) between estimated NDVI values by LMM 
and correspondent S2 ones. Dotted line is 1:1 diagonal. Colored points are all 
pixels for each study vineyards. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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fact, distribute closed to the bisecting line. Nevertheless, some values 
fail. Specifically, N̂DVIG values from vineyards F1, F3 and F4 appear to 
be the most consistent with reference data: the correspondent normal
ized density was in fact very high (>0.9). Differently, normalized 

density of vineyards F6, F7 and F8 was found to be very dispersed, 
making the correspondent N̂DVIG estimates less reliable. 

This could be due to low variability of reference data, always around 
0.70 and 0.80 NDVI values. Surprisingly, correspondent estimates cap

Fig. 5. (a-b) N̂DVIG(x, y) and N̂DVIIR(x, y) estimates (eq. (4); (c-d) maps of the theoretical uncertainty of NDVI estimates, i.e. σG(x, y) and σIR(x, y), obtained by eq. 
(5). Reported maps refer to the F3 vineyard. Reference coordinates system is WGS84/UTM 32 N. 

Fig. 6. (a) box-plots (5th, 25th, 50th,75th, 95th percentiles must be read bottom-up) of N̂DVIG(x, y) and N̂DVIIR(x, y) for all investigated vineyards; (b) box-plots of 
σG(x, y) and σIR(x, y) for all investigated vineyards. 
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ture greater variability (elongated clouds in Fig. 9). This could be 
partially caused by a remaining contribution of inter-row in N̂DVIG. 
Nevertheless, another explanation of this effects can be related to the 
reference layer, i.e. μG(x, y), itself. It is worth to remind that μG(x, y) is 
generated by mean operator involving NDVIUAV

G (x, y). This averaging 
procedure reduces the local NDVI variability of reference layer making 
more elongated/ biased the clouds in Fig. 9 if compared to proposed 
estimates. 

Trying to qualify the nature of such errors, the bias-variance 
decomposition was applied at vineyard level considering all the pixels 
jointly. Fig. 10 shows the distributions of weights of Bias2 and Tr. 

Fig. 10 show that Tr has in general a higher weight than Bias2, with 
median values always > 0.5). This suggests that the main error of N̂DVIG 
is related to σG. 

It is worth to highlight that weight values are highly variable for both 
Bias2 and Tr terms in vineyards F1, F4, F5 and F8. Differently, F6 showed 
a very small variability and the remaining ones the variability of the 
weights is limited. 

3.5. Sensitivity analysis 

Sensitivity analysis was performed to better explore the reliability of 
the proposed method. Since the method require that some hyper
parameters have to be set (i.e., the size of W and the Tikhonov regula
rization coefficient, λ). W size and λ value were iteratively changed and 
the correspondent solution and MAPE computed. This made possible to 
generate, at vineyard level, a 3D surface relating W, λ and MAPE. The 
optimal (W, λ values were set to the ones corresponding at the minimum 
value of MAPE. Fig. 11 shows the MAPE surface for the vineyard F3. It 

can be noted that the lowest MAPE value (11 %) is found for W and λ 
values equal to 9 and 0.01, respectively. Moreover, we can note that, in 
general, λ is very low denoting how regularization has a lower load on 
least square normal matrix diagonal. Concerning window size an 
average W parameter of 9 (±4) was found. If W is compared to field area 
it is interesting that on average, it is 11 % (±4%). 

In Table 3 are summarized the W and λ values minimizing MAPE in 
all the investigated vineyards. 

Concerning the assessment about the sensitivity of the proposed 
method to the precision of input parameters, i.e., fG(x, y) − one can also 
include the above-mentioned effects from − the K2 parameter was 
considered and mapped across the vineyards. In Fig. 12 the K2 map of F3 
is reported (Fig. 12a) as an example, together with the statistical dis
tributions of K2 for all vineyards (Fig. 12b). 

Considering Fig. 12b, it can be noted that a great variability within 
and among vineyards can be observed. The differences between the 
fields are significant, specifically in fields F2, F5, F7 and F9 K2 values are 
around 20–25 %. On the contrary, in the other fields, K2 values are 
around 7–10 %. Concerning K2 value distribution within the fields, it 
turns out to be very variable in fields F2, F5 and F6. Conversely, it results 
to be almost 0 in field F4. Moreover, assuming an average K2 value of 14 
for all fields and applying the eq. (7), we can note how to maintain the 
theoretical relative error under 30 % we need a fG(x, y) layer having a 
relative precision of 3 %. 

4. Discussions 

4.1. Row / inter-row mapping and spectral linear mixture model 

In this work the row area within an S2 pixel (GSD = 10 m) is about 
20 %. Such a value may, however, differ across the area depending on 
the grape variety cultivated and the farmer’s agronomic choices. The 
main differences, especially in the Italian wine context, are related to 
grape destination, planting pattern and consequently to cultivation site. 
For example, the Piemonte vineyard context is characterized by a large 
production of wine grapes (Asero and Patti, 2009). Specifically, to 
achieve excellent organoleptic qualities during vinification, the grape 
berries must be properly exposed to the sun. For this reason, in this area 
the vineyards are always cultivated in a vertical shoot position trellis 
system to maximize grape exposure. Conversely, in the southern part of 
Italy, which is characterized by having huge table grape cultivation, the 
high solar radiation (characterizing South-Italy), represents a problem 
for the grapes. Specifically, the main issue is grape-burning risk. To face 
this problem, farmers usually cultivate grapes in a free-standing grape
vine (i.e. pergola) or adopts shade covers to mitigate the effect of the 
sun. With these premises, it is worth highlighting that row size ratio 
within a 10 m pixel can differ considerably. Actually, it is well known in 
literature that in vineyard having a vertical shoot position trellis system 
the presence of grapevine, and therefore of the row, is around 15–25 % 
(Gutiérrez-Gamboa et al., 2021; Hall et al., 2002). Delenne reports in his 
work that the distance between rows in a vineyard results to be around 
2.5 m and the row canopy is around 0.5 m (Delenne et al., 2010). 
Consequently, in a pure vineyard S2 pixel there would be 2 m of row 
compared to the pixel’s 10 m and consequently a row impact of 20 % as 
found in this work. On the other hand, in free-standing grapevines (e.g. 
pergola), the ’row’ component can reach up to 100 % of S2 pixel 
coverage (Reynolds et al., 1996). In this case, however, all information 
derived from the vineyard through remote sensing could be attributed to 
the vineyard without using the spectra unmixing technique. Despite the 
differences in spatial resolution between open satellite missions like S2 
and high-resolution UAV imagery, Nonni (Frederica et al., 2018) 
examined the relationship between these two instruments in the context 
of vertically trained vineyards. Their findings indicate that UAV imag
ery, once downsampled to 10 m resolution, highlight a strong correla
tion with the satellite imagery. Stolarski et al. (2022) and Matese et al. 
(2017) found similar results, although the pure canopy spectral 

Table 2 
Separability between N̂DVIG and N̂DVIIR according to KS test.  

Vineyard ID D+ p-value 

F1  1.00 < 0.001 
F2  1.00 < 0.001 
F3  0.99 < 0.001 
F4  1.00 < 0.001 
F5  0.87 < 0.001 
F6  0.40 < 0.01 
F7  0.88 < 0.001 
F8  0.89 < 0.001 
F9  0.81 < 0.001  

Fig. 7. Mean and mean ± 1 standard deviation of the local (CV%) computed at 
each position of the moving window, separately for G (grey bars) and IR (yellow 
bars) in the investigated vineyards. Bars are the mean values for each filed and 
whiskers are 1 standard deviation. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

S. De Petris et al.                                                                                                                                                                                                                               



Computers and Electronics in Agriculture 222 (2024) 109092

9

information did not correlate well with the S2 data. Furthermore, 
Matese et al. (2017) discovered that only the pure vine-related spectral 
information could effectively describe the water status, while the mixed 
spectral information could not. This highlights the need for a method
ology to extract pure spectral information from satellite data for verti
cally trained vineyards. Conversely, Di Gennaro et al. (2019) used both 
S2 and UAV data to monitor productive parameters over overhead 
trained vineyards (Tendone), which show a vegetational cover close to 
100 %. In this context, both UAV and S2 data achieved satisfactory re
sults, demonstrating that the pixel-mixture monitoring problem only 
arises in vertically trained vineyards. 

Otherwise, very little was found in the literature on spectral mixture 
in vineyards (Campos et al., 2014; Elmore et al., 2000; Hall et al., 2002). 
From these works, LMM is the most adopted. Unfortunately, in real 
scenarios, the electromagnetic radiation will interact with several 
components, leading to non-linear mixing between various components 
as a result of multiple scattering interactions (Heylen et al., 2014; 
Quintano et al., 2012). This could make LMM a biased approach. Fur
therly, in this work we assumed only two endmembers, i.e., grapevine 
and inter-row. Therefore, to test LMM and two-endmembers assump
tions within proposed approach, linear regression was fitted between S2 
and UAV-derived NDVI values applying eq.1 (in Fig. 4). Results proved a 
very high correlation (Pearson’s r = 0.93) and a good fitting (R2 = 0.87). 
Moreover, applying a linear model to NDVI values a low error was found 
(MAE = 0.03). This finding is consistent with that of Campos et al. 
(2014) who applied LMM to NDVI values over vineyards and found a 
MAE of 0.03 between NDVI values retrieved from Landsat-5 and 
modeled ones. Moreover, two-endmembers assumption was also 
explored by Homayouni (Homayouni et al., 2008) where row-crops 
spectral unmixing for vigor monitoring was analyzed. These results 
support the hypothesis that LMM with 2-endmenmbers can be properly 
adopted to model spectral mixture in viticulture. 

4.2. Recovering NDVI of vines through local least squares and reverse 
unmixing 

In this framework, the present study was designed to isolate the only 
grapevine NDVI from the S2 one by a reverse unmixing procedure. The 
latter was here exploit by a local least squares approach involving k 
neighboring pixel within a moving window. As reported in Fig. 6 and 
tested by KS, N̂DVIG and N̂DVIIR are significant different and high 
separability is proved. It is worth to stress that N̂DVIG and N̂DVIIR are 
local estimates involving neighbor pixels. Therefore, they are local 
spatial average NDVI values at a given position. Nevertheless, this 
spatial variability was proved to be in general lower than 20 % and 
therefore can be assumed somehow representative of grapevine vigor 
(and phenology-related status) within a given S2 pixel. Despite this low 
average CV% values some differences within the row can be highlighted. 
This variability is exactly the one this approach is aiming at isolating and 
mapping in the phenological status monitoring framework. In fact, it is 

theoretically unthinkable to assume homogeneous conditions within 
and between fields. Crops are systematically affected by climatic, 
agronomic and terrain morphological conditions. Specifically, the latter 
is the one that maximizes the differences within the field. For example, 
terrain slope can play a positive or negative role in relation to irrigation 
in a vineyard. In AOI, plants located at the bottom of the area have more 
water resources. At the same time, the plants located to the higher areas 
have faster water drainage and the soil is subject to erosion (Tropeano, 
1984). As water moves through the field, available nutrients also tend to 
settle in more or less specific areas. Furthermore, the structure and 
texture of the field can differ even in small fields. A field with a sandy 
area will allow greater water drainage, on the contrary, an area with a 
more clayey texture may cause water stagnation. Given all these dif
ferences, the farmer tries to homogenize the growing conditions of the 
vineyard through agronomic practices. Consequently, specific soil 
treatments, fertilizations and irrigations will be adopted to compensate 
for any deficits. Besides differences within the row, it was possible to 
note that inter-row CV% values were always lower than the row ones 
(Fig. 7).This is probably due to grapevine canopies that usually show a 
higher heterogeneity vigor than inter-row one (Campos et al., 2014; 
Khaliq et al., 2019; Sozzi et al., 2020). Moreover, inter-row management 
(e.g., mowing) is a factor to be taken into consideration. With this 
practice, it is possible to maintain constant and homogeneous within 
filed inter-row biomass (grass). This managed biomass generates addi
tional benefits for grapevines as a higher vegetative growth, better 
canopy structure and nutrient content in petioles (Tesic et al., 2007). 
Therefore, inter-row biomass variability results lower than grapevine 
one. Consequently, it is much more difficult to highlight significant 
differences within this area. 

4.3. Validation and sensitivity analysis 

Validation of the proposed method performed by comparison to 
UAV-retrieved pure grapevine NDVI map shows high correlation (Fig. 9) 
and low MAPE values (<16 %) highlighting the effectiveness of the 
proposed approach. Nevertheless, fields from F5 to F9 show higher 
MAPE values than F1 to F4. These higher error rates are probably related 
to the heterogeneity of μG(x, y) values. In fact, we can note from Fig. 9 
that same reference NDVI value, i.e., μG(x, y), correspond different 
N̂DVIG. This can be caused by a lower separability between N̂DVIG and 
N̂DVIIR of fields F5 to F9 than F1 to F3 as supported by Fig. 6a and 
Table 2 that highlight poor separability for the formers. 

A deeper error analysis shows that the majority of the error is caused 
by σG(εG,IR(x, y) weights > 50 %, Fig. 10). F1 and F4 show lower biases 
while comparing estimates to reference NDVI values (Fig. 6a). This is 
also supported by Fig. 10 where the bias component is lower, reaching 
values lower than 0.3. 

Sensitivity analysis has highlighted how the proposed method is 
affected by hyperparameters involved i.e., W and λ. Unfortunately, these 

Fig. 8. MAPE of N̂DVIG(x, y) for investigated vineyards.  
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are not a-priori known and they have to be properly tuned according to 
the faced application (Qian, 2017). Fortunately, both W and λ are not 
correlated to MAPE (Pearson’s r is lower than 0.3) supporting a not- 
direct relationship of hyperparameters to errors. Otherwise, a negative 
relationship was found between K2 and λ (Pearson’s r = -0.68, p-value <
0.05). Increasing λ, K2 values decrease. This is probably caused by 
Tikhonov regularization that adds loads to the least square normal 
matrix diagonal improving the system conditioning (Tikhonov, 1963). 
Unfortunately, higher λ values increase also εG,IR(x, y) bias compro
mising estimates reliability. To overcome this problem, in this work, we 

Fig. 9. Comparison between N̂DVIG and μG at vineyard level. Dotted line is the bisecting one. Colors bar shows the min–max normalized pixels density.  

Fig. 10. Bias-variance decomposition of 
[
εG,IR(x, y)

]2. Box-plots (5th, 25th, 
50th,75th, 95th percentiles are given bottom-up) of weights concerning Bias2 

and Tr. 

Fig. 11. MAPE (W, λ) surface as computed for the vineyard F3. Both W and λ 
values are scaled (reported values have to be dived by 0.04 and 4 for W and λ 
respectively). 
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properly tuned λ by a-posteriori validation. Results show that optimum λ 
values range between 0.01 and 0.1 making a εG,IR(x, y) bias weight 
averagely equal to 35 %. Concerning W, it varies between 7 and 15 
neighboring pixels. Despite this variability, comparing W in respect to 
field area, an W average value of 11 % was found in AOI. 

Moreover, perturbation analysis based on condition index, reveals 
how the proposed method is affected by the precision of the input 
fG(x, y) layer. In fact, K2 maps (Fig. 12a) provides information about the 
stability of numerical solutions for each moving window step. In 
particular, it relates the percentage error of fG(x, y) to the percentage 
error of the output (i.e., N̂DVIG). We can note that in AOI an average K2 
values of 14 was found. Assuming a tolerable relative error of NDVI 
estimate lower than 30 %, a very precise fraction cover values mapping 
grapevine canopies with a precision of about 3 % is mandatory. This 
high precision highlights the need for a high-resolution 3D survey of 
vineyard useful to proficient apply the proposed approach. This con
stitutes the main limitation of proposed method requiring that fG(x, y) is 
mapped with high geometric accuracy, otherwise the unmixing pro
cedure leads to unreliable estimates as proved by sensitivity analysis. 
Nevertheless, in this work, fG(x, y) was computed starting from an UAV 
photogrammetric acquisition. The latter is a common adopted tech
niques in viticulture as proved by a review performed by Singh (Singh 
et al., 2022). Furthermore, currently RGB sensors plugged on an 
airborne platform guarantee a cost-effective 3D survey (Borgogno 
Mondino and Gajetti, 2017; De Petris et al., 2020) providing images with 
very high precision as highlighted by several authors (Matese and Di 
Gennaro, 2021; Sarvia et al., 2021; Singh et al., 2022). The adoption of 
S2 data allows to freely collect NDVI maps with a global coverage and 
early update (Shukla et al., 2019) (S2 temporal resolution is 5 days). 

Therefore, the approach here proposed can be reproduced once fG(x, y)
maps derived by UAV high resolution survey is performed. Future im
provements will explore how fG(x, y) temporal variability during a 
phenological season can affect the reverse spectral unmixing procedure 
based on least squares. 

It is interesting to note how literature about remote sensing images- 
based spectral unmixing on row-crops is very limited. Borgogno- 
Mondino (2022) applied a spectra unmixing procedure on pome
granate orchards to separate row NDVI values from the inter-rows ones 
using Sentinel-2 data. Unfortunately, this method relies on the adoption 
of pure rows endmember spectrum that ordinarily is difficult to retrieve 
without a ground based spectroradiometric survey. Somers et al. (2009) 
analyzed orchards adopting a non-linear hyperspectral mixture analysis 
to separate tree cover from the mixed signal. Nevertheless, only tree 
cover estimates were derived without focusing on tree spectra mapping. 
Conversely, our proposed approach tries to fill the above-mentioned 
gaps mapping NDVI of vines only signal, also providing uncertainty 
values of estimates. Given this literature gap, this study would like to 
point out the importance of taking care about spectra mixture while 
working with satellite remote sensing on row-crops like vineyards or 
orchards, stimulating further research on this issue. 

5. Conclusions 

Vineyard row and inter-row mapping is crucial step while working 
with satellite remotely sensed images in viticulture and deriving infor
mation are useful to support the agronomic practices. Nevertheless, 
vineyards represent a challenge in this context because grapevine can
opies are discontinuous and therefore, spectral mixture between 
grapevine canopies, and inter-row is expected within a satellite-derived 
pixel. Not considering this issue can drive to wrong deductions and 
misguided treatments. In this work, a possible solution was proposed 
based on local least squares and reverse unmixing procedure. Once 
mapped rows and interrow proportions within S2 pixel, starting from 
NDVIS2 local N̂DVIG and N̂DVIIR can be properly mapped. Resulted 
maps have a MAPE always lower than 16 % highlighting the effective
ness of proposed approach. Unfortunately, sensitivity analysis showed 
strong dependency from W and λ hypermeters. Moreover, accurate 
fraction cover estimates (i.e., fG(x, y)) are need. These can currently be 
mapped only by high resolution UAV survey. Nevertheless, this type of 
survey is increasingly adopted in viticulture and proficiently combined 
with S2 data makes it possible to applied proposed approach in different 

Table 3 
W and λ values corresponding to the minimum value of MAPE for all the 
vineyards.  

ID W % of vineyard area contained in W λ 

F1 7 18  0.01 
F2 11 7  0.01 
F3 9 7  0.10 
F4 11 8  0.10 
F5 9 7  0.01 
F6 5 8  0.07 
F7 5 14  0.01 
F8 15 15  0.10 
F9 15 14  0.01  

Fig. 12. (a) K2 map of F3 and related box-plot of K2 values distribution (cross is the mean). Reference coordinates system is WGS84/UTM 32 N. (b) Box-plots (5th, 
25th, 50th,75th, 95th percentiles must be read bottom-up) of K2 values for all vineyards. 
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agronomic contexts allowing a phenological monitoring of grapevine 
combining the high temporal resolution provided by earth observation 
imagery. 
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