
Exceptions and Accountability for Robust
Applications of JaCaMo

Matteo Baldoni1[0000−0002−9294−0408] (B),
Cristina Baroglio1[0000−0002−2070−0616], Roberto Micalizio1[0000−0001−9336−0651],

and Stefano Tedeschi2[0000−0002−9861−390X]

1 Università degli Studi di Torino – Dipartimento di Informatica, Torino, Italy
{matteo.baldoni,cristina.baroglio,roberto.micalizio}@unito.it

2 Università della Valle d’Aosta - Université de la Vallée d’Aoste, Aosta, Italy
s.tedeschi@univda.it

Abstract. We present two extensions to the JaCaMo framework that
support the realization of robust multi-agent organizations. Robustness
amounts to the degree to which a system can function correctly in the
presence of perturbations. The first extension provides an exception han-
dling mechanism suited for MAS; the second one is grounded on the
notion of accountability to create feedback chains among agents. Both
extensions are built upon a uniform approach and provide high-level ab-
stractions that facilitate the design and development of MAS that meet
robustness requirements.

Keywords: JaCaMo · Engineering MAS · Exception Handling · Ac-
countability.

1 Introduction

Robustness is defined as “the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions”
– generally called perturbations [16]. It is a crucial requirement of modern, dis-
tributed software systems [17,18,11,10]. Multi-Agent Systems (MAS) [22] are
an effective approach to realize distributed systems by means of heterogeneous,
and autonomous agents. Multi-agent organizations (MAOs), in particular, pro-
vide useful abstractions for modularizing code spread over many components,
and orchestrate their execution by way of norms. JaCaMo [8] is one of the best-
known platforms for implementing multi-agent organizations. However, it focuses
on providing the means for capturing the normal, correct behavior of the system
only. In particular, it lacks of structural mechanisms allowing agents to exchange
and propagate information (feedback) when they face perturbations, thereby
supporting robustness. As in [1], the availability of feedback about perturba-
tions is crucial to build robust distributed systems. Also MAS robustness should
ground on the ability to convey feedback about perturbations to the agents that
can handle it. But since agents generally are peers, and are not related by rela-
tionships like caller-callee, as in programming languages, or parent-child, as in



2 M. Baldoni et al.

the actor model, the realization of robustness should occur through the definition
of appropriate distributions of responsibilities among the agents, that become
part of the MAO.

This paper presents two extensions to the JaCaMo platform which allow
building agent organizations that meet robustness requirements. The first bor-
rows from software engineering the concepts of exception and exception handling,
while the second relies on the notion of accountability. The two extensions differ
in scope. Exception handling is suitable for treating perturbations anticipated
at design time (i.e., exceptions) by activating handlers, that are also specified at
design time. Accountability, instead, defines structured “channels” that agents
impacted by perturbations can use at runtime to gain situational awareness
about the situation of interest and then take actions. Raising and handling ex-
ceptions, as well as asking and returning for an account, will be tasks under
the responsibility of specific agents. The two extensions provide the means for
representing such tasks as goals, and for distributing the responsibilities of such
goals to the capable agents seamlessly.

While in this paper we highlight the main features of the proposed exten-
sions by means of a practical example, the details of the implementation can be
found in [2,3,6,21] for exception handling and in [4,5,7] for accountability. The
remainder of the paper is organized as follows. After a short introduction to
JaCaMo in Section 2, Section 3 presents its extension with exception handling.
Section 4, in turn, is focused on accountability. Section 5 briefly discusses the
main aspects that characterize the integration of the two proposals into the Ja-
CaMo implementation. Finally, Section 5 discusses a possible harmonization of
the two extensions into a single proposal and sketches some usage scenarios.

2 Background: JaCaMo

JaCaMo [8] integrates three different programming dimensions: agents, environ-
ments and organizations. JaCaMo agents are programmed in Jason [9]. An agent
is an entity composed of a set of beliefs, representing the agent’s current state
and knowledge about the environment, a set of goals, which correspond to tasks
the agent has to perform, and a set of plans which are courses of actions, either
internal or external, triggered by events, that can be taken by the agent in given
circumstances. The agents’ environment consists of a dynamic and distributed
set of shared artifacts, that are programmed in CArtAgO [20]. Each artifact
provides to the agents the interface (set of operations), through which it can be
used. Thus, agents can both perceive the artifact’s observable state, reacting to
events, and act upon an artifact by performing the artifact-provided operations.

JaCaMo organizations are programmed in Moise [15]. The organizational
model structures the specification of an agent organization along three dimen-
sions. The structural dimension specifies roles, groups and links between roles in
the organization. The functional dimension encompasses one or more schemes
that elicit how the global organizational goals are decomposed into sub-goals
and how these sub-goals are grouped in coherent sets, called missions, to be



Exceptions and Accountability for Robust Applications of JaCaMo 3

Depot belt

Elevating rotary table

Feed belt

Robot

Arm 2

Press

Arm 1

Fig. 1. An industrial production cell.

distributed to the agents. The normative dimension binds the previous two by
specifying the role permissions and obligations for missions. The organizational
infrastructure is designed as a part of the environment in which agents are sit-
uated by means of some dedicated organizational artifacts, upon which agents
can perform operations.

At runtime, the organizational specification is translated into a normative
program, written in a specific language, called NOPL [14]. The interpretation
of such a program is performed by a dedicated interpreter, included in each
organizational artifact, and regulates the functioning of the organization.

3 Exceptions in JaCaMo

To illustrate, we consider a production cell for metal plates inspired to [19] and
reported in Figure 1. The system involves five robots (agents) that coordinate
their activities for producing plates. The process can be realized as a JaCaMo
organization where the organizational goal of producing a plate is decomposed
into sub-goals the robots should achieve. Such a goal decomposition is reported in
Figure 2, below. The figure also reports (in red) the roles to which each sub-goal
is assigned.

We introduce the management of the possible malfunction of one of the mo-
tors of the elevating rotary table (ERT ). Such a condition should be detected
as soon as possible to stop the production and schedule repair. A first solution
would be to add the treatment of the perturbation as a part of the original goal
decomposition. This solution, however, is strongly discouraged by practice. In
fact, mixing business logic and exception handling logic complicates the verifi-
cation of processes as well as later modifications [13]. Our proposal is to keep
the original goal decomposition distinct from any malfunction treatments, and
introduce new abstractions for modeling treatments as exceptions to be raised



4 M. Baldoni et al.

producePlate

conveyPlateToTable

turnTableMoveUp
extendArm1

grabPlateFromPress

turnTableMoveDown

movePlateOnPress

releasePlateOnPress

movePressDownUp retract arm1

turnRobot

extendArm2

movePlateFromPressToBelt

retractArm2

conveyPlateToDeposit

feed belt

elevating rotary 
table

robot

press

deposit belt

Fig. 2. Functional decomposition of the production cell scheme in JaCaMo.

and handled3. For instance, the following Notification Policy complements the
goal decomposition.

1 <notification−policy id="npTable" target="turnTableMoveUp"
2 condition="scheme_id(S) & failed(S,turnTableMoveUp)">
3 <exception−specification id="exMotor">
4 <exception−argument id="motorNumber" arity="1" />
5 <raising−goal id="notifyStoppedMotorNumber" />
6 <handling−goal id="scheduleTableMotorFix" />
7 </exception−specification>
8 </notification−policy>

The policy specifies how the ERT motor malfunction exception is handled by
scheduling repair. In fact, the policy targets goal turnTableMoveUp, assigned to
ERT in the original decomposition, and is activated whenever such a goal fails
(see the condition expressed in NOPL syntax [14]). The policy then specifies
the type of exception, exMotor, and its argument: the number identifying the
motor affected by the problem (fundamental in order to act on the right mo-
tor). The exception, thus, amounts to a piece of information to be exchanged
between some agent that detects the problem, and some that can handle it. To
model this relationship, we extend the notion of goal, native in JaCaMo, in two
ways. A Raising Goal is used to make an agent produce an exception (i.e., the
structured piece of information), and raise it by making this exception available,
through the organization, to the agents that can handle it. A Handling Goal
is used to model the treatment of an exception when it becomes available. Both
types of goals can be included in agent missions, as any other goal in JaCaMo.

3 Source code available at http://di.unito.it/moiseexceptions.

http://di.unito.it/moiseexceptions


Exceptions and Accountability for Robust Applications of JaCaMo 5

This has an important consequence: whenever an agent enacts an organizational
role, it is asked to commit to all the goals included in the missions associated with
that role, including raising and handling goals. So, from the perspective of agent
programming, the treatment of exceptions is completely transparent: agents just
need to bring about their goals when asked to, independently of whether these
goals are in the original decomposition or part of some notification policy.

In the example, the goals notifyStoppedMotorNumber and scheduleTableMo-
torFix must be included in the missions of agents having the right capabilities
for completing them. So, either ERT itself could the exception raiser, or the
exception could be raised by external, observing agent. An important feature of
our proposal, in fact, is a clear separation of concerns among the agents where a
perturbation occurs, where it is detected, and, then, where it is treated. That is,
the agent whose goal fails may be different from the agent that actually detects
the failure and raises the exception. And the agent handling the exception is
usually different from the one that raised it.

4 Accountability in JaCaMo

Exceptions are suitable for treating perturbations that, anticipated at design
time, can affect the achievement of some goals. Accountability allows agents
to get runtime information to be used in their decision making. Specifically, a
party, named account-taker (a-taker) is entitled to ask for an account about a
goal of interest to another party, named account-giver (a-giver), that is obliged to
provide such an account upon request. Through accountability, thus, agents have
access to information otherwise inaccessible, and, hence, have greater awareness
of what is going on in the overall system. This allows the agents to take advantage
of opportunities, and to adapt to changing system conditions.

For instance, suppose the production cell is part of a production plant that
should possibly never be stopped. Assume that an agent is in charge of super-
vising the production process. This agent can, under certain conditions, ask the
feed belt robot the amount of plates still to be processed. Depending on such
a number, the supervisor can decide to slowdown the production, in order to
avoid a full stop. Also in this case, this behavior could be included within the
original goal decomposition of the production process, but the result would be a
mix-up between business and control logic. Our solution keeps separate business
and control logic, and exploits accountability to allow the supervisor to obtain
the needed information from the feed belt robot. The following Accountability
Agreement, included in the definition of the organization, serves this purpose4.

1 <accountability−agreement id="aa1" target="conveyPlateToTable" condition="true">
2 <account−template id="stock">
3 <account−argument id="availablePlates" arity="1" />
4 <requesting−goal id="requestRemainingStock" />
5 <accounting−goal id="notifyRemainingStock" />

4 Source code available at http://di.unito.it/moiseaccountability.

http://di.unito.it/moiseaccountability


6 M. Baldoni et al.

6 <treatment−goal id="slowDownProduction"
7 when="account(stock,_,Args) & .member(availablePlates(N),Args) &
8 N <= 10 & N > 0" />
9 <treatment−goal id="stopProduction"

10 when="account(stock,_,Args) & .member(availablePlates(0),Args)" />
11 </account−template>
12 </accountability−agreement>

The accountability agreement is the abstraction we offer to allow accounts to
flow from a-givers to a-takers. Specifically, an accountability agreement targets
a goal, e.g., conveyPlateToTable, which represents the object of the account. An
agreement is activated by a requesting condition, that can even be true, meaning
that it can be asked at any time throughout the execution. An important part
of the agreement concerns the structure of the account, and how it can be asked
and provided. The structure of the account is given as a list of arguments with
their corresponding arity. In our example, a single argument availablePlates with
arity one, is sufficient to convey the number of plates in the queue. Concretely,
we leveraged the conceptual model presented in [4] and the formalization from
[5,7].

To model the request and the notification of an account we extend JaCaMo
goals, as we did for exceptions, by introducing the notions of Requesting Goal
and Accounting Goal. Intuitively, when an agent wants to get some specific
information outside its context, and has the permission to ask for them, the
agent needs just to accomplish a requesting goal. This activates, by way of the
normative system of the organization, the associated accounting goal specified
in the agreement. For instance, when goal requestRemainingStock is marked as
achieved, goal notifyRemainingStock is activated, and the agent responsible for
it (i.e., feed belt) receives the obligation to carry it out. The agreement reports
also an optional Treatment Goal. When specified, the goal specifies how the
account should be addressed by the a-taker. In our scenario, there are two alter-
native treatment goals: one to be activated when the number of available plates
is between 0 and 10, then the production is slowed down; and one to be activated
when such a number is 0, and hence all the production cell is stopped.

Also in this case, the requesting, the accounting and the treatment goals are
part of role missions, as for standard JaCaMo goals. By committing to such
missions, agents take on the responsibility to perform these goals whenever a
corresponding obligation is issued by the normative system of the organization.

5 Platform Integration

In order to include exception handling and accountability as primitive mecha-
nisms in JaCaMo, and so allow the specification and the execution of MAOs with
exceptions and accountability agreements, we had to work at multiple levels.

Specification level Provide the means to enrich the specification of an orga-
nization with a set of notification policies and accountability agreements;



Exceptions and Accountability for Robust Applications of JaCaMo 7

Normative level Enable the enforcement of the normative behavior, yielded
by notification policies and accountability agreements, by issuing obligations
to achieve the related goals;

Infrastructural level Enrich the organizational infrastructure with the func-
tionalities needed by agents to concretely raise or handle exceptions and
provide or treat accounts.

In particular, we extended three components: (i) the organizational specification,
(ii) the normative program, and (iii) the organizational artifacts. In JaCaMo,
organizational specifications are written in XML. At runtime, the XML specifi-
cation is translated into a set of NOPL normative programs. The organization
management infrastructure is, then, realized through a set of artifacts, upon
which the agents can operate. Such artifacts allow agents to interact with the
organization, by perceiving its observable state and by executing operations. In
order to capture exceptions and accountability, and allow the interpretation of
our extended normative program, we enriched a specific class of artifacts, for
scheme management. In the following, we briefly sketch the main features of our
implementations.

Extending the Normative Program We introduced some new organizational facts
which allow capturing the structure structure of notification policies and ac-
countability agreements. For instance, notificationPolicy(NP,Target,Condition) is
used to capture the fact that NP is a notification policy that concerns the goal
Target and is activated when the specified condition holds (for instance, when the
target goal fails). These facts, however, are not sufficient because we also need to
capture dynamic facts that occur at runtime. These dynamic facts are produced
as consequences of specific operations performed by agents on organizational ar-
tifacts. For example, the requesting condition for an accountability agreement
may amount to the failure of some goal. Since the not-extended JaCaMo only
allows agents to mark goals as achieved, we had to extend it in order to enable
the setting of other goal states. In particolar, we introduced the new artifact
operation goalFailed(G), by which an agent can signal the failure of goal G. As a
consequence, the dynamic fact failed(S,G) is added in the normative state.

Achieving additional goals At runtime, the normative systems checks, for each
exception specification (or account template) in an active notification policy (ac-
countability agreement) (i.e., with Condition satisfied), the presence of applicable
goals. That is, goals whose when clause holds. For accountability agreements this
amounts to enabling the requesting goal, giving the a-taker the possibility to re-
quest the account. Such a request is performed by achieving the requesting goal.
When this happens, the normative system issues an obligation to achieve the ac-
counting goal to the involved agent(s). For exception handling, the raising goal
is enabled as soon as the notification policy condition is verified. Although this
mechanism is common to all goals, raising and accounting goals are special since
they produce a piece of knowledge (feedback), that is, an exception/account that
is compliant with the given specification, to which they belong. To this aim, we



8 M. Baldoni et al.

introduced two new artifact operations: raiseException(E,Args) allows an agent
to raise an exception E with a list of arguments Args. Arguments are a set of
ground predicates having the structures specified by the exception specification.
Similarly, operation giveAccount(A,Args) allows an agent to produce an account
that follows a given template, upon request. Exception/account arguments are
are also made available to the other agents as artifact observable properties.

When an exception is raised, the normative system looks for handling goals
that are enabled, that is, whose When clause holds. The same happens for treat-
ment goals when the corresponding account id given. A handling (treatment)
goal is enabled if its When condition holds, and if the precondition goals are
satisfied. We additionally require that an exception (account) has actually been
raised (given), and that the corresponding raising (accounting) goal be satisfied.
In this way, we ensure that the agent is able to take advantage of the informa-
tion provided by way of the raising (accounting) goal. It is possible that many
handling (treatment) goals are concurrently enabled for the same exception (ac-
count). Obligations are, then, issued for each enabled goal. The involved agents
can leverage the information, encoded by the exception (account), to enact the
most appropriate countermeasures. Under this perspective, we introduced an ad-
ditional artifact operation goalReleased(G) that allows agents to release a (failed)
organizational goal G. This allows resuming the process, aimed at the achieve-
ment of the organizational goal, which would, otherwise, remain stuck. By re-
leasing the failed goal, the agent signals the organization that the perturbation
has been handled (possibly some alternative goal has been accomplished), and
hence the goal progression can be resumed.

Introducing new norms As a final step, we had to provide the normative pro-
gram with the norms needed to issue obligations towards agents for the newly
introduced goals and to ensure a set of properties that guarantee the correct
functioning of the exception handling and accountability mechanisms. As an ex-
ample, some of these norms ensure that only designated agents can raise or han-
dle specific exceptions, or that an account can be requested only if the condition
of the enclosing accountability agreement actually holds (i.e., the accountability
agreement is active).

6 Discussion and Conclusions

We have proposed two extensions to the JaCaMo framework that explicitly in-
troduce exceptions and accountability as primitive concepts in the design and
development of MAS applications, with the aim of increasing system robust-
ness while preserving, at the same time, autonomy of the components (agents).
Agents joining an organization are required to explicitly take on the responsibil-
ities for providing feedback about the context where perturbation are detected,
and for handling these perturbations as soon the feedback is available. In this
way, the normative system, which coordinates the agents’ fulfillment of their
responsibilities, becomes a tool to specify and govern both the normal behavior
of the system and the one to be put in place in case of perturbations, uniformly.



Exceptions and Accountability for Robust Applications of JaCaMo 9

The two extensions that we presented follow a uniform approach. Indeed, we
are currently working in order to integrate both of them into a single proposal.
Interestingly, by adopting a more general perspective, it is possible to leverage a
unified framework to deal with various scenarios. We report here three of them,
that capture a number of typical situations. These scenarios, together with a
set of agent programming patterns designed to deal with such situations are
discussed in detail in [7].

Firstly, it is worth noting that exception handling can be effectively con-
ceived, more generally, in terms of accountability relationships among agents.
Accountability supports the realization of exception handling mechanisms such
that, whenever an exceptional condition occurs, an account concerning that con-
dition is reported by default to the agent(s) responsible for handling it. Termino-
logically, the a-giver can be identified as the exception raiser, the a-taker as the
exception handler, and the account amounts to the raised exception. Notifica-
tion policies represent a special class of accountability agreements in which the
account for a perturbation is requested automatically every time the perturba-
tion occurs, thereby constraining the way in which agents produce and consume
accounts.

Additionally, accountability supports information gathering. Suppose an agent
needs a piece of information in order to take a decision. The information is not
directly accessible to it; however, by way of an appropriate set of accountability
agreements specified by the organization designer, the agent can rely on fellow
agents in the organization in order to retrieve it. By exploiting accounts specified
at design time via accountability, agents can get pieces of information that are
outside their scope, and use them in their local decision-making process.

Finally, let us consider a scenario that we call context-aware adaptation. An
agent is interested in an event, which has an impact on the achievement of the
agent’s goals (e.g., it may represent an occasion the agent could profit, or some
perturbation that may negatively impact on the efficiency by which the goal
can be achieved). The occurrence of such an event may induce the agent to
consider to change its behavior in order to adapt to the situation. The decision
on if/how to react to the event depends on the context in which the event occurs,
but this information is outside the scope of the agent; however, the agent can
take advantage of the accountabilities of other agents, where it acts as a-taker.
It is worth noting that the adaptation could be exploited not only in case of
perturbations, but also in order to take advantage of positive opportunities that
may arise during the execution.

These three scenarios demonstrate the usefulness of accountability in a wide
range of situations. In exception handling, in particular, the social structure
realized by accountability, orthogonal to the functional decomposition of the or-
ganizational task, is exploited for conveying relevant feedback to the agent apt
to handle it. Approaching exception handling in this way has many advantages.
First of all, the solution relies on the abstractions of agent-based architectures
(e.g., goals, beliefs, norms, etc.), and does not need any special structure ded-
icated to the management of exceptions. In addition, the overall system enjoys



10 M. Baldoni et al.

low coupling and high cohesiveness, two desirable software engineering prop-
erties [12]. Low coupling is gained since agents dependence is limited to the
exchange of an exception, specified by a well-defined account template within
the organization. High cohesiveness, instead, is obtained by ascribing the tasks of
raising and handling exceptions to the agents that have the right functionalities
to accomplish them.

Future work will be devoted to consolidating the implementation of the two
presented extensions into a single comprehensive proposal and to its integra-
tion into the JaCaMo distribution. We also aim at further validating benefits of
the proposed approach in real-world applications. As hinted by the production
cell example used in this paper, the domain of Industry 4.0 seems particularly
promising.

Acknowledgments. This publication is part of the project NODES which has re-
ceived funding from the MUR –M4C2 1.5 of PNRR with grant agreement no. ECS00000036.

References

1. Alderson, D.L., Doyle, J.C.: Contrasting views of complexity and their implica-
tions for network-centric infrastructures. IEEE Tr. on Sys., Man, and Cyber. 40(4)
(2010)

2. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Demonstrating
Exception Handling in JaCaMo. In: Dignum, F., Corchado, J.M., De La Prieta,
F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and
Social Good. The PAAMS Collection - 19th International Conference, PAAMS
2021, Salamanca, Spain, October 6-8, 2021, Proceedings. Lecture Notes in Com-
puter Science, vol. 12946, pp. 341–345. Springer (2021). https://doi.org/10.1007/
978-3-030-85739-4_28, https://doi.org/10.1007/978-3-030-85739-4_28

3. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Distributing
Responsibilities for Exception Handling in JaCaMo. In: Endriss, U., Nowé, A.,
Dignum, F., Lomuscio, A. (eds.) Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems. pp. 1752–1754. AAMAS ’21,
International Foundation for Autonomous Agents and Multiagent Systems (2021),
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf

4. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Reimagining Ro-
bust Distributed Systems through Accountable MAS. IEEE Internet Comput-
ing 25(6) (2021). https://doi.org/10.1109/MIC.2021.3115450, https://doi.org/10.
1109/MIC.2021.3115450

5. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Robustness Based on Ac-
countability in Multiagent Organizations. In: Endriss, U., Nowé, A., Dignum,
F., Lomuscio, A. (eds.) Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems. pp. 142–150. AAMAS ’21, In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2021),
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf

6. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Exception handling as a
social concern. IEEE Internet Computing 26(6), 33–40 (2022). https://doi.org/10.
1109/MIC.2022.3216272, https://doi.org/10.1109/MIC.2022.3216272

https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.1007/978-3-030-85739-4_28
https://doi.org/10.1007/978-3-030-85739-4_28
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1752.pdf
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1109/MIC.2021.3115450
https://doi.org/10.1109/MIC.2021.3115450
http://www.ifaamas.org/Proceedings/aamas2021/pdfs/p142.pdf
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272
https://doi.org/10.1109/MIC.2022.3216272


Exceptions and Accountability for Robust Applications of JaCaMo 11

7. Baldoni, M., Baroglio, C., Micalizio, R., Tedeschi, S.: Accountability in multi-agent
organizations: from conceptual design to agent programming. Autonomous Agents
and Multi-Agent Systems 37(1), 1–37 (2023)

8. Boissier, O., Bordini, R.H., Hübner, J., Ricci, A.: Multi-agent oriented program-
ming: programming multi-agent systems using JaCaMo. MIT Press (2020)

9. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons (2007)

10. Christie, S.H., Chopra, A.K., Singh, M.P.: Bungie: Improving fault tolerance via
extensible application-level protocols. Computer 54(5), 44–53 (2021). https://doi.
org/10.1109/MC.2021.3052147

11. Christie, S.H., Chopra, A.K., Singh, M.P.: Mandrake: multiagent systems
as a basis for programming fault-tolerant decentralized applications. Au-
tonomous Agents and Multi-Agent Systems 36(1) (2022). https://doi.org/10.1007/
s10458-021-09540-8

12. Goodenough, J.B.: Exception handling design issues. SIGPLAN Not. 10(7), 41–45
(Jul 1975)

13. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE
Trans. Software Eng. 26(10), 943–958 (2000). https://doi.org/10.1109/32.879818,
https://doi.org/10.1109/32.879818

14. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative organisation programming
language for organisation management infrastructures. In: Coordination, Organi-
zations, Institutions and Norms in Agent Systems V. Lecture Notes in Computer
Science, vol. 6069, pp. 114–129. Springer (2009)

15. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: Programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)

16. ISO/IEC/IEEE: Systems and software engineering - Vocabulary. 24765:2010(E) -
ISO/IEC/IEEE International Standard (2010)

17. Jain, A.K., Aparico IV, M., Singh, M.P.: Agents for process coherence in virtual
enterprises. Communications of the ACM 42(3), 62–69 (1999)

18. Kalia, A.K., Singh, M.P.: Muon: designing multiagent communication protocols
from interaction scenarios. Autonomous Agents and Multi-Agent Systems 29(4),
621–657 (2015)

19. Lewerentz, C., Lindner, T.: Case study “production cell”: A comparative study in
formal specification and verification, pp. 388–416. Springer (1995)

20. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment Programming in
CArtAgO, pp. 259–288. Springer US, Boston, MA (2009)

21. Tedeschi, S.: Exception Handling for Robust Multi-Agent Systems. Ph.D. thesis,
Università degli Studi di Torino, Dipartimento di Informatica, Torino, Italy (2021)

22. Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2009)

https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/32.879818
https://doi.org/10.1109/32.879818
https://doi.org/10.1109/32.879818

	Exceptions and Accountability for Robust Applications of JaCaMo

