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A B S T R A C T

Objective: Computational models are at the forefront of the pursuit of personalized medicine thanks to their
descriptive and predictive abilities. In the presence of complex and heterogeneous data, patient stratification
is a prerequisite for effective precision medicine, since disease development is often driven by individual
variability and unpredictable environmental events. Herein, we present GreatNectorworkflow as a valuable
tool for (i) the analysis and clustering of patient-derived longitudinal data, and (ii) the simulation of the
resulting model of patient-specific disease dynamics.
Methods: GreatNector is designed by combining an analytic strategy composed of CONNECTOR, a data-driven
framework for the inspection of longitudinal data, and an unsupervised methodology to stratify the subjects
with GreatMod, a quantitative modeling framework based on the Petri Net formalism and its generalizations.
Results: To illustrate GreatNectorcapabilities, we exploited longitudinal data of four immune cell populations
collected from Multiple Sclerosis patients. Our main results report that the T-cell dynamics after alemtuzumab
treatment separate non-responders versus responders patients, and the patients in the non-responders group
are characterized by an increase of the Th17 concentration around 36 months.
Conclusion: GreatNectoranalysis was able to stratify individual patients into three model meta-patients whose
dynamics suggested insight into patient-tailored interventions.
1. Introduction

Thanks to their ability to handle complex and heterogeneous data,
computational models can be instrumental in analyzing molecular pro-
cesses, testing hypotheses, and obtaining a more profound understand-
ing of the mechanisms that drive diseases. For these reasons, several
computational modeling approaches have surged as promising analyt-
ical tools in pre-clinical and clinical research to investigate complex
diseases in great detail with the potential of reaching personalized
treatment strategies [1].

In the biological and medical fields, the analysis of collections
of longitudinal data from different patients using data-driven models
allows their stratification into specific groups based on the evolution of
relevant biomarkers and their associated clinical surveillance. Patient
stratification is a prerequisite for effective precision medicine, since
disease development is often driven by individual variability and un-
predictable environmental events, and, among a plethora of available
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therapies, the drug choice still relies on the clinician’s judgment and ex-
perience based on the patients’ clinical status, coexisting comorbidities
and administration method preferences. Yet, a deeper understanding
of how these factors concur to cause disease onset and progression
requires a functional understanding of the underlying mechanisms of
disease, which is better captured by mechanism-based models.

Several high-level formalisms are available for mechanism-based
models analysis. Among them, the Petri Net (PN) formalism [2] is
especially suitable for the creation and analysis of mechanism based-
models in the biomedical field, and it has been exploited to model
biological phenomena from the molecular level [3,4], to cellular [5,6]
and epidemiological levels [7,8]. Thanks to their graphical notation,
Petri Nets allow a compact description of the system of interest from
which the underlying stochastic and deterministic processes can be
automatically derived using software such as epimod [8]. Applied
in personalized medicine, these mechanism-based models can be in-
formed and parameterized by comprehensive analyses of clinically
vailable online 19 November 2023
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derived longitudinal data to simulate patient disease phenotypes and
to identify subgroups of drug responders and non-responders. Inte-
gration of patient-specific data in Boolean models has successfully
simulated heterogeneity in small cell lung cancer [9] and pancreatic
cancer [10], and tumor type-specific signatures of receptor proteins
associated with epithelial–mesenchymal transition in the bladder and
breast cancer [11], suggesting possible therapeutic targets.

Weatherley et al. [12] provides an overview of the ongoing mathe-
matical research dedicated to enhancing our understanding of Multiple
Sclerosis disease. It specifically introduces various modeling approaches
to examine the disease from diverse perspectives. Additionally, in
the study conducted by Maleki et al. [13], patient-specific data were
integrated into an agent-based model called Universal Immune System
Simulator to simulate the human immune system dynamics under
multiple sclerosis. Indeed, this model was effectively employed to
retrospectively validate the effects of various treatments at both the
individual and population levels using data from two clinical trials.
However, only a limited number of these studies take advantage of
widely accessible and user-friendly computational frameworks to en-
sure that these approaches are accessible to physicians and researchers
who may not possess advanced mathematical skills. We believe it
is essential to develop a computational environment that integrates
longitudinal data analysis and quantitative modeling analysis, pro-
viding and supporting users with simple and user-friendly interfaces.
Here, we propose the workflow GreatNector, which combines CON-
NECTOR3 [14], a data-driven framework that analyzes and inspects
ongitudinal data based on statistical methods for Functional Data
nalysis (FDA) [15,16], with GreatMod4 [8], a quantitative modeling

framework based on the Petri Net formalism and its generalizations.
In previous works, we applied GreatMod to model Multiple Sclerosis
(MS), with the aim of identifying the key parameters involved in the
modulation of therapy efficacy, and of performing in silico experiments
to improve our understanding of this complex disease. In detail, we
showed how GreatMod can be applied to model several scenarios con-
sidering pregnancy [17], different drug treatments [6,17], and space
dependency [18]. Here, we use CONNECTOR to expand on our previous
models to include individual patients’ characteristics, a feature that is
especially important in a complex disease such as MS, but that can be
exploited in any clinical scenario. In our PN MS model, the integration
of patient-derived data into a mechanistic model can provide an invalu-
able tool for the definition of (i) a patient-specific personalized drug
administration schedule, and (ii) for the prediction of therapy efficacy
based on the patient’s peculiar immunological structure at the time of
the onset of the disease or therapy.

2. Material and methods

A description of MS disease, the available longitudinal data, and the
two computational methods used to analyze the data and predict the
model outcome are reported in the following.

2.1. MS background

Genetics and environmental exposures are connected to disease
risk and can impact the success of an intervention. A large inter-
individual variation in disease processes exists and each individual
may require tailored interventions based on their unique characteris-
tics. Personalized interventions require biomarkers, useful for detecting
changes in health status, and detailed understanding of pathological
processes [19]. The identification of features that distinguish respond-
ing patients from patients who will develop relapses is one of the
major challenges for physicians when setting up the best therapy for

3 Freely available at https://qbioturin.github.io/connector
4 Freely available at https://qbioturin.github.io/epimod
2
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their patients. In the MS context, immune reconstitution therapies,
such as alemtuzumab, induce quantitative and qualitative alterations
of immune components, providing a sort of re-balancing of immune-
tolerance networks. Alemtuzumab is a monoclonal antibody that binds
to CD52, a protein present on the surface of mature lymphocytes,
and induces a robust depletion of immune system cells followed by
an immune reconstitution [20]. Data from clinical trial follow-ups
show that alemtuzumab can have a durable effect in around one-
half or less of the patients [21,22]. The remaining half of patients
discontinued alemtuzumab treatment due to the inefficacy of therapy
or to the manifestation of adverse events, including the development
of secondary autoimmunity in a proportion of patients or opportunistic
infections, due to the deep and long-lasting immune suppression. The
reasons behind the different responses to treatment can be researched
in the inter-individual variability of MS [23].

2.2. MS cohort description

For the analysis of this work, we retrieved data from a 6-year
follow-up of MS patients treated with alemtuzumab [20]. The dataset is
composed of 29 subjects (17 females, 12 males) with an average age of
34±8.7 years. MS patients were diagnosed 5.0±3.4 years before starting
lemtuzumab and almost all the subjects were previously treated with
𝐹𝑁−𝛽. Patients were subjected to periodical neurological assessments
o collect clinical data, including the manifestations of disease progres-
ion (relapses) and disability assessment using the Expanded Disability
tatus Scale (EDSS) score. 13 out of 29 patients had one or more
1.6 ± 0.9) relapse(s) during the 6-year follow-up [20] with a median
DSS of 2.48±1.06 at baseline and a median EDSS of 2.46±1.39 at 6-year
bservation. EDSS score is commonly used as an outcome measure in
S studies, although it has some documented weaknesses in reliability

nd sensitivity to change [24]. Alemtuzumab treatment consists of two
rug infusions one year apart, that induce long-term remission of MS
lso in the following treatment-free period. Patients can be subjected
o additional infusions in case of reactivation of symptoms [25].

We analyzed multiple temporal measurements of 𝑇 cell subtypes
rom 21 patients that received the standard two courses of alem-
uzumab (5 administrations of alemtuzumab 12 mg/day at month 0 and
administrations at month 12). From the initial cohort of 29 patients,
patients were excluded for an earlier dropout and 5 patients were

xcluded for receiving a third dose of the drug.
The study design consisted of venous blood withdrawals at baseline

before the first alemtuzumab course), 6, 12 (before the second alem-
uzumab course), 18, 24, 36, 48, 60, and 72 months. Although the goal
as to obtain data for each subject at each time point, there is some
issing data (i.e. missing sample). The number of collected samples

or each subject ranged between a minimum of 3 and the maximum
f all the nine time points (median 8; interquartile range 6.25–9)
amples obtained were used for immunological phenotyping, obtaining
he quantification of 𝐶𝐷4+ 𝑇 cells, Th1, Th17, and Treg cells. In this
ataset, Rolla et al. [20] observed that the immune reconstitution of
he 𝐶𝐷4+ subsets after therapy was characterized by a restoration of
he Treg suppressor function coupled with a decrease in self-reactive
yelin basic protein-specific Th17 and Th1 cells suggesting a shift

oward immune tolerance and a reduction of 𝑇 cell recruitment to the
entral nervous system [20]. Moreover, the results of this work showed
hat the Th17/Treg ratio was higher at baseline in non-responder
atients. However, no analysis had been performed on T-cell dynamics,
hat could definitively contain other informative features.

.3. CONNECTOR

CONNECTOR [14] is an R package for the unsupervised analysis
f longitudinal data, i.e., time series constituted by measurements

ollected sequentially over time.

https://qbioturin.github.io/connector
https://qbioturin.github.io/epimod
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CONNECTOR is built on the model-based approach for clustering
functional data [26], which is particularly effective when observa-
tions are sparse and irregularly spaced. The CONNECTOR pipeline is
comprised of three steps: (i) the pre-processing step consisting of the
visualization and inspection of the data, (ii) the model selection step, in
which several measures are computed properly set the free parameters
of the model (i.e., the dimension of the spline basis vector and the
number of clusters), and (iii) the cluster visualization step, where the
longitudinal data are sub-plotted into CONNECTOR clusters and each
time point’s discriminant power is shown.

The selection of the free parameters is a crucial element of the anal-
ysis. In particular, CONNECTOR proposes to choose the dimension of
the spline basis as the one corresponding to the largest cross-validated
likelihood, as proposed in [27], by using a ten-fold cross-validation.
Two plots aid in the choice of the number of clusters. The first is the
elbow plot that reports the total tightness (a dispersion measure of
clustering) calculated by varying the number of clusters. The second
plot reports a measure of the cluster separation by extending the well-
known Davies–Bouldin (DB) index to the functional setting, called
the functional DB (fDB) index [14]. By inspecting the two plots, the
proper number of clusters can be inferred by considering both the
change of slope, called elbow in the first plot, and the minimization of
the fDB index. Furthermore, CONNECTOR returns a consensus matrix
associated with a stability score, which informs the user of the stability
of the clusters.

All mathematical details are reported in Appendix A and in [14].

2.4. GreatMod

GreatMod is a general quantitative modeling framework for the
analysis of complex biological systems. GreatMod is based on a high-
level graphical formalism, the Petri Net formalism and its generaliza-
tions, allowing the modelers to simplify model design and provide an
intuitive description of system behavior.

GreatMod follows the guidelines provided by the Reproducible
Bioinformatics Project (http://reproducible-bioinformatics.org), a non-
profit and open-source project whose aim is to provide scientists with
an easy-to-use and flexible environment for the development of a
reproducible workflow of analysis. Compatible with these ambitions,
the GreatMod framework is composed of (i) a graphical editor, Great-
SPN [28], for the modeling and analysis of complex systems using the
PN formalism, (ii) a user-friendly R package named epimod [8], for
the definition of a custom workflow of analysis, and (iii) a virtualized
computational environment.

GreatSPN provides a Graphical User Interface (GUI), written in Java
and thus portable on different systems and architectures, which allows
users to draw models using a graphical formalism. Epimod provides
few but essential micro-services characterizing the model analysis:
from the derivation of the mathematical processes (both deterministic
and stochastic) underlying the PN model generated by GreatSPN, to
parameter sensitivity and calibration, and finally to system behavior
simulation. Furthermore, epimod uses the Docker virtualization service
to provide a fully operational and platform-independent environment
to execute the analyses, simplifying the distribution, maintenance, and
utilization of epimod’s functionalities.

3. Results

3.1. The GreatNector workflow

The ultimate goal of personalized medicine is the parameterization
of a complex model, starting from temporal measurements of multiple
variables collected from a single patient, to predict the evolution and
outcome of the disease. However, at the present time, the availability of
multiple longitudinal data is limited. Thus, we implemented GreatNec-
tor workflow to identify groups of patients whose measured variables
3

d

Table 1
The optimal set of parameters for each immunologi-
cal cell population. 𝑝: dimension of the spline basis,
𝐺: number of clusters.

𝑝 𝐺 Stability score

CD4 5 3 0.87
Th1 4 3 1
Th17 5 3 0.96
Treg 5 3 0.77

dynamics, at the systematic level, are similar. Since in each set of
patients, the measured evolution of the disease is comparable, each
group is associated with a meta-patient, that is a model patient whose
measured variables are supposed to evolve in time as the averages
of the curves forming the cluster. GreatNector is defined by joining
CONNECTOR and GreatMod as shown in Fig. 1.

Starting from longitudinal data Fig. 1A, we first explore the multiple
temporal variables independently through the CONNECTOR software.
For each biological measurement, CONNECTOR returns the clusters
that gather patients with similar behavior together. The results are
summarized, for each patient, in a vector reporting the CONNECTOR
cluster label for each biological measurement. Hence, each patient is
now described by a sequence which encodes the CONNECTOR outputs.
Finally, the vectors of CONNECTOR clusters associated with the pa-
tients are fed to a k-means clustering algorithm. The resulting clusters
are the groups that define the meta-patients: for each measured quantity,
the center of the cluster, that is the mean curve obtained from the
measurements belonging to the cluster, is considered as the curve of
the meta-patient Fig. 1B.

The meta-patient measurements are then imported in GreatMod to
alibrate the parameters of the computational model describing the
ystemic level of interest (Fig. 1C). Firstly, the predictions obtained
rom the model are used to verify the structure of the model, taking into
onsideration the well-known dynamics that must be satisfied. Then, a
hat if is implemented to obtain the temporal dynamics of all biological
ntities of interest under a specific condition(s). The evaluation of the
ynamics by an expert can be useful to define a personalized therapy
or each meta-patient (Fig. 1D). Finally, an assessment of the residual
isease could be considered in order to verify disease progression and,
f needed, take prompt action.

.2. Definition of MS meta-patients

To define metapatients, we collected multiple temporal measure-
ents of cell populations from a cohort of 21 MS patients that received

wo injections according to the standard regimen protocol of alem-
uzumab administration. Four immunological cell populations were
uantified at different time points over a span of six years, see Figure
.4. When observing the plots, there is not a noticeable difference

n the dynamics of relapsed versus not relapsed MS patients. We ran
ONNECTOR on each set of cell population dynamics independently.
ll the details regarding these analyses are reported in the Appendix
. In particular, Figures B.5, B.6, B.7, and B.8 summarize the CON-
ECTOR analyses for the 𝐶𝐷4+, Th17, Th1, and Treg cell populations,

espectively. Table 1 reports the optimal CONNECTOR parameters
i.e., 𝑝 as the dimension of the spline basis, and 𝐺 as the number of
lusters) for each immunological population and the stability score.

The CONNECTOR results are appreciable in Figures B.9 and B.10,
here for each cell population (i.e. rows), the three clusters are colored
y patient identifiers in the first figure, and by the presence (red) or
ot (blue) of relapse events in the latter. It is interesting to note that
ven though the dynamics reported in each cluster are homogeneous,
s demonstrated by the stability matrices, a cluster associated with
he relapse event or other anamnestic features (data not shown) is not

elineated.

http://reproducible-bioinformatics.org
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Fig. 1. GreatNector workflow. For each patient, multiple biological measurements are collected over time (A) and fed into CONNECTOR software to be stratified into meta-patients
characterized by similar behavior (B). Meta-patient measurements are then imported in GreatMod to calibrate the parameters of the computational model (C). Model simulation
and analysis are evaluated for the definition of a personalized therapy for each meta-patient (D). Finally, residual disease is monitored to assess disease progression during clinical
follow-up.
Then, we ran a second clustering algorithm to identify homogeneous
patient groups based on the dynamics of all the cell populations.
Specifically, each MS patient is described as a list of four elements: the
first is the label of the CONNECTOR cluster for the 𝐶𝐷4+, the second
is the label for the Th1, the third for the Th17, and the fourth for the
Treg populations (see Table 2).

Then, for each patient, the patient-cell profile vector is defined
(e.g., from Table 2, the 𝐶𝐴0001 profile is [𝐶,𝐶, 𝐵, 𝐵]). The patient-
cell profile vectors are fed in a k-means clustering procedure [29] that
returns three clusters. Specifically, the elbow method which measures
the variability of the profile vectors within each cluster, was used to
identify the optimal number of k-means clusters, reported in Appendix
B. The three k-means clusters reveal three groups of patients character-
ized by similar cell population dynamics. We refer to these clusters as
MS meta-patients (MSMP).

Fig. 2A shows the four immunological cell populations (rows) for
each cluster (columns). The three MSMP cell population dynamics are
the dashed lines. All MSMP clusters contain patients with at least
one relapse event, with the exception of the MSMP_2 cluster which is
characterized by the MS patients displaying two relapse events. The
different trends of cell population kinetics dissected by CONNECTOR
and k-means fairly predicted patients’ outcomes: median TTP was not
reached for MSMP_1 and MSMP_3 while median TTP was reached at
12 months for MSMP_2 (p=0.01) (Fig. 2B).

3.3. Model description

The PN model proposed in this work is based on the T-cell dynamics
that characterize the immunopathology of relapsing remitting multiple
sclerosis (RRMS). Briefly, a PN is a bipartite directed graph formed
by two disjoint types of nodes: places, graphically depicted as circles,
4

Table 2
Definition of the MS Meta-patient. The first column describes the pa-
tient ID, from the second to the fifth columns describe the patient-cell
profile vectors, and the last column shows the K-mean cluster.
ID 𝐶𝐷4+ Th1 Th17 Treg K-means

Cluster

CA0001 C C B B 3
CA0002 C B B B 3
GA0001 A A A A 1
PR0001 C A B B 3
PR0003 C B A B 3
ZG0001 A A A A 1
ZG0002 C B A A 3
ZG0003 B B C A 2
ZG0004 B B A A 1
ZG0006 A B A B 1
ZG0007 C B A B 3
ZG0008 B B A A 1
ZG0009 C B A B 3
ZG0011 C A C A 2
ZG0012 C A A B 3
ZG0013 A A A B 1
ZG0015 A A A A 1
ZG0016 A A A A 1
ZG0018 C B B C 3
ZG0019 B B A A 1
ZG0020 C C C B 2

and transitions, as boxes. Places represent the state variables of the
system, whose numeric value is modeled by tokens, drawn as black
dots. Transitions describe the events that can induce a state change.
Places and transitions are connected by arcs with a specific cardinality,
which describes the number of tokens removed from or added to the
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Fig. 2. (A) The columns report the three MS meta-patients (MSMPs). The rows show the four cellular population temporal dynamics. The blue lines represent the MS patients
without relapse events, while the colors identify the patients characterized by at least one relapse event. The triangle symbolizes the time at which the first relapse event occurs.
The dashed black lines stand for the mean curves of the corresponding MSMP and cellular population. The green vertical lines correspond to the two infusions of alemtuzumab
treatment at the beginning of the therapy and at the 12th month, respectively. (B) Kaplan–Meier plot where (x-axis) represents time in months, and the vertical axis (y-axis) shows
the probability of relapse occurrence. Three curves associated with the three MSMP groups highlight the different behavior of the MSMP_2 with respect to the other groups. (C)
Table reporting the number of patients for each MSMP cluster (row), highlighting the number of patients per cluster without relapses (last column #𝑃𝑎𝑡𝑠), the number of patients
with relapses, and the months of the relapse events (columns #𝐸𝑣𝑒𝑛𝑡𝑠(𝑀) and the first #𝑃𝑎𝑡𝑠). Finally, the colors associated with each row are the line colors used in (A). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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corresponding place when a transition occurs. A transition is enabled
if the number of tokens in its input places is greater than or equal to
the cardinality on the corresponding arcs connecting the place to the
transition. The formal definition of the PN formalism exploited in this
work is reported in Appendix C. We modified the model described in
Pernice et al. [6] to focus our attention on representing the dynamics
of the peripheral immune system over a longer period, i.e. the 6-
year follow-up in MS patients receiving alemtuzumab treatment. The
model, depicted in Figure C.12 in Appendix C, consists of 7 places
and 23 transitions and it represents the interactions between 𝑇 cells
circulating in the peripheral blood and the blood–brain barrier (BBB),
the barrier that divides blood from the central nervous system (CNS).
Differently, with respect to [6], NK cells, effector memory T cells, and
cytokines modules have been explicitly modeled and the CNS module
has been replaced by just considering Regulatory Treg and Teff cells in
CNS, and the ratio between them used as an indirect measure of CNS
damage. Observe that Teff cells explicitly considered are Th1 and Th17
cells only, which share all the functions. As occurs in the pathological
mechanism of MS, the cells in the blood vessels of the immune system
can cross the blood–brain barrier (BBB) and reach the CNS and dam-
age it. In this model Th17 cells have the function of increasing BBB
permeability, reproducing this well-known biological effect of Th17
cells [30]. Also, the pathogen infection and then the reactivation in
the system has been simulated differently from what was previously
done. Recent data highlights Epstein-Barr virus (EBV) infection as a
cause of MS, although is likely to be necessary, but not sufficient,
to trigger its development [31]. Diverse possible mechanisms of EBV-
mediated MS development have been proposed, including molecular
mimicry, and B cell transformation [32]. EBV could contribute to MS
through the reprogramming of latently infected B cells and drive a
chronic presentation of viral antigens as a potential source of auto-
reactivity through molecular mimicry [33]. This chronic presentation
of the antigen has been reproduced in the model using a sinusoidal
function of antigen presentation through time. Finally, we reproduced
alemtuzumab administration and all its connected functions: injection,
5

degradation, consumption, and killing to reproduce the effect of the
therapy on depleting all the mature circulating 𝑇 cells.

3.4. From meta-patients to the generation of personalized therapy

To study model evolution, we first need to determine the value of
the model parameters. Since the mechanism(s) of EBV-mediated MS
development is difficult to determine [32], the antigen is modeled as
an oscillatory function. For what concerns the therapy, it is simulated
as two injections at baseline and at M12 following the clinical practice
guidelines. All the other parameters are calibrated starting from the
median dynamics of the immunological cell populations grouped in the
𝑀𝑆𝑀𝑃 _1. In this regard, the 𝑀𝑆𝑀𝑃 _1 dynamics are to be interpreted
as the baseline.

The three columns of Figure C.13 report the dynamics obtained
simulating the model exclusively changing the initial concentration of
𝐶𝐷4+, Th17, Th1, and Treg populations using the median values of
𝑀𝑆𝑀𝑃 _1, 𝑀𝑆𝑀𝑃 _2, and 𝑀𝑆𝑀𝑃 _3, respectively.

In 𝑀𝑆𝑀𝑃 _2 an increase in Th17 concentration is observed around
6 months. Fig. 3 (bottom row) reports the whatif analysis of the
hange in Th17 dynamics was obtained by varying the concentration
f the antigen, modifying its oscillatory function in order to obtain a
igher concentration peak around month 30. We simulated an addi-
ional infusion of alemtuzumab at month 36 and observed a change in

cell repopulation dynamics. It is interesting to note that after the
dditional alemtuzumab administration Th17, Th1, and Treg counts
emain at lower levels compared to the values measured in 𝑀𝑆𝑀𝑃 _1
nd 𝑀𝑆𝑀𝑃 _3, Fig. 3.

. Discussion

Data from 6-year follow-up clinical trials show that alemtuzumab
as durable efficacy in around one-half or less of the patients [21,22].
he remaining half of patients discontinued alemtuzumab treatment
ue to the inefficacy of therapy or to the manifestation of adverse
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Fig. 3. In 𝐴.1 is reported the plot of the function used to model the antigen over time. In 𝐴.2 the Teff/Treg ratio of the three MSMP is shown revealing the clear difference in the
irst time points of the experiments between MSMP1 and the other MSMP groups. In 𝐴.3, are reported the predicted Th17 dynamics of all the MSMP groups. In 𝐵.1 the dynamic
f the antigen is modified accordingly to reach the maximum value before M30 (continuous line). Moreover, the dynamic after an infusion of alemtuzumab at M36 is reported
s a dashed line. In 𝐵.2 the Teff/Treg ratio plot is reported, the continuous line is associated with the change of antigen concentration at M30 while the dashed line describes
he infusion of alemtuzumab. Finally, 𝐵.3 presents three plots of the simulation of Th1, Th17, and Treg cell populations, respectively. The 𝑀𝑆𝑀𝑃 _1 is associated with dark blue
olor, 𝑀𝑆𝑀𝑃 _2 is associated with teal color, and 𝑀𝑆𝑀𝑃 _3 is associated with orange color. In all the plots, the continuous green vertical lines correspond to the infusion of
lemtuzumab. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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vents caused by deep and long-lasting immune suppression, including
he development of secondary autoimmunity or opportunistic infec-
ions. A portion of patients with early relapse following initiation
f alemtuzumab exists. Early relapsers could have an initial subop-
imal response and the full immune modulatory effect may not be
ealized until the full course regimen. Results of a post hoc analysis
howed that the outcome of the early relapsers improved after com-
leting the second alemtuzumab course, supporting the fact that the
dministration of the approved two-course regimen should maximize
he clinical benefit [34]. Our strategy of analysis using CONNECTOR
nd the unsupervised clustering algorithm, led to the stratification of
lemtuzumab-treated patients into three MSMP groups, based on T-
ell repopulation dynamics. MSMP_1 and MSMP_3 clusters contain MS
atients with sparse relapse events, i.e. events that were non-repeated
nd occurred early in therapy or some years apart from alemtuzumab
dministration, and MSMP_2 cluster contains only patients with at least
wo relapse events that occurred early in the therapy and later after
reatment. According to what was previously discussed, our analytic
trategy efficiently clustered patients with similar T-cell dynamics that
n the end have also similar clinical outcomes. A clear separation
etween ‘‘non-responders patients’’ in MSMP_2 cluster versus ‘‘respon-
ers’’ and ‘‘suboptimal responders’’ (i.e., patients with no relapses and
atients that had a relapse but that later have clinical benefits from the
econd administration of the drug respectively) in clusters MSMP_3 and
SMP_1 is reported.

Modeling analysis of T-cell dynamics of the MSMP_2 cluster resulted
n an increased Th17/Treg cells ratio in the CNS, with respect to
SMP_3 and MSMP_1. In our model, this result is an indirect mea-

ure of inflammation that drives neuronal damage. In the past years,
mmunological analyses on T-cell subsets did not succeed in capturing
ifferences between MS patients with or without disease activity after
lemtuzumab treatment [35,36].

More recently Rolla et al. [20] reported a difference in a higher
h17/Treg ratio at baseline leads to a higher relapse rate after treat-
ent, this is also highlighted by our model analysis in which a change

n the Th17/Treg ratio at baseline is reflected in a different T-cell
epopulation trajectory.

The T-cell repopulation following alemtuzumab treatment may ac-
ount for the need for an additional infusion in individual patients, but
urrently, available data have not identified a corresponding cellular
6

iomarker. Real clinical data demonstrated that 1 or 2 additional
njections after the first two doses effectively reduced the amount
f post-treatment relapses, also reducing the worsening of disability;
owever, this study displayed some limitations due to the lack of a
omparative group of patients who were eligible for additional alem-
uzumab courses but did not receive them [37]. Therefore, it is still
ifficult to predict a priori whether a patient really needs further doses
r not. In this study we simulated an additional treatment in patients
f the MSMP_2 cluster, obtaining a dynamic of T-cell repopulation
ore similar to the other two clusters, suggesting that MSMP_2 could

enefit from additional treatments. In this work, we used GreatNector
n a limited number of subjects, and for a single type of treatment,
f which we collected the necessary longitudinal data. To achieve an
deal patient stratification, the population of MS patients should be
xpanded through a longitudinal multicenter study involving several
ospitals and institutions, in order to generalize the information found
n this article. Ideal patient stratification would be further improved
y considering different types of therapies, and even more so by
onsidering the escalation of different treatments that often happens
n clinical practice. Many of the currently approved therapies for MS
onsist of immunosuppressant drugs with diverse mechanisms of action
e.g., cladribine, ocrelizumab, ofatumumab) and therefore could be
nvestigated with GreatNector. Specifically, gathering data from MS
atients for the treatments of interest, we will utilize GreatNector to
orecast the disease’s progression and determine the optimal timing for
dministering the drug treatment.

The possibility of exploiting MS meta-patients to characterize the
utcome of a patient from his/her baseline suggests that this ap-
roach could efficacy support physicians during the identification of
atients that will need additional treatment before starting therapy
y simulating patient-tailored interventions, based on meta-patient
lustering.

Moreover, researchers and physicians will be able to exploit such
S meta-patients for investigating different intervention hypotheses

imed at contrasting the progression of the disease.
GreatNector and the analytic strategy proposed in this paper could

e generalizable to any type of biological phenomena under study. The
ollection of longitudinal data is an experimental design increasingly
ommon, while the challenging part is the definition of the mechanistic
odel to describe the systems under study in terms of interaction and
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parameters. The model should be simple but not simplistic in order
to capture the interactions among cells or molecules to explore the
hypothesis that conducted the research.

5. Conclusion

GreatNector is a generalizable workflow designed by the com-
bination of longitudinal data analysis and a quantitative modeling
framework. In this paper, GreatNector is used to exploit the longitu-
dinal data of immunological cell populations collected from 21 MS
patients. The first part of GreatNector leads to define in an unsuper-
vised manner three clusters able to distinguish groups characterized by
patients with more than one relapse and patients without relapses. In
the second part of GreatNector, the cluster information was integrated
and exploited to calibrate the unknown parameters of a modified
version of the MS model proposed in [6]. In detail, for each cluster
of patients, we identified a specific parameter configuration, which
was used (1) to simulate the model, capturing the variability char-
acterizing the clusters, and (2) to study the individual IS response
to alemtuzumab treatment. Therefore, in an era where therapies are
focused on personalization, GreatNector aims to predict the evolution
of MS and the response to treatments in specific patients, based on
similar immunological structure at the time of the onset of the disease
or therapy. Indeed, this workflow can lead to significant benefits for
patients and improvements in their life conditions, that can be applied
to other therapies different from the alemtuzumab treatment. More-
over, optimized therapies also mean more cost-effective therapies, since
unnecessary and ineffective treatments will be reduced, with positive
economic consequences.
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