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Abstract: Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and
has been associated with inferior patient and graft survival, particularly in the case of moderate or
severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver
disease in the population has led to a higher proportion of steatotic liver grafts being used for trans-
plantation, making the optimization of their preservation an urgent necessity. This review discusses
the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury
and provides an overview of the available strategies to improve their utilization for transplantation,
with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation
solutions, and machine perfusion techniques.

Keywords: macrovesicular steatosis; ischemia-reperfusion injury; preservation solution; polyethylene
glycol; ischemic preconditioning; hypothermic oxygenated machine perfusion; normothermic machine
perfusion; ischemia-free liver transplantation

1. Introduction

Since the early days of liver transplantation (LT), liver allograft steatosis has emerged
as a major risk factor for graft dysfunction and it has been associated with inferior patient
and graft survival [1]. In past years, the histological definition and quantification of
steatosis has been widely heterogeneous [2–4], which is reflected in the striking variability
in the assessment of its impact on LT outcomes [5–8]. Steatosis has been most frequently
distinguished as macrovesicular steatosis (MaS, or large droplet fat) and microvesicular
steatosis (small/medium droplet fat). MaS is characterized by the presence of a single large
fat vacuole displacing the nucleus towards the periphery of the hepatocytes and distending
cell membrane to a larger size compared to surrounding non-steatotic hepatocytes [9],
whereas small/medium droplet fat is identified as smaller fat vacuoles not meeting the
above definition for MaS.

In LT, the clinical implications of the two types of hepatic steatosis are very different.
Although the presence of ≥30% microvesicular steatosis has been associated with an
increased risk of postreperfusion syndrome, early allograft dysfunction [10], rejection, and
the need for postoperative renal replacement therapy [11,12], use of liver grafts with even
significant microvesicular steatosis is generally considered to be safe [9,13]. In contrast,
the presence of moderate (30–60%) or severe (≥60%) MaS appears to be more clinically
impactful, proportionally to its severity. The utilization of livers with moderate MaS has
been associated with an increased rate of early allograft dysfunction, biliary complications,
and decreased graft survival, whereas severe MaS has been linked to postoperative poor
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function, need for renal replacement therapy, and inferior patient and graft survival [5,6].
Consequently, MaS has been included as a negative prognostic factor in models predicting
post-LT patient and graft survival [14,15]. The high risk associated with the use of severely
steatotic livers is reflected by the very low number of patients in the series reporting their
use [7,16–19], suggesting that, despite some encouraging results that have been reported,
these grafts are generally approached with extreme caution and most frequently discarded.
Recently, a study based on the Scientific Registry of Transplant Recipients has shown that
moderate (≥31%) liver allograft MaS is associated with 87% to 95% lower odds of graft
utilization, while utilization of fatty livers increases the risk of graft failure by 53% [20].

Hepatic steatosis is expected to become more frequent among organ donors, as the
prevalence of overweight and obesity in the world adult population has been estimated
to be 39% and 13%, respectively [21]. In the United States, projections show that by
2030, 48.9% of adult population will be obese (BMI ≥ 30) and 24.2% will be severely
obese (BMI ≥ 35) [22]. Consequently, the global prevalence of non-alcoholic or metabolic-
associated fatty liver disease, of which hepatic steatosis represents the distinctive feature,
has been estimated to be about 25% [23,24].

The increasing incidence of obesity and fatty liver disease has obvious consequences
on LT activity, with non-alcoholic steatohepatitis (NASH) representing the fastest rising
indication for LT in many countries [25,26]. Furthermore, between 2002 and 2016, the
prevalence of NASH-related HCC and HCC in LT candidates with NASH increased 7.7-fold
and 11.8-fold, respectively, in the United States [27].

Thus, given the increasing incidence of hepatic steatosis in the population and the
detrimental impact of moderate or severe MaS on LT outcomes, it appears that simply
discarding steatotic grafts does not represent a viable option. As the safe use of steatotic
grafts may help relieve the chronic organ shortage experienced by most transplant orga-
nizations, strategies to optimize fatty liver preservation and improve LT outcomes are
urgently needed.

In the past, transplant surgeons have strived to improve the outcomes of LT using
fatty livers by minimizing additional risk factors, such as avoiding their use in recipients
with severe hepatopathy or limiting cold ischemia time [18,28,29]. In recent years, however,
several interventions have been proposed to reduce preservation injury in fatty livers,
including donor interventions, use of novel preservation solutions, and machine perfusion
techniques. After briefly recapping the mechanisms behind the increased susceptibility of
fatty livers to ischemia-reperfusion injury, this review will focus on the available strategies
to improve their utilization and will discuss potential future lines of research.

2. Why Are Steatotic Livers More Susceptible to Ischemia-Reperfusion Injury?

Hepatic ischemia-reperfusion injury (IRI) is a sterile inflammatory response commonly
encountered during major liver surgery, such as liver resection and liver transplantation,
when organ blood supply is restored after a period of ischemia. The pathophysiologi-
cal bases of IRI have been recently reappraised, identifying mitochondria as the primary
targets and initiators of IRI cascade [30,31]. Under ischemic conditions, cell metabolism
is switched to anaerobic glycolysis while, at the mitochondrial level, the lack of oxygen
interrupts the electron transport chain and causes the accumulation of reduced electron
carrier molecules (succinate), initiates reverse electron transfer, and leads to the detachment
of flavin mononucleotide from mitochondrial complex I [32]. ATP depletion and lactate
accumulation result in electrolyte imbalance and cellular acidosis. When oxygen levels are
abruptly restored upon reperfusion, the negative potential across mitochondrial matrix
generated during ischemia results in the production of high amounts of reactive oxygen
species (ROS) [33]. Hepatocellular ROS initiate the sterile immune response by promoting
the release of high mobility group box 1 (HMGB1) and nuclear factor κβ (NF-κβ). HMGB1
and NF-κβ are both central mediators of the reperfusion phase, as their signaling sus-
tains Kupffer cell activation, microcirculation impairment, neutrophil recruitment, and
eventually the activation of cell death processes [34,35].
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It is well known that steatotic livers are extremely vulnerable to IRI but the underlying
mechanisms are not completely understood. Evidence from experimental models suggests
that the inflammatory response to IRI is different in steatotic and non-steatotic livers [36,37]
and that increased mitochondrial oxidative stress and impaired ATP restoration are major
determinants of the increased susceptibility of steatotic livers to IRI [38].

Mitochondrial uncoupling protein-2 (UCP-2) is a mitochondrial protein that regulates
proton leakage across the inner membrane. In steatotic livers, UCP-2 expression is increased
to reduce oxidative pressure and ROS production, in an attempt to protect the liver from
chronic fat accumulation. However, by diminishing ATP synthesis and reducing ATP
baseline levels, UCP-2 overexpression compromises hepatocytes capacity to respond to
an acute energy demand, similar to how it occurs during IRI, leading to mitochondrial
permeability transition (MPT) and membrane potential collapse [39,40].

In lean livers, cell death due to IRI can occur through different pathways, with apopto-
sis being the most represented [34,36,41]. However, since apoptosis is an energy-dependent
process, the chronic ATP depletion observed in fatty livers may lead to the failure to induce
apoptosis in favor of necrosis or other forms of programmed cell death [34,36,42]. Indeed,
higher levels of RIPK1 and RIPK3, caspase-9, caspase-1, and iron overload have been
observed in fatty degenerated hepatocytes exposed to IRI, suggesting an important role
of MPT-driven necrosis, necroptosis, pyroptosis, and ferroptosis, respectively [38]. The
considerable overlap and crosstalk between these pathways may have contributed to the
confounding and sometimes controversial results reported by the existing studies [42–44].

Fat droplet accumulation in hepatocytes can cause partial or complete obstruction
of sinusoids, resulting in a reduction in sinusoidal blood flow [45,46]. This might be
exacerbated, upon graft reperfusion, by the rupture of hepatocyte membrane and the release
of fat droplets in the extracellular space, similarly to what happens in lipopeliosis [47,48].
As a result of chronic hypoxic state, steatotic livers are characterized by an increased
expression of endothelin (ET-1) and inducible nitric oxide synthase (iNOS). ET-1 and iNOS
imbalance aggravates sinusoidal vasoconstriction, worsening microcirculatory damage
upon reperfusion [49].

The endoplasmic reticulum (ER) serves many roles in the cell including calcium
storage, protein synthesis, and lipid metabolism, which are stressed in fatty hepatocytes.
Moreover, chaperonin downregulation [50] contributes to ER stress supporting the unfolded
protein response (UPR), a signal transduction cascade that ultimately leads to NF-κB, JUN
N-terminal kinase, and caspase-12 activation [38].

The aforementioned mechanisms, although still partially undisclosed, represent the
basis to develop strategies to reduce IRI in fatty livers.

3. Impact of Different Preservation Solutions

Since the introduction of Collins solution in 1969 [51], organ preservation by static
cold storage (SCS) has been one of the key elements allowing the expansion of organ
transplantation worldwide [52]. The principle of preservation by SCS is slowing down
cellular metabolism with hypothermia while preservation solutions prevent or minimize
cellular swelling, interstitial edema, intracellular acidosis, and ROS production, and provide
energy substrates [52]. Effective preservation is of utmost importance when dealing with
steatotic livers.

First developed in the late 1980s by Belzer and Southard [53], the University of Wiscon-
sin solution (UW) is still considered the gold standard against which other solutions must
be compared. UW is a colloid solution with high potassium, low sodium concentration
(intracellular solution), and high viscosity due to the presence of hydroxyethyl starch (HES)
as an oncotic agent. Histidine–tryptophan–ketoglutarate solution (HTK), which was origi-
nally introduced in the 1970s for cardioplegia [54], employs mannitol as an impermeant and
does not contain colloids, resulting in decreased viscosity as compared to UW. This solution
contains histidine and α-ketoglutarate as energy substrates and buffers, and tryptophan as
a membrane stabilizer and antioxidant. Similarly to HTK, Celsior solution (CS) does not



J. Clin. Med. 2023, 12, 3982 4 of 26

contain colloids but it is characterized by high-sodium and low-potassium concentrations
(extracellular solution) and was specifically designed to limit calcium overload and ROS
production [55]. Institut Georges Lopez-1 solution (IGL-1) is characterized by high-sodium
and low-potassium levels (extracellular solution) and by polyethylene glycol (PEG) instead
of HES as an oncotic agent, resulting in lower viscosity as compared to UW [56]. UW, HTK,
Celsior, and IGL-1 are nowadays the most widely utilized preservation solutions in liver
transplantation [52]. In the general population, clinical results with either preservation
solution have been shown to be roughly equivalent [57], although large studies based
on the European Liver Transplant Registry have shown inferior results with the use of
HTK [58–60].

In steatotic livers, most studies comparing the efficacy of preservation by different
preservation solutions have been conducted in an experimental setting (Table 1).

PEG is a nontoxic, highly soluble neutral polymer capable of preventing edema and
cellular membrane destabilization if administered intravenously in a model of warm
ischemia-reperfusion injury [61]. The benefits of PEG-containing solutions during cold
preservation could be associated with reduced shear stress and improved microcirculation
due to reduced viscosity. Indeed, replacing hydroxyethyl starch by PEG results in a
much lower viscosity of IGL-1 as compared to UW (1.28 versus 5.7 millipascal-second).
Cellular protection is also associated with the reduction of mitochondrial damage by the
increased activation of protective cell mechanisms such as adenosine monophosphate-
activated protein kinase (AMPK) and endothelial NO synthase (eNOS) [62], as also recently
demonstrated in human hepatocytes exposed to IRI in vitro [63].

In 2006, Ben Mosbah et al. first reported the superiority of IGL-1 in preserving steatotic
rat livers [64]. Compared to UW, livers preserved with IGL-1 showed less transaminases
release, increased bile production, lower malondialdehyde (MDA, a marker of lipid per-
oxidation and oxidative injury) levels, lower glutamate dehydrogenase (GLDH, a marker
of mitochondrial injury) activity, and reduced vascular resistance. The authors postulated
that nitric oxide (NO) was involved in the IGL-1 protection against IRI, as suggested by
the overexpression of eNOS in the IGL-1 group and by the suppression of IGL-1 protective
effects when a NO-inhibitor was added to the preservation solution. The same group then
investigated the mechanistic aspects of IGL-1’s apparent superior preservation of steatotic
livers in a series of subsequent experiments. IGL-1 enriched with either insulin-like growth
factor-1 or epidermal growth factor further increased eNOS activation and improved pro-
tection against IRI [65,66]. High levels of hypoxia-inducible factor 1-alpha (HIF-1α) were
found in livers preserved with IGL-1, and the overexpression of heme-oxygenase 1 (HO-1),
one of the HIF-1α downstream genes, supported the cytoprotective role of this signal-
ing pathway [67]. Trimetazidine, an anti-ischemic drug, enhanced HIF-1α and sirtuin 1
induction and reduced HMGB1 levels, thus promoting autophagy to mitigate IRI [68].

In a study comparing IGL-1 and Celsior, Tabka et al. obtained similar results [69]. Rat
livers preserved by IGL-1 showed increased eNOS levels and reduced activation of the
pro-apoptotic mitogen-activated protein kinase (MAPK) pathway. Arterial relaxation was
found to be highly dependent on NO levels during preservation with IGL-1, corroborating
the hypothesis that IGL-1 solution may prevent endothelial dysfunction through eNOS
activation. Supplementing IGL-1 with bortezomib, a proteasome inhibitor, resulted in
AMPK activation and the downstream expression of eNOS and GSK3β, leading to reduced
hepatocellular injury, oxidative stress, and apoptosis [70]. Similarly, carbonic anhydrase
II, an enzyme involved in many IRI-related processes, enhanced IGL-1 capacity to induce
AMPK and consequently reduce UPR- and MAPK-related events, resulting in superior
liver function and histology [71]. Altogether, these results confirmed that IGL-1 benefits in
fatty liver preservation are related to AMPK and eNOS activation [72,73].

Subsequent studies [56,74,75], besides confirming the advantages of IGL-1 over UW
and HTK, showed that the IGL-1 benefits in the preservation of steatotic livers were linked
to proteasome inhibition [75], aldehyde dehydrogenase 2 (ALDH2) upregulation [76], and
autophagy induction [77].
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Based on IGL-1 studies, similar improvements were obtained through activation of
the AMPK pathway and eNOS induction during SCS using UW. Supplementing UW with
trimetazidine, aminoimidazole-4-carboxamide ribonucleoside, carvedilol, or bortezomib
during the preservation of steatotic rat livers resulted in lower perfusate transaminases,
increased bile production, reduced vascular resistance, and lower MDA and GLDH activity
during normothermic reperfusion [78–81].

Eipel et al. [82] investigated the effects of supplementing HTK with erythropoietin for
the preservation of steatotic mice livers. Increased oxygen consumption, better preservation
of the endothelium, and a slight reduction in AST levels were observed in the treated group
after 2 h or normothermic reperfusion. However, UCP-2 expression was not influenced by
erythropoietin supplementation and the signaling pathways explaining better preservation
in the treatment group were not completely clarified.

To further reduce ROS production and cell damage, a new IGL solution (IGL-2) was
developed with higher PEG (5 versus 1 gr/L) and glutathione concentrations, and the
addition of histidine and mannitol instead of raffinose as an impermeant [83]. Importantly,
IGL-2 was designed for use during both SCS and machine perfusion, possibly avoiding the
need for repeated graft flushing between different phases of organ preservation [84]. In
fatty livers, preservation by IGL-2 resulted in reduced mitochondrial injury and oxidative
stress, as reflected by increased levels of HO-1, glutathione, ALDH2, and mitochondrial
complex I and II, all key actors in the response to IRI [83–85]. Interestingly, livers stored
with IGL-2 retained the lowest amount of water during preservation, suggesting that PEG
could decrease the interstitial formation.

In conclusion, experimental evidence suggests that PEG-containing solutions provide
advantages in terms of mitochondrial integrity and protection against oxidative stress and
that IGL-1 and IGL-2 seem the most appropriate preservation solutions for SCS of fatty
livers. Theoretically, use of IGL-2 would also be associated with the logistical advantages of
using the same solution for SCS and machine perfusion. However, these findings must be
interpreted with caution due to the lack of experimental models involving transplantation.
Furthermore, IGL-2 is still awaiting approval for clinical use and the advantages of PEG-
containing solutions should be confirmed in clinical studies.

Table 1. Experimental studies evaluating the impact of different preservation solutions in the
preservation of steatotic livers.

Author, Year Intervention Experimental Model Findings

Ben Mosbah
et al., 2006
[64]

IGL-1
(vs. UW)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, MDA, and GLDH
levels; improved bile production; lower
vascular resistance.
Inhibition of NO production suppressed
IGL-1 effects.

Ben Mosbah
et al., 2007
[78]

UW (+trimetazidine
+aminoimidazole-4-
carboxamide
ribonucleoside)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, MDA, and GLDH
levels; improved bile production; lower vascular
resistance. Increased AMPK activation.
Inhibition of AMPK suppressed the
protective effects.

Ben Mosbah
et al., 2010
[79]

UW
(+carvedilol)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, MDA, and GLDH
levels; improved bile production; lower vascular
resistance; increased ATP. Increased
AMPK activation.
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Table 1. Cont.

Author, Year Intervention Experimental Model Findings

Zaouali et al.,
2010 [67]

IGL-1
(+trimetazidine)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, MDA, and GLDH
levels; improved bile production; lower
vascular resistance.
Increased levels of HIF-1α and downstream genes.
Better results and HIF-1α induction after addition
of trimetazidine.
Inhibition of NO production suppressed the
protective effects.

Zaouali et al.,
2010 [66]

IGL-1
(+IGF-1)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Compared to IGL-1 alone: increased NO
production, lower perfusate transaminase, MDA,
and GLDH levels; improved bile production;
lower vascular resistance, reduced oxidative stress.

Zaouali et al.,
2010 [65]

IGL-1
(+EGF)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Compared to IGL-1 alone: increased NO
production, lower perfusate transaminase, MDA,
and GLDH levels; improved bile production;
lower vascular resistance, reduced oxidative stress;
increased ATP.

Eipel et al.,
2012 [82]

HTK
(+erythropoietin)

24 h SCS followed by 2 h
normothermic reperfusion in
ob/ob mice livers

Compared to HTK alone: lower perfusate AST;
improved endothelial integrity; higher
oxygen consumption.

Bejaoui et al.,
2014 [70]

IGL-1
(+bortezomib)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Compared to IGL-1 alone: activation of AMPK
signaling, lower perfusate transaminase; improved
bile production; lower vascular resistance,
apoptosis inhibition.
Inhibition of AMPK expression reduced IGL-1
protective effects.

Zaouali et al.,
2013 [80]

UW
(+bortezomib)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, MDA, and GLDH
levels; improved bile production; lower vascular
resistance. Increased AMPK activation.

Bejaoui et al.,
2015 [71]

IGL-1
(+carbonic anhydrase II)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Compared to IGL-1 alone: activation of AMPK
signaling, lower perfusate transaminase; improved
bile production; increased ATP; downregulation of
MAPK and UPR pathway; apoptosis inhibition.

Bejaoui et al.,
2015 [62] PEG preconditioning

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase, and GLDH levels;
lower vascular resistance.
Increased AMPK activation.

Tabka et al.,
2015 [69]

IGL-1
(vs. Celsior)

24 h SCS followed by 2 h
normothermic reperfusion in
Sprague-Dawley rats rat livers

Increased NO production, lower perfusate
transaminase, MDA, and GLDH levels; improved
bile production; lower vascular resistance, reduced
oxidative stress, downregulation of
MAPK pathway.

Zaouali et al.,
2017 [68]

IGL-1
(+trimetazidine)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Compared to IGL-1 alone: lower perfusate
transaminase and GLDH levels; increased levels of
sirtuin 1 and reduced levels of HMGB1 and TNFα.

Zaouali et al.,
2017 [75]

IGL-1
(vs. UW)

24 h SCS followed by 2 h
normothermic reperfusion in
Zucker rat livers

Lower perfusate transaminase and GLDH levels;
increased ATP; reduced levels of HMGB1 and
TNFα. Proteasome inhibition.

Panisello-
Roselló et al.,
2017 [56]

IGL-1
(vs. HTK) 24 h SCS of Zucker rat livers

Lower perfusate transaminase and GLDH levels;
increased ATP; reduced levels of HMGB1 and
TNFα. Proteasome inhibition. Increased
AMPK activation.

Panisello-
Roselló et al.,
2018 [76]

IGL-1
(vs. HTK
vs. UW)

24 h SCS of Zucker rat livers
Lower perfusate transaminase levels; increased
ATP; reduced apoptosis.
ALDH2 upregulation.
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Table 1. Cont.

Author, Year Intervention Experimental Model Findings

Panisello-
Roselló et al.,
2018 [74]

IGL-1
(vs. HTK) 24 h SCS of Zucker rat livers

Lower perfusate transaminase and GLDH levels;
reduced membrane mitochondrial depolarization;
reduced apoptosis; reduced levels of HMGB1;
increased autophagy.

Lopez et al.,
2018 [86]

IGL-1
(vs. HTK
vs. IGL-0 *)

24 h SCS of Zucker rat livers Lower perfusate transaminase levels, preserved
glycocalyx integrity.

Bardallo
et al., 2021
[83]

IGL-2
(vs. IGL-1,
vs. IGL-0 *)

24 h SCS of Zucker rat livers
Lower perfusate transaminase and GLDH levels;
increased ATP; increased autophagy; ALDH2
upregulation.

Bardallo
et al., 2022
[85]

IGL-2
(vs. IGL-1,
vs. IGL-0 *)

24 h SCS of Zucker rat livers

Increased ATP; reduced succinate accumulation;
increased complex I and complex II levels:
increased HO-1; increase glutathione levels;
reduced oxidative stress.

Asong-
Fontem et al.,
2022 [84]

IGL-2
(vs. UW)

24 h SCS +/− 2 h HOPE
followed by 2 h normothermic
reperfusion in Zucker
rat livers

Lower perfusate AST; preserved glycocalyx
integrity; reduced levels of HMGB1; increased
weight loss (surrogate of edema formation).

* IGL-0 was IGL-1 solution without polyethilen glycol. Abbreviations: ALDH2, aldehyde dehydrogenase 2;
AMPK, adenosine monophosphate-activated protein kinase; EGF, epidermal growth factor; GLDH, glutamate
dehydrogenase; HIF-1α, hypoxia-inducible factor 1-alpha; HMGB1, high mobility group box 1; HO-1, heme
oxygenase 1; HOPE, hypothermic oxygenated perfusion; MAPK, mitogen-activated protein kinase; MDA, mal-
ondialdehyde; NO, nitric oxide; SCS, static cold storage; TNFα, tumor necrosis factor alpha; UPR, unfolded
protein response.

4. Ischemic Preconditioning

In the setting of LT, ischemic preconditioning (IP) consists in exposing the liver to
a brief period of warm ischemia by clamping the hepatic pedicle, followed by a period
of reperfusion before SCS. The protective effects of IP against IRI were first described in
the heart in the 1980s [87] and were subsequently confirmed in the liver, mostly in warm
IRI models or in the setting of liver resection [88–90]. IP-activated molecular pathways
improve energy storage, pH, and ion homeostasis, and mitochondrial function during
the subsequent ischemic period, as well as stimulate antioxidant production and heat
shock protein expression. This results in reduced ROS production, inflammatory cytokines
release, inflammation, and vasoconstriction upon reperfusion [91]. In clinical LT, pathways
activated by IP also explain part of the benefits of normothermic regional perfusion in
donation after circulatory determination of death [92–101].

Serafin et al. were the first to apply IP in fatty livers [102]. Five minutes of ischemia
followed by ten minutes of reperfusion prior to prolonged warm ischemia significantly
improved the hepatic response to IRI. A consistent number of following preclinical studies
confirmed the protective effects of IP in steatotic livers (Table 2). The majority of studies
adopted the same model of five minutes of warm ischemia and ten minutes of reperfusion,
followed in most cases by 60 min of warm ischemia. IP was associated with improved
survival [102,103] and reduced hepatocyte injury, as reflected by lower transaminases
levels and decreased histological damage [102–113]. In models of SCS followed by trans-
plantation, preconditioned steatotic livers showed lower mortality and improved graft
function [72,114–117]. However, Chu et al. [118] reported that IP was effective with mild
steatotic livers but failed to protect against IRI in moderate/severe steatosis, suggesting
that other/additional interventions should be considered in livers with >30% steatosis.
Moreover, most experimental studies used genetic or diet-induced models of steatosis
that do not fully reproduce the characteristics of human hepatic steatosis, which limit the
translatability of their findings to the clinical LT setting.

At the molecular level, it is interesting to note that the cytoprotective mechanisms of
IP are similar to those of some preservation solutions (Figure 1) [84,86]. IP enhances AMPK
activation and NO production by eNOS [72] and modulates lipid peroxidation by downreg-
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ulating proliferator-activated receptor-α (PPAR-α) and upregulating proliferator-activated
receptor-α [110,114,116]. Casillas-Ramirez et al. [104] showed that inducing PPAR-γ ex-
pression by IP and/or angiotensin II inhibitors resulted in superior protection against IRI.
Sirtuin 1 activation was associated with enhanced AMPK and eNOS induction, confirming
increased NO production after IP [107]. NO is a key factor in the protective effects of IP,
being able to attenuate oxidative stress, reduce neutrophil accumulation, and improve
microcirculation [72,102,103,106–109,115,116]. Furthermore, IP reduces MAPK activation
and increases HO-1 expression, thus protecting against oxidative stress and IRI progres-
sion [109,110], and modulates the balance between proinflammatory and antinflammatory
cytokines, reducing IL-1 and IL-6 expression and upregulating IL-10 [103,104,110,112].
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Pantazi et al.,  
2014 [107] 

Rat Partial IRI 5 min + 10 min  60 min, warm 

Reduced AST; reduced necrosis and 
apoptosis; increased NO production; 
activation of AMPK signaling. Increased 
levels of sirtuin 1. 
Inhibition of sirtuin 1 suppressed the 
protective effects. 

Chu et al.,  
2015 [118] Rat SCS 10 min + 10 min 24 h, cold 

Reduced complex I injury. 
Protective effects only with mild steatosis, 
not with moderate/severe steatosis. 

Jimenez-Castro et 
al.,  
2015 [116] 

Rat LT 5 min + 10 min  6 h, cold 

Increased survival; reduced ALT and AST; 
increased NO production, reduced MPO; 
lower MDA; PPAR-α upregulation; PPAR-
γ downregulation.  
Inhibition of NO production suppressed 
the protective effects. 

Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; GSH, glutathione; HO-
1, heme oxygenase 1; IP, ischemic preconditioning; LT, liver transplantation; MDA, malondialde-
hyde; MPO, myeloperoxidase; MPT, mitochondrial permeability transition; PPAR-α, proliferator-
activated receptor-α; PPAR-γ, proliferator-activated receptor-γ. 
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Despite the promising results from preclinical studies, the application of IP in clinical
LT has produced conflicting results. Two prospective randomized studies involving more
than 100 major liver resections reported reduced transaminases and bilirubin levels in the
IP arm [119,120]. Similar results were observed with marginal grafts subjected to IP prior to
liver transplantation [121–124]. By contrast, another prospective randomized trial involving
101 liver transplants, including 56 steatotic grafts, showed opposite results, with increased
transaminase levels in the IP group [125]. In 2008, a Cochrane review did not show evidence
to support or refute the use of IP in the liver transplantation setting [125], while a more
recent meta-analysis revealed some beneficial effect of IP concerning postoperative AST
levels and mortality rates [126]. These controversial results probably contributed to the
gradual fading of interest in IP, with the last randomized trial published in 2009. Moreover,
as none of the existing clinical studies were specifically designed to investigate the effects
of IRI on steatosis, a definitive conclusion with regards of its benefits in this setting cannot
be drawn.
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Table 2. Preclinical studies on IP in steatotic livers.

Author, Year Animal Model Protocol Ischemia Findings

Serafin et al.,
2002 [102] Rat Partial IRI

5 min + 10 min
10 min + 10 min
10 min + 15 min

60 min, warm

5 + 10 min IP protocol produced better
results.
Increased survival; reduced ALT;
reduced necrosis; lower MDA;
increased GSH; increased blood flow.
Inhibition of NO production
suppressed the protective effects.

Selzner et al.,
2003 [113] Mouse Partial IRI 10 min + 10 min 75 min, warm Reduced AST; reduced necrosis and

apoptosis; increased ATP.

Serafin et al.,
2004 [103] Rat Partial IRI 5 min + 10 min 60 min, warm

Increased survival; reduced ALT;
reduced necrosis; lower MDA; reduced
IL-1b and increased IL-10
Inhibition of NO production
suppressed the protective effects.

Fernandez et al.,
2004 [115] Rat LT 5 min + 10 min 6 h, cold

Reduced AST and ALT; reduced
necrosis; reduced MPO; modulation of
ROS-generating system and lipid
peroxidation.
Inhibition of NO production
suppressed the protective effects.

Carrasco-
Chaumel et al.,
2005 [72]

Rat LT 5 min + 10 min 6 h, cold

Reduced AST and ALT; reduced
necrosis, increased NO production;
activation of AMPK signaling.
Inhibition of NO production
suppressed the protective effects.

Niemann et al.,
2005 [117] Rat LT 10 min + 10 min 4 h, cold Increased survival; increased ATP;

lower lactate

Koti et al., 2005
[108] Rat Partial IRI 5 min + 10 min 45 min, warm

Reduced AST and ALT; increased ATP;
increased oxygenation and
microcirculation

Massip-Salcedo
et al., 2006 [109] Rat Partial IRI 5 min + 10 min 60 min, warm

Reduced AST and ALT; reduced
necrosis; increased HO-1;
downregulation of MAPK pathway.
Inhibition of NO production and/or
HO-1 suppressed the protective effects.

Saidi et al., 2007
[112] Rat Partial IRI 10 min + 15 min 75 min, warm Reduced AST; reduced IL-6; reduced

necrosis.

Massip-Salcedo
et al., 2008 [110] Rat Partial IRI 5 min + 10 min 60 min, warm

Reduced ALT; reduced necrosis; lower
MDA; reduced IL-1b; PPAR-α
upregulation; adiponectin
downregulation; downregulation of
MAPK pathway.
Inhibition of PPAR-α suppressed the
protective effects.

Casillas-Ramirez
et al., 2008 [104] Rat Partial IRI 5 min + 10 min 60 min, warm

Reduced ALT; reduced IL-1, reduced
necrosis; reduced angiotensin II.
ACE-inhibitors produced same
benefits.

Rolo et al., 2009
[111] Rat Partial IRI 5 min + 10 min 90 min, warm

Reduced AST and ALT; reduced
membrane mitochondrial
depolarization; increased ATP; reduced
MPT induction

Hafez et al., 2010
[105] Rabbit Partial IRI 5 min + 10 min 60 min, warm

Reduced AST and ALT; increased
oxygenation and microcirculation,
improved bile quality
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Table 2. Cont.

Author, Year Animal Model Protocol Ischemia Findings

Casillas-Ramirez
et al., 2011 [114] Rat LT 5 min + 10 min 6 h, cold

Reduced AST and ALT; reduced
necrosis. Increased AMPK activation;
PPAR-γ downregulation.
Inhibition of AMPK suppressed the
protective effects.

Jiang et al., 2013
[106] Rat Partial IRI

5 min + 10 min
8 min + 10 min
10 min + 10 min
15 min + 10 min

30 min, warm

5 + 10 min and 8 + 10 min IP protocols
produced better results.
Reduced AST, ALT and LDH; increased
NO production, reduced MPO; lower
MDA;

Pantazi et al.,
2014 [107] Rat Partial IRI 5 min + 10 min 60 min, warm

Reduced AST; reduced necrosis and
apoptosis; increased NO production;
activation of AMPK signaling.
Increased levels of sirtuin 1.
Inhibition of sirtuin 1 suppressed the
protective effects.

Chu et al., 2015
[118] Rat SCS 10 min + 10 min 24 h, cold

Reduced complex I injury.
Protective effects only with mild
steatosis, not with moderate/severe
steatosis.

Jimenez-Castro
et al.,
2015 [116]

Rat LT 5 min + 10 min 6 h, cold

Increased survival; reduced ALT and
AST; increased NO production,
reduced MPO; lower MDA; PPAR-α
upregulation; PPAR-γ downregulation.
Inhibition of NO production
suppressed the protective effects.

Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; GSH, glutathione; HO-1, heme oxyge-
nase 1; IP, ischemic preconditioning; LT, liver transplantation; MDA, malondialdehyde; MPO, myeloperoxidase;
MPT, mitochondrial permeability transition; PPAR-α, proliferator-activated receptor-α; PPAR-γ, proliferator-
activated receptor-γ.

5. Hypothermic Oxygenated Machine Perfusion

The modern era of clinical liver machine perfusion began in 2010 with the publication
by Guarrera et al. [127] on the first clinical series of livers treated with hypothermic machine
perfusion. Compared to patients transplanted with livers preserved by SCS using UW
solution, recipients of livers treated with end-ischemic hypothermic machine perfusion
showed reduced postoperative markers of IRI (AST, ALT, bilirubin, and creatinine peak lev-
els) and shorter postoperative stay. The positive impact of this approach on LT outcome has
been subsequently confirmed in several clinical studies [101,128–143] and four randomized
controlled trials [144–147]. As most groups apply hypothermic machine perfusion with
active perfusate oxygenation, this technique in frequently referred to as hypothermic oxy-
genated machine perfusion (HOPE). The clinical benefits of HOPE include a lower rate of
postreperfusion syndrome, acute kidney injury, and postoperative complications, as well as
a reduced incidence of early allograft loss and ischemic cholangiopathy [137,139,144–148].
Although HOPE benefits have been linked to the continuous perfusion and washout of
metabolic waste products, the delivery of oxygen at low temperatures represents the key
element explaining its efficacy. By allowing tissue reoxygenation, HOPE contrasts the
noxious metabolic effects of ischemia at their roots, preventing mitochondrial respiratory
chain dysfunction that results in reverse electron transfer and ROS production upon graft
reperfusion [149–153]. During HOPE, the mitochondria are reprogrammed to a fully oxi-
dized state, favoring succinate metabolism and preventing its accumulation [152,153]. As a
result, ROS production and subsequent local and systemic inflammation are reduced when
the graft is reperfused into the recipients, which translate into improved postoperative
graft function and clinical outcomes.
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Additionally, HOPE offers an opportunity to assess graft damage and function before
LT, which is of particular interest when fatty liver grafts are considered for LT. Since the
early clinical series, a correlation between transaminase level in HOPE perfusate and
their levels in the recipient after transplantation have been observed [127,134,154]. A
study from our group [155] confirmed these findings, showing that perfusate parameters,
especially ALT, are associated with the development of early allograft dysfunction [10]
after LT. The Zurich group, which is one of the pioneering groups in machine perfusion
and has thoroughly studied different aspects of HOPE, identified mitochondrial complex
I cofactor flavin mononucleotide (FMN) as a promising marker of liver viability during
HOPE, closely correlating with clinical outcomes and potentially driving graft acceptance
and allocation [152,156].

Given its mechanism of action, HOPE represents a promising strategy in reducing
IRI in fatty livers, which are particularly exposed to oxidative stress and exhibit higher
ROS production upon reperfusion. In an isolated perfused rat liver model, Bessems
et al. [157] showed that, by replacing 24 h SCS with continuous HOPE, liver grafts with
30–60% steatosis showed reduced cytolysis, better hyaluronic acid clearance, increased bile
and urea production, higher oxygen consumption and ATP levels, and preserved tissue
morphology, with reduced necrosis and edema formation.

In a subsequent study, Kron et al. [135] transplanted rat liver grafts with severe (≥60%)
macrosteatosis after 12 h of SCS alone, or after 12 h SCS followed by 1 h HOPE. The treated
livers showed a marked decrease in hepatocellular injury, oxidative stress, HMBG1 release,
and endothelial cell activation, as well as improved microcirculation and replenished
energy stores. Animal survival was higher in the HOPE group and was comparable to that
of rats transplanted with lean livers. Similarly to other studies from the same group [151],
the authors observed that perfusing livers with the same perfusate deoxygenated using
nitrogen gas suppressed HOPE protection, confirming the fundamental role of tissue
oxygenation during HOPE. Similar protective effects were reported by Asong-Fontem
et al. [84] by using IGL-2 solution for both SCS and HOPE.

Clinical data on HOPE in fatty livers preservation are still limited. The D-HOPE DCD
trial [147], which has been the first randomized controlled trial (RCT) on dual (i.e., perfusion
of both portal vein and hepatic artery) HOPE (Figure 2), was focused on grafts from donors
after circulatory death (DCD), with the primary endpoint being the 6-month incidence of
non-anastomotic strictures requiring treatment. In this trial, four LT were cancelled after
randomization, in two cases due to “massive” steatosis, and no information was provided
concerning the degree of steatosis in the included grafts. Presumably, inclusion of livers
with moderate or severe steatosis was avoided to prevent overlap of different risk factors
in the same donor. Three subsequent RCTs explored the value of HOPE in livers from
extended criteria donors after brain death (DBD). In the study by Czigany et al. [144],
steatosis ≥ 40% was one of the inclusion criteria, but only two (9%) of donors in the HOPE
group had > 30% MaS and specific outcomes were not provided. In the RCT by Ravaioli
et al. [145], 25 initially randomized livers were discarded due to an unacceptable risk after
macroscopic (n = 10) or microscopic (n = 11) assessment and median MaS was 2% in the
HOPE group. More recently, Schlegel et al. [146] reported the results of a multicenter trial
involving 10 transplant centers in Europe evaluating incidence and gravity of surgical
complication at 1 year, but data on graft steatosis were not reported.

As of today, data on HOPE for fatty liver grafts are limited to few cases gathered from
retrospective studies including a mixture of donors matching the definition of “extended
criteria” for different reasons (Table 3) [137–139,141,155,158]. In the same aforementioned
paper, Kron et al. [135] reported the results of the HOPE application in six human liv-
ers (DCD, n = 5) with 20–40% macrosteatosis and 20–90% macrosteatosis, which were
successfully transplanted after a median time of 2.3 h of HOPE. When compared to a
matched group of 12 LT performed with steatotic grafts preserved by SCS (DBD, n = 12),
recipients of HOPE-treated livers had lower AST peak, lower need for renal replacement
therapy, shorter ICU stay, and better 1-year survival. Notably, 25% of patients in the SCS
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group developed primary non-function, 25% underwent re-transplantation, 75% needed
hemodialysis, and only 42% were alive after 1 year. The experience of our group with HOPE
for liver grafts with moderate or severe MaS has been less clear cut. After an initial favor-
able experience [138], the rare cases of primary non-function or severe graft dysfunction in
HOPE-treated livers have been almost invariably observed in steatotic grafts [137].
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As originally reported by Guarrera et al. [134], these livers with significant MaS are
particularly stiff and require higher perfusion pressures during HOPE, which also in
our experience represents a negative prognostic sign with regards to postoperative graft
function. Furthermore, our study on the predictive value of perfusate parameters during
HOPE showed that MaS was the only independent predictor of EAD [155].

Overall, available evidence suggests that, while brilliant results can be achieved with
HOPE-treated fatty livers, this technique may occasionally be insufficient to recondition
these already severely damaged grafts, which leads to the necessity of assessing their
viability before LT [152,156,158–162]. An interesting treatment algorithm has recently been
proposed by the Zurich group, which has developed a machine allowing normothermic
perfusion for several days [163,164]. Based on FMN perfusate levels during HOPE, severely
damaged grafts (including those with ≥30 MaS) would be either discarded or treated
by long-term normothermic machine perfusion (NMP) to test their viability and assess
whether they are suitable for LT [165].

6. Subnormothermic Machine Perfusion

Subnormothermic machine perfusion (SNMP) is a dynamic preservation technique
characterized by perfusion at 20 ◦C. Vairetti et al. [166] first investigated the use of SNMP
to preserve steatotic rat livers using an acellular perfusate. SNMP was compared to SCS
and HMP in lean and steatotic livers during a 2 h reperfusion at 37 ◦C. Livers undergoing
SNMP showed improved cytolytic enzyme release, bile production, glycogen stores, ATP
replenishment, and oxidative stress compared to both SCS and HMP groups. A following
study by the same group used an equivalent model to demonstrate reduced hepatocyte and
sinusoidal apoptosis in fatty livers preserved with SNMP, resulting in preserved hepatic
ultrastructure and improved microcirculation [167]. With respect to the biliary tree, SNMP
has been associated with the improved preservation of bile canaliculi, as demonstrated
by increased dipeptidylpeptidase-IV activity and expression, used as a marker of biliary
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tree morphology [168]. Similarly, Okamura et al. [169] showed that, compared to SCS,
SNMP-preserved steatotic livers released less ALT and mitochondrial glutamate dehy-
drogenase during reperfusion at normothermic temperature. Bile production, ATP levels,
lipid peroxidation, and tissue glutathione were all significantly improved by SNMP, while
electron microscopy revealed a reduction in sinusoidal microvasculature and hepatocellular
mitochondria injury.

In a preliminary study on discarded human livers undergoing SNMP for 3 h, impaired
NO pathway activation was observed in steatotic livers compared to non-steatotic livers,
confirming the crucial role of NO in preventing endothelial dysfunction [170]. A recent
metabolomic analysis compared the preservation of discarded steatotic human livers at
either subnormothermic or normothermic temperatures [171]. Although higher ATP regen-
eration was observed during SNMP, this was associated with a concomitant glutathione
depletion. Authors concluded that the impaired antioxidant capacity associated with SNMP
may worsen IRI and warrants caution in translating this technique to clinical practice. As
of today, SNMP has not been evaluated as a standalone technique in a clinical trial.

An interesting concept, first prosed by Minor et al. [172], is that of controlled oxy-
genated rewarming (COR), which consists in progressively rewarming the liver under
active oxygenation, before reperfusion at 37 ◦C. In a DBD pig model, this group observed
that COR compared favorably with SCS, HMP, and SNMP in terms of hepatocellular dam-
age, ROS production, expression of inflammatory mediators, and portal vein flow during
subsequent normothermic reperfusion. This concept was clinically implemented by the
Groningen group in the DHOPE-COR-NMP trial, which demonstrated the effectiveness of
the sequential application of D-HOPE and NMP, separated by a brief period of COR, in re-
covering a substantial number of livers for LT which had been initially discarded [173,174].
This approach combines the beneficial effects of D-HOPE on the mitochondrial respiratory
chain with the possibility of testing viability during NMP. However, data concerning the
application of this protocol in steatotic livers are lacking.

Table 3. Clinical MP studies on livers with macrovesicular steatosis ≥ 30%.

Author, Year n Intervention Findings

Guarrera et al.,
2015 [134] 1 End-ischemic HMP

A patient receiving a DBD graft with 40–50% MaS developed PNF.
High-portal pressure and elevated effluent transaminases were
observed during HMP.

Kron et al.,
2017 [135] 6 End-ischemic HOPE

As compared to SCS, recipients of HOPE-treated livers (DCD, n = 5)
had lower transaminase peak, lower dialysis requirement, shorter
ICU stay, and better survival.

Rayar et al.,
2021 [141] 1 End-ischemic D-HOPE One patient receiving a graft with 30% steatosis had good function

after LT and was alive with a functioning graft at 3-month follow-up.

Patrono et al.,
2020 [155] 5 End-ischemic D-HOPE

Graft MaS-influenced levels of perfusate AST, ALT, LDH, glucose,
lactate, and pH and predicted development of EAD after LT. Of 5
recipients of livers with MaS ≥ 30%, one required re-LT.

Patrono et al.,
2022 [137] 12 End-ischemic D-HOPE

Of 12 recipients of livers with ≥30% MaS 5 has AST peak > 6000, 50%
developed grade 2–3 AKI, 2 (16.7%) developed EAF, and 1
(8.3%) died.

Watson et al.,
2018 [175] 1 End-ischemic NMP

One liver described as “very steatotic” accepted for research and not
transplanted. Perfusate ALT at 2 h = 7542 IU/L; no glucose
metabolism.

Ceresa et al.,
2019 [176] 1 End-ischemic NMP

Of three (9.7%) discarded livers, one DBD liver with 80% MaS was
discarded due to insufficient lactate clearance and lack of bile
production and glucose metabolism.
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Table 3. Cont.

Author, Year n Intervention Findings

Mergental et al.,
2020 [177] 2 End-ischemic NMP

Of 9 (29%) discarded livers, 2 had moderate or severe MaS.
Prevalence of medium-large droplet steatosis was higher among
discarded livers (77.8% vs. 40.9%). No liver with MaS ≥ 30% was
accepted for LT.

Fodor et al.,
2021 [178] 3 End-ischemic NMP Of 59 included patients, 3 (5.1%) received a liver with MaS ≥ 30%.

Specific outcomes were not reported.

Patrono et al.,
2022 [179] 14 End-ischemic NMP

Of 14 evaluated livers, 10 (71%) were transplanted but 2 (14%)
developed PNF, whereas post-LT graft function was good in the
remaining patients

He et al., 2018
[180] 1 IFLT A DBD liver with 85–95% MaS was procured, preserved and

successfully transplanted by IFLT.

Chen et al.,
2021 [181] 26 IFLT

A total of 26 livers with moderate (n = 16) or severe (n = 10) MaS
were included, of which 6 were treated by IFLT. IFLT was associated
with reduced AST, GGT, and creatinine peak after LT, and lower EAD
rate (0% versus 60%, p = 0.001).

Abbreviations: HMP, hypothermic machine perfusion; DBD, donation after brain death; MaS, macrovesicular
steatosis; PNF, primary non-function; HOPE, hypothermic oxygenated machine perfusion; SCS, static cold storage;
DCD, donation after circulatory determination of death; ICU, intensive care unit; D-HOPE, dual hypothermic
oxygenated machine perfusion; LT, liver transplantation; AKI, acute kidney injury; EAF, early allograft failure;
NMP, normothermic machine perfusion; IFLT, ischemia-free liver transplantation.

7. Normothermic Machine Perfusion

In contrast with HOPE and SNMP, normothermic machine perfusion aims to reproduce
a physiological environment in which the liver is supplied with oxygen and nutrients at
37 ◦C [182,183]. While NMP was initially meant to substitute most of the SCS time [184]
(normothermic machine preservation), it is nowadays most frequently applied after an
initial period of cold preservation (end-ischemic or “back-to-base” approach), with the
main objective of assessing liver viability [176–178,182,183,185–187]. Besides allowing the
restoration of liver metabolism and cellular ATP content, NMP results in the modulation
of apoptosis and immune response and enhancement of regenerative pathways [188–193].
Furthermore, NMP may be used as a platform to administer organ therapeutics [194–198].

Three RCTs have investigated the clinical advantages of NMP over SCS. In the pivotal
COPE trial, Nasralla et al. [199] demonstrated that upfront NMP initiated at the donor
hospital is associated with reduced post-LT AST peak, which was achieved despite a 50%
lower discard rate and longer preservation time. In this study, NMP also resulted in a
lower incidence of postreperfusion syndrome and EAD. However, quantification of graft
steatosis was based on the macroscopic assessment by the retrieving surgeon, limiting
the available information about the effectiveness of NMP in this setting. The PROTECT
trial [200] confirmed that upfront NMP is associated with a lower incidence of EAD, as well
as reduced histological signs of IRI and a lower incidence of ischemic-type biliary lesions
at 6- and 12-month follow-up. By study design, however, only livers with ≤40% MaS
were included, and the degree of steatosis for the included livers was not clearly reported.
The trial by Ghinolfi et al. [201] investigated the benefits of end-ischemic NMP in elderly
DBD donors and showed that, while NMP did not result in significantly improved clinical
outcomes, it was associated with superior preservation as assessed by electron microscopy.
No graft with MaS ≥ 30% was included in this study.

Data on the clinical effectiveness of NMP in grafts with moderate or severe steatosis
are scarce. When NMP has been used with a back-to-base approach, graft steatosis has
been a frequent reason leading to organ discard a priori or due to failure to meet viability
criteria (Table 3). Watson et al. [175] reported on a liver described as “very steatotic”
which was accepted for research and not transplanted. In the study by Ceresa et al. [176]
comparing upfront versus back-to-base groups, three (9.7%) grafts (DCD, n = 2; DBD,
n = 1) were discarded in the back-to-base group. Among these, the DBD graft showed
severe (80%) MaS and was discarded due to insufficient lactate clearance, as well as lack
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of bile production and glucose metabolism. In the VITTAL trial from the Birmingham
group [177], the prevalence of large–medium droplet steatosis > 30% was 77.8% among
discarded organs versus 40.9% in those that were accepted. However, no accepted graft had
moderate or severe MaS at centralized histological evaluation, while among nine discarded
grafts, two had moderated or severe MaS. Another intriguing finding from this study was
the discrepancy in MaS quantification between pathologists at the procurement hospital
and pathologists at the transplant center. In the series from the Innsbruck group [178], 3 out
of the 59 included patients received a graft with MaS ≥ 30%, but specific outcomes were not
reported. In a multicenter study including data from our group [179], we investigated the
utilization rate and outcomes of livers with MaS ≥ 30% treated by end-ischemic NMP. Of
the 14 evaluated livers, 10 (71%) were transplanted, of which 8 (57%) showed good function
postoperatively, whereas 2 (14%) developed PNF. This study highlights the difficulties in
assessing viability of moderately or severely steatotic livers using the current criteria.

An extension of the concept of upfront NMP, ischemia-free LT (IFLT) is a procedure by
which liver cold ischemia is completely avoided [180]. During IFLT, the liver is cannulated
in situ in the donor through portal vein and hepatic artery collaterals. When donor circula-
tion is interrupted, NMP is simultaneously started. In the recipient, vascular anastomosis
is performed under continuous NMP, which is ultimately stopped immediately before
reperfusing the graft with recipient blood. Interestingly, the first case of human IFLT was
reported by the Guangzhou group in a 25-year-old DBD whose liver showed 85–95% MaS.
The recipient was a 51-year-old patient suffering from HCC and did not develop postreper-
fusion syndrome at graft reperfusion, nor any vascular, biliary, or infectious complications.
IFLT has been associated with improved post-LT graft function and reduced histological
signs of IRI [202]. Recently, the results of the first RCT evaluating IFLT versus conven-
tional LT [203] have shown that IFLT is associated with a significant reduction in EAD rate
(6% versus 24%, p = 0.044), improved liver function tests (lower transaminase peak and
total bilirubin level on postoperative day 7th), a reduction in postreperfusion syndrome,
shorter ICU stay, and a lower incidence of ischemic cholangiopathy (8% versus 36%). In
a population of young DBD donors (median age = 38 years), the same group compared
the outcomes of six grafts with moderate or severe MaS treated with IFLT with those of 20
equally steatotic livers preserved by conventional SCS [181]. Lower peak AST, GGT, and
creatinine levels after LT were observed in the IFLT group, as well as a significantly lower
rate of EAD (0% versus 60%, p = 0.01). Furthermore, no case of PNF or acute kidney injury
was observed after IFLT.

NMP represents an ideal platform for organ-specific pharmacologic interventions.
In the setting of steatosis, one intriguing possibility is manipulating lipid metabolism to
reduce fatty liver content and perform a so-called “defatting” protocol. Nagrath et al. [204]
successfully delivered a defatting cocktail to fatty rat livers using NMP, reducing intracel-
lular lipid content by more than 50%. In a porcine model of mild hepatic steatosis, NMP
alone determined a reduction in hepatic fat content from 30% to 15% and fatty livers ex-
hibited perfusate homeostasis, hemodynamics, and bile production comparable to healthy
livers [205]. In contrast, the NMP of discarded human livers failed to reduce steatosis
even after 24 h of perfusion, contradicting the previous evidence from rodent and pig
models [206]. In a study involving 10 discarded human livers randomly assigned to either
NMP alone or defatting NMP, the application of a defatting protocol resulted in a 40%
decrease in tissue triglyceride content and macrovesicular steatosis after 6 h of perfusion,
along with improved mitochondrial function and a reduction in oxidative injury markers
and inflammatory cytokines [207]. Notably, all livers treated with the defatting protocol
finally met transplant viability criteria, as confirmed by enhanced hemodynamics, lactate
clearance, and biliary function. However, as of today no liver treated by a defatting protocol
has been transplanted and toxicity of some compounds of the defatting cocktail may limit
the application of this approach on the clinical setting. Despite being complicated by impor-
tant technical hurdles [208,209], long-term NMP might be necessary to allow for effective
defatting and the comprehensive viability assessment of fatty liver grafts [163–165].
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8. Conclusions

After decades of research on the subject (Figure 3), it appears that the definitive
strategy to achieve optimal preservation of livers with significant steatosis remains to be
found. Despite the encouraging preclinical data, novel preservation solutions and ischemic
preconditioning have so far failed to make a difference in the clinical setting. Although
dynamic preservation techniques have the potential to improve the preservation of fatty
liver grafts and allow for their safe utilization, the available data are still preliminary and
must be confirmed in larger clinical trials. Uniform and reproducible steatosis assessment,
as well as strict adjustment for potential donor and recipient confounders, will be critical
factors in the design of these studies.
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