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P-ADIC CONTINUED FRACTIONS FOR NUMBER FIELDS

Abstract. A classical problem posed by Rosen was, given a number field K, to devise a
continued fraction algorithm having the property of providing a finite expansion exactly when
applied to an entry in K. We investigate this problem in a non archimedean setting. Starting
from the p-adic case studied by Browkin and Ruban, we give a general definition of P-adic
continued fraction, when P is an integral ideal of K. We find some necessary and sufficient
conditions for the finiteness property, studying in details the case of norm Euclidean quadratic
fields

1. Introduction

The classical continued fraction algorithm provides an integer sequence [a0,a1, . . .] that
represents a real number α0 by means of the following recursive algorithm:an = ⌊αn⌋

αn+1 =
1

αn−an
if αn−an ̸= 0,

for all n ≥ 0, where ⌊·⌋ denotes the integral part of a real number. The Euclidean
algorithm ensures that, for classical continued fractions, the procedure eventually stops
if and only if α0 is a rational number.

Motivated by this property, Rosen [18] posed the problem of finding more gen-
eral definitions of continued fraction expansions characterizing all the elements of an
algebraic number field K by means of having a finite expansion and providing approx-
imations for those elements not belonging to K, in terms of elements in K. See [7] for
a overview of the results on this topic.

The problem of Rosen can be naturally translated into the context of p–adic
numbers. In this context, however, there is no natural definition of a p–adic continued
fraction, since there is no canonical definition for a “p-adic floor function”. The two
main definitions of a p–adic continued fraction algorithm are due to Browkin [4] and
Ruban [19]; they are both based on the definition of a p–adic floor function

s(α) =
0

∑
n=k

xn pn ∈Q, where α =
∞

∑
n=k

xn pn ∈Qp,

where k is the p-adic valuation of α , and the coefficients xn’s are the representatives
modulo p in the interval (−p/2, p/2) in Browkin’s definition, while Ruban’s algorithm
considers them in the interval [0, p− 1]. It was proved that rational numbers always
have finite Browkin continued fraction expansion [5], and finite or eventually periodic
in Ruban’s case [12].

∗The three authors are members of the INdAM group GNSAGA.
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We are interested here in the p-adic analogue of Rosen question, which was
extensively addressed in [7]: given a number field K and a prime ideal P in its ring
of integers OK , we firstly recall the general definition of P-adic continued fractions,
and the main convergence and approximation properties. Then we present the results
concerning the finiteness of the expansion. Finally, we consider some explicit examples
in the case of quadratic fields.

2. P-adic continued fractions

For every rational prime p, let | · |p denote the p-adic absolute value, defined as
|x|p = p−vp(x), where vp(x) is the standard p-adic valuation function. The archimedean
absolute value on R or C will be denoted by | · | or by | · |∞.

Let K be a number field of degree d over Q, and let OK be its ring of integers. We
fix a prime ideal P of OK lying over an odd prime p. Let MK be a set of representatives
for the places of K. For every rational prime q and every v ∈MK above q let Kv be
the completion of K w.r.t. the v-adic valuation and Ov be its valuation ring; we put

dv = [Kv : Qq]. Let | · |v = |NKv/Qq
(·)|

1
dv
q be the unique extension of | · |q to Kv.

Let v0 ∈MK be the place corresponding to P. We define

OK,{v0}
= {α ∈ K | |α|v ≤ 1 for every non archimedean v ̸= v0 in MK}.

2.1. P-adic floor functions and types

We recall the main definitions presented in [7, §3.1].

DEFINITION 1. A P-adic floor function for K is a function s : Kv0
→ K such

that

a) |α− s(α)|v0
< 1 for every α ∈ Kv0

;

b) |s(α)|v ≤ 1 for every non archimedean v ∈MK \{v0};

c) s(0) = 0;

d) s(α) = s(β ) if |α−β |v0
< 1.

The choice of a P-adic floor function is equivalent to choose a set Y of repre-
sentatives of the cosets of POv0

in Kv0
containing 0 and contained in OK,{v0}

.
We shall call the triplet τ = (K,P,s) (or (K,P,Y )) a type.
In the case where P is principal, there is a more natural way of defining a floor func-
tion associated to P. Indeed, let π ∈ OK be generator and let R be a complete set of
representatives of OK/P containing 0. Then, every α ∈ Kv0

can be expressed uniquely
as a Laurent series α = ∑∞

j=−n c jπ j, where c j ∈R for every j. It is possible to define
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a P-adic floor function by

s(α) =
0

∑
j=−n

c jπ
j ∈ K.

In this case, we shall denote the types τ = (K,P,s) obtained as by τ = (K,π,R), and
we call them special types.

EXAMPLE 1 (Browkin and Ruban types over Q). When K =Q and π = p is an
odd prime, two main special types have been studied in the literature:

• the Browkin type τB = (Q, p,RB) where RB = {− p−1
2 , . . . , p−1

2 } (see [1–6]);

• the Ruban type τR = (Q, p,RR) where RR = {0, . . . , p−1} (see [8, 12, 19, 20]).

2.2. P-adic continued fractions associated to types

Let τ = (K,P,s) be a type and put

Ys = s(Kv0
), Y 1

s = {a ∈ Ys | |a|v0
> 1}.

Then, Ys is a discrete subset of Kv0
.

DEFINITION 2. Let τ = (K,P,s) be a type. A continued fraction of type τ is a
(possibly infinite) expression of the form

[a0,a1, . . .] = a0 +
1

a1 +
1

a2+...

of elements of Ys such that an ∈ Y 1
s for n≥ 1.

We define the sequences (An)
∞
n=−1, (Bn)

∞
n=−1 by putting

A−1 = 1, A0 = a0, An = anAn−1 +An−2,

B−1 = 0, B0 = 1, Bn = anBn−1 +Bn−2,

for n≥ 1. By using matrices we can write

An =

(
an 1
1 0

)
for n≥ 0,(1)

Bn =

(
An An−1
Bn Bn−1

)
for n≥ 0;

then,
Bn = Bn−1An = A0A1 . . .An.

Notice that
det(An) =−1, det(Bn) = (−1)n−1.
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We define the nth−convergent to be

Qn =
An

Bn
= a0 +

1

a1 +
1

. . . +
1
an

for n≥ 0.

We notice that the sequence of the convergents {Qn}n∈N P-adically converges; indeed
an easy induction shows that |Bn|v0

= ∏n
j=1 |a j|v0

, and |Qn−Qn−1|v0
= 1
|Bn|v0

|Bn−1|v0
.

Then the claim follows by the hypothesis that |an|v0
> 1 for every n≥ 1.

Conversely, every α ∈ Kv0
is the limit of a (unique) continued fraction of type τ

obtained applying the following algorithm:

(2)


α0 = α ,
αn+1 = 1

αn−an
,

an = s(αn).

The sequence [a0,a1, . . .] obtained by algorithm (2) is called the continued fraction
expansion of type τ for α .

3. Finiteness properties

Let τ = (K,P,s) be a type. We are interested in giving necessary and sufficient con-
ditions on τ in order to ensure that every element of K has finite continued fraction
expansion of type τ .

Following [16], where the authors address this problem in the Archimedean
case, we introduce the following definitions.

DEFINITION 3.

a) We say that τ satisfies the Continued Fraction Finiteness property (CFF) (resp.
the Continued Fraction Periodicity property (CFP)) if every α ∈ K has a finite
(resp. finite or periodic) τ-expansion.

b) We say that the field K satisfies the P-adic Continued Fraction Finiteness prop-
erty (CFF) (resp. the P-adic Continued Fraction Periodicity property (CFP)) if
there exists a type τ = (K,P,s) satisfying the CFF (resp. CFP) property.

It was proven in [4, §3] that the Browkin types τB satisfy the CFF property, for
every odd prime p; see also [7, Proposition 4.3] for a more effective result. On the other
hand it is easy to see that the Ruban type cannot satisfy CFF, since negative rational
numbers cannot have a terminating Ruban continued fraction. Laohakosol [12] and,
independently, Wang [20] proved that τR satisfies CFP, proving in particular that, if

a rational number as non-terminating τR-expansion, then the tail is equal to
[
1− 1

p

]
.
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However, none of these arguments were effective; more recently, in [8] the authors
gave a quantitative estimation for the length of the expansion when this is finite, and an
estimation on the length of the pre-periodic part in terms of the height of the rational
number.

4. General results

Firstly, it is possible to prove a strong necessary condition for CFF:

PROPOSITION 1. [7, Proposition 7.1 and Corollary 7.2] Assume that the field
K satisfies the P-adic CFF property. Then the ideal class group of K is cyclic and
generated by [P].

Moreover, OK is a PID when either P is principal, or if K satisfies the P-adic
CFF property for all but finitely many prime ideals P.

4.1. A criterion for CFF

For x ∈ C, we define

θ(x) =
1
2
(|x|∞ +

√
|x|2∞ +4).

In [7] the authors prove that, given a type τ = (K,P,s), a suitable bound involving the
P-adic absolute values and the values of θ on the elements in the image of s and on
their conjugates will guarantee the CFF (resp. CFP) property for τ :

THEOREM 1. [7, Theorem 4.5] Let τ = (K,P,s) be a type. Let Σ be the set of
embeddings of K in C, and let us denote by

ντ = sup

∏σ∈Σ θ(aσ )

|a|dv0
v0

| a ∈ Y 1
s

 .

Then,

a) if ντ ≤ 1, then τ satisfies CFP;

b) if ντ < 1, then τ satisfies CFF.

The above criterion becomes more explicit in the case of special types:

THEOREM 2. [7, Theorem 4.6] Let τ = (K,π,R) be a special type, and let Σ
be the set of embeddings of K in C. For every σ ∈ Σ, let Lσ = max{|cσ |∞ | c ∈R},
and λσ = |πσ |∞. Assume that, for every σ ∈ Σ,

λσ > 1 and Lσ ≤ (λσ −1)
(

1− 1
λ 2

σ

)
;

then,



12 Laura Capuano - Nadir Murru- Lea Terracini

a) τ satisfies the CFP property;

b) if moreover Lσ < (λσ − 1)
(

1− 1
λ 2

σ

)
for at least one σ ∈ Σ, then τ satifies the

CFF property.

4.2. The CFF property for norm Euclidean number fields

As an application of Theorem 1, by using basic notions in geometry of numbers and
the fundamental properties of the norm Euclidean minimum in [9], the following result
was proven in [7]:

THEOREM 3. [7, Theorem 5.6] Assume that K is a norm Euclidean number
field having Euclidean minimum M(K)< 1. Then K satisfies the P-adic CFF-property
for all but finitely many prime ideals P of OK .

As pointed out in [7, Remark 5.7] the condition M(K) < 1 in Theorem 3 is
verified for “almost all” norm Euclidean number fields.

Theorem 3 admits an interesting generalisation to prime ideals lying in a norm
Euclidean ideal class in the sense of [14]; indeed, the paper [17] extends the results on
the Euclidean minimum presented in [9] to this setting.

THEOREM 4. [7, Theorem 7.4] Let K be a number field and assume that K has
a norm Euclidean ideal class C having Euclidean minimum MC < 1 and rank of units
r > 1. Then, K satisfies the P-adic CFF property for all but finitely many P ∈ C .

We notice that non principal Euclidean classes exist for example for fields like
Q(
√
−15) and Q(

√
−20) (see [14, Prop. 2.1]), and Q(

√
10), Q(

√
15), Q(

√
85) (see

[14, 2.5]); other examples can be found in [15].

5. CFF for norm Euclidean quadratic fields

In the case of norm Euclidean quadratic fields, we obtained more explicit results.

5.1. Imaginary norm Euclidean quadratic fields

Let K = Q(
√
−D) with D a square free integer > 0. It is known that the Euclidean

minimum M(K) is given by

M(K) =

{
D+1

4 if D≡ 1,2 (mod 4)
(D+1)2

16D if D≡ 3 (mod 4)

(see for example [13, Prop. 4.2]). It follows that the only norm Euclidean quadratic
imaginary fields K =Q[

√
−D] with M(K)< 1 are those having D = 1,2,3,7,11.
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PROPOSITION 2. [7, Proposition 6.1 ] Let K = Q(
√
−D) be a imaginary

quadratic norm Euclidean field. Let P be a prime ideal of OK with odd residual char-
acteristics. Put λ =

√
NK/Q(P). Then

a) if
√

M(K)< 1− 1
λ 2 , then K satisfies the P-adic CFF property.

b) if
√

M(K) <
(
1− 1

λ
)2 (

1+ 1
λ
)
, then there exists a special type τ = (K,π,R)

satisfying the CFF property.

The following list summarises the behaviour of the P-adic CFF property for
imaginary norm Euclidean fields K =Q(

√
−D); p denotes the rational prime P∩Z.

D 1 2 3 7 11
CFF property for p≥ 3 5 2 3 7
CFF special type for p≥ 7 23 11 13 127

5.2. Real norm Euclidean quadratic fields: some explicit constructions

It is well known that a real quadratic field Q(
√

D) is norm Euclidean if and only if
D = 2,3,11,13,17,19,21,29,33,37,41,57,73 (see for example [11]). In [10], the au-
thors give a constructive proof of this fact by showing that, in each of these cases,
the fundamental region is covered by (finitely many) unit neighborhoods of the plane,
explicitely exhibiting a family of such neighborhoods for each field. Using this in com-
bination with the construction of the proof of Theorem 3, it is shown in [7, §6.2] how
to construct explicitly a P-adic floor function for a prime ideal P of OK . We give a
sketch of this construction: let K =Q(

√
D) be a real norm Euclidean field; we consider

the plane embedding given by

j : K −→ R2

a+b
√

D 7−→ (a,b);

this gives a representation of the elements of K as the points of the plane with rational
coordinates.

Under this plane embedding, the algebraic integers correspond to the lattice
points Z2, if D≡ 2,3 (mod 4), and to the mid-lattice points 1

2Z
2 if D≡ 1 (mod 4).

For any λ ∈ OK , we define the neighborhood of λ in K of radius ε to be the set

Vε(λ ) = {β ∈Q(
√

D) | |NK/Q(β −λ )|< ε};

using the plane embedding, this maps to

Vε(x,y) = {(r,s) ∈Q2 | |(r− x)2−D(s− y)2|< ε},
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where (x,y) = j(λ ). Notice that these are infinite “X-shaped” regions in the plane
bounded by conjugate hyperbolas.

It is then clear that, since we are assuming that K is norm Euclidean, each
β ∈Q(

√
D) lies in the neighborhood Vε(λ ) for some λ ∈OK , i.e. each point (r,s)∈Q2

lies in some neighborhood Vε(x,y) in the plane, where (x,y) = j(λ ) for some λ ∈OK .

Let P be a prime ideal in OK ; we can associate to every generator π ∈ P a
type τπ = (Q,P,sπ), where the floor function sπ is defined by the following algorithm:
given a coset α+POv0

in Kv0
, we can find, by strong approximation, an element α ′ ∈K

belonging to this coset such that |α ′|v < 1 for every non-archimedean v ∈MK \{v0};
in particular, α ′ ∈ OK [

1
π ]. We can now translate α ′

π by a suitable element µ ∈ OK so
that j(β ) := j(α ′−µ) belongs to the region

F(D) :=
{
(r,s) ∈Q2 | − 1

2
< r ≤ 1

2
, −1

2
< s≤ 1

2

}
,

and such β is unique. We call F(D) fundamental region. Notice that α ′ ≡ πβ
(mod P). By [10], we have that F(D) is covered by a finite number of neighbor-
hoods or radius ε < 1 (depending of D) Vε(xk,yk); hence, j(β ) lies in (almost) one of
these neighbourhood. We choose a neighbourhood Vε(x′,y′) such that j(β ) lies in it
and, for every γ ∈ α +POv0

, we put

sπ(γ) := π(β − j−1(x′,y′)).

EXAMPLE 2. Let us consider the case D = 17; since D ≡ 1 (mod 4), then
OK = Z

[
1+
√

D
2

]
. Let us divide the fundamental region F(17) into six subsets, namely:

• F1 = {(x,y) ∈Q2 | 0 < r ≤ 1/2, −1/4 < s≤ 1/4};

• F2 = {(x,y) ∈Q2 | −1/2 < r ≤ 0, −1/4 < s≤ 1/4};

• F3 = {(x,y) ∈Q2 | 0 < r ≤ 1/2, 1/4 < s≤ 1/2};

• F4 = {(x,y) ∈Q2 | 0 < r ≤ 1/2, −1/2 < s≤−1/4};

• F5 = {(x,y) ∈Q2 | −1/2 < r ≤ 0, 1/4 < s≤ 1/2};

• F6 = {(x,y) ∈Q2 | −1/2 < r ≤ 0, −1/2 < s≤−1/4}.

Then, F(17) is equal to the union of these regions, and the union is disjoint, hence every
β ∈F(17) belongs to one Fk. We have now to associate to every Fk a unit neighborhood
V (x,y) that covers the corresponding region; this can be of course done in many ways.

We use an argument analogous to [10]. By easy calculations, we have that
the point (1/2,1/4) ∈ F1 lies of the top boundary of the neighborhood V13/16(1,0),
hence the preimage of every point in F1 satisfies NK/Q(β − 1) ≤ 13/16. Similarly,
the point (1/2,1/4) lies on the bottom boundary of the neighborhood V13/16(1,1/2),
hence F3 is contained in its closure. Using the symmetry properties of F(17), it is



P-adic continued fractions 15

easy to see that F2 ⊂ V13/16(−1,0), F4 ⊂ V13/16(1,−1/2), F5 ⊂ V13/16(−1,1/2) and

F6 ⊂V13/16(−1,−1/2). For every k = 1, . . . ,6, let us denote by δk the preimage in OK

of the center of the corresponding neighborhood, i.e. δk := j−1(xk,yk). Using this, we
can perform the algorithm described above.

Given a prime ideal P⊂Ov0
, choose a suitable generator π of POv0

. Then, for
every coset α+POv0

, choose α ′ ∈α+POv0
∩OK [1/π], and translate it by an element

µ ∈OK so that the image of β := α−µ lies in the fundamental region; then j(β ) ∈ Fk
for some k = 1, . . . ,6.

Take any γ ∈ α +POv0
; then, we denote by

sπ(γ) := π(β −δi).

Let us show for example that, if p is an odd prime which is inert in OK , then
this choice of the floor function gives rise to a type satisfying CFF property.

If p is inert, then we can take π = p, hence NK/Q(P) = p2. To apply Theorem

1, we have to estimate θ(aσ ) for every a ∈ Y 1
s and every embedding σ of K into

R, which are exactly the identity and the one sending
√

17 to −
√

17. By the above
choice of the neighborhoods covering the fundamental region and the corresponding
construction of the floor function, we have that, for every β ∈ Fk and for every centre
of the corresponding neighborhood δk, |β σ −δ σ

k | ≤
√

5/4, and NK/Q(β
σ −δ σ

k )≤ 1/4,

hence for every a ∈ Y 1
s , we have NK/Q(a)≤

13
16 p2.

It follows that

∏
σ∈Σ

θ(aσ )< ∏
σ∈Σ

(1+ |aσ |)≤ 1+

√
5

2
p+

13
16

p2.

Since |a|dp
p ≥ p2, we have that ντπ < 1 if

1+

√
5

2
p+

13
16

p2 < p2,

which holds for every prime p≥ 3. We finally point out that a similar argument involv-
ing another choice of the generator of the prime ideal P can be used in the case where
p split.

Section 6.3 of [7] is devoted to study in details the case K =Q(
√

2):

THEOREM 5. [7, Theorem 6.3] The field Q(
√

2) has the P-adic CFF property,
for every prime ideal P of odd residual characteristics.
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