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1 Introduction 
Visualisation tools and graphical interfaces have become more and more important 
to analyse, manage, help in understanding, and present scientific data. Nowadays, 
this is particularly true in the realm of computational molecular and solid-state 
chemistry for which a paramount number of data can be obtained from more robust 
and multipurpose computational codes and through the accessibility of powerful 
computing facilities.  With this amount of numbers, scientists need a method to 
understand them, what they mean and what conclusions take; as quoted by Valle1, 
a way to help scientists is visualisation, because it activates a brain part that it is 
stopped in the case of pure rational analysis. Then, to use those parts of brain, we 
have to transform numbers in colours and shapes, because in this way scientists 
can have new insights and insight is the heart of the cognition process. 

A possible definition of visualisation can be “Visualisation is the use of computer-
support, interactive, visual representations of data to amplify cognition”1; in this 
concept all visualisation usages are condensed. 

• Computer-supported means that visualisation can support scientist brain 
because without them they are limited in their arguments; it is important to 
note that the definition says Computer-supported and not Computer-based 
because visualisation must be used as a support to human reasoning, which 
must always be present in the cognitive process. 

• Interactive means that visualisation allows scientists to be able to interact 
with the images, e.g. rotate them, move, and see their relationship with the 
space. 

• Visual representation of data means that converting numbers into graphic 
objects allows us to see new thing, to have new ideas, to have insights 
never before. 
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• To amplify cognition means that the ultimate goal of visualisation is not to 
reproduce nice charts, but rather to stimulate the intuition of the scientist. 
In this perspective, therefore, even a simple line chart becomes a powerful 
visualisation tool if it allows the scientist to reach new conclusions. 

Visualisation has also an important role in discovery cycle, either in the case in 
which scientist has an insight or in case he/she has no idea. In the first situation, 
the process starts with an insight that becomes a model; this model can be 
visualised and the visualisation can improve it, creating a cycle in which the model 
gradually improves. The scientist therefore knows what he/she wants to find and 
directs the visualisation in a precise direction. Instead, in the second instance, 
scientists do not know what they want to find and then the possibility to visualise 
computed numbers in shapes and colours can guide cognition processes with a new 
way to look at the data.  

Despite Richard Weinberg says that “Computing, and in particular supercomputing, 
without visualisation is like assembling a jigsaw puzzle in the dark”2, we must not 
forget that visualisation is not a total substitute for a careful analysis of the data 
and then scientists must have a critical view of the images produced. 

With this in mind, in my PhD I focused on the development of visualisation and 
graphical tools to be applied in computational solid-state chemistry. In the field of 
computational solid-state chemistry, several different softwares exist for the ab 
initio study of physical and chemical properties of periodic systems as polymers, 
surfaces, and crystalline solids. Among them a prominent role is played by the 
CRYSTAL code3-8, a software developed since mid-70s of the last century by the 
Theoretical Chemistry Group of the University of Torino and later in collaboration 
with the Computational Materials Science Group at Daresbury Laboratory (UK). 
Although CRYSTAL has recently shown a tremendous improvement in terms of 
advanced and powerful algorithms,5,7 particularly for speeding up calculations of 
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the two parallel versions9-11 and for extending the number of properties that can 
be computed,8 the graphical tools for the analysis and visualisation of the predicted 
results have remained at a less developed stage. The CRYSTAL package performs 
ab initio calculations of the ground state energy, electronic wave function and 
properties of periodic systems at the HF and DFT level of theory8. Presently, 
graphical tools available to analyse data computed with the CRYSTAL code are not 
unique and in some cases obsolete. Some of the computed properties and related 
data can be plotted by means of Gnuplot12. Gnuplot is a widespread tool for plotting 
scientific data. It was originally created to allow scientists and students to visualise 
mathematical functions and data interactively, but nowadays it has grown to 
support many non-interactive uses such as web scripting. For instance, CRYSTAL 
can create files that can be read by Gnuplot to plot simulated vibrational spectra. 
Other properties like band structure and density of states can be plotted with the 
homemade CrGra package whose latest release dates back to 2006. The 
development of the CrGra suite of programs started almost thirty years ago by the 
CRYSTAL team to create graphic plots in the PostScript language that could be 
easily printed. CrGra2006 processes data written by CRYSTAL in the Fortran unit 
“fort.25”8. The CrGra suite is comprised of three modules: maps06 to draw contour 
maps (e.g. charge and spin density, electrostatic potential), bands06 to plot band 
structures and doss06 to plot total and projected density of states. However, the 
code was not updated for plotting data related to other properties that are now 
available from CRYSTAL (e.g. simulated IR/Raman spectra, topological analysis 
related quantities and electron conductivity). 

In addition to these plotting tools, also other graphical tools are available to 
visualise data from CRYSTAL such as DLV13 and XCRYSDEN14.  Even if they provide 
a more extended graphical interface to the code (e.g. visualisation of the crystalline 
structure and related features, animation of vibrational frequencies, and so on, see 
ref. 13 and 14 for further details) they are currently not fully updated to the last 
release of the code and not available for all operating systems.  
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Therefore, for the first part of the PhD project I decided to create an up to date 
modern web-oriented visualisation tool to be machine independent, easy to use 
and freely accessible to users from all over the world through Internet browsers. 
Briefly, CRYSPLOT15 (http://crysplot.crystalsolutions.eu/) extends and improves 
over the capabilities of CrGra to plot additional data (e.g. simulated IR/Raman 
spectra) and to manage multiple datasets. It also allows users to customize plots 
as detailed in the next section. 

As a second step, I tried to understand how my project could help a beginner user 
of CRYSTAL to make more gradual his learning curve in using the code. My 
conclusion was that a complicate task for a user is the creation of the input deck 
because one has to define the structure of the examined system, the method and 
basis set, and other computational details along with several possible keywords to 
compute different properties. In addition, such keywords must be specified in a 
precise order in the input file. Furthermore, for a beginner the analysis and the 
visualisation of computed results are really complex.  

Therefore to provide a new tool to help and facilitate the use of CRYSTAL, I 
designed CRYSTAL VLab (http://vlab.crystalsolutions.eu/), an all-purpose 
application that allows users to create their own input decks, run calculations and 
visualise the results. For each of these three steps, a wizard with main settings has 
been designed.  

CRYSTAL VLab, as well as CRYSPLOT, is a web-based tool to make it machine 
independent and freely accessible to users from all over the world through Internet 
browsers and with a modern, simple and easy to use layout. CRYSPLOT and 
CRYSTAL VLab are really new in the world of visualisation of computational material 
science, because a lot of software exists but a few use a web-based approach. 
Indeed, MaterialsStudio, Avogadro, Ovito, Vesta and P4VASP are very well known 
as visualisation tools but none of them is web-based and cross-platform at the same 
time. 

http://crysplot.crystalsolutions.eu/
http://vlab.crystalsolutions.eu/
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The outcomes of my PhD project are then CRYSPLOT and CRYSTAL VLab. In the 
1st year and half of 2nd one I created CRYSPLOT, a new web-based graphical tool 
that allows to visualise results for many different properties (e.g. band structure, 
density of states, simulated IR and Raman spectra, …) and customize the resulting 
plots. In the second half of 2nd year and 3rd one, I worked on the designed and 
creation of CRYSTAL VLab, a more complex graphical tool that can help users not 
only to visualise, but also to build/read their own inputs and run the CRYSTAL code. 
Both tools will be presented and described in the next chapters of the present 
thesis. 

Finally, it is worthy to note that the present research work was carried out within a 
PhD in Apprenticeship. The PhD activity was a joint project between the University 
of Torino and Aethia s.r.l. where I worked for my apprenticeship. This project was 
also supported by Regione Piemonte (Avviso Pubblico approvato con D.D. 537 del 
03/08/2016). 
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2 CRYSPLOT 
CRYSPLOT1 is a project born from the idea of giving to CRYSTAL users a simple, 
user-friendly and intuitive visualisation tool, but also complete and with high 
graphical performances. In the following, I will discuss in more detail technical 
aspects and features of CRYSPLOT (i.e. how it works, what it does,…) along with 
selected examples to show the capabilities of this new graphical tool. 

What it does and how it works 
CRYSPLOT is publicly available online at http://crysplot.crystalsolutions.eu/. 

Figure 2-1. Screenshot of the CRYSPLOT home page 

In Figure 2-1, a screenshot of the CRYSPLOT homepage is shown. Basically, 
CRYSPLOT allows users to visualise Band Structure, Density of States, Electron 
Charge Density and Electrostatic Potential maps, Simulated Vibrational Spectra, 
Topological Analysis, Phonon Dispersion and Transport Properties computed with 
CRYSTAL on a machine independent platform. It also aims at offering users with 
easy-to-use options to modify and customize plots in order to meet standards 
required for scientific publications. It is worthy to note that, although CRYSPLOT is 
targeted to CRYSTAL, the same properties as computed from other programs could 

http://crysplot.crystalsolutions.eu/
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be plotted by simply converting raw data to the CRYSTAL format as described in 
the Appendix of the CRYSTAL User’s Manual2.  

At the design stage of CRYSPLOT, I decided to create a cross platform tool for 
making it easily accessible to the largest number of users. For this reason I decided 
to organize CRYSPLOT as a website and develop it as a web application by using 
HTML5 markup language, CSS3 style sheet language, BOOTSTRAP front-end 
framework, JavaScript programming language and jQuery JavaScript library.  

BOOTSTRAP is a free front-end framework for faster and easier web development 
that includes HTML and CSS based design templates for typography, forms, 
buttons, tables, navigation, modals, image carousels and many other, as well as 
optional JavaScript plugins. In addition, BOOTSTRAP has the ability to easily create 
responsive designs, i.e. web sites that automatically adjust themselves to look good 
on all devices, from small smartphones to large desktops. BOOTSTRAP is easy to 
use and compatible with all modern browsers (Chrome, Firefox, Internet Explorer, 
Safari, and Opera).   

From the programming language point of view, I used jQuery library in addition to 
just JavaScript language because jQuery makes much easier to use JavaScript on 
website; indeed it takes a lot of common tasks that require many lines of JavaScript 
code to accomplish, and wraps them into methods that can be called with a single 
line of code. jQuery also simplifies a lot of the complicated things from JavaScript, 
like AJAX calls and DOM manipulation. 

For the graphical part I have chosen PLOTLY3 for 2D plots and JSmol4 for 3D ones. 
Plotly is a high-level, declarative charting library, built on top of d3.js and stack.gl. 
In CRYSPLOT, I used its JavaScript version named plotly.js. Plotly.js uses stack.gl 
for high performance 2D and 3D charting and the charts are shipped with zoom, 
pan, hover, and click interactions like click-and-drag to zoom into a region, double-
click to autoscale, click on legend items to toggle traces. Plotly.js ships with 20 
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chart types, including 3D charts, statistical graphs, and SVG maps; it abstracts the 
types of statistical and scientific charts that one would find in packages like 
matplotlib, ggplot2, or MATLAB. The charts are described declaratively as JSON 
objects and every aspect of the charts, such as colors, grid lines, and the legend, 
has a corresponding set of JSON attributes. 

JSmol is the HTML5 modality of Jmol. Jmol is a free, open source viewer of 
molecular and crystalline structures. JSmol can be embedded into web pages and 
all the functionality of Jmol (as a standalone application) is also present in JSmol. 
JSmol is an interactive web browser object that can read all the files that Jmol reads 
and can do all the scripting that Jmol does. JSmol has both a console and a popup 
menu. 

CRYSPLOT web page 
The CRYSPLOT website (see Figure 2-1) has a descriptive part (homepage and 
“What is”), an operative one (“Make a plot”) and user dedicated services (“Sample 
file”, “Documentation” and “Contacts”) (See Appendix 1). The “Make a plot” button 
is the heart of CRYSPLOT: it opens a cascade menu from which user can select the 
property to be plotted as shown in Figure 2-2. 

Figure 2-2. “Make a plot” cascade menu 
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In addition, the header of the web page contains links to the pages described 
above: "CRYSPLOT" brings to the homepage, "What is" links to a page on the main 
features of CRYSPLOT, “Sample files” to a page with sample files to visualise some 
properties plot, “Documentation” to different manuals and "Contacts" to the contact 
page. Then, under the header there is a tab in which the selected property will be 
plotted. Figure 2-2 also shows the list of available properties, namely: band 
structure, density of states, crystal orbital overlap population, crystal orbital 
Hamiltonian population, electron charge density map and profile, electrostatic 
potential, Compton profiles, autocorrelation function, infrared, Raman, reflectance 
and complex dielectric spectra, phonon band structure and density of states, 
topological analysis, electron conductivity, Seebeck coefficient, electron thermal 
conductivity and volumetric data analysis. There is also the possibility to plot elastic 
properties through the link to the Elate web site5, a web tool for the analysis of 
elastic tensors, developed by F. X. Coudert and co-workers.  

In each property tab, users may choose the output file from their local PC (see 
button ”Choose file”) to upload the data for the selected property as previously 
computed by CRYSTAL. All data to be plotted are written in a formatted way (i.e. 
plain ASCII) either on the Fortran unit 25 (fort.25) or in separate files (e.g. 
BAND.DAT, IRSPEC.DAT, ...). The list of properties and the corresponding name of 
the auxiliary files is listed in Table 1 in Appendix 2.  

Notably, since in crystalline systems many properties are tensors and anisotropic, 
CRYSPLOT also allows the simultaneous plot of multiple datasets as for the 
simulated Raman spectra of a single crystal model for which six sets of data are 
available for the six independent orientation of the Raman tensor (i.e. xx, yy, zz, 
xy, yz, xz) as will be shown later on.  
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The ”Plot settings” lateral menu (hidden on the left of the CRYSPLOT web page) 
contains a palette of options for customizing the plot shown on the screen. 
CRYSPLOT has independent pages for every property and these pages have a 
specific ”Plot settings” set of options. 

Figure 2-3. Example of plot settings palette as for the band structure plotting 

For instance, Figure 2-3 shows an example of the “plot settings” menu for the band 
structure. Some of the available options to modify the plot are described in the 
following: 

• Legend allows to show or hide the legend, 
• Font size permits to decide the size of the plot and axis titles font, selecting 

from four sizes,  
• Plot title permits to change the chart title, 
• Tick labels allows to change the labels of the k points on the x-axis, 
• Band labels allows users to change the name of each band (i.e. electronic 

level), 
• Line type permits to decide which type of line is adopted for plotting the 

bands, namely: plain line, only markers or both, 
• Y-axis unit controls the y-axis unit to be either Hartree (default) or eV, 
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• Different layout for open shell case enables user to change the appearance 
of the plot to have the band structure for alpha and beta electrons on the 
same graph or on two separate plots, 

• Fermi Energy line allows one to show or hide the line of Fermi Energy, 
• Shifting Y-axis allows to shift values for the value of Fermi Energy, 
• Axis range allows to selected a sub-region of the plot by axis values, 
• Data on hover allows to change the visualisation of data on the plot, 
• Grid allows one to show or hide the grey grid of the plot, 
• Background color modifies the color of the plot background from grey 

(default) to white, 
• Plot layout allows to select the size of the plot. 

Of course there are also other customizations created for particular plots, e.g. in 
the case of the density of states plot users can change line colours, in the case of 
spin polarized systems one can decide whether painting α and β lines in pairs or 
with different colours. Also, total and projected density of states can be plotted 
either on the same graph or on different charts. 

Finally, at the bottom of the page there is an “Export” section to save the actual 
plot as a picture. After selecting the file format (i.e. jpeg, png and svg) users must 
simply write the plot name and click on “Download Plot”. 

CRYSPLOT: Under the hood 
CRYSPLOT has been designed using an object oriented programming approach, 
where each class implements a different type of property. In particular CRYSPLOT 
has a parent class called “Property” that is a sort of abstract class from which every 
other property inherits common attributes and methods. This object contains all 
the functions that are shared by all pages, e.g. function that allows downloading 
the plot in different format or the one that allows resizing the plot when the browser 
window is resized. Under this parent class, there are 5 children classes: “PropBand”, 
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“PropDos”, “PropSpectra”, “PropBrCp” and “PropDensityMap”. These classes are 
shared between different plot types, for example in “PropBand” class are defined 
some functions that are shared between some CRYSPLOT pages that plots band 
structure in different ways, i.e. “Band structure plot”, “Unified plot of band structure 
and density of states” and “Phonon band structure”. In essence, CRYSPLOT makes 
great use of inheritance between classes, avoiding unnecessary code repetition.  

Regarding the programming language, CRYSPLOT is designed and written in 
JavaScript. In particular the code parses the input files, checks if the uploaded files 
are correct and, if they are, it reads the data and organizes them into objects ready 
to be plotted with plotly.js library. A peculiar feature of CRYSPLOT is the separation 
of the code dedicated to import data from the one dedicated to plot. Indeed, 
different import filters for each supported file format have been created, but the 
code that transfers data to plotly.js is always the same. When importing the data, 
the code checks whether the file format is correct, and if not, an error message 
appears. After data have been normalized, it is straightforward to visualise them 
through the common code for plotting. For instance, data for band structure can 
be imported either from BAND.DAT (or filename.BAND) file or the Fortran unit 
fort.25 (or filename.f25). In that case, the code has two different import functions: 
one for .BAND or .DAT format and another one for fort.25. Therefore, even if data 
are organized and formatted very differently, after importing them, users get the 
same JavaScript object that can be passed to plotly.js through the general plotting 
code for the final rendering of the graph. This structure makes CRYSPLOT modular 
and flexible so that it is very simple to add other input data formats. In fact, it is 
just a matter of creating a new import filter that organizes the values in the proper 
way.  

After parsing data, my code passes information to a graphical tool, in particular 
plotly.js for 2D plots or JSmol for 3D ones.  
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Plotly.js requires three parameters: 

• the id of the element in which the plot will be displayed on the page, 
• data to be displayed, 
• layout and customization settings of plot. 

It’s important to note that the method defined above allows to replicate the plot 
without loading the file.  

In other words, if variables are stored server-side, it’s possible to replicate the plot 
in different browsers and embed it in other web pages. 

In the case of JSmol, I organized the code in two parts: 

• The first one consists of a variable definition, usually called “Info”, in which 
the main plot settings are defined (for example width and height) and those 
parameters that never change. The most important “Info” field is “script”, 
because it defines the initialization of data. After “Info” definition, JSmol 
initializes a so-called “Applet” object linked with the “Info” variable, and 
through a JQuery method all this information is displayed in a specific area 
of the page. 

• The second step consists of calling the previously defined functions that 
represent the data. These functions make use of Jmol.script() method, that 
requires two parameters, the name of the applet and a string with the 
commands to execute. Jmol.script() method automatically updates the plot 
with the changes written in the specified string. 

I also defined customization functions that exploit Jmol.script() method in order for 
example to allow users to change the lattice dimension or the colour of the 
structure. 
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Overall, CRYSPLOT is designed only with plotly.js and JSmol libraries and it has 
been tested with most common browsers on different operating systems by using 
standard test cases coming from the CRYSTAL code, sample tests included in the 
CRYSTAL Tutorial project and on-purpose designed tests. 

CRYSPLOT at work: Selected case studies 
In this section, metal-organic frameworks (MOFs) are used as case studies to show 
some of the capabilities of CRYSPLOT. MOFs are a relatively new class of hybrid 
inorganic-organic materials that are comprised of an inorganic cluster (or metal) 
and an organic linker acting as secondary building units of a tridimensional and 
usually porous framework.6 Due to their peculiar structure, MOFs are interesting 
for several applications ranging from gas adsorption, separation and capture to 
catalysis and drug delivery. Recently, they have become of interest for other 
technologically relevant applications such as sensoring, lighting and 
optoelectronics.7-9 

Band structure and density of states  

Figure 2-4. Example of a band structure plot for the metal-organic framework 
CPO-27-Ni. Alpha and beta electronic bands are represented as continuous and 

dashed lines, respectively. The Fermi level is indicated with a red line. 
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Figure 2-5. Example of total and 
projected density of states plot 
for CPO-27-Ni. Projected DOSs 
are plotted for all non-symmetry 
related atoms in the unit cell 

 

As a first case study, we discuss 
the electronic structure of CPO-
27-Ni. This MOF consists of 
metal-containing helical chains 
connected throughout space by 
the organic linker (i.e. 2,5-
dihydroxyterephthalic acid, 
empirical formula: C8H2O6Ni2) 
to form a honeycomb-like 
framework10-11. The resulting 
structure shows one-
dimensional channels in which 
unsaturated metal sites are 
exposed at the inner surface. 
Due to the presence of unpaired 
electrons on the metal, CPO-27-
Ni is a spin-polarized system. 
Results refer to a ferromagnetic 
configuration with Ni in a high-
spin state. Reported data have 
been obtained with the M06-D 
method12 with a TZVP basis 
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set13. In Figure 2-4, the band structure of CPO-27-Ni is shown. CRYSPLOT can 
automatically manage spin-polarized systems by plotting band structure for alpha 
and beta electrons together or separately in two graphs.  

The total and the projected density of states have been plotted for all atoms in the 
asymmetric unit (i.e. 9 projected DOSs) is shown in Figure 2-5. As it can be seen, 
the coloured filled area plot is very effective in highlighting the role of alpha and 
beta electrons and multiple plots allow users to compare total and projected DOSs. 

Figure 2-6. Example of a combined band structure and density of states plot for 
CPO-27-Ni. 

With CRYSPLOT, band structure and density of states can be also easily visualised 
in a combined plot. Figure 2-6, shows the band structure of CPO-27-Ni along with 
its total and projected density of states, that is the combination of Figures 2-4 and 
Figure 2-5. By default, the two plots are aligned to the Fermi level at 0 eV. From 
this graph, users can easily visualise which atom contributes to the corresponding 
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electronic band. For instance, for CPO-27-Ni, it can be readily seen that the top of 
the valence band corresponds to orbitals of the organic linker while the bottom of 
the conduction band is mainly dominated by the metal, thus suggesting a possible 
ligand-to-metal electronic transition. 

Electron charge density maps 

As an example of the plotting of 2D maps, the total electron density of a carbon 
monoxide molecule adsorbed on the inner surface of CPO-27-Ni is shown in Figure 
2-7. Results have been computed at the M06-D/TZVP level of theory. The CO 
molecule strongly interacts with the Ni atoms that are exposed in the one-
dimensional channels oriented along the c-axis.13 The interaction is dominated by 
electrostatics and charge transfer effects due to the back-donation between the 
diffuse molecular orbitals of carbon monoxide and the unoccupied d-orbitals of the 
metal. To better appreciate the redistribution of the charge density upon the 
formation of the metal-CO interaction, it is then useful to plot the deformation 
charge density as shown in Figure 2-8. 

CRYSPLOT can easily manage multiple sets of data and combine them to obtain a 
new map that corresponds to the difference (or sum) of the uploaded datasets. For 
instance, Figure 2-8 shows the deformation of the charge density when a CO 

molecule is adsorbed on top of the metal in CPO-27-Ni. The plot is obtained as a 
combination of the total electron charge densities of three systems, namely: the 
target system (i.e. CPO-27-Ni/CO) and the two separated subsystems (i.e. an array 
of CO molecules and the CPO-27-Ni alone). The electron density deformation map 
in Figure 8 shows positive values, in red, that correspond to charge accumulation 
while negative values, in blue, show where a depletion of charge occurs. As evident 
from Figure 2-8, it can be seen that the deformation of the charge density is due 
to back-donation effects related to the interaction between occupied d-orbitals on 
Ni and an empty π-acceptor level on CO.  
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Figure 2-7. Contour plot of 
the total electron charge 
density map of a CO 

molecule adsorbed in the 
inner channels of CPO-27-
Ni. 

 

 

 

 

 

 

 

Figure 2-8. Plot of the 
electron charge density 
deformation map of CO 
molecule adsorbed in 
CPO-27-Ni.  Blue and red 
lines correspond to 
negative and positive 
values, respectively. 
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Simulated vibrational spectra 

To show the capabilities of CRYSPLOT in plotting vibrational spectra, we compare 
the two phases of the bi-stable MOF known as MIL-53-Al.15-16 The MIL-53 family of 
MOFs shows a flexible framework that can undertake a phase transition driven by 
external stimuli as temperature, pressure and gas adsorption.17 The structure of 
MIL-53-Al consists of infinite chains of corner-sharing AlO4(OH)2 octahedra linked 
through the organic ligands (i.e. 1,4-benzendicarboxylic acid, empirical formula: 
C8H5AlO5) to form flexible one-dimensional channels.15 For MIL-53-Al, it was 
shown that, by changing the temperature, a phase transition occurs between a 
low-T narrow-pore (NP) structure and a high-T large-pore (LP) phase. 15-16 

Figure 2-9. Comparison between IR spectra of the NP (blue) and LP (orange) 
phases of MIL-53-Al. 
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Figure 2-10. Details of the spectral region between 400 and 700 cm-1 of the IR 
spectra of the NP (blue) and LP (orange) phases of MIL-53-Al. 

It has been recently shown that the two phases exhibit unique vibrational 
fingerprints from dielectric function spectra18 and IR/Raman spectra19. With 
CRYSPLOT simulated IR and Raman spectra as computed by CRYSTAL can be easily 
visualised. In addition, up to five IR (or Raman) spectra can be plotted together to 
highlight differences in the vibrational modes and distinguish between different 
phases. This is very useful when comparing vibrational spectra of different 
polymorphs as for molecular crystals, or different phases as for the case of MIL-
53-Al.  

In Figure 2-9 and 2-10 the comparison between the simulated IR spectra, 
respectively, of the NP and CP phases of MIL-53-Al is shown. Results have been 
obtained with the B3LYP functional20-22 augmented with the Grimme’s D3 dispersion 
correction23-24 in combination with a triple-zeta quality basis set25. It can be clearly 
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seen that the two phases show several spectral shifts of the peaks from a few to 
twenty wavenumbers. In particular, by zooming into the plot with CRYSPLOT one 
can also visualise in more detail the spectral regions that show the largest variations 
because they can reveal the presence of vibrational fingerprints. For instance, in 
Figure 2-10 the IR region between 400 and 700 cm-1 of the two phases is 
highlighted. According to a recent work by Hoffman et al. 6 this corresponds to the 
region of metal-oxide backbone vibrations that are more influenced by the phase 
transition. 

As an additional example, the simulated Raman spectra of MIL-53 large pore phase 
are shown in Figure 2-11. CRYSTAL permits to simulate the Raman spectra of solids 
either as a polycrystalline powder or a single crystal26-27. In the former case, the 
total spectrum is predicted along with two components in the parallel and 
perpendicular directions. For the latter, the six spectra originate from the 
corresponding independent components of the second-order electric susceptibility 
tensor (i.e. xx,xy,xz,yy,yz,zz). For instance, Figure 2-11 has been obtained by using 
the unscaled vibrational frequencies and a Lorentzian profile with a FWHM of 8 cm-

1. For this kind of plot, CRYSPLOT permits to visualise all spectra simultaneously. A 
nice feature is that by clicking on the items in the legend, one can hide (or show) 
the corresponding spectrum in the plot. This option allows users to analyse the 
data and highlight the Raman spectrum along a given direction. From Figure 2-11 
(bottom), it is evident that the two peaks at very low frequency in the THz region 
(i.e. 300-0 cm-1) are polarized in different directions, i.e. xy and xz, thus making 
easier the comparison with single-crystal Raman spectra from experimental works. 
On passing, it is worthy to note that the simulated total Raman spectrum of MIL-
53(LP) as a crystalline powder (see Figure 2-11, top) nicely agrees with the 
experimental one reported by Hoffman et al. 6 
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Figure 2-11. Raman spectra of the LP phase of MIL-53-Al in the region (top) 
1700-600 cm-1 and (bottom) 300-0 cm-1. The two graphs show the simulated 
Raman spectra as for a polycrystalline material (3 components) and a single 

crystal (6 components) respectively. See text for details. 
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Analysis of volumetric data 

Very recently, the visualisation capabilities of CRYPLOT has been extended by 
including the plotting of volumetric data through JSmol. This is a very useful option 
that allows users to visualise properties that can be represented in 3D plots such 
as isosurfaces. CRYSTAL permits to compute the total electron charge density, the 
electron spin density and the electrostatic potential on a regular 3D grid of points 
in the unit cell. Data are then written in a cube format that can be read by the 
JSmol plug-in. 

For example, Figure 2-12 shows volumetric data as computed with CRYSTAL for 
metal-organic framework HKUST-1. HKUST-1 is comprised of Cu-containing paddle-
wheels linked by trimesate ligands (i.e. empirical formula: C18H6Cu3O12, see 
Figure 2-12 (a)) to form a porous structure with large pores that make the 
compound a promising material for its adsorption properties. The Cu atom shows 
a square planar coordination and possesses an unpaired electron. Reported results 
correspond to the ferromagnetic (open-shell triplet) cubic geometry. As clearly seen 
from Figure 2-12 (b) that shows the spin density around the copper atoms, the 
unpaired electrons are located in a d(x2-y2) orbital of Cu with some spin polarization 
of the oxygens of the paddle-wheel.     

Figure 2-12 (c) and (d) show the total electron charge density and electrostatic 
potential mapped on top of a density isosurface of 0.003 e around the pore of 
HKUST-1. In particular, the latter allows highlighting positive and negative regions 
that show where possible adsorption sites can be located. This is a very useful piece 
of information for microporous materials as MOFs. For HKUST-1, a positive region 
can be clearly seen around the copper atom that, not unexpectedly, acts as a 
specific adsorption site to molecules with electron pairs as water or ammonia, while 
the oxygens around it are negatively charged.  
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(a) (b) 
  

(c) (d) 
 

Figure 2-12. Examples of plotting of volumetric data for HKUST-1: (a) structure of 
HKUST-1, (b) spin density around the copper atoms in the paddle-wheel, (c) total 
electron charge density and (d) electrostatic potential mapped on top of a density 

isosurface of 0.003 e around the pore of HKUST-1 (blue and red correspond to 
positive and negative values). 
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3 CRYSTAL VLab 
CRYSTAL VLab (CRYSTAL Virtual Laboratory) is an on-going project born from the 
idea of giving to CRYSTAL users an easy to use graphical interface to make more 
gradual CRYSTAL learning curve. For instance, when a user starts playing with 
CRYSTAL, the first hurdle to overcome is the creation of the input. This is a very 
difficult step to learn because there is a standard format for the input files that 
requires a precise order of the information supplied to the code through specific 
keywords. Therefore, finding a way to simplify the use of CRYSTAL is one of the 
main purposes of the CRYSTAL VLab graphical interface that has been developed 
during this PhD work.  

To better understand the structure of VLab, the next section is devoted to a short 
description of the main features of the CRYSTAL code and the input format. 

CRYSTAL code in short 
The CRYSTAL program has been jointly developed by The Theoretical Chemistry 
Group at the University of Torino (Italy) and the Computational Materials Science 
Group at Daresbury Laboratory (U.K.).  

The CRYSTAL package performs ab initio calculations of the ground state energy, 
electronic wave function and properties of periodic systems. Hartree-Fock or Kohn-
Sham Hamiltonians (that adopt an Exchange-Correlation potential following the 
postulates of Density-Functional theory) can be used. Systems periodic in 0 
(molecules, 0D), 1 (polymers, 1D), 2 (slabs, 2D), and 3 dimensions (crystals, 3D) 
are treated on an equal footing. In each case the fundamental approximation made 
is the expansion of the single particle wave functions ('Crystalline Orbital', CO) as 
a linear combination of Bloch functions (BF) defined in terms of local functions 
(hereafter indicated as 'Atomic Orbitals', AOs). The local functions are, in turn, 
linear combinations of Gaussian type functions (GTF), whose exponents and 
coefficients are defined by input. Functions of s, p, and d symmetry can be used. 
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Also available are sp shells (s and p shells, sharing the same set of exponents). The 
use of sp shells can give rise to considerable savings in CPU time.  

The program can automatically handle space symmetry: 230 space groups, 80 layer 
groups, 99 rod groups, 45 point groups are available. In the case of polymers it 
can also treat helical structures (translation followed by a rotation around the 
periodic axis). Point symmetries compatible with translation symmetry are provided 
for molecules. 

Input tools allow the generation of slabs (2D system) or clusters (0D system) from 
a 3D crystalline structure, the elastic distortion of the lattice, the creation of a super 
cell with a defect and a large variety of structure editing. 

Previous releases of the software in 1988 (CRYSTAL88), 1992 (CRYSTAL92), 1996 
(CRYSTAL95), 1998 (CRYSTAL98), 2003 (CRYSTAL03), 2009 (CRYSTAL09) and 
2014 (CRYSTAL14) have been used in a wide variety of research with notable 
applications in studies of stability of minerals, oxide surface chemistry, and defects 
in ionic materials. The current version of the code (CRYSTAL17) has been released 
in Autumn 2017.  

CRYSTAL performs two tasks:  

program task 

crystal wave function and energy calculation, along with other types 
of calculations (e.g. geometry optimization) 

properties wave function analysis and one electron properties calculation 
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Wave function calculation 

The input deck for wave function calculation, an ASCII text file usually denoted 
with the extension *.d12, is read by the program crystal. The CRYSTAL input to 
crystal includes a title and three sections.  

Each section consists of keywords (cases insensitive, written left justified) and 
numerical parameters (free format). Every section ends with the keyword END 
(mandatory: 3 characters only are interpreted, any ending is allowed, ENDgeom, 
ENDbas, etc) or STOP. The latter will cause immediate termination of execution. 

The input deck has the following structure:  

 Title 

input block 1 Geometry input  
        standard geometry input 
        optional geometry optimization and editing keywords 
END 

input block 2 Basis set input 
        standard basis set input 

        optional basis set related keywords  
END 

input block 3 Single particle Hamiltonian  and SCF control  
        SHRINK 
        sampling in reciprocal space (for 1D-2D-3D systems 
only) 
        optional general information and SCF related keywords 
END 
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Some parts of the input are mandatory such as the geometry of the studied system, 
the basis set and the sampling of the reciprocal space for periodic systems (i.e. 
SHRINK).  

Here is a commented example for MgO bulk:  

 

As it can be seen, many optional keywords can be specified that allow users to 
modify the initial geometry and run different types of calculations (e.g. geometry 
optimization, vibrational frequencies calculations, elastic constants, piezoelectric 
tensor calculations, …). Most of them represents a block opened by a given keyword 
(e.g. OPTGEOM) and closed by END. Moreover, many additional options can be 
specified as sub-keywords to control/modify (e.g. convergence criteria) the default 
set up of the main keyword.  
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As mentioned above, some of them must follow a given order and the correct 
syntax. It is then clear that an automatic way to select and specify the diverse 
keywords would be very helpful.  

Wave function analysis 

The program properties reads an input deck, usually denoted with the extension 
*.d3, to perform the analysis of the wave function as computed by crystal. Again, 
the input is an ASCII text file as for crystal, but it does not comprise different 
sections. Yet, each option (e.g. band structure, density of states, …) requires a 
specific input with several keywords and parameters. 

It is out of the scope of the present PhD thesis to enter in more details into the 
CRYSTAL input format, additional information on input decks for both crystal and 
properties can be found on the CRYSTAL Users’ Manual and at the CRYSTAL 
Tutorials web page.  

On passing, it worthy to mentioned that the CRYSTAL tutorials web site has been 
renewed and restyled during this PhD work.  

CRYSTAL VLab structure 
CRYSTAL VLab is basically divided in three parts that represent the main steps that 
a user takes when using the CRYSTAL code, that is create or edit an input file, run 
the calculation and visualise the results:  

• Build : in this part the user can write his input file (.d12 format or .d3 one) 
either through a simple text area or with the help of a wizard; 

• Compute : in this part the user can run a calculation. This task is 
accomplished by means of an auxiliary program (CRYSTAL VLab starter) 
previously installed on user’s PC (see below for more details); 

• View : in this part the user can visualise computed results either with 
CRYSPLOT1 or with JSmol2. 
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Figure 3-1. Screenshot of CRYSTAL VLab homepage  

In addition, for registered users, along with the graphical interface, a file repository 
has been created on a host server in order to store their own files to be used with 
CRYSTAL VLab. To do that a file manager application has been developed to 
manage users' private profiles.  

In the following sections, the main features of the three parts will be presented 
along with the two auxiliary applications, namely: CRYSTAL VLab starter and 
CRYSTAL VLab file manager. 

CRYSTAL VLab: BUILD 
The “BUILD” part of CRYSTAL VLab manages the CRYSTAL input. It allows one to 
read, edit and create a new input. It is the most complex part of the GUI because 
its development required an extensive work to analyze the structure of the 
CRYSTAL input file, parse the whole input by taking into account that there could 
be a combination of multiple keywords and put them in the right order.  
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Figure 3-2: Screenshot of CRYSTAL VLab BUILD page 
 

 

Graphically, the BUILD page is designed with a toolbar on top with different buttons 
(see Figure 3-2) whose meaning is listed below: 

  

: selects a folder between user private folders. After the selection, all 
the files in folder appear on left. 

 
: uploads new files in the selected folder. 

 
: writes a new input through a simple text area. 

 

: opens the wizard, i.e. an input assistant for a guided input 
creation. 
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: refreshes the JSmol block (grey block on the right). 

 
: saves the input in the area below in selected folder. 

 
: downloads the input. 

 

: opens CRYSTAL VLab COMPUTE part, create a new job and then 
run calculations. 

 
Below the toolbar, there is the heart of the page that is divided in two parts: 

• On the left side there is a window that lists the files contained in the folder 
selected by the “Choose folder” button. It’s important to note that all files 
in this area are filtered by format, in particular the .d12 and/or .d3 ones.  

• In the middle and on the right side there is a text area that shows a preview 
of the input file and a small graphical box, respectively. In this page, the 
user can select between two tabs that correspond to the desired input 
format, that is .d12 (crystal input) and .d3. (properties input). In CRYSTAL 
VLab it is then possible to create different types of input, in particular .d12 
files or .d3 ones, either from scratch or through a wizard. After tab selection, 
CRYSTAL VLab can set the page in the right way, for example by modifying 
the contents of the wizard, which obviously changes according to the format 
of the file that the user wishes to write. In the right part of this area there 
is a small box (in grey) dedicated to the plot of the structure as written in 
the input file; this graphical part is managed by JSmol. 
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The core of the BUILD page is based on two wizards: one dedicated to the input 
file for crystal (i.e. *.d12 file format (see Appendix 3)) and one for properties 
(i.e.  *.d3 file format (see Appendix 4)).  

In the following sections, the two wizards will be discussed by highlighting the main 
specific settings. Further details are given in Appendix 3 and 4. 

CRYSTAL VLab wizard for .d12 input files 

Figure 3-3. Screenshot of CRYSTAL VLab wizard for .d12 format  

The wizard to create the .d12 input is comprised of several tabs that helps a user 
in filling the main sections of the input deck that have been shortly described above.  

In particular, they allows one to provide all needed information step by step as: 
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• Title requires to enter the title contained in the first row of .d12 
• Geometry requires to select the structure of the system, importing a file 

(different formats are supported, e.g. CIF files), selecting a file contained in 
the personal library on CRYSTAL VLab or selecting a file fort.34.  

• Geometry details permits to select the dimensionality and lattice parameters 
of the system, allowing to check the geometry through a quick TESTGEOM 
calculation that is run on a computer server-side. 

• Geometry editing requires selecting particular modification of the initial 
geometry. For example, when a user wants to create a supercell 
(SUPERCELL keyword) or generate a slab model (SLABCUT). 

• Basis set permits to specify the basis set of the system. It can be chosen 
from the predefined basis sets or taken from a library of basis sets for each 
element of the system. In CRYSTAL VLab, indeed, there exists a database 
of basis sets divided by element, which corresponds to the basis sets that 
can be found at the CRYSTAL website. 

• Method selects the type of Hamiltonian (i.e. Hartree-Fock or Density 
Functional Theory - DFT) for the calculation, the electron occupancy as for 
open or closed shell systems and other computational parameters related 
to the selected method. 

• Type of calculation allows specifying the type of calculation to be run. In 
particular, the main options can be set for Geometry optimization 
(OPTGEOM), Vibrational frequencies calculation (FREQCALC), Coupled 
Perturbed Hartree-Fock/Kohn-Sham method (CPHF), Equation of state 
(EOS), Elastic constants calculation (ELASTCON), Piezoelectric tensor 
(PIEZOCON), Piezoelectric calculation via CPHF/KS (PIEZOCP), Piezoelectric 
strain (ELAPIEZO), Photoelastic tensor (PHOTOELA), Quasi-harmonic 
calculation (QHA) and Anharmonic calculation of frequencies of X-H (X-D) 
bond stretching (ANHARM). An important feature of the Type of calculation 
tab is that for each option, keywords are subdivided in two sets: Basic and 
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Advanced. By default, when selecting an option, users can only see Basic 
keywords (i.e. a selection of the most frequently used keywords), but if one 
then clicks on the “Advanced options” button, a list of advanced keywords 
appears. For instance, Figure 3-4 and 3-5 show the tab for the OPTGEOM 
option with basic keywords (Figure 3-4) and advanced ones (Figure 3-5), 
respectively. 

• Preview shows then the current the input file written in the CRYSTAL format. 

When the user ends the creation of the input, he/she can see and check the full 
input in the Preview tab and then click on the “Ok” button located in the wizard 
footer. At that point, a function checks the correctness of the specified data and 
options. If everything ends correctly, the wizard closes and the final input deck 
appears at the center of the page. In addition, in the small window on the right of 
the page, the structure of the system appears for further checking. Instead, if the 
control function returns an error, a warning message appears with the list errors, 
the wizard does not close and waits for corrections.  
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Figure 3-4. Basic keywords of OPTGEOM calculation 

 

Figure 3-5. Advanced keywords for OPTGEOM calculation 
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CRYSTAL VLab wizard for properties calculations 

Figure 3-6. Screenshot of CRYSTAL VLab wizard for .d3 format 

As mentioned above, a different input deck, usually dubbed as .d3, is needed to 
compute properties related to the wave function (e.g. band structure, DOSs,…) and 
charge density. Calculations are carried out with the properties module of 
CRYSTAL.  

Presently, the wizard for creating .d3 input files allows users to write the input for 
Band Structure, Density of States and Electron Charge Density Map. Work is in 
progress to extend the tool to other properties. 
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Figure 3-7. Screenshot of wizard for BAND keyword 

The wizard is comprised of two tabs called “Select properties” and “Preview” (Figure 
3-6). In the first one, the user must click on the image corresponding to the 
property he/she wants to calculate; it is important to note that he/she can select 
more than one property. After this selection, as many tabs appear as the number 
of selected properties; indeed there are dedicated tabs for every property. At the 
present stage of the development of this part there is a tab for band structure, 
density of states and electron charge density maps. After filling all required fields, 
in the “Preview” tab the .d3 input file is written. If everything has been properly 
set the selected properties are ready to be computed with CRYSTAL.  
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Graphically, the wizard is then composed by fixed tabs (“Select properties” and 
“Preview”) and dynamic tabs (“BAND”, “DOSS”, “ECHG”) with the latter appearing 
only when needed. 

For better understanding the use of the wizard, let’s discuss the case of the input 
for the calculation of band structure. Figure 3-7 shows the fields required for the 
keyword BAND. For some of them the user has to specify values related to 
computational parameters of the algorithm implemented in the code and/or to the 
systems under study, while for other information he/she can select them in a 
predefined sets of options. 

Figure 3-8. Screenshot of predefined paths library for different Brillouin Zones 

For instance, at the bottom of the wizard, one has to specify the path within the 
Brillouin zone for which the code computes the corresponding eigenvalues (i.e. 
bands). In this case, there are two ways to do it. First, the user can decide to write 
the input directly in the area using the CRYSTAL format and syntax, that is by 
specifying the coordinates of the k-points in terms of the shrinking factors defined 
in the corresponding field (standard route). Second, the path can be chosen in a 
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graphical way by referring to a library of predefined list of k-points for the different 
Brillouin zones related to the corresponding Bravais lattices (see Figure 3-8). The 
usage of this library makes the selection very simple: every image has a label with 
the path and when the user clicks on an image the predefined path appears at the 
top of the wizard and is also inserted in the “Preview” tab.  

CRYSTAL VLab input reading 
Along with the two wizards that allow users to create a new CRYSTAL input, another 
important capability of the GUI is to read an existing input file. This also permits 
experienced users to take advantage of CRYSTAL VLab for the editing of their files, 
run calculations and visualizing their results.  

The implementation of this feature in the BUILD part has required a lot of work to 
be able to properly read and parse the CRYSTAL input by taking into account all of 
the diverse combinations of keywords and sub-keywords, formatted and 
unformatted input data and additional information. 

As mentioned above, this is the most complex and extended part of the GUI. The 
reason for this lies in the implementation of a Python script that reads and parses 
an existing input .d12 and then pre-compiles the corresponding fields of the wizard 
web page with the parameters contained in the input. To do that a careful and 
deep analysis of each option available in the CRYSTAL code has been carried out.  

In more detail, the script starts working when the user has already loaded an input 
file in the initial page and opens the wizard, for example to modify some 
parameters. The script reads the input file line by line and rearranges data in a json 
text format. After the file .json has been created, another piece of code reads all 
information from .json and controls option by option every field in the wizard and 
inserts the corresponding parameters and/or activates keywords. Presently, our 
script can translate and precompile only .d12 file and only basic keywords. 
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Advanced options are not yet reorganized but if present they are maintained in the 
input as shown in the “Preview” tab. 

As an example, in Appendix 5, a piece of the code for this part is reported along 
with a translated “.json” format of a simple input file. 

CRYSTAL VLab: COMPUTE 

Figure 3-9. Screenshot of CRYSTAL VLab COMPUTE page 

The “COMPUTE” part of CRYSTAL VLab (see Figure 3-9) allows users to run a 
calculation for a newly created or edited or already existing input.  
Users can submit a new job by filling a pop-up form that appears when clicking on  

 
As shown in Figure 3-10, in the pop-up window the information required are:  

• Input file: an input file is selected from the private file manager, 
• Job title: a string to identify the job must be specified, 
• Job ID: it is an incremental value that is automatically inserted, 
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• Program: requires selecting which module/version of the CRYSTAL 
program must be used for the calculation. It can be either a serial or a 
parallel version of the code: crystal, Pcrystal, MPPcrystal, properties, 
Pproperties. 

• Processors: number of processors to be used for parallel calculations. It 
is set to 1 by default. 

• Target host: it specifies where the job is going to run. At the moment, 
just one option is available: “My Computer”. It means that the job will 
run on the local machine. Work is in progress to extend the target hosts 
to remote machines and cloud servers. 

• Working directory: this is the name of the directory where the input file 
is stored. Note that output files, too, will be stored in that folder. 

 

 

 

 

 

 

 

 

 

Figure 3-10. Screenshot of pop-up window for a new job 
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As mentioned, the current version of the “COMPUTE” part allows a user to run 
CRYSTAL just on the local user’s PC. Therefore, when the user saves information 
from the pop-up form, the input file is automatically downloaded and opened with 
an application, dubbed as CRYSTAL VLab Starter, that runs CRYSTAL. The CRYSTAL 
VLab Starter is a separate program that must be installed on user’s PC (see below 
for more details). 

When a user creates an input deck by using the “BUILD” part a shortcut can be 
used to run immediately the job. Indeed, he/she can use the button in 
the “BUILD” page to open the COMPUTE section with the pop-up partially 
precompiled. In particular, fields precompiled are, namely: Input file, Job title and 
Working directory. 

After clicking on the “Start” button, see Figure 3-10, a new job with status “In 
progress” is created and a new line corresponding to the submitted job appears in 
the job list of the COMPUTE page (see Figure 3-9). 
For every job in the table, a few information are displayed along with some buttons 
to manage different actions. In particular, each line shows information present in 
the pop-up form of Figure 3-10 (“Job ID”, “Name”, “Status”, “Program”, “NProc”, 
“Target host” and “Working directory”) and allows to: 

 
view input file, 
 
view output file, 
  

 

archive the job to hide it from the table.  
 

Note that the table shows only not archived jobs. 
Finally, at the top of the page, near “Add new job” button, there is another button 
to archive all completed jobs present in the table. 
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It is worthy to note that currently the “COMPUTE” part of VLab is designed to run 
calculations only with crystal program (i.e. .d12 input files). In the next future the 
graphical interface will be extended to allow users to run the properties program 
as well. 

Crystal VLab Starter 
Crystal VLab Starter is an auxiliary program, written in C++, that runs the CRYSTAL 
code within the COMPUTE part of CRYSTAL VLab. It must be installed on the local 
host and is available for Linux, MacOsX and Windows operating systems. Of course, 
a copy of the CRYSTAL code must be available on the local machine. 
When a user decides to run a job on the local host and clicks the “Start” button 
(see above) a file with extension .vlabjob is created to be read by CRYSTAL VLab 
Starter.  
During the installation of CRYSTAL VLab Starter, there is an option that selects that 
program as the default one to open .vlabjob files (see Appendix 6). 
 
As shown in Figure 3-11, information required by CRYSTAL VLab Starter are: 

• Input file : name of the input file. It can be chosen with the button 
“Choose…”. Note that if the user opens a .vlabjob file this field is already 
filled in, 

• Title : displays the title of the calculation as written in the first row of 
the input file, 

• Working directory : identifies the directory where both input file and 
output files will be uploaded at the end of the calculation, 

• Program specifies which version of the CRYSTAL code must be used (i.e. 
serial, parallel, massively parallel). This option depends on which 
executable files are available on the local host. During the installation of 
the CRYSTAL VLab Starter, users must specify where CRYSTAL binaries 
can be found, 
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• Processors : specifies the number of processors to be used for the 
calculation. By default it is set to 1. This means that the serial version 
of CRYSTAL is utilized. It can be adjusted to a given value when using 
Pcrystal or MPPcrystal parallel versions.  

 

Figure 3-11. Screenshot of the CRYSTAL VLab Starter 

In Figure 3-11, the screenshot of the CRYSTAL VLab Starter is shown. In the upper 
part of the form (Details) there are the fields described above, while in the bottom 
one (Input & Output) there is a preview of the input. Note that when the calculation 
is running, in the bottom part a new tab appears where the corresponding output 
file is displayed. Below the “Input & Output” area, there are some buttons for 
opening the working directory, contacting VLab web-interface to send obtained 
output, opening CRYSTAL VLab Starter’s settings and closing the application. It is 
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worthy to emphasize that users can in every moment terminate the execution of 
CRYSTAL by clicking on the “Stop” button.  

When the calculation has finished, user can click “Upload output” button to 
automatically contact the web interface to upload output files in the user’s profile 
folder.  

CRYSTAL VLab: VIEW 
The “VIEW” part of CRYSTAL VLab is dedicated to the graphical visualisation of 
computed results (e.g. structure and other properties as band structure, density of 
states, and so on).  
Basically, two graphical tools are utilized: CRYSPLOT for properties visualisation 
and JSmol for the crystalline structure. It is important to emphasize that the version 
of CRYSPLOT used in this project is the same as online, indeed we have developed 
a fully compatible version that can work either as standalone or embedded in 
CRYSTAL VLab. Therefore, all properties that can be plotted with CRYSPLOT are 
available for visualisation (see Chapter 2). 
 
To start the visualisation, two options are available:  

• reading a file already uploaded in the user’s personal profile on 
CRYSTAL VLab repository (see Figure 3-12) 

• start from a graphical tool, i.e. CRYSPLOT or J-ICE (see Figure 3-13) 
 

 

 



55 
 

Figure 3-12. Screenshot of VIEW page, in particular “Start from file” option 

Figure 3-13. Screenshot of VIEW page, in particular “Start from tool” option 
 
In “Start from file” case, when user clicks on the file that he/she wants to visualise, 
the file content is parsed and sent directly to CRYSPLOT by using the mechanism 
detailed in section “CRYSPLOT: Under the hood”.  
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At this point two alternatives are possible, depending on file format:  

• if the format is linked to a single property (e.g.: .BAND format), the file 
is immediately opened 

• if the format is shared between different types of property files 
(e.g.: .f25 file), the user have to select the property he wants to visualise 
(see Figure 3-14) 

Figure 3-14. Screenshot of modal to select property 

Figure 3-15 shows how the CRYSTAL VLab VIEW page appears once the file has 
been loaded into CRYSPLOT.  

It is important to note that a full-feature version of CRYSPLOT is employed. 
Presently, there is just a limitation in that users cannot save the plot as an image. 

Figure 3-16 shows how the page appears when the file is loaded into JSmol. This 
option reads directly the .out file format and, at the moment, it shows the structure 
contained in file. 
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Figure 3-15. Screenshot of CRYSPLOT band page loaded in CRYSTAL VLab 

Figure 3-16. Screenshot of JSmol loaded in CRYSTAL VLab 
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CRYSTAL VLab: FILE MANAGER 
As mentioned before, the CRYSTAL VLab web page is also connected to a repository 
of inputs and outputs where registered CRYSTAL Users can save their own files. To 
access this private area, user must login by using the form shown in Figure 3-17. 

Figure 3-17. Screenshot of the CRYSTAL VLab login 

After login, on the top bar of CRYSTAL VLab home page there is an item called “My 
Files”; which opens the user’s personal file library.  

Figure 3-18. Screenshot of the CRYSTAL VLab File manager  
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A user can then organize its content by adding, renaming or deleting folders, and 
in each folder he/she can add, rename, view, download, upload or delete files. All 
the files are saved on a hosting server to which CRYSTAL VLab is connected.  

CRYSTAL VLab: Under the hood 
After the discussion of the main features of CRYSTAL VLab, let’s enter a bit more 
into the technical details of the web interface.  
Basically, CRYSTAL VLab is a web-based application with an architecture made by 
two parts: a back-end and a front-end.  
 

The back-end part is designed with Django3 (Version 2.2.7). Django is a 
free and open-source web framework, written in Python, which follows the model-
view-template (MVT) architectural pattern. Django's primary goal is to ease the 
creation of complex, database-driven websites. Django emphasizes reusability and 
"pluggability" of components, less code, low coupling, rapid development, and the 
principle of don't repeat yourself. Django also provides an optional administrative 
“create, read, update and delete” interface that is generated dynamically through 
introspection and configured via admin models.  This administrative interface is also 
employed for opening, adding, deleting elements in databases. By default, Django 
manages the databases using SQLite4, a self-contained, high-reliability, embedded, 
full-featured, public-domain SQL database engine (see Appendix 7 for an overview 
of the database structure). In the future, I expect to use another database engine 
for the management of databases, in particular PostgreSQL5, because it’s a 
production-ready solid DBMS. Finally, I used the Python6 programming language, 
in particular version 3.5.2, and JSmol for plotting. JSmol is an HTML5 JavaScript-
only extension of the Java-based molecular visualisation applet Jmol. 
 
 The front-end is designed with HTML5 markup language, CSS3 style sheet 
language, BOOTSTRAP7 front-end-framework and the JavaScript programming 
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language. These tools have already been used to develop CRYSPLOT, but 
BOOTSTRAP has been updated to version 4. This version has a more modern look 
& feel: for example, the so-called "cards" have been introduced, which make the 
page more dynamic. For the front-end, I used also Jquery, a cross-platform 
JavaScript library designed to simplify the client-side scripting of HTML. Jquery's 
syntax is designed to make it easier to navigate a document, select DOM elements, 
create animations and handle events. The modular approach to the Jquery library 
allows the creation of powerful dynamic web pages and Web applications. To query 
the server I used Ajax (short for "Asynchronous JavaScript And XML") that is a set 
of Web development techniques to create asynchronous Web applications. With 
Ajax, Web applications can send and retrieve data from a server asynchronously 
(in the background) without interfering with the display and behaviour of the 
existing page. By decoupling the data interchange layer from the presentation 
layer, Ajax allows Web pages, and by extension Web applications, to change 
content dynamically without the need to reload the entire page. Ajax is not a single 
technology, but rather a group of technologies. HTML and CSS can be used in 
combination to mark up and style information. The Web page can then be modified 
by JavaScript to dynamically display - and allow the user to interact with - the new 
information. The built-in XMLHttpRequest object within JavaScript is commonly 
used to execute Ajax on Web pages, allowing Web sites to load content onto the 
screen without refreshing the page. Ajax is not a new technology, or a different 
language, but it is a very useful to combine existing technologies in new ways. 
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4 Conclusions and Outlook 
The main purpose of the present PhD work has been the development of graphical 
tools to analyse and visualise properties of crystalline solids. 

Visualisation has a prominent role in intuition by transforming numbers into images, 
so that visualisation tools can help to see things from a new point of view, while 
graphical interfaces are important to facilitate the use of a software and make the 
learning curve of a user less steep.  

This is particularly true for a medium-to-high entry-level code as CRYSTAL, which 
has been the target software in the present work. Regardless of recent 
developments in the capabilities of the CRYSTAL code, graphical tools for the 
analysis and visualisation of the predicted results, the creation of CRYSTAL input 
files and its usage have remained at a less developed stage. 

Therefore, the present PhD work has tried to fill this gap by creating up to date 
modern web-oriented toolboxes to be machine independent, easy to use, and freely 
accessible to users from all over the world through Internet browsers. Such an 
ambitious goal has been achieved with two major outcomes: CRYSPLOT and 
CRYSTAL VLab, which have been presented in this PhD thesis. 

CRYSPLOT is a web platform that has been designed as a very intuitive graphical 
tool, a low entry-level interface to all types of users: from beginners (i.e., students) 
to expert researchers. It is also a sufficiently advanced and powerful tool that 
enables users to customize graphs in such a way that results can be used in 
scientific publications.  

Since CRYSPLOT reads data from formatted text files, it can be considered a 
versatile and general graphical tool. Indeed, in principle, it is not limited to visualise 
data computed with CRYSTAL but one could also obtain results from another 
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software, reorganize raw data according to the proper format and then plot the 
results with CRYSPLOT. 

Since October 2017 CRYSPLOT is available online at 
http://crysplot.crystalsolutions.eu/ and it is currently used by CRYSTAL users from 
all over the world. 

CRYSTAL VLab has been designed to be an all-purpose graphical interface to aid 
users to create input files, run calculations and visualise computed results. In 
particular, for the latter, CRYSPLOT has been encoded into CRYSTAL VLab. At the 
moment CRYSTAL VLab is still under development but a preliminary version is 
available online at http://vlab.crystalsolutions.eu/. A beta version is planned to be 
released by the end of 2020. 

As next developments, I would like to focus on the inclusion of other advanced 
keywords in the input reading function of BUILD. In addition, I would also like to 
extend and make interactive some options in the .d3 wizard. For instance, to 
generate a path of k-points in the reciprocal space by simply clicking on the image 
of the Brillouin Zone. Furthermore, I plan to connect CRYSTAL VLab to a cloud 
computing space in which CRYSTAL users could run calculations by simply selecting 
an option “Cloud” in “Target host” menu of the COMPUTE part. 

In conclusion, in this PhD work new graphical toolboxes have been created that 
allow satisfying some of the roles of visualisation discussed in the Introduction: 
visualisation as a support for exploration and cognition but also for aiding users in 
using computational tools, and visualisation as a creator of beautiful images for 
results dissemination and communication.  
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Appendix 1 
This section is dedicated to a brief visual guided tour of CRYSPLOT. Each page of 
the website is shown through an image and a small description. 

“What is” page  

 
This page collects the main features of CRYSPLOT and in particular each of the four 
blocks in the center of the page shows a keyword: GRAPHICS, USER-FRIENDLY, 
CRYSTAL and FREE. If the user passes over keywords, a descriptive text appears 
for each of the 4 words. In the case of GRAPHICS the descriptive text is: 

CRYSPLOT is designed with a modern and innovative tool called Plotly.  Plotly is 
designed for online analytics and data visualisation and it uses stack.gl and an 
advanced graphical javascript library called D3.js.   
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“Sample files” page  

This page contains nine different sample files that can be downloaded to try using 
CRYSPLOT. In particular, there are sample files to plot band structure (one in .f25 
format and one in .BAND format), density of states (one in .f25 format and one in 
.DOSS format), the electron charge density map (using these files it’s possible to 
combine them also for making differences) and for vibrational spectra simulation. 
After download the user can open these files in corresponding page to see the chart 
and customize it. 

“Contacts” page 

This page contains a guided procedure to contact with an email the CRYSPLOT 
developer team. 
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Appendix 2 
All data to be plotted by CRYSPLOT are written in a formatted way (i.e. plain ASCII) 
either on the Fortran unit 25 (fort.25) or in separate files (e.g. BAND.DAT, 
IRSPEC.DAT, ...). The list of properties and the corresponding name of the auxiliary 
files is listed in Table S1. 

Table S1. List of properties in CRYSPLOT with relative supported file format (see 
the CRYSTAL Users' Manual for details1) 

Property  File name or file extension 
Band structure  BAND.DAT, *.BAND, *.f25 
Density of states  DOSS.DAT, *.DOSS, *.f25 
Crystal Orbital Hamiltonian Population COHP.DAT, *.COHP, *.f25 
Crystal Orbital Overlap Population COOP.DAT, *.COOP, *.f25 
Electron charge density map *.f25 
Electrostatic potential map  *.f25 
Electron charge density profile  RHOLINE.DAT, *.RHOLINE 
Compton profiles  *.CP 
Autocorrelation function *.CP 
Infrared spectra  IRSPEC.DAT, *.IRSPEC 
Raman spectra  RAMSPEC.DAT, *.RAMSPEC 
Reflectance spectra  IRREFR.DAT, *.IRREFR 
IR dielectric response spectra  IRDIEL.DAT, *.IRDIEL 
Phonon band structure  *.f25 
Phonon density of states  *.f25 
Topological Analysis  *.DAT 
Electron conductivity *.DAT 
Seebeck coefficient  *.DAT 
Electron thermal conductivity *.DAT 
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Appendix 3 
This section is dedicated to a visual guided tour of CRYSTAL VLab wizard for .d12 
input files. For each wizard tab there is an image and a short description. 

“Title” tab 

 

In this tab is possible to insert the title of the calculation. Moreover when the user 
opens this section there is a preselection on the area dedicated to title. 
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“Geometry” tab 
 

 
In this tab the user can load his geometry in different ways: 

• From a 3D structure file on his local PC, 
• From a file contained in his “My Files” section; in this case the file is not a 

local one, but it is stored on the server, 
• From a fort.34 file on his local PC; in this case if the user decides to run 

CRYSTAL on his computer, this file is downloaded with the .d12 file. 
 

The tab has also another option but this is the one that is automatic flagged when 
the user opens the wizard for editing a file already opened in the page. 
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“Geometry details” tab 
 

 
In this tab the user has to define the dimensionality of the system and, accordingly, 
all crystallographic parameters.  
In the figure above, an example of a system with 3D dimensionality (i.e. CRYSTAL) 
is shown. In that case, the required parameters are, namely: lattice type, space 
group, setting of the origin and lattice parameters. 
Below the parameters definition, the atomic positions in the unit cell are reported. 
On the left, there is a table denoted as “Atom coordinates” in which the atoms in 
the asymmetric unit are listed by means of their atomic number and fractional 
coordinates. This table can be filled both manually, by entering the coordinates of 
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each atom, or automatically when the user loads the geometry from an existing 
input. By using “Add”, “Remove” and “Delete” it is possible to change it. 
On the right, there is a graphical box called “Geometry display” in which the JSmol 
Applet is loaded to display the specified geometry. 
Notably, there is a button called “TESTGEOM” that allows user to quickly check if 
the geometry of the examined system is correct. In this case the calculation runs 
on a hosting server rather than on the local user PC (full calculation).  
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“Geometry editing” tab 
 

This tab allows users to modify the initial geometry, in particular they can create 
a supercell, cut a slab model or extract a molecule.  
These keywords are enable/disabled depending on the dimensionality of the 
system to help users in the input creation.  
In the case of SUPERCELL, SLABINFO and SLABCUT there are some predefined 
fields to specify the required parameters 
Instead, for the option MOLECULE fields are dynamical because the number of 
atoms depends by the number of molecules to be isolated. 
The ATOMORDE is a standalone keyword, so that no parameters are needed. 
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“Basis set” tab 

 
In this tab the user has to specify the basis set for the examined system. This can 
be done either selecting a predefined basis sets or taking the basis set from a library 
pre-loaded on VLab that contains basis sets for each element. 
In the image above the table of the option “Specify from basis sets library” is empty 
because no geometry is loaded and there aren’t assigned elements. However, if 
the user defines a geometry, wizard can capture elements and contact basis sets 
database on server to obtain basis sets relative to elements in the geometry. The 
user can also see a preview of the selected basis sets. 
 
 
 



73 
 

“Method” tab 
In this tab the user has to define the method to run calculations, in particular one 
can select the Hartree-Fock method (first image) which is the default in CRYSTAL, 
and several DFT methods either through standalone keywords or specifying the the 
exchange and correlation functionals (second image). 
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“Type of calculations” tab 

 
In this tab a user can specify the type of calculations to be run. The main options 
available in CRYSTAL have been included in the list: OPTGEOM, FREQCALC, CPHF, 
EOS, ELASTCON, PIEZOCON, PIEZOCP, ELAPIEZO, PHOTOELA, QHA and ANHARM.  
Every type of calculations has keywords divided in basic and advanced, but in both 
cases the procedure is guided for user. 
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Appendix 4 
In this appendix a visual guided tour of the CRYSTAL VLab wizard for .d3 input files 
is shown. Below there are two screenshots for the pages of the density of states 
and the electron charge density, respectively. 

 

Density of States 

Keyword: DOSS 

 

 

 

 

 

 

 

 

 

 

Electron Charge  

Density 

Keyword: ECHG  
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Appendix 5 
In the section on “CRYSTAL VLab input reading”, the code that parses .d12 input 
file in .json format has been briefly discussed.  

In this appendix, the parser function ia_converter_crystal2json, is presented in 
more detail. For sake of conciseness, the code is explained only for a 3D system 
(CRYSTAL keyword). For the other cases with different dimensionality, the structure 
of the code is very similar.  

After the description of the function there is an example of a .d12 file, in particular 
MgO.d12, in the two formats, .d12 and .json. 
def ia_converter_crystal2json(request): 

# initialization of variables, in particular numbers, arrays or Boolean flags 
groupGeom = [] 
groupLayer = [] 
groupRod = [] 
groupPoint = [] 
n = 0 
path = "" 
blockOffset = 0 
d12 = {} 
numb_atom = 0 
atom_counter = 0 
numb_atomslab = 0 
atom_counter_slab = 0 
numb_atompoly = 0 
atom_counter_poly = 0 
numb_atommol = 0 
atom_counter_molecule = 0 
bs_elem_cnt = 0 
bs_elem_bsblock_num = 0 
bs_elem_bsblock_cnt = 0 
bs_elem_bsblock_gtf_num = 0 
bs_elem_bsblock_gtf_cnt = 0 
 
counter_scelphono = 0 
counter_supercell = 0 
counter_slabcut = 0 
counter_molecule_geom_edit = 0 
 
flag_optgeom_intredun_end = False 
 
flag_optgeom_fixdef_first_line = True 
flag_optgeom_fixcoor_first_line = True 
flag_optgeom_fragment_first_line = True 
flag_optgeom_lngsfrozen_first_line = True 
flag_optgeom_angsfrozen_first_line = True 
flag_optgeom_freezdih_first_line = True 
 
flag_optgeom_tsopt_modefollow = True 
flag_optgeom_tsopt_pathfollow = True 
flag_optgeom_tsopt_fittopath = True 
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flag_optgeom_intredun = False 
flag_optgeom_intredun_angtodouble = True 
flag_optgeom_intredun_dbanglist = True 
flag_optgeom_intredun_dbanglist_first_line = True 
flag_optgeom_intredun_deflngs = True 
deflngs_nl_value = 0 
counter_deflngs = 0 
 
flag_optgeom_intredun_defangls = True 
defangls_nl_value = 0 
counter_defangls = 0 
 
flag_optgeom_intredun_modintcoor = True 
flag_optgeom_intredun_modintcoor_second_line = False 
flag_optgeom_intredun_modintcoor_third_line = False 
modintcoor_nmodi_value = 0 
counter_modintcoor = 0 
 
flag_optgeom_fixing_int_coord = True 
flag_optgeom_scanredu = False 
 
flag_optgeom_lngsfrozen = False 
counter_lngsfrozen_mu= 0 
lngsfrozen_mu_value= 0 
 
flag_optgeom_angsfrozen = False 
counter_angsfrozen_nl=0 
angsfrozen_nl_value=0 
 
flag_optgeom_freezint = False 
flag_optgeom_freezdih = False 
 
flag_freqcalc_ramexp = True 
 
flag_eos_range = True 
 
flag_piezocp_tolalpha = True 
 
flag_photoela_tolalpha = True 
 
flag_qha_temperat = True 
 
flag_anharm_label = False 
 
SVWN = ["SVWN", "BLYP", "PBEXC", "PBESOLXC", "SOGGAXC", "B3PW", "B3LYP", "PBE0", 

"PBESOL0", "B97H", "B1WC", "WC1LYP", "RSHXLDA", "HSE06", "HISS", "wB97", 
"wB97X", "LC-wPBE", "LC-wPBESOL", "LC-wBLYP", "M05", "M052X","M06L", "M06", 
"M062X", "M06HF", "PBE0-13"] 

 
# initialization of an empty array of 230 elements for CRYSTAL Space Group and upload 
of values from a .csv file 

    for i in range(0, 230): 
groupGeom.append('') 

 
     with open('spacegroup_crystal.csv', 'r') as csvfile: 

groupGeom.append(0) 
          spacegroup_crystal = csv.reader(csvfile, delimiter=',', quotechar='"') 
          for row in spacegroup_crystal: 
              groupGeom[int(row[0])] = row[1] 

 
# initialization of an empty array of 80 elements for SLAB Layer Group and upload of 
values from a .csv file 
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     for j in range(0, 80): 
groupLayer.append('') 

with open('layergroup_slab.csv', 'r') as csvfile: 
groupLayer.append(0) 
layergroup_slab = csv.reader(csvfile, delimiter=',', quotechar='"') 
for row in layergroup_slab: 

groupLayer[int(row[0])] = row[1] 
 

# initialization of an empty array of 99 elements for POLYMER Rod Group and upload of 
values from a .csv file 
for k in range(0, 99): 

groupRod.append('') 
     

with open('rodgroup_polymer.csv', 'r') as csvfile: 
groupRod.append(0) 
rodgroup_polymer = csv.reader(csvfile, delimiter=',', quotechar='"') 
for row in rodgroup_polymer: 

groupRod[int(row[0])] = row[1] 
 

# initialization of an empty array of 47 elements for MOLECULE Point Group and upload 
of values from a .csv file 

    for m in range(0, 47): 
        groupPoint.append('') 

 
    with open('pointgroup_molecule.csv', 'r') as csvfile: 

groupPoint.append(0) 
pointgroup_molecule = csv.reader(csvfile, delimiter=',', quotechar='"') 
for row in pointgroup_molecule: 

groupPoint[int(row[0])] = row[1] 
 
     # here starts the reading of the input file 

f = request.POST['content_file'].split('\n') 
 
     while n < len(f): 

line = f[n] 
          # Title 
          if n == 0: 
              d12['title'] = line 
              path = "BLOCK1" 
 
          #===========================================================================# 
          # START Block 1 (geometry) 

#===========================================================================# 
  
          elif path.find("BLOCK1") != -1: 
              if path == "BLOCK1": 
 

# different .json structure for different system dimensionality-
CRYSTAL case 

                  if line == 'CRYSTAL': 
# initialization of .json for CRYSTAL and initialization of path 
variable, path variable allows to define how the .d12 is structured 

                     d12['geometry'] = {'external': 'no', 
'dimensionality': {'type': 'CRYSTAL', 'params': {}, 
'latticeType': '','spaceGroup': '',  
'latticeParameters': {},'atomsParameters': [],  
'typeOfCell': '','geometry_adv': [], 'numbAtom':''}, 
'type_of_calculation': {'type': 'ENERGY', 'parameters': [], 
'geometry_editing' : {}}}                     

path = "BLOCK1.CRYSTAL" 
                 elif line == 'SLAB': 
                      d12['geometry'] = {…} 
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                      path = "BLOCK1.SLAB" 
 
                  elif line == 'POLYMER': 

d12['geometry'] = {…} 
                      path = "BLOCK1.POLYMER" 
 

elif line == 'MOLECULE': 
                      d12['geometry'] = {…} 
                      path = "BLOCK1.MOLECULE" 
 
                  else: 
                      print('invalid file format...') 
                      sys.exit(1) 
 

# initialization of .json section for basis set and computation 
parameters: note that these parts are the same for different 
dimensionality 

 
                 d12['basis_set'] = {'type': ''} 
 
                  d12['computation'] = {'hamiltonian': '', 'shell_type': '', 

'shrink_parameters': {},'computationParameters': {}} 
#===================================================================# 

           # CASO CRYSTAL (See CRYSTAL MANUAL page 18) 
#===================================================================# 
# first three parameters: IFLAG, IFHR ed IFSO 

              elif path == "BLOCK1.CRYSTAL": 
                   ci = line.split() 
                   d12['geometry']['full_block_geometry'] = [] 
                   d12['geometry']['dimensionality']['params']['IFLAG']= 

int(ci[0]) 
d12['geometry']['dimensionality']['params']['IFHR']= 
int(ci[1]) 
d12['geometry']['dimensionality']['params']['IFSO']= 
int(ci[2]) 

                   if int(ci[1]) == 0: 
                      d12['geometry']['dimensionality']['typeOfCell'] =  

'hexagonal' 
                   else: 

d12['geometry']['dimensionality']['typeOfCell'] = 
'rhombohedral' 

# note that at the end of every step, path variable is 
updated 

                   path = "BLOCK1.CRYSTAL.PARAMS" 
 

# lattice type (triclinic, monoclinic, orthorhombic, tetragonal, 
trigonal, hexagonal, cubic) using space number 

              elif path == "BLOCK1.CRYSTAL.PARAMS": 
                   group_str = line.split() 
                  group = int(group_str[0]) 
                   if group <= 2: 

            d12['geometry']['dimensionality']['latticeType'] =  
'triclinic' 

                 elif group >= … and group <= …: 
d12['geometry']['dimensionality']['latticeType'] = 

'…' 
 
                   # space group chosen from uploaded variable groupGeom 

d12['geometry']['dimensionality']['spaceGroup'] = 
groupGeom[group] 

 
                   path = "BLOCK1.CRYSTAL.PARAMS.SPACE" 
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              # lattice parameters depending from lattice type 
              elif path == "BLOCK1.CRYSTAL.PARAMS.SPACE": 

lattice = line.split() 
if d12['geometry']['dimensionality']['latticeType'] == 

'triclinic': 
                       d12['geometry']['dimensionality'] 

['latticeParameters']['a'] = float(lattice[0]) 
                       d12['geometry']['dimensionality'] 

['latticeParameters']['b'] = float(lattice[1]) 
                       d12['geometry']['dimensionality'] 

['latticeParameters']['c'] = float(lattice[2]) 
                          d12['geometry']['dimensionality'] 

['latticeParameters']['alfa'] = float(lattice[3]) 
                       d12['geometry']['dimensionality'] 

['latticeParameters']['beta'] = float(lattice[4]) 
                      d12['geometry']['dimensionality'] 

['latticeParameters']['gamma'] = float(lattice[5]) 
                   elif d12['geometry']['dimensionality']['latticeType'] == …: 

… 
path = "BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE" 

 
# number of non equivalent atoms in the system 

              elif path == "BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE": 
                   numb_atomlist = line.split() 
                   numb_atom = int(numb_atomlist[0]) 
                   d12['geometry']['dimensionality']['numbAtom'] = numb_atom 
                   path = "BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE.NUMB_ATOM" 
 

# “if” condition to read rows with type of calculation parameters 
elif path in ['BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE.NUMB_ATOM', 
'BLOCK1.ADVANCED'] and atom_counter == numb_atom: 

                   geometry_kw = line 
if geometry_kw == 'END': 

                       path = "BLOCK2" 
                   else : 
                       path = "BLOCK1.ADVANCED" 
 

# if row starts with BASISSET, path is equal to 
BLOCK2 and code knows that basis set part starts 

                       if geometry_kw == "BASISSET": 
                            path = "BLOCK2" 
                            n -= 1 

 
# if that control if in the input file there are 
some geometry editing 

     elif geometry_kw == 'SUPERCELL': 
                        
d12['geometry']['type_of_calculation'] 
['geometry_editing'].update({ 
'SUPERCELL': []}) 

                            path = 'BLOCK1.ADVANCED.SUPERCELL' 
                        

elif geometry_kw == 'SLABINFO': 
d12['geometry']['type_of_calculation'] 
['geometry_editing'].update({ 
'SLABINFO': []}) 
path = 'BLOCK1.ADVANCED.SLABINFO' 

                        
 

elif geometry_kw == 'SLABCUT': 
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d12['geometry']['type_of_calculation']['geo
metry_editing'].update({ 
'SLABCUT': {'Miller': [], 'layer': []}}) 

                            path = 'BLOCK1.ADVANCED.SLABCUT' 
 
elif geometry_kw == 'ATOMORDE': 

                        
d12['geometry']['type_of_calculation']['geo
metry_editing'].update({ 
'other_keywords': 'ATOMORDE'}) 
path = 'BLOCK1.CRYSTAL.PARAMS.SPACE. 
LATTICE.NUMB_ATOM' 

                      
 elif geometry_kw == 'MOLECULE': 

                        
d12['geometry']['type_of_calculation']['geo
metry_editing'].update({ 
'MOLECULE': {'nmol': '', 'atoms': []}}) 

                            path = 'BLOCK1.ADVANCED.MOLECULE' 
 
# if row starts with SCELPHONO, code knows that 
starts a type of calculation part: path is now equal 
to BLOCK1.ADVANCED.SCELPHONO and type_of_calculation 
dictionary is updated with an element SCELPHONO 

                       elif geometry_kw == 'SCELPHONO': 
                            d12['geometry'] 

['type_of_calculation'].update( 
{'SCELPHONO': []}) 

                            path = 'BLOCK1.ADVANCED.SCELPHONO' 
 
# if row starts with OPTGEOM, code knows that starts 
a type of calculation part: path is now equal to 
BLOCK1.ADVANCED.OPTGEOM and type_of_calculation 
dictionary is updated with some elements 
corresponding to optgeom parameters 

                       elif geometry_kw == 'OPTGEOM': 
                            d12['geometry']['type_of_calculation'] 

['type'] = 'OPTGEOM' 
                            d12['geometry']['type_of_calculation'] 

['parameters'] = {'type_optimization': '', 
'geometry_constraints': '', 
'convergence_criteria': '', 
'other_keywords': []} 

                            path = 'BLOCK1.ADVANCED.OPTGEOM' 
                       elif geometry_kw == …: 
                            d12['geometry']['type_of_calculation'] 

['type'] = … 
                            d12['geometry']['type_of_calculation'] 

['parameters'] = {…} 
                            path = 'BLOCK1.ADVANCED….' 
             

# atomic number and atoms coordinates 
              elif path == "BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE.NUMB_ATOM": 
                   atoms = line.split() 
                   d12['geometry']['dimensionality'] 

['atomsParameters'].append({'atomic_number': int(atoms[0]), 
  'x_coord': float(atoms[1]), 

                                                              'y_coord': float(atoms[2]), 
                                                              'z_coord': float(atoms[3])}) 

# atoms counter that increases depending on number of lines 
read 
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                   atom_counter += 1 
            
#===================================================================# 

           # END CASO CRYSTAL (See CRYSTAL MANUAL page 18) 
#===================================================================# 
#===================================================================# 
# START type of calculation 
#===================================================================# 
#example of SCELPHONO option 
elif path == "BLOCK1.ADVANCED.SCELPHONO": 

                   d12['geometry']['full_block_geometry'].append(line) 
                   line = line.split() 
                   counter_scelphono += 1 

# if SCELPHONO part is finished, path changes and in the 
next step of the while cycle, code will stop before because 
can be present other type of calculation options 

                   if counter_scelphono == 4: 
                       path = 'BLOCK1.CRYSTAL.PARAMS.SPACE.LATTICE. 

NUMB_ATOM.ADVANCED' 
                       n -= 1 
    # if SCELPHONO part is not finished, code stores the values 
                   else: 
                       d12['geometry']['type_of_calculation'] 

['SCELPHONO'].append([line[0], line[1], line[2]]) 
#example of OPTGEOM option 
elif path == 'BLOCK1.ADVANCED.OPTGEOM': 

d12['geometry']['full_block_geometry'].append(line) 
 
# in the first two cases, code passes to basis set block 

                   if line == "BASISSET": 
                       path = "BLOCK2" 
                      n -= 1 
 
                   elif line == 'END' or line == 'ENDOPT': 
                       path = "BLOCK2" 
 

elif line in 
["FULLOPTG","ATOMONLY","CELLONLY","INTREDUN","TSOPT"]: 

                       d12['geometry']['type_of_calculation'] 
['parameters']['type_optimization'] = line 
 

elif line == …: 
d12['geometry']['type_of_calculation'] 

['parameters'].update({…}) 
elif path == 'BLOCK1.ADVANCED….: 

… 
#===================================================================# 
# END type of calculation 
#===================================================================# 

#===========================================================================# 
          # END Block 1 (geometry) 

#===========================================================================#         
 

#===========================================================================# 
          # START Block 2 (basis set) 

#===========================================================================# 
  elif "BLOCK2" in path: 
              if path == "BLOCK2": 
                   kw_basisset = line.split() 
                   if kw_basisset[0] == 'END': 
                       pass 
    # condition for implicit basisset 
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                   elif kw_basisset[0] == "BASISSET": 
                       d12['basis_set']['type'] = 'implicit' 
                       path = "BLOCK2.BASISSET" 
    # condition for esplicit basisset 
                   else: 

d12['basis_set']['type'] = 'explicit' 
                 d12['basis_set']['elements'] = [] 
                 path = "BLOCK2.ELEM" 
                 n -= 1 

 
# implicit basisset → code passes to block 3 

              elif path == "BLOCK2.BASISSET": 
                   name_basisset = line.split() 
                   d12['basis_set']['name'] = name_basisset[0] 
                   path = "BLOCK3" 
 
 

# esplicit basisset → code stores the esplicit basisset for every 
element, in particular in the following “else” stores some parameters 
and in the next elif the numbers of basisset 
elif path == "BLOCK2.ELEM": 

                   kw_basisset = line.split() 
                 if len(kw_basisset) == 2 and kw_basisset[0] == '99' and  

kw_basisset[1] == '0': 
                       path = "BLOCK2.END" 

else: 
d12['basis_set']['elements'].append( 
{'atomic_number': kw_basisset[0],  
'block_number': kw_basisset[1],  
'bs_blocks': [],'bs_full_blocks': line}) 

                      bs_elem_bsblock_num = int(kw_basisset[1]) 
                      bs_elem_bsblock_cnt = 0 
                      path = "BLOCK2.ELEM.BS_BLOCK_START" 
 
              elif path == "BLOCK2.ELEM.BS_BLOCK_START": 
                   kw_basisset = line.split() 

if len(kw_basisset) == 2 and kw_basisset[0] == '99' and 
kw_basisset[1] == '0': 
path = "BLOCK2.END" 

 
else: 

d12['basis_set']['elements'] 
[bs_elem_cnt]['bs_blocks'].append({ 
'ITYB': kw_basisset[0],  
'LAT': kw_basisset[1],  
'NG': kw_basisset[2],  
'CHE': kw_basisset[3], 
'SCAL': kw_basisset[4], 'GTF_lines': []}) 

                        
d12['basis_set']['elements'] 
[bs_elem_cnt]['bs_full_blocks'] += "\n" + line 

                         
bs_elem_bsblock_gtf_num = int(kw_basisset[2]) 

                       bs_elem_bsblock_gtf_cnt = 0 
                       path = "BLOCK2.ELEM.BS_BLOCK_DATA" 
 

elif path == "BLOCK2.ELEM.BS_BLOCK_DATA": 
d12['basis_set']['elements'][bs_elem_cnt]

 ['bs_blocks'][bs_elem_bsblock_cnt]['GTF_lines'].append(line) 
                    

d12['basis_set']['elements'][bs_elem_cnt] 
['bs_full_blocks'] += "\n" + line 
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bs_elem_bsblock_gtf_cnt += 1 

                   if bs_elem_bsblock_gtf_cnt == bs_elem_bsblock_gtf_num: 
                       bs_elem_bsblock_cnt += 1 
                       if bs_elem_bsblock_cnt == bs_elem_bsblock_num: 
                            bs_elem_cnt += 1 
                            path = "BLOCK2.ELEM" 
                       else: 
                            path = "BLOCK2.ELEM.BS_BLOCK_START" 
 

elif path == "BLOCK2.END": 
path = "BLOCK3" 

#===========================================================================# 
          # END Block 2 (basis set) 

#===========================================================================#         
 

#===========================================================================# 
          # START Block 2 (Hamiltonian and SCF computational parameters) 

#===========================================================================#
elif path == "BLOCK3": 
 # method definition 

   third_block_kw = line.split() 
if third_block_kw[0] == 'DFT': 

                   d12['computation']['hamiltonian'] = 'dft' 
                   d12['computation']['shell_type'] = 

'ia_inputShellTypeClosedShell' 
                   path = 'BLOCK3.DFT' 
              elif third_block_kw[0] == 'UHF': 
                   d12['computation']['hamiltonian'] = 'hf' 
                   d12['computation']['shell_type'] = 

'ia_inputShellTypeOpenShell' 
                   path = 'BLOCK3.UHF' 
              else: 
                   d12['computation']['hamiltonian'] = 'hf' 
                   d12['computation']['shell_type'] = 

'ia_inputShellTypeClosedShell' 
                   n -= 1 
                   path = 'BLOCK3.UHF' 
              if line.split()[0] in SVWN: 

svwn_value = line.split()[0] 
d12['computation']['computationParameters'] 

['svwn_parameter'] = svwn_value 
 

elif path == 'BLOCK3.DFT': 
              if line.split()[0] == 'EXCHANGE': 
                  path = 'BLOCK3.DFT.EXCHANGE.START' 
 
          elif path == '…': 
              … 

#===========================================================================# 
          # END Block 2 (basis set) 

#===========================================================================#         
  # n counter of while cycle increases 

n += 1 
 

# d12 string is formatted in .json format 
     d12_json = json.dumps(d12, indent=4, sort_keys=True) 
 
     return JsonResponse(d12, safe=False) 
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MgO.d12 input file 

.d12 format .json format 
#GEOMETRY BLOCK# 
TEST11 - MGO BULK 
CRYSTAL 
0 0 0 
 225 
4.21 
2 
 12 0.    0.    0. 
  8 0.5   0.5   0.5 
END 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{ 
    "title": "TEST11 - MGO BULK", 
    "geometry": { 
        "dimensionality": { 
            "atomsParameters": [ 
                { 
                    "atomic_number": 12, 
                    "x_coord": 0.0, 
                    "y_coord": 0.0, 
                    "z_coord": 0.0 
                }, 
                { 
                    "atomic_number": 8, 
                    "x_coord": 0.5, 
                    "y_coord": 0.5, 
                    "z_coord": 0.5 
                } 
            ], 
            "geometry_adv": [], 
            "latticeParameters": { 
                "a": 4.21 
            }, 
            "latticeType": "cubic", 
            "numbAtom": 2, 
            "params": { 
                "IFHR": 0, 
                "IFLAG": 0, 
                "IFSO": 0 
            }, 
            "spaceGroup": "F m -3 m", 
            "type": "CRYSTAL", 
            "typeOfCell": "hexagonal" 
        }, 
        "external": "no", 
        "full_block_geometry": [], 
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#BASIS SET BLOCK# 
12 4 
0 0 8 2.0 1.0 
 68370.0 0.0002226 
 9661.0 0.001901 
 2041.0 0.011042 
 529.6 0.05005 
 159.17 0.1690 
 54.71 0.36695 
 21.236 0.4008 
 8.791 0.1487 
0 1 5 8.0 1.0 
 143.7 -0.00671 0.00807 
 31.27 -0.07927 0.06401 
 9.661 -0.08088 0.2092 
 3.726 0.2947 0.3460 
 1.598 0.5714 0.3731 
0 1 1 2.0 1.0 
 0.688 1.0 1.0 
0 1 1 0.0 1.0 
 0.28 1.0 1.0 
8 4 
0 0 8 2. 1. 
8020.0 0.00108 
1338.0 0.00804 
 255.4 0.05324 
 69.22 0.1681 
 23.90 0.3581 

        "type_of_calculation": { 

                 "geometry_editing": {}, 

                 "parameters": [], 

                 "type": "ENERGY" 
              }     
         }, 
 
 
"basis_set": { 
        "elements": [ 
            { 
                "atomic_number": "12", 
                "block_number": "4", 
                "bs_blocks": [ 
                    { 
                        "CHE": "2.0", 
                        "GTF_lines": [ 
                            " 68370.0 0.0002226", 
                            " 9661.0 0.001901", 
                            " 2041.0 0.011042", 
                            " 529.6 0.05005", 
                            " 159.17 0.1690", 
                            " 54.71 0.36695", 
                            " 21.236 0.4008", 
                            " 8.791 0.1487" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "0", 
                        "NG": "8", 
                        "SCAL": "1.0" 
                    }, 
                    { 
                        "CHE": "8.0", 
                        "GTF_lines": [ 
                            " 143.7 -0.00671 0.00807", 
                            " 31.27 -0.07927 0.06401", 
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 9.264 0.3855 
 3.851 0.1468 
 1.212 0.0728 
0 1 4 6. 1. 
 49.43 -0.00883 0.00958 
 10.47 -0.0915 0.0696 
 3.235 -0.0402 0.2065 
 1.217 0.379 0.347 
0 1 1 0. 1. 
 0.4567 1.0 1.0 
0 1 1 0. 1. 
 0.1843 1.0 1.0 
99   0 
END 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                            " 9.661 -0.08088 0.2092", 
                            " 3.726 0.2947 0.3460", 
                            " 1.598 0.5714 0.3731" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "5", 
                        "SCAL": "1.0" 
                    }, 
                    { 
                        "CHE": "2.0", 
                        "GTF_lines": [ 
                            " 0.688 1.0 1.0" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "1", 
                        "SCAL": "1.0" 
                    }, 
                    { 
                        "CHE": "0.0", 
                        "GTF_lines": [ 
                            " 0.28 1.0 1.0" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "1", 
                        "SCAL": "1.0" 
                    } 
                ], 
                "bs_full_blocks": "12 4\n0 0 8 2.0 
1.0\n 68370.0 0.0002226\n 9661.0 0.001901\n 
2041.0 0.011042\n 529.6 0.05005\n 159.17 
0.1690\n 54.71 0.36695\n 21.236 0.4008\n 
8.791 0.1487\n0 1 5 8.0 1.0\n 143.7 -0.00671 
0.00807\n 31.27 -0.07927 0.06401\n 9.661 -
0.08088 0.2092\n 3.726 0.2947 0.3460\n 1.598 
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0.5714 0.3731\n0 1 1 2.0 1.0\n 0.688 1.0 1.0\n0 
1 1 0.0 1.0\n 0.28 1.0 1.0" 
            }, 
            { 
                "atomic_number": "8", 
                "block_number": "4", 
                "bs_blocks": [ 
                    { 
                        "CHE": "2.", 
                        "GTF_lines": [ 
                            "8020.0 0.00108", 
                            "1338.0 0.00804", 
                            " 255.4 0.05324", 
                            " 69.22 0.1681", 
                            " 23.90 0.3581", 
                            " 9.264 0.3855", 
                            " 3.851 0.1468", 
                            " 1.212 0.0728" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "0", 
                        "NG": "8", 
                        "SCAL": "1." 
                    }, 
                    { 
                        "CHE": "6.", 
                        "GTF_lines": [ 
                            " 49.43 -0.00883 0.00958", 
                            " 10.47 -0.0915 0.0696", 
                            " 3.235 -0.0402 0.2065", 
                            " 1.217 0.379 0.347" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "4", 
                        "SCAL": "1." 
                    }, 
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                    { 
                        "CHE": "0.", 
                        "GTF_lines": [ 
                            " 0.4567 1.0 1.0" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "1", 
                        "SCAL": "1." 
                    }, 
                    { 
                        "CHE": "0.", 
                        "GTF_lines": [ 
                            " 0.1843 1.0 1.0" 
                        ], 
                        "ITYB": "0", 
                        "LAT": "1", 
                        "NG": "1", 
                        "SCAL": "1." 
                    } 
                ], 
                "bs_full_blocks": "8 4\n0 0 8 2. 
1.\n8020.0 0.00108\n1338.0 0.00804\n 255.4 
0.05324\n 69.22 0.1681\n 23.90 0.3581\n 9.264 
0.3855\n 3.851 0.1468\n 1.212 0.0728\n0 1 4 6. 
1.\n 49.43 -0.00883 0.00958\n 10.47 -0.0915 
0.0696\n 3.235 -0.0402 0.2065\n 1.217 0.379 
0.347\n0 1 1 0. 1.\n 0.4567 1.0 1.0\n0 1 1 0. 
1.\n 0.1843 1.0 1.0" 
            } 
        ], 
        "type": "explicit" 
    }, 
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#METHOD BLOCK# 
SHRINK 
8 8 
FMIXING 
30 
PPAN 
END 

"computation": { 
        "computationParameters": {}, 
        "full_block_computation": [ 
            "FMIXING", 
            "30", 
            "PPAN" 
        ], 
        "hamiltonian": "hf", 
        "shell_type": 
"ia_inputShellTypeClosedShell", 
        "shrink_parameters": { 
            "ShrinkGilat": "8", 
            "ShrinkPack": "8" 
        } 
} 
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Appendix 6 
When a user decides to run calculations, he has to create a new job using the pop-
up window of Figure 3-10. When he clicks on “Start” button, a file in format .vlabjob 
is automatically created and downloaded; this file is in a format that is a bridge 
between the CRYSTAL VLab web-interface and the Starter.  

In this appendix, I will show the structure of this particular file. Let’s start with an 
example showed below: 

{ 
    "input_file_content": "b'TEST11 - MGO BULK\\n'b'CRYSTAL\\n'b'0 
0 0\\n'b' 225\\n'b'4.21\\n'b'2\\n'b' 12 0.    0.    0.\\n'b'  8 
0.5   0.5   0.5\\n'b'END\\n'b'12 4\\n'b'0 0 8 2.0 1.0\\n'b' 
68370.0 0.0002226\\n'b' 9661.0 0.001901\\n'b' 2041.0 
0.011042\\n'b' 529.6 0.05005\\n'b' 159.17 0.1690\\n'b' 54.71 
0.36695\\n'b' 21.236 0.4008\\n'b' 8.791 79458\\n'b'0 1 5 8.0 
1.0\\n'b' 143.7 -0.00671 0.00807\\n'b' 31.27 -0.07927 
0.06401\\n'b' 9.661 -0.08088 0.2092\\n'b' 3.726 0.2947 
0.3460\\n'b' 1.598 0.5714 0.3731\\n'b'0 1 1 2.0 1.0\\n'b' 0.688 
1.0 1.0\\n'b'0 1 1 0.0 1.0\\n'b' 0.28 1.0 1.0\\n'b'8 4\\n'b'0 0 8 
2. 1.\\n'b'8020.0 0.00108\\n'b'1338.0 0.00804\\n'b' 255.4 
0.05324\\n'b' 69.22 0.1681\\n'b' 23.90 0.3581\\n'b' 9.264 
0.3855\\n'b' 3.851 0.1468\\n'b' 1.212 0.0728\\n'b'0 1 4 6. 
1.\\n'b' 49.43 -0.00883 0.00958\\n'b' 10.47 -0.0915 0.0696\\n'b' 
3.235 -0.0402 0.2065\\n'b' 1.217 0.379 0.347\\n'b'0 1 1 0. 
1.\\n'b' 0.4567 1.0 1.0\\n'b'0 1 1 0. 1.\\n'b' 0.1843 1.0 
1.0\\n'b'99   0\\n'b'END\\n'b'SHRINK\\n'b'8 
8\\n'b'FMIXING\\n'b'30\\n'b'PPAN\\n'b'END\\n'", 
    "input_file_name": "mgo_clear_testgeom.d12", 
    "job_id": 40, 
    "ncpus": 1, 
    "program": 0, 
    "title": "mgo_clear_testgeom", 
    "user_token": 
"b'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJqb2JfaWQiOjQwfQ.wUGNbR4
Kj-rWXctHh7ksqgp-SA_HqsoZK2-6wiifuYk'", 
    "workdir": "Home", 
    "user_id": 0, 
} 
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A .vlabjob file is basically a text file structured in json format, i.e. like a dictionary 
composed by keys (for example "workdir") and corresponding values (for 

example "Home").  

The key-value pairs are: 
• "input_file_name": the value of this key is the name of the input file. 

The Starter will show this name in his interface, in a proper field. 
• "input_file_content": the value of this key is the content of the input 

file properly formatted. The Starter can read this value and pass it to 
crystal program and the user can see this content in a dedicated area. 

• "job_id": the value of this key is the id assigned automatically to the job 

in the VLab web interface. 
• "ncpus": the value of this key is the number of processors that the user 

wants to use for his/her calculations. 
• "program": the value of this key identifies the type of program to use for 

running calculations; there is a correspondence between a number and a 
type of program: 

o “0” stands for crystal 
o “1” stands for Pcrystal 
o “2” stands for MPPpcrystal 
o “3” stands for properties 
o “4” stands for Pproperties 

• "title": the value of this key identifies job title, that corresponds to the 

title in the Starter. 
• "user_token": the value of this key is a string of letters and numbers, 

which uniquely identifies a job and makes VLab-Starter communication as 
safe as possible. This token is created by VLab web-interface using a 
proper Python library called jwt; this library uses the encryption algorithm 
HS256. The token is passed to the Starter and, when uploading the results 
after the end of the calculations, it will pass also this token. This passage 
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allows to identify whether the call to the VLab server has a secure 
provenance or not.  

• "workdir": the value of this key is the name of the folder in VLab private 

file manager where the input file is stored. When the Starter will send 
output files, they will be stored in this folder. 

• "user_id": the value of this key is the id assigned to the user by VLab. 

This id is important when uploading the output as it allows to match the job 
with the right user that launched it. 

 

When the calculation has finished, the Starter will send the results through a HTTP 
POST call to the server that passes these parameters: 

• "user_id" 
• "workdir" 
• "user_token" 
• "job_id" 
• "output_file_name": the name of the output files 

• "output_file_content": the content of the output files, base64 encoded 

CRYSTAL VLab receives the parameters of this POST call, extracts 
"output_file_name" and "output_file_content" (decoded from base64 

format) and saves the output files on the server in the user private file manager 
area. 

The user can then visualise his/her results through the VIEW section of CRYSTAL 
VLab.  
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Appendix 7 
This section is dedicated to the structure of Django database under CRYSTAL VLab. 
In order to investigate the structure of apps and models it’s necessary to take a 
deeper look into them. For this purpose, a description with code examples follows. 

When using Django, the primary concept from which everything starts is the 
“project”, that is (generally) understood to be a single, complete web site (or 
potentially a family of sites). A site might have several different functionalities — a 
blog, a forum, a store, a help chat. Each one of these is called an “application” (or 
just “app”). So a project is a collection of apps.  

In the case of my Django project, that is called CRYSTAL_VLab, the directory 
structure looks like this: 

- /CRYSTAL_VLab/ 
   - CRYSTAL_VLab / 
   - AppModel / 
   - AppCompute / 
   - AppView / 
   - AppFileMan / 
   - ImportBs / 

CRYSTAL_VLab is the project folder and all the other folders belongs to apps that 
manage different steps in VLab. Commands needed to create the project and the 
apps are: 

~/django-projects > django-admin startproject CRYSTAL_VLab 
~/django-projects/CRYSTAL_VLab > python manage.py startapp 

AppFileMan 

Django apps have something close to a Model-View-Controller architecture, which 
Django documentation sometimes calls Model-View-Template. 
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This leads to an easy-to-adopt, iterative development pattern: 

• work on the Model, defining what types of data are going to be tracked 
and how they relate to each other; 

• work on the View, defining how data should be accessed and what to do 
when data is manipulated; 

• work on the Template, defining how data looks when displayed to the user 
or consumed by another application. 

MODEL 
Building new features usually begins with creating models. Models are classes 
which define the various objects in the system and how they relate to each other.  

For example in my AppFileMan, which organizes the management of files on the 
user's personal profile, the structure of folder is: 

- /CRYSTAL_VLab/AppFileMan/ 
 - __init__.py 
 - admin.py 
 - apps.py 
 - migrations/ 
   - __init__.py 
 - models.py 
 - tests.py 
 - views.py 

I defined two models, Folder and File, that are written in the models.py file like: 

# LIBRARY IMPORT 
from django.conf import settings 
from django.db import models 
from django.db.models.signals import pre_delete 
from django.dispatch.dispatcher import receiver 
import os 

 
# FOLDER MODEL 
class Folder(models.Model): 
    name = models.CharField(max_length=100) 
    user = models.ForeignKey(settings.AUTH_USER_MODEL, 
     on_delete=models.CASCADE,null=True, blank=True) 
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    parent = models.ForeignKey("self", null=True, blank=True, 
related_name='subfolders',  
on_delete=models.CASCADE) 

  
    # DEFINITION OF METHOD as_tree FOR FOLDER MODEL 
    def as_tree(self): 
        folders = list(self.subfolders.all()) 
        branch = bool(folders) 
        yield branch, self 
        for f in folders: 
            for next in f.as_tree(): 
                yield next 
        yield branch, None 
 
    # RE-DEFINITION OF METHOD __str__ FOR FOLDER MODEL 
    def __str__(self): 
        return self.name 
 
# FILE MODEL 
class File(models.Model): 
    file = models.FileField(upload_to=settings.UPLOAD_DIR, 

max_length=100) 
    name = models.CharField(max_length=100) 
    folder = models.ForeignKey(Folder, null = True,  

blank = True, related_name='files', 
on_delete=models.CASCADE ) 

    user = models.ForeignKey(settings.AUTH_USER_MODEL, 
on_delete=models.CASCADE, null=True, blank=True) 

 
    # RE-DEFINITION OF METHOD __str__ FOR FILE MODEL 
    def __str__(self): 
        return self.name 
 
@receiver(pre_delete, sender=File) 
def mymodel_delete(sender, instance, **kwargs): 
    instance.file.delete(False) 
 
In the example above, we see that it’s possible to define in models.py methods 
relating to particular models, e.g. as_tree.  
Django has its own Object Relational Mapper (ORM), which provides a layer of 
abstraction to the database. This allows user to define data model without 
reference to a specific database management system, and without having to write 
SQL.  
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As user adds models, he/she has to do “migrations”. A migration is an 
automatically-generated set to SQL commands that alters the database design to 
match the models; Django’s ORM translates user models into SQL migrations. 
Before doing this, the user is required to set up the database and connect to it. 
 
After setting up the database, he/she can migrate data in this way: 
~/django-projects > python manage.py makemigrations 
~/django-projects > python manage.py migrate 

VIEW 
In Django, the “View” isn’t a front-end HTML page (which is called instead 
“Template”). What Django calls View is a function which receives an HTTP Request 
as an argument, and returns a Response. Typically, the response is the content of 
a web page which is then accessible from a Template. A response can also be a 
redirect, an error message, a file, or something else. 
The most common scenario is the one in which you want to send a Request for a 
particular piece of content (for example a folder), and then get back all the data 
associated with that piece of content (all files that belong to that folder).   
Below there is an example of a view that receives in input a folder id and responds 
with all the files contained in that folder: 
def file_man(request, folder_id): 

    folder_id = int(folder_id) 
    request.session['current_folder_id'] = folder_id 
    folders = Folder.objects.filter(parent__isnull=True) 
 
    # NEXT IF CONDITION CONTROLS IF THE FOLDER ID IS “0” OR NOT 
    # AND THEN RESPONDS WITH A DICTIONARY OF FILES 
    if folder_id is not None and folder_id != 0: 
        files = File.objects.filter(folder__id=folder_id) 
    else: 
        files = File.objects.filter(folder__isnull=True) 
 
    context = { 'title': 'CRYSTAL VLab', 
                'files' : files , 
                'folders' : folders} 
 
    # RETURN IS LINKED TO A TEMPLATE PAGE AND THE ELEMENTS IN  
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    # context ARE NECESSARY TO COMPLETE THE TEMPLATE RENDERING  
    return render(request, 'AppFileMan/file_man_table.html', 

context) 
 
After function definition in views.py file, user just needs to map his views to URLs. 
In particular a file called urls.py exist inside AppFileMan folder and it’s structured 
in this way: 
from django.conf.urls import url 
from django.contrib.auth import views as auth_views 
from django.contrib.auth.decorators import login_required 
 
# IMPORT OF CODE INSIDE FILE .views.py 
from .views import * 
 
urlpatterns = [ 
    url(r'^folder/(?P<folder_id>[0-9]+)/files$', 

login_required(file_man), name='file_man'), 
] 
 
The above pattern match the /fileman/folder/folder_id/files/ URL pattern to the 
file_man view, which calls its template 

'AppFileMan/file_man_table.html'. It’s important to note that URL pattern 

contains a parameter, folder_id, that is defined with a regular expression in 
urls.py file and that represents the ID of the folder for which the user wishes 
to have all the files.  

TEMPLATE 
The last step to close the Model-View-Template Django pattern is the creation of a 
template in html to display the content from the view. In fact it’s possible to call 
variables from the view in the html template only using {{…}}.  
For example, if the user wants to insert the value of the variable 'title' included 

in the context (from the file_man view response), he/she has just to include 

in the HTML code {{ title }} and when the view is called the field in templates it’s 
automatically substituted with its value. 
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CRYSPLOT: A New Tool to Visualize Physical and Chemical
Properties of Molecules, Polymers, Surfaces, and Crystalline
Solids
Giorgia Beata,*[a,b] Gianpaolo Perego,[b] and Bartolomeo Civalleri *[a]

CRYSPLOT is a web-oriented tool (http://crysplot.crystalsolutions.
eu) to visualize computed properties of periodic systems, in partic-
ular, as computed with the CRYSTAL code. Along with plotting,
CRYSPLOT also permits the modification and customization of
plots to meet the standards required for scientific graphics.
CRYSPLOT has been designed with advanced and freely available
graphical Javascript libraries as Plotly. The programming language
used is Javascript. The code parses the input files, reads the data,

and organizes them into objects ready to be plotted with the
plotly.js library. It is modular and flexible so that it is very simple to
add other input data formats. The new graphical tool is presented
in details along with selected applications onmetal–organic frame-
works to show some of its capabilities. © 2019 Wiley Periodi-
cals, Inc.

DOI: 10.1002/jcc.25858

Introduction

Visualization tools are becomingmore andmore important to ana-
lyze, help in understanding, and present scientific data.[1] Nowa-
days, this is particularly true in the realm of computational
molecular and solid-state chemistry for which a paramount num-
ber of data can be obtained from more robust and multipurpose
computational codes and through the accessibility of powerful
computing facilities. In the world of computational solid-state
chemistry, several different software exist for the ab initio study of
physical and chemical properties of periodic systems as polymers,
surfaces, and crystalline solids. Among them a prominent role is
played by the CRYSTAL code,[2–7] a software developed since mid-
17s of the last century by the Theoretical Chemistry Group of the
University of Torino and later in collaboration with the Computa-
tional Materials Science Group at Daresbury Laboratory (UK).
Although CRYSTAL has recently shown a tremendous improve-
ment in terms of advanced and powerful algorithms,[4,6] particu-
larly, for speeding up calculations of the two parallel versions[8–10]

and for extending the number of properties that can be
computed,[7] the graphical tools for the analysis and visualization
of the predicted results have remained at a less developed stage.
To fill this gap, a new project, CRYSPLOT, has started to provide
end users with a modern, web-oriented, ma0chine independent,
quick, and easy-to-use visualization environment. In the following,
we discuss in details technical aspects and features of CRYSPLOT
(i.e., how it works, what it does, etc.) along with selected examples
to show the capabilities of the new graphical tool.

Why A New Visualization Tool?

The CRYSTAL package performs ab initio calculations of the ground
state energy, electronic wave function, and properties of periodic
systems at the HF and DFT level of theory.[7] Presently, graphical
tools available to analyze data computed with the CRYSTAL code
are not unique and in some cases obsolete. Some of the computed

properties and related data can be plotted bymeans of Gnuplot.[11]

Gnuplot is a widespread tool for plotting scientific data. It was origi-
nally created to allow scientists and students to visualize mathe-
matical functions and data interactively, but nowadays it has
grown to support many non-interactive uses such as web scripting.
For instance, CRYSTAL can create files that can be read by gnuplot
to plot simulated vibrational spectra. Other properties like band
structure and density of states can be plotted with the homemade
CrGra package whose latest release dates back to 2006. The devel-
opment of the CrGra suite of programs started almost 30 years ago
by the CRYSTAL team to create graphic plots in the PostScript
language that could be easily printed. CrGra2006 processes data
written by CRYSTAL in the Fortran unit “fort.25.”[7] The CrGra suite
is comprised three modules: maps06 to draw contour maps
(e.g., charge and spin density, electrostatic potential), bands06 to
plot band structures and doss06 to plot total and projected density
of states. However, the code was not updated for plotting data
related to other properties that are now available from CRYSTAL
(e.g., simulated IR/Raman spectra, topological analysis-related
quantities, and electron conductivity).

In addition to these plotting tools, also other graphical tools are
available to visualize data from CRYSTAL such as DLV[12] and
XCRYSDEN.[13] Even if they provide a more extended graphical
interface to the code (e.g., visualization of the crystalline structure
and related features, animation of vibrational frequencies, etc., see
refs. [12,13] for further details), they are currently not fully updated
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to the last release of the code and not available for all operating
systems.

Therefore, we decided to create an up to date modern web-
oriented visualization tool to be machine independent, easy to
use, and freely accessible to users from all over the world
through Internet browsers. Briefly, CRYSPLOT extends over the
capabilities of CrGra to plot additional data (e.g., simulated
IR/Raman spectra) and to manage multiple datasets. It also
allows users to customize plots as detailed in the next section.

Crysplot: What It Does and How It Works

CRYSPLOT is available online at http://crysplot.crystalsolutions.
eu/.

In Figure 1, a screenshot of the CRYSPLOT web page is shown.
Basically, CRYSPLOT allows users to visualize band structure, den-
sity of states, electron charge density and electrostatic potential
maps, simulated vibrational spectra, topological analysis, phonon
dispersion, and transport properties computed with CRYSTAL on a
machine independent platform. It also aims at offering users with
easy-to-use options to modify and customize plots to meet stan-
dards required for scientific publications. It is worthy to note that,
although CRYSPLOT is targeted to CRYSTAL, the same properties
as computed from other programs could be plotted by simply con-
verting raw data to the CRYSTAL format as described in the Appen-
dix of the CRYSTAL User’s Manual.[7]

At the design stage of CRYSPLOT, we decided to create a
cross platform tool for making it easily accessible to the largest
number of users. For this reason, we decided to organize
CRYSPLOT as a website and develop it as a web application by
using HTML5 markup language, CSS3 style sheet language,

BOOTSTRAP front-end framework, and the Javascript program-
ming language. BOOTSTRAP is a free front-end framework for
faster and easier web development that includes HTML and
CSS based design templates for typography, forms, buttons,
tables, navigation, modals, image carousels, and many other, as
well as optional JavaScript plugins. In addition, BOOTSTRAP has
the ability to easily create responsive designs, that is, web sites
that automatically adjust themselves to look good on all
devices, from small smartphones to large desktops. BOOTSTRAP
is easy to use and compatible with all modern browsers
(Chrome, Firefox, Internet Explorer, Safari, and Opera). For the
graphical part, we have chosen PLOTLY.[14] It is a high-level,
declarative charting library, built on top of d3.js and stack.gl. In
CRYSPLOT, we use its javascript version named plotly.js. Plotly.js
uses stack.gl for high-performance 2D and 3D charting and the
charts are shipped with zoom, pan, hover, and click interactions
like click-and-drag to zoom into a region, double-click to auto-
scale, click on legend items to toggle traces. Plotly.js ships with
20 chart types, including 3D charts, statistical graphs, and SVG
maps; it abstracts the types of statistical and scientific charts
that one would find in packages like matplotlib, ggplot2, or
MATLAB. The charts are described declaratively as JSON objects
and every aspect of the charts, such as colors, grid lines, and
the legend, has a corresponding set of JSON attributes.

CRYSPLOT web page

The CRYSPLOT website (see Fig. 1) has a descriptive part (home-
page and “What is”), an operative one (“Make a plot”), and user
dedicated services (“Contacts”). The “Make a plot” button is the

Figure 1. Screenshot of the CRYSPLOT home page. [Color figure can be viewed at wileyonlinelibrary.com]

SOFTWARE NEWS AND UPDATES WWW.C-CHEM.ORG

Journal of Computational Chemistry 2019 WWW.CHEMISTRYVIEWS.COM2



heart of CRYSPLOT. It opens a cascade menu from which user can
select the property to be plotted as shown in Figure 2.

In addition, the header of the web page contains links to the
pages described above: “CRYSPLOT” brings to the homepage,
“What is” links to a page on the main features of CRYSPLOT, and
“Contacts” to the contact page. Then, under the header, there is
a tab in which the selected property will be plotted. Figure 2 also
shows the list of available properties, namely: band structure,
density of states, crystal orbital overlap population, crystal orbital
Hamiltonian population, electron charge density maps and

profiles, electrostatic potential maps, Compton profiles, autocor-
relation function, infrared, Raman, reflectance and complex
dielectric spectra, phonon band structure and density of states,
topological analysis, electron conductivity, Seebeck coefficient,
and electron thermal conductivity. There is also the possibility to
plot elastic properties through the link to the Elate web site,[15]

a web tool for the analysis of elastic tensors, developed by F. X.
Coudert and co-workers.

In each property tab, users may choose the output file from
their local PC (see button “Choose file”) to upload the data for

Figure 2. “Make a plot” cascade menu. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Example of plot settings palette as for the band structure plotting. [Color figure can be viewed at wileyonlinelibrary.com]
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the selected property as previously computed by CRYSTAL. All
data to be plotted are written in a formatted way (i.e., plain
ASCII) either on the Fortran unit 25 (fort.25) or in separate files
(e.g., BAND.DAT, IRSPEC.DAT, etc.). The list of properties and the
corresponding name of the auxiliary files is listed in Table S1 in
the Supporting Information.

Notably, because in crystalline systems, many properties are
tensors and anisotropic, CRYSPLOT also allows the simultaneous
plot of multiple datasets as for the simulated Raman spectra of
a single crystal model for which six sets of data are available for
the six independent orientation of the Raman tensor (i.e., xx, yy,
zz, xy, yz, xz) as will be shown later on.

The “Plot settings” lateral menu (hidden on the left of the
CRYSPLOT web page) contains a palette of options for custom-
izing the plot shown on the screen. CRYSPLOT has independent
pages for every property and these pages have a specific “Plot
settings” set of options.

For instance, Figure 3 shows an example of the “plot set-
tings” menu for the band structure. Some of the available
options to modify the plot are described in the following:

• Legend allows one to show or hide the legend,
• Font size permits to decide the size of the plot and axis titles
font, selecting from four sizes,

• Plot title permits to change the chart title,
• Tick labels allows to change the labels of the k points on the
x-axis,

• Band labels allows users to change the name of each band
(i.e., electronic level),

• Line type permits to decide which type of line is adopted for
plotting the bands, namely: plain line, only markers, or both,

• Y-axis unit controls the y-axis unit to be either Hartree
(default) or eV,

• Different layout for open shell case enables user to change the
appearance of the plot to have the band structure for alpha
and beta electrons on the same graph or on two separate
plots,

• Shifting Y-axis allows to shift values for the value of Fermi
Energy,

• Fermi Energy line allows one to show or hide the line of Fermi
Energy,

• Axis range allows to selected a sub-region of the plot by axis
values,

• Data on hover allows to change the visualization of data on
the plot

• Grid allows one to show or hide the gray grid of the plot
• Background color modifies the color of the plot background
from gray (default) to white

• Plot layout allows to select the size of the plot

In the case of the density of states, users can change line
colors, and for spin polarized systems, one can decide whether
painting α and β lines in pairs or with different colors. Also, total
and projected density of states can be plotted either on the
same graph or on different charts.

Finally, at the bottom of the page there is an “Export”
section to save the actual plot as a picture. After selecting the
file format (i.e., jpeg, png, and svg), users must simply write the
plot name and click on “Download Plot.”

CRYSPLOT: Under the hood

The programming language used for CRYSPLOT is javascript.
Our code parses the input files, checks if the uploaded files are
correct and, if they are, it reads the data and organizes them
into objects ready to be plotted with plotly.js library. A peculiar
feature of CRYSPLOT is to keep separate the import code from
the plotting one. Indeed, different import filters for each
supported file format have been created, but the code that
transfers data to plotly.js is always the same. When importing
the data, the code checks whether the file format is correct, if
not, an error message appears. After data have been re-orga-
nized, it is straightforward to visualize them through the com-
mon code for plotting. For instance, data for band structure can
be imported either from BAND.DAT (or filename.BAND) file or
the Fortran unit fort.25 (or filename.f25). In that case, the code
has two different import functions: one for .BAND or .DAT for-
mat and another one for fort.25. Therefore, even if data are
organized and formatted very differently, after importing them,

Figure 4. Example of a band structure plot for the metal–organic framework CPO-27-Ni. Alpha and beta electronic bands are represented as continuous and
dashed lines, respectively. The Fermi level is indicated with a red line. [Color figure can be viewed at wileyonlinelibrary.com]
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users get the same javascript object that can be passed to
plotly.js through the general plotting code for the final repre-
sentation of the graph.

This structure makes CRYSPLOT modular and flexible so that
it is very simple to add other input data formats. In fact, it is just
a matter of creating a new import filter that organizes the
values in the proper way.

Finally, it is worth noting that CRYSPLOT does not need any
third party libraries. It has been tested with most common
browsers on different operating systems by using standard test
cases of the CRYSTAL code, sample tests included in the CRYS-
TAL Tutorial project and on-purpose designed tests.

Crysplot At Work: Selected Case Studies

In this section, metal–organic frameworks (MOFs) are used as
case studies to show some of the capabilities of CRYSPLOT.
MOFs are a relatively new class of hybrid inorganic–organic
materials that are comprised an inorganic cluster (or metal) and
an organic linker acting as secondary building units of a tridi-
mensional and usually porous framework.[16] Due to their pecu-
liar structure, MOFs are interesting for several applications
ranging from gas adsorption, separation and capture to catalysis
and drug delivery. Recently, they have become of interest for
other technologically relevant applications such as sensoring,
lighting, and optoelectronics.[17–19]

Band structure and density of states

As a first case study, we discuss the electronic structure of
CPO-27-Ni. This MOF consists of metal-containing helical chains con-
nected throughout space by the organic linker (i.e., 2,5-dihydroxy-
terephthalic acid) to form a honeycomb-like framework.[20,21] The
resulting structure shows one-dimensional channels inwhich unsatu-
rated metal sites are exposed at the inner surface. Due to the
presence of unpaired electrons on the metal, CPO-27-Ni is a spin-
polarized system. Results refer to a ferromagnetic configuration with
Ni in a high-spin state. Reported data have been obtained with the
M06-Dmethod[22] with a TZVP basis set.[23]

In Figure 4, the band structure of CPO-27-Ni is shown.
CRYSPLOT can automatically manage spin-polarized systems by
plotting band structure for alpha and beta electrons together
or separately in two graphs.

The total and the projected density of states have been plot-
ted for all atoms in the asymmetric unit (i.e., nine projected
DOSs) is shown in Figure 5. As it can be seen, the colored filled
area plot is very effective in highlighting the role of alpha and
beta electrons and multiple plots allow users to compare total
and projected DOSs.

With CRYSPLOT, band structure and density of states can be
also easily visualized in a combined plot. Figure 6 shows the
band structure of CPO-27-Ni along with its total and projected
density of states, that is, the combination of Figures 4 and 5. By
default, the two plots are aligned to the Fermi level at 0 eV.
From this graph, users can easily visualize which atom contrib-
utes to the corresponding electronic band. For instance, for
CPO-27-Ni, it can be readily seen that the top of the valence

band corresponds to orbitals of the organic linker, whereas the
bottom of the conduction band is mainly dominated by the
metal, thus suggesting a possible ligand-to-metal electronic
transition.

Figure 5. Example of total and projected density of states plot for CPO-
27-Ni. Projected DOSs are plotted for all non-symmetry related atoms in the
unit cell. [Color figure can be viewed at wileyonlinelibrary.com]
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Electron charge density maps

As an example of the plotting of 2D maps, the total electron den-
sity of a carbon monoxide molecule adsorbed on the inner surface
of CPO-27-Ni is shown in Figure 7. Results have been computed at
the M06-D/TZVP level of theory. The CO molecule strongly inter-
acts with the Ni atoms that are exposed in the one-dimensional

channels oriented along the c-axis.[24] The interaction is dominated
by electrostatics and charge transfer effects due to the back-donation
between the diffuse molecular orbitals of carbon monoxide and the
unoccupied d-orbitals of the metal. To better appreciate the redistri-
bution of the charge density upon the formation of the metal-CO
interaction, it is then useful to plot the deformation charge density as
shown in Figure 8.

Figure 6. Example of a combined band structure
and density of states plot for CPO-27-Ni. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 7. Contour plot of the total electron
charge density map of a CO molecule adsorbed
in the inner channels of CPO-27-Ni. [Color figure
can be viewed at wileyonlinelibrary.com]
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CRYSPLOT can easily manage multiple sets of data and com-
bine them to obtain a new map that corresponds to the differ-
ence (or sum) of the uploaded datasets. For instance, Figure 8
shows the deformation of the charge density when a CO mole-
cule is adsorbed on top of the metal in CPO-27-Ni. The plot is
obtained as a combination of the total electron charge densi-
ties of three systems, namely: the target system (i.e., CPO-
27-Ni/CO) and the two separated subsystems (i.e., an array of
CO molecules and the CPO-27-Ni alone). The electron density
deformation map in Figure 8 shows positive values, in red, that
correspond to charge accumulation while negative values, in
blue, show where a depletion of charge occurs. As evident from
Figure 8, upon interaction the electron charge density of the
CO molecule is polarized toward the metal with a significant
charge transfer between CO and Ni.

Simulated vibrational spectra

To show the capabilities of CRYSPLOT in plotting vibrational
spectra, we compare the two phases of the bi-stable MOF
known as MIL-53-Al.[25,26] The MIL-53 family of MOFs shows a
flexible framework that can undertake a phase transition driven
by external stimuli as temperature, pressure, and gas adsorp-
tion.[27] The structure of MIL-53-Al consists of infinite chains of
corner-sharing AlO4(OH)2 octahedra linked through the organic
ligands (i.e., 1,4-benzendicarboxylic acid) to form flexible one-
dimensional channels.[25] For MIL-53-Al, it was shown that, by

changing the temperature, a phase transition occurs between a
low-T narrow-pore (NP) structure and a high-T large-pore
(LP) phase.[25,26]

It has been recently shown that the two phases exhibits unique
vibrational fingerprints from dielectric function spectra[28] and
IR/Raman spectra.[29] With CRYSPLOT simulated IR and Raman
spectra as computed by CRYSTAL can be easily visualized. In addi-
tion, up to five IR (or Raman) spectra can be plotted together to
highlight differences in the vibrational modes and distinguish
between different phases. This is very useful when comparing
vibrational spectra of different polymorphs as for molecular crys-
tals, or different phases as for the case of MIL-53-Al.

In Figures 9 and 10, the comparison between the simulated IR
spectra, respectively, of the NP and CP phases of MIL-53-Al is shown.
Results have been obtained with the B3LYP functional[30–32] aug-
mented with the Grimme’s D3 dispersion correction[33,34] in combi-
nationwith a triple-zeta quality basis set.[35] It can be clearly seen that
the two phases show several spectral shifts of the peaks from a few
to 20 wavenumbers. In particular, by zooming into the plot with
CRYSPLOT one can also visualize in more detail the spectral regions
that show the largest variations because they can reveal the presence
of vibrational fingerprints. For instance, in Figure 10, the IR region
between 400 and 700 cm−1 of the two phases is highlighted.
According to a recent work by Hoffman et al.,[16] this corresponds to
the region of metal-oxide backbone vibrations that are more
influenced by the phase transition.

Figure 8. Plot of the electron charge density
deformation map of CO molecule adsorbed in
CPO-27-Ni. Blue and red lines correspond to
negative and positive values, respectively. [Color
figure can be viewed at wileyonlinelibrary.com]
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As an additional example, the simulated Raman spectra of MIL-
53 large pore phase are shown in Figure 11. CRYSTAL permits to
simulate the Raman spectra of solids either as a polycrystalline pow-
der or a single crystal.[36,37] In the former case, the total spectrum is
predicted along with two components in the parallel and perpen-
dicular directions. For the latter, the six spectra originate from the
corresponding independent components of the second-order

electric susceptibility tensor (i.e., xx, xy, xz, yy, yz, zz). For instance,
Figure 11 has been obtained by using the unscaled vibrational fre-
quencies and a Lorentzian profile with a FWHM of 8 cm−1. For this
kind of plot, CRYSPLOT permits to visualize all spectra simulta-
neously. A nice feature is that by clicking on the items in the legend,
one can hide (or show) the corresponding spectrum in the plot. This
option allows users to analyze the data and highlight the Raman

Figure 9. Comparison between IR spectra of
the NP (blue) and LP (orange) phases of MIL-
53-Al. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 10. Details of the spectral
region between 400 and 700 cm−1

of the IR spectra of the NP (blue)
and LP (orange) phases of MIL-53-Al.
[Color figure can be viewed at
wileyonlinelibrary.com]
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spectrum along a given direction. From Figure 11 (bottom), it is evi-
dent that the two peaks at very low frequency in the THz region
(i.e., 300–0 cm−1) are polarized in different directions, that is, xy and
xz, thus making easier the comparison with single-crystal Raman
spectra from experimental works. On passing, it is worthy to note
that the simulated total Raman spectrum of MIL-53(LP) as a crystal-
line powder (see Fig. 11, top) nicely agrees with the experimental
one reported by Hoffman et al.[16]

Conclusions

CRYSPLOT is a user-friendly web-oriented tool that is freely
available to CRYSTAL users. It allows the visualization of many

properties in a few seconds by reading information from auxil-
iary files created by CRYSTAL.

CRYSPLOT has been highly optimized with just a common
function that is called multiple times and different import filters
for each property to be plotted. In this respect, it is also highly
modular because it can be easily modified to visualize new kinds
of property that will be available in next release of the CRYSTAL
code. Because CRYSPLOT reads data from formatted text files, it
can be considered a versatile and general tool because, in princi-
ple, it is not limited to visualize data computed with CRYSTAL.
Indeed, one could obtain results from another software, reorga-
nize raw data according to the proper format (see the CRYSTAL
User’s Manual[7]), and then plot the results with CRYSPLOT.

Figure 11. Raman spectra of the LP
phase of MIL-53-Al in the region
(top) 1700–600 cm−1 and (bottom)
300–0 cm−1. The two graphs show
the simulated Raman spectra as for
a polycrystalline material (three
components) and a single crystal
(six components), respectively. See
text for details. [Color figure can be
viewed at wileyonlinelibrary.com]
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CRYSPLOT is an easy-to-use web platform that has been
designed as a very intuitive graphical tool, a low entry-level
interface to all types of users: from beginners (i.e., students) to
expert researchers. It is also a sufficiently advanced and power-
ful tool that enables users to customize graphs in such a way
that results could be used in scientific publications. This has
been shown for selected applications taken from the study of
metal–organic frameworks. Its ease-of-use makes CRYSPLOT
also very useful for educational purposes.

From a general perspective, CRYSPLOT is under development
and a bunch of other features will be included in future
releases. It will be extended to visualize more computed prop-
erties (e.g., simulated X-ray powder diffraction and inelastic
neutron scattering spectra[7]) and some facilities on the server
side. In particular, we would like to provide each user with a
personal page in which they can save and store plots created
with CRYSPLOT. A more advanced graphical user interface for
CRYSTAL is also under development with enhanced capabilities
like a structure visualizer, a wizard to prepare input files and
tools to manage calculations. When ready, CRYSPLOT will be
fully encoded in the new graphical interface to enable users to
promptly analyze and visualize computed properties.
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