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Abstract: Titanium is one of the most frequently used materials in bone regeneration due to its
good biocompatibility, excellent mechanical properties, and great osteogenic performance. However,
osseointegration with host tissue is often not definite, which may cause implant failure at times. The
present study investigates the capacity of the mesenchymal stem cell (MSC)-secretome, formulated as
a ready-to-use and freeze-dried medicinal product (the Lyosecretome), to promote the osteoinductive
and osteoconductive properties of titanium cages. In vitro tests were conducted using adipose
tissue-derived MSCs seeded on titanium cages with or without Lyosecretome. After 14 days, in the
presence of Lyosecretome, significant cell proliferation improvement was observed. Scanning electron
microscopy revealed the cytocompatibility of titanium cages: the seeded MSCs showed a spread
morphology and an initial formation of filopodia. After 7 days, in the presence of Lyosecretome,
more frequent and complex cellular processes forming bridges across the porous surface of the
scaffold were revealed. Also, after 14 and 28 days of culturing in osteogenic medium, the amount
of mineralized matrix detected by alizarin red was significantly higher when Lyosecretome was
used. Finally, improved osteogenesis with Lyosecretome was confirmed by confocal analysis after 28
and 56 days of treatment, and demonstrating the production by osteoblast-differentiated MSCs of
osteocalcin, a specific bone matrix protein.

Keywords: mesenchymal stem cells (MSCs); MSC-secretome; MSC-extracellular vesicles; bone
regeneration

1. Introduction

Regeneration of bone defects often presents significant challenges. According to some
reports, between 5% and 10% of all bone fractures result in delayed or failed healing [1,2].
This aspect is particularly evident for patients with decreased tissue regeneration capacity
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as a consequence of advanced age, disease, or extensive injury. In previous years, many
research studies have extensively proved the efficacy of mesenchymal stem cells (MSCs),
derived from various connective tissues, in enhancing bone regeneration through in vitro,
in vivo, and clinical trials [3]. Early scientific investigations explained the effectiveness of
MSCs through their ability to colonize the bone lesion and then differentiate, becoming
bone-forming osteoblasts that replace the damaged resident osteoblasts [4]. Collectively,
current research appears to instead argue that MSC paracrine activities play a more pre-
dominant role in bone tissue regeneration than differentiation [5]. It has been demonstrated
that once MSCs are injected into a damaged bone, they show a relatively poor rate of
cell engraftment, and the engrafted cells are short-lived and thus cannot differentiate into
osteoblastic lineage [5,6]. Conversely, MSCs secrete cytokines, chemokines, and growth
factors, both as free proteins and encapsulated into nano/microstructured extracellular
vesicles (EVs), to orchestrate tissue repair. In detail, MSC-secretome can promote angio-
genesis and tissue regeneration [7–9], inhibit fibrosis [10–14], and inflammation [15–18].
Furthermore, MSC-secretome can stimulate the tissue-resident MSCs to proliferate, leading
to new and organized tissue formation and mineralizing, showing a higher expression of
osteoblast markers and a high quantity of newly formed trabeculae [19,20]. Finally, MSC-
secretome also has the advantage of being easily isolated from cell culture supernatants by
scalable and GMP-compliant manufacturing procedures and formulated in a ready-to-use,
freeze-dried pharmaceutical dosage form [21,22].

In bone tissue engineering, MSCs and MSC-secretome are often combined with scaf-
folds to improve bone reconstruction. In this regard, biomaterials that induce MSC-resident
osteoblastic lineage differentiation without any exogenous chemical stimuli and capable
of mimicking the physicochemical and mechanical properties of the bone extracellular
matrix should be preferred. Titanium is one of the most commonly used biomaterials due
to its good biocompatibility, mechanical properties, and osteogenic performance [23–25].
A recent work proved the superior osteoinductive and osteoconductive properties of
scaffolds manufactured from titanium vs polyetheretherketone, which is another widely
used biomaterial [26]. Usually, titanium is shaped as a mesh that is easily moldable and
adaptable to the shape of the defect. While the shaping step is traditionally performed
during surgery, new layer-by-layer deposition methods, such as the electron beam melting
technique, shape the meshes on patients’ bone defects, with clear advantages over surgery
time, patient discomfort, and morbidity. Despite titanium being one of the most frequently
used materials in orthopedic implants, osseointegration with the host tissue is often not
definite, which may cause implant failure at times [27].

In light of these data, the present study investigates the capacity of MSC-secretome
formulated as a ready-to-use and freeze-dried medicinal product known as Lyosecretome
to promote the osteoinductive and osteoconductive properties of titanium cages, and
ultimately the osseointegration of scaffolds used in vivo. MSCs were seeded onto titanium
cages and exposed, in the presence of the osteogenic medium, to Lyosecretome. The
proliferation rate, production of calcified extracellular matrix, and the production of specific
bone matrix proteins by osteoblast-differentiated MSCs, such as osteocalcin (OCN), were
evaluated. To this end, several techniques, including confocal and scanning electron
microscopy (SEM) and biochemical assays, were used.

2. Results and Discussion

Titanium, especially porous/trabecular implants, is the most frequently used ma-
terial for treating bone defects [28], mainly for its osteoinductive and osteoconductive
capacity [26,29]. This work investigated the ability of MSC-secretome in supporting cell
adhesion, proliferation, and osteogenic differentiation of MSCs seeded on titanium cages,
thus introducing next-generation tissue-engineered implants with enhanced biological
performance. MSC-secretome was converted into a freeze-dried pharmaceutical dosage
form (Lyosecretome) that can be easily adapted by the clinical community [10,15,21,22].
The Lyosecretome contained 22.00 ± 3.09 µg of proteins and 3.44 ± 0.07 µg of lipids per
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mg of powder. The EV mean diameter was 164.6 ± 8.5 nm, and the d10, d50, and d90 were
102.8 ± 4.5, 154.8 ± 6.1 and 298.7 ± 29.9 nm, respectively. In addition, Lyosecretome is free
of bacteria (including mycoplasma), and its bacterial endotoxin level is in an acceptable
range for the injectable dosage forms (lower than 3.4 Eu/mL). These results agree with our
previous works [19,22], thus indicating the robustness of the preparation method.

At first, the effect of increasing the dosage of Lyosecretome on the cell metabolic
activity of MSCs cultured on the cages was investigated as a function of time (Figure 1).
Both time and concentration were significant (p < 0.0001 and p = 0.0004, respectively).
After 5 days of treatment, no differences were observed among the different Lyosecretome
concentrations tested (p < 0.05), whereas after 9 and 14 days of treatment, 200,000 cell
equivalents of Lyosecretome significantly increased the cell metabolic activity percentage
(p < 0.05). There was no observable differences between the doses of 200,000 and 400,000
cell equivalents/per well (p > 0.05). These results confirm the cytocompatibility of Lyose-
cretome and its proliferative potential on MSCs, which was previously demonstrated on
tenocytes and chondrocytes [30]. Overall, the ability of MSC-secretome to stimulate cell
growth and proliferation may be linked to its content in mitogens and growth factors, such
as insulin growth factor (IGF-1), vascular endothelial growth factor (VEGF), transforming
growth factor β (TGF-β), platelet-derived growth factor (PDGF), fibroblast growth factor
(FGF), and epidermal growth factor (EGF) [31,32]. Furthermore, in our previous work [21]
using proteomic analysis, we demonstrated the presence of other proteins in Lyosecretome
that can stimulate cell proliferation, such as fibronectin [33,34], complement C3 [35], and
alpha-2 macroglobulin [36].
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MSCs are multipotent stem cells that can differentiate toward adipogenic, chondro-
genic, and osteogenic cells when cultured in the appropriate culture media [37]. Thus, the 
effect of osteogenic culture medium supplemented with Lyosecretome (tested at 2 × 106 
cell equivalents per well) on the osteogenic differentiation of MSCs seeded on the cages 
was investigated as a function of time. Titanium cages showed a trabecular surface with 
a regular three-dimensional porous structure (Figure 2). Using the electron backscattered 
diffraction mode of SEM, the deposition of organic material onto the cages was monitored 
over time. After 7, 14, and 21 days, the brightest portions of scaffolds (which correspond 

Figure 1. Cell metabolic activity (%) of MSCs grown on the scaffold cultured in serum-free medium
and exposed to different doses of Lyosecretome over time. Untreated cells (0 Lyosecretome cell
equivalents and no FBS) at the 5 day-time point were considered control. Multifactor ANOVA (time
and concentration, mean values ± LSD, n = 3) was used. Both time and concentration were significant
(p < 0.0001 and p = 0.0004, respectively). Different letters indicate a significant difference between
the means (p < 0.05), while the same letters indicate no significant difference between the means
(p > 0.05).

MSCs are multipotent stem cells that can differentiate toward adipogenic, chondro-
genic, and osteogenic cells when cultured in the appropriate culture media [37]. Thus,
the effect of osteogenic culture medium supplemented with Lyosecretome (tested at
2 × 106 cell equivalents per well) on the osteogenic differentiation of MSCs seeded on
the cages was investigated as a function of time. Titanium cages showed a trabecular
surface with a regular three-dimensional porous structure (Figure 2). Using the electron
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backscattered diffraction mode of SEM, the deposition of organic material onto the cages
was monitored over time. After 7, 14, and 21 days, the brightest portions of scaffolds
(which correspond to high-density materials, the Ti) were progressively shaded due to the
deposition of organic material, which appears less bright (since it is less dense than Ti).
This effect was particularly detectable after the treatment with Lyosecretome, especially
after 7 days (Figure 2), and possibly masked by the fact that cells mainly grow into the
pores of the scaffold [38].
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Figure 2. SEM morphological and structural characterizations of Ti cages seeded with MSCs and cultured in osteogenic
medium with Lyosecretome or without (CTR). Images were acquired in backscattering mode to show the distribution of
various elements that constitute the sample. The brighter regions reveal high-density materials (Ti) and the shaded areas
indicate low-density materials (organic material). Magnification 100×. Scale bar: 500 µm.

24 h after seeding, the cytocompatibility of titanium cages was demonstrated. Indeed,
MSCs showed a spread morphology with the initial formation of filopodia (Figure 3). These
results are in agreement with the observation conducted by Ragni and colleagues when
MSCs were seeded on titanium cages in osteogenic media [26]. After being treated with
Lyosecretome, cells showed more frequent and complex cellular processes by forming
bridges across the porous surface of the scaffold (Figure 3d). After 7 days, MSCs thoroughly
colonized the cages, and the cellular processes became noticeable, even for samples not
treated with Lyosecretome (Figure 4). Finally, after 14 (Figure 5) and 21 days (Figure 6), an
abundant extracellular matrix was detectable, with a homogeneous and well-organized
appearance. Despite this, the porous structure of the scaffold was still distinguishable. No
visual differences were revealed after treatment with Lyosecretome; therefore, the treatment
with MSC-secretome appears to increase the cage’s colonization by cells in the short time,
and SEM detected no apparent differences after 14 or 21 days. Similarly, in previous
work, we demonstrated that the presence of Lyosecretome stimulated the colonization of
bovine-bone matrix scaffold with a more marked neo-tissue formation after 60 days [19].
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Figure 3. SEM morphological and structural characterizations of titanium cages seeded with MSCs
and cultured in osteogenic medium with Lyosecretome or without (CTR) for 24 h. Magnifications:
250× (a,e), 500× (b,f), 1000× (c,g) and 2500× (d,h). Scale bars: 200 (a,e), 100 (b,f), 50 (c,g) and
20 (d,h) µm.
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Figure 4. SEM morphological and structural characterizations of titanium cages seeded with MSCs
and cultured in osteogenic medium with Lyosecretome or without (CTR) for 7 days. Magnifications:
250× (a,e), 500× (b,f), 1000× (c,g), and 2500× (d,h). Scale bars: 200 (a,e), 100 (b,f), 50 (c,g), and
20 (d,h) µm.



Int. J. Mol. Sci. 2021, 22, 8445 7 of 18Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 5. SEM morphological and structural characterizations of titanium cages seeded with MSCs 
and cultured in osteogenic medium with Lyosecretome or without (CTR) for 14 days. Magnifica-
tions: 250× (a,e), 500× (b,f), 1000× (c,g) and 2500× (d,h). Scale bars: 200 (a,e), 100 (b,f), 50 (c,g), and 20 
(d,h) µm. 

Figure 5. SEM morphological and structural characterizations of titanium cages seeded with MSCs
and cultured in osteogenic medium with Lyosecretome or without (CTR) for 14 days. Magnifications:
250× (a,e), 500× (b,f), 1000× (c,g) and 2500× (d,h). Scale bars: 200 (a,e), 100 (b,f), 50 (c,g), and
20 (d,h) µm.
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Using EDS, a qualitative microanalysis was performed to identify the elements pre-
sent in the samples from their characteristic X-ray peaks. At 7 days, the following elements 
were revealed for both conditions (Lyosecretome or CTR): Ti, V, and Al, which are the 
components of the cage. In addition, the presence of organic material was also revealed 
by the trace detection of C and O, Ca and P (indicative of the formation of Ca3(PO4)2) on 
both Lyosecretome and CTR samples at 14 or 21 days (Figure S1). These results agree with 

Figure 6. SEM morphological and structural characterizations of titanium cages seeded with MSCs
and cultured in osteogenic medium with Lyosecretome or without (CTR) for 21 days. Magnifications:
250× (a,e), 500× (b,f), 1000× (c,g), and 2500× (d,h). Scale bars: 200 (a,e), 100 (b,f), 50 (c,g), and
20 (d,h) µm.
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Using EDS, a qualitative microanalysis was performed to identify the elements present
in the samples from their characteristic X-ray peaks. At 7 days, the following elements
were revealed for both conditions (Lyosecretome or CTR): Ti, V, and Al, which are the
components of the cage. In addition, the presence of organic material was also revealed by
the trace detection of C and O, Ca and P (indicative of the formation of Ca3(PO4)2) on both
Lyosecretome and CTR samples at 14 or 21 days (Figure S1). These results agree with the
time typically required for the bone matrix to fill with calcium phosphate nanocrystals [39].

Alizarin Red staining was performed to demonstrate calcium phosphate deposition by
MSCs upon culturing in osteogenic differentiation medium with Lyosecretome or without
(CTR) (Figure 7). In Lyosecretome-treated samples, the red color due to alizarin red staining
became darker due to increased calcium phosphate deposition, indicating differentiation
of MSCs. In detail, after 28 days, a significantly higher amount of alizarin red was detected
in the Lyosecretome-treated samples, with respect to 14 days at a time-point (p < 0.05).
Likely, after 56 days, the mineralization was more significantly increased (p < 0.05), also
compared with the CTR. The CTR samples showed no significant increase in mineralized
matrix deposition at 28 and 56 days (p > 0.05).
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Figure 7. Alizarin red staining for samples cultured in osteogenic differentiation medium with
Lyosecretome or without (CTR) for 14, 28, and 56 days. Multifactor ANOVA (time and treatment,
mean values ± LSD, n = 3) was used. Both time and treatment were significant (p < 0.0001 and
p = 0.0142, respectively). Different letters indicate a significant difference between the means
(p < 0.05), while the same letters indicate no significant difference between the means (p > 0.05).

Analyses with confocal microscopy then confirmed what was observed with SEM
and alizarin red analyses. Figure 8 reports a comparison of the samples treated or not
with Lyosecretome. After 7 days, few cells are detected in the samples, indicating par-
tial colonization of the scaffolds according to SEM images. Starting from 14 days, the
sample treated with Lyosecretome showed more marked scaffold colonization, which is
likely a consequence of the demonstrated proliferative effect of MSC-secretome. After
56 days, the morphology of cells was changed, suggesting that MSCs have completed
their differentiation towards osteoblasts (Figure 9). Moreover, the presence of mineralized
matrix was revealed by OsteoimageTM coloration after 56 days but only in the presence of
Lyosecretome (despite the same number of cells and amount of actin). This result confirms
the significant difference observed in the alizarin red assay between Lyosecretome and
CTR samples at 56 days. It is worth noting that the differentiation of MSCs in osteoblasts
induced by Lyosecretome, and the consequent Ca3(PO4)2 deposition, were detected on the
entire surface of the scaffold. Conversely, for CTR samples, the mineralized matrix was
hard to detect over the whole scaffold, as observed by the images reported in Figure 9.
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Using 3D reconstruction (Figure S2), it was noted that cells mainly colonize the pore of the
scaffolds, where the more mineralized matrix was also detected. In this regard, previous
in vivo results showed that an increase of porosity and pore size positively influenced
the osteoconductive properties of the scaffold, likely as a consequence of the increased
permeability of nutrients and differentiating factors [38].
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Figure 9. Confocal microscopy images of titanium cages seeded with MSCs and cultured in osteogenic
medium with Lyosecretome or without (CTR) for 56 days. Cell nuclei are stained in blue; actin
cytoskeleton is stained in red, and mineralized matrix is stained in green. Images are from three
different biological replicates. Scale bar: 50 µm.
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Following osteogenic differentiation, MSCs express specific bone matrix proteins
secreted by osteoblasts, such as osteocalcin (OCN), which was dosed on cell culture super-
natants (Figure 10). The production of OCN increased significantly after a culture period
of 28 days (p < 0.05) in osteogenic differentiation medium with Lyosecretome or without
(CTR). Also, at 28 days, a significantly higher amount of OCN was dosed in samples treated
with Lyosecretome (p < 0.05). The higher expression of OCN is in accordance with the
higher deposition of mineralized matrix observed by alizarin red for Lyosecretome samples
after 28 days. OCN is a bone-specific protein and regulates the mineralization of cells and
the formation of mineralized nodules [40–42]. Therefore, osteoblasts produce OCN before
the mineralized matrix is deposited. In light of this, it is not surprising that the levels of
OCN did not increase from 28 to 56 days whereas the mineralized matrix increased, as
revealed by confocal microscopy.
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Figure 10. Osteocalcin dosages for samples cultured in osteogenic differentiation medium with
Lyosecretome or without (CTR) for 14, 28, and 56 days. Multifactor ANOVA (time and treatment,
mean values ± LSD, n = 3) was used. Both time and treatment were significant (p < 0.0001 and
p = 0.0440, respectively). Different letters indicate a significant difference between the means
(p < 0.05), while the same letters indicate no significant difference between the means (p > 0.05).

These results collectively confirm the role of MSC-secretome in inducing bone regen-
eration, according to previously published research studies [43–48]. This effect mainly
depends on the osteogenic factors revealed in Lyosecretome by proteomic characteriza-
tion [21], such as fibronectin [49], alpha-2-macroglobulin [50], apolipoprotein A [51], and
TGF-β [52]. Of note, the MSC-secretome employed in this work was formulated as a
ready-to-use, freeze-dried pharmaceutical dosage form, which can be easily adapted by
the clinical community. However, despite the solid proof of concept demonstrated in vitro,
further studies are required to investigate the bone fracture healing of titanium cages
associated with Lyosecretome in vivo.

3. Materials and Methods
3.1. Materials

Antibiotics, fetal bovine serum (FBS), and culture media were purchased from Eu-
roclone in Milan, Italy. Additional purchases included 3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT), β-glycerophosphate, alizarin red, ascorbic acid,
bovine serum albumin (BSA), cetylpyridinium chloride, dexamethasone, ethanol, glu-
taraldehyde, Hoechst 33258, mannitol, Nile Red, phosphatidylcholine (PC), TRITC-phalloidin,
and Triton X-100 from Sigma–Aldrich in Milan, Italy. The OsteoimageTM mineralization
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assay was purchased from Lonza in Milan, Italy. Unless otherwise specified, all the reagents
were of analytical grade. An ELISA kit for the dosage of OCN was bought from RayBiotech
Life, Inc. in Peachtree Corners, GA, USA.

3.2. Isolation and Expansion of Human AD-MSCs

Adipose tissue was harvested from healthy donors undergoing abdominoplasty after
informed consent (ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy, Ref. 12
November 2009) and processed as previously reported [53,54] to collect adipose-derived
MSCs (AD-MSCs). MSCs were then seeded into flasks (10,000 cells/cm2) at 37 ◦C and 5%
CO2 and cultured in complete culture medium (DMEM/F12 minimal medium plus 10%
v/v FBS, plus 1% v/v penicillin/streptomycin and 1% v/v amphotericin B) until passage
three. All the MSCs used fulfilled the requirements for clinical use in terms of identity
(according to the International Society for Cellular Therapy [55]) and sterility (according to
Eu. Ph. 9.0, 2.6.27).

3.3. Lyosecretome Preparation and Characterization

Lyosecretome was prepared according to previously reported procedures [21,22] in
GMP-compliant conditions. Briefly, secretome release was induced by culturing MSCs
in DMEM/F12 without FBS for 48 h. Conditioned media were collected, centrifuged at
3500× g for 10 min, and then concentrated and purified (diafiltered) by tangential flow
filtration (KrosFlo® Research 2i system, Spectrum Laboratories, Milan, Italy). The shear rate
of the feed stream was maintained between 2000 s−1 and 6000 s−1, and trans-membrane
pressure did not exceed 10 psi. Both soluble proteins and EVs of MSC-secretome were
retained as a 5 kDa Molecular Weight Cut Off (MWCO) filtration module (Spectrum
Laboratories, Milan, Italy), with a superficial area of 0.235 cm2. Mannitol was dissolved as
a cryoprotectant (0.5% w/v); the resulting solution was frozen at −80 ◦C and freeze-dried
(Christ Epsilon 2-16D LSCplus) at 8 × 10−1 mbar and −50 ◦C for 72 h. Each milligram of
the freeze-dried product contained 1 × 106 cell equivalents. Lyosecretome was stored at
−20 ◦C for 5 months until use. Lyosecretome was characterized as follows.

3.3.1. Total Protein and Lipid Content

Total proteins and lipids were quantified by the BCA Protein Assay Kit (Thermo Fisher
Scientific, Milan, Italy) and the Nile Red method, respectively, as previously reported and
validated [21]. The protein (or lipid) concentration was extrapolated from a concentration
vs. absorbance plot obtained from standard BSA (or PC) solutions, using a third-degree
polynomial equation, where R2 = 0.99.

3.3.2. EV Particle Size and Concentration

The particle size and concentration of EVs were determined by Nanoparticle Tracking
Analysis (NTA, NanoSight NS 300 equipment, Malvern Panalytical Ltd., Malvern, UK).
Lyosecretome was dispersed in water at 1 mg/mL and analyzed at room temperature with
a detection angle of 90◦. Measurements were conducted in triplicate, and the software NTA
elaborated on the data.

3.3.3. Microbiological Controls

Lyosecretome was tested for sterility, endotoxins, mycoplasma, and microbiological
contaminations, as described in the current version of European Pharmacopoeia. In detail,
sterility and microbiological tests were performed as indicated in the EuPh 2.6.27 and
2.6.1 chapters, respectively. Bacterial endotoxins evaluation was instead conducted by
the Limulus amebocyte lysate test (EuPh 2.6.14) and measured by endotoxin unit (EU).
Mycoplasma contamination was investigated by performing the NAT test (EuPh 2.6.7).
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3.4. Titanium Cages

Titanium cages were kindly provided by the company MT Ortho (MT Ortho s.r.l., Aci
Sant’Antonio, Catania, Italy). Cages were manufactured by an additive manufacturing
technology called electron beam melting, where an electron beam is used to melt tita-
nium powder that is then deposited layer-by-layer onto the base plate. Scaffolds were
1 × 1 × 0.3 cm in size. Each cage was sterilized by autoclaving (Systec V-65, Wittenberg,
Germany) at 121 ◦C and 2 atm for 20 min.

3.5. Seeding of AD-MSCs

90,000 MSCs were seeded onto the upper surface of each cage placed inside a 24 well-
plate. The porous substrates absorbed the cellular suspension in a humidified atmosphere
of 95% air with 5% CO2 at 37 ◦C for 2 h. Afterward, complete culture media was added to
each well. 24 h after seeding, scaffolds were moved from the original wells to new wells to
avoid residual cells on the plastic surface below. During all the experiments, the cell/cage
constructs were incubated in a humidified atmosphere of 95% air with 5% CO2 at 37 ◦C.

3.6. Evaluation of Cell Proliferation

Lyosecretome was previously solubilized in culture media without FBS and then
added to each well’s cell/cage constructs. The following concentrations were considered:
0, 200,000 and 400,000 cell equivalents per well. Each condition was tested in triplicate. In
order to evaluate the mitochondrial activity during the culture period, a test with MTT was
performed on days 5, 9, and 14, as previously reported [56]. The cell metabolic activity was
calculated according to the following equation:

Metabolic activity % = 100 × (Abssample/Abscontrol) (1)

where Abssample is the mean value of the measured absorbance of the tested samples,
and Abscontrol is the mean value of the measured absorbance of cells not incubated
with Lyosecretome.

3.7. MSCs Culture and Osteogenic Differentiation

In order to induce osteogenic differentiation, the cell/cage constructs were moved
into osteogenic medium, prepared with 2% v/v FBS, dexamethasone (5 nM), ascorbic acid
(2.5 µg/mL), and β-glycerophosphate (0.5 mM). Lyosecretome was added to half of the
samples at the final concentration of 2 × 106 cell equivalents per well. The other samples
were cultured with the only osteogenic medium (CTR).

3.8. Scanning Electron Microscopy (SEM)

After 24 h and 7, 14, and 21 days of osteogenic differentiation, with or without
Lyosecretome, the cell/cage constructs were washed with PBS and fixed for 3 h with 3%
v/v glutaraldehyde at 4 ◦C. Afterward, the scaffolds were dehydrated with graded ethanol
series, starting with 50, 70, 90, and 100% v/v. The samples were then attached to stubs
by a conductive adhesive carbon tape and metal-coated with 10 nm chromium using a
high-vacuum Quorum Q150T ES Plus sputtering system. SEM imaging was performed
with SEM MIRA3 (Tescan, Brno, Czech Republic) operating with an acceleration voltage
of 5 kV and an EDS detector (X-max 50 mm2, Oxford Instruments, Oxford, UK). Each
condition was tested in three independent experiments.

3.9. Alizarin Red Assay

After 14, 28, and 56 days of osteogenic differentiation, with or without Lyosecretome,
the cell/cage constructs were stained with alizarin red to reveal the deposition of calcium-
rich mineralized matrix. Briefly, each sample was washed with PBS, fixed with 70% v/v
ethanol for 60 min at room temperature, and stained for 10 min with alizarin red 40 mM
at pH 4–4.2. Samples were then rinsed with distilled water five times and once with
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PBS for 10 min. Finally, samples were treated with 10% w/v cetylpyridinium chloride
for 15 min at room temperature; the alizarin red concentration was extrapolated from a
concentration vs. absorbance plot obtained from standard alizarin red solutions, using a
third-degree polynomial equation, where R2 = 0.99. Each condition was tested in three
independent experiments.

3.10. Confocal Microscopy

After 7, 14, 28, and 56 days of osteogenic differentiation, with or without Lyosecretome,
the cell/cage constructs were washed with PBS and fixed for 3 h with 3% v/v glutaralde-
hyde at 4 ◦C. Actin cytoskeleton was stained with TRITC-phalloidin diluted 1:7000 in PBS
containing 0.1% v/v Triton X-100, 0.1% w/v BSA and 10% v/v FBS. Cell nuclei were stained
with 100 µL of Hoechst 33258, diluted 1:10,000 in PBS. Hydroxyapatite was stained with
OsteoimageTM mineralization assay according to the manufacturer’s instruction. Scaffolds
were placed on a microscope slide and imaged using a Confocal Laser Scanning Microscope
(CLSM) (Leica TCS SP2, Leica Microsystems, Wetzlar, Germany) with λex = 540/5 nm and
λem = 570/3 nm for TRITC-phalloidin, λex = 346 nm and λem = 460 nm for Hoechst 33258
and λex = 492 nm and λem = 520 nm for OsteoimageTM. The acquired images were pro-
cessed using the software associated with the microscope (Leica Microsystem, Wetzlar,
Germany). Each condition was tested in three independent experiments.

3.11. Dosage of Osteocalcin (OCN) by ELISA

At 14, 28, and 56 days, OCN was dosed in cell supernatants by an ELISA kit according
to the manufacturer instructions. A calibration curve was built using OCN standards in
the range of 0–100 ng/mL. Each condition was tested in three independent experiments.

3.12. Statistical Analysis

Raw data were processed through STATGRAPHICS XVII (Statpoint Techonologies,
Inc., Warrenton, VA, USA). A general linear analysis of variance model (ANOVA) was
coupled with an LSD (Least Significant Difference) test to estimate the differences between
means. Proliferation data were elaborated in detail, considering the Lyosecretome concen-
tration and time as fixed factors with cell metabolic activity (%) as the response variable. In
addition, data regarding the alizarin red assay were elaborated considering the time and
Lyosecretome treatment as fixed factors with the alizarin red concentration as the response
variable. Finally, the OCN data were elaborated considering the time and Lyosecretome
treatment as fixed factors with the ng of OCN as the response variable. Statistical signifi-
cance was determined at p < 0.05. Unless otherwise specified, data are reported as mean
values ± standard deviation (from at least 3 independent experiments).
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