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Abstract
Motivation: The prediction of reliable Drug–Target Interactions (DTIs) is a key task in computer-aided drug design and repurposing. Here, we
present a new approach based on data fusion for DTI prediction built on top of the NXTfusion library, which generalizes the Matrix Factorization
paradigm by extending it to the nonlinear inference over Entity–Relation graphs.

Results: We benchmarked our approach on five datasets and we compared our models against state-of-the-art methods. Our models outper-
form most of the existing methods and, simultaneously, retain the flexibility to predict both DTIs as binary classification and regression of the
real-valued drug–target affinity, competing with models built explicitly for each task. Moreover, our findings suggest that the validation of DTI
methods should be stricter than what has been proposed in some previous studies, focusing more on mimicking real-life DTI settings where pre-
dictions for previously unseen drugs, proteins, and drug–protein pairs are needed. These settings are exactly the context in which the benefit of
integrating heterogeneous information with our Entity–Relation data fusion approach is the most evident.

Availability and implementation: All software and data are available at https://github.com/eugeniomazzone/CPI-NXTFusion and https://pypi.
org/project/NXTfusion/.

1 Introduction

In silico methods for the discovery of Drug–Target
Interactions (DTIs) are important to speed up drug discovery
and drug repurposing (Öztürk et al. 2018), which are expen-
sive and time-consuming experimental endeavors because of
the immensity of the space of possible compounds
(Whitebread et al. 2005, Huang et al. 2021).

Several DTI prediction methods have been developed so far,
based on strategies, such as docking (Morris et al. 2009), classi-
cal Machine Learning (ML) (Pahikkala et al. 2015, He et al.
2017), or deep learning (Wen et al. 2017, Öztürk et al. 2018,
Tsubaki et al. 2019). Another family of approaches relies on
the “guilt by association” principle (Luo et al. 2017), which is
based on the observation that similar chemical compounds
tend to bind to similar proteins (targets), and vice-versa.
Recommender-like systems based on matrix factorization (MF)
have been developed for DTI prediction (Zheng et al. 2013,
Arany et al. 2015) following this principle.

DTIs databases, such as DrugBank (Law et al. 2014) and
ChEMBL (Bento et al. 2014), contain from thousands to mil-
lions of DTIs. Still, the DTI space is so vast that frequently
only a limited number of interactions are known for each pro-
tein, thus impairing generalization in classical ML methods.
For this reason, it has become important for DTI predictors to
incorporate heterogeneous sources of information to contex-
tualize different molecular, genomics, medical, and chemical

aspects of both drugs and proteins, improving their generali-
zation potential (Luo et al. 2017). For example, methods inte-
grating the side effects of drugs (Campillos et al. 2008), drug–
disease associations (Wang et al. 2014, Luo et al. 2017), and
gene expression (Sirota et al. 2011) have been developed.

Data fusion methods allow the integration of heteroge-
neous sources of information, thereby providing bioinformat-
ics models with a sufficiently multi-faceted knowledge to
increase their generalization ability. They have already dem-
onstrated their usefulness in tackling relevant bioinformatics
problems (Aerts et al. 2006, Sifrim et al. 2013, Raimondi
et al. 2021). Recently, we developed a Neural Network-based
scalable data fusion library, called NXTfusion (Raimondi
et al. 2021), which generalizes the MF-based data fusion
paradigm by extending it to the nonlinear inference over
Entity–Relation (ER) graphs. NXTfusion represents arbi-
trarily connected heterogeneous data as Relations (e.g.
sparsely observed matrices) connecting classes of objects
(Entities). The resulting ER graphs are conceptually similar to
a relational database on which inference can be globally per-
formed through multi-task learning. To do so, NXTfusion in-
ternally transforms the inference over abstract ER graphs into
the concurrent (multitask) nonlinear factorization of the ob-
served data matrices (relations).

In this article, we leverage our NXTfusion library to build
several dataset-specific DTI predictors and benchmark them
against state-of-the-art methods. We exploit the flexibility of
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our ER graph formalism to show the benefits of the integra-
tion of medical, biological, and chemical heterogeneous sour-
ces of information through nonlinear data fusion in terms of
generalization ability. We trained and tested our model on
five publicly available datasets, showing that our models (i)
outperform the state-of-the-art on several of them and (ii) are
flexible enough to predict both DTIs as binary classification
and regression of the real-valued drug–target affinity, compet-
ing with models specifically built for this task.

Moreover, we show that the validation performed by some
state-of-the-art approaches could be made stricter and thus
more realistic, in line with the previous findings from
Pahikkala et al. (2015). In real-life settings, DTI predictions
could be needed for drugs or proteins for which no already
known DTIs are available. These stricter settings are exactly
the context in which the benefit from the integration of het-
erogeneous information with our ER data fusion approach is
most visible.

2 Materials and methods
2.1 Dataset

We used five datasets from literature to train, test, and vali-
date our model, comparing it with state-of-the-art
approaches.

LHU and LCE datasets: We retrieved two datasets from
Tsubaki et al. (2019). They were originally proposed by Liu
et al. (2015) and they respectively contain DTIs from
Caenorhabditis elegans and human. We refer to these datasets
as LHU (Liu HUman) and LCE (Liu C.elegans) from now on.
As described in Liu et al. (2015), the peculiarity of these data-
sets is that the noninteracting drug–protein pairs are obtained
by creating highly credible negative samples, based on the as-
sumption that proteins that are dissimilar to any known tar-
get of a given compound C are not likely to be targeted by C
and vice-versa (Liu et al. 2015). Positive samples were re-
trieved from DrugBank 4.1 (Wishart et al. 2008) and
Matador (Günther et al. 2007). The human dataset (LHU)
contains 3364 positive DTIs between 1179 unique com-
pounds and 834 unique proteins; the C.Elegans dataset (LCE)
contains 3893 positive interactions between 968 unique com-
pounds and 814 unique proteins.

YUNAN dataset: We also retrieved the dataset used in Luo
et al. (2017) and refer to it as YUNAN in the rest of the arti-
cle. YUNAN contains a total of 1493 proteins and 708 differ-
ent drugs. The known DTIs were extracted from DrugBank
3.0 (Knox et al. 2011). The authors also provide additional
information related to the self-interaction of both proteins
and drugs, and we retrieved them as well. Protein–Protein
Interactions (PPI) came from HPRD 9.0 (Keshava Prasad
et al. 2009) and Drug–Drug Interactions (DDI) from
DrugBank 3.0. We also retrieved data on protein–protein sim-
ilarity, drug–drug similarity, protein–disease, and drug–dis-
ease associations from the Comparative Toxicogenomics
Database (Davis et al. 2013) and drug–side effect data from
SIDER database 2.0 (Kuhn et al. 2010).

Kinase datasets: We also benchmarked our work on two
different kinase datasets, Davis (Davis et al. 2011) and KiBA
(Tang et al. 2014), which were previously used as benchmark
datasets for binding affinity prediction evaluation (Pahikkala
et al. 2015, He et al. 2017). The Davis dataset contains selec-
tivity assays of the kinase protein family and the relevant
inhibitors with their respective dissociation constant (Kd)

values. It comprises interactions of 442 proteins and 68
ligands. The KiBA dataset, by contrast, originated from an
approach called KiBA (Tang et al. 2014), in which kinase in-
hibitor bioactivities from different sources, such as Ki, Kd,
and IC50, were combined. The KiBA dataset originally com-
prised 467 targets and 52 498 drugs. In order to ensure repro-
ducibility and fair comparison with recent methods
benchmarked on KiBA, we used dataset version proposed in
He et al. (2017), where the authors filtered it to contain only
drugs and targets with at least 10 interactions yielding a total
of 229 unique proteins and 2111 unique drugs. Similarly to
He et al. (2017) and Öztürk et al. (2018), we transformed the
Kd values into log spaceto obtain the final regression labels.

2.2 The NXTfusion framework for nonlinear ER data

fusion

To construct our DTI prediction models, we used NXTfusion,
a PyTorch (Paszke et al. 2017) framework for ER data fusion.
We briefly recapitulate its principles here, referring the reader
to Raimondi et al. (2021) for more details.

In the classical MF data fusion paradigm (Mnih and
Salakhutdinov 2008, Arany et al. 2015, Simm et al. 2015,
�Zitnik and Zupan 2015), a target matrix (relation) Y ¼ UV is
reconstructed by the product of two rectangular matrices U,
V, such that

argmin
U;V

jjY �UVjjF þ kðjjUjjF þ jjVjjFÞ;

where jj � jjF is the Frobenius norm and k the regularization
weight. In this way, U and V are optimized to respectively
containing a latent representations of the objects (entities)
listed in the rows (U) and columns (V) of Y. Each matrix Y
thus represents a “relation” between the “entities” listed as
elements in the rows and columns. NXTfusion extends this
classical MF paradigm, in which a single matrix is factorized,
allowing (i) a nonlinear relationship between U and V and (ii)
the concurrent factorization of an arbitrary number of matri-
ces (now called Relations) between an arbitrary number of
pairs Entities (the row and columns of each matrix)
(Raimondi et al. 2021).

As shown in Fig. 1A, NXTfusion detaches the abstract data
fusion problem from the low-level details of the MF by repre-
senting arbitrarily complex and heterogeneous data collec-
tions as abstract ER graphs, where circles represent Entities
and edges represent Relations (data matrices) connecting
them, allowing high-level reasoning on the data and their
interactions. The low-level “dual” representation of the ER
graph, used to perform inference, is a problem-specific Neural
Network (NN) architecture (see lower half of Fig. 1A), whose
details are automatically managed by the NXTfusion library,
allowing the user to reason in terms of abstract ER graphs
(upper half of Fig. 1A).

The library represents each Entity Ei (Fig. 1A) with embed-
dings ei (i.e. trainable parameters). These ei are then trans-
formed by an entity-specific module (i.e. some NN layers)
fiðeiÞ. Two entities Ei;Ej participating in a relation Rij are
thus the input of the relation-specific module Mij, which con-
sists of a bilinear layer followed by a feed-forward (FF) layer.
As shown in Fig. 1A, for each Rij, the corresponding mixing
function Mij produces the predicted outputs.

The ER model is thus globally optimized to minimize, for
each Rij, a relation-specific loss
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Lij ¼ LijðRij;MijðfiðeiÞ; fjðejÞÞÞ:

The final objective function to minimize with respect to the
NN parameters for a given ER graph G is thus

X

8Rij2G
xijLij;

which allows for all the relations (matrices) to be learned con-
currently, weighted by the task-specific scale factor xij. The
NN architecture underlying the ER data fusion problem is
implemented in PyTorch, and the inference is thus equivalent
to training a FF multitask NN. This dualism is illustrated in
Fig. 1A. The fact that each relation Rij has a specific loss Lij

allows the NXTfusion data fusion framework to be flexible in
incorporating any kind of relation, independently from the
type of prediction problem it presents (e.g. binary classifica-
tion, regression, or multiclass prediction). The scale factor xij

is needed to balance the absolute values of the losses, which
can differ significantly between tasks, depending on the size
of the matrices, the magnitude of their values, their sparsity,
and the chosen loss functions (Raimondi et al. 2021). In this
study, we assigned a uniform relevance xij to all the relations.

The key intuition behind data fusion through multitask pre-
diction (factorization) of tasks (relations) organized as ER
graphs is that adding “auxiliary” tasks (relations) to be
learned alongside the main task (DTI prediction in this case)
could introduce additional information in the inference pro-
cess if these auxiliary tasks are carefully chosen (Raimondi
et al. 2021). Forcing the model to learn additional aspects in-
volving the entities of the ER graph could indeed push the
model toward learning a richer latent embedding representa-
tion compared to learning only to reconstruct the main
relation.

The NXTfusion library is available as a Python package at
https://pypi.org/project/NXTfusion/.

2.3 ER data fusion models for DTI prediction

In this article, we use five datasets to train and test our ER
data fusion models. Each dataset presents an instance of the
DTI prediction problem, but they all have certain differences

in terms of the types of “contextual” data available. In
Fig. 1B–E, we showcase the variety of dataset-specific models
that can be built with the NXTfusion framework by devising
a specific ER graph for each dataset, including all the contex-
tual information available in each case.

For each dataset, we used as a “baseline” the model repre-
senting the simplest ER graph possible, in which only the
main task (the DTI relation between drug and target proteins)
is considered (see Fig. 1B). This is analogous to the classical
Y ¼ UV setting in MF, except that the fi and the Mij are non-
linear functions. We refer to this simple ER graph as G1 (see
Fig. 1B). For each dataset, we then compare G1 to more ex-
tensive data fusion models over arbitrary ER graphs (called
G*), where multiple relations between multiple entities are
modeled (i.e. protein–Pfam domains, drug–disease), encom-
passing all the dataset-specific contextual data available (see
Fig. 1B–E). Here, we summarize the additional relations used
to build the G* models for each dataset:

LHU and LEC datasets: As shown in Fig. 1C, the ER graph
for the LHU and LEC datasets contains several additional
relations compared to the simple G1 model (Fig. 1B). We
added a self-relation on the protein entity representing the
protein similarity computed with BLAST (Altschul et al.
1990). We represented the protein–protein similarity as a ma-
trix containing the bit score outputted by BLAST normalized
by row. We also added a drug–drug self-relation representing
the similarity between drugs, computed with RDkit (Landrum
2013) from Morgan fingerprints (radius¼2, nBits¼ 1028).
This is a dense matrix where every drug pair is associated
with a continuous value between 0 and 1. We considered
both of these auxiliary tasks as regressions, using a mean
squared error (MSE) loss function. We also used PfamScan
(Mistry et al. 2007) to retrieve all the Pfam (Finn et al. 2014)
domains for the target proteins. For each protein, we thus
built a binary matrix listing the Pfam domains. We tried it
both as additional protein–domain relation and as side infor-
mation (i.e. classical ML features). In the latter case, we mixed
these features with the protein embedding via a bilinear layer.

YUNAN dataset: Besides the main DTI task, four addi-
tional matrices were provided by the authors of Luo et al.
(2017). We added them as auxiliary Relations in our G* ER

Figure 1. Overview figure. Panel A shows the dualism between the ER graph describing the conceptual organization of the data (top) and the NN architecture

used to perform inference on the ER graph (bottom). Panel B shows the baseline G1 model, in which only the DTI relation between the drug and protein entity

modeled. Panels C, D, and E show the dataset-specific instances of ER graphs, we used to build the G* models in each of the five benchmark datasets.
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models (see Fig. 1D). Two of them are self-relations represent-
ing respectively the similarity between proteins and between
drugs. The other two relations represent PPI and DDI net-
works. We integrated these four auxiliary relations in our G*
ER model as regression problems. Last, we added the Pfam-
domain annotations retrieved with PfamScan (Mistry et al.
2007). As described previously, we tried it both as side infor-
mation or additional task (see Section 3).

KiBA and Davis datasets: We added the same relations de-
scribed for LHU and LEC datasets, namely the self-relations
describing the protein–protein and the drug–drug similarity
(computed respectively with BLAST and RDKit) and the pro-
tein–domain relation using PfamScan annotations as both
side information and additional task.

Moreover, we computed Morgan fingerprints with 30 000
dimensions (Morgan 1965) for each drugs in KiBA and
DAVIS using the RDkit (https://www.rdkit.org/) library.
These fingerprints are highly sparse binary representation of
drugs (only 0.1%–0.2% of 1 s), and we added them as sparse
side information, to minimize the computational overhead.
The G* ER graph, we used on KiBA and Davis is shown in
Fig. 1E.

2.4 Implementation

We used the Binary Cross Entropy loss function on the LHU,
LCE, and YUNAN datasets, with class balance parameter
equal to the positive to negative label ratio. On KiBA and
DAVIS datasets, we used the MSE loss.

To train the models, we used the Adam optimizer, with
learning rate 0.001 and weight decay 0.001. In the fi and Mij

modules, we used Tanh activations, preceded by layer nor-
malization (Ba et al. 2016). The fi is a FF NN with 3 layers
and 10 neurons for the drug latent representation and 20 neu-
rons for the protein latent representation. The Mij module is
an FF NN with 2 layers and 10 neurons. The protein, drug,
and Pfam-domain embeddings have respectively 30, 20, and
10 dimensions. We did not perform hyper-parameter optimi-
zation, using the default parameters provided by the
NXTfusion library.

The code to reproduce the experiments shown here is avail-
able at https://github.com/eugeniomazzone/CPI-NXTFusion.

3 Results
3.1 Nonlinear data fusion improves over the state-

of-the-art on the LCE and LHU datasets

We first benchmarked our G1 data fusion model, namely the
nonlinear factorization of a single relation between the pro-
tein and drug entities (see Section 2 and Fig. 1B), on the
C.elegans (LCE) and Human (LHU) datasets from Liu et al.
(2015). LCE and LHU are balanced datasets with a ratio be-
tween positive samples (interacting protein–drug pairs) and
negative samples (not-interacting pairs) of 1:1. To ensure a
fair comparison with the other methods benchmarked on
LCE and LHU, such as the Graph Convolutional NN
(GCNN) proposed in Tsubaki et al. (2019), we reproduced
the same 5-fold cross-validation (CV), where the pairs in each
fold were randomly selected.

Tables 1 and 2 show the benchmark on the LEC and LHU
datasets. We report the performance of the k-Nearest
Neighbors (k-NN), Random Forest (RF), Logistic Regression
(LR), Support Vector Machine (SVM), and the GCNN as pre-
sented in Tsubaki et al. (2019). We evaluated the prediction

performance with the Area Under the ROC Curve (AUC),
Area Under the Precision–Recall Curve (AUPRC), and the
precision and recall measures.

Our G1 model performs 2%–3% higher than the GCNN
from Tsubaki et al. (2019) on LCE and 2% higher on LHU.
However, on these datasets, AUCs are generally high for most
methods, including conventional ML methods, such as SVMs.

3.2 The stratification of the CV folds drastically

influences the prediction performance on the LCE

and LHU datasets

The DTI prediction problem is complex, and to be definitively
solved, it requires to model nontrivial molecular aspects, such
as the chemical and structural determinants of protein–drug
binding affinity. An extensive study on the factors that can
lead to over-optimistic DTI prediction results has been previ-
ously published in Pahikkala et al. (2015), and indeed also the
high prediction performances shown in Tables 1 and 2 are
likely to be caused by spurious effects, such as limits of the
validation procedure used. We thus investigate these results
by devising a more stringent CV mimicking the realistic sce-
nario in which the model is required to predict drug or protein
entities for which no information is available in the training
set, in line with the recommendations for more stringent CV
settings proposed in Pahikkala et al. (2015). In Table 3, we
thus benchmarked our G1 approach in the following increas-
ingly challenging scenarios on the LHU dataset:

1) Random folds: CV folds are randomly selected, as done
in Tsubaki et al. (2019) and Liu et al. (2015). For further
details, see Supplementary Tables S1 and S2.

2) No stratification: Each protein and drug in the test set
appears at least once in the training set.

3) Protein stratification: The proteins that occur in the
training sets are not present in the test set. For nonfur-
ther details, see Supplementary Tables S3 and S4.

Table 1. Benchmark of predictors on the LHU dataset.a

Model AUC AUPR Precision Recall

k-NN 0.860 0.798 0.927
RF 0.940 0.861 0.897
LR 0.911 0.891 0.913
SVM 0.910 0.966 0.950
GCNN 0.970 0.923 0.918

G1 0.992 0.988 0.975 0.970

a Scores are reported from Tsubaki et al. (2019), except for our G1 data
fusion model.

Table 2. Benchmark of predictors on the LCE dataseta.

Model AUC AUPR Precision Recall

k-NN 0.858 0.801 0.827
RF 0.902 0.821 0.844
LR 0.892 0.890 0.877
SVM 0.894 0.785 0.818
GCNN 0.978 0.938 0.929

G1 0.990 0.992 0.911 0.989

a Scores are reported from Tsubaki et al. (2019), except for our G1 data
fusion model.
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4) Drug stratification: The drugs that appear in the training
folds do not appear in the test sets. For further details,
see Supplementary Tables S5 and S6.

5) Pair stratification: We stratified the CV folds ensuring
that “both” proteins and drugs that appear in the test set
were not present in the training folds. This is the most
stringent setting.

Table 3 shows that the best performance is obtained in the
no-stratification setting, because the model observes at least
one data point for each protein and drug during training. The
random-fold performance is similar but slightly lower, since
there is no guarantee that each protein or drug in the test has
been already observed during training. Surprisingly, the per-
formance of both protein and drug stratification is still quite
high, even if our G1 model (see Fig. 1B) is just a nonlinear fac-
torization of the protein–drug relation, and thus it has no way
of modeling completely unseen instances of the protein or
drug entities.

We thus investigate this behavior further and we found that
it might be explained by the fact that in the LHU dataset, only
a fraction (6%) of the protein and drug instances are involved
in both positive and negative interactions, while the majority
of them (94%) has only positive or negative interactions (see
Supplementary Table S7). The surprisingly high performance
of G1 on the protein and drug stratifications can thus be
explained by the fact that the model uses the nonstratified en-
tity to learn whether a certain drug or protein is “generally
active” or “inactive” in the LHU dataset, independently of
the other protein or drug partner in the interaction. This be-
havior allows the model to “bypass” the actual DTI task by
making the prediction trivial.

The pair-stratification setting, in which our G1 model is re-
quired to predict never-seen-before (protein and drug) pairs,
is the most stringent CV setting, and indeed the single-relation
G1 model cannot perform better than random, since it has no
way to model the latent representations of unseen entities
instances.

3.3 Extending the G1 model with auxiliary relations

provides additional information

Because of the peculiar distribution of the positives and nega-
tive cases in the LHU dataset shown in the previous section,
we consider the pair-stratification setting the most meaningful
performance evaluation strategy on this data, and we use this
setting henceforth.

In this stratification setting, the G1 model cannot meaning-
fully predict the DTIs in the test set, since no information is
available for prediction. In Table 4, we thus extended the G1
model by adding “auxiliary relations” to provide alternative
sources of information from which the model can infer latent
representations of protein–drug pairs that are not present in

the training set DTI prediction task. We refer to these models
as G* (see Section 2 and Fig. 1C).

Table 4 shows that adding the drug–drug similarity
computed with RDkit as self-relation (second row of Table 4)
already improves all the evaluation metrics, since our two-
relation model can now learn useful similarities between
drugs instances even without observing them involved in
drug–protein positive or negative pairs in the training data for
the DTI prediction task. Subsequently adding the protein sim-
ilarity as self-relation of the protein entity slightly decreases
the AUC, but increases slightly the AUPRC and the recall.

When building data fusion models on ER graphs with
NXTfusion, each additional source of information can be
added as relation between entities or as “side information,”
namely as conventional ML features. Depending on the type,
the sparsity of the data, and the kind of information that we
want to add, one of the two options might be optimal in each
case. The last two rows of Table 4 show the difference in per-
formance when the Pfam-domain information is added as ad-
ditional protein–domain relation (see Fig. 1C), or as side
information (mixed to the protein embeddings with a bilinear
layer). In the first case, the new relation increases the perfor-
mance by 4% respect to the G* without protein similarity
and by 12% respect to the previous row. In the second case,
the side information gives an additional 2% increase in AUC
and an increase of 33% in Recall.

Table 4 shows that adding auxiliary relations to the ER
graph factorized by NXTfusion indeed provides information
that could be orthogonal to the one contained in the main re-
lation. The final G* model has indeed an AUC 52% higher
than the random result obtained by G1. Removing from the
final G* graph the protein similarity (second row in Table 4),
which locally lowers the AUC, produces a final AUC and
AUPRC scores of 0.74 and 0.71, which are lower than the fi-
nal G* model including it (last two rows).

3.4 CV stratification is key to avoid overestimated

performance also on the YUNAN dataset

To extend the validation of our ER data fusion approach for
DTI prediction beyond the LHU and LCE datasets, we re-
trieved the dataset used to validate the DTINet predictor (Luo
et al. 2017). We reproduced the validation described by the
authors, which is a randomized 10-fold CV. We refer to this
dataset as YUNAN. It contains 1923 known DTIs (positive
interactions), and we sampled 1923 putative negative interac-
tions by randomly pairing proteins and drugs (see Section 2
for more details).

In the first rows of Table 5, we show the AUC and AUPRC
scores of the DTInet method, presented in Luo et al. (2017),
and other state-of-the-art approaches, such as BLMNII (Mei
et al. 2013), NetLapRLS (Xia et al. 2010), HNM (Wang et al.
2014), and CMF (Zheng et al. 2013). The lower part of the

Table 4. Performance obtained by incrementally extending the G1 model

with one additional relation (task) at a time (G* model), with the stringent

pair-stratification 5-fold CV on the LHU dataset.

Model AUC AUPR Precision Recall # Relations

G1 0.501 0.538 0.100 0.222 1
G1þDrug sim (G*) 0.723 0.639 0.748 0.172 2
G* þ Prot sim 0.656 0.693 0.752 0.303 3
G* þ Pfam (as relation) 0.751 0.701 0.758 0.504 4
G* þ Pfam (as side) 0.763 0.743 0.786 0.764 3 (þ1 side)

Table 3. Comparison of the performance obtained by the G1 model with

increasingly stringent CV stratification settings on the LHU dataset.

CV type AUC AUPR Precision Recall

Random folds 0.992 0.991 0.975 0.970
No stratification 0.999 0.995 0.994 0.993
Protein stratification 0.995 0.897 0.993 0.978
Drug stratification 0.915 0.879 0.821 0.736
Pair stratification 0.501 0.538 0.100 0.222
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table show the effect of incrementally adding relations to our
initial G1 baseline ER graph (see Fig. 1D).

In this dataset, adding a protein–protein self-relation de-
scribing protein similarities improves both AUC and AUPRC
(respectively þ6% and þ7%), but the further addition of
other entities does not increase the scores further. Due to the
large size of the drug–disease and protein–disease relations,
and their limited contribution to the prediction, we tested
them one at a time and not together, as indicated by the num-
ber of relations in the last two rows of Table 5.

As observed also in Luo et al. (2017), the apparent early
saturation of the performance shown in Table 5 might be
caused by the fact that the information brought by the auxil-
iary relations are already “leaking” to the model because of
the presence of similar drugs and proteins in the training and
test sets during CV, resulting in a overestimation of the per-
formance, similarly to what we observed in the Liu et al.
(2015) dataset.

We thus followed the lead of DTINet authors and we
benchmarked our approach on several variants of the
YUNAN dataset (Luo et al. 2017). In each of them, we con-
trolled some aspects that could lead to information leakage
between training and testing folds, including

1) Limiting the Sequence Identity among proteins to 40%.
2) Removing drugs with Tanimoto similarity >60%.
3) Removing drugs with similar side effects (Jaccard score

over 60%).
4) Removing drug pairs associated to similar diseases

(Jaccard score over 60%).
5) Reducing both the similarity among proteins and drugs

(combining the first two items).

These ablations on the initial YUNAN dataset, containing
1923 positive samples, reduce the number of positive DTIs re-
spectively to 1332, 1268, 1265, 1077, and 900 cases.
Negative DTIs were sampled in each case to have a 1:1 pro-
portion between positive and negative labels.

Table 6 shows the results obtained in the most stringent set-
tings, where the similarity of both drugs and proteins is re-
duced (Item 5 in the previous list). The performance obtained
on the other dataset ablation experiments on YUNAN is
shown in Supplementary Tables S13–S16. A summary of the
comparison is shown in Supplementary Figs S1 and S2.

Additional stratifications are shown in Supplementary Tables
S9–S12.

By comparing the results before (Table 5) and after
(Table 6) the stratification, we can see that all the models in
the upper part of the table experience a significant decrease of
their performance (�10% in AUC for DTInet). By contrast,
our model performance on this more difficult dataset is quite
robust. Adding the auxiliary relations contextualizing the sim-
ilarity among proteins and drugs now shows their positive im-
pact. Nevertheless, from Table 6, it appears that adding
additional relations, such as PPI networks, DDI networks,
drug–disease and protein–disease associations, still do not in-
crease performance further. This might be due to the fact that,
since this kind of data fusion models are based on learning
similarities between instances of the entities, the first two rela-
tions are sufficient to provide all the information that the
model can use for prediction on this dataset.

3.5 Data fusion for the prediction of drug–kinase

affinity

We performed the last two benchmarks in this study on the
DAVIS (Davis et al. 2011) and KiBA (Tang et al. 2014) data-
sets. These datasets are substantially different from the ones
used so far because (i) they are specific to the kinase family of
proteins and (ii) the main task is the regression of the real-
valued affinity between kinases and drugs. While these set-
tings are not likely to be optimal for our data fusion methods,
since they focus on a specific protein family, we included this
scenario to showcase the flexibility of our approach, which
can tackle different prediction tasks by just changing the loss
function used and the data loaded in the underlying ER
graph, yielding comparable or just slightly lower performan-
ces with respect to specialized approaches.

To evaluate the performance, we thus used the MSE be-
tween predictions and experimental affinity values and the
Concordance Index (CI) proposed in Öztürk et al. (2018). We
reproduced the same 5-fold CV used in Öztürk et al. (2018)
to directly compare our performance with the DeepDTA
(Öztürk et al. 2018), KronRLS (Pahikkala et al. 2015), and
SimBoost (He et al. 2017) methods. DeepDTA appears in
three methodological variants. The CNN—PChem version
uses Convolutional NNs (CNNs) to read the protein sequen-
ces, and Drug–drug similarity matrix from PubChem to de-
scribe the drugs (Öztürk et al. 2018). The SW—CNN version

Table 5. Comparison on the YUNAN dataset between the AUC and

AUPRC scores obtained by the DTInet model presented in Luo et al.

(2017) (first row) and different G1 and G* ER-graphsa.

Model AUC AUPRC # Relations

BLMNII 0.69 0.75
NetLapRLS 0.83 0.88
HNM 0.86 0.88
CMF 0.86 0.87
DTInet 0.91 0.93

G1 0.84 0.80 1
G1þprotein similarity 0.89 0.86 2
G* þ drug similarity 0.88 0.86 3
G* þ PPI network 0.87 0.87 4
G* þ DDI network 0.85 0.79 5
G* þ drug–disease 0.86 0.87 5 (þ1 side)
G* þ protein–disease 0.86 0.83 5 (þ1 side)

a For the nonincremental case see Supplementary Table S8.

Table 6. Comparison of DTInet and other state-of-the-art methods with

our G* models on the YUNAN dataset after simulating more stringent

prediction settings in which similar proteins and drugs have been

removed (dataset ablation).

Model AUC AUPR # Relations

BLMNII 0.61 0.69
NetLapRLS 0.75 0.82
HNM 0.74 0.79
CMF 0.77 0.78
DTInet 0.82 0.87

G1 0.85 0.84 1
G1þprotein similarity 0.87 0.89 2
G* þ drug similarity 0.88 0.91 3
G* þ PPI network 0.87 0.88 4
G* þ DDI network 0.88 0.87 5
G* þ drug–disease 0.86 0.87 5 (þ 1 side)
G* þ protein–disease 0.84 0.80 5 (þ 1 side)
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uses a sliding window to read the protein sequence and a
CNN to read the Simplified Molecular-Input Line-Entry
System (SMILES) description of the drugs (Öztürk et al.
2018). The best performing DeepDTA model (CNN—CNN)
uses CNNs to read both protein sequences and SMILES drug
descriptions.

The upper half of Table 7 shows the comparison between
our G1 and G* data fusion models and DeepDTA, KronRLS,
and SimBoost on the DAVIS dataset. The lower half shows
the same comparison on the KiBA dataset. For a detailed
analysis of the contribution of each entity in our ER graphs in
different scenarios, see Supplementary Tables S17 and S18.
On DAVIS, we obtain the best results with a G* model (see
Fig. 1E) with two auxiliary relations contextualizing the simi-
larities among protein and drug instances. It performs simi-
larly to the CNN—CNN DeepDTA model in terms of MSE
and slightly lower in terms of CI. With respect to G1, adding
auxiliary relations decreases the MSE from 0.30 to 0.26.

On the KiBA dataset, our G1 model performance is around
10% worse than the CNN—CNN DeepDTA model in terms
of CI and significantly worse in terms of MSE. Adding rela-
tions to our G* model (see Fig. 1E) improves our perfor-
mance, but we remain around 7% lower in terms of CI.

From Table 7, we can see that our G* models outperform
the versions of DeepDTA that use the PChem drug–drug simi-
larity matrix, but DeepDTA performance drastically improves
when more detailed protein and drug sequence information is
provided (i.e. CNN—CNN DeepDTA). This indicates that
for kinase-specific methods is crucial to access more detailed
information regarding the protein and the drug molecular
characteristics with respect to our ER graph approach, in
which proteins and drugs sequences are never explicitly con-
sidered by our model.

We then tried to mitigate this problem by adding as sparse
side information in our model 30 000-dimensional Morgan

fingerprints (Morgan 1965) describing the molecular struc-
ture of each drug (see Fig. 1E). As shown in the last row of
Table 7, this did not improve performance on DAVIS, and
provided just a slight improvement on KiBA.

Additionally, in Supplementary Table S19, we compare the
performance of our model with the IDG-DREAM Drug-
Kinase Binding Prediction Challenge (Cicho�nska et al. 2021).

4 Discussion

In this article, we used the NXTfusion (Raimondi et al. 2021)
data fusion library to build several models for DTI prediction.
NXTfusion extends the conventional MF paradigm by allow-
ing nonlinear inference over an arbitrary number of data ma-
trices (Relations between Entities) and side information. To
do so, the data belonging to the domain of interest and their
connections are gathered by the user and organized as an ab-
stract ER graph, on which inference is performed. Data fusion
is achieved by jointly training a multitask NN model able to
reconstruct all the relations in the ER-graph. NXTfusion uses
both its multitask approach and the side information to avoid
the conventional “transductive” limitations of MF methods,
which cannot generalize to unseen data (i.e. new rows or col-
umns) without retraining (Zhang and Chen 2019).

We empirically showed that performing data fusion over
heterogeneous sources of complementary information is help-
ful in real-life DTI scenarios in which little to no information
is available for unknown or poorly known drugs or proteins.
While the improvement of NXTfusion over other more spe-
cialized models for DTI binary prediction is sometimes lim-
ited, a key result of this study is that thanks to the addition of
the auxiliary tasks, our model performances are robust when
the prediction problem becomes increasingly more difficult,
e.g. due more stringent protein and drug-based CV stratifica-
tions (Pahikkala et al. 2015) simulating real-life situations in
which predictions are required for previously unseen drug
and protein pairs (see Tables 4 and 6 and Supplementary Figs
S1 and S2).
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