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A B S T R A C T

In machine learning, data often comes from different sources, but combining them can introduce extraneous
variation that affects both generalization and interpretability. For example, we investigate the classification of
neurodegenerative diseases using FDG-PET data collected from multiple neuroimaging centers. However, data
collected at different centers introduces unwanted variation due to differences in scanners, scanning protocols,
and processing methods. To address this issue, we propose a two-step approach to limit the influence of
center-dependent variation on the classification of healthy controls and early vs. late-stage Parkinson’s disease
patients. First, we train a Generalized Matrix Learning Vector Quantization (GMLVQ) model on healthy control
data to identify a ‘‘relevance space’’ that distinguishes between centers. Second, we use this space to construct
a correction matrix that restricts a second GMLVQ system’s training on the diagnostic problem. We evaluate
the effectiveness of this approach on the real-world multi-center datasets and simulated artificial dataset.
Our results demonstrate that the approach produces machine learning systems with reduced bias - being
more specific due to eliminating information related to center differences during the training process - and
more informative relevance profiles that can be interpreted by medical experts. This method can be adapted
to similar problems outside the neuroimaging domain, as long as an appropriate ‘‘relevance space’’ can be
identified to construct the correction matrix.
1. Introduction

Machine learning models require data to make predictions or iden-
tify patterns. In the field of medicine, acquiring enough data can be
impractical or even risky for patients. Therefore, researchers often
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combine data from multiple sources to satisfy the data requirements
of machine learning systems. However, multi-source data can pose a
problem as it may contain sources of variation that are not intrinsic
to the classes being distinguished, but rather related to differences
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between the data sources themselves. This can result in biased machine
learning systems with inflated performance. In this study, we propose
an approach to address these issues and improve the Learning Vector
Quantization (LVQ) models during training on functional brain images
from patients with neurodegenerative diseases and healthy controls.

Neurodegenerative diseases have a significant impact on patients
and caregivers as they progressively impair cognitive and/or motor
functions. Parkinson’s disease (PD) is expected to be one of the lead-
ing causes of death by 2040 after cancer [1]. Early and accurate
diagnosis is crucial for developing prevention strategies and precision
therapeutic measures. However, diagnosing Parkinson’s disease based
on clinical features is difficult, particularly in its early stages, as the
motor symptoms can be subtle and similar to other disorders within
the Parkinsonian clinical spectrum [2,3]. Studying patients at different
stages of the disease will be vital for early diagnosis.

In the early stages of Parkinson’s disease, biomarkers are required to
confirm its presence and provide information on the rate of progression
and lead time. Combined with advanced computation, imaging the
brain with 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomog-
raphy (FDG-PET) may provide a solution. FDG-PET imaging of the
brain can provide valuable information about neuronal activity, as the
radiotracer FDG reflects the cerebral metabolic rate of glucose [4].
Local pathology can cause decreased FDG uptake, indicating impaired
neuronal function in certain brain regions. Spatial covariance analysis
of FDG-PET images can be performed using Scaled Subprofile Model
and Principal Component Analysis (SSM/PCA), which reduces the large
number of voxels for every subject to a limited number of orthog-
onal dimensions that explain the major sources of variance in the
data. SSM/PCA has been used to identify disease-related patterns in
specific neurodegenerative conditions, as reviewed by Eidelberg [5]
and Meles et al. [6]. These patterns have subsequently been used for
the differential diagnosis of Parkinson’s disease [7,8] and Alzheimer’s
disease [9,10]. To improve diagnostic accuracy in multiclass problems
in neurodegenerative diseases, SSM/PCA has also been combined with
machine learning approaches [11–13].

Ideally, large numbers of patients in different stages of disease
should be studied to properly investigate the diagnostic accuracy of
FDG-PET. This is especially due to the high dimensionality of the 3D
PET images, where a single scan has hundreds of thousands of voxels. It
applies particularly to the use of end-to-end Deep Learning techniques,
which are currently infeasible for the type of problem and set-up
considered here [14,15]. In general, larger data sets are required for the
application of powerful models with potentially higher classification
performance. So far, this has been hampered by the typically small
numbers of patients in single-center neuroimaging studies. Combining
data from different centers across the world is key, and attempts to do
so have already been made for FDG-PET and other neuroimaging mark-
ers in large database projects such as ADNI1 and PPMI.2 In previous

ork we have combined FDG-PET data from three neuroimaging cen-
ers [12,13]. The initial assumption was that these data did not contain
ny variation depending on the center they originated from. However,
n [12] we showed that the center of origin could be predicted using the
ata from healthy controls, which would not be possible without center
ependent variation. This variation between centers is likely caused by
ifferences in scanners and processing methods or parameters [16]. In
ther work, Albrecht et al. [17], Mueller et al. [18], Bisenius et al.
19], Martí-Andrés et al. [20] and Cobbinah et al. [21] have applied
achine learning techniques to multi-center data. However, no explicit

olution for the multi-center data variation was found. Furthermore,
he problem in these publications is often limited to a binary problem,
.e., to differentiate between healthy controls (HC) and PD. In this
ase, center variation can be a problem, but is potentially less strong

1 https://adni.loni.usc.edu/.
2 https://www.ppmi-info.org/.
2

than the intrinsic variation between HC and PD and therefore less
problematic. When the data are mixed, i.e., each class of data originates
from several (and the same) neuroimaging centers, center differences
become less likely to be picked up by Machine Learning methods, as
these do not help to distinguish between the two classes. In contrast, the
dataset in this work combines data from healthy controls and different
stages of PD each collected at a different neuroimaging center. To the
best of our knowledge, no alternative method is available that could
be readily employed for the suppression of center-specific bias in the
setting considered in this work.

Learning Vector Quantization [22] has since its introduction grown
to an important family of supervised learning algorithms. In the train-
ing phase, the algorithms determine class-specific prototypes that rep-
resent the classes in the data space. Predictions are made based on their
distance from the prototypes: A novel sample is classified by computing
the distances from the sample to all prototypes and assigning it to the
label of the closest prototype. Numerous variants of LVQ exist [23]
with success in the biomedical field, medicine, and industry.3 The
approach introduced here is based on Generalized Matrix Learning
Vector Quantization (GMLVQ) introduced by Schneider et al. [24]. The
authors Schneider et al. [24] extended the work of Sato and Yamada
[25] and Hammer and Villmann [26] by introducing an adaptive matrix
in the distance measure. The addition of this ‘‘relevance matrix’’ makes
it possible to account for correlations of dimensions and rotations of
the data space [24], supporting the classification. GMLVQ has demon-
strated competitive performance and provided useful insights in a
multitude of other biomedical applications, as shown by the relevance
matrix analysis [27–31]. The relevance matrix helps to explain the
decisions made by the classifier and facilitates the interpretability of the
LVQ system. Previous research has shown that in comparable diagnostic
problems concerning Parkinsonian Syndromes and SSM/PCA, GMLVQ’s
performance is superior or at least on par with that of Support Vector
Machines and decision trees [12,13,32].

The computational complexity of GMLVQ has been discussed in [24]
and follow-up studies. Note that for the present study, which employs
low-dimensional representations of small data sets, computational and
memory requirements play a minor role and have not been investigated
in detail.

The current study introduces a method, referred to as subspace
correction [33], that produces a GMLVQ system that can discriminate
between early and late stage PD and healthy controls, while restrained
from using any of the center-specific variance found in the data.

2. Materials and methods

The goal of this section, specifically Section 2.1, is to present our
novel subspace corrected relevance learning procedure based on Gen-
eralized Matrix Learning Vector Quantization (GMLVQ). To validate the
procedure, we include experiments on an artificial dataset containing
four Gaussian clusters (Section 2.3). We apply the method to data
obtained from three neuroimaging centers (Section 2.4) containing
center-dependent variation [13].

2.1. Generalized matrix LVQ

Subspace corrected relevance learning is based on GMLVQ, an LVQ
system which employs an adaptive distance measure as introduced
by Schneider et al. [24].

We consider the classification of 𝑁-dim. feature vectors 𝐱𝑖 ∈ R𝑁

with target class labels 𝑆𝑖 ∈ {1, 2,… , 𝐶}. In LVQ, class assignments are
based on the distances of 𝐱𝑖 from a set of 𝑀 prototypes {𝐰𝑗 ∈ R𝑁}𝑀𝑗=1.

Each prototype represents one of 𝐶 classes as denoted by the labels
𝑆(𝐰𝑗 ) ∈ {1, 2,… , 𝐶}.

3 http://www.cis.hut.fi/research/som-bibl/.

https://adni.loni.usc.edu/
https://www.ppmi-info.org/
http://www.cis.hut.fi/research/som-bibl/


Artificial Intelligence In Medicine 149 (2024) 102786R. van Veen et al.

m
l

w
d
t
c
p
t

w

GMLVQ incorporates relevance factors in the distance measure by
employing a matrix of adaptive parameters which is concurrently op-
timized with the prototype vectors. Specifically, the adaptive distance
measure of GMLVQ is parameterized as

𝑑𝛬(𝒘𝑗 ,𝒙𝑖) = (𝒙𝑖 −𝒘𝑗 )⊤𝛬(𝒙𝑖 −𝒘𝑗 ), (1)

with the relevance matrix 𝛬 ∈ R𝑁×𝑁 . In order for 𝑑𝛬(⋅, ⋅) to be a proper
non-negative measure, i.e. a semi-metric, the relevance matrix 𝛬 has
to be positive semi-definite and symmetric. These properties can be
realized by using the parameterization

𝛬 = 𝛺⊤𝛺 (2)

and optimizing 𝛺 during training instead of 𝛬 directly. In addition,
the relevance matrix 𝛬 is normalized by enforcing Tr(𝛬) = 1 to aid
numerical stability and interpretability after training [24].

The updates of the prototypes and relevance matrix can be com-
puted using, for instance, a variety of gradient descent based meth-
ods [34]. In the experiments presented here we use Way Point Gradient
Descent Optimization, see [35] for details, to optimize the objective
function introduced by Sato and Yamada [25]

𝐸 =
𝑃
∑

𝑖=1
𝑓
(

𝜇𝛬(𝒙𝑖)
)

(3)

with a monotonically increasing activation function 𝑓 . For the results
presented in this work we resorted to the simple identity function
𝑓 (𝑧) = 𝑧.

The relative difference distance function in Eq. (3) is given by

𝜇𝛬(𝒙𝑖) =
𝑑𝛬(𝒘+,𝒙𝑖) − 𝑑𝛬(𝒘−,𝒙𝑖)
𝑑𝛬(𝒘+,𝒙𝑖) + 𝑑𝛬(𝒘−,𝒙𝑖)

. (4)

Here, 𝐰+ denotes the closest correct prototype with 𝑑(𝐰+, 𝐱𝑖) ≤ 𝑑(𝐰𝑗 , 𝐱𝑖)
for all 𝑗 with 𝑆(𝐰𝑗 ) = 𝑆𝑖. Similarly, 𝐰− is the closest wrong prototype
with a label 𝑆(𝐰𝑗 ) ≠ 𝑆𝑖.

The representation of a given matrix 𝛬 by 𝛺 is not unique. This
makes the direct comparison of matrices 𝛺 from different systems im-
possible. Although this is not a problem for the GMLVQ classification,
as ultimately 𝛬 is used in the distance function, it is useful to construct
a canonical variant of 𝛺. From Linear Algebra it is known that a real,
symmetric and positive semi-definite matrix 𝛬 can be written as

𝛬 =
𝑁
∑

𝑗=1
𝜆𝑗𝒗𝑗𝒗⊤𝑗 , (5)

with the 𝑁 orthonormal eigenvectors 𝒗𝑗 and (without loss of general-
ity) ordered eigenvalues 𝜆𝑗 , such that

𝜆1 ≥ 𝜆2 ⋯ ≥ 𝜆𝐽 > 0 = 𝜆𝐽+1 = 𝜆𝐽+2 = ⋯ 𝜆𝑁 . (6)

In words, 𝛬 has 𝐽 eigenvectors with non-zero eigenvalues. The eigen-
vectors correspond to combinations of features or directions in fea-
ture space that describe part of the class-dependent differences in the
data, which are important for classification. We refer to the 𝐽 leading
eigenvectors as the relevance space of the GMLVQ system.

According to Eq. (5), we can always construct a valid canonical
representation

�̂� =

⎡

⎢

⎢

⎢

⎢

⎣

− −
√

𝜆1 𝒗⊤1 − −
− −

√

𝜆2 𝒗⊤2 − −
⋯⋯⋯

− −
√

𝜆𝑁 𝒗⊤𝑁 − −

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

which also parameterizes the relevance matrix, i.e., 𝛬 = �̂�⊤�̂�.
It has been shown analytically by Biehl et al. [36] and observed em-

pirically that GMLVQ has a strong tendency to yield singular matrices 𝛬
of very low rank [24,36–38]. Hence, the number of zero (or numerically
very small) eigenvalues will be large. Furthermore, because 𝛬 is sym-

etric, the eigenvectors are orthonormal and can be used to construct a
3

ow dimensional visualization of the data by projecting the data on the
eigenvectors [13,36,37]. This type of visualization is typically used to
identify outliers and find similar data samples [13,36,37,39]. However,
in this work we use the visualization only to qualitatively discuss the
effect of the suggested correction method.

2.2. Subspace corrected relevance learning

We first use a simplified artificial data set to illustrate the problem
and our solution (see Fig. 1). In this example we include artificial
HC and PD data from two hypothetical neuroimaging centers, where
center-specific variance has been introduced. When we train GMLVQ
on this space, to distinguish between HC and PD subjects, we find a
‘‘relevance space’’ that includes a contribution due to the differences
between the centers. This relevance space is visualized using a dashed
arrow and can be found on the left side of Fig. 1 labeled as ‘‘without
correction’’.

The first step of the procedure is to train a GMLVQ system to distin-
guish between the HCs of the centers. We work under the assumption
that healthy controls provide similar data across the cohorts of subjects.
The relevance space found by this procedure would be the orange arrow
in Fig. 1 which we denote mathematically by 𝛬𝑐 , parameterized by
�̂�⊤

𝑐 �̂�𝑐 . The subscript ‘‘c’’ indicates a variable being associated with this
initial center classification problem. Using this initial result we can
construct a correction matrix

𝛹𝑐 =

[

𝐼 −
𝐽
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

]

=

[ 𝑁
∑

𝑗=𝐽+1
𝒗𝑗𝒗⊤𝑗

]

, (8)

with eigenvectors 𝒗𝑗 of 𝛬𝑐 , ordered equivalent to Eq. (6), that cor-
responds to the nullspace of the center problem’s relevance space
(𝛬𝑐) and represents a projection where no relevant directions from
the center classification problem are present. In the second step, with
correction, we train to distinguish between the HCs and PD patients
while projecting out the relevance space of GMLVQ trained to distin-
guish between the centers. The effect of this correction is shown in the
illustration on the right of Fig. 1, labeled ‘‘corrected’’. The system that is
corrected during training is not able use any of the center differences to
distinguish between the HCs and PD patients. This results in a relevance
space more faithful to the intrinsic differences between HCs and PD
patients (dashed arrow).

Variables of the diagnosis problem are indicated with the subscript
‘‘d’’. The correction procedure requires an adaptation of the standard
GMLVQ training procedure. After each update of 𝛺𝑑 , the correction

�̃�𝑑 = 𝛺𝑑𝛹𝑐 . (9)

is applied. Note that the normalization Tr(𝛬𝑑 ) = 1 needs to be enforced
after the correction procedure, which does not influence the orthog-
onality of 𝛬𝑑 . We can check that the correction step has the desired
effect for all (𝐽 ) eigendirections 𝒗𝑙 relevant in the center classification
problem by considering

�̃�𝑑𝒗𝑙 = 𝛺𝑑

[

𝐼 −
𝐽
∑

𝑘=1
𝒗𝑘𝒗⊤𝑘

]

𝒗𝑙

= 𝛺𝑑𝒗𝑙 −𝛺𝑑

⎡

⎢

⎢

⎢

⎢

⎣

𝐽
∑

𝑘=1
𝒗𝑘 𝒗⊤𝑘 𝒗𝑙

⏟⏟⏟
𝛿𝑘𝑙

⎤

⎥

⎥

⎥

⎥

⎦

= 𝛺𝑑𝒗𝑙 −𝛺𝑑𝒗𝑙 = 0,

(10)

ith 𝛿𝑘𝑙 the Kronecker delta. Hence, we see that after the correction 𝛺𝑑
oes not contain contributions from the eigenvectors that discriminate
he centers. Thus, the classifier for the diagnostic problem will not
onsider these directions in the computation of distances from the
rototypes and cannot be confused by the center-specific properties of
he data.

In order to measure the effectiveness of the correction procedure,
e can quantify if the uncorrected systems indeed use center-dependent
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Fig. 1. Illustrative visualization of the problem and the result of the orthogonal learning correction procedure. Both illustration contain two planes representing the different centers,
‘‘A’’ and ‘‘B’’. The orange line denotes the difference between them. The learned relevance space of the systems are drawn as a dashed arrow. On the left, center differences
will attribute to the relevance space of an uncorrected GMLVQ system. On the right, any contribution in the direction of center A is projected out. In this simplified (and ideal)
example, this can be interpreted as the data being projected into the space of center B.
differences. A measure can be obtained by computing the angle be-
tween the eigenvectors of the ‘‘center’’ problem (𝒗𝑐), and the eigen-
vectors of the uncorrected ‘‘diagnostic’’ classification system (𝒗𝑑). This
angle can be computed using the scalar product of the normalized
eigenvectors

𝜙 = cos−1(𝒗𝑐 ⋅ 𝒗𝑑 ). (11)

The function in Eq. (11) returns a value between 0◦ and 90◦. Under
the assumption, all center differences are found by GMLVQ and are
contained within the eigenvectors of its relevance matrix; these values
can be interpreted as follows: 90◦ indicates no center variations have
been used, and 0◦ means the eigenvectors are entirely overlapping, and
thus, only center variations have been used.

2.3. Artificial dataset

We include an artificial dataset of four two-dimensional Gaussian
clusters (Fig. 2), with the addition of eight randomly generated noise
features (uncorrelated with zero mean and unit variance). The clusters
each include 1000 samples and are labeled with a combination of a
letter and a number, i.e., A1, A2, B1, and B2. The letter represents a
‘‘center’’ (Fig. 2(a)) and the number a ‘‘disease’’ (Fig. 2(b)). The average
of the first two features of the four Gaussian clusters are 𝜇𝐴1 = [1.5, 0],
𝜇𝐴2 = [0.5, 1], 𝜇𝐵1 = [−0.5,−1], and 𝜇𝐵2 = [−1.5, 0]. In our concrete
example, the covariance matrix for the first two features for all four
clusters is
[

1.89, 0.77
0.77, 0.47

]

.

To compute the correction matrix, we follow the two-step approach
as described in Section 2.1. First, we train a GMLVQ system on the
‘‘center’’ problem, i.e., the discrimination of {A1, A2} from {B1, B2}.
We obtain the average 𝛬𝑐 from a ten times repeated ten-fold cross-
validation [40]. We compute the correction matrix and use it in the
diagnosis problem, i.e., {A1, B1} vs. {A2, B2}, for which we perform
the same cross-validation procedure. We use the sklvq [41] implemen-
tation of GMLVQ with the following parameters: A single prototype per
class, the way-point gradient descent procedure trained for 50 epochs,
with a step size of 0.05 and 0.03 for the prototypes and relevance
matrix, respectively. For the activation function the identity was used.
All other parameters are left at their default values.4

4 https://sklvq.readthedocs.io/en/0.1.2/api.html.
4

Table 1
General features of the space defining reference groups, used to transform the data.

UMCG

HC PD
(n = 17) (n = 19)

Age, mean (std) 61.3 (7.5) 63.8 (7.5)
Male gender, n (%) 12 (70.6) 13 (68.4)
Disease evolution, – 3 (2)
mean (std)

2.4. Neuroimaging dataset

The dataset we are analyzing consists of brain images acquired using
[18F] fluorodeoxyglucose positron emission tomography (FDG-PET)
from both healthy controls (HC) and Parkinson’s patients (PD). The
data were collected at three different centers, namely the Movement
Disorder Unit of the Clinica Universidad de Navarra (CUN) [42], the
University Medical Center Groningen (UMCG) [43], and the University
of Genoa and IRCCS AOU San Martino-IST (UGOSM) [44]. For details
on the specific study setups, please refer to the respective publications.
General information about the patients and healthy controls is provided
in Table 2. Table 2 shows that the PD patients from the three centers
are at different stages of the disease evolution. Specifically, the patients
from UGOSM are at an early stage of PD while the patients from CUN
are in a much later stage of the disease. The patients from UMCG
are at a slightly later stage than the patients from UGOSM, resulting
in a diverse group of patients with respect to disease evolution. In
the three centers, different scanners, settings, and scanning protocols
are used [42–44]. This variability has previously been observed to
negatively affect the performance of GMLVQ in building a universally
applicable model that is independent of the center [12].

We do not deal with the FDG-PET images directly. The images were
processed using SSM/PCA based on an independent space-defining
reference group, that includes a typical group of 19 Parkinson’s patients
and 17 healthy controls (see Table 1 for details). All FDG-PET images
underwent spatial normalization to an FDG-PET template in Montreal
Neurological Institute (MNI) brain space, as described in [45]. To
remove voxels that were outside the brain, a 35% threshold of the
whole-brain intensity maximum was applied to each FDG-PET image
in the reference cohort (Table 1). The resulting masks were multiplied
together to create a common mask that included only non-zero values

https://sklvq.readthedocs.io/en/0.1.2/api.html
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Fig. 2. The data are a combination of four Gaussian clusters containing 1000 samples each. To increase clarity, the plots show a reduced number of samples.
Table 2
General features of the different groups.

UMCG UGOSM CUN

HC PD HC PD HC PD
(n = 19) (n = 20) (n = 49) (n = 38) (n = 20) (n = 68)

Age, mean (std) 56 (14) 63 (9) 67.8 (11.6) 72 (6.8) 67.9 (3.1) 70.6 (6.4)
Male gender, n (%) 9 (47.4) – 16 (32.7) 24 (63.2) 11 (55) 37 (54.4)
Disease evolution, – 3(2) – 1.7(1.6) – 13.6 (5.1)
mean (std)
for all subjects. This mask was then applied to all images. The masked
images were log-transformed, and the subject mean was subtracted
from each voxel. Additionally, each voxel was centered around the
mean of the healthy controls included in the reference group.

After these steps a principal component analysis (PCA) is applied to
the vectorized and preprocessed FDG-PET scans of the space defining
reference group. This provides a low-dimensional representation de-
scribing the principal sources of variance in the HC and PD patients
comprising the reference group. This procedure results in 35 principal
components, the last (36th) component does not explain any of the
variances in the data and is therefore not used. The data (Table 2) is
then projected on these principal components resulting in the feature
vectors that serve as input to the GMLVQ system.

We look at the problem within a number of settings, i.e., the two-
class setting where we combined HC and PD data of all centers. Second,
we test the correction by considering the different stages of disease
evolution of the PD patients. Specifically, we looked at the patients
from the UGOSM which are at an early stage, and patients from the
CUN which are at a late stage in their disease evolution. We perform
the analysis with HC included or excluded and report the results for
both set-ups.

The correction matrix is obtained by the procedure described for
the artificial dataset. We compute the average relevance matrix of
GMLVQ trained to distinguish the centers from a ten times repeated ten-
fold cross-validation procedure [40]. The data have been balanced by
randomly oversampling the minority class(es) and z-transformed based
on the training data within each cross-validation run. The corrected and
uncorrected diagnostic systems are both trained using the same cross-
validation procedures and model parameters. We use the sklvq [41]
implementation of GMLVQ with the same parameters as described in
Section 2.3. In short, we use the 35-dimensional PCA-based feature
vectors corresponding to the FDG-PET scans of the patients listed in
Table 2, and train a GMLVQ model first to classify the source (center of
HCs), whereafter both an unrestricted and a restricted system is trained
for a disease problem.

3. Results and discussion

In this section, we present the results of the experiments performed
on the two datasets. Each section presents first the results of the
5

Table 3
Artificial dataset performance metrics. Values are the mean with standard deviation
within parentheses of the randomized ten times repeated ten-fold cross-validation
procedures [40].

Center Uncorrected Corrected

AUROC 0.83(0.02) 0.99(0.00) 0.99(0.01)
Accuracy (%) 77.55(2.19) 96.14(0.97) 95.19(1.07)

relevant ‘‘center’’ problem, followed by the ‘‘diagnostic’’ problem(s).
We report the accuracy and the area under the receiver operating
characteristic curve (AUROC).

3.1. Artificial dataset

The results of the correction procedure on the artificial data can
be found in Fig. 3 and Table 3. Fig. 3(a) presents the projection of the
center problem, i.e., ‘‘A’’ vs. ‘‘B’’. The average relevance diagonal of this
problem is shown in Fig. 3(b) and reveals that GMLVQ can pick up on
the two relevant features, where a higher relevance is given to the first
feature. The effect of the correction procedure on the relevance profile
of the disease problem will, therefore, likely be more noticeable in the
first than the second feature. The relevance space is entirely determined
by the first eigenvector, with its corresponding eigenvalue being one.
The correction matrix is therefore also based on this single eigenvector.
Table 3 shows that the centers can be separated, although not perfectly,
with an average AUROC of 0.83.

The projection of the uncorrected disease problem and average
relevance diagonal are presented in Figs. 3(c) and 3(e). The relevance
profile shows us that the second feature is slightly more relevant for
classifying the diseases, i.e., ‘‘1’’ vs. ‘‘2’’. With the correction applied
(Figs. 3(d) and 3(f)), the differences between the first and second
feature are much more apparent. As expected, considering the most rel-
evant features provided by the center system, the relevance of the first
feature went down and that of the second went up. The average AUROC
and accuracy are included in Table 3. We observe that performance
differences between the uncorrected and corrected case are practi-
cally negligible, with small favor for the uncorrected case. This slight
performance difference may indicate that, in the uncorrected case,
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Fig. 3. Projections and relevance diagonals related to the correction procedure performed on the artificial dataset.
some of the center variances have been used to distinguish between
the ‘‘diseases’’. Due to limiting the potential relevance space in the
corrected case, these center variances can no longer be used, resulting
in slightly less desirable performance but a ‘‘cleaner’’ classification
system which does not exploit the purely center-specific bias in the
data.

As our artificial data is practically two-dimensional and each of our
GMLVQ systems found a relevance matrix that can be parameterized
by a single eigenvector, we can visualize them within the original
feature space (see Fig. 4). The angle between 𝒗𝑐,1 and 𝒗𝑑,1 is 84.36◦.
As hypothesized, some center variance has been used; see the blue
and red arrows in Fig. 4. The corrected system produces by design an
eigenvector with an angle of 90◦ to 𝒗𝑐,1; the green arrow in Fig. 4.
Note that the lengths of the arrows do not hold any significance and
are merely different because of aesthetic purposes.

Visualizing the eigenvectors is unique to this case and cannot be
done with higher (>3) dimensional data, such as our neuroimaging
6

dataset. However, the angles between eigenvectors can still be com-
puted and allow for a similar interpretation.

3.2. Neuroimaging dataset

Table 4 and Fig. 5 include the performance and plots associated with
the three-center classification problem. Specifically, Fig. 5(a) visualizes
how well the centers can be discriminated, with an average AUROC
of 0.96. Compared to the artificial problem, the number of non-zero
eigenvalues and thus eigenvectors used for the correction is different.
The first two eigenvalues are 0.72 and 0.17, with near-zero eigenvalues
for the rest. In Fig. 5(a), we can also observe that the HCs from the
CUN are more straightforward to distinguish from the rest than subjects
from the UGOSM and UMCG. As expected, considering the reference
group used to construct the feature space, the center difference cannot
directly be found in the first few features, see figure Fig. 5(b), as most
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Fig. 4. Visualization of the ‘‘center’’, uncorrected, and corrected ‘‘disease’’ leading eigenvectors. Note that the length of the eigenvectors does not signify anything; the arrows
have different lengths to increase visual clarity.
Table 4
Performance on the uncorrected and corrected HC vs. PD problem, and corresponding
center problem. Reported values are the averages with standard deviation within
parenthesis stratified from the repeated cross-validation procedure.

Center HC vs. PD

Uncorrected Corrected

(a) Training performance

AUROC 1.00(0.00) 0.89(0.02) 0.89(0.02)
Accuracy (%) 97.32(1.90) 83.00(2.54) 83.09(2.39)

(b) Validation performance

AUROC 0.96(0.08) 0.85(0.09) 0.85(0.08)
Accuracy (%) 89.93(9.95) 79.38(8.31) 79.72(7.20)

variance in the data is explained by the difference in HC and PD [46–
48]. Primarily, features 6, 9, and 35 seem to be more relevant for this
case.

Table 4 and Fig. 5 include the performance and plots associated
with the two-class setting. In this setting, we have combined the data
from the three centers, and labeled the data according to the diagnosis
given to the subjects, i.e., HC or PD. The corrected and uncorrected
two-class systems perform nearly equally well. Both, the uncorrected
and corrected systems have an average AUROC of about 0.85. Also,
the eigenvalue ‘‘profile’’ is similar for both systems, with the first
eigenvector contributing most to the relevance profiles presented in
Figs. 5(e) and 5(f). These relevance profiles do not show an apparent
effect, as observed in the artificial case.

It is essential to note that we simplify the assessment here. The
effect of the correction cannot be evaluated based on the relevance
diagonal only. The relevance diagonal summarizes the information;
the correction is based on eigenvectors, i.e., multiple combinations of
features.

The uncorrected system’s first and only relevant eigenvector makes
an angle of approximately 83.10◦ and 78.40◦ with the center’s first
and second eigenvectors. Hence, the correction procedure impacts the
system, as center difference is used to classify HC vs. PD patients.
However, this effect is not very strong, and the corrected system seems
to compensate by finding a slightly different relevance space that
performs similarly without using the center differences. Furthermore,
features 6, 9, and 35, relevant for the center classification, seem to
play only a minor role in the disease classification. Comparing the
relevance expression of the uncorrected system with the corrected one,
we observe a slight increase in the first feature’s relevance. These
observations underline that, in the ‘‘simple’’ case, i.e., HC vs. PD, the
relevant variation is mainly contained within the first few SSM/PCA
features, as previously observed in [12,13,46–48].
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3.2.1. Early vs. Late stage Parkinson’s disease
Figs. 6 and 7 contain the projections and average relevance di-

agonals, considering HC and PD subjects from the CUN and UGOSM
centers. However, instead of labeling the subjects by their center of
origin in combination with their diagnosis, we have labeled them as
early and late-stage PD patients (Table 2) and ignored the center of
origin for the HC entirely; Fig. 6 shows the results for this three-class
problem. We use the HCs to construct the correction matrix. Therefore,
we conducted a second experiment excluding the HCs from the diag-
nosis problem, thus including only early vs. late-stage PD patients (see
Fig. 5). The performance results for this 2-class and 3-class problem are
included in Table 5.

In contrast to the three-center problem, classifying HCs from the
CUN and UGOSM centers can be achieved with 100% accuracy. The
projection is shown in Fig. 6(a) with average relevance diagonal that
shows one very dominating feature for the classification, i.e., feature 35
(see Fig. 6(b)). We base the correction matrix on the first eigenvector
that primarily dominates the relevance profile with an eigenvalue
of approximately 1.0 and near-zero eigenvalues for the remaining
eigenvectors.

The uncorrected diagnostic projection of the system is included in
Fig. 6(c), with average relevance diagonal in Fig. 6(e). The system
has two non-zero eigenvalues. In the projection, we see that some
center information must have been used in the first and possibly second
eigenvector as the HC from the CUN are positioned closer to the PD
from the same center than the other HC. Additionally, the relevance
diagonal shows a high relevance for feature 35, observed to be asso-
ciated with the center-dependent differences. These observations are
confirmed by the angles to the eigenvector of the center problem.
The first and second eigenvectors of the diagnostic system make an
angle of 57.85◦ and 56◦. Comparing these plots to the corrected system
in Figs. 6(d) and 6(f), we see the HC from the CUN position more
closely to the HC from the UGOSM, although not nicely scattered
within the group. Similar to the 6-class setting discussed in the previous
subsection, this result suggests that not all center-dependent variation
has been removed. However, the most relevant feature, 35, has almost
entirely reduced to zero for the corrected system. We also observe that
in this setting, considering PD subjects at different disease stages, the
first feature is no longer the most relevant. This again indicates that
later features, i.e., principal components, play an important role when
considering more complicated diagnostic problems. The performance
of the corrected system is reduced compared to the uncorrected system
(Table 5). The reduction in performance can be expected for similar
reasons as discussed in the previous discussed problems. The correc-
tion procedure limits the variation available to discriminate between
the different classes originating from different centers, increasing the
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Fig. 5. This figure includes a collection of experiment results performed on the multi-center ‘‘2-class’’ problem. Results are based on the average models from ten times repeated
ten-fold cross-validation procedures. Unless otherwise specified in the subfigures, the left column contains the uncorrected and the right column the corrected results. The bar plots
represent the average values (the bars) and the standard deviations as the black error lines at the top of the bars.
problem’s difficulty and reducing performance. However, it also results
in a more true discriminative system. E.g., in Fig. 6(d) we see a less
separated distribution of early vs late PD, which can be considered
more realistic, as PD is assumed to be a continuous spectrum in terms
of disease progression [49].

The two-class problem, excluding the HC from the classification
task, shows the value of the correction procedure even more clearly.
In this case, the PD patients from the CUN and UGOSM are again
labeled by their disease evolution stage. Figs. 7(a) and 7(c) include the
projection and average relevance diagonal, primarily defined by the
first eigenvector with an eigenvalue of 0.95. Together with the near-
perfect performance in Table 5, the projection shows that the GMLVQ
system found a way to discriminate between the two classes. However,
8

the relevance profile in Fig. 7(c) is very similar to the profile of the
center classification task shown in Fig. 6(b). In this specific case, there
are two distinct sources of variation in the data. One source of variance
due to the difference in disease stage and the center-dependent source.
Additionally, the variance between the disease stage difference likely
holds less discriminative power than the difference between the center
of origin. These observations make it likely that mainly the differences
between the centers have been learned by GMLVQ. The angle between
the eigenvectors of the diagnostic system and the center system is
40.15◦, confirming the observations.

Comparing the uncorrected to the corrected system, we see that
performance decreases (Table 5). However, comparing the relevance di-
agonal, shown in Fig. 7(d), we see that feature 35 entirely vanished and
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Fig. 6. This figure includes a collection of experiment results performed on the data of two centers including HC and PD labeled by their disease stage. Results are based on the
average models from ten times repeated ten-fold cross-validation procedures. Unless otherwise specified in the subfigures, the left column contains the uncorrected and the right
column the corrected results. The bar plots represent the average values (the bars) and the standard deviations as the black error lines at the top of the bars.
produced a more pronounced relevance profile. Clearly, the orthogonal
correction procedure enables GMLVQ to produce a more pronounced
and defined relevance profile, accompanied by a reduced but more re-
alistic performance. The nominal decrease of the classification accuracy
merely reflects the fact that the corrected system is prevented from
exploiting the misleading, irrelevant differences between centers in the
classification.

In general, a strength of the method is that it is fully explainable,
due to its linear basis. This facilitates analytical extensions and trans-
parent interpretation of the model and correction step. Note that the
linearity of the approach also facilitates an interpretation of prototypes
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and relevances in the original high-dimensional image space, as demon-
strated in e.g. [39]. However, the linearity also constitutes a potential
drawback, leading to limitations in modeling potentially nonlinear
effects in the source specific information. Similarly, the assumption that
the source specific variance is located in a subspace orthogonal to the
information intrinsic to the classes of interest only holds as long as the
unwanted (source specific) and wanted (class-specific) information are
uncorrelated. The nature of the source-specific variance is depending
on the type of data used, and we refer to future work to investigate the
properties of the center-specific effects in FDG-PET scans, specifically.
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Fig. 7. This figure includes a collection of experiment results performed on the data of two centers excluding HC and PD labeled by their disease stage. Results are based on the
average models from ten times repeated ten-fold cross-validation procedures. Unless otherwise specified in the subfigures, the left column contains the uncorrected and the right
column the corrected results. The bar plots represent the average values (the bars) and the standard deviations as the black error lines at the top of the bars.
Table 5
Performance on the uncorrected and corrected early vs. late stage PD problem,
and corresponding center problem. Reported values are the averages with standard
deviation within parenthesis stratified from the cross-validation procedure.

Center 2-class 3-class

Uncorrected Corrected Uncorrected Corrected

(a) Training performance

AUROC 1.00(0.00) 1.00(0.00) 0.98(0.01) 0.90(0.02) 0.89(0.02)
Accuracy (%) 100.00(0.00) 99.98(0.13) 97.87(2.65) 78.19(2.65) 75.52(3.05)

(b) Validation performance

AUROC 1.00(0.00) 1.00(0.00) 0.93(0.08) 0.85(0.07) 0.82(0.07)
Accuracy (%) 100.00(0.00) 98.50(3.12) 86.12(9.14) 70.20(9.70) 66.84(10.96)

4. Conclusion and future work

Our results confirm that center-dependent variation can be at least
partially removed using the orthogonal learning correction procedure.
The experiments on the artificial dataset show that the problem exists
when two sources of variation are introduced in the data and that
the procedure can correct this. Furthermore, we provide a measure
quantifying how much of the unwanted variation has been used by
the uncorrected system, i.e., the angle between the eigenvectors of the
relevance matrices.

In the more straightforward cases, i.e., HC vs. PD, not much center
variation was used to determine the diagnosis, and the correction
procedure had thus limited effect. In the 6-class case, the correction
affected the projections and performance since we explicitly asked
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the system to discriminate between the HCs. The projections of the
corrected systems also showed that some center-dependent variation
was still left. This observation implies that the correction matrix does
not contain all center-dependent relevance space.

Similar conclusions can be drawn for the early versus late-stage PD
experiments. When including the HCs, the correction clearly showed
that the HCs from the two centers were closer together. However,
the groups are still somewhat distinguishable in the plots. The most
compelling case is the two-class scenario where the HCs were excluded.
Without the correction procedure, the system would not have been able
to decide between early and late-stage based on intrinsic differences
between early and late-stage PD metabolic profiles. Instead, the results
show that the decisions would have been based mainly on center-
dependent variations. That means, that without a correction for the
center information, we would have obtained a completely biased classi-
fier where both the classification accuracy and the interpretation of the
model would in practice have been non-sensical. The fact that the nomi-
nal performance or accuracy is lower in the corrected system should not
be mistaken as a disadvantage of the method. The seemingly superior
performance of the uncorrected classifier is based on naively exploiting
the misleading center-specific information in the given, biased data
set. The corrected system can be trusted to rely on those properties
of the data, which truly relate to the target diagnosis. Accordingly, the
relevance profile will be more informative about the disease-specific
difference between the considered cohorts.

Finally, the experiments have shown encouraging results and iden-
tified the method’s limitations, which is discussed further in the next
section.
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4.1. Future work

In the previous paragraphs, we concluded that the correction pro-
cedure did not remove all center-variation. This might be caused by
GMLVQ not finding all possible directions that explain the center
differences. It can be that another set of hyperparameters might resolve
this issue by finding a better solution. Another possible resolve could be
to apply GMLVQ several iterations and correct each subsequent system
until an appropriate (poor) performance in the center classification has
been reached. We could then extract the relevant eigenvectors from
each of these systems, concatenate them and construct a final correction
matrix to train GMLVQ on the diagnostic problem.

In our experiments, we have used an initial relevance matrix equal
to the identity matrix. One could initialize the 𝛺 matrix using the
non-leading eigenvectors of 𝛬𝑐 as these already contain directions
orthogonal to the leading eigenvectors, likely speeding up convergence
and possibly improving performance.

Three variations of the suggested correction method should be
good candidates for future comparison. First, instead of correcting the
GMLVQ relevance matrix during training, one could project out the
center-relevant space beforehand, thereby manipulating the feature
vectors and reducing the dimensionality of the data. Theoretically,
no contributions in the unwanted directions are possible. However,
in practice, due to numerical instability, one might still accumulate
contributions over time. Second, one could reduce the application
of the correction to only the final update of the relevance matrix.
However, this will likely result in decreased performance compared to
the other options. The interpretation of the prototypes (by themselves)
will be more difficult as they will still contain contributions in the
unwanted directions. The contributions will not be considered in the
distance though because they would be projected out by the corrected
�̃�.

Alternatively, the basic method can also be interpreted and imple-
mented as a regularization technique. In contrast to the method we
suggested in Section 2.2, where the identified directions are entirely
removed during training, one can instead use a tunable (𝑟) penalty term

𝑃 (𝛺) = 𝑟 ⋅
𝑀
∑

𝑖=1

𝐽
∑

𝑗=1
(𝒗⊤𝑗 𝜔𝑖)2,

and add it to the cost function 𝐸, such that the new cost function and
the partial derivative concerning the columns of 𝛺 become

�̂� = 𝐸 + 𝑃 (𝛺),

𝜕�̂�
𝜕𝜔𝑖

= 𝜕𝐸
𝜕𝜔𝑖

+ 2𝑟 ⋅
𝐽
∑

𝑗=1
𝒗⊤𝑗 .

regularization will enable a less harsh and more controllable cor-
ection. In this way, one allows for some magnitude of the unwanted
irections to be used but can control how much by increasing or
ecreasing the scaling parameter 𝑟. Moreover, the scaling factor could

be a vector such that one can control the contribution to the penalty per
eigenvector (when 𝐽 > 1), as likely not all eigenvectors are as crucial
to remove.

Finally, Villmann et al. [50] consider a similar approach from a
transfer learning perspective. It employs a modified LVQ cost function
which corresponds to a weighted combination of the source discrimi-
nation and the actual classification task. This single tier approach can
be applied also in absence of a separate HC cohort for the analysis of
center differences.

Future studies will explore and compare these as well as additional
realizations of the basic ideas presented here.
11
CRediT authorship contribution statement

Rick van Veen: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Data curation, Conceptualization. Neha Rajendra
Bari Tamboli: Writing – review & editing, Writing – original draft,
Validation, Investigation. Sofie Lövdal: Writing – review & editing,
Writing – original draft, Validation, Investigation. Sanne K. Meles:
Writing – review & editing, Writing – original draft, Resources, Data
curation, Conceptualization. Remco J. Renken: Writing – review &
editing, Writing – original draft, Conceptualization. Gert-Jan de Vries:
Writing – review & editing, Writing – original draft, Conceptualization.
Dario Arnaldi: Writing – review & editing, Writing – original draft,
Resources. Silvia Morbelli: Writing – review & editing, Writing –
original draft, Resources. Pedro Clavero: Writing – review & editing,
Writing – original draft, Resources. José A. Obeso: Writing – review
& editing, Writing – original draft, Resources. Maria C. Rodriguez
Oroz: Writing – review & editing, Writing – original draft, Resources.
Klaus L. Leenders: Writing – review & editing, Writing – original draft,
Supervision, Resources, Conceptualization. Thomas Villmann: Writing
– review & editing, Writing – original draft, Methodology, Conceptual-
ization. Michael Biehl: Writing – review & editing, Writing – original
draft, Supervision, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

S.K. Meles, K.L. Leenders, R. van Veen reports financial support was
provided by The Michael J Fox Foundation. D. Arnaldi, S. Morbelli
reports financial support was provided by Italian Ministry of Health. R.
van Veen reports financial support was provided by State of Upper Aus-
tria in the frame of SCCH competence center INTEGRATE. S.K. Meles,
K.L. Leenders reports financial support was provided by Dutch Stichting
Parkinson Fonds. S.K. Meles reports a relationship with The Michael J
Fox Foundation that includes: funding grants. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

The research reported in this article has been partly funded the
Michael J. Fox Foundation (ID 17081), a grant from the Italian Min-
istry of Health to IRCCS Ospedale Policlinico San Martino (Fondi
per la Ricerca Corrente 2019/2020, and Italian Neuroscience network
(RIN)), BMK, BMDW, and the State of Upper Austria in the frame of
SCCH competence center INTEGRATE [(FFG grant no. 892418)] part
of the FFG COMET Competence Centers for Excellent Technologies
Programme. Additionally, the authors acknowledge support from the
Dutch Stichting ParkinsonFonds (grant number 2022/1891).

References

[1] Gammon K. Neurodegenerative disease: Brain windfall. Nature
2014;515(7526):299–300.

[2] Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of
clinical diagnosis of parkinson disease: a systematic review and meta-analysis.
Neurology 2016;86(6):566–76.

[3] Jellinger KA, Logroscino G, Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A.
Accuracy of clinical diagnosis of parkinson disease: A systematic review and
meta-analysis. Neurology 2016;87(2):237–8.

[4] Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps Ma, Ido T, Casella V,
Fowler J, Hoffman E, Alavi A, et al. The [18F] fluorodeoxyglucose method
for the measurement of local cerebral glucose utilization in man.. Circ Res
1979;44(1):127–37.

[5] Eidelberg D. Metabolic brain networks in neurodegenerative disorders: a
functional imaging approach. Trends Neurosci 2009;32(10):548–57.

[6] Meles SK, Kok JG, Renken RJ, Leenders KL. From positron to pattern: A con-
ceptual and practical overview of 18f-FDG PET imaging and spatial covariance
analysis. In: PET and SPECT in neurology. Springer International Publishing;
2020, p. 73–104.

http://refhub.elsevier.com/S0933-3657(24)00028-9/sb1
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb1
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb1
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb2
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb2
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb2
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb2
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb2
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb3
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb3
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb3
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb3
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb3
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb4
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb5
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb5
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb5
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb6


Artificial Intelligence In Medicine 149 (2024) 102786R. van Veen et al.
[7] Rus T, Tomše P, Jensterle L, Grmek M, Pirtošek Z, Eidelberg D, Tang C, Trošt M.
Differential diagnosis of parkinsonian syndromes: a comparison of clinical and
automated - metabolic brain patterns’ based approach. Eur J Nucl Med Mol
Imaging 2020;47(12):2901–10.

[8] Tripathi M, Tang CC, Feigin A, Lucia ID, Nazem A, Dhawan V, Eidelberg D.
Automated differential diagnosis of early parkinsonism using metabolic brain
networks: A validation study. J Nucl Med 2015;57(1):60–6.

[9] Meles SK, Pagani M, Arnaldi D, Carli FD, Dessi B, Morbelli S, Sambuceti G,
Jonsson C, Leenders KL, Nobili F. The alzheimer’s disease metabolic brain pattern
in mild cognitive impairment. J Cereb Blood Flow Metab 2017;37(12):3643–8.

[10] Perovnik M, Tomše P, Jamšek J, Emeršič A, Tang C, Eidelberg D, Trošt M. Iden-
tification and validation of alzheimer’s disease-related metabolic brain pattern
in biomarker confirmed alzheimer’s dementia patients. Sci Rep 2022;12(1).

[11] Mudali D, Teune L, Renken R, Leenders K, Roerdink J. Classification of
parkinsonian syndromes from FDG-PET brain data using decision trees with
SSM/PCA features. Comput Math Methods Med 2015;2015:10.

[12] van Veen R, Talavera Martinez L, Kogan RV, Meles SK, Mudali D, Roerdink J,
Massa F, Grazzini M, Obeso J, Rodriguez-Oroz M, Leenders K, Renken R, de
Vries J, Biehl M. Machine learning based analysis of FDG-PET image data for the
diagnosis of neurodegenerative diseases. In: Applications of intelligent systems.
Frontiers in artificial intelligence and applications, vol. 310, IOS Press; 2018, p.
280–9.

[13] van Veen R, Gurvits V, Kogan R, Meles S, de Vries J, Renken R, Rodriguez-
Oroz M, Rodriguez-Rojas R, Arnaldi D, Raffa S, de Jong B, Leenders K,
Biehl M. An application of generalized matrix learning vector quantization in
neuroimaging. Comput Methods Programs Biomed 2020;197:105708.

[14] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016.
[15] Marcus G. Deep learning: A critical appraisal. 2018, CoRR, abs/1801.00631.
[16] Kogan RV, Jong BA, Renken RJ, Meles SK, Snick PJ, Golla S, Rijnsdorp S,

Perani D, Leenders KL, Boellaard R. Factors affecting the harmonization of
disease-related metabolic brain pattern expression quantification in 18f FDG-PET
(PETMETPAT). In: Jovicich J, Frisoni GB, editors. Alzheimer’s Dementia: Diag
Assess Dis Monit 2019;11(1):472–82.

[17] Albrecht F, Bisenius S, Neumann J, Whitwell J, Schroeter ML. Atrophy
in midbrain & cerebral/cerebellar pedunculi is characteristic for progressive
supranuclear palsy – A double-validation whole-brain meta-analysis. NeuroImage:
Clin 2019;22:101722.

[18] Mueller K, Jech R, Bonnet C, Tintěra J, Hanuška J, Möller HE, Fassbender K,
Ludolph A, Kassubek J, Otto M, Růžička E, Schroeter ML. Disease-specific regions
outperform whole-brain approaches in identifying progressive supranuclear palsy:
A multicentric MRI study. Front Neurosci 2017;11.

[19] Bisenius S, Mueller K, Diehl-Schmid J, Fassbender K, Grimmer T, Jessen F,
Kassubek J, Kornhuber J, Landwehrmeyer B, Ludolph A, Schneider A, Anderl-
Straub S, Stuke K, Danek A, Otto M, Schroeter ML. Predicting primary progressive
aphasias with support vector machine approaches in structural MRI data.
NeuroImage: Clin 2017;14:334–43.

[20] Martí-Andrés G, Bommel L, Meles SK, Riverol M, Valentí R, Kogan RV,
Renken RJ, Gurvits V, Laar T, Pagani M, Prieto E, Luquin MR, Leenders KL,
Arbizu J. Multicenter validation of metabolic abnormalities related to PSP
according to the MDS-PSP criteria. Mov Disorders 2020;35(11):2009–18.

[21] Cobbinah BM, Sorg C, Yang Q, Ternblom A, Zheng C, Han W, Che L,
Shao J. Reducing variations in multi-center alzheimer’s disease classification with
convolutional adversarial autoencoder. Med Image Anal 2022;82:102585.

[22] Kohonen T. The self-organizing map. Proc IEEE 1990;78(9):1464–80.
[23] Nova D, Estévez PA. A review of learning vector quantization classifiers. Neural

Comput Appl 2014;25(3–4):511–24.
[24] Schneider P, Biehl M, Hammer B. Adaptive relevance matrices in learning vector

quantization. Neural Comput 2009;21(12):3532–61.
[25] Sato A, Yamada K. Generalized learning vector quantization. In: Conference on

neural information processing systems. NIPS ’95, Cambridge, MA, USA: MIT
Press; 1995, p. 423–9.

[26] Hammer B, Villmann T. Generalized relevance learning vector quantization.
Neural Netw 2002;15(8–9):1059–68.

[27] Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P,
Smith DJ, Stiekema H, Krone N, et al. Urine steroid metabolomics as a biomarker
tool for detecting malignancy in adrenal tumors. J Clin Endocrinol Metab
2011;96(12):3775–84.

[28] Biehl M, Schneider P, Smith D, Stiekema H, Taylor A, Hughes B, Shackleton C,
Stewart P, Arlt W. Matrix relevance LVQ in steroid metabolomics based classifi-
cation of adrenal tumors. In: Verleysen M, editor. 20th European symposium on
artificial neural networks (ESANN 2012). d-side publishing; 2012, p. 423–8.
12
[29] Yeo L, Adlard N, Biehl M, Juarez M, Smallie T, Snow M, Buckley CD, Raza K,
Filer A, Scheel-Toellner D. Expression of chemokines CXCL4 and CXCL7 by
synovial macrophages defines an early stage of rheumatoid arthritis. Ann Rheum
Dis 2015;75(4):763–71.

[30] Mukherjee G, Bhanot G, Raines K, Sastry S, Doniach S, Biehl M. Predicting
recurrence in clear cell renal cell carcinoma: Analysis of TCGA data using outlier
analysis and generalized matrix LVQ. In: 2016 IEEE congress on evolutionary
computation (CEC). IEEE; 2016.

[31] Biehl M. Biomedical applications of prototype based classifiers and relevance
learning. In: Algorithms for computational biology. Springer International
Publishing; 2017, p. 3–23.

[32] Mudali D, Biehl M, Leenders KL, Roerdink J. LVQ and SVM classification of
FDG-PET brain data. Advances in intelligent systems and computing, vol. 428,
Springer International Publishing; 2016.

[33] van Veen R, Tamboli NRB, Biehl M. Orthogonal learning correction. In: Machine
learning reports. University of Applied Sciences Mittweida; 2021.

[34] LeKander M, Biehl M, de Vries H. Empirical evaluation of gradient methods
for matrix learning vector quantization. In: 12th international workshop on
self-organizing maps and learning vector quantization, clustering and data
visualization (WSOM). IEEE; 2017, 8 pages.

[35] Papari G, Bunte K, Biehl M. Waypoint averaging and step size control in learning
by gradient descent. In: Schleif F, Villmann T, editors. MIWOCI 2011, Mittweida
workshop on computational intelligence. Technical report Mlr-2011-06, Leipzig
University; 2011, p. 16–26,

[36] Biehl M, Bunte K, Schleif FM, Schneider P, Villmann T. Large margin linear dis-
criminative visualization by matrix relevance learning. In: The 2012 international
joint conference on neural networks. IJCNN, 2012, p. 1–8.

[37] Bunte K, Schneider P, Hammer B, Schleif FM, Villmann T, Biehl M. Limited rank
matrix learning, discriminative dimension reduction and visualization. Neural
Netw 2012;26:159–73.

[38] Biehl M, Hammer B, Villmann T. Prototype-based models in machine learning.
Wiley Interdiscip Rev: Cogn Sci 2016;7(2):92–111.

[39] van Veen R, Meles SK, Renken RJ, Reesink FE, Oertel WH, Janzen A, de Vries G-
J, Leenders KL, Biehl M. FDG-PET combined with learning vector quantization
allows classification of neurodegenerative diseases and reveals the trajectory
of idiopathic REM sleep behavior disorder. Comput Methods Programs Biomed
2022;225:107042.

[40] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. second
ed.. Springer; 2009.

[41] van Veen R, Biehl M, de Vries JJG. Sklvq: Scikit learning vector quantization. J
Mach Learn Res 2021;22(231):1–6.

[42] Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-
Redondo R, Obeso JA, Rodriguez-Oroz MC. Posterior parietooccipital hy-
pometabolism may differentiate mild cognitive impairment from dementia in
parkinson’s disease. Eur J Nucl Med Mol Imaging 2012;39(11):1767–77.

[43] Teune LK, Bartels AL, de Jong BM, Willemsen ATM, Eshuis SA, de Vries JJ,
van Oostrom JCH, Leenders K. Typical cerebral metabolic patterns in
neurodegenerative brain diseases. Mov Disord 2010;25(14):2395–404.

[44] Arnaldi D, Morbelli S, Brugnolo A, Girtler N, Picco A, Ferrara M, Accardo J,
Buschiazzo A, de Carli F, Pagani M, Nobili F. Functional neuroimaging and
clinical features of drug naive patients with de novo parkinson’s disease and
probable RBD. Parkinsonism Rel Disord 2016;29:47–53.

[45] Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I,
Gilardi MC, Frisoni G, Friston K, Ashburner J, et al. A standardized [18 f]-
FDG-PET template for spatial normalization in statistical parametric mapping of
dementia. Neuroinformatics 2014;12(4):575–93.

[46] Teune LK, Renken RJ, Mudali D, Jong BMD, Dierckx RA, Roerdink JBTM,
Leenders KL. Validation of parkinsonian disease-related metabolic brain patterns.
Mov Disord 2013;28(4):547–51.

[47] Teune LK, Strijkert F, Renken RJ, Izaks GJ, de Vries JJ, Segbers M,
Roerdink JBTM, Dierckx RAJO, Leenders KL. The alzheimer’s disease-related
glucose metabolic brain pattern. Curr Alzheimer Res 2014;11(8):725–32.

[48] Meles SK, Teune LK, de Jong BM, Dierckx RA, Leenders KL. Metabolic imaging
in parkinson disease. J Nucl Med 2016.

[49] Eckert T, Tang C, Eidelberg D. Assessment of the progression of parkinson’s
disease: a metabolic network approach. Lancet Neurol 2007;6(10):926–32.

[50] Villmann T, Staps D, Ravichandran J, Saralajew S, Biehl M, Kaden M. A learning
vector quantization architecture for transfer learning based classification in case
of multiple sources by means of null-space evaluation. In: Bouadi T, Fromont E,
Hüllermeier E, editors. Advances in intelligent data analysis XX. Cham: Springer
International Publishing; 2022, p. 354–64.

http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb7
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb8
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb8
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb8
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb8
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb8
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb9
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb9
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb9
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb9
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb9
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb10
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb10
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb10
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb10
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb10
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb11
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb11
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb11
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb11
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb11
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb12
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb13
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb14
http://arxiv.org/abs/1801.00631
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb16
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb17
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb18
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb19
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb20
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb21
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb21
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb21
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb21
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb21
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb22
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb23
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb23
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb23
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb24
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb24
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb24
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb25
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb25
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb25
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb25
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb25
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb26
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb26
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb26
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb27
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb28
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb29
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb30
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb31
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb31
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb31
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb31
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb31
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb32
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb32
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb32
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb32
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb32
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb33
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb33
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb33
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb34
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb35
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb36
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb36
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb36
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb36
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb36
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb37
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb37
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb37
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb37
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb37
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb38
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb38
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb38
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb39
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb40
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb40
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb40
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb41
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb41
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb41
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb42
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb43
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb43
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb43
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb43
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb43
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb44
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb45
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb46
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb46
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb46
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb46
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb46
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb47
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb47
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb47
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb47
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb47
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb48
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb48
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb48
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb49
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb49
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb49
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50
http://refhub.elsevier.com/S0933-3657(24)00028-9/sb50

	Subspace corrected relevance learning with application in neuroimaging
	Introduction
	Materials and Methods
	Generalized Matrix LVQ
	Subspace Corrected Relevance Learning
	Artificial Dataset
	Neuroimaging Dataset

	Results and Discussion
	Artificial Dataset
	Neuroimaging Dataset
	Early vs. Late Stage Parkinson's Disease


	Conclusion and Future work
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


