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Abstract

The accurate diagnosis of cancer, its prognosis and the correct classification of patients into
molecular and/or phenotypical subclasses is crucial. The new biomedical technologies and
methodologies available nowadays produce large amount of data and appropriate statistical
techniques are needed for rigorous analyses. Biomarkers play a fundamental role and the
discovery of new ones to help the detection of disease or its development and to predict
the usefulness of treatments constitutes a great scientific result. To critically evaluate the
discriminant power, the Receiver Operating Characteristic (ROC) curve is the common used
tool. Optimal, always concave, non-decreasing and above the 45-degree line curves should
be preferred, but, actually, everybody uses staircase-shape ROC curves which are not so.
This thesis, starting from a real case study which aims to discover new biomarkers to improve
the diagnostic route of prostate cancer, proposes an original proper default alternative to
the usual empirical implementation of the binary classification curve. The optimality of
the likelihood-ratio based approach, a nonparametric extension of naïve Bayes estimation
and the strict relationship between the ROC definition and a general notion of concentration
of two probability measures are deeply exploited. The new classification procedure can
be applied to finite, continuous and even more complex data types, under the only wide
assumption that the likelihood-ratio is meaningful. Furthermore, particularly in multivariate
settings, as in genomic studies where the analysis of different biomarkers can improve the
performance, the likelihood-ratio based rule outperforms commonly used classifiers based
on linear combinations of predictors. On the other hand, it is noteworthy to also consider the
classification problem by itself in an unsupervised manner, to investigate up to which point,
with modern technologies, is possible to adopt basic methods (such as maximum likelihood
and hard assignment) to classify subjects. Indeed, at present, large part of the literature is
devoted to soft approaches, related to mixture models. Therefore, a new implementation of
hard assignment is proposed, exploring parallel computing and comparing results on a small
highly cited dataset.
Lastly, some more applied works are presented in the final part of the thesis.
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Chapter 1

Introduction

1.1 Introduction and motivation

Nowadays, biomarkers play a fundamental role in many different fields, especially in medi-
cine, helping the diagnosis, prognosis and treatments decision for an increasing number of
pathologies, from cancers to cardiovascular illness, from infectious diseases and inflamma-
tion to food disorders, just to cite some examples. There is not an unique definition and they
can be almost every objectively measurable patient characteristic. The great advancement
in technologies which characterises the current times has offered the tools to realize what
is indicated by someone as a new industrial revolution: at present it is possible to analyse
thousands of genes and molecules simultaneously, to obtain relevant information on a subject
health status by a simple non-invasive blood or urine exam, to collect and store a quantity of
details just unthinkable thirty years ago. On the other hand, the availability of a such large
amount of data gives rise to unexpected problems and challenges which feed the newborn
Data Science; it is sufficient to do a quick search on the web looking for personalized medi-
cine, big data, machine learning or deep learning to find millions of results: the rigour of
mathematics and statistics is the necessary instrument to navigate this universe.
Certainly, in this perspective, it is essential to face problems from a multivariate point of view:
for example, in medical diagnostic, various biomarkers can highlight different aspects of the
same disease and their diagnostic, prognostic or predictive value can be strengthened consid-
ering them all together. For this reason in the thesis the focus is on multivariate methods. In
addition to discovering new biomarkers, it is imperative to critically evaluate their discrimin-
ant power (i.e. their ability to correctly classify subjects, to predict a recurrence of a disease
or the usefulness of a therapy): the receiver operating characteristic (ROC) curve is the most
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popular tool with this aim. It had been firstly introduced in the field of signal detection theory
in the 1960s, but then it sprung up in many different disciplines from statistics to medical
diagnostics, from machine learning to psychology and educational assessment. Actually
the ROC curve for binary populations is defined as a parametric two-dimensional locus of
points identified by the sensitivity and the specificity of the classifier. From a theoretical
point of view, it is noteworthy to restate some well-known properties and to highlight the
relationship with a general definition of concentration function. On the other hand, most
interesting applications arise when the two underlying and partially overlapping populations
are not known and should be estimated, moving towards a data-driven approach. Usually,
empirical estimators of the ROC curve are adopted: they are step functions, whereas smooth
and always concave curves would be preferred. Therefore a new non-parametric estimation
method is proposed: it directly considers the likelihood-ratio as the decision variable, from
one side rooting the procedure in the classical statistical theory of decision making and
exploiting the Neyman-Person lemma, on the other side winking to machine learning and
involving the näive Bayes classifier.
In the ROC curve framework, it is common to assume to know the true membership label
of each unit in a training sample (supervised learning). However, it is also of interest to
investigate if collected data allow to classify units in different groups without a priori know-
ledge of their true membership (this problem is usually known as clustering or unsupervised
learning). The assignment becomes itself a parameter of the model. The focus is primarily
on categorical data and, in particular, on multivariate binary data which commonly originate
in pools, questionnaires, online automatic interviews, . . . Specific methodologies to deal with
this kind of information have been formulated since longtime: at present, a soft approach
related to mixture models and latent class analysis gains popularity over the more basilar
hard assessment, which dates back to 1970s and is a combinatorial clustering problem. Nev-
ertheless, it is stimulating to investigate up to which point, with modern technologies, is
possible to use basic methods, such as maximum likelihood and hard assignment, to identify
the class membership of given subjects.
Lastly, part of this dissertation is devoted to present more applied work: I believe that in
Statistics as well as in many other fields, a strong theoretical background is fundamental,
but it should be complemented by concrete examples and case studies to become more
understandable and to reach a larger target.
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1.2 Organization of the dissertation

This thesis is organized as follow. In Chapter 2 the general framework is introduced, recalling
the well known definition of ROC curve, its properties and the important connection with the
likelihood ratio, as well as the relationship with the Lorenz curve and the Gini coefficient. In
addition, Section 2.3 is devoted to an overview of most common ROC estimation methods.

In Chapter 3 the real problem that stimulated the interest for biomarkers, classification
and ROC curve is presented and the published results are reported and discussed. In particu-
lar, a new signature for prostate cancer diagnosis is proposed in Section 3.3: it is an easily
applicable blood-based classifier that requires testing of two microRNAs and the prostate
specific antigene (PSA) and which shows a discriminant power higher than PSA alone and
allows to avoid about one-third of unnecessary biopsies. Furthermore, some medical and bio-
logical notions and a general definition of biomarker are provided for a better understanding
of the project, which has been developed in collaboration with the Cancer Genomics Lab of
the Tempia Foundation (Biella, Italy).

In Chapter 4 a novel algorithm to estimate a proper ROC curve in the multivariate set-
ting is proposed, exploiting the flexible Bayes assumption, the Gaussian kernel density
estimation and the local independence of the features. Firstly, in Section 4.1 Fisher linear
and quadratic discriminant analysis is presented as an example of likelihood-based classifier;
then the Näive Bayes classifier and an extension that overcomes the Gaussian assumption
(the flexible Bayes) are introduced in Section 4.2. The core of the chapter is constituted by
the new algorithm, detailed in all its steps. In addition, some simulations are run to compare
the performance of the new classifier with respect to the widely adopted empirical estimate
of the ROC curve associated to a logistic score. Lastly, the new estimation method is applied
to the real case study previously presented in Chapter 3.

In Chapter 5 the relationship between the likelihood-based ROC curve and the general
definition of concentration function is explored from an exquisitely theoretical point of
view. After having introduced a likelihood ratio based classification rule which entails a
randomization device to deal with atoms (Section 5.1), an alternative formulation of the ROC
curve is presented and the connection with the concentration function is proven in Section
5.2. Furthermore, a critical appraisal of a recent published paper is proposed in Section 5.4,
whereas some considerations on discrete ROC curve are provided in the last section of this
chapter.
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In Chapter 6 the focus of the work switches from a supervised learning perspective to
an unsupervised one and model-based clustering problems are presented for binary outcomes
and binary populations. In particular, it is of interest to investigate up to which point, with
modern technologies, it is possible to adopt traditional and basic methods, such as maximum
likelihood and hard assignment, to classify units (usually subjects) in different groups. The
differences between hard and soft approach are presented in Section 6.1, K-means and
EM algorithms are introduced in Section 6.2, while latent class analysis models and their
implementation in R are shortly summarized in Section 6.3. The core of the chapter is built
around a new implementation of hard assignment in R; computational limits and parallel
computing solutions are explored to solve the NP-hard optimization problem (Section 6.4).
Finally, the proposed algorithm is applied to a toy example and results are compared to those
obtained with the soft approach (Section 6.5).

Lastly, in Chapter 7, some more applied works are collected. The first, described in Section
7.1, was developed during a six months internship at Bayer Pharmaceutical (Berlin, Ger-
many); it was the first attempt to look in depth into all clinical data routinely collected in
trials to understand if there was valuable unused information. Multivariate predictive models
for treatment efficacy with time-to-event outcomes (overall survival), using only baseline
data routinely collected in clinical trials, are presented; machine learning and deep learning
methods are compared to more traditional Cox models.
The other two studies are epidemiological analyses of cutaneous malignant melanoma, de-
veloped in collaboration with the Piedmont Cancer Registry (Turin, Italy). In particular,
I leaded the first and largest observational studies on European incidence trends by thick-
ness’s level and on trends of lethal melanomas: published results are reported in Section 7.2,
whereas in Section 7.3 a new approach for analysing fatal cases is presented.

More relevant R code, as well as some biological and technical details for the motivat-
ing example are presented in Appendices.



Chapter 2

Theoretical fundamentals

In this chapter I present the Receiver Operating Characteristic (ROC) curve, its most important
properties and the principal methods to estimate it. In addition, the well known relationship
with the likelihood ratio function and the connection with Lorenz curve and Gini coefficient
are explored. These theoretical fundamentals will be largely used in the other chapters which
contain the original developments of the thesis and some applications.

2.1 The Receiver Operating Characteristic Curve

The Receiver Operating Characteristic curve (ROC curve, also indicated as relative operating
characteristic by some authors) originated in the context of signal detection theory in 1960s
[9, 10]; since then its use spreads in different fields from statistics to medical diagnostics and
radiology, from machine learning to psychophysics, as made evident by the large amount of
literature available (as [1, 11, 12] just to cite some recent books).
Essentially the ROC curve is a graphical tool that allows to evaluate the discrimination
performance of a classifier, i.e. to asses the accuracy of a statistical model aimed at dividing
units into two groups (henceforth indicated as P+ and P−). Extensions to multi-class problems
and to ROC surface are present in the literature, but will not be detailed in this chapter.
In the medical framework, as the one presented here (motivated by applications), in a typical
binary classification problem, units are subjects, the two populations could represent healthy
(P−) and diseased (P+) people, while the classifier is a screening or diagnostic test.
From a mathematical point of view, the ROC curve is the parametric two-dimensional locus
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of the points of coordinates

{(FPF(t),TPF(t)), t ∈ (−∞,∞)} (2.1)

where the TPF (True Positive Fraction) and the FPF (False Positive Fraction) are the following
conditional probabilities:

TPF =P(S > t|P+)
FPF =P(S > t|P−),

respectively related to the sensitivity (Se, the probability to assign a subject to P+, given
it comes from P+) and 1-specificity (1− Sp, the probability to wrongly assign a subject
from P− to P+ ) of the test. S is the diagnostic variable and, often, it is a score of multiple
measurements obtained applying an appropriate function to the vector of predictors. t ∈R is
the threshold parameter (the cut-off) of the classification rule. It is common to assume that
a greater value of S is more indicative of disease and therefore to assign a subject to P+ if
S > t (as highlighted by Figure 2.1). Hence the ROC curve is described by varying t. If the

Figure 2.1 Given two partially overlapped populations and a threshold value t, the specificity
(shaded in grey) is the proportion of healthy people with a score lower than the cut-off; the
sensitivity (in red) is the proportion of diseased people with S > t.

two populations completely overlap, the ROC curve reduces to the chance diagonal (the line
C in green in Figure 2.2) and the classifier assigns subjects to populations at random; on the
other hand, if the two populations are totally separated, there exists a value t which allows
to perfectly discriminate subjects: this is the ideal classifier, whose ROC is formed by two
segments connecting the point (0,0)− (0,1) and (0,1)− (1,1) (the curve A in red in Figure
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Figure 2.2 The curve A in red represents the ideal classifier; the line C in green describes
a random classifier; the curve B in black is an example of a common classifier in between.
(Figure adapted from [1]).

2.2). Actually the ROC curve of a diagnostic test lies between these two extremes, with the
better the closer to the upper left corner of the square.

2.1.1 ROC curve properties

The ROC curve has some well known properties (see [11, 12] for proofs and details), reported
here for their importance in the development of the work.

P1. The ROC curve is invariant to strictly increasing transformations of the diagnostic
variable S.

P2. If the decision variable S is a continuous random variable with positive densities f+
and f−, a convenient equation for the ROC curve can be derived: let F+ and F− be the
distribution functions of S in the two populations and let F−1 be the inverse of F .

FPF(t) = P(S > t|P−) = 1−F−(t) ⇒ t = F−1
− (1− s)

TPF(t) = P(S > t|P+) = 1−F+(t)

Eliminating t:
ROC(s) = 1−F+(F−1

− (1− s)) (2.2)
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P3. Under the hypotheses of the previous property, and assuming that the slope of the ROC
curve at threshold value t is well-defined:

∂ROC(t)
∂ t

=
P(S ≤ t|P+)
P(S ≤ t|P−)

.

Therefore, the slope corresponds to the likelihood ratio L, evaluated at the threshold
value t. More details and implication of this property will be presented in Section 2.2.

2.1.2 AUC and C-index

In addition to the principal properties of the ROC curve just recalled, it is useful to introduce
the Area Under the Curve (AUC), a widely used summary measure of the overall accuracy of
a diagnostic test, and the strictly related definition of concordance index (usually indicated as
C−index).
The AUC is defined as

AUC =
∫ 1

0
ROC(z)dz.

It varies between 0.5 (uninformative test) and 1 (perfect classifier), and greater AUC values
indicate better tests. Clearly, if a ROC curve C1 dominates another ROC curve C2 for each
z ∈ (0,1), the same ordered relation is inherited by the AUC, i.e. AUCC1 ≥ AUCC2 ; however,
a higher AUC does not necessarily imply a dominance of the correspondent ROC (because
curves can cross). Finally, an interesting interpretation that precisely states the connection
with the Mann-Whitney-Wilcoxon statistical test (as highlighted in [13] and proven in [14])
is:

AUC = P(S+ > S−).

In other words, the AUC is equal to the probability that a classifier assigns an higher score to
a randomly selected subject from P+ than to one independently and randomly chosen from
P−.
A generalization of the AUC is the concordance index (C-index), the most popular measure
of goodness-of-fit in survival analysis. It is a function of the rank sum statistic and it can be
applied to evaluate the model discriminatory power with non-continuous and censored data.
Many different estimators have been proposed (as recently reviewed in [15]). Following the
formulation given by Harrell et al. [16]

C =
∑i ̸= j ∆i1[Xi<X j]1[β̂Zi>β̂Z j]

∑i ̸= j ∆i1[Xi<X j]
(2.3)
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where 1[·] is the indicator function and, for the ith subject, Xi = min(Ti,Di), Ti is the survival
time, Di is the censoring variable, ∆i = 1 if Xi = Ti (0 otherwise) and β̂Zi is the prognostic
risk score (based on baseline evaluation) with Zi vector of covariates. Therefore, among all
pairs of patients for which it is possible to determine the order of survival times, the C-index
represents the proportion of concordant pairs, i.e. the fraction of pairs of patients with larger
predictive survival who lived longer. Of course, if both patients are alive, the date of death is
not known and the pair must be excluded; the same happens for patients who died together
and for pairs in which one died and the other is censored at a time which does not allow to
determine if he lived longer than the first.
As for the AUC, the C-index varies between 0.5 (random prediction) and 1 (the baseline data
always allows to determine the patient with better prognosis with certainty).

2.2 The likelihood ratio

In general, the likelihood ratio function L for a decision (diagnostic) variable S is defined as:

L(s) =
P(S = s|P+)
P(S = s|P−)

where P is a probability density function if S is continuous and a mass if S is discrete.
This quantity gives an idea of the extent to which the data support one condition with respect
to the other and it allows to map a multivariate vector onto an one-dimensional decision axis
(becoming a very useful tool when considering multiple tests).
Indeed, the fundamental role of likelihood ratio in decision making process has been high-
lighted since the first works on the matter more than forty years ago [9, 10]. However, it is
important to re-state the following well-known result (extensively used hereinafter).

Result 2.2.1. The likelihood ratio criterium, i.e. the decision rule which classifies subjects as
diseased if

L(S)> t for some threshold t ∈R

is optimal, attaining the highest TPF at a given P(L(S)> t|P−), among all possible criteria
based on S.

Actually, this result originates from the theory of hypothesis testing and it is essentially the
Neyman-Pearson Lemma [17, 18].

Lemma 2.2.2 (The Neyman - Pearson Lemma (from [18])). Let F− and F+ be probability
distributions having densities f− and f+ respectively, with respect to a measure µ .
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(i) Existence. For testing H0 : f− against the alternative H1 : f+ there exists a test ψ and
a constant k such that

E0ψ(S) = α (2.4)

and

ψ(s) =

1 when f+(s)> k f−(s),

0 when f+(s)< k f−(s).
(2.5)

(ii) Sufficient condition for a most powerful test. If a test satisfies (2.4) and (2.5) for some
k, then it is the most powerful for testing f− against f+ at level α .

(iii) Necessary condition for a most powerful test. If ψ is most powerful at level α for
testing f− against f+, then for some k it satisfies (2.5) a.e.µ . It also satisfies (2.4)
unless there exists a test of size less than α and with power 1.

In other words, in the medical diagnostic framework, the belonging to the healthy population
(P−) is the null hypothesis H0, the decision variable S generates the data on which the test is
conducted and the most powerful test of size α is given by L(s) = P(S>t|P+)

P(S>t|P−) ≥ k. In addition,
the Type I error α is simply the false positive fraction, while the power of the test (1−β )
and TPF are exactly the same entity.
As a consequence:

• The ROC curve for the L(S) is optimal, in the sense that it is uniformly above all other
curves based on S.

• If L(·) is monotone increasing with respect to the decision variable S, then classific-
ation rules based on S are optimal, because equivalent to rules based on L(S). The
monotonicity of the likelihood ratio is an assumption often made in publications to
obtain more efficient results [19–21]; however the optimality of the likelihood ratio
based ROC curve persists independently from this assumption (and, unless differently
stated, it will not be retained in the following of the work).

• The likelihood ratio based ROC curve is concave everywhere in [0,1]: its slope
decreases monotonically with the false positives probability (this can be proven using
the relation L(L(S)) = L(S), as in [9]).

In particular, the ROC curve based on the likelihood ratio, which satisfies all these nice
properties, is usually indicated as a proper curve, following the definition given by Egan
in 1975 [10]. On the other hand, an improper ROC curve (i.e. a curve not based on the
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likelihood ratio) can reverse its convexity at certain points, presenting hooks (where the
classifier performs worse than chance), as clearly highlighted by Figure 2.3, extracted from
[2]. However, the likelihood ratio approach is so powerful only if the joint conditional

Figure 2.3 ROC curves with different levels of improperness, extracted from [2].

distributions F+ and F− are correctly specified. Some authors [11, 22, 23] claimed that using
the LR is equivalent to use the (more familiar) risk score, defined as the posterior probability
of the positive population corresponding to any given prior probability. However, in the
following of the dissertation, I will focus specifically on the LR.
If P+ and P− are not known, it is necessarily to estimate them (and any parameter which is a
function of them) from the data. The next Section 2.3 is properly devoted to review principal
estimates of ROC curves.

2.3 ROC curves estimation

Hitherto, the ROC curve and its most important properties have been presented from a
theoretical point of view, assuming to know the quantities which generate the curve; however
in many real situations, one only has empirically collected datasets and, therefore, the
underlying populations and the associated ROC curve must be learned from the data (i.e.
from the realization of given covariates or features). To achieve this, different approaches
can be adopted, from a fully non-parametric empirical ROC estimation to the binormal
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model, passing through kernel smoothing techniques ([11, 12, 24, 25]), as detailed in the
next paragraphs. Other methods have been proposed to estimate the ROC function, to gain
flexibility and better fit for atypical data (using Gaussian mixture [26]) or to obtain simpler
analytic and closed form expressions [27, 28]. In addition, an attempt to exploit optimality
of LR based procedures has been made with a semiparametric approach by Qin and Zhang
[29], who proposed to estimate the log likelihood ratio function assuming an exponential link
between f+ and f−:

log
f+(x)
f−(x)

= α +β
T r(x),

where r(·) is a smooth function and the parameters α and β can be estimated by max-
imum semi-parametric likelihood. However, this approach suffers from a certain level of
arbitrariness in the choice of r(x).

2.3.1 The empirical ROC

The empirical ROC curve is the simplest and most popular estimate: it is easily obtained
computing (and plotting) the sample frequencies of false positive and true positive fractions
for different threshold values t, i.e.

F̂PR(t) =
∑

N−
i=11[S>t|P−]

N−

T̂ PF(t) =
∑

N+
i=11[S>t|P+]

N+
,

where N− and N+ are the number of healthy and diseased subjects. It is a discrete set of
points linearly joined, and therefore the estimated ROC curve

R̂OC(t) = {(F̂PR(t), T̂ PF(t)), t ∈R}

results in a step function (as in Figure 2.4): if only one between F̂PR(t) and T̂ PF(t) changes
with t, horizontal and vertical jumps are reported on the graph (with larger size in presence
of ties), whereas mutual changes of samples proportions produce diagonal segments.
The empirical ROC estimator is free from structural assumptions, non-parametric, depends
only on the rank of the data and it is invariant for monotone increasing transformation of the
decision variable. In addition, thanks to the law of large numbers, it uniformly converges
to the theoretical curve (T̂PR converges to TPR and F̂PR converges to FPR for every fixed
threshold) and, as detailed in [24], it also inherits good asymptotic properties of maximum
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Figure 2.4 Example of an empirical ROC curve on fictitious data

likelihood estimates. However, empirical ROC curves are generally improper: they easily
switch from roughly concave to roughly convex and vice versa and, actually, to speak of
convexity or concavity it is not even applicable, since they are staircase-shaped functions. To
overcome this drawback other smoother estimators are presented in the next paragraphs.

2.3.2 Nonparametric kernel smoothing

To build smooth curves retaining good properties seen before (in particular the distributional
free assumption), a widely used approach relies on kernel density estimation (KDE) and
it was firstly presented by Zou [25] and Llyod [30]. Indeed, Zou proposed to apply kernel
density methods to estimate density functions f+ and f− under P+ and P− and then to
numerically integrate to obtain the correspondent distribution functions estimates which
appear in the ROC definition:

R̂OC(x) = 1− F̂+(F̂−1
− (1− x)).

Specifically, recalling the kernel density estimation theory, as reported in e.g. [31],

f̂s(x) =
1

nsλs

ns

∑
i=1

K
(

x−Xi

λs

)
with s ∈ {+,−}

where λs is the bandwidth (i.e. the smoothing parameter) and K is the kernel function (a
non-negative function integrating to 1). Intuitively, it is the sum of “bumps” placed at the
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observations Xi, where the shape of bumps depends on the kernel. Common choices for the
kernel function are:

• Gaussian: 1√
2π

exp(−t2/2)

• Epanechnikov: 3
4
√

5

(
1− 1

5t2) for |t|<
√

5

• Biweight: 15
16(1− t2)2 for |t|< 1.

Density estimation is quite robust with respect to the choice of the kernel, while it appears
more sensible to bandwidth values; in particular, for λs → 0 the estimator reduces to a sum of
Dirac Delta functions spiked at the observations, whereas for large values of λs many details
(e.g. multimodality of the data) are concealed by the resulting flattening function. Therefore,
kernel functions and especially bandwidth values must be chosen carefully. Zou made some
suggestions, however the optimal smoothing parameter for estimating the densities f− and
f+ does not imply the correspondent optimality for the distributions and for the ROC curve.
To overcome this, Lloyd directly estimated F+ and F− via KDE (providing optimal values
for bandwidth selection of order O(n−1/3)) and showed that the mean squared error (MSE)
for kernel estimators is asymptotically smaller than the empirical one [32], and therefore
he recommended their use. In addition, Zhou and Harezlak [33] compared non-parametric
kernel smoothing methods to find the best one for ROC estimation and suggested adopting
the Altman approach (again of order O(n−1/3)), while Hall and Hyndman [34] investigated
optimal bandwidths when F+ and F− are quite different functions. Nevertheless, kernel-based
estimators of the ROC curve converge only pointwise to the theoretical true ROC and are
not invariant under monotone data transformation; therefore other smoothing methods can
be considered, such as local linear smoothing [35], Bayesian bootstrap [36], bandwidth-free
smoothing of the empirical CDFs [37], direct smoothing of a distribution function Z = 1−F−
for which it is possible to express ROC curve as ROC(t) = P(Z ≤ t) [38].

2.3.3 The binormal model

The binormal model is the reference model for ROC analysis. It assumes normal distributions
for the two underlying and partially overlapping populations P+ and P−; it is highly robust
and, in practice, it can be applied with good fitting results to a large set of different types
of data: it is sufficient that data can be considered normal after a monotone transformation.
In particular, let µ+, µ− and σ2

+, σ2
− be the means and variances of P+ and P− populations

respectively, with the common assumption that diseased subjects have higher values of the
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decision variables; therefore, as reported by every book on ROC curves (see for example
[11] or [12]), the ROC curve has the form:

ROC(x) = Φ(a+bΦ
−1(x))

where a = (µ+−µ−)
σ+

, b = σ−
σ+

, Φ(·) is the normal standard distribution function and Φ−1(x)
its quantile. If b = 1 (homoscedasticity) the binormal ROC curve is concave everywhere,
whereas for b ̸= 1 the curve presents always an hook (and the likelihood ratio of the decision
variable is no longer monotone). This can be straightforwardly extended to the multivariate
case (i.e considering multivariate normal distributions). In addition, for binormal ROC
curve the AUC can be easily written in closed form, recalling that AUC = P(S+ > S−) =
P(S+− S− > 0). Therefore, for independent S+ and S− normal distributions, S+− S− ∼
N (µ+−µ−,σ

2
++σ2

−) and

AUC =P

Z > 0− (µ+−µ−)√
(σ2

++σ2
−)


=1−Φ

 µ−−µ+√
σ2
++σ2

−


=Φ

 µ+−µ−√
σ2
++σ2

−


=Φ

(
a√

1+b2

)

2.4 The connection to Lorenz curve and Gini coefficient

It is well known that there is a strict relationship between the ROC and it summary index
AUC and the Lorenz curve with the Gini coefficient. Actually, for situations with monotone
likelihood ratio, the ROC curve can be obtained from the Lorenz curve applying a linear
transformation. In Chapter 5 some interesting consequences due to this connection will be
presented, while here definitions and results useful afterwards are introduced.
The Lorenz curve is a tool popular among economists to measure the wealth distribution
in populations and to highlight income inequalities; as commonly defined, it is the plot of
the cumulative percentage of income against the cumulative percentage of population: the
more the wealth is concentrated in a small fraction of the population, the more the curve
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is near the point (1,0), whereas if there is a uniform distribution of the income the curve
reduced to the 45−degrees line from the origin (“line of perfect equality”). This idea has
been transferred to the medical diagnostic field [3] with a slightly different interpretation, as
the curve of the cumulative percentage of diseased subjects against the cumulative percentage
of the non-diseased (as it can be seen from Figure 2.5), where the subject are classified in the
two groups based on their likelihood-ratio score. To evaluate the “bowedness” of the curve

Figure 2.5 The Lorenz curve, adapted from [3].

it is convenient to use the Gini index, a summary measure of the area between the Lorenz
curve itself and the diagonal line (the gray shaded area in Figure 2.5) which varies between
0 and 1, as the AUC. Indeed, often in classification and medical diagnostic papers the Gini
index is directly defined via AUC, in the following way:

G = 2∗AUC−1

even if this relation is precisely correct only if there is a one-to-one correspondence between
the summary indices for the curves. In other words, the Lorenz curve should be a mirror
image of the ROC curve: this happens when the two underlying populations have normal
distributions with the same variance, and therefore the likelihood ratio is a monotone increas-
ing function of the data (as already highlighted in [3, 39, 40]). If this is not the case, the
Lorenz curve appears to be better, because it continues to be a concave function, while the
(traditional) correspondent ROC curve presents hooks and a “wiggly” shape; it is therefore
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necessary to apply a concavifying transformation, reordering the likelihood ratio values.
More details will be presented in following chapters 4, 5.





Chapter 3

The motivating example

In this chapter the real problem that stimulated my interest for cancer biomarkers, classifica-
tion and ROC curves is introduced. It has been raised by the Cancer Genomics Lab of the
Edo and Elvo Tempia Foundation in Biella (Italy); I have been involved since the beginning
and I took care of all the statistical analyses and evaluations needed for the development of
the project.
The project aims to improve the diagnostic route of prostate cancer, finding new non-invasive
and easy-to-detect biomarkers, to be used in combination, possibly with the prostate specific
antigene (PSA) measurement (the standard non-invasive tool for prostate cancer detection).
Beyond the general definition of biomarker and considerations on the relevance of a multivari-
ate approach, some background information on the disease and on biological instruments
and techniques are provided for a better understanding of the topic and of the data analysis.
Part of the material presented here is extracted from the paper I co-authored “Circulating
microRNAs combined with PSA for accurate and non-invasive prostate cancer detection”,
published on Carcinogenesis in 2018 [41].

3.1 Biomarkers: a general definition

Following the definition given by the US National Institute of Health [42], biomarkers are
objective and measurable characteristics used as indicators of normal biological, pathogenic,
pharmacologic processes or responses to an exposure or intervention. They are categorized
based on their role and application: from susceptibility, diagnostic, prognostic and monitoring
biomarkers for the evaluation of the risk, the detection and the progression of a medical
condition of interest, to predictive, pharmacodynamic, and safety biomarkers related to the
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assessment of the effects of a medical product or an environmental agent as well as the adverse
events of treatments (e.g. the toxicity). Groups can partly overlap and the same quantity
can belong to different categories; biomarkers can be simply physiologic measurements
(blood pressure, body temperature, . . . ), radiological images or highly complex molecular
variables (such as microarrays, miRNAarrays, gene polymorphisms and mutations, proteins,
metabolites, . . . ). Their distinctive features are the non-invasiveness, the easy way for the
measurement (for example through a blood sample) and the reproducibility. Furthermore, it
is important to highlight that “a biomarker is not an assessment of how an individual feels,
functions, or survives” [42] and it is distinct from the clinical outcome of interest (even if a
good marker consistently and accurately predicts it).
Actually, it should be clear from the broader definition above that almost everything showing
an interaction between a biological system and a potential hazard could be regarded as
a biomarker. In particular, in the following, I will consider only diagnostic markers, i.e.
biomarkers used to detect or confirm the presence of the condition of interest or to identify
subjects with a subtype of the disease [42].
Usually, in medical field and in particular in oncology, it is important to detect diseases
as early as possible to allow more effective treatments and better prognosis; diagnostic
tests based on biomarkers measurements play an essential role for screening purposes if
sensitivity (the ability of correctly identify diseased patients) and specificity (the ability to
correctly classified healthy subject) are sufficiently high. Indeed, the perfect test should reach
an accuracy of 100% (where the accuracy is a summary index for classification problem).
However, often, single biomarkers are not enough accurate to enter the clinical practice and
a multivariate approach is to be preferred: different biomarkers can catch different aspects
of the disease and their combination results in an higher diagnostic power. Therefore, the
best way to combine them acquires increasing interest: it is well known that the optimal
classifier relies on the log-likelihood ratio statistics for diseased and healthy populations
(for the Neyman-Pearson lemma, as already stated in Chapter 2, and as it will be detailed
in Capter 4 with original results). However, many authors insisted on linear combinations
[5, 43, 44] and logistic score [11]. The latter approach, more intuitive and easy to interpret
also for non-statisticians, has been adopted in the study presented in the next paragraphs.

3.2 Some medical and biological notions

Prostate cancer (PCa): highly incident disease which occurs in men (especially after 50
years of age) and one of the most common causes of cancer-related death [45]. At present its
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correct diagnosis relies on invasive tests for histological verification (such as multiple bioptic
sampling), because the digital rectal examination (DRE) has low sensitivity [46], whereas
the prostate-specific antigene (PSA) measurement (which was the standard screening tool
till few years ago) is organ - but not tumor-specific and it leads to too high percentages of
false positives and false negatives (with a positive predictive value of only 30−35% [47]).
Actually, it is still common to adopt a PSA cut-off of 4 ng/ml to firstly discriminate healthy
from disease subjects, but PSA can result high and/or increased for factors different from
the presence of cancer (for example due to the benign prostatic hyperplasia (BPH)), as well
as aggressive tumours can be found in subjects with low levels of PSA. Other important
prognostic factors are gleason score (GS, a value based on the microscopic appearance of
prostate cancer; it varies from 2 to 10 and higher values indicate more aggressive tumors)
and clinical TNM staging (cT). The latter is the internationally accepted standard for cancer
staging, related to the anatomical extent and spread of cancer, where T category describes
the primary tumor site, N category describes the regional lymph node involvement and M
category describes the presence of distant metastases.

microRNA (miRNAs or miRs): endogenous, single-stranded non-coding small RNA molecules
(containing about 22 nucleotides) usually located in cells and found in plants, animals and
some viruses. miRNAs can be secreted into the extracellular space and can be detected in
different body fluids (blood, saliva, urine . . . ) Circulating miRNAs have a remarkably stable
form in plasma and serum; they control major pathways such as cell growth, proliferation,
differentiation and survival, they can act as tumor suppressors or oncogenes and appear
dysregulated in the early stage of cancers [48]. Tumor-associated miRs participate in inter-
cellular communication and disseminate through the extracellular fluid to reach and influence
the phenotype of remote targets. Therefore, free-cell circulating miRNAs have been proposed
as possible biomarkers for several diseases, including PCa [49, 50]. On the other hand,
most of the potential miRNAs biomarkers show small differences in their expression levels
between healthy and diseased people: attention must be paid to blood sampling methods and
a sufficient large sample size should be considered; in addition, often, several miRNAs are
evaluated together to improve their diagnostic/prognostic effect.

DNA microarrays: molecular biological technique which allows to analyse the gene ex-
pression profiling of thousands of genes simultaneously. Actually, the microarray is a solid
surface (the chip) filled by microscopic DNA spots (the features), each containing specific
DNA sequences (the probes). The process strongly relies on the hybridization principle and
the complementarity of the two DNA strands: fluorescently labelled target sequences bind to
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Figure 3.1 Example of a microarray chip with graphical interpretation of the fea-
tures intensity signal. (Figures extracted from https://www.perkinelmer.com/it/category/
cytogenetic-microarrays and https://www.discoveryandinnovation.com/BIOL202/notes/
lecture26.html).

probe sequences and generate a signal; the intensity of the signal depends on the quantity
of target sample bound to the probe and it is quantified for each feature. It is important to
highlight that microarrays provide relative measurements of the intensity of a feature with
respect to the intensity of the same feature under a different condition, and therefore, usually,
the quantity of interest is the logarithm of the ratio of these intensities.

Real-time quantitative polymerase chain reaction (RT- qPCR): laboratory technique to evalu-
ate gene expression in an accurate and reproducible way; it combines the DNA amplification
and detection in a single step to find the exact amount of a target sequence or gene; in
particular, during the amplification phase, a fluorescence is generated and measured during
each PCR cycle (in this sense it is a real-time (immediate) procedure); the fluorescence
increases with the increase of the number of gene copies during the reaction. The process
essentially consists in a series of temperature changes.
Two important quantities in RT-qPCR are the threshold line and the Ct (see Figure 3.2):

• the threshold line (the black dashed line in the figure) highlights the point at which the
reaction fluorescent intensity exceeds the background level and it is also indicated as
the level of detection;

• the Ct value is the PCR cycles number at which the sample’s reaction curve intersects
the threshold line, i.e. it is the point in time when the target amplification is first
detected. It is inversely proportional to the amount of target sequence: the lower the
Ct level, the greater the number of target copies in the sample. Often, to be sure that
the observed variations are due to real biological changes and not to technical issues,

https://www.perkinelmer.com/it/category/cytogenetic-microarrays
https://www.perkinelmer.com/it/category/cytogenetic-microarrays
https://www.discoveryandinnovation.com/BIOL202/notes/lecture26.html
https://www.discoveryandinnovation.com/BIOL202/notes/lecture26.html
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Figure 3.2 Threshold level and Ct value on a RT-qPCR amplification curve. (Figure extracted
from https://bitesizebio.com/24581/what-is-a-ct-value/).

Ct levels are normalized by comparison with Ct levels of reference genes. The ∆Ct

obtained in this way can be considered similar to the logarithm of the ratio of intensities
of gene expression in microarrays analyses.

3.3 A new signature for prostate cancer detection

Studies conducted on normal and (pre)tumoral prostate tissues showed patterns of differ-
entially expressed miRs according to disease status and/or severity [50, 51], with a certain
degree of concordance among different laboratories. As already stated, due to their stability in
body fluids, and particularly in serum/plasma, miRs could be ideal non-invasive biomarkers
for PCa detection or prognosis prediction [49, 50, 52]. However, circulating miRs analysis is
affected by variability in sampling procedures, RNA extraction and analysis methods, and
high quality study designs are scarce. Only few published studies strictly checked hemolysis,
discarded hemolysis-related miRs, optimized RNA extraction and miR quantification, and
used independent validation cohorts.
Most of the proposed miRs are able to distinguish HD from PCa or HD from BPH, but
perform very badly in distinguishing BPH from PCa. Some perform very well in specific
datasets or have been found deregulated in more than one study, but the sign of deregulation is
not always concordant [50] and their accuracy might suffer of overfitting. Indeed, validation
of the results gained from a screening cohort on a prospective one, using techniques more
suitable for diagnostic purposes such as RT-qPCR, remains still a hard task. Validation
should be intended as applying the same classification rule, without any change to improve
classification results according to the independent dataset. Moreover, several studies do not

https://bitesizebio.com/24581/what-is-a-ct-value/
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include BPH in the dataset, or the size of this class is limited and does not reflect a real
representation of BPH incidence. In addition, many prognostic miRs proposed so far derive
from studies where only high-risk PCa are included in the analyses, without considering that
these markers are aberrantly expressed in low-risk samples as well, questioning their use as
prognostic markers.
The project, developed with the Cancer Genomic Labs of the Edo and Elvo Tempia Founda-
tion, aimed to improve the diagnostic route of prostate cancer, proposing a new signature
(i.e. a combination of genetic biomarkers) based on microRNAs freely circulating in plasma.
It presents several added values, such as the quality of study design, adequate sample size,
accurate sample collection and processing, and appropriate classifier validation. In particular,
two independent datasets were analysed adopting different biological techniques (microarrays
and RT-qPCR):

a) Discovery phase: miR profiling of 120 plasma samples to identify candidate miRs able
to detect PCa more accurately than PSA alone;

b) Validation phase: cohort of 242 subjects, analysed by RT-qPCR, to test the classifier
(obtained in phase a)).

Starting from more than two thousands miRNAs, using both univariate and multivariate stat-
istical methods, a combination of two miRNAs (miR-103a-3p, let-7a-5p) and log-transformed
PSA has been found able to classify PCa samples better than PSA alone and to avoid about
one-third of unnecessary biopsies. Details are provided in the next paragraphs.

3.3.1 Materials & Methods

Samples from men with PCa, suspected symptoms of PCa but negative biopsies (BPH),
high-grade prostatic intraepithelial neoplasia (HGPIN) or atypical small acinar proliferation
(ASAP) were collected at the San Giovanni Battista Hospital of Turin prior to standard
12-core transrectal ultrasonography-guided biopsy. PCa were labelled, according to Gleason
Score (GS) values, as GS6, GS7 or GS > 7, whereas, according to PSA, GS and tumor size
(cT) within clinical TNM staging as low risk if GS = 6, PSA < 10, cT < 2b; as intermedi-
ate risk if 10 ≤ PSA ≤ 20 or GS = 7 or cT 2b− cT 2c; as high risk if GS = 8− 10 and/or
PSA > 20 and/or cT 3− cT 4. Clinically significant tumors comprised intermediate/high-risk
PCa. Plasma from healthy donors (HDs) was gathered at Edo and Elvo Tempia Foundation
from the same geographic area of the patients. HDs were in the same age range as patients,
had negative DRE and PSA < 4 ng/ml, were not under any pharmacologic treatment nor had
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any previous prostatic pathology.
The study was approved by the Ethics Committee. All subjects provided written informed
consent with guarantees of confidentiality.
Plasma collection, processing and storage adhered to good practice rules. Hemolyzed
samples or samples belonging to men with other cancer diagnosis were excluded from
analyses. Plasma was isolated from ethylenediaminetetraacetic acid (EDTA) or lithium
heparin blood samples within one hour from collection, with a standard procedure to prevent
hemolysis (technical details on plasma isolation, storage and circulating RNA extraction can
be found in Appendix A).
miR profiling was carried out on 138 samples, 120 of which (60 PCa, 51 BPH and 9 HD)
were homogeneously collected in heparin tubes and represented the discovery phase dataset
(Table 3.1). The remaining 18 HD samples were collected in EDTA tubes and were used for
comparison purposes only.
Cases and controls were homogeneous for geographic area, collection times, plasma separa-
tion method, storage and hemolysis level. For the discovery phase, samples homogeneous
for age, within each disease class, were selected. In the validation phase, samples were
consecutively collected and included HGPIN or ASAP lesions as well. This cohort was
enriched in older than 65 year-old men and in intermediate-risk PCa.

Statistical Analysis Raw data were processed using the limma R package [53] for microar-
ray analysis. Background correction and inter-array normalization were performed applying
normexp (offset= 20) and quantile methods, respectively. (Raw and average normalized
log2Intensities are available in the Gene Expression Omnibus public functional genomics
data repository (www.ncbi.nlm.nih.gov/geo/) with the following identifier: GSE113234).
An online tool (https://biostatistics.mdanderson.org/MicroarraySampleSize/) was used to
compute sample size for class comparisons: knowing the total number of analyzed miRs
(2006) and inputting 1% as acceptable percentage of false positives, 0.8 as desired statistical
power, 0.25 as standard deviation and 0.2 as minimum log2fold-change, the minimum num-
ber of samples per class should be 36.
To compare miR profiles between classes, linear model and empirical Bayesian analyses
were combined using the limma R package. Top differentially expressed miRs were selected
using 0.2 as cutoff for the log2fold-change in PCa versus non-PCa samples and 0.05 for
raw p-value. To compare quantitative real-time polymerase chain reaction (RT-qPCR) data
between PCa and non-PCa samples, Student’s t-test with Benjamini– Hochberg correction
for multiple testing was applied, whereas to compare PSA levels among different disease
classes, analysis of variance with Dunnett correction for multiple testing was used. In both

https://www.ncbi.nlm.nih.gov/geo/
https://biostatistics.mdanderson.org/MicroarraySampleSize/
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Table 3.1 Study populations for the discovery and the validation phases

Discovery phase dataset Validation phase dataset
Samples 120 242
PCa 60 68
BPH 51 93
HGPIN/ASAP 8
HD* 9 73
Age

Median 65 68
≤ 65 61 89
> 65 59 153

PSA 5.96 (4.42−8.40)† 4.91 (1.80−7.26)†

PSA ≤ 4 26 105
4 < PSA ≤ 16 79 123
PSA > 16 15 14

Gleason score
GS6 25 10
GS7 22 40
GS > 7 13 18

Risk class
PCa low risk 21 9
PCa intermediate risk 24 36
PCa high risk 15 23

* Only heparin-collected HD are reported. Other 18 EDTA-collected HD were analyzed by microarrays but
they were not included in the classifier construction.

†Median (first to third quartile).

cases, differences were considered statistically significant if adjusted p-values were < 0.05.
Looking at the data, the log2PSA distribution density of the PCa-BPH cohort of more than
400 consecutively collected samples available at the San Giovanni Battista Hospital in Turin
showed an inflection at 4 that corresponds to PSA = 16 (Figure 3.3, red curve) and, within
PSA > 16 ng/ml samples, there was a strong PCa enrichment; therefore, in the proposed
classifier, the latter were directly considered as PCa and only samples with PSA ≤ 16 ng/ml
were used to build a score that combines PSA with other variables. The appropriateness
of this cutoff was further verified by observing the log2PSA distribution density of another
big cohort of nearly 14000 asymptomatic men over 50 years who tested their PSA levels at
Tempia Foundation from 2012 to middle 2018 (Figure 3.3, black curve), within a spontaneous
adhesion context. From PSA = 16 on, this curve is very close to zero. Using log2Intensities
of differentially expressed miRs in PCa within PSA ≤ 16 ng/ml samples, log2PSA and
log2Age as input variables, a logistic regression model with Least Absolute Shrinkage and
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Figure 3.3 log2PSA distribution density. Red curve: cohort of 430 BPH or PCa patients
available at the San Giovanni Battista Hospital of Turin. Black curve: cohort of nearly 14000
not symptomatic men over 50 who tested their PSA levels at our Foundation from 2012 to
middle 2018, within a spontaneous adhesion context. The value of 4, corresponding to PSA
= 16, is highlighted.

Selection Operator (LASSO) penalty [54] was fitted to build a classifier able to discriminate
PCa from non-PCa, using the glmnet R package [55]. Five-fold cross-validation was applied
to find the best tuning parameter. Following the standards of binary regression, the estimated
log odds-ratios of these variables were multiplied by their values and then summed to build
a score: if the score was higher than 2.02 (an ad hoc threshold based on data to minimize
the number of false negatives and false positives), the sample was classified as PCa. This
way, the resulting overall classifier turned out to be a combination of the initial PSA check
(> 16 ng/ml) and the score. The accuracy of the classifier was measured by the area under
the receiver operating characteristic curve (AUC).

Quantitative real-time polymerase chain reaction First, seven miRs were evaluated on
the same EDTA-HD samples used for miR profiling to validate the expression changes using
RT-qPCR. Subsequently, they were tested on an independent set of EDTA plasma samples (10
HD, 10 BPH, 10 PCa). The two validated miRs were then tested on a validation phase dataset
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Figure 3.4 Decision tree of the final classifier developed in the discovery set and applied to
the validation set.

(Table 3.1), a larger set of 242 consecutively and prospectively collected plasma samples
(68 PCa, 93 BPH, 8 HGPIN/ASAP, 73 HD), all collected in EDTA tubes. cel-miR-39-3p
was used as exogenous normalizer and each miR as well as negative controls were run in
triplicate. Data transformation was done with the ∆Ct method, where CmiR

t = average Ct of
the three replicates and

∆CmiR of interest
t =CmiR of interest

t −Ccel-miR−39−3p
t .

Final Ct (Ctn) was given by:

CmiR of interest
tn =−∆CmiR of interest

t +K,

where K = 6.2 is a constant chosen to make −∆Ct ranges comparable with microarray log2

intensity ranges. To calculate K, only BPH and PCa samples were considered (because
the two cohorts differed in terms of percentages of HDs and precancerous lesions were not
included in the validation set).
The means of microarray log2Intensities for the two miRs were calculated and then averaged,
yielding 6.6. Then K was calculated in order to make the average of mean CmiR−103a−3p

tn and
mean Clet−7a−5p

tn equal to 6.6.
An independent set was used to test the classifier: the same previously generated coefficients
(estimated log odds-ratios) of the two miRs were multiplied by the corresponding Ctn and
the coefficient of PSA was multiplied by log2PSA value; the results were summed to build
the score for each sample; the same classification rule (Figure 3.4) was applied to assign
samples to the PCa or non-PCa groups.
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Figure 3.5 Box-plots for log2PSA values in the 138 plasma samples cohort profiled with
microarrays, divided according to risk class.

3.3.2 Results

Discovery phase. One hundred thirty-eight not hemolyzed plasma samples were analyzed
by miR profiling; log2PSA distribution in HD, BPH and PCa groups according to risk class is
shown in Figure 3.5. Age was homogeneously distributed among classes. Dunnett-corrected
p-values for comparisons between low-risk PCa or intermediate-risk PCa and BPH were
equal to 0.99 and 0.91, respectively, and for comparisons between HD or high-risk PCa and
BPH were < 0.001. PSA distinguished HD from BPH/PCa, high-risk from low/intermediate
risk tumors, but was incapable of discriminating between BPH and low/intermediate-risk
tumors.
EDTA-HD versus heparin-HD comparison revealed that the use of heparin-coated tubes did
not affect miR profiling (Figure 3.6, panel A and B). Indeed the procedure was not inhibited
by heparin, as it would be expected by methods requiring the use of reverse transcriptase or
DNA/RNA polymerase. However, the collection method influenced the average intensity
of detectable miRs, higher although not statistically significant in EDTA-HD samples; both
methods performed similarly in terms of number of detectable miRs, even if each of them
could detect a specific set of molecules. One hundred twenty homogeneously collected
samples (Table 3.1) were used to highlight numbers and types of miRs detected in each class
(Figure 3.6, panel C and D) and compare their levels: circulating miRs could be detected in
the plasma of both patients and controls, with the highest average number observed in BPH,
followed by GS>6 PCa, GS6 PCa and then HD. Overall, 107 circulating miRs were detected
in all classes: 8 were shared by BPH and PCa, 4 by BPH and HD, 1 by HD and PCa, 9 were
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Figure 3.6 Comparison between EDTA-HD versus heparin-HD tube.

exclusively found in BPH, 5 exclusively in HD and 2 in PCa.
PCa (n = 60) versus HD + BPH (n = 60) analysis evidenced one downregulated (miR-4530)
and nine upregulated miRs (let-7a-5p, miR-103a-3p, let-7f-5p, miR-17-5p, miR-4454, miR-
130a-3p, miR- 15b-5p, miR-24-3p, miR-21-5p) in PCa. Expression changes and p-values
are shown in Figure 3.7, panel A, whereas sample and miR clusters are depicted in Figure
3.7, panel B. Unsupervised clustering was not able to clearly separate PCas from BPHs and
HDs. On the other hand, the comparison between PCa (n = 60) and BPH (n = 51) resulted in
only two upregulated miRs (let-7a-5p and miR-103a-3p).
Restriction to PSA ≤ 16 ng/ml samples (48 PCa versus 57 BPH + HD) resulted in 11 upregu-
lated miRs (miR-103a-3p, let-7a-5p, let-7d-5p, miR-17-5p, let-7f-5p, let-7b-5p, miR-24-3p,
miR-26a-5p, miR-20a-5p, miR-130a-3p and miR-15b-5p), whereas analysis of 4−16 ng/ml
PSA samples (39 PCa versus 40 BPH) yielded only downregulated miRs (miR-4530, miR-
1207-5p, miR-575, miR- 4739, miR-1202, miR-3679-5p, miR-6085, miR-3656, miR-663a,
miR-4687-3p, miR-5739).
In order to find a strategy to classify samples, individuals with PSA > 16 were considered
independently and directly classified as PCa: 12 were true PCa whereas 3 were false pos-
itives. Using only samples with PSA ≤ 16, the most recurrent variables (out of the 11
upregulated miRs, log2Age and log2PSA) with coefficient ̸= 0, selected by the penalized
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Figure 3.7 (A) Volcano plot showing log2fold-changes (x axis) and − log10p-values (y axis)
of the miR probes analysed, highlighting up-regulated (red circles) and down-regulated (blue
circles) miRs in the comparison between PCa (n=60) and BPH+HD (n=60). (B) Unsupervised
hierarchical clustering of the expression matrix of 120 plasma samples (columns) and the
10 miRs (rows) that are differentially expressed between PCa and BPH+HD. (C) Box-plots
of log2Intensities for miR-103a-3p in the discovery cohort, according to sample class. (D)
Box-plots of log2Intensities for let7a-5p in discovery cohort according to sample class.
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logistic regression model, were miR-103a-3p, let-7a-5p and log2PSA, all associated with
a positive coefficient (0.1994, 0.1294, 0.0385 respectively). Figure 3.7 (panel C and D)
depicts log2Intensity box-plots for the two miRs in each sample class. Dunnett corrected
p-values for comparisons of each sample class with HD are all higher than 0.05, except for
intermediate-risk PCas (0.0096 and 0.0482 for miR-103a-3p and let-7a-5p, respectively);
similarly, Dunnett corrected p-values for comparisons of each sample class with BPH are
all higher than 0.05, except for intermediate-risk PCas (0.0197 and 0.0276 for miR-103a-3p
and let-7a-5p, respectively).
A score was built by summing the products of the coefficients by the variable values, and
samples were ordered by increasing score. Samples with score greater than 2.02 (chosen
to optimize accuracy) were classified as PCa. The final classifier was then built combining
this score with the initial PSA check (Figure 3.4), obtaining an AUC of 0.68 (95% CI:
0.59−0.78), whereas the AUC of PSA alone was 0.62 (95% CI: 0.53−0.73; Figure 3.8).
36/39 (92%) clinically significant PCa were detected by the final classifier, whereas 34/39
(87%) by PSA alone. Only three intermediate and five low-risk PCa were misclassified. All
high-risk PCa were identified, as well as 7/9 (77%) PCa with PSA ≤ 4 ng/ml, all in men
falling in the 50−69 age range. Moreover, 9/40 (22.5%) BPH with PSA > 4 ng/ml and all
HD were correctly classified.

Validation of miR expression by an independent technique Seven potentially interest-
ing miRs, selected from the discovery phase, were further evaluated by RT-qPCR (Table 3.2)
on the EDTA-HD samples profiled with microarrays and on 30 EDTA-collected independent
samples (10 PCa, 10 BPH, 10 HD). Because heparin inhibits RT, RT-qPCR could only be
applied on EDTA-HD samples as independent technique to validate expression changes. The
correlation between array intensities and RT-qPCR relative expression was higher than 0.8
only for miR-103a-3p and let-7a-5p (the top two upregulated miRs in all previous analyses,
and the ones included in the classifier), reinforcing their robustness. Even if miR-21-5p
was detectable in all samples, correlation between the two techniques was not satisfactory
(correlation coefficient for miR-21-5p = −0.08, versus 0.87 and 0.90 for let-7a-5p and miR-
103a-3p, respectively). Because the other miRs did not yield detectable and reproducible
Ct in all the samples, their correlation coefficients were not calculated. However, they were
further evaluated in the independent group of 30 samples including BPHs and PCas. Still they
gave either Ct higher than 40 or non-specific amplification products (as observed by melting
curve analysis), or coefficients of variation higher than 0.1. They were then considered as
undetectable. In this independent cohort, statistically significant upregulation in PCa versus
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Figure 3.8 ROC curve for PSA (dotted line) and for the final classifier (continuous line) in
the discovery cohort; asterisks correspond to the thresholds for PSA (4 ng/ml) and for the
final classifier (2.02).

HD + BPH resulted for both miR-103a-3p and let-7a-5p (Figure 3.9) with log2fold-change
> 1 and Benjamini-Hochberg corrected t-test p-value < 0.05.

Validation of the classifier on an independent cohort Additional 242 independent plasma
samples (Table 3.1), consecutively collected and checked for hemolysis, were used for the
validation phase. Figure 3.10, panel A shows log2PSA box-plot among different sample
classes; Dunnett corrected p-values for comparisons between HGPIN/ASAP or PCa low-risk
and BPH are equal to 1, between intermediate-risk PCa and BPH equal to 0.99 and between
HD or high-risk PCa and BPH less than 0.0001. Figure 3.10 panel B and C refer to the
log2Intensities of the two miRs; Dunnett corrected p-values for comparisons of each sample
class with HD are all less than 0.0001, while comparison with BPH yielded statistically
significant p-values only for HD (< 0.0001, both for miR-103a-3p and let-7a-5p). Out of
242, 14 samples had PSA > 16 ng/ml and were directly classified as PCa: 10 were high-risk
PCa, whereas 4 were false positives. The remaining 228 samples were classified using the
same exact score coefficients and cutoff generated in the discovery step.
The final classifier yielded an AUC of 0.76 (95% CI: 0.70−0.82) (Figure 3.11, panel A),
whereas the AUC of PSA alone was 0.74 (95% CI: 0.68− 0.80). In particular, the new
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Table 3.2 Differentially expressed miRs based on the class comparisons performed and
ordered according to their occurrence in the analysis results.

60 PCa vs 48 PCa vs 60 PCa vs 39 PCa vs
microRNA 60 BPH+HD 57 BPH+HD 51 BPH 40 BPH RT-qPCR

(0<PSA<500) (PSA<16) (0<PSA<500) (4<PSA<16)
miR-103a-3p ↑ ↑ ↑ ↑
let-7a-5p ↑ ↑ ↑ ↑
miR-21-5p ↑ ↑
miR-4530 ↓ ↓ undetectable
let-7d-5p ↑
let-7f-5p ↑ ↑
miR-17-5p ↑ ↑
miR-26a-5p ↑
miR-130a-3p ↑ ↑
miR-15b-5p ↑ ↑
miR-24-3p ↑ ↑
miR-4454 ↑
let-7b-5p ↑
miR-20a-5p ↑
miR-1202 ↓ undetectable
miR-3679-5p ↓ undetectable
miR-6085 ↓ undetectable
miR-3656 ↓
miR-1207-5p ↓
miR-575 ↓
miR-4739 ↓
miR-663a ↓
miR-4687-3p ↓
miR-5739 ↓

classifier correctly identified 8/9 (89%) patients with PCa and PSA ≤ 4 ng/ml, 7 of which
harboured clinically significant (3 high-risk and 4 intermediate-risk) tumors. Of note, three
of them fell in the 50−69 age range and had negative DRE. 70/73 HD (96%) were correctly
identified. The AUC of the score, for PSA values lower than 4 ng/ml, was 0.86 (95% CI:
0.77− 0.95) whereas PSA alone had an AUC of 0.79 (95% CI: 0.59− 0.98; Figure 3.11,
panel B). In the 4−16 PSA range, the classifier yielded an AUC of 0.6 (95% CI: 0.43−0.70)
and correctly identified 38/49 (78%) PCa, 31 of which were clinically significant, and 25/74
(34%) non-PCa. The AUC of PSA alone, in the same interval, was only 0.47 (95% CI:
0.36−0.57; Figure 3.11, panel C).
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Figure 3.9 Box-plots of ∆Ct values for miR-103a-3p and let7a-5p, showing statistically
significant upregulation for both microRNAs.

3.3.3 Some considerations

The two miRs included in the diagnostic score are miR-103a-3p and let-7a-5p. miR-103a-3p
was proposed as a plasmatic endogenous normalizer even by the Exiqon protocol, but several
recent studies highlighted that its levels in body fluids are not stable and it may work with
other miRs as putative diagnostic [56] or prognostic [57] circulating biomarker. It was
included into diagnostic/prognostic PCa serum scores by Mihelich et al. [58], and was able
to predict biochemical relapse together with PSA after prostatectomy [59]. Another study,
where miRs were analyzed in expressed prostatic secretion, found miR-103 associated with
prostatitis [60]. Let-7a-5p belongs to the let7 family of tumor suppressors and is usually
downregulated in PCa versus normal or BPH tissues [61]. Although it is now well established
that cancer cells may release tumor suppressor miRs in the blood stream to get rid of them and
prevent their antitumor effect, let-7a-5p levels have been found either up - or downregulated
in PCa compared with controls [50], or positively associated with PCa reclassification upon
active surveillance [49]. Its plasma levels strongly vary depending on whether extracellular
vesicle-incorporated or cell-free miRs are analyzed [62].
This study meant to translate results into clinical practice. Therefore, the samples have not
been enriched in extracellular vesicle-incorporated miRs, as this analysis would have inserted
other sources of variability and technical challenges, even though this fraction of miRs might
be informative for specific PCa diagnosis or prediction of prognosis [63, 64]. Instead, the
new proposed classifier is easily applicable as long as blood is carefully collected and plasma
quickly isolated.
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Figure 3.10 (A) log2PSA in the 242 sample validation cohort, according to sample class. (B)
Box-plots of −∆Ct values for miR-103a-3p. (C) Box-plots of −∆Ct values for let7a-5p.

The proposed classifier combines two miRs with PSA and was able to discriminate PCa from
non-PCa and to identify clinically significant PCa, better than PSA alone in the discovery
cohort. The same methodology, applied to the validation cohort, allowed for identification of
all but one low-PSA tumors: three high-risk, four intermediate-risk and one low-risk PCa.
This is an important improvement, given that three of them were found in men with negative
DRE and age in the 50− 69 range that represents the group for which screening for PCa
could provide benefits [65]. Moreover, for two of them PSA was even < 2.5 ng/ml, limit
after which free-PSA is dosed (if free to total PSA ratio is < 0.2, further investigations are
recommended). Free to total PSA ratio was not available for the studied cohorts, therefore no
comparison between scores has been considered. However, the use of free to total PSA ratio
or of other PSA-related markers, which are currently under investigation [66–68], is still
questionable. In the 4−16 ng/ml PSA range, the classifier identified 25/74 (34%) carriers
of non malignant lesions, who may avoid unnecessary and harmful biopsies, and correctly
classified 78% of PCa. Although in the discovery phase the final classifier outperformed PSA
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Figure 3.11 (A) ROC curve for PSA (dotted line) of the final classifier (continuous line)
in the validation cohort of 242 samples; asterisks correspond to the thresholds for PSA (4
ng/ml) and for the final classifier (2.02). (B) ROC curve for PSA (dotted line) or the score
(continuous line) in the validation cohort, considering 105 samples with PSA ≤ 4 ng/ml.
(C) ROC curve for PSA (dotted line) or the score (continuous line) in the validation cohort,
considering 123 samples with 4 < PSA ≤ 16 ng/ml.
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alone in detecting overall (Figure 3.8) and clinically significant PCa, in the validation cohort
its AUC, specificity and positive predictive value were higher than those of PSA alone, at the
cost of a lower overall sensitivity (Figure 3.11, panel A). However, it strongly outperformed
PSA sensitivity in the 0−4 PSA interval (Figure 3.11, panel B) and PSA specificity (Figure
3.11, panel C) in the 4−16 PSA interval. Indeed, all but one missed PCa fall in this critical
interval for PSA, where intense research is still underway [69]. It is also important to notice
that diagnosis was based on standard rather than mp-MRI-targeted biopsy.
Furthermore, it is noteworthy to highlight that, comparing discovery and validation cohort
results, unexpectedly, the AUC is higher in the validation cohort (0.76) than in the discovery
cohort (0.68); this unlikely occurrence characterizes not only the new proposed signature, but
also the classifier based on PSA alone. It is probably due to the composition of the validation
cohort itself, which was enriched in older than 65 year-old men and in intermediate-risk PCa:
the classification task resulted therefore easier in this dataset.

To further validate and improve the proposed classifier, a large multicentre prospective study
for men in the 50−69 age range has been planned, in which PSA and DRE will be coupled
with circulating miR analysis and mp-MRI, and standard biopsy to mp-MRI targeted biopsy.
Clearly, besides microRNAs, other genomic data could be studied as new potential bio-
markers; for example metabolites (small molecules related to metabolic processes, with
different functions and which represent the interaction between genes and the environment,
and therefore characterized by high variability) are quantities of interest. In this perspective
a pilot study has been developed on a subset of 102 samples (with 4 < PSA < 16) from
the validation cohort. Preliminary results shows that a combination of three metabolites, a
miRNAs and the age returns a score able to discriminate PCa and BPH with a AUC= 0.75.
Choosing an ad hoc cut-off to avoid false negative in the group of high risk PCa, sensibility
raises to 0.92 (with a specificity of 0.42), lowering the percentage of false positive of about
40%. Further analyses are necessary to confirm these first encouraging findings.



Chapter 4

A minimal binary classifier providing a
proper ROC curve

As seen in Chapter 2, the ROC curve is a common graphical tool to evaluate the discrim-
inant power of a classifier in binary populations, well-defined and deeply studied from a
theoretical point of view. Interesting issues originate in the estimation: it would be desirable
to have optimal, always concave, continuous and non-decreasing curve. Thanks to the
Neyman-Pearson lemma, the population ROC curve associated with a likelihood-ratio based
classification rule satisfies all these nice properties. However, in practice suboptimal ROC
curves are often used, because they may be associated to convenient scores (for example,
linear combinations of features) which are not necessarily based on the likelihood ratio, and
also because, when it comes to estimate them based on sample data, the most popular ROC
estimates are the empirical curves (stepwise functions, neither convex nor concave). To the
best of my knowledge, the ROC curve of a LR-based classifier has not yet been implemented.
In this chapter, after an example of a LR-based classifier for two multivariate normal measures
(which actually boils down to Fisher [70]) and a short introduction to näive Bayes classifier
(so popular at present in the Machine Learning literature), a novel algorithm to draw a proper
ROC curve in a multivariate setting is proposed, exploiting the flexible Bayes assumption, the
Gaussian kernel density estimation and the local independence of the features. The procedure
allows to overcome other methods’ drawbacks: the jagged shape of the empirical ROC and
the possible non-concavity of the standard binormal model (which always has hooks in the
heteroscedastic case).
Lastly, the new estimation method is applied to a real case study (the validation cohort of the
work on circulating miRNAs presented in Chapter 3 and kindly provided by the Genomics
Lab of the Tempia Foundation in Biella, Italy) and shows a definitive advantage over the
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empirical ROC and the ROC curves associated with common classifiers based on best linear
and logistic scores.
In the following a standard binary classification problem is considered: the two population
are represented by absolutely continuous probability measures P+ (the diseased subjects for
example) and P− (the healthy), with respective density f+ and f−; xxx is the p-dimensional
random vector of features and the population LR is defined as

LR(xxx) =
f+(xxx)
f−(xxx)

.

The material presented here is partly extracted from the paper: “Sacchetto L, Gasparini M. A
minimal binary classifier providing a proper ROC curve” just submitted for publication.

4.1 An example of LR-based classifier: Fisher’s LDA and
QDA

It is widely recognised [9–12] and already stated in Chapter 2 that the criterion which
classifies a subject as positive if

LR(x)> t for some threshold t ∈R (4.1)

is optimal. However, often, it is preferred to use a decision rule based on a one-dimensional
score S which is not necessarily the LR, i.e. to classify a subject as positive if

S(x)> t for some threshold t ∈R (4.2)

for some random variable S conveniently chosen. Of course, if S happens to be a monotone
function of the LR, then decisions (4.1) and (4.2) are equivalent.
As an example, X is a one-dimensional normal variate under both P+ and P− with different
means µ+ > µ− and different variances σ2

+ and σ2
−, then the LR is a quadratic function of

X and decision rule (4.1) is not amenable to (4.2). This is the well-know binormal model,
which can be generalized to Fisher [70] linear and quadratic discriminant analyses (LDA,
QDA). Even if the optimality of these scores in the normal case should be well known, it is
continuously rediscovered [71, 72]; therefore it seems useful to provide an example.
Assume P− is multivariate normal with mean µµµ− and variance ΣΣΣ− and P+ is multivariate
normal with mean µµµ+ and variance ΣΣΣ+ and both densities exist. By taking the logarithmic
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transformation of the LR, it can easily be seen that for the normal case the LR based
classification rule declares positive if the quadratic score

(XXX −µµµ−)
T
ΣΣΣ
−1
− (XXX −µµµ−)− (XXX −µµµ+)

T
ΣΣΣ
−1
+ (XXX −µµµ+) (4.3)

is large. Indeed, this is the Fisher’s Quadratic Discriminant Analysis (QDA) rule [70], which
reduces to linear – hence the corresponding Linear Discriminant Analysis (LDA) – in the
case ΣΣΣ− = ΣΣΣ+ (homoscedasticity). The original work by Fisher did not actually focus on the
normality assumption, but QDA and LDA are well established terminology in the literature.
Being based on the LR, QDA has a proper ROC curve and it is optimal.
Insisting on a linear classifier leads to suboptimal procedures in the case of heteroscedasticity.
The classifier which is optimal within the class of linear ones is proposed by Su and Liu [5]
and it declares positive if

(µµµ+−µµµ−)
T(ΣΣΣ−+ΣΣΣ+)

−1X (4.4)

is large. It gives an improper ROC curve, which always has a “hook” and which is dominated
by the ROC curve of the corresponding quadratic score in expression (4.3).
As an example, consider a bivariate normal vector (X ,Y ) which in population P− has a
bivariate standard normal distribution, whereas in population P+ has independent components
X distributed normally with mean µx > 0 and variance σ2

x and Y distributed normally with
mean µy > 0 and variance σ2

y ̸= σ2
x . According to equation (4.3), the QDA classifier declares

positive if (
X −µx

σx

)2

+

(
Y −µy

σy

)2

−X2 −Y 2 < c

where c is an arbitrary threshold. By varying c and calculating the appropriate probabilities
under P− and P+, we can obtain the ROC curve, by simulation or, if greater precision is
needed, by using non-central chi-square distributions. The ROC curve for the case µx = 1,
µy = 2, σx = 2, σy = 4 is plotted as a solid line in Figure 4.1.
The best linear classifier according to Expression (4.4) is instead

S =
µx

1+σ2
x

X +
µy

1+σ2
y

Y.

S has normal distributions under P− and P+ and by a well-known result its ROC is

ROC(t) = φ(A+φ
−1(t)B) (4.5)
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Figure 4.1 QDA (solid) and best linear ROC (dashed) curves for the bi-bivariate normal case,
assuming µx = 1, µy = 2, σx = 2, σy = 4.

where φ(·) is the standard normal distribution function,

A =
µ2

x (1+σ2
y )+µ2

y (1+σ2
x )√

µ2
x σ2

x (1+σ2
y )

2 +µ2
y σ2

y (1+σ2
x )

2

and

B =

√
µ2

x (1+σ2
y )

2 +µ2
y (1+σ2

x )
2√

µ2
x σ2

x (1+σ2
y )

2 +µ2
y σ2

y (1+σ2
x )

2
.

The ROC curve of the best linear classifier for the case µx = 1, µy = 2, σx = 2, σy = 4 is
plotted as a dashed line in Figure 4.1. We can easily see that the QDA ROC curve is concave
and dominates the best linear ROC curve.

4.2 Näive and Flexible Bayes classifier

The Näive Bayes, also known as Idiot’s Bayes or Simple Bayes with reference to its simplicity,
is a largely used classification methodology, which acquired popularity especially in Machine
Learning literature, as testified by thousands of citations of the seminal paper published in
1995 by John and Langley [4]. Actually, it provides an easy way to represent, use and learn
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probabilistic knowledge in a supervised manner (i.e. knowing the group labels), exploiting
the Bayes formula and priors and posteriors probabilities; therefore it is often indicated as a
Bayesian classifier, even if subjective probabilities are not formally considered.
The simplicity of this method lies in the strong assumption of local independence of the
features, which means that the predictors are conditionally independent given the class; this
can be graphically represented by a Bayesian network, in which all the arcs are directed from
the node representing the class towards the predictors nodes (Figure 4.2). As a consequence,

Figure 4.2 A näive Bayes classifier depicted as a Bayesian network with k predictors. Figure
extracted from John and Langley [4]

the joint distribution of the features reduces to the product of marginals distributions:

P(XXX = xxx|C = c) = P(∩iXi = xi|C = c) =
k

∏
i=1
P(Xi = xi|C = c).

and the probability of belonging to class c given measurements xxx is obtained by

P(C = c|XXX = xxx) =
P(C = c)∏

k
i=1P(Xi = xi|C = c)
P(XXX = xxx)

,

where, usually, the denominator is not directly estimated and it is considered a normalizing
factor.
It is important to highlight that the local independence assumption is often violated in
many real applications; however the näive Bayes classifier performs surprisingly well and
better than common alternatives [73]. The robustness of the method is related to the set
of parameters to be estimated, smaller than other methodologies, which also limits the
estimators variance. On the other hand, biased probability estimates can be more common
with the independent model, but this is of low interest in a classification perspective (where
only rank order matters). In addition, often, variables selection techniques are applied to
reduce the number of predictors and therefore high correlated variables are discarded in a
pre-processing step.
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Another assumption, not necessary but commonly made when dealing with näive Bayes, is
the Gaussian distribution of the underlying populations: in this case

P(Xi = xi|C = c) =
1√

2πσ2
C

exp
(
−(xi −µC)

2

2σ2
C

)

and it is straightforward to estimate the mean and the standard deviation from sample
frequencies.
Of course, apart this basic formulation of the independent model, different more sophisticated
variants have been proposed to improve performance and to take into account a certain degree
of dependence between predictors. A detailed review is presented by Hand and Yu [73], while
here I focus on flexible näive Bayes classifier, due to its relevance in the implementation
of the likelihood-ratio based algorithm for the ROC curve estimation discussed in the next
paragraphs.
The flexible Bayes algorithm is a non-parametric extension of the näive Bayes, which
relies on kernel density estimation of continuous predictors (instead of assuming normality)
and which performs well precisely when the Gaussian hypothesis can not be retained.
This means that the estimated density is given by kernels function average. Differently
from näive Bayes, it requires the estimation of i parameters µi (one for each observation
xi) and the evaluation of the kernel function n times; therefore there is an increase in
complexity and storage with respect to the independent model. However, the flexible
Bayes estimate satisfies some asymptotic properties. In particular it is possible to prove
(considering nominal and continuous cases separately, see [4] for details) that the flexible
Bayes estimate of P(C|XXX) with Gaussian kernels is strongly pointwise consistent, i. e.
P(limn→∞ |P̂n(C = c|XXX = xxx)−P(C = c|XXX = xxx)| < ε) = 1 for every ε . This property is
important because it guarantees that the Bayes error rate for classification is minimal, if the
number of observations is sufficiently large.

4.3 A minimal proposal for a non-parametric ROC curve

The LR is a theoretically sound tool to find optimal decision rules based on the population
measures P+ and P−, but in practice P+ and P− are often not known and it is necessary to
estimate them and the associated ROC curves as functions of the data.
In the multivariate case, the problem is that there is no universally accepted optimal estimates
of the densities, even if, in the last half century, lots of efforts have been dedicated to find
appropriate methods of estimation. Actually, two options are available to find a LR based
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estimated binary classifier: either use the ratio of genuine multidimensional density estimates,
or adopt some simplifying assumptions. I focused on the latter and the new proposed
methodology relies on the crucial flexible Bayes assumption of local independence, i.e. the
components of X are assumed to be independent, so that simple one-dimensional density
estimates can be used for each of the marginals and, finally, a proper ROC curve can be
estimated based on the LR of the joint densities.
In details, consider two population measures P+ and P− absolutely continuous with respect to
one another and assume two multivariate random samples {xik

−; i = 1, . . .n−,k = 1, . . . , p} and
{xik

+; i = 1, . . .n+,k = 1, . . . , p} have been observed, where xik
− (respectively xik

+) is the value
of the k-th feature previously recorded on the i-th object under condition P− (respectively P+).
A kernel estimate of the k-th marginal density f k

s ,k = 1, . . . , p,s∈ {−,+} has the well-known
form

f̂ k
s (x) =

1
nsλ k

s

ns

∑
i=1

Kλ (x,x
ik
s ) −∞ < x <+∞ (4.6)

where, in the Gaussian case (other options exist),

Kλ (x,x
ik
s ) = φ

(
x− xik

s

λ k
s

)
=

1√
2π

exp

{
−1

2

(
x− xik

s

λ k
s

)2}
.

λ k
s is generally called the bandwidth, and it equals the standard deviation in the Gaussian

kernel case. Gaussian kernels are widely used in density estimation and dedicated software
exists; some default proposals for bandwidth selection have been used.
The LR based Gaussian kernel flexible Bayes classifier is a nonparametric classification rule
which assigns a new object X = (X1, . . . ,Xp) to P+, given a fixed threshold t, if

L̂ =
p

∏
k=1

f̂ k
+(Xk)

f̂ k
−(Xk)

> t. (4.7)

It is important to notice that this is a LR based classification rule which takes as P− (respect-
ively P+) the product measure with density ∏

p
k=1 f̂ k

− (respectively ∏
p
k=1 f̂ k

+).

4.3.1 The simulation algorithm

The ROC curve associated to rule (4.7) can be obtained by estimating TPR and FPR under P+
and P− varying the threshold t ∈R and it is proper, being the ROC of a genuine LR based
decision rule. It is often too complicated to estimate the distribution of L in closed form, but
a viable solution is to calculate the true and false positive rates by simulation. The particular
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shape of the kernel estimate (4.6) lends itself to a simple simulation procedure which allows
for reliable Monte Carlo calculations; thanks to the law of large numbers, as the number
of trials increases, the sample proportions converge point-wise to the theoretical ones. In
particular, we want to calculate:

T̂PR =P+(L̂ > t)

F̂PR =P−(L̂ > t),

to obtain the ROC curve as the locus of points {F̂PR(t), T̂PR(t), t ∈R}.
Given n subjects from the two populations P− and P+ (with n = ∑s ns and s ∈ {−,+}), L̂ is
estimated using a Gaussian kernel, centred at the observations xik

s , i = 1, . . . ,ns, k = 1, . . . , p,
s ∈ {−,+}. Actually, the estimate in equation (4.6) is a mixture of ns equally probable
Gaussian distributions and it is easy to simulate, selecting one of the component at random
and then independently drawing elements from it. For the bandwidth, in this work, the value
reported in [31] is adopted:

λs = 1.06min(σ̂s, ÎQRs/1.34)n−0.2
s ,

where σ̂s and ÎQRs are the standard deviation and the interquartile range estimated for the
two populations.Therefore the following algorithm has been developed; it is stated for the
Gaussian kernel Flexible Bayes case, but generalizes easily to other options. The consistency
of the Flexible Bayes estimate, reported in the paper by John and Langley [4] and briefly
recalled in Section 4.2, could possibly be extended to consistency of the estimated ROC
function via a continuous mapping argument.
The true LR-based ROC curve is optimal and dominates all the curves associated to different
scores, as already stated. This means that the area under the ROC curve (AUC) assumes its
greatest value for the LR-based classifier. However, in practice, the new proposed estimator
strongly relies on the local independence of the features as working tool and its optimality
can fail when predictors are really dependent. In addition, kernel density estimation methods
can weaken the good properties of the curve. In this perspective the LR-based Gaussian
kernel Flexible Bayes ROC curve estimate is a minimal proper alternative to the empirical
common one.
With respect to the AUC, it is interesting to construct confidence intervals by asymptotic
methods or in a purely data-driven way [11, 12]. It is well know that AUC = P(S+ > S−),
i.e. the AUC equals the probability that chosen at random a subject from P+, its score S+
is higher than the score S− of an independent and random subject from P−. In our case, to
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Algorithm 1 Likelihood Based Gaussian Kernel Flexible Bayes ROC
To draw the graph of LR-based ROC curve proceed parametrically in t as follows:

– for t taking values on a finite positive grid

– for k = 1, . . . , p

– for b = 1, . . . ,B, with large B
– draw x∗−b uniformly from one of the n− Gaussian variables with mean

xik
−, i = 1, . . . ,n− and standard deviation λ k

−
– compute f̂ k

−(x
∗
−b) and f̂ k

+(x
∗
−b)

– draw x∗+b uniformly from one of the n+ Gaussian variables with mean
xik
+, i = 1, . . . ,n+ and standard deviation λ k

+

– compute f̂ k
−(x

∗
+b) and f̂ k

+(x
∗
+b)

– compute F̂PR(t) = 1
B ∑

B
b=1 1

[
∏

p
k=1

f̂ k
+(x∗−b)

f̂ k
−(x∗−b)

>t
]

– compute T̂PR(t) = 1
B ∑

B
b=1 1

[
∏

p
k=1

f̂ k
+(x∗

+b)

f̂ k
−(x∗

+b)
>t
]

– plot (F̂PR(t), T̂PR(t))

where 1[A] is the indicator function of event A, which equals 1 if A is true and 0 otherwise.

calculate AUC and its confidence limits we have to deal with likelihood-ratio based scores
and therefore a resampling approach such as the bootstrap seems viable.

4.3.2 Comparison with empirical ROCs

In the previous paragraph an estimated proper ROC curve based on the likelihood ratio has
been obtained. It is of interest to compare it with the common empirical ROC curve estimates
via simulations. Actually, a stress test for the new proposed method is performed, considering
unfavourable situations with increasing degree of correlation between the features.
Given any decision rule, like the one in formula (4.2) for example, it is possible to apply
it to the same training data and to obtain a classification which can be compared with the
observed true labels. This gives empirical T̂PR and F̂PR for any given t; by varying t the
empirical ROC curve, a step function, is built.
In addition simulations appear also useful to check if the new estimator over-estimates the
true performance of the classifier (an overfitting problem, due to the double use of the same
data for both fitting a score and calculating the associated ROC curve, can not be completely
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avoided). In particular, the true ROC curve can be compared with the ones obtained using
the flexible Bayes algorithm and the ones empirically built on the logistic score (i.e. the risk
score estimated via logistic regression); the differences are evaluated in term of the mean
integrated squared error (MISE), calculated for both the smooth and the empirical curve.
In the simulations two underlying bivariate Gaussian distributions are assumed. Both the
homoscedastic and the heteroscedastic cases are considered, as well as possible correlation
among features. Consider a bivariate vector of predictors xxx = (x1,x2) and two bi-normal
populations, i.e. F+ ∼N (µµµ+,ΣΣΣ+) and F− ∼N (µµµ−,ΣΣΣ−).
For the homoscedastic case (ΣΣΣ+ = ΣΣΣ

− = ΣΣΣ), assuming cov(xi,x j) = 0 for i ̸= j, reasoning as
in the univariate binormal model (see for example [12]), it is easy to prove that the true ROC
curve is the locus of points:

FPR(t) = P(LR− > t) = P(log(LR−)> log(t)) =

= 1−Φ

2σ2
1 σ2

2 log(t)+Aµ
−
1 +Bµ

−
2 +C√

(A2σ2
1 +B2σ2

2 )


TPR(t) = P(LR+ > t) = P(log(LR+)> log(t)) =

= 1−Φ

2σ2
1 σ2

2 log(t)+Aµ
+
1 +Bµ

+
2 +C√

(A2σ2
1 +B2σ2

2 )


where LR− = LR(xxx|−) and LR+ = LR(xxx|+),

LR =
f+
f−

= exp
(
−1

2

(
(x1 −µ

+
1 )2

σ2
1

+
(x2 −µ

+
2 )2

σ2
2

−
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−
1 )2

σ2
1

−
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−
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))
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2
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2
1 (µ
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+
2 ),

C = σ
2
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2
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+
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2 )2).

As reported in Table 4.1, for 100 simulations, the proposed estimator for the likelihood ratio
based ROC curve does not overfit the data and it is slightly better than the empirical one with
respect to the mean integrated squared error for uncorrelated and low correlated predictors.
This is no longer true when an interaction term is included in the logistic score: in this case,
in particular when variables are strongly correlated (ρ = 0.9) (and therefore violating the
local independence assumption) the MISE of flexible Bayes is about three times higher than
MISE for logistic score (Table 4.2); this happens also, in a more relevant way, when the
logistic score includes quadratic terms and interaction (Table 4.3).
In the heteroscedastic case, instead, it is not possible to find an analytical closed formulation
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for the true ROC curve, neither under the local independence assumption; the LR is a
quadratic form (Fisher Quadratic Discriminant analysis) and the evaluation of true and false
positive proportions entails linear combinations of non central Chi-squared distributions.
Therefore, it is necessary to resort to simulations also to obtain the theoretical ROC.
In this case, as reported in Tables 4.1, for 100 simulations the MISE for flexible Bayes ROC
curve is always a bit lower than the one for the ROC associated to logistic score. When an
interaction term is included in the logistic score the performances of the two methodologies
are totally comparable (Table 4.2); in addition, when also quadratic terms are included in the
logistic approach (i.e. when the ideal score is considered) the performances of the Flexible
Bayes estimate still appear slightly better (Table 4.3). Nonetheless, ways to decorrelate the
variables could be considered as a pre-processing step to improve the performance of the
likelihood-based flexible Bayes classifier, but some preliminary trials have not shown a clear
winning strategy.

Table 4.1 For 100 simulations, comparison between ROC associated to Flexible Bayes and
ROC associated to a logistic score.

µµµ+ µµµ− ΣΣΣ
+

ΣΣΣ
−

ρ MISEFlex Bayes MISELogistic(
1
1

) (
0
0

) (
1 ρ

ρ 1

) (
1 ρ

ρ 1

) ρ = 0 0.00121 0.00217
ρ = 0.4 0.00214 0.00224
ρ = 0.9 0.00660 0.00239(

2
1.5

) (
0
0

) (
1.5 ρσ1σ2

ρσ1σ2 1.8

) (
1 ρ

ρ 1

) ρ = 0 0.00083 0.00100
ρ = 0.4 0.00113 0.00134
ρ = 0.9 0.00104 0.00141

Table 4.2 For 100 simulations, comparison between ROC associated to Flexible Bayes and
ROC associated to a logistic score (with an interaction term).

µµµ+ µµµ− ΣΣΣ
+

ΣΣΣ
−

ρ MISEFlex Bayes MISELogistic(
1
1

) (
0
0

) (
1 ρ

ρ 1

) (
1 ρ

ρ 1

) ρ = 0 0.00159 0.00210
ρ = 0.4 0.00251 0.00238
ρ = 0.9 0.00737 0.00248(

2
1.5

) (
0
0

) (
1.5 ρσ1σ2

ρσ1σ2 1.8

) (
1 ρ

ρ 1

) ρ = 0 0.00086 0.00086
ρ = 0.4 0.00123 0.00123
ρ = 0.9 0.00116 0.00120
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Table 4.3 For 100 simulations, comparison between ROC associated to Flexible Bayes and
ROC associated to a logistic score (with quadratic terms and interaction).

µµµ+ µµµ− ΣΣΣ
+

ΣΣΣ
−

ρ MISEFlex Bayes MISELogistic(
1
1

) (
0
0

) (
1 ρ

ρ 1

) (
1 ρ

ρ 1

) ρ = 0 0.00124 0.00242
ρ = 0.4 0.00328 0.00260
ρ = 0.9 0.00820 0.00289(

2
1.5

) (
0
0

) (
1.5 ρσ1σ2

ρσ1σ2 1.8

) (
1 ρ

ρ 1

) ρ = 0 0.00067 0.00069
ρ = 0.4 0.00095 0.00098
ρ = 0.9 0.00098 0.00108

4.3.3 Some considerations

The new ROC curve estimate presented in this section is a non-parametric minimal proposal
for a default alternative to the broadly used empirical estimator, allowing to obtain a proper
curve without making any assumptions on the underlying populations distributions. Its
development relies on three key concepts: the adoption of the likelihood-ratio as the decision
variable, the kernel density estimation as the common non-parametric approach in mul-
tivariate setting and the local independence of the features as a strong working assumption.
Certainly, these ideas are not new by themselves, but, to the best of my knowledge, their joint
use has not yet been explored, especially in the medical diagnostic field. In particular, often,
the focus is on continuous variable and monotone likelihood ratio: the proposed approach
allows to overcome this, dealing with cases never appreciated by the relevant literature.
From a theoretical point of view, it is largely recognized that the likelihood-ratio criterion
(namely a classification rule directly based on the likelihood-ratio of two underlying popu-
lations) guarantees some optimality properties inherited by the associated true population
ROC curve. However, in practice population distributions are not known: they must be
estimated from the data, making some simplifying assumptions. In this perspective, the local
independence of the features appears a useful working tool and its popularity in Machine
Learning literature motivated its adoption for a first approximation also here. Clearly, when
features are really dependent (as shown by simulations) the ROC curve estimator is no longer
optimal, but it still preserves good properties (the smoothness, the concavity, . . . ).
All in all, the likelihood-ratio should be considered the rational guideline to combine features
in a multivariate setting: it has a higher discriminant power than simply linear combinations.
On the other hand, in the univariate framework, there are situations in which a single variable
could have good predictive power based on medical knowledge, with a really heteroscedastic
behaviour in the two populations; its likelihood-ratio assumes low values for both low and
high values of the only predictor and therefore the resulting LR-based classification is in
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contrast with the clinician expectation. Nevertheless, also in this case, the likelihood ratio
should be regarded as the guiding principle, suggesting that the single variable alone, even if
good, is not enough to properly classify subjects.

4.4 Case study: diagnosis of PCa using biomarkers

PCa (prostate cancer) is the most frequent neoplasia diagnosis in men in Europe and one of
the most common causes of cancer related death. As said before, a lot of efforts are currently
devoted worldwide to finding non-invasive and easy-to-detect diagnostic biomarkers.The
diagnosis of prostate cancer disease can be considered a classification problem, and a
binary one if it is simplified to PCa versus non-PCa. ROC curves are used to evaluate the
performance of the classifiers.
The likelihood-ratio based flexible Bayes classifier and the associated ROC curve estimate,
presented in the previous paragraphs, are developed for the validation dataset of the study
on circulating miRNAs described in Chapter 3 and in the article by Mello-Grand et al. [41].
In particular, the dataset consists of 58 PCa (the P+ sample) and 170 non-PCa patients
(the P− sample), including 89 benign hyperplasias, 8 precancerous lesions and 73 healthy
controls – but this finer subdivision is not used here. For each patient, two microRNAs and
(log-transformed) PSA were combined to build the classifier. The two microRNAs were
selected after a cumbersome feature selection procedure which combined statistical and
practical aspects, as detailed in Section 3.3.1. Let XXX = (X1,X2,X3) be the observation vector
(microRNA1, microRNA2, log(PSA)). The idea was to combine these biomarkers in such a
way to obtain the best classifier, i.e. the one associated to the dominant ROC curve.
The maximum likelihood estimates of means and variance covariance matrices under P− and
P+ are

µ̂µµ− =

4.952
5.463
1.403

 Σ̂ΣΣ− =

7.233 5.260 1.639
5.259 4.927 1.165
1.638 1.165 2.490


µ̂µµ+ =

6.833
6.939
2.518

 Σ̂ΣΣ+ =

 3.570 3.167 −0.098
3.167 3.086 −0.150
−0.098 −0.149 0.656

 .

Assuming XXX multivariate normal, then XXX ∼MVN(µ̂µµ−, Σ̂ΣΣ−) under P− and XXX ∼MVN(µ̂µµ+, Σ̂ΣΣ+)

under P+. The best parametric classifier is Fisher QDA in equation (4.3), since the covariance
matrices differ. The associated ROC curve is displayed in Figure 4.3, left panel, dashed line.
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Insisting on linear transformations of XXX , then the best one proposed by Su and Liu [5], given
in equation (4.4), is

0.099×X1 +0.043×X2 +0.292×X3

with Gaussian univariate distributions N (1.136,0.461) under P− and N (1.711,0.114) under
P+. The associated ROC curve is displayed in Figure 4.3, left panel, solid line.
On the other hand, adopting a less restrictive nonparametric point of view, we could apply
Algorithm 1 to get a good approximation of a non-parametric LR based estimated ROC curve
for the Flexible Bayes classifier, displayed in Figure 4.3, right panel, dashed line. The solid
line is instead the usual stepwise empirical ROC curve (obtained in this case with the R
library described by [74]) associated to the following logistic score:

0.399×X1 −0.142×X2 +0.560×X3.

In addition, it seems also noteworthy to compare this score with the best linear combination
proposed by Chen [6]:

4.349×X1 −0.640×X2 +4.723×X3.

The associated ROC curve is the dotted line in the right panel of Figure 4.3. The LR-based
ROC curve dominates the others and this is confirmed by the AUC values (with nearly
non-overlapping confidence intervals), reported in Table 4.4.

Table 4.4 Area under the ROC curve (AUC) and it 95% confidence intervals for different
estimators.

Estimation method AUC 999555% Confidence Intervals
Logistic score 0.760 0.697 - 0.824
Chen best linear combination 0.765 0.702 - 0.828
LR-based Flexible Bayes 0.884 0.813 - 0.924

The ROC of the Flexible Bayes classifier is different from the QDA ROC, since there is
a price to pay for the greater generality of the non-parametric approach, but it exhibits a
definite advantage over the empirical ROC, which appears to be a less efficient estimate of
the underlying true ROC.

The R code [75] to obtain the ROC curve associated to the LR-based Flexible Bayes classifier,
following Algorithm 1, and the code to compare the proper and minimal curve with the ROC
curves associated to logistic score and to Chen’s best linear combination score [6], their AUC
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Figure 4.3 Left panel: parametric ROC curves comparison: QDA (dashed line) versus best
linear combination as provided in [5](solid line). Right panel: non-parametric ROC curves
comparison: empirical ROC associated to the logistic score (solid line), the ROC associated
to Chen best linear combination [6](dotted line) and the LR-based Flexible Bayes one (dashed
line).

values and confidence intervals in the case study are provided in Appendix B.





Chapter 5

On the meaning and measure of
concentration

It is well known that there is a connection between the definition of the LR based classification
rule for general data spaces and the general definition of concentration function for two
probability measures (as given by Cifarelli and Regazzini in late 1980s [76, 77]) and, in this
chapter, it is deeply investigated from an exquisitely theoretical point of view. After having
introduced a definition of LR-based classification rule (which entails the use of randomization
in case the distribution of the LR contains atoms), an alternative formulation of the ROC
curve is presented and the connection with the concentration function is highlighted. As
a consequence, the ROC curve parameter appears to be a theoretical quantification of the
relationship between two probability measures, and not merely a descriptive tool of the
performance of a classifier. To be clearer a couple of examples of special cases are reported;
in addition, a critical appraisal of a recent published paper [40] is given and, lastly, some
considerations on discrete ROC curves are provided.
Part of the material presented here is extracted from the paper I co-authored “On the definition
of a concentration function relevant to the ROC curve” [78].

5.1 LR based ROC curve for general types of data

Assume that P+ and P− are absolutely continuous with respect to one another and have
densities f+ and f−, respectively, with respect to a common dominating measure. Then,
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without loss of generality, f− can be taken to be positive, so that the Likelihood Ratio

L =
f+
f−

(5.1)

is a well defined non negative random variable. As such, L then has distribution functions
under P− and P+, which are denoted by H− and H+ respectively. More precisely, for each
ℓ ∈R:

H−(ℓ) = P−(L ≤ ℓ)

and
H+(ℓ) = P+(L ≤ ℓ).

Next, define the quantile function associated with H− in the usual way as follows :

qt = inf{y ∈R : H−(y)≥ t} 0 < t < 1 (5.2)

and recall that, for any real number ℓ,

qt ≤ ℓ if and only if H−(ℓ)≥ t.

For any given value t ∈ (0,1), it may or may not happen that t = H−(qt), depending on
whether t does not correspond or does correspond to a jump of H−. More specifically, if
t ̸= H−(qt), then H−(q−t )≤ t < H−(qt), where the notation − indicates left limits (nothing
to do with P−), a particularly relevant occurrence for the discussion below.
H− and H+ may have jumps, even if P− and P+ are absolutely continuous laws on the real
line. H− and H+ do not have jumps for two Gaussian probability measures, but P− and P+
may be absolutely continuous yet L be a finite random variable which takes on a finite set
of values, almost surely. This happens, for example, if P+ and P− have piecewise constant
densities as provided by an example in Section 5.3.
Actually, in this chapter, the following definition of LR is used:

Definition 5.1.1. Given two alternative probability laws P− or P+ mutually absolutely
continuous with respective densities f− and f+, define the likelihood ratio L = f+/ f−, its
respective distribution functions H− and H+ and the following classification rule. For each
0 < t < 1:

• if L > qt , declare positive;

• if L < qt , declare negative;
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• if L = qt , then perform an auxiliary independent randomization and declare positive
with probability

r(t) =
H−(qt)− t

H−(qt)−H−(q−t )

and negative otherwise.

It parallels the definition of a randomized LR test [18], but it is presented here in a classifica-
tion context. Therefore, the ROC curve can be defined in an alternative way:

Theorem 5.1.1. The ROC function of the classification rule of Definition 5.1.1 is

ROC(x) = 1−H+(q1−x)+q1−x(H−(q1−x)− (1− x)), 0 < x < 1. (5.3)

As usual, we can complete the result by setting ROC(0) = 0 and ROC(1) = 1.

Proof. First of all, the FPR and the TPR are computed separately.

FPR = P−(declare positive) = P−(L > qt)+P−(L = qt)r(t)

= 1−H−(qt)+(H−(qt)−H−(q−t ))r(t)

= 1−H−(qt)+H−(qt)− t = 1− t.

Notice that if t = H−(qt) then H−(q−t )−H−(qt) = 0; in other words the expression simplifies
for points which are not H−-atoms.

TPR = P+(declare positive) = P+(L > qt)+P+(L = qt)r(t)

= 1−H+(qt)+(H+(qt)−H+(q−t ))
H−(qt)− t

H−(qt)−H−(q−t )

= 1−H+(qt)+qt(H−(qt)− t)

since, P+ and P− being mutually absolutely continuous, they will both have or not have an
atom in qt and their LR in qt will be exactly (H+(qt)−H+(q−t ))/(H−(qt)−H−(q−t )), i.e. qt

itself. Next, set FPR = x, i.e. t = 1− x, to eliminate the parameter t and obtain the explicit
form of the ROC curve:

TPR = 1−H+(q1−x)+q1−x(H−(q1−x)− (1− x)).
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5.2 Relationship with a general concentration function

Expression (5.3) does not come out of nowhere. It corresponds to a definition of concentration
function given by Cifarelli [76], and further expanded by Regazzini [77], with the aim of
extending the classical definition of concentration given by Gini. Such a definition is naturally
based on the LR, and given the strict relationship existing between ROC curves and LRs, the
connection comes easily [76] and, for convenience, it is recalled here for the case in which
P+ and P− are mutually absolutely continuous:

Definition 5.2.1. Let P+ and P− be mutually absolutely continuous probability measures, let
f+ and f− be their respective derivatives with respect to a common dominating measure
µ , let their LR be defined as the real-valued random variable L = f+/ f−, let H− be its
distribution function under P− and let qx be its quantile function. Then Cifarelli [76] defines
the concentration function of P+ with respect to P− as ϕ(0) = 0, ϕ(1) = 1 and

ϕ(x) = P+(L < qx)+qx(x−H−(q−x )).

The connection between this definition and the classification rule of the previous section is
established in the next Theorem.

Theorem 5.2.1. Under the hypotheses described in Definition 5.1.1,

ROC(x) = 1−ϕ(1− x) ∀0 ≤ x ≤ 1.

where ϕ(·) is the concentration function of P+ with respect to P−.

Proof. The equivalent relationship

1−ROC(1− x) = ϕ(x) ∀0 ≤ x ≤ 1.

can be verified directly for x = 0,1 and as follows for 0 < x < 1:

1−ROC(1− x) = H+(qx)−qx(H−(qx)− x)

= H+(qx)±H+(q−x )+qx(x−H−(qx)±H−(q−x ))

= H+(q−x )+qx(x−H−(q−x ))+

(H+(qx)−H+(q−x ))−qx(H−(qx)−H−(q−x ))

= H+(q−x )+qx(x−H−(q−x ))+
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(H−(qx)−H−(q−x ))
(

H+(qx)−H+(q−x )
H−(qx)−H−(q−x )

−qx

)
= P+(L < qx)+qx(x−H−(q−x ))

= ϕ(x).

Corollary 5.2.2. Under the hypotheses described in Definition 5.1.1, ROC(·) is a non-
decreasing, continuous and concave function on [0,1]. In particular, ROC(·) is proper.

Proof. This is a consequence of Theorem 2.3 in Cifarelli [76]. In particular, ϕ(x) is always
convex over its domain, i.e. ∀x1,x2 and ν ∈ [0,1],ϕ(νx1 + (1− ν)x2) ≤ νϕ(x1) + (1−
ν)ϕ(x2). By Theorem 5.2.1:

1−ROC(1− (νx1 +(1−ν)x2))≤ ν(1−ROC(1− x1))+(1−ν)(1−ROC(1−x2)).

The left hand side of the previous equality becomes:

1−ROC(1− (νx1 +(1−ν)x2)) = 1−ROC(ν +(1−ν)−νx1 − (1−ν)x2)

= 1−ROC(ν(1− x1)+(1−ν)(1− x2)),

while the right hand side can be rewritten as:

ν(1−ROC(1− x1))+(1−ν)(1−ROC(1− x2)) =

ν −νROC(1− x1)+1−ν − (1−ν)ROC(1− x2) =

1−νROC(1− x1)− (1−ν)ROC(1− x2).

Therefore:

ROC(νt1 +(1−ν)t2)≥ νROC(t1)+(1−ν)ROC(t2), ∀t1, t2,ν ∈ [0,1]

where t1 = 1− x1, t2 = 1− x2.

As already stated, it is important to stress that a proper ROC curve is possible under the very
general assumption that the LR is meaningful. Instead, in the applied literature, the existence
of a proper ROC curve is often believed to be limited to models with a monotone likelihood
ratio on a certain score.
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5.3 A theoretical example: two absolutely continuous meas-
ures with discrete LR

Let P− be an absolutely continuous probability measure on the real line with density f−
uniform between 0 and 3 and let P+ have a piecewise constant density f+ defined as follows:

f+(s) =
1

18
1[0<s≤1]+

10
18
1[1<s≤2]+

7
18
1[2<s≤3] =



1
18 if 0 < s ≤ 1
10
18 if 1 < s ≤ 2
7

18 if 2 < s ≤ 3

0 otherwise

where 1[A] is the indicator function for the event A, i.e. the function which equals 1 if A is
true and 0 otherwise. Suppose S is a real random variable with density f− under P− and f+
under P+. It is easy to see that the LR L = f+/ f− is piecewise constant and not monotone in
S, being:

L =


1
6 if 0 < s ≤ 1
10
6 if 1 < s ≤ 2

7
6 if 2 < s ≤ 3.

A classification rule based only on S gives rise to a ROC curve

ROCS(x) =


21
18x if 0 ≤ x < 1

3

− 3
18 +

30
18x if 1

3 ≤ x < 2
3

15
18 +

3
18x if 2

3 ≤ x < 1

which is not concave, shown as dashed line in Figure 5.1. Using instead the LR based
classification rule, the ROC curve is:

ROCL(x) =


30
18x if 0 ≤ x < 1

3
3

18 +
21
18x if 1

3 ≤ x < 2
3

15
18 +

3
18x if 2

3 ≤ x < 1

which is concave and dominates the previous one as shown in Figure 5.1. This example deals
with absolutely continuous densities which, nonetheless, have a finite discrete likelihood ratio:
it is an exquisitely theoretical exercise, with few (if any) concrete applications. However, it
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Figure 5.1 Proper ROC curve based on the LR of S (solid line); improper ROC curve based
on S (dashed line).

could be of help for a better understanding of proper/improper curves; in addition it allows to
address a case particularly difficult for the usual approach to ROC curves (which emphasizes
a continuous score is necessary).

5.4 The correct definition of concentration function for dia-
gnostics

In a paper appeared recently on Metron journal Schechtman and Schechtman [40] try to shed
some light on the relationship between the Gini Mean Difference (Gini), the Gini Covariance
(co-Gini), the Lorenz curve, the Receiver Operating Characteristic (ROC) curve and a
particular definition of concentration function. The purpose of the paper is commendable,
since there is a lot of confusion regarding the various relationships among these concepts.
In particular, it is clearly stated that the ROC curve and its functions (such as the AUC), as
well as an appropriate definition of relative concentration of a probability distribution with
respect to another, are bivariate objects tying together two different distributions, and can
not be reduced to univariate indices such as the Gini. Schechtman and Schechtman [40]
build on the wealth of research reviewed in the monograph by Yitzhaki and Schechtman [79],
where a whole technology based on the Gini and the co-Gini is proposed as an alternative to
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traditional variance and covariance based methods to study variability, correlation, regression
and the like.
Of course, studying how jointly distributed random variables interrelate is a very fundamental
problem in Statistics and its applications to Economics and the Sciences. However, when
turning to the diagnostic (or classification) setup, where ROC curves are naturally used,
one observes diagnostic variables (called features in the Machine Learning literature) from
two populations and tries to set up a rule that discriminates between them. Some special
requirements can then be identified:

1. Two probability distributions should be evaluated as alternative, mutually exclusive
explanations of the data, rather than from a joint point of view; for example, a diagnostic
marker observed on a patient has either the sick patient distribution or the healthy
patient distribution, and in no way the same marker can be observed jointly under both
sick and healthy conditions.

2. The definition of the ROC curve and the associated concentration function should be
viable also in the multivariate setup; for example, more than one diagnostic marker
can be observed on the same patient.

3. The definition of the ROC curve and the associated concentration function must be
given both at the population and at the sample level, as widely discussed in the ROC
literature (see for example [12]); a clear definition of the ROC curve at the population
level is necessary to understand basic ideas and to give appropriate definitions.

It appears that the definition of (absolute and) relative concentration curve contained in [40]
is not appropriate for the diagnostic setup since:

a. conditional distributions are used in the Definition 1 of [40], thus contradicting require-
ment 1);

b. percentiles are used in the same definition, thus contradicting requirement 2);

c. in [40], the discussion on the ROC curve is mantained at the sample level only, making
it hard to understand what is, for example, the definition of population ROC curve.

On the other hand, the correct definition of concentration function for the diagnostic setup
was the one given by Cifarelli and Regazzini in [76] and previously recalled. In my opinion,
that definition is more suitable to the diagnostic setup since it is a one-to-one transformation
of the ROC curve of the optimal diagnostic test, i.e. the one based on the likelihood ratio.



5.5 The Lorenz curve and the AUC of the optimal test 63

Indeed, the likelihood ratio is the fundamental measure of comparison of two distributions
and plays a role similar to the role the conditional expectation plays in [40].

5.5 The Lorenz curve and the AUC of the optimal test

As hinted in Chapter 2, ROC curves and the Lorenz-Gini curve are strictly related: an
interesting special case arises when X is a positive random variable with finite mean µx =∫

∞

0 x fX(x)dx and Y is the length-biased version of X , i.e.

fY (y) =
y fX(y)

µX
, y > 0.

In economic applications, Y represents wealth; in general, it may be a transferable character,
i.e. some characteristic which can in theory be transported from one unit of the population to
another. The likelihood ratios in this case simplify to

LX =
fY (X)

fX(X)
=

X fX(X)

µX fX(X)
=

X
µX

and
LY =

fY (Y )
fX(Y )

=
Y fX(Y )
µX fX(Y )

=
Y
µX

so that HX(ℓ) = FX(µxℓ) and HY (ℓ) = FY (µxℓ) and finally

ϕLorenz(p) = HY (H−1
X (p)) = FY (F−1

x (p)) =
∫ F−1

x (p)
0 y fX(y)dy∫

∞

0 x fX(x)dx
,

in which the usual forms of the Lorenz curve can be recognized. Indeed, it has been proven:

Corollary 5.5.1. In the Lorenz-Gini scenario, i.e. when fY (y) =
y fX (y)

µX
, the concentration

curve is the usual Lorenz curve.

An important consequence of Theorem 5.2.1 is about the AUC of the optimal likelihood
ratio based test, which can be easily computed as follows.

AUCopt =
∫ 1

0
ROCopt(q)dq =

∫ 1

0
(1−ϕ(1−q))dq = 1−

∫ 1

0
ϕ(s)ds. (5.4)
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Now, in this Lorenz-Gini scenario, the Gini concentration coefficient (Gini) is defined as
twice the area between the diagonal and the Lorenz curve:

Gini = 2
∫ 1

0
(p−ϕLorenz(p))d p = 1−2

∫ 1

0
ϕLorenz(p)d p

Since the concentration curve is a generalization of the Lorenz curve which describes the
concentration of one variable with respect to another (and not necessarily its length-biased
version), the generalized Gini can be defined as

Ginigen = 2
∫ 1

0
(p−ϕ(p))d p,

similarly to the co-Gini in [40]. Substituting into expression (5.4) the following corollary is
obtained.

Corollary 5.5.2. The AUC of the optimal likelihood ratio based diagnostic test equals

AUCopt =
1
2
(1+Ginigen).

The same result can be found in [3] and mentioned by several other authors. It is noteworthy
to highlight that the result is true for the likelihood ratio based test and, of course, for models
with monotone likelihood ratios (like the example considered in [3]) but not in general for
the AUC of any ROC, as also noted by [40]. A few more results provided agree with the
results in [3], but they have been presented in a more general form at the population level for
continuous variables, for which some examples are presented in the next section.
The definition of concentration function given here is a convenient one for the diagnostic
problem, since it compares two alternative probability distributions using a natural bivariate
generalization of the Lorenz curve. The discussion on the concentration and the ROC
curves at the population level allows for a deeper understanding of the concepts and for the
proof of Theorem 5.2.1, which ties together the concentration function and the ROC curve
of the optimal likelihood ratio based diagnostic test. Similar results were given by [3] at
the sample level. All results mentioned in these sections can conceptually be generalized
to higher dimensions, although computations may become very hard. In particular, the
likelihood ratio is an efficient dimension reduction technique which reduces the comparison
to a one-dimensional problem and allows for Definition 5.2.1 of concentration function
without involving higher dimensional conditional expectations or quantiles.
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5.6 Some examples

Example 1. Let X be exponential with rate parameter λX and Y be exponential with rate
parameter λY and assume, as it is customary, that λX > λY , so that Y is stochastically greater
than X (this corresponds to a situation where the greater a diagnostic marker, the more is
indicative of disease). Then it is easy to verify that

HX(ℓ) = P
(

fY (X)

fX(X)
≤ ℓ

)
= P

(
λY e−λY X

λX e−λX X
≤ ℓ

)
= 1− (

1
rℓ
)r/(r−1)

for ℓ > 1/r and 0 otherwise, where r = λX/λY . Similarly,

HY (ℓ) = P
(

fY (Y )
fX(Y )

≤ ℓ

)
= 1− (

1
rℓ
)1/(r−1)

for ℓ > 1/r and 0 otherwise. Also,

H−1
X (p) =

1
r
(

1
1− p

)(r−1)/r

so that the concentration function is

ϕ(p) = HY (H−1
X (p)) = 1− (1− p)1/r, p ∈ (0,1),

the ROC curve of the likelihood ratio based optimal test is

ROCopt(q) = q1/r 0 ≤ q ≤ 1,

and
AUCopt =

r
r+1

.

Example 2. Let X be exponential with rate parameter λX and assume Y is its length-biased
version, so that

fY (y) =
yλX e−λX y

1/λX
= λ

2
X ye−λX y, y > 0,

i.e. Y is a gamma random variable with parameters 2 and λX . This is a Lorenz-Gini scenario,
where it is easy to verify that

HX(ℓ) = P
(

fY (X)

fX(X)
≤ ℓ

)
= P(λX X ≤ ℓ) = 1− e−ℓ
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whereas, after some calculus,

HY (ℓ) = P
(

fY (Y )
fX(Y )

≤ ℓ

)
= P(λXY ≤ ℓ) = 1 − e−ℓ − ℓe−ℓ. (5.5)

Since H−1
X (p) =− log(1− p),

ϕ(p) = p+(1− p) log(1− p), ROCopt(q) = q−q log(q).

5.7 Discrete ROC

As clearly stated, the LR-based classification rule allows to obtain a proper ROC curve for
finite, continuous and even more complex data types, under the only wide assumption that
the likelihood ratio is meaningful. For binary data, the LR takes only a discrete set of values
and therefore the associated ROC curve is only a discrete set of points (Figure 5.2, left panel).
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Figure 5.2 The usual definition of a ROC based on discrete data (left) and the ROC on the
same data completed via a randomization device (right).

However, thanks to the randomization device introduced in Definition 5.1.1 and as a by-
product of the relationship between the ROC curve and the concentration function, the
discrete points can be joined to form also in this case a concave and proper ROC curve, as in
Figure 5.2, right panel. This could be better understood by a concrete example.
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5.7.1 Two finite measures

The following example is taken from the Encyclopedia of Biostatistics [80]. Suppose 109
patients have been classified as diseased (P+) or not diseased (P−), based on a gold standard
such as biopsy or autopsy. On the basis of radiological exams, they have also been classified
over five ordinal levels

−−= very mild

−= mild

+−= neutral

+= serious

++= very serious

Here are the results:

– – – +– + ++ total
P− 33 6 6 11 2 58
P+ 3 2 2 11 33 51

In particular, P+ and P− are two empirical measures, relative to the diseased and not diseased
population respectively, derived from data. There are four possible values for the LR:

L =



58
561 if −−
58
153 if − or +−
58
51 if +
319
17 if ++

which give rise to four empirical ROC points { (25/58, 48/51); (19/58, 46/51); (13/58, 44/51);
(2/58, 33/51)}, shown in Figure 5.3. Now, as said, thanks to the randomization device, it is
possible to ... connect the dots! This is so since the distribution functions of L under P− and
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P+ are

H−(ℓ) =



0 if 0 ≤ ℓ < 58
561

33
58 if 58

561 ≤ ℓ < 58
153

45
58 if 58

153 ≤ ℓ < 58
51

56
58 if 58

51 ≤ ℓ < 319
17

1 if 319
17 ≤ ℓ

and

H+(ℓ) =



0 if 0 ≤ ℓ < 58
561

3
51 if 58

561 ≤ ℓ < 58
153

7
51 if 58

153 ≤ ℓ < 58
51

18
51 if 58

51 ≤ ℓ < 319
17

1 if 319
17 ≤ ℓ.

Therefore, the ROC curve can be calculated using equation (5.3):

ROC(x) =



319
17 x if 0 ≤ x < 2

58
31
51 +

58
51x if 2

58 ≤ x < 13
58

7
9 +

58
153x if 13

58 ≤ x < 25
58

503
561 +

58
561x if 25

58 ≤ x < 1

The continuous ROC curve interpolates the empirical ROC points, as shown in Figure 5.3.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

●

●

●

●

Figure 5.3 The proper ROC curve based on the LR interpolates the empirical ROC points.



Chapter 6

Model-based classification for binary
data

Binary classification is a basic problem in Statistics and Machine Learning which could
be approached in many different ways. In this chapter classification means clustering, or
unsupervised learning. A number r of features, or predictors, is recorded on a sample of n
statistical units with the aim of classifying them into two groups, without previously knowing
the group memberships (labels) for any of them. Previously, dealing with ROC curve, the
true membership class of each subject was assumed to be known (supervised learning).
In the following, I will consider binary features and only two groups (also indicated as clusters,
classes or populations), if not differently stated. Extensions to multiple clusters and non binary
answers can be obtained straightforwardly. The two clusters are conventionally identified as
the positive (+) and the negative (−) group. Multivariate binary data naturally originate from
polls, questionnaires, online automated interviews and represent the profile of a statistical
unit about which several binary questions have been answered. In this type of problems,
usually, data are collected to investigate if there is a separation in classes; therefore there
is lower amount of structure and information compared to supervised learning (which, for
example, characterizes diagnostic and genomic studies). Nevertheless, some structures will
be introduced since binary features will be considered realizations of Bernoulli (i.e. binary)
random variables with certain dependence or independence relationships and the focus will
be on a model-based approach. In addition, the strong hypothesis of the local independence
of the features will be retained also here, given its popularity in Machine Learning literature
(see for example Murphy book [81]). Actually, to the best of my knowledge, this working
assumption will only affect the clustering rules (namely the way to select units), allowing, on
the other hand, possible dependences and correlation among units.



70 Model-based classification for binary data

The chapter is organized as follow: after having clarified some basic notions of model-
based clustering and having highlighted the well-known difference between hard and soft
assignment, the implementation of hard clustering in R is provided, jointly with some
considerations on dimensionality problems and parallel computing. Furthermore, latent class
models (popular soft clustering methods) are also introduced and a comparison between the
two approaches is provided, analysing a small highly cited dataset from educational setting
(used as a toy example).
The material presented here is partly extracted from the short paper “ROC curves with binary
multivariate data” presented at the 12th meeting CLADAG (Classification and Data Analysis
Group) [82]. In addition, some results have been developed jointly with a master student in
Mathematical Engineering and have been also included in his master thesis [83].

6.1 Model-based classification, unsupervised learning and
clustering

It is important to recall some well known concepts to better frame the work presented in the
following.
The focus will be on unsupervised learning approach, in which units (for example subjects)
are grouped based on their characteristics, exploiting similarities without prior information
or training. In particular units are not labelled and nothing is known on the true class
membership. Unsupervised learning is the basic principle for clustering, a way of grouping
multivariate data to highlight structures, with a systematic use of numerical methods. Essen-
tially, the idea is to maximize the similarity within groups and the heterogeneity between
groups. Often the similarity/dissimilarity among units is measured in terms of distance
(assuming a metric space). Certainly, different clustering techniques exist (e.g. combinat-
orial, partitioning, hierarchical, fuzzy clustering, . . . for further details see [84–86]), but I
will concentrate here especially on model-based approach, which assumes a probabilistic
framework and a formal statistical model for the observations, and therefore adopts standard
methods for statistical inference. Indeed, model-based clustering solves in a principled way
some difficulties of the analysis, such as the number of clusters or the choice of the method
to be used: they reduce to a simpler problem of model selection. In addition, the statistical
approach allows to assess uncertainty and to deal with outliers. A good clustering has
predictive power, it describes data in a more effective way (allowing lossy compression), and
it can highlight units of particular interest. Lastly, it is noteworthy to notice that classification
and clustering do not have the exact same meaning, even if they are often used as synonyms:



6.1 Model-based classification, unsupervised learning and clustering 71

the word "classification" is preferred in a supervised approach and it aims to identify the
membership class of a new object with an algorithm trained on other labelled units.

6.1.1 Hard versus soft assignment

In general, in addition to what presented in the previous paragraph, it appears relevant to
stress the difference between hard and soft clustering.

• Hard assignment: each unit belongs to one group only, in an exclusive way. The group
labels γ1, . . . ,γn are unknown parameters; the reference clustering algorithm for this
approach is k-means, where k indicates the number of clusters to be considered.

• Soft assignment: each unit belongs to different clusters with different probabilities or
degrees of membership ηk for k = 1, . . . ,K; this approach gives rise to finite mixture
models and latent class analysis (LCA) [87], while the Expectation-Maximization
(EM) algorithm constitutes the reference.

Actually, in my opinion, hard assignment, which dates back to 1970s [88], is a more prin-
cipled and straightforward way to assign units to given classes. However, it is a NP-hard
optimization problem (i.e. a problem that can be solve in polynomial time by a nondetermin-
istic Turing machine) and therefore it is possible to find the exact solution only for small
datasets. Nevertheless, with modern technologies, it is of interest to investigate up to which
point such approach can be used towards automatic identification of the two classes and the
class labels of the sampled subjects. In particular, in the next paragraph an hard implementa-
tion will be proposed in R [75], considering dimensional and memory limits and exploiting
parallel computing.
On the other hand, soft clustering acquired lots of popularity at present, thanks to its connec-
tion with mixture models, with various R packages and other software routines available for
the direct calculus of membership probabilities; furthermore, it appears to be more flexible
and it completely avoids dimensionality problems.
The two approaches classify units maximizing the likelihood (different quantities for hard
and soft assignment) as detailed below.
Let xxx1,xxx2, . . . ,xxxn be independent measurements of r predictors for n different statistical units
(i.e. xxxi = (xi1,xi2, . . . ,xir) for i = 1, . . . ,n), which arise from K possible groups; each unit
has probability density function f (x;θθθ k), k = 1, . . . ,K. Define γγγ = (γ1, . . . ,γn) as the set
of individual labels: γi = k implies that xxxi ∈ Ck, i.e. Ck is the set of xi assigned to the kth
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population by γγγ . Therefore, in the hard assignment, the likelihood function is:

L(γγγ,θθθ 1, . . . ,θθθ k) = ∏
x∈C1

f (x;θθθ 1) · · · ∏
x∈Ck

f (x;θθθ k) = ∏
i:γi=1

f (x;θθθ 1) · · · ∏
i:γi=k

f (x;θθθ k), (6.1)

where γγγ and θθθ have to be jointly estimated from the data. Units are then assigned to a
specific group exploiting the maximum likelihood allocation rule [88], which allocates xxx
to the population which maximizes (6.1). Actually, it can be proven that moving a sample
point from Ĉk to Ĉℓ, where Ĉk and Ĉℓ are the partitions obtained considering the maximum
likelihood estimates of γγγ and θθθ , will reduce the likelihood.
In the soft approach, instead, it is assumed that each xi has probability ηk of coming from
the kth population, k = 1, . . . ,K and therefore the probability density function of each xxx is:

f (x) =
K

∑
k=1

ηk f (x,θθθ k).

In this case, to correctly allocate xxx the quantity to be maximized is:

ηkLk(x).

In other words, xi is assigned to the kth distribution when η̂ℓ f (xi, θ̂θθ ℓ)≤ η̂k f (xi, θ̂θθ k) for all
ℓ ̸= k, where η̂ηη and θ̂θθ are the estimates of ηηη and θθθ . This allocation rule is indicated as the
Bayes discriminant rule with respect to ηηη , even if, often, it is not a full Bayesian procedure,
because priors on θθθ are not considered.
The hard and the soft approach are equivalent considering γγγ as an (unobservable) random
variable whose components are the outcomes of n independent multinomial trials [88, 89].
As already said and as it will be further discussed in the following, to maximize (6.1) with
exact procedures is really challenging, because, in general, as detailed in [84], the number of
different assignments is:

1
K!

K

∑
k=1

(−1)K−k
(

K
k

)
kn.

This means that even in the simplest case with only two clusters the exhaustive search requires
to evaluate 2(n−1) assignments. Therefore, heuristic solutions are often preferred.
Lastly, it is important to notice that, to avoid limiting case with infinite likelihood, the hard
approach assumes at least (r+1) observations per group, i.e. n ≥ K(r+1). In the proposed
implementation this problem is solved adding one success and one failure (binary case)
for each predictor (additive Laplace smoothing, a modification of the Agresti and Coull
adjustment [90, 91]).
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6.2 K-means and EM algorithms

K-means and EM algorithms are the two reference methods for hard and soft clustering
respectively. They are both iterative, involving two steps, they can converge to a local
optimum instead of to a global one and therefore the starting values have a relevant role. For
Gaussian mixture models the two approaches are closely related. In the next paragraphs the
peculiar characteristics of the two algorithms are presented.

6.2.1 K-means

K-means clustering is a simple and elegant way for partitioning observations into a pre-
specified number K of distinct and non-overlapping Ck groups. As previously stated, a good
clustering procedure aims to minimize the variation within-group; therefore the optimization
problem to be solved is:

minimize
K

∑
k=1

1
|Ck| ∑

xxxi,xxx j∈Ck

d(xxxi,xxx j),

where |Ck| denotes the size of cluster Ck, d(xxxi,xxx j) is a measure of dissimilarity, usually the
squared Euclidean distance, even if other choices are possible.
At the beginning, K-means randomly assigns numbers from 1 to K to each observation to
define the initial cluster (observations with the same number are grouped together). Then,
the following two steps are iterated until assignments do not longer change (Figure 6.1):

a. Assignment step: the cluster centroid mk, i.e. the mean of the observations in that
cluster, is computed; each observation is assigned to the class identified by the closed
centroid.

b. Update step: the centroid is recalculated using the observations assigned to the cluster
at the previous step.

Centroids are model parameters; at each step the value of ∑
K
k=1

1
|Ck| ∑xxxi∈Ck

d(xxxi,mk) is de-
creased and the algorithm always converges to a fixed point. However, depending on the
initial random assignment, it could find a local solution and therefore it is important to run
the algorithm many times and to select the minimal configuration. K-means considers only
the distance between the means and the observations: it can not represent the weight or the
breadth of each cluster, nor the size or the shape.
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Figure 6.1 Example of how k-means algorithm works

6.2.2 EM algorithm

The Expectation-Maximization (EM) algorithm is a tool for maximum likelihood estimation
in the soft assignment approach. It relies on the concept of complete-data likelihood LC and
observed-data likelihood LO. Let ttt1, . . . , tttn be independent and identically distributed random
variables with probability density function f (ttt,θθθ) and ttt i = (xxxi,γi) the complete data, where
γγγ are latent variables representing the class membership, i.e. γik = 1 if xxxi belongs to group k
(and 0 otherwise). Therefore:

LC(ttt i,θθθ))) =
n

∏
i=1

f (ttt i,θθθ)

and integrating the latent variables out: LO(xxx,θθθ) =
∫

LC(ttt,θθθ)dπππ , where πi = P(γi = 1).
The algorithm iterates two steps:

a. The E step computes the conditional expectation of LC (the logarithm transformation
of LC), given the observations and the current parameters estimates, i.e.

Q(θθθ ′, θ̂θθ) = E(LC(θθθ
′,TTT )|XXX , θ̂θθ), (6.2)

where θθθ
′ is a dummy variable.

b. The M step calculates the estimates of parameters θ̂θθ that maximize the expected
log-likelihood from the E step.
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To better understand the procedure, the simpler case of a mixture of two Gaussian distributions
is presented: Y = (1− γ)Y1 + γY2, where γ ∈ {0,1}, with P(γ = 1) = π . Indicating with
φθθθ (x) the normal probability density with parameter θθθ = (µµµ,σσσ2), the density of Y is:

gY (y) = (1−π)φθθθ 1(y)+πφθθθ 2(y).

Indeed the model parameters are θθθ = (π,µ1,σ
2
1 ,µ2,σ

2
2 ). The log-likelihood to be maximized

is:

L(XXX ,θθθ) =
n

∑
i=1

log[(1−π)φθθθ 1(xi)+φθθθ 2(xi)].

If the values of γi are known, then

LO(XXX ,γγγ,θθθ) =
n

∑
i=1

[(1− γi) logφθθθ 1(xi)+ γi logφθθθ 2(xi)]+
n

∑
i=1

[(1− γi) log(1−π)+ γi logπ]

However, usually the γi are not known and, therefore, their expectations are considered. In
particular, one can define:

responsibilityi := zi = E(γi|θθθ ,XXX) = P(γi = 1|θθθ ,XXX).

Responsibilities are computed in the E step:

ẑi =
π̂φ

θ̂θθ 2
(xi)

(1− π̂)φ
θ̂θθ 1
(xi)+ π̂φ

θ̂θθ 2
(xi)

,

where π̂ and θ̂θθ = (µ̂1, σ̂
2
1 , µ̂2, σ̂

2
2 ) are initialized respectively to 0.5 and to random observa-

tions for µ̂1 and µ̂2 and to equal overall sample variance for σ̂2
1 and σ̂2

2 .
The maximization step evaluates:

µ̂1 =
∑

n
i=1(1− ẑi)xi

∑
n
i=1(1− ẑi)

σ̂
2
1 =

∑
n
i=1(1− ẑi)(xi − µ̂1)

∑
n
i=1(1− ẑi)

µ̂2 =
∑

n
i=1 ẑixi

∑
n
i=1 ẑi

σ̂
2
2 =

∑
n
i=1 ẑi(xi − µ̂2)

∑
n
i=1 ẑi

π̂ =
n

∑
i=1

ẑi/n

The actual maximizer of the likelihood is obtained when spikes of infinite height are con-
sidered for each data point (σ2

1 = 0), but this is not a useful solution and the additional
constraint σ̂2

1 , σ̂
2
2 > 0 is considered.
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In general, the EM algorithm works because at each iteration the log-likelihood never de-
creases, as shown in [84]. However, the convergence to the local maximum of LO can be
slow and problems could arise when some clusters contain only a few observations, when
observations are concentrated close to a linear subspace or when, in the multivariate normal
case, the covariance matrix of one or more components is singular or nearly singular.

6.3 A short recap on LCA

The latent class analysis (LCA), firstly proposed by Lazarsfeld and Henry [87], is a model-
based clustering method, rooted in finite mixture models literature, which classifies multivari-
ate categorical data based on a soft approach. This model aims to describe the heterogeneity
and dependence existing in data considering the class membership as a discrete latent (un-
observable) variable and exploiting the information provided for each unit by manifest
(observed) variables.
In details, consider n units xxxi for i = 1, . . . ,n (e.g. subjects replying to a questionnaire), r
categorical (for simplicity binary) variables collected for each unit (e.g. replies to r questions
in a survey, results of r educational assessment tests) generically indicated with items, and
a fixed number K of different latent classes; LCA relies on the strong assumption of local
independence, i.e. the manifest variables are independent conditionally on knowing the
membership class. In addition, the n individuals constitute a random sample from some pop-
ulation, each has ηk probability to belong to class k for k = 1, . . . ,K (the mixing proportion is
the a priori probability) and the probability of giving a positive response to a particular item
j is the same for all individuals in the same group and it is indicated with π jk = P(x j = 1|k)
for j = 1, . . . ,r and k = 1, . . . ,K.
In the binary case, as it is well known, the manifest variables are marginally distributes as
Bernoulli, i.e.

f (xi,θθθ k) =
r

∏
j=1

π
xi j
jk (1−π jk)

1−xi j

being θθθ k = (π1k, . . . ,πrk) the vector of success probabilities in the k-th population. Therefore,
as previously stated

f (xi) =
K

∑
k=1

ηk f (xi,θθθ k).

Maximum likelihood estimates of the parameters of the model are obtained via the EM
algorithm, which unfortunately could return a local maximum, instead of a global one. In
addition, there could be identifiability problems: to avoid this a necessary but not sufficient
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condition is that the number of possible values of the manifest variables is greater than the
number of parameters to be estimated [92], i.e

2r −1 ≥ (K −1)+ rK.

Actually, LCA requires to estimate (K − 1) +K ∑ j(c j − 1) parameters (where c j is the
number of different categories of variable j) and difficulties can arise. More parsimonious
variants have been proposed (see for example the recent book by Bouveyron and colleagues
[86]).
With respect to clustering, after having fitted a latent class model using the EM algorithm,
a classification step should be considered: units are categorised based on the maximum a
posteriori principle and assigned to the class which maximize the responsibility zik of xi.
Actually, for each individual, it is possible to compute the a posteriori probability, i.e. the
probability that the individual falls into a specific class, given a particular response pattern;
fixed the threshold (usually the 50% when K = 2), it is easy to decide the membership
class. Alternatively, the cluster can be obtained jointly with the estimation of parameters,
introducing the classification directly in the algorithm: a C-step is evaluated before the update
of the estimates. This “CEM” algorithm could add bias, but the convergence is faster.
Certainly, there are connections with distance-based methods [86] and it is possible to modify
latent class models to include covariates. Furthermore, lots of work has been dedicated
to find ways to relax the hypothesis of local independence, for example including a new
multivariate Bernoulli variable in the parametric mixture model [93], adding random effects
and additional (possibly continuous) latent variables to handle dependencies. However these
topics will not be detailed here.

6.3.1 The poLCA R package

The Polytomous Variable Latent Class Analysis (poLCA) is a user-friendly R package for fit-
ting latent class models [94]. It allows to estimate ηk and π jk for j = 1, . . . ,r and k = 1, . . . ,K,
maximizing the following log-likelihood function via the EM algorithm (the extension to
more than two outcomes - i.e. to polytomous variables - is straightforward):

L=
n

∑
i=1

log
K

∑
k=1

ηk

r

∏
j=1

(π jk)
xi j(1−π jk)

1−xi j .
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In addition, poLCA also provides the posterior probability that each individual belongs to a
given class, conditionally on the observed values of the manifest variables:

p̂(ki|xxxi) =
η̂k f (xxxi, θ̂θθ k)

∑
K
k=1 η̂k f (xxxi, θ̂θθ k)

.

As already said, the EM algorithm can converge to a local maximum (depending on the initial
values and on the complexity of the model): it is always recommended to run the model at
least a couple of times and this can be done simply changing the value of nrep in the call of
the function poLCA(). Coding details on LCA models can be found in Appendix B.

Figure 6.2 Example of poLCA output

poLCA automatically calculates goodness-of-fit values, such as BIC, AIC, Pearson χ2 and
likelihood-ratio chi square G2 (see [95] for details) to help in deciding the number of clusters
(specified in the input by nclass command) to be considered; usually one starts from the
independence model with K = 1 and then increases the number of latent variables iteratively
by one until obtaining a satisfying good fit. The aim is to minimize χ2 and G2, trying to limit
the number of parameters to be estimated, considering that the distributional assumptions for
the calculus of these statistics could be violated if groups contains too few observations. The
poLCA function fits a LCA model on data given in data-frame format (including manifest
variables and covariates, if the case), in which categorical items are coded as integers starting
from one. Indeed, manifest variables are the responses variables for the model and are
included in it in the following “formula” way: cbind(X1, X2, X3) ~ 1 (with a linear
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combination of covariates instead of 1, if the case). Apart from goodness-of-fit values, poLCA
returns the estimated class-conditional outcome probabilities, the posterior probabilities,
the class predictions (the probs, posterior and predclass objects respectively), and, of
course, the maximum values of the estimated model log-likelihood (llik) (see Figure 6.2
for an example of output). Lastly, it is important to notice that the numerical order of the
estimated latent classes returned in the output is totally arbitrary, and is determined solely by
the start values of the EM algorithm.

6.4 A new implementation of hard assignment in R

Despite the popularity of LCA models, in my opinion, the hard approach can be considered
a more basilar way to assign units to clusters; therefore, considering the technical and
technological developments of the recent years, it appears noteworthy to investigate up to
which point one can rely on hard assignment for classifying subjects. As previously stated,
it is a combinatorial problem and memory allocations limits are explored to find the exact
solutions; however, parallel computing on one side and heuristic optimization procedures on
the other allow to obtain some interesting results.
In particular, consider n units Xi = (Xi1, . . . ,Xir) for i = 1, . . . ,n characterized by unknown
group labels γ1, . . . ,γn (which are therefore parameters from a statistical point of view) and
r items. The equality γi = + (respectively γi = −) would mean that the i-th unit would
belong to the positive (respectively negative) group. In the binary case, for a given realization
of γ1, . . . ,γn, Xi = (Xi1, . . . ,Xir) are independent and each distributed as a MultiBernoulli
with independent binary components with parameters πππ+ = (π+

1 , . . . ,π+
r ) if γi =+ or πππ− =

(π−
1 , . . . ,π−

r ) if γi =− respectively:

Xi = (Xi1, . . . ,Xir)∼ MultiBernoulli(π+
1 , . . . ,π+

r ) if γi =+, i = 1, . . . ,n

Xi = (Xi1, . . . ,Xir)∼ MultiBernoulli(π−
1 , . . . ,π−

r ) if γi =−, i = 1, . . . ,n.

Also in this approach, features are assumed to be locally independent. Therefore, the
likelihood function can be written as:

L(γγγ,πππ+,πππ−) = ∏
i:γi=+

r

∏
k=1

(π+
k )xik(1−π

+
k )1−xik ∏

i:γi=−

r

∏
k=1

(π−
k )xik(1−π

−
k )1−xik (6.3)

=
r

∏
k=1

(π+
k )n+k (1−π

+
k )ν−n+k (π−

k )n−k (1−π
−
k )n−ν−n−k (6.4)
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where

n+k =
n

∑
i:γi=+

xik, n−k =
n

∑
i:γi=−

xik and ν = ∑
i:γi=+

1

are unknown quantities and should be estimated.
Differently from poLCA, here the focus is on profiles m, i.e. on fixed binary strings of length
r, which represent possible realizations of each of the random vectors Xi. The following
property holds:

Lemma 6.4.1. Units with identical profiles share the same maximum likelihood group
assignment, i.e. if two units i and ℓ have the same profile, then the respective maximum
likelihood estimates are equal γ̂i = γ̂ℓ.

Proof. Suppose that two units i and ℓ share the same profile and are assigned to different
groups, say γi =+ and γℓ =− for the sake of definiteness. Then the likelihood can be made
not smaller by changing the assignment γi =+ to γi =− if

∏
k:xik=1

π
+
k ≤ ∏

k:xik=1
π
−
k (case A) (6.5)

or, vice versa, by changing the assignment γℓ =− to γℓ =+ if

∏
k:xik=1

π
+
k ≥ ∏

k:xik=1
π
−
k , (case B). (6.6)

To see this, notice that in case A changing γi =+ to γi =− would imply n−k increases by 1
and n+k decreases by 1 for those k such that xik = 1, while ν would change to ν −1 and no
other functions would change. Therefore

r

∏
k:xik=1

(π+
k )n+k (1−π

+
k )ν−n+k (π−

k )n−k (1−π
−
k )n−ν−n−k

≤
r

∏
k:xik=1

(π+
k )n+k −1(1−π

+
k )ν−n+k (π−

k )n−k +1(1−π
−
k )n−ν−n−k

which is true if and only if ∏k:xik=1 π
+
k ≤ ∏k:xik=1 π

−
k , as stated.

Similarly, in case B, the likelihood would be made no smaller by changing γℓ = − to
γℓ =+.

The lemma has important consequences stated in the next theorem.
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Theorem 6.4.2. Maximum likelihood estimates γ̂γγ, π̂ππ+, π̂ππ− of γγγ,πππ+,πππ− can be obtained with
a finite search of at most 2r iterations.

Proof. By the previous lemma, it is enough to consider the likelihood of each of the 2r

profiles and to maximize it, setting then γ̂i, i = 1, . . . ,n equals to the assignment of the
corresponding profile.

Therefore, the new implementation of hard assignment requires at most 2r different profiles
to be evaluated; this can signify considerable computational savings in the case r < n, while
in the case r > n dimensional reduction strategies should be implemented.
The building blocks of the new algorithm to implement hard assignment in R (of which a
schematic idea is presented in Figure 6.3, whereas the complete code is reported in Appendix
B), are:

• the dataset (given in input), containing the units to be classified (by row) and the
different (binary) items by column;

• the profile matrix, obtained from the original data, deleting units with the same pattern
and adding a variable to take care of the multiplicity of each profile;

• the assignment matrix, showing all possible configurations arisen allocating each
profile to different clusters.

Figure 6.3 Building blocks of the implementation of hard assignment in R
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Indeed, dimensionality problems originate from the assignment matrix, whose size grows
exponentially with the number of profiles and quickly fills up all the memory available. As it
has been showed in [83], the memory space necessary to allocate the matrix is approximately
2m−13 Mb and it duplicates just adding one profile. Therefore, it is still impossible to find
the maximum of the likelihood with an exhaustive search for more than m = 30 profiles.
The limit persists even considering parallel computing (with the R package parallel for
example): in this case the assignment matrix is split in smaller sub-matrices, depending on
the number of cores available (here 4), and then the maximum of the likelihood is searched
independently in each sub-matrix. Certainly there is a improvement in the time required to
obtain the solution (with a speedup of more than 2x).
To concretely implement hard clustering the log-likelihood (the logarithmic transformation
of the likelihood function (6.3) is considered only for convenience of calculus) of each
configurations (i.e of each column of the assignment matrix) is evaluated. First of all, the
probability of profiles (the thetap and thetam in Figure 6.3) is computed directly counting
the 1s in the profiles matrix corresponding to + (respectively −) for a specific configuration
cl (values stored in nump and numm matrices) and dividing by the total number of + (respect-
ively −) in the configuration (collected in denp and denm). Additive Laplace smoothing
is applied, adjusting frequencies adding one success to the numerator and one success and
one failure to the denominator, to avoid limiting cases. The log-likelihood is then evaluated
by logLikeEval01 function, exploiting the local independence assumption and taking into
account the multiplicity of the profiles: in particular the elements CpL and CmL indicates
the components of the log-likelihood with respect to the two clusters (+ and −). In addition,
some vectorized operations have been introduced to improve the code, using the apply

family functions and the dyplr package available in R (in particular, colLike01 function is
the vectorize version of logLikeEval01).
Looking at the results obtained on a random dataset and on a small real dataset (described
in the next section) it is evident that the worse configuration (i.e. the lowest value of the
likelihood) is the one that assigns all the profiles to the same cluster. In addition, symmetrical
configurations always return the same value for the log-likelihood, because no weights have
been considered and therefore the two clusters + and − are formally equal.
To overcome the limit of about 30 profiles (which means quite small datasets) heuristic meth-
ods have been proposed: instead of exhaustive search, only a subset of possible configurations
is evaluated for finding the best solution. The simpler idea is to adopt a basic Monte Carlo
approach, selecting at random a number of configurations and computing the log-likelihood
for them: it is possible that this method does not converge to the true global maximum,
but the computation is very fast and therefore good solutions could be found increasing the
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number of configurations and iterating the process over time. On the other hand, starting from
the algorithm presented by Li et al. [96] to efficiently perform optimization via Monte Carlo
method exploiting entropy, a new procedure essentially based on swapping of clusters is
proposed. Actually the initialization is completely random and the deterministic assignment

Algorithm 2 Hard clustering via swap

a. Initialization

• Initialize the cluster configuration cl

• Compute initial log–likelihood L(0)

• Initialize best log-likelihood L(Best) = L(0)

• Initialize best configuration clBest = cl

b. Iterations from 1 to nIter

• Randomly select a profile p in the cluster +

• Move p to cluster −
• Compute new log-likelihood L

• Compute new cluster configuration cl

• If L > L(Best)

L(Best) = L
clBest = cl

c. Return LBest and clBest

of all the profiles to the same cluster could be considered as the starting point. However to
improve the convergence a wiser idea is to consider the result of few iterations of the basic
Monte Carlo methods as initial guess for cl [83]. Coding details can be found in Appendix B.

6.5 A toy example

To better understand how the new implementation of hard assignment works, it has been
tested on a small dataset from educational assessment, commonly used in latent class
analysis models, described by [95] and based on data from [8]. It contains answers to r = 4
binary questions provided by n = 142 subjects. The information was collected to study the
learning process in children and, in particular, to classify students in two groups (the P+ and
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Table 6.1 Latent classes analysis (poLCA Ass) versus hard assignment (Hard Ass) on
Macready and Dayton data [8]. Posterior probabilities calculated using poLCA.

Profiles Frequency Prob. ∈ P− Prob. ∈ P+ poLCA Assign. hard Assign.
1111 15 0.000 1.000 + +
1101 23 0.002 0.998 + +
1110 7 0.002 0.998 + +
0111 4 0.001 0.999 + +
1011 1 0.003 0.997 + -
1100 7 0.087 0.913 + +
1001 6 0.095 0.905 + -
0101 5 0.025 0.975 + +
1010 3 0.100 0.900 + -
0110 2 0.026 0.974 + +
0011 4 0.029 0.971 + -
1000 13 0.822 0.178 - -
0100 6 0.526 0.474 - +
0001 4 0.550 0.450 - -
0010 1 0.563 0.437 - -
0000 41 0.982 0.018 - -

P− populations): “masters” students were expected to answer correctly to most questions
(majority of 1’s in the profile), while mostly 0’s were expected from “non-masters”. Indeed,
students could also answer in the right way by chance, as well as give the wrong answer due
to oversight. There are 16 different profiles and it is therefore possible to find the maximum
of the likelihood function with an exhaustive search.

> exactsol

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 loglike

1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 -240.1591

0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 -240.1591

Due to the simplicity of the problem also the heuristic procedure quickly converges to the
same value.
Table 6.1 reports the comparison of hard and soft assignment approaches (via LCA) and the
posterior probabilities calculated by the poLCA package: 20 out of 142 subjects are classified
differently by the two methods; the reasons for the observed differences are a matter of
discussion. In particular, unexpectedly, there are profiles with high posterior probabilities
in the latent variable approach, assigned to the other population by the hard algorithm. In
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addition, looking at Table 6.1, it seems that the second item has a higher discriminant power
in the hard approach: the profile is automatically assigned to − if Item2 = 0, independently
from the correctness of other replies. This observation originates the conjecture summarized
below and detailed in [83].
Under the local independence hypothesis, assume that all possible different profiles are
present in the dataset, with the same frequency and the same discriminant power (weight) for
all the items; in this completely symmetric case the number of optimal configurations (i.e.
the number of assignment returning the maximum value of the likelihood) is equal to the
number of different items r and the profiles can be divided in two clusters based on answers
to a single randomly chosen item q (with q = 1, . . . ,r).
Furthermore, in this completely symmetric situation, poLCA and the new implementation of
hard clustering give the same results.

6.6 Future developments

Results presented in this chapter rely on the strong assumption of local independence of
features and are limited to the binary case. Extensions to multivariate (more than binary)
populations and to multi-outcomes items (possibly with a different number of categories for
different items) follow straightforwardly and constitute future developments of the present
work; indeed, in poLCA is sufficient to specify the number of clusters in nclass and, thanks
to goodness-of-fit values automatically reported in the output, it is easy to select the best
model.

Figure 6.4 Example of proper Bayesian network to model dependencies

In the hard approach, certainly the likelihood function is no longer simply the product of
the πk (for k = 1, . . . ,r) and its complementary probability under + and −, but it is naturally
replaced by the product of probabilities pk,1, pk,2 and pk,3 for an item k with 3 outcomes for
example, still retaining the local independence assumption. Dimensionality problems are
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even more relevant and the heuristic methods appear the only feasible.
On the other hand, the DAG (Direct Acyclic Graphs) theory and a proper Bayesian networks
approach can be adopted to model possible dependencies among predictors (Figure 6.4).
This can be done in R using the package bnlearn (as hinted in [83]). New challenges arise:
in this framework γi becomes a proper parameter and priors should be considered on it; in
addition, it is necessary to jointly estimate the structure of the graph (the edges).
A deeper analysis of Bayesian networks and of other ways to relax the hypothesis of local
independence represent future developments of this work.



Chapter 7

Applications

This final chapter presents two more applied projects developed in collaboration with Bayer
Pharmaceutical (Department of Clinical Statistics Europe Oncology, Berlin) and the Piedmont
Cancer Registry (Turin). At this point of the dissertation, it should be quite clear that the
“underlying latent variables” around which I have built my PhD work are biomarkers: from
the search of new biomarkers for prostate cancer I moved to a deep analysis of ROC curves,
likelihood ratio and related properties till the classification/clustering problem by itself.
Biomarkers play an important role also here.

• Protein measurements have been included among predictors in the predictive models
built on clinical trials data.

• The investigation of genomic characteristics of diseases (in particular cancers) is of
great interest at present from diagnostic, prognostic and therapeutic points of view.
However, epidemiological analyses are an important preliminary step to provide a
broader perspective for pointing out challenging topics, hypotheses and questions on
which to focus the biomarkers research. In particular, I have been deeply involved in
cutaneous malignant melanoma research as a member of GEM (Genes, Environments
and Melanoma) consortia and, in collaboration with the Piedmont Cancer Registry, I
leaded the first and largest observational studies on European incidence trends of this
malignancy (stratified by thickness’s level) and on trends of lethal melanomas.

Part of the material included in this chapter has been extracted from two papers I co-authored
“Trends in incidence of thick, thin and in situ melanoma in Europe” [97] and “Skin melanoma
deaths within 1 or 3 years from diagnosis in Europe” (just submitted). In addition, a poster
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has been presented at the PSI - Statisticians in Pharmaceutical Industry Conference, held in
London in June 2019.

7.1 From baseline data to outcomes: are artificial intelli-
gence based models really competitive?

In clinical trials a huge amount of information is routinely collected for each subject, with
a large investment of time and resources; however, only a small fraction of these data is
commonly used in standard analyses, for stratification and regulatory assessment purposes.
At present, the popularity of Big Data and Artificial Intelligence (AI) approaches in different
fields paves the way to adopt and adapt these methods for extracting useful information also
from clinical data.
The project, done in collaboration with the Department of Clinical Statistics Europe Onco-
logy of Bayer Pharmaceutical, during a six months internship, aims to develop multivariate
predictive models for treatment efficacy with time-to-event outcomes (overall survival), using
baseline data routinely collected in clinical trials.

7.1.1 A short introduction to (some) machine learning and deep learn-
ing methods

Before looking at data and results, it is necessary to shortly introduce the methods used, in
particular survival and regression random forests (RF) and feed-forward neural networks
(NN); only essential characteristics are recalled here below, while for a detailed review of
methods see for example [84]. Actually, the idea was to compare these popular machine
learning and deep learning techniques with traditional Cox models. As it is well known, for
the machine learning approach, there is not a single algorithm which works best across all
possible scenarios, but the performance strongly depends on the specific characteristics of
the dataset to be analysed, as well as on applications.

Random Forests They are ensemble non-parametric learning methods that operate by
constructing multitudes of decision trees Tb for b = 1, . . . ,B at training time; proposed by
Breiman in 2001 [98], they show improvements over bagging procedure evaluating only a
subset of predictors selected at random at each split and therefore realising a decorrelation
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of trees and a consequent reduction of variance averaging them. Usually classification and
regression random forests are considered and predictions are obtained respectively by:

• the majority vote, i.e. for each tree the predicted class is recorded and then the overall
prediction is based on the most occurring class;

• f̂ B
rf (x) =

1
B ∑

B
b=1 T (x;Θb) where Θb characterizes the bth random forest tree in terms

of split variables, cut-points at each node, and terminal node values.

More recently, random survival forests have been introduced to deal with right-censored data
[99]: in this case the quantity to be averaged is the cumulative hazard function of each tree.
In general, random forests can handle continuous, binary and categorical variables and,
without making any assumptions, allow to model non-linear relations among predictors, as
well as possible interactions and high correlation. Two important characteristics are the use
of Out-Of-Bag (OOB) samples and the variables importance measure: the latter allows to
rank variables based on their relevance in the development of the trees and therefore it is a
measure of the prediction strength of each predictor. On the other hand, the OOB samples
provide a simply way to estimate the test error, without considering training and validation
sets or cross-validation approach: for each observation zi the random forest predictor is
built by averaging only those trees corresponding to bootstrap samples in which zi did not
appear. Commonly OOB observations constitute about the 30% of all data and prevent
from overfitted results, even if random forests have the advantages to not overfit the data
increasing the number of trees considered (i.e. the depth of the forest). Certainly, there are
some important hyper-parameters to be tune using an exhaustive grid search:

• ntree: the number of trees to grow the forest;

• mtry: the number of variables considered to split a node (default values are p/3 for
regression RF and

√
p for classification RF, with p = total number of predictors);

• the node size: the minimum number of subjects in the terminal nodes (default values
are 5 for regression RF and 1 for classification RF);

• the sample size: the fraction of observations to sample;

• the split rule: depending on the type of RF, different splitting criteria can be considered
in each node to build the forest. In particular, for regression and classification RF
they are based on the decrease of the node impurity measured in term of estimates of
response variance and Gini index respectively; for survival it relies on log-rank test
[99].
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The selected random forests model optimizes an appropriate OOB performance measure (the
misclassification frequency for classification, the mean squared error for regression and the
concordance index C for survival). An interesting extension of random forests (known as
multivariate RF) allows to include more than one outcome, i.e. to simultaneously model
multiple response data; this is useful when there are dependencies between responses; it is
similar to the univariate case and the only difference is in the splitting criteria, which involve
predictors related to all the responses; the impurity measure is now based on covariance
(instead of variance) [100].

Neural Networks As it is well known and clearly detailed for example in [7, 84, 101],
neural networks are parametric models, based on non-linear functions of linear combinations
of the features (the input data xi), as schematically represented in Figure 7.1, panel a, and
in the network diagram (panel b); they can process all kind of data coded in numeric form
and, depending on the problem at hand and on the type of outcome analysed, similarly
to random forests, it is possible to have classification, regression and survival networks.
Actually, neural networks, as machine learning and deep learning algorithms in general, aim
to transform input data in a meaningful way to better model the target (i.e. the outcome);
a layer-wise architecture is considered and in each (hidden) layer an increasingly more
abstract representation of the data is stored; in particular, each layer is characterized by: a
different number of “neurons” (nodes) fully connected (in case of dense networks) with the
previous and the next layer, the associated weights which contain the information learned
by the network during the training, the activation function f (not necessary the same for
each layer) and the loss function which defines the feedback signal for the learning phase
and it is minimized at each iteration by adjusting weights values. Indeed, this adjustment is
made by the optimizer, which determines how the learning process proceeds, implementing
a back-propagation algorithm applying the chain rule of differentiation to the computation of
the gradient values; at each step an error is evaluated (via the loss function), comparing the
observed and expected outcomes and an improvement in prediction is realized moving the
weights in the direction opposite to gradient descent.
On the other hand, neural networks include a number of hyperparameters to be tuned:

• the number of hidden layers to be considered and the number of neurons to be included
in each layer;

• the number of epochs, i.e. the number of times the whole training dataset is shown to
the network during the training;
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Figure 7.1 Neural network and single neurons (node) scheme (extracted from [7])

• the learning rate which measures how quickly the network updates its parameters
and indicates the magnitude of the move of weights at each iteration of the back-
propagation algorithm: a too small value could result in a local minimum, whereas a
too large one could return a totally random point on the loss function curve;

• the activation functions to model non linearity in the dataset; the most common are: elu
(exponential linear units, which converges more quickly and it is often preferred with
survival outcomes), sigmoid (which takes a real value and returns 0 or 1 and therefore
it is useful for classification), relu (rectified linear units, defined by max(0,x), similar
to sigmoid but with better performance), tanh (which squeezes real values into [−1,1]
interval) and the softmax (which returns the probabilities of each target class over
all possible target classes); in some specific cases, also a linear function (simply a
weighted sum of the neurons) could be useful.

The optimal combination of these hyperparameters can be obtained with an exhaustive
grid search, which provides the best combination with respect to some metrics adopted to
evaluate the accuracy of the network (for example the mean squared error, the mean absolute
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error and the cross-entropy). Cross validation can be exploited to limit the overfitting
problem. Actually, in neural networks this could be a problem more relevant than in different
frameworks: thanks to the flexibility of the models and the high number of parameters to
be set to the optimal value, it is quite easy to find a perfect fit on training data; in addition,
due to the information leak phenomenon, it is also possible to have overfitted results on
validation data; therefore it is essential to consider also a test set (with data not included
neither in the training, nor in the validation) on which to run the final model to obtain a
reliable measure of performance. Apart from cross-validation and training-validation-test
approaches, specific techniques have been developed to deal with overfittig problems in
neural networks; these methods involve adding some penalizing term in the loss function (the
L1 and L2 regularizers) and/or to exclude at random some output features during the training
phase (dropout). Certainly, additional hyperparameters should be considered in this case.
Furthermore, it is noteworthy to highlight that it is possible to include more than one output
in a neural network to obtain jointly predictions. In particular, multiple outcomes can share
all the parameters in the hidden layers, can depend on the same inputs but in a different
way or can depend on different inputs; the convergence strategy to calculate the weights
and biases in the training process and the adjustment of an output over the others can be
irregularly favoured. It would be desirable to have high mutual correlation among outputs
(because uncorrelated outcomes increase network complexity) and low correlation among
input data. Of course, in these multi-outputs networks the training process is more difficult
and there is an increased risk of overfitting.

7.1.2 Materials and methods

Data used in the analyses have been collected in a randomized, double blind, placebo-
controlled, multicenter phase III clinical trial. Actually, the following two datasets have been
considered:

• Dataset 1: 573 subjects, 184 clinical variables (including only baseline measurements);

• Dataset 2: 499 subjects, 450 variables (about 260 variables on proteins information).

As outcomes variables I focused on overall survival (OS), time-to-progression (TTP) and
Best Percentage Change from Baseline (TRRBPCH). As usual, OS is the time from the first
visit to death (i.e. without considering censoring information it is the minimum number
of days a subject stays alive), TTP is the number of days before the disease progression
(evaluated in term of tumour growth), while TRRBPCH is the minimum percentage change
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in tumour volume from baseline measurements.
Different models have been fitted on this data: first of all the traditional Cox models, con-
sidered as the reference; then survival and regression random forests, also in the multivariate
version including two outcomes and, lastly, deep learning architectures, using single output
and multi-outputs feed-forward neural networks. Actually, Cox models involved only 8
variables, selected based on physician indications and the medical knowledge of the disease,
while random forests and neural networks included all the predictors. For robustness of
results all estimations have been repeated 100 times. The different methodologies have been
compared using the coefficient of determination R2, i.e. the percentage of variance explained
by the model.
Some technical pre-processing was required to deal with missing values and to transform
input data in the more convenient format for neural networks architectures. First of all,
a min-max transformation x̃xx = xxx−min(((xxx)))

max(((xxx)))−min(((xxx))) was applied: all continuous values were res-
caled between 0 and 1 to make the predictors comparable. In this way the associated cost
function becomes symmetric and the gradient descent algorithm used to find the global
minima converges more quickly. Then variables with more than 25% of missing values were
deleted and a random forests algorithm was adopted to impute the remaining missing values,
assuming that they were missed at random. After having evaluated different possibilities, the
twenty-five percent cut-off was selected ad hoc, taking into account the number of variables
discarded and the additional information that could be provided by variables still containing
missings.
Lastly, for neural networks models it has been necessary to convert all categorical variables
with more than two levels using the One-Hot-Encoding transformation which creates a
number of dummy variables, i.e. variables that take the value 0 or 1 to indicate the absence
or presence of some categorical effect.
With respect to softwares, R [75] and Python [102] have been used. In particular, R has been
adopted for traditional Cox models (survival package), missing imputation (missForest
package) and random forests (ranger and randomForestSRC packages), whereas Python
with the libraries Keras, TensorFlow, scikit-learn has been exploited for building the
neural networks.

7.1.3 Results

Results obtained considering TTP as outcome are totally comparable to those for OS. There-
fore only the latter are presented here (unless differently specified). As expected, including
all the available variables the performance of models increases a lot: this is already evident
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Table 7.1 Comparison of Cox models and regression RFs and NNs in term of % of variance
explained R2 (with its 1st and 3rd quantile)

Method RRR222(((%))) [[[QQQ111−−−QQQ333]]]
Cox model 15.9 13.5−17.9
Regression RFs 28.5 28.3−28.7
Neural Networks 33.4 31.8−35.5

with random survival forests and even more impressive for the second dataset (the one
with protein information) as showed by Figure 7.2, panel A. In addition, boxplots for RF
are tighter than Cox one, because traditional models rely more heavily on the partition of
data used for the estimation. Switching to a regressive approach and considering neural
networks (Figure 7.2, Panel B), the deep learning algorithm still increases the percentage
of variance explained (and could be seen as a small improvement also with respect to RF),
as shown in Table 7.1. The simultaneous analysis of an additional output (TRRBPCH)

Figure 7.2 Comparison of Cox model, including 8 clinical variables, with machine learning
and deep learning methods. Panel A. Cox versus RF (with and without proteins information).
Model performances evaluated in term of c-index. Panel B. Cox versus RFs and NN
(including proteins information). Model performance evaluated in term of % of variance
explained.

allows explaining an additional 2% of the overall survival related variance in neural networks,
whereas multivariate regression RF improves the performance of single output RF of about
8% (Figure 7.3).
Actually, a large part of the work done in this project concerned the tuning of hyperpara-
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Figure 7.3 Comparison of single and multi-outputs models in term of % of variance explained.
Panel A. Regression RFs with and without proteins information. Panel B. Neural Networks,
with and without proteins information.

meters for RFs and NNs. Just as an example, the R code to implement the grid search in
ranger (RANdom forest GEneRator package), as well as the analogue for NNs in Python
are reported in Appendix B.

7.1.4 Some considerations

This study was the first attempt to look in depth into all clinical data routinely collected in a
trial to understand if there was valuable unused information; different approaches, including
traditional methods as well as AI models, have been adopted and relevant results have been
compared. Models seem easily applicable to other databases (given in the appropriate format).
However, at present, only one clinical database has been analysed; results appears slightly
overoptimistic: a residual amount of overfitting could not be excluded and reproducibility
should be further discussed. In addition, simpler neural networks including only two hidden
layers should be investigated: from preliminary analysis (see Figure 7.4) it seems that the
percentage of variance explained by the two models is comparable (and even a little higher
for the 2-layers network), whereas the number of trainable parameters to be considered
reduces of more than two thirds (with a important reduction of time and resources needed to
run the model).
A better tuning of hyperparameters in the multi-outputs neural networks framework, predic-
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Figure 7.4 Neural Networks models. % variance explained by models with a different number
of hidden layers.

tions of the clinical outcome of interest for each subject in a personalized precision medicine
perspective and indications of predictors usefulness based on variables importance measures
constitute future developments of this work. In addition, in multi-outputs framework, simu-
lations should be evaluated to further investigate how correlation among input and output
features affects the network learning.
All in all, this proof of concept study shows that valuable information related to subject
clinical outcome is present in baseline data, but not currently used in traditional analyses. It
appears evident that AI-based models (random forests and neural networks) allow to better
explain OS related variance (using all the available variables); the competitive advantage in
term of performance and exploitation of collected data compensates the higher complexity
and longer time needed to obtain predictions.

7.2 Trends in incidence of thick, thin and in situ melanoma
in Europe

The incidence of cutaneous malignant melanoma has increased steeply since the Second
World War [103–109] although recent observations show a stabilization of rates in North
America and Australia [104]. In these countries prevention campaigns and interventions
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aimed at early diagnosis have been implemented, with the aims of limiting solar exposure (es-
pecially at younger ages) and of detecting suspicious lesions as early as possible. However, a
clear decrease in melanoma mortality in all age groups [110–113] has not yet been observed.
Some countries have recently noted evidence of decrease in the incidence of invasive melan-
oma. However the reasons for the decline are not clear from the data, and may be due to sun
prevention campaigns or earlier diagnosis or both. An important element in understanding
the trends is the concurrent behaviour of in situ, thin and thick lesions. Some studies have
shown that the incidence of in situ and thin melanomas has been increasing faster than that
of thick melanomas [110, 114–121].
At present, information on the incidence of in situ, thin and thick lesions is collected by
many cancer registries in Europe, but statistics on thickness are not available on a routine
basis from most of the public access sites. In addition, published studies often focus on the
national burden of the disease, lacking a broader European perspective.
In this work the melanoma incidence and mortality in 13 European countries during the
period 1995− 2012 have been investigated. To better understand trends, analyses were
performed by country, age, sex and Breslow thickness.

7.2.1 Materials and Methods

Individual anonymized incidence data (with corresponding population files) were collected
from population based European cancer registries (CRs) through an ad hoc call. CRs directors
and researchers received the study protocol by e-mail by the end of year 2015. CRs were
selected on the basis of a long history of high quality data (as proven by inclusion in the
last two editions of Cancer Incidence in Five Continents, low percentages of DCO and high
proportions of MV for melanoma); at least ten years of complete registration; a sufficiently
large population to avoid large year-to-year variation; and availability of information on
thickness. Registries in Cluj, Geneva, Iceland, and Ragusa were also included to ensure
representation of a wide range of geographical areas.
To minimize the workload of CRs, data were accepted in any format available and for any
period which CRs could provide. This helped ensure a broader perspective and reflected the
heterogeneity of European cancer registration activity. However, after data cleaning and the
pre-processing of all CRs data files, the analysis focused on cases diagnosed between 1995
and 2012.
A common anonymized database was created containing the following variables for each
case: age at diagnosis, sex, year of diagnosis, histological type, tumour location, behaviour
(invasive, in situ), Breslow thickness, vital status (dead or alive) and cause of death if
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melanoma. In the analyses, histological types were categorized as “superficial spreading
melanoma” (SSM), “nodular melanoma” (NM), “lentigo maligna melanoma” (LM) and
“other”; while cancer body sites were grouped as “head and neck” (HN), “limbs”, “trunk”
and “other”.
Mortality data were retrieved from the World Health Organization (WHO) mortality database
[122], to allow a broader comparison among countries.
Annual incidence and mortality rates were age - standardized on the World population
(following the Segi standard).
In situ incidence trends were analysed taking care of specific problems highlighted by
registries (Cluj CR did not collect this type of lesions and was excluded; Norway CR was
included only for the period 1995−2008, because since 2009 it registered only in situ cases
that later become malignant).
Invasive lesions were grouped by thickness, as: “thin” for those ≤ 1.00 mm (as defined
by TNM since the 6th Edition) and otherwise as “thick”. Cases without Breslow thickness
information were analysed separately as “unknown”. Moreover, in order to minimize bias
[123], where a high proportion of cases had missing thickness, incidence trends by Breslow
level were also analysed after the imputation of thickness information assuming that it was
missed at random. The number of unknown cases nunk was taken as being made up of
nu

thin + nu
thick (the number of thin and thick lesions). The ratio nu

thin
nu

thick
was taken to be equal

to the known proportion of thin and thick lesions for the same period, sex and age group.
Thin/thick ratios were calculated for each age, sex, and period stratum, so the correction was
specific to each combination of stratification variables. In particular, the estimated number of
thin and thick cases was obtained solving the following system of equations:Unknowni jk = ThinU

i jk +ThickU
i jk

ThinU
i jk

ThickU
i jk

=
Thini jk
Thicki jk

where i, j,k gave account to the stratification by sex (i = 1,2), period ( j = 1, . . . ,18) and age
group (k = 1, . . . ,18).
Therefore: 

ThickU
i jk =

Unknowni jk

1+
Thini jk
Thicki jk

ThinU
i jk =

Thini jk
Thicki jk

∗ThickU
i jk

and ThinF
i jk = Thini jk +ThinU

i jk

ThickF
i jk = Thicki jk +ThickU

i jk
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where ThinF
i jk nd ThickF

i jk represented the corrected number of thin and thick cases respect-
ively. In this way, a corrected number of thin and thick cases was obtained by adding the
calculated components to the original ones, by sex, period, and age group. The correction
was done for all cases combined and also on a registry by registry basis: the results were
similar (with some more instability due to small numbers, when stratified by registry) and
only trends corrected for all cases combined are reported here.
Joinpoint regression models1 (assuming log transformation of data, homoscedasticity in error
variance, and setting other parameters as default) have been used to determine incidence
trends and the timing of any changes. From these analyses, the Annual Percent Change
(APC) and the Average Annual Percent Change (AAPC) have been reported. Funnel plots
have been included to show the precision of single registry estimates.
All analyses were performed using SAS/STAT Version 9.2, R Version 3.3.2 and Joinpoint
Version 4.2.02.

7.2.2 Results

The database covered a population of over 117 million inhabitants and included about
415,000 skin lesions, recorded by 18 European CRs (7 of them with national coverage) in
13 countries, between 1995 and 2012 (Table 7.2). Incidence rates of invasive melanoma in
men varied from a low of 5.6 per 100,000 in Tarragona, Spain to 24/100,000 in Geneva,
Switzerland, where the highest rate of in situ lesions was also observed, 23/100,000 in
men in 2012 (Table 7.2). Incidence rates were higher among females in nearly all cancer
registries.
The median age at diagnosis was 61 years in men and 56 in women. In situ lesions made
up about one-quarter of all cases. SSM was the commonest invasive histological subtype
(46%) and about 50% of invasive lesions were located on the limbs. However, the body site
distribution of lesions was quite different between men and women, with 43% of melanoma
on the trunk in men and 57% on the limbs in women. Overall, time trends showed similar
patterns for both sexes and are reported together in Figures 7.5 and 7.6. After the exclusion
of Austria, Scotland for the period 1995−2005 and Norway for the period 1995−2008, due
to the lack of thickness information for all cases recorded, thin and thick melanomas were
present in our database in similar proportions (38% and 34% respectively); 28% of cases
had missing information on thickness, with the highest proportion of missing information in

1Joinpoint Regression Program; Statistical Methodology and Applications Branch, Surveillance Research
Program, National Cancer Institute. Version 4.2.02



100 Applications

earlier years.

Figure 7.5 Cutaneous malignant melanoma incidence by body site. Both sexes, 1995 - 2012.
World age standardized incidence trends.

Figure 7.6 Cutaneous malignant melanoma incidence by histological type. Both sexes, 1995
- 2012. World age standardized incidence trends.
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Table 7.2 National (N) and regional (R) cancer registries which contributed to the project.

Type Total % unknown CMM Invasive CMM in situ
(% of Population number Breslow ASRW(last year) ASRW(last year)

Cancer Registry coverage) (last year) of cases (2008 - 2012) Men Women Men Women
Austria N (100) 8388534 25800 -† 11.4 11.2 5.6 6.0
Belgium N (100) 11099554 21664 21% 11.6 18.3 5.1 7.3
Cluj (RO) R ( 3.4) 694136 336 20% 6.4 8.4 / /
England (UK) R (83.3) 53865817 185259 27% 13.4 14.3 5.2 5.9
Geneva (CH) R ( 5.8) 472370 3154 1.5% 23.6 20.0 22.6 20.8
Granada (ES) R ( 2.0) 922127 1750 20% 8.0 8.2 2.0 3.6
Iceland N (100) 327386 1177 3.9% 7.6 13.3 3.8 6.8
Ireland N (100) 4592900 16092 14% 14.8 15.1 8.6 8.7
Murcia (ES) R ( 3.1) 1454250 1984 22% 6.8 9.3 2.2 2.7
Netherlands N (100) 16865020 74581 3.7% 18.5 21.3 5.6 7.4
Northern Ireland (UK) R ( 2.8) 1840498 6282 < 1% 10.8 14.3 7.0 6.3
Norway‡ N (100) 5051275 26693 4.2% 20.8 23.0 5.4 7.6
Ragusa (IT) R ( 0.5) 307697 568 17% 7.9 6.9 1.3 1.6
Schleswig - Holstein (DE) R ( 3.5) 2815955 14289 25% 14.6 13.9 5.7 6.6
Scotland (UK) R ( 8.2) 5327700 22548 5.3% 12.8 12.8 6.3 6.5
Slovenia N (100) 2056262 7662 5.9% 15.8 15.6 6.6 7.7
Terragona (ES) R ( 1.7) 806115 1429 34% 5.6 6.4 1.9 1.5
Torino (IT) R ( 1.5) 911823 3635 13% 10.3 10.7 8.1 9.2
TOTAL 117799419 414903

†Austria did not provide information on Breslow
‡In situ collected only till 2008
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Incidence trends. The combined data for all participating CRs showed a statistically
significant incidence increase in both invasive (AAPC 4.0%, 95% CI: 3.8− 4.2 in men;
AAPC 3.0%, 95% CI: 2.3−3.8 in women) and in situ (AAPC 7.7%, 95% CI: 7.3−8.1 in
men; AAPC 6.2%, CI: 5.9− 6.6 in women) lesions for both men and women, during the
1995−2012 period (Table 7.3 and Figure 7.7). The trend in invasive cases seemed mainly

Figure 7.7 Cutaneous malignant melanoma incidence. Europe, 1995 - 2012. Both sexes.
World age standardized incidence trends. Dots represent the observed values; dashed lines
the Joinpoint models.

due to the increasing incidence of thin lesions, with an average annual increase of 8.3% (95%
CI: 7.6−9.1) in women and an even greater increase (10%, 95% CI: 9.6−11.3) in men. The
incidence of thick melanomas also increased; however in recent years the rate of increase
was less than for thin melanomas, with a reduction in APC from 12% to 4.3% in women and
from 10% to 6.0% in men. A large part of the increase in incidence was for lesions on the
limbs and trunk; lesions of head and neck also increased in incidence, although less rapidly
(Figure 7.5). SSM, the most prevalent histological sub-type, showed the largest increase,
while NM and LM increased more gradually (Figure 7.6).
The steepest increase in incidence occurred in the period 1998 and 2001, in particular in
thick melanomas in women. This finding was confirmed after correction for the number of
melanomas with unknown thickness (APC 0.6% before 1998, 5.4% between 1998 and 2001,
and 1.7% after 2001). The increase in thin melanomas lasted until 2001 (APC 11%) and
slowed after that year (APC 8.2%, Table 7.3). However, these changes in trend emerged
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Table 7.3 Annual Percent Change (APC) highlighted by the Joinpoint models in melanoma
incidence trends in Europe in the period 1995−2012. Analysis performed before imputing
the missing information on Breslow level.

Type Sex Joinpoint APC Lower CI (95%) Upper CI (95%)

Invasive

Men No JP 4.0 * 3.8 4.2

Women
2 JP at 1998

0.4 -1.7 2.4
4.9* 0.7 9.3

and 2001 3.3* 3.0 3.6
Both sexes No JP 3.6* 3.4 3.8

In situ
Men

No JP
7.7 * 7.3 8.1

Women 6.2 * 5.9 6.6
Both sexes 6.8* 6.5 7.2

Thin

Men 1 JP at 2000
12.7* 10.1 15.5
9.5* 8.8 10.2

Women 1 JP at 2001
10.1* 8.1 12.1
7.4* 6.6 8.2

Both sexes 1 JP at 2001
10.8* 9.2 12.4
8.2* 7.5 8.8

Thick

Men 1 JP at 2001
10.0* 8.2 11.9
6.0* 5.2 6.7

Women
2 JP at 1998

5.2* 2.5 8.1
12.5* 6.8 18.6

and 2001 4.3* 3.9 4.7

Both sexes 1 JP at 2001
9.7* 8.0 11.4
5.2* 4.6 5.9

Unknown

Men 1 JP at 2005
-1.8* -3.0 -0.5
-5.7* -7.7 -3.6

Women 1 JP at 2007
-3.2* -4.0 -2.3
-8.1* -11.1 -4.9

Both sexes 1 JP at 2007
-2.8* -3.6 -1.9
-7.5* -10.5 -4.4

*The APC is significantly different from zero at α = 0.05
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for thin melanomas only before the correction for those of unknown thickness. After the
imputation of missing information, thin melanoma increased at a steady (and lower) rate for
the entire period (Table 7.4). The completeness of information collected by CRs increased

Table 7.4 Annual Percent Change (APC) highlighted by the Joinpoint models in melanoma
incidence trends in Europe in the period 1995−2012. Analyses performed after the correction
for cases with unknown thickness.

Type Sex Joinpoint APC Lower CI (95%) Upper CI (95%)

Thin
Men

No JP
6.3* 6.0 6.6

Women 4.6* 4.4 4.9
Both sexes 5.3* 5.0 5.5

Thick

Men No JP 3.2* 3.0 3.4

Women
2 JP at 1998

0.6 -1.2 2.5
5.4* 1.6 9.3

and 2001 1.7* 1.5 2.0

Both Sexes 1 JP at 2004
3.3* 2.8 3.7
2.2* 1.6 2.7

*The APC is significantly different from zero at α = 0.05

overtime, most clearly after 2005/2007 (cases with unknown thickness decreased to −5.7%
after 2005 in men and to −8.1% after 2007 in women, Table 7.3).
Correction for lesions of unknown thickness enhanced the differences between thin and
thick lesions and flattened their trends: in particular, for thin melanoma, the APC in men
was roughly halved (from 13% to 6.3%), while in women the average annual increase was
reduced to 4.6% (Table 7.4 and Figure 7.8).
Incidence trends varied considerably among registries (Table 7.5). The average annual percent
change (AAPC) for invasive lesions in women varied from −0.5% (Schleswig-Holstein,
Germany) to 14% (Cluj, Romania). Incidence trends for in situ lesions in men varied from a
decrease in AAPC of −2.9% (Ragusa, Italy) to an increase of 24% (Geneva, Switzerland).
However, when we compared estimates of AAPC with their precision in a funnel plot we
noted that the observed differences across registries were mainly due to random variation
(Figure 7.9). Only the AAPC in men in Netherlands was outside the 3σ upper boundary of
the funnel plot for invasive lesions. (Figure 7.9, Panel A).
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Figure 7.8 Cutaneous malignant melanoma incidence, after correction for unknown. Europe,
1995 - 2012. Both sexes. World age standardized incidence trends. Dots represent the
observed values; dashed lines the Joinpoint models.
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Table 7.5 Average Annual Percent Change (AAPC) for incidence of invasive and in situ lesions by single registry, in the period
1995−2012.

AAPC Men Women
Country AAPC Invasive AAPC in situ AAPC Invasive AAPC in situ
Austria 1.7* 20.5* 1.6* 18.3*

Belgium§ 5.5* 15.2* 4.5* 21.0*

Cluj (RO)§ 7.5 / 13.7* /
England (UK) 4.5* 8.5* 3.0* 6.8*

Geneva (CH) 1.8* 24.5* 3.1* 20.3*

Granada (ES) 5.7* 7.4* 3.4* 7.1*

Iceland 1.0 -1.8 0.3 6.4
Ireland 4.6* 7.6* 2.6* 4.1*

Murcia (ES)§ 1.8 7.2 1.1 3.9
Netherlands 5.1* 6.6* 4.1* 5.9*

Northern Ireland (UK) 3.1* 7.2* 2.6* 6.1*

Norway† 2.4* 1.6 1.9* -0.5
Ragusa (IT) 4.6* -2.9 5.5* 5.2
Schleswig - Holstein (DE)§ 1.7 5.9* -0.5 5.4*

Scotland (UK) 3.5* 8.6* 1.3 9.0*

Slovenia 4.9* 18.0* 4.6* 10.8
Tarragona (ES) 1.3 10.6* 2.4 7.4*

Turin (IT) 1.1 19.2* 1.2 24.1*

All 4.0* 7.7* 3.0* 6.2*

*The AAPC is significantly different from zero at α = 0.05
§Shorter period of observation. Belgium 2004−2012, Cluj 2006−2011, Murcia 1996−2009, Schleswig -

Holstein 1998−2012, Tarragona 1995−2011.
†In situ collected only till 2008
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(a) Invasive (b) In situ

Figure 7.9 Average Annual Percent Change (AAPC) by different registries for invasive and
in situ lesions for both men (solid points) and women (empty circles). The horizontal blue
line represent the average AAPC for all the registries together; continuous black lines the
±3σ bounds; dotted black lines the ±2σ bounds.

Mortality trends. Melanoma world age - standardized mortality rates ranged from 1 to 4
cases per 100,000 and the increase in mortality, where present, was much smaller than that
in incidence. Rates continue to increase in Northern Europe, in particular in Iceland (AAPC
5.4%), Ireland (AAPC 3.4%) and Norway (AAPC 1.6%). In Western Europe, Netherlands
(AAPC 2.1%) and Belgium (AAPC 1.0%) showed a statistically significant increasing trend;
in Southern and Eastern Europe only Slovenia (AAPC 2.0%) presented a significant increase
in melanoma mortality (Table 7.6 and Figure 7.10). Men exhibited higher rates than women,
as survival is poorer among men [124, 125], but, in general, trends were parallel, with the
exception of Ireland, UK, Germany and Slovenia, where men showed higher increases than
women, in particular in the last period (Table 7.6).
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Table 7.6 Average Annual Percent Change (AAPC) for skin cancers mortality in different European countries, in the period 1995 -
2012. Data retrieved from the WHO Mortality database.

Country Men Women Both sexes
AAPC LCI(95%) UCI(95%) AAPC LCI(95%) UCI(95%) AAPC LCI(95%) UCI(95%)

Iceland 4.1 -2.2 10.9 6.3 -0.4 13.4 5.4* 0.1 10.9
Ireland 4.2* 2.6 5.7 2.2* 0.4 4.0 3.4* 2.2 4.6
Norway 1.6* 0.9 2.3 1.7* 0.3 3.0 1.6* 1.0 2.2
UK 1.3* 0.9 1.6 -0.1 -0.5 0.3 0.7* 0.4 1.0
Austria -0.3 -1.5 1.0 -0.9 -2.7 1.0 -0.6 -1.7 0.6
Belgium 1.6* 0.7 2.5 0.4 -0.5 1.3 1.0* 0.3 1.8
Germany 1.0* 0.6 1.5 0.1 -0.6 0.8 0.6 -0.2 1.3
Netherlands 2.2* 1.8 2.6 1.9* 1.2 2.7 2.1* 1.8 2.5
Switzerland 0.0 -0.9 1.0 -0.2 -0.8 0.3 0.0 -0.7 0.6
Italy 0.5 -0.4 1.5 -0.1 -1.8 1.7 0.1 -0.7 0.8
Romania 0.6 -1.0 2.3 -1.1* -1.7 -0.4 -0.1 -1.4 1.2
Slovenia 2.6* 1.0 4.1 1.5 -0.1 3.1 2.0* 1.0 3.0
Spain -0.5 -1.5 0.5 -0.9* -1.4 -0.4 -0.8* -1.4 -0.1

*The AAPC is significantly different from zero at α = 0.05
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Figure 7.10 Skin cancer mortality, 1995 - 2012. Both sexes. World age standardized mortality trends for melanoma lesions in different
European countries. Data retrieved from the WHO Mortality database.
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7.2.3 Discussion

Melanoma incidence trends in Europe have been previously analyzed at a national level
[105, 110, 111, 113, 116–121, 126–136]. However, the different periods considered and
methods used have hampered comparisons between countries. Moreover, differences in
incidence and mortality trends in both time and space have made it difficult to interpret
mortality-incidence ratios, which are often used as a proxy for survival, and are also used to
estimate incidence in areas not covered by registration [137].
In this study, a broad overview of the continent is provided, using data collected by CRs.
The analysis has been restricted to a short period (1995−2012) in order to accommodate the
largest number of registries (but there are CRs with data available for a much longer period)
and to avoid an overestimation of increase in trends (especially for the in situ lesions), simply
due to the improvement in the completeness of melanoma cases registered.
A major limitation of this study was that several CRs have registered in situ melanomas only
in recent years, and have limited information on the thickness of lesions.
Even CRs with a long history of data collection lacked information on Breslow thickness
for a large proportion of cases, especially in earlier years. Missing information on thickness,
particularly where the proportion missing varied during the period analyzed, could have led
to significant bias. The same considerations applied to in situ lesions, which were collected
and recorded by CRs with greater accuracy and completeness in more recent years. However,
the lack of changes in the slope of the increasing incidence trend of in situ cases and the
attention paid to problems highlighted by different CRs (which led to the exclusion of Cluj
CR and (partly) of Norway CR for this analysis) made me confident of the reality of the
observed increase.
With respect to invasive cases, the bias has been reduced by re-classifying lesions of unknown
thickness as either thin or thick, according to the observed ratio of thin and thick lesions by
sex, age and period. Although this method may help to adjust estimates towards the true
rate, some bias is unavoidable as the true thin/thick ratio has not been completely observed
and it is difficult to know if the estimates have been biased upward or downward. Moreover,
it could not be excluded that the correction induced a small bias due to the assumption of
randomness in missing information: actually, the distribution of unknown cases with respect
to histology, body site and follow up (data non shown) seemed more similar to that of thick
lesions.
Within these limitations, there is a clear picture of a continuing upward trend in both invasive
and in situ melanoma in Europe. As observed, in recent years, the burden of in situ lesions
has increased in parallel with that of thick lesions. Taking in situ and thin melanoma together,
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there is an annual burden of 20 new cases per 100,000 inhabitants in Europe, with consider-
able impact on patients and health care services. The increase in incidence was particularly
evident in Norway and Iceland, although the difference between trends in invasive lesions and
that of in situ melanoma was less striking than in other countries such as Austria, Slovenia,
Switzerland (Geneva), Spain (Tarragona) and Italy (Turin).
In the period 1995−2012, melanoma mortality increased slightly in Norway, Iceland, Ireland,
Netherlands, Belgium and Slovenia and overall approached the AAPC increase in incidence
of thick lesions. In the most recent years, a steeper increase has been observed among men
in Ireland, UK, Germany and Slovenia. However some evidence of decline in mortality has
been reported in younger cohorts in some countries [138, 139], and Autier and colleagues
proposed a scenario of declining trends in the recent future, due to the aging of younger
cohorts supposedly less exposed to UV during childhood [140]. Even if the hypothesis of
a decreased UV exposure in younger cohorts will be confirmed, the finding of this work,
with an increasing trend of thick lesions in incidence for all ages, are pointing towards a less
optimistic scenario for melanoma mortality in the next years.
Previous publications from European countries have shown increasing trends in the incidence
of invasive lesions, mainly due to increases in thinner melanomas, as well as a small continu-
ing increase in mortality (with some evidence of stabilization in Switzerland [110, 130] and
decreases in mortality in women in Denmark [120] and Northern Ireland [116] which are not
statistically significant). Lower incidence and higher mortality rates have been reported in
South-Eastern European countries compared to North Western countries [132]. The incidence
of in situ cases has increased dramatically [117, 118, 120, 128, 131], often at a greater rate
than more aggressive lesions.
Outside Europe, melanoma trends have been investigated in US and Australia [106, 107,
114, 115, 141, 142]. Coory and colleagues reported a steep increase in the incidence of in
situ and thin melanomas in the period 1982− 2002, while Baade et al., looking at more
recent years, reported that trends in thinner lesions have now reached a plateau in Australia.
On the other hand, mortality trends seem to have been stable for many years, although a
non-negligible fraction of thin cases appears to result in death [143]. In the US, SEER data
showed increasing trends for invasive (APC = +3.6%) and in situ lesions (APC = +9.5%)
[141], while mortality scarcely increased (by 0.4% between 1992 and 2004). Analysing
SEER data [144] it is possible to notice a stabilization in the incidence of invasive cases
in the last years, while in the European database there was a continuing increase, although
with rates only half of those in the US. Continuing increases in the incidence of in situ
lesions are seen in both SEER and Europe trends. Data from the Connecticut Tumor Registry
have shown an increase in the proportion of thinner lesions in the most recent period [107].
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Although SEER data on Breslow thickness are not completely reliable, due to inconsistencies
in the coding of thickness [145], Shaikh and colleagues [142] applied a validated imputation
method for missing Breslow information (on about the 13% of cases), and showed that the
incidence increased across all thickness groups in the period 1989−2009, most pronounced
for thinner lesions.
In conclusion, this study has shown that the incidence of invasive cutaneous malignant
melanoma increased sharply in Europe during the period 1995−2012 in both sexes; this rise
was mainly attributable to thinner lesions. In situ lesions have also increased in incidence,
with a steeper trend than that for invasive cases; however, the incidence of thick lesions has
also increased to a lesser extent.
Seemingly, earlier diagnosis could not counterbalance a generalized increase in melanoma
risk as it has still been observed an increase in thick lesions and also a slight increase of
melanoma mortality in six of the 13 European countries included in this study.
For these reasons it is possible to conclude that in Europe we cannot dismiss the need for
further efforts in preventive actions for limiting exposure to environmental hazards, espe-
cially in childhood as suggest by the European Code Against Cancer [146], as a way for
avoiding thick lesions occurrence. Furthermore, advances in research for better targeting
earlier detection of aggressive melanoma lesions are much needed.

7.3 Skin melanoma deaths within 1 or 3 years from dia-
gnosis in Europe

The incidence of malignant melanoma of skin continues to rise in Europe in recent years. The
increasing trends have been mainly driven by in situ and thin lesions in both sexes; mortality
has also increased in some areas, although at a much lower pace and not homogeneously,
as highlighted in previous paragraphs and reported in [97]. Although the thickness of the
lesion is highly correlated with survival [147–149], the death toll from thinner melanoma is
not negligible [142, 143, 150–152]. However, international, data describing trends in lethal
melanoma by thickness has rarely been reported by population-based cancer registries (CR)
[150] and, to my knowledge, no such study has previously been carried out in Europe.
Considering the substantial (and growing) public health burden of thin melanomas and the
difficulty of disentangling the effects of early diagnosis or misclassification from a true
increase in risk [153], it appears important to focus attention only on those melanomas which
proved to be aggressive and consequently fatal (at one and three years from diagnosis), and
to analyse their trends according to principal characteristics of the lesions.
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7.3.1 Material and Methods

European CRs initially provided data for a previously published melanoma trends analysis
[97]. All these CRs were subsequently requested to give further information on invasive
melanoma cases (subject vital status, complete follow-up date and cause of death) to allow
more detailed analyses on fatal melanoma cases.
To limit possible difficulties due to the new privacy legislation which entered into force in
Europe in May 2018 [154], CRs were allowed to send anonymous data aggregated by the
following design variables: sex, year of diagnosis, five-year age group, tumour thickness
(≤ 1 mm: thin; > 1 mm: thick), death within one year, death within three years, death after
more than three years.
Unlike the classic definition, here a fatal case is defined as a patient with an incident
melanoma diagnosed between 1995 and 2012 and who died within 3 years after diagnosis
even if the cause of death was different from melanoma. The time span is limited to reduce
the bias due to death from other causes (information on causes of death was available for too
few registries and could not be used). The analysis of fatal cases offers an opportunity to
avoid the censorship bias common in traditional survival analysis. In addition, subjects older
than 74 years of age have been excluded, in order to reduce potential differential bias, as the
number of deaths not due to melanoma becomes more common in elderly people.
Descriptive statistics and proportions of fatal cases by different variables (period of diagnosis
(1995− 2000, 2001− 2006 and 2007− 2012), sex, tumour thickness, histological type of
lesion (superficial spreading melanoma, nodular melanoma, lentigo maligna), tumour site
(head and neck, limbs, trunk) and cancer registry) have been calculated to provide some
general information on collected data. Trends in fatal melanoma have been analysed using a
multivariate generalized linear mixed effects model, in which the frequency of fatal cases
within one or three years is assumed to have a Poisson distribution with the corresponding
population as offset. Variation between registries has been taken into account including
random intercepts and random slopes in the model. The change in fatal cases incidence
across the defined periods of diagnosis is the main variable studied (with the first period as
reference), while other variables have been treated as confounding/modifying factors. In
addition, higher order interactions between variables have been explored and introduced in
the final model, if relevant.
The Belgian Cancer Registry started registration activity in 2004, and therefore could not
provide data for the first period of analysis. Its figures were then kept separate in the global
model.
Slovenia sent additional data for the 5-year period 2013−2017 (with follow up at the end of
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Table 7.7 Populations, number of invasive melanoma, and number and proportion (%) of fatal
cases at 1 and 3 years since diagnosis by participating registry and period (all ages included)

Cancer Registry Period Population* Number of Fatal 1 year Fatal 3 year
(Abbreviations) of diagnosis invasive cases† N % N %
Austria 1995 - 2011 7675506 15683 1566 10 2565 16
Belgium 2004 - 2012 9875432 13640 417 3 1162 9
Geneva 1995 - 2012 424131 1860 24 1 84 5
Iceland 1995 - 2012 299595 697 14 2 43 6
Ireland 1995 - 2012 4297337 8237 332 4 747 9
Norway 1995 - 2012 4476586 16608 538 3 1620 10
Netherlands

1995 - 2012 15425267 49769 1215 2 4035 8
(Nether.)
Ragusa 1995 - 2012 281184 364 17 5 51 14
Schleswig-Holstein

1998 - 2012 2568498 8017 538 7 854 11
(Schl.Hol.)
Slovenia 1995 - 2012 1887840 5246 336 6 833 16
Tarragona

1995 - 2011 728671 998 60 6 112 11
(Tarraco)
Turin 1995 - 2012 800358 2241 76 3 224 10
TOTAL 1995 - 2012 48740404 123360 5133 4 12330 10

*Yearly average population 0−99 years for the period 2007−2012
†0−74 years of age

year 2018). This new data have been analysed separately with a generalized linear Poisson
model (including the same fixed effects as for the previous model) to check the persistence
of risk observed in 1995 - 2012.
All analyses have been performed with R Version 3.6.0 [75].

7.3.2 Results

Twelve European CRs provided valid data for the analysis, with follow-up information on
life status at 1 and 3 years after diagnosis (Table 7.7). Overall, 123360 invasive cases were
collected between 1995− 2012, in the population from 0 to 74 years of age. The largest
number of cases was from the Netherlands, with almost 50000 cases diagnosed between
1995 and 2012, while the smallest was Ragusa (Italy) with 364 cases diagnosed during the
same period. Approximately four percent of invasive cases died within one year, while 10%
had the same fate within 3 years from diagnosis.
The number of fatal cases showed an overall crude decreasing trend (Table 7.8) at both 1
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Table 7.8 Number and proportion (%) of fatal cases at 1 and 3 years since diagnosis by sex,
age, period, tumour thickness, histological type and body site

N Fatal 1 year Fatal 3 years

Sex
Male 56035 3290 5.9% 7860 14.0%
Female 67325 1843 2.7% 4470 6.6%

Age group
0-44 yrs 37374 694 1.9% 1830 4.9%
45-64 yrs 57200 2343 4.1% 5610 9.8%
65-74 yrs 28786 2096 7.3% 4890 17.0%

Period
1995 - 2000 27121 1447 5.3% 3295 12.1%
2001 - 2006 40030 1781 4.4% 4225 10.6%
2007 - 2012 56209 1905 3.4% 4810 8.6%

Thickness
≤ 1 mm 23663 289 1.2% 759 3.2%
> 1 mm 65231 2147 3.3% 6439 9.9%
Unknown 34466 2697 7.8% 5132 14.9%

Histological Type

Superficial Spreading 65027 812 1.2% 3103 4.8%
Nodular 14087 857 6.1% 2807 19.9%
Lentigo maligna 3726 53 1.4% 177 4.8%
Unspecified 40520 3411 8.4% 6243 15.4%

Body Site

Head & Neck 13861 560 4.0% 1599 11.5%
Limbs 56833 1192 2.1% 3833 6.7%
Trunk 7532 1926 25.6% 2593 34.4%
Unspecified 45134 1455 3.2% 4305 9.5%

and 3 years. As expected, men and older patients showed a greater early lethality. Thick
lesions (> 1 mm), nodular melanoma and melanoma on the trunk had a higher percentage of
fatal cases, at both 1 and 3 years from diagnosis. More poorly documented cases, lacking
information on tumour thickness showed a larger proportion of fatal cases (Table 7.8).
When fatal cases by period were analysed in a multivariate Poisson generalized linear model
with mixed effects (random intercept for registries and random slope for period), including
sex, age, tumour thickness, histological type and body site, an overall decreasing trend with
an estimated 16% decrease in risk of fatal case at 1 year and 8% at 3 years between the first
(1995− 2000) and the last (2007− 2012) period were found. However, the mixed-effect
model showed a remarkable variability within European countries; not only the base rate, but
also the direction of changes, was different.
Differences in lethality between periods and among registries can be seen in Figure 7.11 and
Figure 7.12, where each estimate is shown with its 95% limits and the black dot represents
the reference period (1995−2000; 2004−2006 for Belgium).
The majority of registries showed a decreasing trends in fatal cases at both one and three years,
especially in the most recent periods. This was seen in particular in Iceland, Turin (Italy),
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Figure 7.11 Fatal invasive skin melanomas at 1 year. Lethality rates per 1000 cases and
95% confidence limits for period 2001−2006 (red) and 2007−2012 (blue) vs 1995−2000
(reference period represented by a black dot; 2004−2006 for Belgium), by cancer registry.
Rates estimated from a mixed-effect Poisson model controlling for sex, age, thickness of
melanoma lesions, histological type and site.

Figure 7.12 Fatal invasive skin melanomas at 3 year. Lethality rates per 1000 cases and
95% confidence limits for period 2001−2006 (red) and 2007−2012 (blue) vs 1995−2000
(reference period represented by a black dot; 2004−2006 for Belgium), by cancer registry.
Rates estimated from a mixed-effect Poisson model controlling for sex, age, thickness of
melanoma lesions, histological type and site.
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Schleswig-Holstein (Germany) and Tarragona (Spain). The last three had high lethality in
the reference years. A few registries (the Netherlands, Slovenia and Ragusa (Italy)) showed
opposite patterns. In the Netherlands and Ragusa a non-significant decrease was seen in the
third period after an increase in the second period. Slovenia had increasing lethality rates
over time. However, when the analysis included 2013−2017, it exhibited a plateau in risk,
although not a reversal of the trends (data not shown). Finally, Belgium showed a significant
increase for the last period compared to 2004−2006, as data for 1995−2000 was lacking.
Analysis of fatal cases at 3 years confirmed the general pattern shown for 1 year follow-up.

7.3.3 Discussion

An epidemic of melanoma began several decades ago, most likely caused by a global change
in outdoor leisure activities that affected most of the affluent white population of Europe,
North America and Australia. As a response to this rise in risk and subsequent incidence,
increasing awareness among professionals and general public lead to an increased surveil-
lance and early diagnosis, leading in turn to a further increase in diagnosed cases [155]. In
particular, the increase in awareness led to the diagnosis of lesions that would probably not
have progressed to a lethal disease [156]. However, the lack of a clear-cut marker linking
morphological characteristics to prognosis makes it practically impossible to separate the
influence of aetiological from diagnostic factors on incidence trends. Statistics on mortality
trends can not help in solving the conundrum, as mortality is linked equally to incidence and
survival.
To help determine if there has been a true decrease in lethal melanoma, cases with the
poorest prognosis, i.e. those that died in a short interval since diagnosis, have been identified.
This data has a number of useful characteristics: early deaths should not be influenced, in
general, by other concurrent pathologies; their occurrence is not inflated by non-invasive
cases or “precautionary” upstaged diagnoses; and finally, these cases are exactly those on
which the preventative efforts should be exerted. As information on factors that are linked to
prognosis is available only from cancer registries and cannot be retrieved in death certificates,
I collected data from those European cancer registries that had information available for a
sufficient period of observation. In the analysis, variables such as sex, age, tumour thickness,
histological type, and body site have been confirmed as prognostic factors [149]. In particular,
as provided by our models, cases of thick melanoma (> 1 mm) had 8 times the risk of dying
within one year and 8.5 times the risk of dying within 3 years. However, 289 (1.2%) cases
with thin melanoma (≤ 1mm) died at one year and 759 (3.2%) at 3 years. This proportion
is comparable to those observed in studies from the USA (3%) [152] and Australia (3%)



118 Applications

[143] for comparable periods. The percentage of fatal thin melanoma in Norway (2.4%) and
Sweden (1.9%) was similar to those observed in this analysis.
The main histological type was nodular melanoma (with 6.1% and 19.9% lethality at 1 and 3
years respectively). This was also reported in the Norwegian Malignant Melanoma Registry
data for the period 2008−2012 [157] and from Swedish data [158]. This histological type is
a major risk factor for melanoma death, as recently highlighted by Lattanzi and colleagues
[159].
In addition, the larger proportion of fatal melanomas found in less documented cases con-
firmed that a lack of documentation in the registry’s records is often an indicator of poorer
prognosis [123].
Results showed an overall decrease in the proportion of fatal cases; this has been previously
reported in Sweden [160], where the proportion of fatal thin cases decreased from 4.1% in
1989−1993 to 3.0% in 1999−2003. However, it has been highlighted that the decrease was
not homogeneous across registries, with some of them showing an increasing pattern. Unlike
Criscione et al. [150] the proportion of fatal melanomas at 1 and 3 years with unknown thick-
ness decreased slightly over time. On the other hand, as in the US data, the proportion of fatal
thick melanomas significantly increased. Some differences between registries might be ex-
plained by campaigns devoted to reducing exposure and to recommending change in personal
behaviours, or by increasing diagnostic “pressure”, as in Germany (Schleswig-Holstein), in
Northern Italy (Turin), Iceland [121] and more recently Austria. Some differences might be
clarified by contrasting trends according to age, as in the Nordic countries where mortality
decreased among individuals younger than 50 years and increased among older individuals
[161]. For Ragusa (Italy) findings on fatal cases are consistent with the results of survival
analysis of incidence cases overlapping the first two periods of the study (1995−2000 and
2001−2006) [162, 163].
It is worrying that in some countries, despite a nationwide attention to melanoma prevention,
rates of fatal cases did not decrease, or even increased. This might indicate an increased
diffusion of risk factors in the general population during more recent years. As ionizing
radiation is the only proven risk factor for melanoma, increased rates of fatal cases suggest
a parallel increase in personal behaviours leading to higher sun exposure or even artificial
UV (i.e. sunlamps) exposure. In addition, the countries where an overall downward trend in
lethality rates was not observed (in particular Ireland, Netherlands and Slovenia) are those
which still have an increasing overall incidence of melanoma looking at the long-term trends
[97, 164]; other registries instead showed more stable incidence rates.
In the present study, information on treatment or tumour characteristics, such as for example
BRAF markers, was not included. On the other hand, targeted therapies for melanoma have
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been approved in Europe only in late 2011 [165], with different availability and adoption
across countries; only a small proportion of analysed cases could have benefited from such
treatments. In my opinion, the decrease in fatal cases observed in the last period, although
not homogeneous, cannot be completely and only attributed to the new promising drugs.
As far as I know, this was the first study that has examined “fatal” melanoma with a definition
of observation time since diagnosis. Criscione simply analysed fatal cases overall, and so
compared cases with different survival, potentially from 1 to 18 years. In addition, statistical
methods used in the present study allowed for a better control of the random effect of choos-
ing only a sample of cancer registries in Europe.
Trends of fatal cases of melanoma highlight real changes in risk, i.e. not related to over-
diagnosis. They show a decrease in fatal melanoma cases in most countries, with a few
exceptions. Stronger efforts in earlier detection of both fatal and non-fatal cases could lead
to a more efficient treatment of melanoma in general.





Appendix A

The motivating example

A.1 Some further biological and technical details

Plasma isolation and storage Blood was centrifuged at 2500 r.p.m (1250g) at 4◦C for 10
min. The supernatant was transferred into new tubes and subjected to a second centrifugation
step at 2500 r.p.m (1250g) at 4◦C for 10 min to remove cell debris and fragments. Plasma
was stored in 4.5 ml cryovials at −80◦C until transfer to the Cancer Genomics Lab. To
calculate hemolysis score [166], 10µl of plasma was centrifuged at 1000g for 5 min at
room temperature and the absorbance at 385 and 414 nm was measured by a NanoDrop
spectrophotometer (Thermo Fisher) using the UV-VIS program. Finally, 220µl aliquots were
created for each sample and stored into 1.5 ml tubes at −80◦C. Samples with hemolysis score
< 0.057 and/or 414 nm/385 nm absorbance ratio below 2 were kept for further processing.

Circulating RNA extraction Before extraction, one 220µ l aliquot per sample was centri-
fuged for 5 min at 1000g at 4◦C. Total RNA was extracted with miRNeasy serum/plasma
kit (Qiagen) using Exiqon protocol, with the bacteriophage MS2-RNA carrier (Roche Dia-
gnostics) to promote RNA precipitation and purification on membranes. The Caenorhabditis
elegans cel-miR-39-3p miR mimic spike-in (Qiagen) was added. RNA samples were eluted
in 30µl of nuclease-free water and stored at −80◦C.





Appendix B

R programs: details and coding

B.1 A minimal binary classifier providing a proper ROC
curve

The R [75] code used to obtain ROC curves reported in Figure 4.3 for the case study (Section
4.4) on circulating miRNAs is presented here.
In details, the program in Section B.1.1 allows to estimate the non-parametric ROC curve
associated to a LR-based Flexible Bayes classifier, following the Algorithm 1 in Section 4.3.3.
The code in Section B.1.2 enables to implement the ROC curve associated to the best linear
combination of three biomarkers, as defined in Su & Liu [5] seminal paper. It is important to
remember that Su and Liu combination relies on the normality assumption, i.e. biomarkers
present a multivariate normal distribution under diseased (P+) and healthy (P−) populations.
The function el.anal.dat in Section B.1.3 is used to calculate the best linear combination
of biomarkers regardless of the data distribution, as presented in [6] (and exploiting the code
provided by the authors, with only minor changes). Lastly, in Section B.1.4, the code to plot
different ROC curves (including also the one associated to the standard logistic score) and to
compare them via the AUC (area under the curve) index is provided.
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B.1.1 ROC curve associated to LR based flexible Bayes classifier

#########################################################################

# #

# ROC_LR_FlexBayes.R #

# Code to implement the likelihood ratio based flexible Bayes ROC #

# #

#########################################################################

# Data: datapos are diseased subjects

# dataneg are non -diseased subjects

# t: threshold

myROC <- function(t, dataneg , datapos , B=100000){

if (is.matrix(dataneg)==F) return("dataneg not a matrix")

if (is.matrix(datapos)==F) return("datapos not a matrix")

if (dim(dataneg)[2] != dim(datapos)[2]) return("datapos and dataneg not same number

of columns!")

p <- dim(dataneg)[2]

nneg <- dim(dataneg)[1]

npos <- dim(datapos)[1]

xneg <- xpos <- fnegneg <- fposneg <- fnegpos <- fpospos <- matrix(0,B,p)

for (k in 1:p){

lambdaneg <- thumb(dataneg[,k])

lambdapos <- thumb(datapos[,k])

xneg[,k] <- rnorm(B, mean=dataneg[sample (1:nneg ,B,rep=T),k], sd=lambdaneg )

xpos[,k] <- rnorm(B, mean=datapos[sample (1:npos ,B,rep=T),k], sd=lambdapos )

fnegneg[,k] <- sapply(xneg[,k],mydens ,data=dataneg[,k])

fposneg[,k] <- sapply(xneg[,k],mydens ,data=datapos[,k])

fnegpos[,k] <- sapply(xpos[,k],mydens ,data=dataneg[,k])

fpospos[,k] <- sapply(xpos[,k],mydens ,data=datapos[,k])

}

FPR <- mean( apply(fposneg ,1,prod) > t * apply(fnegneg ,1,prod) )

TPR <- mean( apply(fpospos ,1,prod) > t * apply(fnegpos ,1,prod))

c(FPR ,TPR)

}

# Gaussian kernel density estimator

mydens <- function(x,data) sum(dnorm(x-data ,sd=thumb(data)))/length(data)

# Rule of thumb for bandwidth selection by Silverman (1986)

thumb <- function(x) 1.06*min(sd(x),IQR(x)/1.34)*length(x)^(-.2)

tFLEXgrid_nonpar <- c(0.001 , seq (0.01 ,0.1 ,by =0.01) ,seq(0.1,5,by =0.1),seq(5.5,14,by

=0.5) ,20,100)

rocFLEXgrid_nonpar <- t(sapply(tFLEXgrid_nonpar , myROC , dataneg=dataneg , datapos=

datapos))
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B.1.2 ROC curve associated to Su & Liu best linear combination

#########################################################################

# #

# ROC_BLC_SuLiu1993.R #

# Code based on Su & Liu (1993) to obtain the ROC curve associated to #

# the best linear combination (BLC) of different biomarkers , under #

# the normality assumption. #

# #

#########################################################################

# Su & Liu best linear combination for 3 biomarkers

# Normality assumption

# Data: datapos are diseased subjects

# dataneg are non -diseased subjects

linroc_SL <- function(t, mux_H = 0,

mux_D = 1,

muy_H = 0,

muy_D = 2,

muz_H = 0,

muz_D = 2,

sigmax_H = 1,

sigmax_D = 2,

sigmay_H = 1,

sigmay_D = 4,

sigmaz_H = 1,

sigmaz_D = 4,

rhoxy_H = 0,

rhoxy_D = 0,

rhoxz_H = 0,

rhoxz_D = 0,

rhoyz_H = 0,

rhoyz_D = 0){

mu_H = c(mux_H, muy_H, muz_H)

sigma_H = matrix(c(sigmax_H^2, sigmax_H*sigmay_H*rhoxy_H, sigmax_H*sigmaz_H*rhoxz_H

, sigmax_H*sigmay_H*rhoxy_H, sigmay_H^2, sigmay_H*sigmaz_H*rhoyz_H, sigmax_H*

sigmaz_H*rhoxz_H, sigmay_H*sigmaz_H*rhoyz_H, sigmaz_H^2 ) ,3)

mu_D = c(mux_D, muy_D, muz_D)

sigma_D = matrix(c(sigmax_D^2, sigmax_D*sigmay_D*rhoxy_D, sigmax_D*sigmaz_D*rhoxz_D

, sigmax_D*sigmay_D*rhoxy_D, sigmay_D^2, sigmay_D*sigmaz_D*rhoyz_D, sigmax_D*

sigmaz_D*rhoxz_D, sigmay_D*sigmaz_D*rhoyz_D, sigmaz_D^2) ,3)

mu <- mu_D-mu_H

a <- (solve(sigma_H+sigma_D))%*%mu

a1 <- a[1,1]

a2 <- a[2,1]

a3 <- a[3,1]

pnorm( ((a1*mux_D+a2*muy_D+a3*muz_D) -(a1*mux_H+a2*muy_H+a3*muz_H))/sqrt(a1^2*sigmax

_D^2+a2^2*sigmay_D^2+a3^2*sigmaz_D^2+2*a1*a2*rhoxy_D*sigmax_D*sigmay_D+2*a1*a3*

rhoxz_D*sigmax_D*sigmaz_D+2*a2*a3*rhoyz_D*sigmaz_D*sigmay_D) +
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qnorm(t)*sqrt(a1^2*sigmax_H^2+a2^2*sigmay_H^2+a3^2*sigmaz_H^2+2*a1*a2*

rhoxy_H*sigmax_H*sigmay_H+2*a1*a3*rhoxz_H*sigmax_H*sigmaz_H+2*a2*a3*

rhoyz_H*sigmaz_H*sigmay_H)/sqrt(a1^2*sigmax_D^2+a2^2*sigmay_D^2+a3^2*

sigmaz_D^2+2*a1*a2*rhoxy_D*sigmax_D*sigmay_D+2*a1*a3*rhoxz_D*sigmax_D*

sigmaz_D+2*a2*a3*rhoyz_D*sigmaz_D*sigmay_D))

}

mux_H <- mean(dataneg [,2])

muy_H <- mean(dataneg [,3])

muz_H <- mean(dataneg [,1])

sigmax_H <- sd(dataneg [,2])

sigmay_H <- sd(dataneg [,3])

sigmaz_H <- sd(dataneg [,1])

rhoxy_H <- cor(dataneg[,2], dataneg [,3])

rhoxz_H <- cor(dataneg[,2], dataneg [,1])

rhoyz_H <- cor(dataneg[,3], dataneg [,1])

mux_D <- mean(datapos [,2])

muy_D <- mean(datapos [,3])

muz_D <- mean(datapos [,1])

sigmax_D <- sd(datapos [,2])

sigmay_D <- sd(datapos [,3])

sigmaz_D <- sd(datapos [,1])

rhoxy_D <- cor(datapos[,2], datapos [,3])

rhoxz_D <- cor(datapos[,2], datapos [,1])

rhoyz_D <- cor(datapos[,3], datapos [,1])

tSLgrid_param <- seq(0,1,by =0.001)

rocSLgrid_param <- seq(0,1,by =0.001)

for (i in 1: length(rocSLgrid_param))

rocSLgrid_param[i] <- linroc_SL(tSLgrid_param[i],

mux_H, mux_D, muy_H, muy_D, muz_H, muz_D,

sigmax_H, sigmax_D, sigmay_H, sigmay_D, sigmaz_H,

sigmaz_D,

rhoxy_H, rhoxy_D, rhoxz_H, rhoxz_D, rhoyz_H, rhoyz_

D)
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B.1.3 ROC curve associated to Chen best linear combination

#########################################################################

# #

# ROC_BLC_Chen2015.R #

# Code provided by Chen et al. (2015) to calculate the empirical #

# likelihood ratio confidence interval estiomates of the best linear #

# combination (BLC) of biomarkers. #

# #

# Minor changes made in function CI.anal (lines 66 - 73); the version #

# reported in Supplementary material of Chen et al. seems not working; #

# addition of the score as output of the program. #

# #

#########################################################################

# installing package 'emplik ' for the first time:

if (!require('emplik ')) install.packages('emplik ')

require(emplik)

#########################################################################

# data.x and data.y are the data sets for the case group and #

# the control group , respectively , where rows correspond #

# to observations and columns correspond to biomarkers; #

# delta is the parameter used to define the bandwidth where #

# the bandwidth h=(m+n)^(-delta); #

# initial is a vector of the length of the number of #

# biomarkers , the starting point to find the BLC; #

# alpha is the nominal siginificance level , e.g., 0.05. #

#########################################################################

el.anal.dat <- function(data.x,data.y,delta ,initial ,alpha){

n <- nrow(data.x)

m <- nrow(data.y)

h <- (m+n)^(-delta) # define bandwidth

combine <-function(data ,lambda) data%*%as.vector(lambda)

# kernel functions where the normal kernel is considered

# and can be replace by other kernels

K.h <- function(x) pnorm (x/h,0,1)

k.h <- function(x) dnorm (x/h,0,1)/h

# the objective function to be optimized

find.lam.kernel <- function(lambda){

x.c <- combine(data.x,lambda)

y.c <- combine(data.y,lambda)

-mean(mapply(function(x) K.h(x-y.c),x.c) )

}

# the gradient function

grn <- function(lambda){

x.c <- combine(data.x,lambda)

y.c <- combine(data.y,lambda)

xy.diff.k <- mapply(function(x) k.h(x-y.c),x.c)

-sapply (1: ncol(data.x),function(i) {

mean(xy.diff.k*mapply(function(x) (x-data.y[,i]),data.x[,i]) )

})

}

# obtain BLC coefficients
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opt.kernel <- optim(initial ,find.lam.kernel ,method="BFGS",gr=grn ,

control=list(maxit =30000 , ndeps =.1))

A.kernel <- -opt.kernel$value

a.kernel <- opt.kernel$par

# obtain estimates used in the r(A0)

x.c <- combine(data.x,a.kernel)

y.c <- combine(data.y,a.kernel)

xy.diff <- mapply(function(x) K.h(x-y.c),x.c)

vi <- apply(xy.diff ,2,mean)

wj <- apply(xy.diff ,1,mean)

S10 <- sum( (wj -mean(wj))^2)/(m-1)

S01 <- sum( (vi -mean(vi))^2)/(n-1)

S2 <- (n*S01+m*S10)/(m+n)

crit.val <-qchisq(1-alpha ,df=1) # critical value

# Minor changes made in this function: now it returns a list

CI.anal <- function(AUC){

ELR.A0 <- el.test(vi, AUC)#$ '-2LLR '

sigma2.hat <- mean((vi-AUC)^2)

r <- m/(m+n)*sigma2.hat/S2

r_ELRA0 <-lapply(ELR.A0, '*', r)

#return(r*ELR.A0)

return(r_ELRA0)

}

score <- rbind(y.c,x.c)

tmp=findUL(step =0.1, initStep=0, fun=CI.anal , MLE=A.kernel , level=crit.val)

upper <- tmp$Up

lower <- tmp$Low

out <- list(CI = c(lower ,upper),A.est = A.kernel ,

a.est = a.kernel/a.kernel [1]*sign(a.kernel [1]),

score = score)

return(out)

}
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B.1.4 ROC curves comparison

#######################################################################

# #

# ROC_comparison.R #

# To compare ROC curve associated with the LR -based Flexible Bayes #

# classifier and ROC curves associated with common classifier based #

# on best linear (Chen , 2015) and logistic score. #

# AUC and confidence interval calculated for each classifier. #

# #

# Depends on: #

# - ROC_LR_FlexBayes.R (for LR Flexible Bayey ROC #

# (Sacchetto & Gasparini (2020))) #

# - ROC_BLC_Chen_2015_CSDA.R (for Chen (2015) ROC) #

# #

#######################################################################

# Data:

# - datapos are diseased subjects

# - dataneg are non -diseased subjects

# - 3 biomarkers measurement for each subject

dataneg=read.table("dataneg.txt")

datapos=read.table("datapos.txt")

dataneg <- as.matrix(dataneg)

datapos <- as.matrix(datapos)

# Logistic score

dataset <- as.data.frame(rbind(dataneg , datapos))

status <- c(rep(0, times=nrow(dataneg)), rep(1, times=nrow(datapos)))

model.logistic <-glm(status~ dataset [,1] + dataset [,2] + dataset[,3],

family=binomial , data=dataset)

coef.out <- model.logistic$coefficients

mat.coef <- t(coef.out)

score.logistic <- as.matrix(dataset)%*%mat.coef [2:4]

# Calling the library ROCR (one among many R packages)

library(ROCR)

# ROC

pred.logistic <- prediction(score.logistic , status)

perf.logistic <- performance(pred.logistic ,"tpr","fpr")

# AUC of logistic score ROC

auc.logistic <- performance(pred.logistic , measure = "auc")

auc.logistic <- auc.logistic@y.values [[1]]

# Library pROC allows to directly calculate confidence intervals

library(pROC)

roc.graph.logistic=roc(status , score.logistic [,1], smooth = FALSE ,

auc = TRUE , ci = TRUE , plot = TRUE ,

identity=TRUE , legacy.axes=TRUE ,

xlab="1-specificity", ylab = "Sensibility")

logistic_AUC <- roc.graph.logistic$auc

logistic_CI <- roc.graph.logistic$ci
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# ROC associated to Chen (2015) best linear combination of biomarkers

# The BLC of biomarkers provides a score for each subject

# The ROC is calculated for this score

# From ROC_BLC_Chen_2015_CSDA.R

est.Chen <-el.anal.dat(datapos ,dataneg ,delta =0.08,

initial=rep(1,ncol(datapos)),alpha =0.05)

pred.BLC.Chen <- prediction(est.Chen$score , status)

perf.BLC.Chen <- performance(pred.BLC.Chen ,"tpr","fpr")

# AUC of Chen best linear combination ROC

# (alternatively to est.Chen$A.est)

auc.Chen <- performance(pred.BLC.Chen , measure = "auc")

auc.Chen <- auc.Chen@y.values [[1]]

# Confidence Interval for BLC Chen 2015

CI_Chen <- est.Chen$CI

# Alternatively , ROC curve , AUC and CI via pROC

roc.graph.Chen=roc(status , as.numeric(est.Chen$score),

smooth = FALSE , auc = TRUE , ci = TRUE , plot = TRUE ,

identity=TRUE , legacy.axes=TRUE , xlab="1-specificity",

ylab = "Sensibility")

Chen_AUC <- roc.graph.Chen$auc

Chen_CI <- roc.graph.Chen$ci

# Plot of the curves

pdf("ROC_logistic_BLC_Chen_FlexBayes.pdf", width =8.5, height =8.5)

plot(perf.logistic , xlab="FPR", ylab="TPR")

lines(perf.BLC.Chen@x.values [[1]], perf.BLC.Chen@y.values [[1]] ,lty=3, lwd =1.5)

# ROC associated to LR -based Flexible Bayes classifier

# From ROC_LR_FlexBayes.R

points(rocFLEXgrid_nonpar , type='l',lty=5)

lines(c(0,1),c(0,1), col = 'gray')

legend (0.75, 0.15, c('Logistic score', 'BLC Chen', 'Flex Bayes'),

col = c(1,1,1), lty = c(1,3,5), lwd=c(1 ,1.5,1), cex =1)

dev.off()

# AUC associated to LR -based Flexible Bayes ROC

f <- approxfun(c(1, rocFLEXgrid_nonpar [,1]), c(1, rocFLEXgrid_nonpar [,2]))

AUC.LRroc <- integrate(f, min(rocFLEXgrid_nonpar [,1]), 1)$value

# To calculate confidence interval for the AUC of the LR-based Flexible

# Bayes ROC curve a bootstrap approach is preferred.

#

# myAUC_i fuction calculate AUC via simulations , applying the definition

# AUC = P(LR+ > LR -)

# Input:

# data = rbind(datapos , dataneg), where
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# datapos: diseased subjects

# dataneg: non -diseased subjects

# p: number of predictors

# B: number of simulations

# indices: required for the random selection of rows

# npos: number of rows of datapos

# nneg: number of rows of dataneg

myAUC_i <- function(B, p, data=rbind(datapos , dataneg), indices , npos , nneg){

ineg <- data[indices[indices >npos],]

ipos <- data[indices[indices <=npos],]

nneg <- dim(ineg)[1]

npos <- dim(ipos)[1]

xneg <- xpos <- LRpos <- LRneg <-matrix(0,B,p)

for (k in 1:p){

lambdaneg <- thumb(ineg[,k])

lambdapos <- thumb(ipos[,k])

xneg[,k] <- rnorm(B, mean=ineg[sample (1:nneg ,B,rep=T),k], sd=lambdaneg )

xpos[,k] <- rnorm(B, mean=ipos[sample (1:npos ,B,rep=T),k], sd=lambdapos )

LRpos[,k] <- sapply(xpos[,k], myLR , datapos=ipos[,k], dataneg=ineg[,k])

LRneg[,k] <- sapply(xneg[,k], myLR , datapos=ipos[,k], dataneg=ineg[,k])

}

mean( apply(LRpos ,1,prod) > apply(LRneg , 1, prod) )

}

# Likelihood ratio

myLR <- function(x, datapos , dataneg) mydens(x, datapos)/mydens(x, dataneg)

# Set seed for reproducibility

set.seed (1)

data <-rbind(datapos , dataneg)

AUC_calc <- myAUC_i(B=10000 , p=3, data , indices = c(1: nrow(data)), npos=nrow(datapos)

, nneg=nrow(dataneg))

# AUC CI, via boostrap

library(boot)

AUC_boot <- boot(data=data , statistic=myAUC_i, R=100, B=10000 , p=3, npos=nrow(datapos

), nneg=nrow(dataneg))

AUC_boot$t # Different AUC values for each bootstrap replicate

AUC_boot$t0 # AUC value (via bootstrap)

# Confidence interval

AUC_ci <- boot.ci(AUC_boot , conf = 0.95, type = c( "basic"))

AUC.comparison <-rbind(auc.logistic , auc.Chen=est.Chen$A.est , AUC.LRroc)
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B.2 A new implementation of hard assignment

The code for the new implementation of hard assignment in R [75] is presented in the fol-
lowing. Apart from the basic function, a parallel version is proposed, as well as an heuristic
approach to obtain the maximum of the likelihood. Lastly, the code is applied to the toy
example dataset.

###############################################################################

# #

# Binary populations , binary outcomes #

# Functions to implement hard assignment #

# #

###############################################################################

library(dplyr)

library(pryr)

# To convert individual data to profiles

dataToProfiles <- function(data){

# obtaining profiles

data %>% # pipe symbol (dplyr package)

unique(margin = 1) -> profiles

# cbinding the frequencies

profiles <- cbind(profiles , profiles %>% # obtaining frequencies

apply(1, function(y) apply(data ,1,function(x) all(x==y))) %>%

colSums () -> frequencies)

return(profiles)

}

# Function likelihoodEval01: to evaluate the log -likelihood

# function , with Laplace smoothing adjustment , for a certain

# cluster configuration cl

# Input

# cl: possible configuration to be considered

# profiles: matrix of profiles

# Output: total log -likelihood for the given configuration

likelihoodEval01 <- function(cl, profiles){

# number of questions (columns - 1) in profiles

r = ncol(profiles) - 1

# cl is a logical vector

# 1 if the element is in the + cluster

# 0 if the element is in the - cluster

# To find the number of elements in the + cluster

den_p = sum(profiles[cl, r + 1])

# To find the number of elements in the - cluster

den_m = sum(profiles[!cl, r + 1])
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# Special case: the + cluster is composed by one element

if (( length(cl[cl == TRUE]) > 1) || (length(cl[cl == TRUE]) == 0)) {

num_p = colSums(profiles[cl , 1:r]*profiles[cl, r+1])

} else {

num_p = profiles[cl, 1:r]*profiles[cl , r+1]

}

# Special case: the - cluster is composed by one element

if (( length(cl[cl == FALSE]) > 1) || (length(cl[cl == FALSE]) == 0)) {

num_m = colSums(profiles[!cl, 1:r]*profiles[!cl , r+1])

} else {

num_m = profiles[!cl, 1:r]*profiles[!cl, r+1]

}

# To evaluate probabilities in + and - using Laplace Smoothing

p_p = (num_p + 1)/(den_p + 2)

p_m = (num_m + 1)/(den_m + 2)

# Total log -likelihood for cluster +

# Logarithm transformation adopted for convenience

CpL = sum(( profiles[cl ,1:r]*profiles[cl,r+1])%*%log(p_p) +

((1 - profiles[cl ,1:r])*profiles[cl,r+1])%*%log(1-p_p))

# Total log -likelihood for cluster -

# Logarithm transformation adopted for convenience

CmL = sum(( profiles[!cl ,1:r]*profiles[!cl,r+1])%*%log(p_m) +

((1 - profiles[!cl ,1:r])*profiles[!cl ,r+1])%*%log(1-p_m))

# Total log -likelihood

L = CpL + CmL

return(L)

}

# Function likelihoodEval01Laplace

# Modification of function likelihoodEval01 , including adjustment

# smoothing parameters as input (in Laplace case a=1, b = 2)

likelihoodEval01Laplace <- function(cl , profiles , a = 1, b = 2){

# number of questions (columns - 1) in profiles

r = ncol(profiles) - 1

# cl is a logical vector

# 1 if the element is in the + cluster

# 0 if the element is in the - cluster

# To find the number of elements in the + cluster

den_p = sum(profiles[cl, r + 1])

# To find the number of elements in the - cluster

den_m = sum(profiles[!cl, r + 1])

# Special case: the + cluster is composed by one element

if (( length(cl[cl == TRUE]) > 1) || (length(cl[cl == TRUE]) == 0)) {

num_p = colSums(profiles[cl , 1:r]*profiles[cl, r+1])

} else {

num_p = profiles[cl, 1:r]*profiles[cl , r+1]
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}

# Special case: the - cluster is composed by one element

if (( length(cl[cl == FALSE]) > 1) || (length(cl[cl == FALSE]) == 0)) {

num_m = colSums(profiles[!cl, 1:r]*profiles[!cl , r+1])

} else {

num_m = profiles[!cl, 1:r]*profiles[!cl, r+1]

}

# To evaluate the probabilities in + and - using Laplace Smoothing

# with parameter a = 1 and b = 2

p_p = (num_p + a)/(den_p + b)

p_m = (num_m + a)/(den_m + b)

# Total log -likelihood for cluster +

CpL = sum(( profiles[cl ,1:r]*profiles[cl,r+1])%*%log(p_p) +

((1 - profiles[cl ,1:r])*profiles[cl,r+1])%*%log(1-p_p))

# Total log -likelihood for cluster -

CmL = sum(( profiles[!cl ,1:r]*profiles[!cl,r+1])%*%log(p_m) +

((1 - profiles[!cl ,1:r])*profiles[!cl ,r+1])%*%log(1-p_m))

# Total log -likelihood

L = CpL + CmL

return(L)

}

# --------------------------------------------------------------- #

# Example

# Random data generation

r <- 4 # Number of different items

data <- matrix(rbinom (1000 , 1, .6), 250, r, byrow = T)

head(data)

# From observation to profiles

profiles <- dataToProfiles(data)

t(profiles)

m <- nrow(profiles)

# m x 2^m assignment matrix

tmp <- split.data.frame(cbind(rep(0, m), rep(1, m)),rep(1:m))

assignments <- matrix(t(expand.grid(tmp)), nrow=m, ncol =2^m)

# Dimensions of assignments (memory allocation)

format(object.size(assignments), units = "Mb")

# Log -likelihood evaluation for a certain cl

cl <- as.logical(assignments [ ,100])

as.numeric(cl)

likelihoodEval01(cl , profiles)

# Maximum log -likelihood applying function loglikeEval01

results <- apply(assignments , 2,

function(cl) likelihoodEval01(as.logical(cl), profiles))



B.2 A new implementation of hard assignment 135

###############################################################################

# #

# Binary populations , binary outcomes #

# Functions to implement hard assignment #

# Parallel version #

# #

###############################################################################

library(parallel)

library(dplyr)

library(pryr)

# Function splitMat

# Input: matrix mat to be splitted

# Output: List of N submatrices of mat

splitMat <- function(mat , N){

# The list of sub -matrices is inizialized with the first element

submats = list(mat[,1:round(dim(mat)[2]/N, 0)])

# To append the remaining matrices

for (k in 1:(N - 2)) {

submats = append(submats ,

list(mat[,(k*round(dim(mat)[2]/N, 0)):((k + 1)*round(dim(mat)[2]

/N, 0))]))

}

# To append the last one

submats = append(submats ,

list(mat[,((N - 1)*round(dim(mat)[2]/N, 0)):dim(mat)[2]]))

return(submats)

}

# Function colLike01

# To evaluate the log -likelihood of the columns of a sub -assignments matrix

# in a vectorized way (using apply function)

# Output: best configurations (cls) and the relative log -likelihood

colLike01 <- function(submat) {

loglike <- apply(submat , 2, function(cl) likelihoodEval01(as.logical(cl), df))

return(unique(as.data.frame(cbind(t(submat), loglike)) %>%

filter(loglike == max(loglike))))

}

# ----------------------------------------------------------------------------- #

# Example

set.seed (7) # Set seed for reproducibility

# Number of questions

r <- 5

# Random dataset

data <- matrix(rbinom (1000 , 1, .6), 200, r, byrow = T)

head(data)

# From observations to profiles
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profiles <- dataToProfiles(data)

profiles <- profiles [1:17 ,]

# Total number of profiles

m <- nrow(profiles)

# Assignment matrix generation

df <- profiles

tmp <- split.data.frame(cbind(rep(0, m), rep(1, m)),rep(1:m))

assignments <- matrix(t(expand.grid(tmp)), nrow=m, ncol =2^m)

# Subdivision of the assignment matrix into n (number of cores) submatrices

# to create clusters for parallel computing

numCores <- detectCores ()

numCores

clusters <- makeCluster(numCores)

# List containing numCores sub -matrices of assignments

submats <- splitMat(assignments , numCores)

# Dimensions of each sub -matrix

dim(submats [[1]])

# To run the program in parallel with "parallel" package it is necessary

# to export the libraries , data and functions

clusterEvalQ(clusters , {library(dplyr); library(magrittr)})

clusterExport(clusters , c("df", "colLike01", "likelihoodEval01"))

# To run the code in parallel

parallelOutput <- parLapply(clusters , submats , colLike01)

# Same code not run in parallel

output <- colLike01(assignments)
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###############################################################################

# #

# Binary populations , binary outcomes #

# Functions to implement hard assignment #

# Heuristic procedures #

# #

###############################################################################

# Heuristic 1.

# Function MC to implement basic Montecarlo method

# Input: df: dataframe

# nIter: number of iterations

# nSim: number of random configurations considered at each

# iteration

# Output: maximum of log -likelihood and the associated configuration

MC <- function(df, nIter = 100, nSim = 1000){

# To retrieve number of profiles and answers

m <- nrow(df)

r <- ncol(df) - 1

# To inizialize solution vector (best solution until t step)

solution <- rep(-Inf , nIter)

# To inizialize best solution (max log -likelihood found)

best_sol <- -Inf

# To inizialize best configuration

best_conf = rep(0, m)

# Iterations

for (t in 1:nIter){

SIM <- matrix(sample (0:1, nSim*m, replace = TRUE), nrow = m, ncol = nSim)

# current solution dataframe at iteration t

current <- (colLike01(SIM) %>% filter(loglike == max(loglike)) %>% unique ())

# current max log -likelihood found at iteration t

current_sol <- current$loglike %>% unlist () %>% unique ()

# current configuration found at iteration t

current_conf <- current %>% select(-loglike) %>% head (1) %>% as.numeric ()

# If a new maximum is found

if (current_sol > best_sol){

best_sol <- current_sol

best_conf <- current_conf

}

solution[t] <- best_sol

}

# Results

output <- list()

output [[1]] <- best_conf
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output [[2]] <- best_sol

return(output)

}

# Heuristic 2.

# Function swapMC to implement simple iterative heuristic

# with MC initialization (Algorithm 2 in Chapter 6)

# Input: df: dataframe

# nIter: number of iterations

# MCnSim: number of run of Monte Carlo basic heuristic

# MCnIter: number of iterations of Monte Carlo basic heuristic

# Output: maximum of the log -likelihood and the associated configurations

swapMC <- function(df, nIter = 100, MCnSim = 100, MCnIter = 100){

m <- nrow(df)

r <- ncol(df) - 1

# Inizialization using Monte Carlo basic method

cat("Initializing the first configuration using MC ...\n")

init <- MC(df, MCnIter , MCnSim)

cl <- init [[1]]

L0 <- init [[2]]

# Initialization of the best configuration

cl_best <- cl

# Initialization of the best log -Likelihood

L_best <- L0

# Iterations

for (it in 1: nIter){

# Swap

cl <- cl_best

rnd <- sample (1:m,1)

cl[rnd] <- 1 - cl[rnd]

# If better , mantain the swap

if (likelihoodEval01(as.logical(cl), df) > L_best) {

L_best <- likelihoodEval01(as.logical(cl), df)

cl_best <- cl

}

}

# Results

output <- list()

output [[1]] <- cl_best

output [[2]] <- L_best

return(output)

}

# --------------------------------------------------------------------------- #

# Examples

# Example 1. MC basic

library(dplyr)

library(pryr)
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# Generating SIM matrix

nSim <- 10

set.seed (5)

SIM <- matrix(sample (0:1, nSim*m, replace = TRUE), nrow = m, ncol = nSim)

# Best configuration

colLike01(SIM)

# Set parameters

set.seed (5)

nIter <- 100

nSim <- 1000

# Initialization of solution vector (best solution until t step)

solution <- rep(-Inf , nIter)

# Initialization of best solution (max log -likelihood found)

best_sol <- -Inf

# Initialization of best configuration

best_conf = rep(0, m)

# Iterations

for (t in 1: nIter){

SIM <- matrix(sample (0:1, nSim*m, replace = TRUE), nrow = m, ncol = nSim)

# current solution dataframe at iteration t

current <- (colLike01(SIM) %>% filter(loglike == max(loglike)) %>% unique ())

# current max log -likelihood found at iteration t

current_sol <- current$loglike %>% unlist () %>% unique ()

# current configuration found at iteration t

current_conf <- current %>% select(-loglike) %>% head (1) %>% as.numeric ()

# if a new maximum is found

if (current_sol > best_sol){

best_sol <- current_sol

best_conf <- current_conf

}

solution[t] <- best_sol

}

# Results

best_conf

max(solution)

# Example 2. swapMC heuristic

library(parallel)

set.seed (7)# for reproducibility

# Number of questions

r <- 5
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# Random dataset

data <- matrix(rbinom (1000 , 1, .6), 200, r, byrow = T)

head(data)

# From observations to profiles

profiles <- dataToProfiles(data)

profiles <- profiles [1:20 ,]

m <- nrow(profiles)

# Assignment matrix generation

df <- profiles

tmp <- split.data.frame(cbind(rep(0, m), rep(1, m)),rep(1:m))

assignments <- matrix(t(expand.grid(tmp)), nrow=m, ncol =2^m)

# Subdivision of the assignment matrix into n (number of cores) submatrices

# creating clusters for parallel computing

numCores <- detectCores ()

clusters <- makeCluster(numCores)

# List containing numCores sub -matrices of assignments

submats <- splitMat(assignments , numCores)

# Exporting the libraries , data and functions

clusterEvalQ(clusters , {library(dplyr); library(magrittr)})

clusterExport(clusters , c("df", "colLike01", "likelihoodEval01"))

# Parallel version - exact solution

start_time = Sys.time()

parallelOutput <- parLapply(clusters , submats , colLike01)

end_time = Sys.time()

end_time - start_time

# Best solution obtained by the exact (exhaustive search) method

Reduce("rbind", parallelOutput) %>%

filter(loglike == max(loglike))-> exact_sol

exact_sol %>% select(loglike) %>% unique ()

# Swap heuristic

swapMC(df)

# How many times maximum is reached

maxima <- rep(0, 100)

for (i in 1:100) {

cat(paste0(i, "\n"))

set.seed(i)

maxima[i] <- swapMC(df)[[2]]

}

# Correct solutions

sum(maxima == max(maxima))
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###############################################################################

# #

# Binary populations , binary outcomes #

# Functions to implement hard assignment #

# #

# Toy example - Bartholomew et al. dataset #

# #

###############################################################################

library(dplyr)

library(pryr)

library(parallel)

data_Bart <- read.table('Bartholomew_dataset.txt', sep ='\t', header=T)

data_Bart <- data.frame(frequencies = data_Bart$Observed_freq ,

q1 = data_Bart$V1,

q2 = data_Bart$V2,

q3 = data_Bart$V3,

q4 = data_Bart$V4)

t(data_Bart)

m <- dim(data_Bart)[1]

# m x 2^m assignment matrix evaluation

tmp <- split.data.frame(cbind(rep(0, m), rep(1, m)),rep(1:m))

assignments <- matrix(t(expand.grid(tmp)), nrow=m, ncol =2^m)

# Profiles evaluation

profiles <- data.frame(data_Bart$q1, data_Bart$q2, data_Bart$q3, data_Bart$q4 ,

data_Bart$frequencies) %>%

as.matrix ()

df <- profiles

# Exact method

numCores <- detectCores ()

clusters <- makeCluster(numCores)

submats <- splitMat(assignments , numCores)

clusterEvalQ(clusters , {library(dplyr); library(magrittr)})

clusterExport(clusters , c("df", "colLike01", "likelihoodEval01"))

start_time = Sys.time()

parallelOutput <- parLapply(clusters , submats , colLike01)

end_time = Sys.time()

end_time - start_time

Reduce("rbind", parallelOutput) %>%

filter(loglike == max(loglike))-> exact_sol

exact_sol %>% dplyr:: select(loglike) %>% unique ()

exact_sol

# Comparison with soft assignment (EM algorithm)

# Different solutions found

hard_sol <- as.numeric(exact_sol[1,] %>% dplyr:: select(-loglike))

poLCA_sol <- c(1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0)

# Log -likelihoods

likelihoodEval01(as.logical(hard_sol), df)

likelihoodEval01(as.logical(poLCA_sol), df)
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# Cbinding the dataframe with the solutions found

complete_df <- as.data.frame(cbind(df, hard_sol , poLCA_sol))

# Number of individuals

individuals <- complete_df %>%

dplyr:: select(data_Bart.frequencies) %>%

sum()

# Number of individuals in cluster + for hard assignment

complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.frequencies) %>%

sum() -> np_hard

# Number of individuals in cluster - for hard assignment

nm_hard <- individuals - np_hard

# Number of individuals in cluster + for soft assignment

complete_df %>%

filter(poLCA_sol == 1) %>%

dplyr:: select(data_Bart.frequencies) %>%

sum() -> np_soft

# Number of individuals in cluster - for soft assignment

nm_soft <- individuals - np_soft

c(np_hard , np_soft)

c(nm_hard , nm_soft)

# Correct answers for question 1 in cluster + hard assignment

((( complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.q1))*

(complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h11

# Correct answers for question 2 in cluster + hard assignment

((( complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.q2))*

(complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h12

# Correct answers for question 3 in cluster + hard assignment

((( complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.q3))*

(complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.frequencies))) %>%
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sum())/np_hard -> h13

# Correct answers for question 4 in cluster + hard assignment

((( complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.q4))*

(complete_df %>%

filter(hard_sol == 1) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h14

# Correct answers for question 1 in cluster - hard assignment

((( complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.q1))*

(complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h01

# Correct answers for question 2 in cluster - hard assignment

((( complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.q2))*

(complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h02

# Correct answers for question 3 in cluster - hard assignment

((( complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.q3))*

(complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h03

# Correct answers for question 4 in cluster - hard assignment

((( complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.q4))*

(complete_df %>%

filter(hard_sol == 0) %>%

dplyr:: select(data_Bart.frequencies))) %>%

sum())/np_hard -> h04

# Correct answers in hard approach for each question

hp <- c(h11 , h12 , h13 , h14)

hm <- c(h01 , h02 , h03 , h04)

# Heursitc procedure: swap

set.seed (7)

start_time = Sys.time()

results_swap <- swapMC(df)
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end_time = Sys.time()

end_time - start_time

results_swap [[1]]

results_swap [[2]]

# Exact method

results_exact <- apply(assignments , 2, function(cl) likelihoodEval(as.logical(cl),

profiles))

dfResults = as.data.frame(cbind(t(assignments), results_exact))

dfResults %>% head()

# Best configuration

dfResults %>% filter(results_exact == max(results_exact))

# Worst configuration

dfResults %>% filter(results_exact == min(results_exact))

B.3 Applications

B.3.1 Examples of hyperparameters tuning

Examples of R [75] and Python [102] codes to tune the hyperparameters of random forests
and neural networks models are presented.

###################################################################################

# #

# Example to tune RFs (via ranger package) #

# #

###################################################################################

library('ranger ')

library('survival ')

attach(db_NA25_imputed_ximp_logOS)

# Hyperparameter grid search for RF

hyper_grid2 <- expand.grid(

mtry = seq(2, 40, by = 3),

node_size = seq(5, 40, by = 5),

sampe_size = c(.632, .70, .80),

split_rule = c("variance", "extratrees", "maxstat"),

OOB_MSE = 0

)

nrow(hyper_grid2)

for(i in 1:nrow(hyper_grid2)) {

# Train model

model <- ranger(
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formula = logOS ~ .,

data = db_NA25_imputed_ximp_logOS ,

num.trees = 500,

mtry = hyper_grid2$mtry[i],

min.node.size = hyper_grid2$node_size[i],

sample.fraction = hyper_grid2$sampe_size[i],

splitrule = hyper_grid2$split_rule[i],

seed = 123

)

# Add OOB error to grid

hyper_grid2$OOB_OS_MSE[i] <- model$prediction.error

}

####################################################################################

#

# Example to tune NNs in Python

#

####################################################################################

# To implement grid search in Python for NNs

# Use scikit-learn to grid search

import numpy

from sklearn.model_selection import GridSearchCV

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

# Function to create model, required for KerasRegressor

def create_model(optimizer='RMSprop', neurons1=1, neurons2=1, activation1 = 'elu',

activation2 = 'relu'):

# Create model

model = Sequential()

model.add(Dense(266, input_dim=266, activation=activation1))

model.add(Dense(neurons1, activation=activation1))

model.add(Dense(neurons1, activation=activation1))

model.add(Dense(neurons1, activation=activation2))

model.add(Dense(neurons2, activation=activation2))

model.add(Dense(neurons2, activation=activation2))

model.add(Dense(1, activation='elu'))

# Compile model

model.compile(loss='mean_squared_error', optimizer=optimizer) #, metrics=['mse'])

return model

# Fix random seed for reproducibility

seed = 7

numpy.random.seed(seed)

# Load data

X = db_OHE_25NAimputed_OS.iloc[:, 0:266]

Y = db_OHE_25NAimputed_OS.iloc[:, 266]

# Create model

model = KerasRegressor(build_fn=create_model, verbose=0)
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# Define the grid search parameters

epochs = [500, 1000]

optimizer = ['SGD', 'RMSprop', 'Adagrad'] #, 'Adadelta', 'Adam', 'Adamax', 'Nadam']

neurons1 = [100, 200, 266]

neurons2 = [50, 100, 200]

activation1 = ['elu', 'tanh']#['relu', 'elu', 'tanh']

activation2 = ['relu', 'elu']#, 'linear']

param_grid = dict(epochs=epochs, optimizer = optimizer, neurons1 = neurons1,

neurons2 = neurons2, activation1 = activation1,

activation2 = activation2)

# The GridSearchCV process will then construct and evaluate one model for each combination

# of parameters. Cross validation is used to evaluate each individual model and the default

# of 3-fold cross validation. All scores objects follow the convention that higher return

# values are better than lower return values. Thus metrics which measure the distance between

# the model and the data, like metrics.mean_squared_error, are available as neg_mean_squared_error

# which return the negated value of the metric.

grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=-1,

scoring = 'neg_mean_squared_error')

grid_result = grid.fit(X, Y)
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