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Abstract
Wegive a simple construction of the log-convexminorant of a sequence {𝑀𝛼}𝛼∈ℕ𝑑

0

and consequently extend to the 𝑑-dimensional case the well-known formula that
relates a log-convex sequence {𝑀𝑝}𝑝∈ℕ0

to its associated function 𝜔𝑀 , that is,
𝑀𝑝 = sup𝑡>0 𝑡

𝑝 exp(−𝜔𝑀(𝑡)). We show that in themore dimensional anisotropic
case the classical log-convex condition𝑀2

𝛼 ≤ 𝑀𝛼−𝑒𝑗𝑀𝛼+𝑒𝑗 is not sufficient: con-
vexity as a function of more variables is needed (not only coordinate-wise). We
finally obtain some applications to the inclusion of spaces of rapidly decreasing
ultradifferentiable functions in the matrix weighted setting.

KEYWORDS
log-convex sequences, matrix weights, regularization of sequences, ultradifferentiable func-
tions

1 INTRODUCTION

For a sequence {𝑀𝑝}𝑝∈ℕ0
of real positive numbers (with 𝑀0 = 1 for simplicity; ℕ0 ∶= ℕ ∪ {0}), its associated function is

defined by

𝜔𝑀(𝑡) ∶= sup
𝑝∈ℕ0

log
𝑡𝑝

𝑀𝑝
, 𝑡 > 0.
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Mandelbrojt proved in [17, Chap. I] (see also [15]) that if lim𝑝→+∞𝑀
1∕𝑝
𝑝 = +∞ then

𝑀𝑝 = sup
𝑡>0

𝑡𝑝

exp𝜔𝑀(𝑡)
, 𝑝 ∈ ℕ0, (1.1)

if and only if {𝑀𝑝}𝑝∈ℕ0
is logarithmically convex, that is,

𝑀2
𝑝 ≤ 𝑀𝑝−1𝑀𝑝+1, ∀𝑝 ∈ ℕ.

We refer also to the recent work [22] where this construction has been studied again in detail, some technical ambiguities
have been solved and non-standard cases have been studied as well; see Section 3.
However, to the best of our knowledge this condition has never been generalized to the 𝑑-dimensional anisotropic case

(𝑑 > 1), and the reason is that the classical coordinate-wise logarithmic convexity condition (5.8) for a sequence {𝑀𝛼}𝛼∈ℕ𝑑
0

is not sufficient to obtain the analogous of Equation (1.1) for𝑀𝛼, as explained in Remark 5.3. The reason is that this is a
convexity condition on each variable separately and not on the globality of its variables. Assuming the stronger condition
that {𝑀𝛼}𝛼∈ℕ𝑑

0
is log-convex on the globality of its variables 𝛼 ∈ ℕ𝑑

0 (see Definition 5.1), we extend Equation (1.1) to 𝛼 ∈ ℕ𝑑
0

instead of 𝑝 ∈ ℕ0 (see Theorem 5.2).
To obtain this result, we construct in Sections 2–4 the (optimal) convex minorant of a sequence {𝑎𝛼}𝛼∈ℕ𝑑

0
(then 𝑎𝛼 =

log𝑀𝛼 in Section 5). The idea, in the one variable case, takes inspiration from the convex regularization of sequences of
Mandelbrojt in [17], which was quite complicated and difficult to export to the more dimensional case. Our construction
is made by taking the supremum of hyperplanes approaching from below the given sequence and leads to the notion of
convexity for a sequence {𝑎𝛼}𝛼∈ℕ𝑑

0
in the sense that 𝑎𝛼 = 𝐹(𝛼) for a convex function 𝐹 ∶ [0, +∞)𝑑 → ℝ. This condition

gives the suitable notion of logarithmic convexity for a sequence {𝑀𝛼}𝛼∈ℕ𝑑
0
in order to write it in terms of its associated

function as in Equation (5.7).
This result is a very useful tool for working in the anisotropic setting, and we expect several applications, that could be

object of future works. Indeed, in the isotropic (or one-dimensional) ultradifferentiable framework the interplay between
a given sequence𝐌 = {𝑀𝛼}𝛼∈ℕ𝑑

0
and the associated function 𝜔𝐌 becomes relevant in many different contexts, for exam-

ple, very prominent in the proofs of the comparison results by Bonet–Meise–Melikhov [5]. Similarly, this comment applies
to other weighted spaces involving weight sequences and weight functions in the sense of Braun–Meise–Taylor as well.
In the anistropic setting, very few literature is currently available, see, for example, [4, 7, 10, 18], and one can expect that
the new relation between𝐌 and 𝜔𝐌 obtained in Theorem 5.2 is becoming crucial when transferring known statements
and techniques from the isotropic to the more general anistropic setting (see, for instance, the recent preprint [10], where
the analysis of convexity made in this paper is used to obtain inclusion relations for Gelfand–Shilov type spaces based
on solid translation-invariant Banach function spaces of bounded type on ℝ𝑑). It is also reasonable that 𝜔𝐌 serves as a
standard example of an anisotropic weight function in the sense of Braun–Meise–Taylor, when allowing different growth
in different directions and not considering the radial extension of 𝜔 to ℝ𝑑 as it is usual done in the literature. In Sec-
tion 6, indeed, we obtain inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted
anisotropic setting, where Theorem 5.2 is crucial (see Remark 6.2 and compare with the isotropic case in [3]). In particu-
lar, we characterize the conditions on the matrix weights and in order to have a continuous inclusion between the
spaces {}∕(), { }∕( ), both in the Roumieu and Beurling cases. The advantages of the matrix weighted setting
was already enlightened in [19], in order to treat at the same time classes in the sense of Komatsu [15] (estimates of the
derivatives with a sequence) and in the sense of Braun et al. [6] (estimates of the derivatives via a weight function). Since
then several papers using weight matrices have been published. We mention, for instance, [2, 11, 12, 14], and references
therein.
We refer to [5] to compare classes of ultradifferentiable functions as defined by Komatsu [15] and Braun et al. [6].

Concerning the case of anisotropic spaces of Gelfand–Shilov or the ultradifferentiable type, we point out that the word
“anisotropic” is used in different meaning in the literature, both for the case when different (isotropic) sequences control
the ultradifferentiability and the decay of the function (see, for instance, [1, 8, 20, 21, 23]), and for the situation when
the sequence depends on the whole multi-index and not on its length, as it is intended in this paper (see, for instance,
[7, 10, 18]).
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458 BOITI et al.

2 CONSTRUCTION OF THE CONVEXMINORANT CANDIDATE

Let us recall that a real sequence {𝑎𝑝}𝑝∈ℕ0
is said to be convex if

𝑎𝑝 ≤ 1

2
𝑎𝑝−1 +

1

2
𝑎𝑝+1, ∀𝑝 ∈ ℕ.

This is equivalent to say that the polygonal obtained by connecting the points (𝑝, 𝑎𝑝)with (𝑝 + 1, 𝑎𝑝+1) by a straight line,
for all 𝑝 ∈ ℕ0, is the graph of a convex function, or equivalently that there exists a convex function 𝐹 ∶ [0, +∞) → ℝwith
𝐹(𝑝) = 𝑎𝑝 for all 𝑝 ∈ ℕ0.
This suggests for a real sequence {𝑎𝛼}𝛼∈ℕ𝑑

0
the following:

Definition 2.1. We say that a sequence {𝑎𝛼}𝛼∈ℕ𝑑
0
is convex if there exists a convex function𝐹 ∶ [0, +∞)𝑑 → ℝwith𝐹(𝛼) =

𝑎𝛼 for all 𝛼 ∈ ℕ𝑑
0 .

Definition 2.2. The convex minorant of a sequence {𝑎𝛼}𝛼∈ℕ𝑑
0
is the largest convex sequence {𝑎𝑐𝛼}𝛼∈ℕ𝑑

0
with 𝑎𝑐𝛼 ≤ 𝑎𝛼 for all

𝛼 ∈ ℕ𝑑
0 .

We want to construct the convex minorant of a sequence {𝑎𝛼}𝛼∈ℕ𝑑
0
⊂ ℝ ∶= ℝ ∪ {±∞} such that:

(i) 𝑎𝛼 > −∞, ∀𝛼 ∈ ℕ𝑑
0 ,

(ii) lim|𝛼|→+∞
𝑎𝛼|𝛼| = +∞, for |𝛼| = 𝛼1 +⋯+ 𝛼𝑑,

(iii) 𝑎𝛼 may be +∞ at most for a finite number of multi-indices 𝛼 ∈ ℕ𝑑
0 ,

(iv) 𝑎0 ∈ ℝ.

To this aim, we set

𝑆 ∶= {(𝛼, 𝑎𝛼) ∶ 𝛼 ∈ ℕ𝑑
0},

 ∶= {𝑓 ∶ ℝ𝑑 → ℝ ∶ 𝑓 is an affine function}

= {𝑓(𝑥) = ⟨𝑘, 𝑥⟩ + 𝑐 ∶ (𝑘, 𝑐) ∈ ℝ𝑑 × ℝ}.

Note that the graphs of the affine functions 𝑓 ∈  are hyperplanes in ℝ𝑑+1.

Lemma 2.3. Given 𝑓 ∈  we have

𝑓(𝛼) > 𝑎𝛼,

at most for a finite number of points 𝛼 ∈ ℕ𝑑
0 .

Proof. For |𝛼| ≥ 1 by the Cauchy–Schwarz inequality we have

|𝑓(𝛼)||𝛼| ≤ |⟨𝑘, 𝛼⟩| + |𝑐||𝛼| ≤ ‖𝑘‖ ⋅ ‖𝛼‖|𝛼| + |𝑐| ≤ ‖𝑘‖ + |𝑐|,
since ‖𝛼‖ = √

𝛼21 +⋯+ 𝛼2
𝑑
≤ 𝛼1 +⋯+ 𝛼𝑑 = |𝛼|.

On the other hand, assumption (𝑖𝑖) implies

𝑎𝛼|𝛼| > ‖𝑘‖ + |𝑐|,
for |𝛼| large enough. This implies that only a finite number of 𝛼 ∈ ℕ𝑑

0 may satisfy that |𝑓(𝛼)| > 𝑎𝛼. □
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BOITI et al. 459

Let us now consider

𝑆 ∶= {𝑓 ∈  ∶ 𝑓(𝛼) ≤ 𝑎𝛼 ∀𝛼 ∈ ℕ𝑑
0}.

The graphs of the functions 𝑓 ∈ 𝑆 are the hyperplanes which lie under 𝑆.
Note that 𝑆 ≠ ∅ by Lemma 2.3. As a matter of fact, given 𝑓 ∈ , since 𝑓(𝛼) ≤ 𝑎𝛼 except a finite number of points

𝛼1, … , 𝛼𝓁, we have that

𝑓 − max
1≤𝑗≤𝓁{𝑓(𝛼𝑗) − 𝑎𝛼𝑗 } ∈ 𝑆.

The idea is now to consider the supremum of these hyperplanes which lie under 𝑆 and project on this set each 𝑎𝛼 to
construct the desired convex minorant sequence. So, let us first define

𝐹(𝑥) ∶= sup
𝑓∈𝑆

𝑓(𝑥). (2.1)

Note that the above defined𝐹 ∶ ℝ𝑑 → ℝ is a convex function since it is the supremum of a set of convex (affine) functions:
the epigraph is convex because it is the intersection of convex sets. By construction

𝐹(𝛼) ≤ 𝑎𝛼, ∀𝛼 ∈ ℕ𝑑
0 ,

and we claim that

𝐹(𝑥) < +∞ ∀𝑥 ∈ [0, +∞)𝑑.

As a matter of fact, given 𝑥 ∈ [0, +∞)𝑑, by assumptions (𝑖) and (𝑖𝑖𝑖), we can find 𝑑 + 1 points 𝛼1, … , 𝛼𝑑+1 ∈ ℕ𝑑
0 such

that 𝑥 is inside (or on the border of) the simplex of vertices 𝛼1, … , 𝛼𝑑+1 and 𝑓(𝛼𝑗) ≤ 𝑎𝛼𝑗 < +∞ for every 𝑓 ∈ 𝑆 and
1 ≤ 𝑗 ≤ 𝑑 + 1. Then

𝑓(𝑥) ≤ max
1≤𝑗≤𝑑+1 𝑓(𝛼𝑗) < +∞,

by the convexity of 𝑓, and hence 𝐹(𝑥) < +∞.
Note also that 𝐹 is continuous on (0, +∞)𝑑, being a convex function.
For fixed 𝑘 ∈ ℝ𝑑 let us now define

ℎ𝑘 ∶= sup{𝑐 ∈ ℝ ∶ 𝑓(𝑥) = ⟨𝑘, 𝑥⟩ + 𝑐 ∈ 𝑆} (2.2)

= sup{𝑐 ∈ ℝ ∶ ⟨𝑘, 𝛼⟩ + 𝑐 ≤ 𝑎𝛼 , ∀𝛼 ∈ ℕ𝑑
0}.

We have:

Lemma 2.4. Let 𝑘 ∈ ℝ𝑑 and ℎ𝑘 as in Equation (2.2). Then

ℎ𝑘 = inf
𝛼∈ℕ𝑑

0

{𝑎𝛼 − ⟨𝑘, 𝛼⟩} = min
𝛼∈ℕ𝑑

0

{𝑎𝛼 − ⟨𝑘, 𝛼⟩}. (2.3)

Proof. Let us first remark that inf𝛼∈ℕ𝑑
0
{𝑎𝛼 − ⟨𝑘, 𝛼⟩} is a minimum because assumption (𝑖𝑖) implies that

lim|𝛼|→+∞
(𝑎𝛼 − ⟨𝑘, 𝛼⟩) = +∞,

(see the proof of Lemma 2.3), so that the infimum is attained on a bounded set of ℕ𝑑
0 , which is a finite set.
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460 BOITI et al.

Let us now set

ℎ̃𝑘 ∶= inf
𝛼∈ℕ𝑑

0

{𝑎𝛼 − ⟨𝑘, 𝛼⟩} = min
𝛼∈ℕ𝑑

0

{𝑎𝛼 − ⟨𝑘, 𝛼⟩} = 𝑎�̄� − ⟨𝑘, �̄�⟩ (2.4)

for some minimum point �̄� ∈ ℕ𝑑
0 , and prove that ℎ̃𝑘 = ℎ𝑘 as defined in Equation (2.2).

Clearly

ℎ̃𝑘 ≤ 𝑎𝛼 − ⟨𝑘, 𝛼⟩, ∀𝛼 ∈ ℕ𝑑
0 ,

⇔ ℎ̃𝑘 + ⟨𝑘, 𝛼⟩ ≤ 𝑎𝛼, ∀𝛼 ∈ ℕ𝑑
0 .

Therefore,

𝑓(𝑥) = ℎ̃𝑘 + ⟨𝑘, 𝑥⟩ ∈ 𝑆

is one of the functions in Equation (2.2) with 𝑐 = ℎ̃𝑘 and hence ℎ𝑘 ≥ ℎ̃𝑘.
On the contrary, if 𝑐 > ℎ̃𝑘 then Equation (2.4) implies that

𝑐 + ⟨𝑘, �̄�⟩ > ℎ̃𝑘 + ⟨𝑘, �̄�⟩ = 𝑎�̄�

so that in this case

𝑓(𝑥) = 𝑐 + ⟨𝑘, 𝑥⟩ ∉ 𝑆

and therefore ℎ𝑘 ≤ ℎ̃𝑘. □

Now, we define

𝑓𝑘(𝑥) ∶= ℎ𝑘 + ⟨𝑘, 𝑥⟩. (2.5)

Proposition 2.5. Let 𝐹 be as in Equation (2.1), ℎ𝑘 as in Equation (2.3) and 𝑓𝑘 as in Equation (2.5). Then

𝐹(𝑥) = sup
𝑘∈ℝ𝑑

𝑓𝑘(𝑥).

Proof. Since 𝑓𝑘 ∈ 𝑆 by Equation (2.3), we clearly have that

𝐹(𝑥) ≥ sup
𝑘∈ℝ𝑑

𝑓𝑘(𝑥).

On the other hand, if 𝑓 ∈ 𝑆 then

𝑓(𝑥) = 𝑐 + ⟨𝑘, 𝑥⟩
for some 𝑐 ∈ ℝ, 𝑘 ∈ ℝ𝑑, and hence by Equation (2.2)

𝑓(𝑥) ≤ 𝑓𝑘(𝑥) ≤ sup
𝓁∈ℝ𝑑

𝑓𝓁(𝑥).

This finally implies that

𝐹(𝑥) = sup
𝑓∈𝑆

𝑓(𝑥) ≤ sup
𝑘∈ℝ𝑑

𝑓𝑘(𝑥). □
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BOITI et al. 461

We thus have a convex sequence {�̃�𝛼}𝛼∈ℕ𝑑
0
defined, for 𝐹 as in Equation (2.1), by

�̃�𝛼 ∶= 𝐹(𝛼), (2.6)

and which can be equivalently defined by

�̃�𝛼 ∶= sup
𝑘∈ℝ𝑑

(⟨𝑘, 𝛼⟩ + ℎ𝑘),

for

ℎ𝑘 = inf
𝛼∈ℕ𝑑

0

(𝑎𝛼 − ⟨𝑘, 𝛼⟩).
We call it the convex minorant candidate of {𝑎𝛼}𝛼∈ℕ𝑑

0
since we shall prove in the following sections that it is indeed the

convex minorant of {𝑎𝛼}𝛼∈ℕ𝑑
0
(see Corollary 4.2).

The first step in this direction is to clarify the one-dimensional case (in Section 3) and then proceed by descending
induction on 𝑑 for the 𝑑-dimensional case (in Section 4). To this aim in the next section, we shall look more closely at the
geometric construction in the one-dimensional case, that is particularly clear.

3 GEOMETRIC CONSTRUCTION OF THE CONVEXMINORANT SEQUENCE IN THE
ONE-DIMENSIONAL CASE

The geometric construction in the one-dimensional case can also be found in [22]; we refer to this work and in particular
to [22, Sect. 3.3] concerning the comparison with the classical results from [17, Chap. I]. Here, we revisit the construction
in the spirit of Section 2 since it is required in the induction argument for the higher-dimensional situation in Section 4.
Let {𝑎𝛼}𝛼∈ℕ0

satisfy (𝑖)−(𝑖𝑣). In particular, the condition 𝑎0 ∈ ℝ will be essential for the first step of the construction.
All functions of 𝑆 are of the form

𝑓(𝑥) = 𝑐 + 𝑘𝑥, with 𝑘 ∈ ℝ and 𝑐 ≤ 𝑎0,

since 𝑓(𝛼) ≤ 𝑎𝛼 for all 𝛼 ∈ ℕ0 implies, in particular, 𝑓(0) = 𝑐 ≤ 𝑎0.
Let us now consider the functions of 𝑆 of the form

𝑓𝑎0,𝑘(𝑥) = 𝑎0 + 𝑘𝑥, 𝑘 ∈ ℝ,

and note that

𝐹(0) = sup
𝑓∈𝑆

𝑓(0) = 𝑎0.

The idea is now to rotate (i.e., increasing the slope 𝑘) the straight line 𝑦 = 𝑎0 + 𝑘𝑥 around the point (0, 𝑎0) ∈ 𝑆 until we
meet another point (𝑝, 𝑎𝑝) ∈ 𝑆. In order to have 𝑓𝑎0,𝑘(𝑝) = 𝑎𝑝 we find

𝑎𝑝 = 𝑎0 + 𝑘𝑝 ⇔ 𝑘 =
𝑎𝑝 − 𝑎0

𝑝
.

Take then

𝑘0 ∶= inf
𝑝∈ℕ

𝑎𝑝 − 𝑎0

𝑝
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462 BOITI et al.

and note that it is a minimum because of the assumption 𝑎𝑝∕𝑝 → +∞ for 𝑝 → +∞, which implies that the infimum can
be done on a bounded subset of ℕ and hence on a finite number of indices 𝑝:

𝑘0 = min
𝑝∈ℕ

𝑎𝑝 − 𝑎0

𝑝
=
𝑎𝑝1 − 𝑎0

𝑝1

for some 𝑝1 ∈ ℕ. Observe that 𝑝1 does not need to be unique; if there is more than one 𝑝1 realizing the minimum, for the
construction below it does not matter which one we choose at this step.
Set

𝑓𝑎0,𝑘0(𝑥) ∶= 𝑎0 + 𝑘0𝑥. (3.1)

We claim that

𝐹(𝑥) = 𝑓𝑎0,𝑘0(𝑥) = 𝑎0 + 𝑘0𝑥, ∀𝑥 ∈ [0, 𝑝1],

where𝐹 is the function defined in Equation (2.1), that is, the geometric construction coincides with the constructionmade
in Section 2, in [0, 𝑝1].
On one side, 𝑓𝑎0,𝑘0 ∈ 𝑆 by construction and hence

𝐹(𝑥) ≥ 𝑓𝑎0,𝑘0(𝑥), ∀𝑥 ∈ [0, 𝑝1].

On the other side, if

𝑓(𝑥) = 𝑐 + 𝑘𝑥 ∈ 𝑆

then we must have

𝑓(0) ≤ 𝑎0 = 𝑓𝑎0,𝑘0(0)

𝑓(𝑝1) ≤ 𝑎𝑝1 = 𝑓𝑎0,𝑘0(𝑝1)

and hence

𝑓(𝑥) ≤ 𝑓𝑎0,𝑘0(𝑥), ∀𝑥 ∈ [0, 𝑝1],

since they are affine functions. Therefore,

𝐹(𝑥) = sup
𝑓∈𝑆

𝑓(𝑥) ≤ 𝑓𝑎0,𝑘0(𝑥), ∀𝑥 ∈ [0, 𝑝1].

We have thus proved that

𝐹(𝑥) = 𝑎0 + 𝑘0𝑥, ∀𝑥 ∈ [0, 𝑝1],

and moreover

𝐹(𝑝1) = 𝑎𝑝1 .

We can further proceed as in the previous step, considering

𝑓𝑎𝑝1 ,𝑘
(𝑥) = 𝑎𝑝1 + 𝑘(𝑥 − 𝑝1)

 15222616, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202400135 by U
niversita D

i T
orino, W

iley O
nline L

ibrary on [14/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOITI et al. 463

with 𝑓𝑎𝑝1 ,𝑘(𝑝1) = 𝑎𝑝1 = 𝐹(𝑝1). Requiring

𝑓𝑎𝑝1 ,𝑘
(𝑝) = 𝑎𝑝 ⇔ 𝑎𝑝 = 𝑎𝑝1 + 𝑘(𝑝 − 𝑝1) ⇔ 𝑘 =

𝑎𝑝 − 𝑎𝑝1
𝑝 − 𝑝1

we take

𝑘1 ∶= inf
𝑝1<𝑝∈ℕ

𝑎𝑝 − 𝑎𝑝1
𝑝 − 𝑝1

= min
𝑝1<𝑝∈ℕ

𝑎𝑝 − 𝑎𝑝1
𝑝 − 𝑝1

=
𝑎𝑝2 − 𝑎𝑝1
𝑝2 − 𝑝1

,

for some 𝑝1 < 𝑝2 ∈ ℕ, and set

𝑓𝑎𝑝1 ,𝑘1
(𝑥) ∶= 𝑎𝑝1 + 𝑘1(𝑥 − 𝑝1).

Then, for all 𝑝 ∈ [𝑝1, 𝑝2],

𝐹(𝑥) = 𝑓𝑎𝑝1 ,𝑘1
(𝑥) = 𝑎𝑝1 + 𝑘1(𝑥 − 𝑝1)

= 𝑘1𝑥 + 𝑎𝑝1 − 𝑘1𝑝1

= 𝑘1𝑥 + 𝑎𝑝1 −
𝑎𝑝2 − 𝑎𝑝1
𝑝2 − 𝑝1

𝑝1

= 𝑘1𝑥 +
𝑝2𝑎𝑝1 − 𝑝1𝑎𝑝2

𝑝2 − 𝑝1

= 𝑘1𝑥 + 𝑑𝑘1

with

𝑑𝑘1 =
𝑝2𝑎𝑝1 − 𝑝1𝑎𝑝2

𝑝2 − 𝑝1
.

Moreover, 𝐹(𝑝2) = 𝑎𝑝2 . Also in this case, 𝑝2 does not need to be unique, and the choice of 𝑝2 does not affect the next steps.
Going on recursively in the same way we have a geometric construction which coincides with the construction of 𝐹 in

Section 2.
The convex minorant candidate sequence given by �̃�𝑝 = 𝐹(𝑝) as defined in Equation (2.6) is in this case the projection

of 𝑎𝑝 on the segments of lines above defined in each interval [𝑝𝑖, 𝑝𝑖+1]:

�̃�𝑝𝑖 = 𝑎𝑝𝑖 , ∀𝑖 ∈ ℕ0,

�̃�𝑝 = 𝑝𝑘𝑖 + 𝑑𝑘𝑖

=
𝑎𝑝𝑖+1 − 𝑎𝑝𝑖
𝑝𝑖+1 − 𝑝𝑖

𝑝 +
𝑝𝑖+1𝑎𝑝𝑖 − 𝑝𝑖𝑎𝑝𝑖+1

𝑝𝑖+1 − 𝑝𝑖
, 𝑝𝑖 < 𝑝 < 𝑝𝑖+1.

In the one-dimensional case, it is thus immediate by the construction that the convex minorant candidate sequence
{�̃�𝑝}𝑝∈ℕ0

coincides with the convex minorant {𝑎𝑐𝑝}𝑝∈ℕ0
.

4 CONVEXMINORANT SEQUENCE IN THEMULTI-DIMENSIONAL CASE

In order to show that the convex minorant candidate sequence {�̃�𝛼}𝛼∈ℕ𝑑
0
∶= {𝐹(𝛼)}𝛼∈ℕ𝑑

0
defined in Equation (2.6) is

the convex minorant sequence of {𝑎𝛼}𝛼∈ℕ𝑑
0
, we shall now prove that 𝐹 is the biggest convex function whose epigraph

contains 𝑆.
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464 BOITI et al.

Theorem 4.1. The function 𝐹 defined in Equation (2.1) coincides with the biggest convex function 𝑔 ∶ [0, +∞)𝑑 → ℝ such
that

𝑔(𝛼) ≤ 𝑎𝛼, ∀𝛼 ∈ ℕ𝑑
0 . (4.1)

Proof. Let us first remark that, since 𝐹 is a convex function such that

𝐹(𝛼) ≤ 𝑎𝛼, ∀𝛼 ∈ ℕ𝑑
0 ,

the largest convex function 𝑔 which satisfies Equation (4.1) must be larger than 𝐹:

𝑔(𝑥) ≥ 𝐹(𝑥), ∀𝑥 ∈ [0, +∞)𝑑. (4.2)

In order to prove the opposite inequality, let us first work in the interior of [0, +∞)𝑑. Fix 𝑥0 ∈ (0, +∞)𝑑 and consider
(𝑥0, 𝑦0) = (𝑥0, 𝑔(𝑥0)) on the graph of 𝑔.
Since 𝑔 is convex, its epigraph𝐺+

𝑔 is a convex subset ofℝ𝑑+1. It follows, as a consequence of the Hahn–Banach theorem,
that there is a hyperplane of the form

𝑦 = ⟨𝑘∗, 𝑥 − 𝑥0⟩ + 𝑦0 = ⟨𝑘∗, 𝑥⟩ + 𝑐∗,

for some 𝑘∗ ∈ ℝ𝑑 and 𝑐∗ = 𝑦0 − ⟨𝑘∗, 𝑥0⟩, that leaves the whole set 𝐺+
𝑔 on the same side of the hyperplane. Note that

𝑥0 ∈ (0, +∞)𝑑 avoids “vertical” hyperplanes.
Then,

𝑓∗(𝑥) ∶= ⟨𝑘∗, 𝑥⟩ + 𝑐∗ ∈ 𝑆,

since 𝑔(𝛼) ≤ 𝑎𝛼 for all 𝛼 ∈ ℕ𝑑
0 by assumption. It follows that

𝐹(𝑥0) = sup
𝑓∈𝑆

𝑓(𝑥0) ≥ 𝑓∗(𝑥0) = 𝑦0 = 𝑔(𝑥0),

and hence, by the arbitrariness of 𝑥0 ∈ (0, +∞)𝑑 and by Equation (4.2), we have that

𝐹(𝑥0) = 𝑔(𝑥0), ∀𝑥0 ∈ (0, +∞)𝑑. (4.3)

Let us now consider the case 𝑥0 ∈ 𝜕[0, +∞)𝑑, that is, 𝑥0
𝑗
= 0 for at least one 1 ≤ 𝑗 ≤ 𝑑. Assume for simplicity 𝑗 = 𝑑 and

set 𝑥 = (𝑥′, 0) = (𝑥1, … , 𝑥𝑑−1, 0) for 𝑥 ∈ [0, +∞)𝑑−1 × {0}.
The problem in this case is that the graph of 𝑔 could have in (𝑥0, 𝑔(𝑥0)) a tangent “vertical” hyperplane of the form

{𝑥𝑑 = 0} and hence not defined by a function of 𝑆 . The idea is to prove that the trace of 𝐹 on {𝑥𝑑 = 0} is a supremum of
affine functions on ℝ𝑑−1 whose graph is below 𝑆 ∩ {𝑥𝑑 = 0} reducing to the case of dimension 𝑑 − 1, and then proceed
recursively up to dimension 1, where the assumption that 𝑎0 ∈ ℝ guarantees the conclusion.
So, let us define

0
𝑆
∶= {𝑓(𝑥′) = ⟨𝑘′, 𝑥′⟩ + 𝑐 ∶ 𝑘′ ∈ ℝ𝑑−1, 𝑐 ∈ ℝ, ⟨𝑘′, 𝛼′⟩ + 𝑐 ≤ 𝑎(𝛼′,0) ∀𝛼

′ ∈ ℕ𝑑−1
0 }.

We claim that

𝐹(𝑥′, 0) = sup
𝑓∈0

𝑆

𝑓(𝑥′) =∶ 𝐹0(𝑥′). (4.4)

In the following, we use the convention that when 𝑘 ∈ ℝ𝑑 we put 𝑘′ ∈ ℝ𝑑−1 with 𝑘 = (𝑘′, 𝑘𝑑). Note first that
Proposition 2.5 for the sequence {𝑎(𝛼′,0)}𝛼′∈ℕ𝑑−1

0
implies that

sup
𝑓∈0

𝑆

𝑓(𝑥′) = sup
𝑘′∈ℝ𝑑−1

(⟨𝑘′, 𝑥′⟩ + ℎ0
𝑘′
)
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BOITI et al. 465

with

ℎ0
𝑘′
= min

𝛼′∈ℕ𝑑−1
0

(𝑎(𝛼′,0) − ⟨𝑘′, 𝛼′⟩).
Moreover, by Proposition 2.5 once more,

𝐹(𝑥′, 0) = sup
𝑓∈𝑆

𝑓(𝑥′, 0) = sup
𝑘∈ℝ𝑑

(⟨𝑘, (𝑥′, 0)⟩ + ℎ𝑘)

with

ℎ𝑘 = min
𝛼∈ℕ𝑑

0

(𝑎𝛼 − ⟨𝑘, 𝛼⟩) ≤ min
(𝛼′,0)∈ℕ𝑑−1

0
×{0}

(𝑎(𝛼′,0) − ⟨𝑘, (𝛼′, 0)⟩) = ℎ0
𝑘′

and hence

𝐹(𝑥′, 0) ≤ sup
𝑘∈ℝ𝑑

(⟨𝑘, (𝑥′, 0)⟩ + ℎ0
𝑘′
) = sup

𝑘′∈ℝ𝑑−1

(⟨𝑘′, 𝑥′⟩ + ℎ0
𝑘′
)

= sup
𝑓∈0

𝑆

𝑓(𝑥′) = 𝐹0(𝑥′).

In order to prove the opposite inequality, let us now fix 𝑓 ∈ 0
𝑆
. Then,

𝑓(𝑥′) = ⟨𝑘′, 𝑥′⟩ + 𝑐, 𝑘′ ∈ ℝ𝑑−1, 𝑐 ∈ ℝ,

and

𝑓(𝛼′) ≤ 𝑎(𝛼′,0) ∀𝛼′ ∈ ℕ𝑑−1
0 . (4.5)

We claim that there exists Λ ∈ ℝ such that

𝑓(𝑥) ∶= 𝑓(𝑥′) + Λ𝑥𝑑 ∈ 𝑠 (4.6)

for 𝑥 = (𝑥′, 𝑥𝑑) ∈ [0, +∞)𝑑.
Indeed, as in Lemma 2.3, from assumption (ii) and |⟨𝑘′, 𝛼′⟩ + 𝑐| ≤ ‖𝑘′‖ ⋅ |𝛼| + |𝑐| we get that

⟨𝑘′, 𝛼′⟩ + 𝑐 > 𝑎𝛼,

for at most a finite number of points 𝛼 = (𝛼′, 𝛼𝑑) ∈ ℕ𝑑
0 , with 𝛼𝑑 ≥ 1 (because of Equation (4.5) for 𝛼𝑑 = 0).

There exists then

𝐿 ∶= min
𝛼∈ℕ𝑑

0

[𝑎𝛼 − (⟨𝑘′, 𝛼′⟩ + 𝑐)].

Defining

Λ ∶= min(0, 𝐿),

we have that Λ ≤ 0 and hence for all 𝛼 = (𝛼′, 𝛼𝑑) ∈ ℕ𝑑
0 we have two cases:

if 𝛼𝑑 = 0, then by Equation (4.5)

⟨𝑘′, 𝛼′⟩ + 𝑐 + Λ𝛼𝑑 ≤ 𝑎(𝛼′,0);
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466 BOITI et al.

if 𝛼𝑑 ≥ 1, then by definition of 𝐿

⟨𝑘′, 𝛼′⟩ + 𝑐 + Λ𝛼𝑑 ≤ ⟨𝑘′, 𝛼′⟩ + 𝑐 + Λ ≤ ⟨𝑘′, 𝛼′⟩ + 𝑐 + 𝐿 ≤ 𝑎𝛼.

The two cases above prove Equation (4.6).
Setting now

�̃� ∶= (𝑘′, Λ) ∈ ℝ𝑑 and 𝑓(𝑥) ∶= ⟨�̃�, 𝑥⟩ + 𝑐,

we have that 𝑓 ∈ 𝑆 and 𝑓(𝑥′, 0) = 𝑓(𝑥′).
It follows that

𝐹0(𝑥′) = sup
𝑓∈0

𝑆

𝑓(𝑥′) = sup
𝑓∈0

𝑆

𝑓(𝑥′, 0)

≤ sup
𝑓∈𝑆

𝑓(𝑥′, 0) = 𝐹(𝑥′, 0),

and the equality (4.4) is therefore proved.
Thismeans thatwehave reduced the problem to prove that𝐹0(𝑥′) is themaximumconvex function 𝑔 ∶ [0, +∞)𝑑−1 → ℝ

such that

𝑔(𝛼′) ≤ 𝑎(𝛼′,0) ∀𝛼′ ∈ ℕ𝑑−1
0 .

If 𝑥0 = (𝑥01, … , 𝑥0
𝑑−1

) ∈ (0, +∞)𝑑−1 the thesis follows from Equation (4.3) (in the case of dimension 𝑑 − 1 instead of 𝑑). If
𝑥0 ∈ 𝜕[0, +∞)𝑑−1, for instance 𝑥0 = (𝑥01, … , 𝑥0

𝑑−2
, 0) we argue as before and thus reduce to determine the biggest convex

function 𝑔 ∶ [0, +∞)𝑑−2 → ℝ with

𝑔(𝛼1, … , 𝛼𝑑−2) ≤ 𝑎(𝛼1,…,𝛼𝑑−2,0,0), ∀(𝛼1, … , 𝛼𝑑−2) ∈ ℕ𝑑−2
0 .

Proceeding recursively we are finally led to the one-dimensional case for the sequence {𝑎(𝛼1,0,…,0)}𝛼1∈ℕ0
, where the con-

struction of Section 3 gives the desired maximum convex function whose graph is below 𝑆. Note that on [0, +∞) the
problem of the border does not appear since 𝑎0 ∈ ℝ by assumption (𝑖𝑣) and the first line through (0, 𝑎0) is not a vertical
line, but the graph of

𝑓𝑎0,𝑘0(𝑥) = 𝑎0 + 𝑘0𝑥

defined in Equation (3.1). In particular, 𝐹(0) = 𝑓𝑎0,𝑘0(0) = 𝑎0. □

Corollary 4.2. Given a sequence {𝑎𝛼}𝛼∈ℕ𝑑
0
satisfying (𝑖)−(𝑖𝑣), its convex minorant sequence {𝑎𝑐𝛼}𝛼∈ℕ𝑑

0
is defined by

𝑎𝑐𝛼 = 𝐹(𝛼),

for 𝐹 as in Equation (2.1), or equivalently by

𝑎𝑐𝛼 ∶= sup
𝑘∈ℝ𝑑

(⟨𝑘, 𝛼⟩ + ℎ𝑘), (4.7)

for

ℎ𝑘 = inf
𝛼∈ℕ𝑑

0

(𝑎𝛼 − ⟨𝑘, 𝛼⟩). (4.8)

In particular, 𝑎𝑐0 = 𝑎0.
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BOITI et al. 467

5 CONSTRUCTION OF THE LOG-CONVEXMINORANT

Let {𝑀𝛼}𝛼∈ℕ𝑑
0
be a sequence of positive real numbers such that

lim|𝛼|→+∞
𝑀

1∕|𝛼|
𝛼 = +∞ (5.1)

(we can also allow𝑀𝛼 = +∞ for finitelymanymulti-indices𝛼 ≠ 0).We say that the sequence𝐌 = {𝑀𝛼}𝛼∈ℕ𝑑
0
isnormalized

if𝑀0 = 1.
For a normalized sequence𝐌 = {𝑀𝛼}𝛼∈ℕ𝑑

0
, we define its associated function 𝜔𝐌 by

𝜔𝐌(𝑡) ∶= sup
𝛼∈ℕ𝑑

0,𝑡

log
|𝑡𝛼|
𝑀𝛼

, 𝑡 ∈ ℝ𝑑,

with

ℕ𝑑
0,𝑡 ∶= {𝛼 ∈ ℕ𝑑

0 ∶ 𝛼𝑗 = 0 if 𝑡𝑗 = 0, 𝑗 = 1,… , 𝑑},

and the convention that 00 = 1.We observe that here the supremum ismade onℕ𝑑
0,𝑡 in order to ensure that in the definition

of the associated function the argument of the logarithm is not 0; we can equivalently write

𝜔𝐌(𝑡) = sup
𝛼∈ℕ𝑑

0

log
|𝑡𝛼|
𝑀𝛼

, 𝑡 ∈ ℝ𝑑,

with the convention that log 0 = −∞. In what follows (in particular in Section 6), we use the latter expression
for convenience.
Condition (5.1) ensures that 𝜔𝐌(𝑡) < +∞ for all 𝑡 ∈ ℝ𝑑 (see [17, Chap. I] or [2, Rem. 1]).
The function 𝜔𝐌(𝑡) is increasing on (0, +∞)𝑑 in the following sense: 𝜔𝐌(𝑡) ≤ 𝜔𝐌(𝑠) if 𝑡 ≤ 𝑠 with the order relation

𝑡𝑗 ≤ 𝑠𝑗 for all 1 ≤ 𝑗 ≤ 𝑑.
Consider then

𝑎𝛼 = log𝑀𝛼, 𝛼 ∈ ℕ𝑑
0 . (5.2)

By Equation (5.1), the sequence {𝑎𝛼}𝛼∈ℕ𝑑
0
satisfies all assumptions (𝑖)−(𝑖𝑣) of Section 2.

We can thus consider the convex minorant sequence {𝑎𝑐𝛼}𝛼∈ℕ𝑑
0
as in Equations (4.7) and (4.8) and call

𝑀lc
𝛼 ∶= exp 𝑎𝑐𝛼, ∀𝛼 ∈ ℕ𝑑

0 ,

the log-convex minorant of {𝑀𝛼}𝛼∈ℕ𝑑
0
.

By the results of the previous section {log𝑀lc
𝛼 }𝛼∈ℕ𝑑

0
is the largest convex sequence less than or equal to {𝑎𝛼}𝛼∈ℕ𝑑

0
defined

in Equation (5.2) and they coincide if {𝑀𝛼}𝛼∈ℕ𝑑
0
is log-convex, according to the following Definition.

Definition 5.1. A sequence {𝑀𝛼}𝛼∈ℕ𝑑
0
is said to be log-convex if there exists a convex function 𝐹 ∶ [0, +∞)𝑑 → ℝ with

𝐹(𝛼) = log𝑀𝛼 for all 𝛼 ∈ ℕ𝑑
0 .

By construction

𝑎𝑐𝛼 = sup
𝑘∈ℝ𝑑

(⟨𝑘, 𝛼⟩ + ℎ𝑘) = sup
𝑘∈ℝ𝑑

(⟨𝑘, 𝛼⟩ − 𝐴(𝑘)), (5.3)
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468 BOITI et al.

where the so-called trace function 𝐴(𝑘) is given by

𝐴(𝑘) = −ℎ𝑘 = − inf
𝛼∈ℕ𝑑

0

(𝑎𝛼 − ⟨𝑘, 𝛼⟩)
= sup

𝛼∈ℕ𝑑
0

(⟨𝑘, 𝛼⟩ − 𝑎𝛼)

= sup
𝛼∈ℕ𝑑

0

(⟨𝑘, 𝛼⟩ − log𝑀𝛼)

= sup
𝛼∈ℕ𝑑

0

log
e⟨𝑘,𝛼⟩
𝑀𝛼

= sup
𝛼∈ℕ𝑑

0

log
|(e𝑘)𝛼|
𝑀𝛼

= 𝜔𝐌(e𝑘), (5.4)

since

|(e𝑘)𝛼| = |(e𝑘1 , … , e𝑘𝑑 )𝛼| = |e𝑘1𝛼1 ⋯ e𝑘𝑑𝛼𝑑 | = e⟨𝑘,𝛼⟩.
From Equations (5.3) and (5.4), we have that

𝑀lc
𝛼 = exp 𝑎𝑐𝛼 = exp{ sup

𝑘∈ℝ𝑑

(⟨𝑘, 𝛼⟩ − 𝜔𝐌(e𝑘))}

= sup
𝑘∈ℝ𝑑

|(e𝑘)𝛼|
exp𝜔𝐌(e𝑘)

= sup
𝑠∈(0,+∞)𝑑

|𝑠𝛼|
exp𝜔𝐌(𝑠)

= sup
𝑠∈(0,+∞)𝑑

𝑠𝛼

exp𝜔𝐌(𝑠)
. (5.5)

In particular, being𝑀lc
𝛼 ≤ 𝑀𝛼 for any normalized sequence of positive real numbers {𝑀𝛼}𝛼∈ℕ𝑑

0
, we have

sup
𝑠∈(0,+∞)𝑑

𝑠𝛼

exp𝜔𝐌(𝑠)
≤ 𝑀𝛼, ∀𝛼 ∈ ℕ𝑑

0 , (5.6)

and, moreover, {𝑀𝛼}𝛼∈ℕ𝑑
0
is log-convex if and only if the equality holds. Hence, we have proved:

Theorem 5.2. Let {𝑀𝛼}𝛼∈ℕ𝑑
0
be a normalized sequence of positive real numbers satisfying Equation (5.1). Then, the sequence

{𝑀𝛼}𝛼∈ℕ𝑑
0
is log-convex if and only if

𝑀𝛼 = sup
𝑠∈(0,+∞)𝑑

𝑠𝛼

exp𝜔𝐌(𝑠)
, ∀𝛼 ∈ ℕ𝑑

0 . (5.7)

Remark 5.3. Note that if {𝑀𝛼}𝛼∈ℕ𝑑
0
is a log-convex sequence, that is, log𝑀𝛼 = 𝐹(𝛼) for a convex function 𝐹 ∶ [0, +∞)𝑑 →

ℝ, and 𝑒𝑗 denotes the 𝑗-th element of the canonical basis of ℝ𝑑 with all entries equal to 0 except the 𝑗-th entry equal to 1,
then

𝐹(𝛼) = 𝐹

(
1

2
(𝛼 − 𝑒𝑗) +

1

2
(𝛼 + 𝑒𝑗)

)
≤ 1

2
𝐹(𝛼 − 𝑒𝑗) +

1

2
𝐹(𝛼 + 𝑒𝑗),
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BOITI et al. 469

that is,

2 log𝑀𝛼 ≤ log𝑀𝛼−𝑒𝑗 + log𝑀𝛼+𝑒𝑗 .

This yields the coordinate-wise log-convexity condition for a sequence {𝑀𝛼}𝛼∈ℕ𝑑
0
:

𝑀2
𝛼 ≤ 𝑀𝛼−𝑒𝑗𝑀𝛼+𝑒𝑗 , 𝛼 ∈ ℕ𝑑

0 , 1 ≤ 𝑗 ≤ 𝑑, 𝛼𝑗 ≥ 1. (5.8)

This condition is clearlyweaker than the condition of logarithmic convexity given inDefinition 5.1 since there are functions
which are coordinate-wise convex but not convex as functions of more variables. In particular, from Equation (5.5) we
have that Equation (5.8) is not sufficient to obtain Equation (5.7); for an explicit example, see Example 5.4. Clearly in the
one-dimensional case the two notions of log-convexity coincide, and Equation (5.7) was already known (see [15, Prop. 3.2]).

Example 5.4. The function of two variables 𝐹(𝑥, 𝑦) = (𝑥 + 1)2(𝑦 + 1)2 is coordinate-wise convex but not convex in
[0, +∞)2, and the sequence defined by 𝑀𝛼 ∶= 𝑒𝐹(𝛼)−1 is normalized and satisfies Equation (5.1), but does not satisfy
Equation (5.7).

Remark 5.5. We finally observe thatwe can easily rewrite the results of this section for a sequence𝐌 that is not normalized,
analogously to [22]. In this case, we can define the associated function 𝜔𝐌 as

𝜔𝐌(𝑡) = sup
𝛼∈ℕ𝑑

0,𝑡

log
𝑀0|𝑡𝛼|
𝑀𝛼

, 𝑡 ∈ ℝ𝑑,

and, by considering the (normalized) sequence𝐌 defined by �̃�𝛼 ∶= 𝑀𝛼∕𝑀0, formula (5.7) becomes

𝑀𝛼 = 𝑀0 sup
𝑠∈(0,+∞)𝑑

𝑠𝛼

exp𝜔𝐌(𝑠)
, ∀𝛼 ∈ ℕ𝑑

0 .

6 CHARACTERIZATION OF INCLUSION RELATIONS OF SPACES OF RAPIDLY
DECREASING ULTRADIFFERENTIABLE FUNCTIONS

In this section,we propose an application of the previous results to the characterization of inclusion relations of anisotropic
ultradifferentiable classes. Such an application is based on results from [2]. We observe in particular that in [2] some
conditions are imposed on the weights in order that the corresponding space contains Hermite functions. We do not
discuss here the question if these conditions are optimal or if some of themcould be relaxed still obtaining nontrivial spaces
satisfying the same inclusion relations; we observe however that the nontriviality of the spaces is a very delicate question,
and, by consideringweights that oscillate around the, say, ‘limit case’ for nontriviality, it happens that allHermite functions
disappear from the corresponding space (see [3, Sec. 3], where an explicit example is given). For other applications giving
inclusion results of anisotropic ultradifferentiable spaces we refer to the recent preprint [10].
Let us first recall the notion of weight matrices (anisotropic framework) as considered in [2, Sec. 3].
A weight matrix is the set

 ∶= {(𝐌(𝜆))𝜆>0 ∶ 𝐌
(𝜆) = (𝑀

(𝜆)
𝛼 )𝛼∈ℕ𝑑

0
,𝑀

(𝜆)
0 = 1,𝑀

(𝜆)
𝛼 ≤ 𝑀

(𝜅)
𝛼 ∀𝛼 ∈ ℕ𝑑

0 ∀0 < 𝜆 ≤ 𝜅}.

Denoting by ‖ ⋅ ‖∞ the supremum norm we consider the following spaces of matrix-weighted global ultradifferentiable
functions of Roumieu/Beurling type

{}(ℝ
𝑑) ∶= {𝑓 ∈ 𝐶∞(ℝ𝑑) ∶ ∃𝜆, ℎ, 𝐶 > 0 ∶ sup

𝛼,𝛽∈ℕ𝑑
0

‖𝑥𝛼𝜕𝛽𝑓‖∞
ℎ|𝛼+𝛽|𝑀(𝜆)

𝛼+𝛽

≤ 𝐶}

()(ℝ
𝑑) ∶= {𝑓 ∈ 𝐶∞(ℝ𝑑) ∶ ∀𝜆, ℎ > 0∃𝐶ℎ,𝜆 > 0 ∶ sup

𝛼,𝛽∈ℕ𝑑
0

‖𝑥𝛼𝜕𝛽𝑓‖∞
ℎ|𝛼+𝛽|𝑀(𝜆)

𝛼+𝛽

≤ 𝐶ℎ,𝜆}
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470 BOITI et al.

endowed with the inductive limit topology in the Roumieu case and the projective limit topology in the Beurling case (see
[2, Sec. 3]).
In order to characterize the inclusion of spaces of this type, given two weight matrices  = {(𝐌(𝜆))𝜆>0} and  =

{(𝐍(𝜆))𝜆>0} we introduce the following relations:

{⪯} if ∀𝜆 > 0∃𝜅 > 0∃𝐶 ≥ 1 s.t.𝑀(𝜆)
𝛼 ≤ 𝐶|𝛼|𝑁(𝜅)

𝛼 ∀𝛼 ∈ ℕ𝑑
0

(⪯) if ∀𝜆 > 0∃𝜅 > 0∃𝐶 ≥ 1 s.t.𝑀(𝜅)
𝛼 ≤ 𝐶|𝛼|𝑁(𝜆)

𝛼 ∀𝛼 ∈ ℕ𝑑
0

 ⊲  if ∀𝜆 > 0∀𝜅 > 0∀ℎ > 0∃𝐶 ≥ 1 s.t.𝑀(𝜆)
𝛼 ≤ 𝐶ℎ|𝛼|𝑁(𝜅)

𝛼 ∀𝛼 ∈ ℕ𝑑
0 .

We shall also need the following conditions for a weight matrix = {(𝐌(𝜆))𝜆>0} (see [2]; cf. also [16]), in the Roumieu
setting

∀𝜆 > 0∃𝜅 ≥ 𝜆, 𝐵, 𝐶,𝐻 > 0 ∶ 𝛼𝛼∕2𝑀
(𝜆)

𝛽
≤ 𝐵𝐶|𝛼|𝐻|𝛼+𝛽|𝑀(𝜅)

𝛼+𝛽
∀𝛼, 𝛽 ∈ ℕ𝑑

0 (6.1)

∀𝜆 > 0∃𝜅 ≥ 𝜆,𝐴 ≥ 1 ∶ 𝑀
(𝜆)
𝛼+𝑒𝑗

≤ 𝐴|𝛼|+1𝑀(𝜅)
𝛼 ∀𝛼 ∈ ℕ𝑑

0 , 1 ≤ 𝑗 ≤ 𝑑 (6.2)

∀𝜆 > 0∃𝜅 ≥ 𝜆,𝐴 ≥ 1 ∶ 𝑀
(𝜆)
𝛼 𝑀

(𝜆)

𝛽
≤ 𝐴|𝛼+𝛽|𝑀(𝜅)

𝛼+𝛽
∀𝛼, 𝛽 ∈ ℕ𝑑

0 (6.3)

and in the Beurling case

∀𝜆 > 0∃0 < 𝜅 ≤ 𝜆,𝐻 > 0 ∶ ∀𝐶 > 0∃𝐵 > 0 ∶

𝛼𝛼∕2𝑀
(𝜅)

𝛽
≤ 𝐵𝐶|𝛼|𝐻|𝛼+𝛽|𝑀(𝜆)

𝛼+𝛽
∀𝛼, 𝛽 ∈ ℕ𝑑

0 (6.4)

∀𝜆 > 0∃0 < 𝜅 ≤ 𝜆,𝐴 ≥ 1 ∶

𝑀
(𝜅)
𝛼+𝑒𝑗

≤ 𝐴|𝛼|+1𝑀(𝜆)
𝛼 ∀𝛼 ∈ ℕ𝑑

0 , 1 ≤ 𝑗 ≤ 𝑑 (6.5)

∀𝜆 > 0∃0 < 𝜅 ≤ 𝜆,𝐴 ≥ 1 ∶

𝑀
(𝜅)
𝛼 𝑀

(𝜅)

𝛽
≤ 𝐴|𝛼+𝛽|𝑀(𝜆)

𝛼+𝛽
∀𝛼, 𝛽 ∈ ℕ𝑑

0 . (6.6)

Note that Equation (6.1) for 𝛽 = 0 implies that 𝐌(𝜅) satisfies Equation (5.1) for some 𝜅 > 0, and hence for all 𝜅′ ≥ 𝜅.
Similarly, Equation (6.4) implies that 𝐌(𝜆) satisfies Equation (5.1) for all 𝜆 > 0 (see [2, Rem. 3]). Since condition (5.1)
ensures that the associate weight function 𝜔𝐌 is finite, the above remarks are essential to recall, from [2, Thm. 1], that if
the weight matrix = {(𝐌(𝜆))𝜆>0} satisfies Equations (6.1) and (6.2) then {} is isomorphic to the sequence space

Λ{} ∶= {𝐜 = (𝑐𝛼)𝛼∈ℕ𝑑
0
∈ ℂℕ𝑑

0 ∶ ∃𝜆, ℎ > 0 s.t. sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(𝜆) (𝛼
1∕2∕ℎ) < +∞}, (6.7)

and similarly in the Beurling case, for a weight matrix having Equations (6.4) and (6.5), the space () is isomorphic
to

Λ() ∶= {𝐜 = (𝑐𝛼)𝛼∈ℕ𝑑
0
∈ ℂℕ𝑑

0 ∶ ∀𝜆, ℎ > 0 sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(𝜆) (𝛼
1∕2∕ℎ) < +∞}, (6.8)

where 𝛼1∕2 ∶= (𝛼
1∕2
1 , … , 𝛼

1∕2

𝑑
). We recall from [2] that in both cases the Hermite functions (𝐻𝛼(𝑥))𝛼∈ℕ𝑑

0
are an absolute

Schauder basis in {} (resp., in ()), and the isomorphism 𝑇 ∶ {} → Λ{} (resp., 𝑇 ∶ () → Λ()) is given by

𝑇𝑓 = (𝜉𝛼(𝑓))𝛼∈ℕ𝑑
0
∶=

(
∫
ℝ𝑑

𝑓(𝑥)𝐻𝛼(𝑥) 𝑑𝑥

)
𝛼∈ℕ𝑑

0

(6.9)
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BOITI et al. 471

for 𝑓 ∈ {} (resp., 𝑓 ∈ ()). It will also be useful to write the sequence spaces (6.7) and (6.8) as follows (see [2]):

Λ{} = {𝐜 = (𝑐𝛼)𝛼∈ℕ𝑑
0
∈ ℂℕ𝑑

0 ∶ ∃𝑗 ∈ ℕ s.t. sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(𝑗) (𝛼
1∕2∕𝑗) < +∞} (6.10)

Λ() = {𝐜 = (𝑐𝛼)𝛼∈ℕ𝑑
0
∈ ℂℕ𝑑

0 ∶ ∀𝑗 ∈ ℕ sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(1∕𝑗) (𝑗𝛼
1∕2) < +∞}. (6.11)

We say that a weight matrix = {(𝐌(𝜆))𝜆>0} is log-convex if {𝑀
(𝜆)
𝛼 }𝛼∈ℕ𝑑

0
is log-convex (according to Definition 5.1) for all

𝜆 > 0.
Let us remark that in the one-dimensional case the assumption of log-convexity, together with 𝑀0 = 1, implies both

Equations (6.3) and (6.6) with 𝐴 = 1 (we are here considering the sequence case for simplicity, that is, the case when in
the weight matrix  all the 𝐌(𝜆), 𝜆 > 0, coincide) since the convex function 𝐹(𝑝) = log𝑀𝑝 has increasing difference
quotient and hence

log𝑀𝑝+𝑞 − log𝑀𝑝

𝑞
≥ log𝑀𝑞 − log𝑀0

𝑞
=
log𝑀𝑞

𝑞
.

On the contrary, in themore-dimensional case log-convexity and𝑀0 = 1 do not imply Equation (6.3)/(6.6), not even under
the additional conditions (6.1)/(6.4) and (6.2)/(6.5). Take, for instance, 𝑀𝛼 = 𝛼𝛼∕2emax{𝛼2

1
,𝛼2
2
} for 𝛼 = (𝛼1, 𝛼2) ∈ ℕ2

0 (with
the convention 00 ∶= 1). It is easy to check that it is log-convex (since log𝑀𝛼 is the sum of convex functions) and satisfies
Equations (6.1) and (6.2). However, taking 𝛼 = (𝑛, 0) and 𝛽 = (0, 𝑛) condition (6.3) is not valid for 𝑛 → +∞.
The above remarks explain why conditions (6.3) and (6.6), that we shall need in Theorem 6.1, are not required in the

one-dimensional/isotropic case (see [3]).

Theorem 6.1. Let = {(𝐌(𝜆))𝜆>0} and = {(𝐍(𝜆))𝜆>0} be two weight matrices and assume that is log-convex. Then,
the following characterizations hold:

(i) Let satisfy Equations (6.1)–(6.3) and satisfy Equations (6.1) and (6.2). Then, the following are equivalent:
(a) {}(ℝ

𝑑) ⊆ { }(ℝ
𝑑) holds with continuous inclusion;

(b) {}(ℝ
𝑑) ⊆ { }(ℝ

𝑑) holds as sets;
(c) {⪯} .

(ii) Let satisfy Equations (6.1)–(6.3) and satisfy Equations (6.4) and (6.5). Then, the following are equivalent:
(a) {}(ℝ

𝑑) ⊆ ( )(ℝ
𝑑) holds with continuous inclusion;

(b) {}(ℝ
𝑑) ⊆ ( )(ℝ

𝑑) holds as sets;
(c)  ⊲  .

(iii) Let satisfy Equations (6.4)–(6.6) and satisfy Equations (6.4) and (6.5). Then, the following are equivalent:
(a) ()(ℝ

𝑑) ⊆ ( )(ℝ
𝑑) holds with continuous inclusion;

(b) ()(ℝ
𝑑) ⊆ ( )(ℝ

𝑑) holds as sets;
(c) (⪯) .

Proof. The implications (c) ⇒ (a), in all the three cases, clearly follow from the definition of the spaces (hypotheses
(6.1)–(6.3)/(6.4)–(6.6) and log-convexity of are not needed at this step).
We now prove the other implications.

(i): It is enough to prove that (b) ⇒ (c) in order to have equivalence of the three conditions. Let us then assume that
{}(ℝ

𝑑) ⊆ { }(ℝ
𝑑) and prove that{⪯} .

By the already mentioned isomorphism (6.9) with the sequence space (6.10), we have that

Λ{} ≃ {}(ℝ
𝑑) ⊆ { }(ℝ

𝑑) ≃ Λ{ }. (6.12)
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472 BOITI et al.

Let us first choose ℎ̄ ∈ ℕ, ℎ̄ ≥ 2, such that𝐌(ℎ) satisfies Equation (5.1), and hence 𝜔𝐌(ℎ) (𝑡) < +∞ for all 𝑡 ∈ ℝ𝑑, for
all ℎ ≥ ℎ̄ (this is possible because of assumption (6.1)). For some fixed (but arbitrary) 𝑗 ∈ ℕ, 𝑗 ≥ ℎ̄, let us consider
the sequence 𝐜 ∶= (𝑐𝛼)𝛼∈ℕ𝑑

0
∈ ℂℕ𝑑

0 defined by

𝑐𝛼 ∶= e−𝜔𝐌(𝑗) (�̄�
1∕2∕𝑗) (6.13)

for �̄� = (�̄�1, … , �̄�𝑑) with

�̄�𝑘 =

{
𝛼𝑘 if 𝛼𝑘 ≠ 1

0 if 𝛼𝑘 = 1.
(6.14)

Let us prove that 𝐜 ∈ Λ{}; we must find ℎ ∈ ℕ and 𝐶 > 0 such that

|𝑐𝛼| = e−𝜔𝐌(𝑗) (�̄�
1∕2∕𝑗) ≤ 𝐶e−𝜔𝐌(ℎ) (𝛼

1∕2∕ℎ) ∀𝛼 ∈ ℕ𝑑
0 ,

that is,

𝜔𝐌(ℎ)

(√
𝛼1

ℎ
,… ,

√
𝛼𝑑

ℎ

)
≤ log 𝐶 + 𝜔𝐌(𝑗)

(√
�̄�1

𝑗
, … ,

√
�̄�𝑑

𝑗

)
. (6.15)

By assumption (6.3) we choose ℎ ∈ ℕ, ℎ ≥ 𝑗, and 𝐴 ≥ 1 such that

𝑀
(𝑗)
𝛼 𝑀

(𝑗)

𝛽
≤ 𝐴|𝛼+𝛽|𝑀(ℎ)

𝛼+𝛽
, ∀𝛼, 𝛽 ∈ ℕ𝑑

0 . (6.16)

For such a choice of ℎ and from the definition of the associated function

𝜔𝐌(ℎ)

(√
𝛼1

ℎ
,… ,

√
𝛼𝑑

ℎ

)
= sup

𝛽1,…,𝛽𝑑∈ℕ0

log
𝛼
𝛽1∕2
1 ⋯𝛼

𝛽𝑑∕2

𝑑

ℎ𝛽1+⋯+𝛽𝑑𝑀
(ℎ)

(𝛽1,…,𝛽𝑑)

. (6.17)

Let us now assume, without loss of generality, that the entries of 𝛼 equal to 1 (if there are some) are in the first
positions, that is, (𝛼1, … , 𝛼𝑑) = (1, … , 1, 𝛼𝑠+1, … , 𝛼𝑑), for some 𝑠 ≥ 0, with𝛼𝑘 ≠ 1 for 𝑠 + 1 ≤ 𝑘 ≤ 𝑑. By Equation (6.16)
we have that

𝑀
(ℎ)

(𝛽1,…,𝛽𝑑)
≥ 1

𝐴𝛽1+⋯+𝛽𝑑
𝑀

(𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)
𝑀

(𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

and hence from Equation (6.17)

𝜔𝐌(ℎ)

(
𝛼1∕2

ℎ

)
≤ sup

𝛽1,…,𝛽𝑑∈ℕ0

⎛⎜⎜⎜⎝log
𝛼
𝛽𝑠+1∕2

𝑠+1 ⋯𝛼
𝛽𝑑∕2

𝑑(
ℎ

𝐴

)𝛽𝑠+1+⋯+𝛽𝑑
𝑀

(𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

+ log
(𝐴∕ℎ)𝛽1+⋯+𝛽𝑠

𝑀
(𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)

⎞⎟⎟⎠
≤ sup

𝛽𝑠+1,…,𝛽𝑑∈ℕ0

log
𝛼
𝛽𝑠+1∕2
𝑠+1 ⋯𝛼

𝛽𝑑∕2

𝑑(
ℎ

𝐴

)𝛽𝑠+1+⋯+𝛽𝑑
𝑀

(𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

+ sup
𝛽1,…,𝛽𝑠∈ℕ0

log

(
𝐴

ℎ

)𝛽1+⋯+𝛽𝑠

𝑀
(𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)

.
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BOITI et al. 473

Eventually enlarging ℎ so that ℎ ≥ 𝐴𝑗 we thus have

𝜔𝐌(ℎ)

(
𝛼1∕2

ℎ

)
≤ sup

𝛽𝑠+1,…,𝛽𝑑∈ℕ0

log
𝛼
𝛽𝑠+1∕2

𝑠+1 ⋯𝛼
𝛽𝑑∕2

𝑑

𝑗𝛽𝑠+1+⋯+𝛽𝑑𝑀
(𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

+ 𝜔�̄�(𝑗)

(
𝐴

ℎ

)

≤ 𝜔𝐌(𝑗)

(
�̄�1∕2

𝑗

)
+ 𝐶𝑗,ℎ (6.18)

for {�̄�(𝑗)

𝛽
}𝛽∈ℕ𝑠

0
the sequence given by �̄�(𝑗)

𝛽
= 𝑀

(𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)
and 𝐶𝑗,ℎ = 𝜔�̄�(𝑗) (𝐴∕ℎ). Note that this constant is finite

because if |(𝛽1, … , 𝛽𝑠)| → +∞ then also |(𝛽1, … , 𝛽𝑠, 0, … , 0)| → +∞ and hence

(
�̄�

(𝑗)

𝛽

)1∕|𝛽|
=
(
𝑀

(𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)

)1∕(𝛽1+⋯+𝛽𝑠)

⟶ +∞

by Equation (5.1). Inequality (6.18) proves Equation (6.15) and hence 𝐜 ∈ Λ{}.
From Equation (6.12), we have that 𝐜 ∈ Λ{ }, and therefore there exist 𝓁 ∈ ℕ and 𝐶 ≥ 1 such that

e−𝜔𝐌(𝑗) (�̄�
1∕2∕𝑗) = |𝑐𝛼| ≤ 𝐶e−𝜔𝐍(𝓁) (𝛼

1∕2∕𝓁), ∀𝛼 ∈ ℕ𝑑
0 ,

that is,

𝜔𝐍(𝓁) (𝛼1∕2∕𝓁) ≤ log 𝐶 + 𝜔𝐌(𝑗) (�̄�1∕2∕𝑗), ∀𝛼 ∈ ℕ𝑑
0 . (6.19)

Fix now 𝑡 ∈ (0, +∞)𝑑 and set 𝟏 ∶= (1, … , 1) ∈ ℝ𝑑. There exists 𝛼 ∈ ℕ𝑑
0 with 𝛼

1∕2 < 𝑡 ≤ (𝛼 + 𝟏)1∕2, that is, 𝛼𝑘 < 𝑡2
𝑘
≤

𝛼𝑘 + 1 for all 1 ≤ 𝑘 ≤ 𝑑. From Equation (2), we have

𝜔𝐍(𝓁) (𝑡∕𝓁) ≤ 𝜔𝐍(𝓁) ((𝛼 + 𝟏)1∕2∕𝓁) ≤ log 𝐶 + 𝜔𝐌(𝑗) ((𝛼 + 𝟏)1∕2∕𝑗)

≤ log 𝐶 + 𝜔𝐌(𝑗) (𝛼1∕2) ≤ log 𝐶 + 𝜔𝐌(𝑗) (𝑡)

because 𝜔𝐌(𝑗) is increasing on (0, +∞)𝑑 and (𝛼 + 𝟏)1∕2∕𝑗 ≤ 𝛼1∕2 since 𝛼𝑘 + 1 = 0 if 𝛼𝑘 = 0 and (𝛼𝑘 + 1)1∕2∕𝑗 =√
𝛼𝑘 + 1∕𝑗 ≤ √

𝛼𝑘 if 𝛼𝑘 ≥ 1 and 𝑗 ≥ ℎ̄ ≥ 2. From Equations (5.6) and (5.7), we thus have that

𝑀
(𝑗)
𝛼 = sup

𝑡∈(0,+∞)𝑑

𝑡𝛼

exp𝜔𝐌(𝑗) (𝑡)
≤ 𝐶 sup

𝑡∈(0,+∞)𝑑

𝑡𝛼

exp𝜔𝐍(𝓁) (𝑡∕𝓁)

= 𝐶 sup
𝑠∈(0,+∞)𝑑

(𝑠𝓁)𝛼

exp𝜔𝐍(𝓁) (𝑠)
≤ 𝐶𝓁|𝛼|𝑁(𝓁)

𝛼 .

We have thus proved that

∀𝑗 ∈ ℕ, 𝑗 ≥ ℎ̄, ∃𝓁 ∈ ℕ, 𝐶 ≥ 1 ∶ 𝑀
(𝑗)
𝛼 ≤ 𝐶𝓁|𝛼|𝑁(𝓁)

𝛼 ∀𝛼 ∈ ℕ𝑑
0 .

Since𝑀(𝑗)
𝛼 ≤ 𝑀

(ℎ̄)
𝛼 for 𝑗 < ℎ̄ and the sequences in the weight matrices are normalized, we have proved that{⪯} .

(ii): As in the previous point, it is enough to prove (b)⇒ (c). Assuming

Λ{} ≃ {}(ℝ
𝑑) ⊆ ( )(ℝ

𝑑) ≃ Λ( )

we have to prove that ⊲  .
We choose 𝐜 = (𝑐𝛼)𝛼∈ℕ𝑑

0
∈ ℂℕ𝑑 as in Equation (6.13) so that 𝐜 ∈ Λ{} ⊆ Λ( )(ℝ

𝑑), that is,

∀𝑗 ∈ ℕ, 𝑗 ≥ ℎ̄, ∀𝓁 ∈ ℕ∃𝐶 ≥ 1 ∶ e−𝜔𝐌(𝑗) (�̄�
1∕2∕𝑗) = |𝑐𝛼| ≤ 𝐶e−𝜔𝐍(1∕𝓁) (𝛼

1∕2𝓁) ∀𝛼 ∈ ℕ𝑑
0 . (6.20)
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474 BOITI et al.

As in the case (𝑖), for any 𝑡 ∈ (0, +∞)𝑑 we can choose𝛼 ∈ ℕ𝑑
0 with𝛼

1∕2 < 𝑡 ≤ (𝛼 + 𝟏)1∕2 so that fromEquation (6.20):

𝜔𝐍(1∕𝓁) (𝑡𝓁) ≤ 𝜔𝐍(1∕𝓁) ((𝛼 + 𝟏)1∕2𝓁) ≤ log 𝐶 + 𝜔𝐌(𝑗) ((𝛼 + 𝟏)1∕2∕𝑗)

≤ log 𝐶 + 𝜔𝐌(𝑗) (𝛼1∕2) ≤ log 𝐶 + 𝜔𝐌(𝑗) (𝑡).

It follows that for all 𝑗 ∈ ℕ, 𝑗 ≥ ℎ̄, and for all 𝓁 ∈ ℕ there exists 𝐶 ≥ 1 such that

𝑀
(𝑗)
𝛼 = sup

𝑡∈(0,+∞)𝑑

𝑡𝛼

exp𝜔𝐌(𝑗) (𝑡)
≤ 𝐶 sup

𝑡∈(0,+∞)𝑑

𝑡𝛼

exp𝜔𝐍(1∕𝓁) (𝑡𝓁)

= 𝐶 sup
𝑠∈(0,+∞)𝑑

(𝑠∕𝓁)𝛼

exp𝜔𝐍(1∕𝓁) (𝑠)
≤ 𝐶

1

𝓁|𝛼|𝑁(1∕𝓁)
𝛼 ,

because of Equations (5.6) and (5.7). Since𝑀(𝑗)
𝛼 ≤ 𝑀

(ℎ̄)
𝛼 for 𝑗 < ℎ̄ we finally obtain

∀𝑗 ∈ ℕ∀𝓁 ∈ ℕ∃𝐶 ≥ 1 ∶ 𝑀
(𝑗)
𝛼 ≤ 𝐶

1

𝓁|𝛼|𝑁(1∕𝓁)
𝛼 ∀𝛼 ∈ ℕ𝑑

0 . (6.21)

Now, it is obvious that Equation (6.21) implies condition ⊲  . In fact, it is enough to take 𝓁 ≥ max{1∕𝜅, 1∕ℎ} for
any given 𝜅, ℎ > 0 in the definition of ⊲  .

(iii): We start by proving that (a)⇒ (c). Assuming

Λ() ≃ ()(ℝ
𝑑) ⊆ ( )(ℝ

𝑑) ≃ Λ( )

we have to prove that(⪯) . By the continuity of the inclusion and Equation (6.11) we have

∀𝓁 ∈ ℕ∃ℎ ∈ ℕ,𝐶 ≥ 1 s.t.∀𝐜 ∈ Λ()

sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐍(1∕𝓁) (𝓁𝛼1∕2) ≤ 𝐶 sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(1∕ℎ) (ℎ𝛼
1∕2).

(6.22)

Let us now fix 𝛼 ∈ ℕ𝑑
0 and assume as before, without loss of generality, that (𝛼1, … , 𝛼𝑑) = (1, … , 1, 𝛼𝑠+1, … , 𝛼𝑑), for some

𝑠 ≥ 0, with 𝛼𝑘 ≠ 1 for 𝑠 + 1 ≤ 𝑘 ≤ 𝑑. Setting �̄� as in Equation (6.14), by Equation (6.6) there exist 𝑗 ∈ ℕ, 𝑗 ≥ ℎ, and 𝐴 ≥ 1

such that

𝜔𝐌(1∕ℎ) (ℎ𝛼1∕2) = sup
𝛽∈ℕ𝑑

0

log
ℎ𝛽1+⋯+𝛽𝑑𝛼

𝛽1∕2
1 ⋯𝛼

𝛽𝑑∕2

𝑑

𝑀
(1∕ℎ)

𝛽

≤ sup
𝛽∈ℕ𝑑

0

log
ℎ𝛽1+⋯+𝛽𝑑 ⋅ 1 ⋅ 𝛼

𝛽𝑠+1∕2

𝑠+1 ⋯𝛼
𝛽𝑑∕2

𝑑

(1∕𝐴)𝛽1+⋯+𝛽𝑑𝑀
(1∕𝑗)

(𝛽1,…,𝛽𝑠,0,…0)
𝑀

(1∕𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

≤ sup
𝛽∈ℕ𝑑

0

log
(𝐴ℎ)𝛽1+⋯+𝛽𝑠

𝑀
(1∕𝑗)

(𝛽1,…,𝛽𝑠,0,…0)

+ sup
𝛽∈ℕ𝑑

0

log
(𝐴ℎ)𝛽𝑠+1+⋯+𝛽𝑑𝛼

𝛽𝑠+1∕2

𝑠+1 ⋯𝛼
𝛽𝑑∕2

𝑑

𝑀
(1∕𝑗)

(0,…,0,𝛽𝑠+1,…,𝛽𝑑)

≤ 𝜔�̄�(1∕𝑗) (𝐴ℎ) + 𝜔𝐌(1∕𝑗) (𝑗�̄�1∕2) (6.23)
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BOITI et al. 475

for {�̄�(1∕𝑗)

𝛽
}𝛽∈ℕ𝑠

0
defined by �̄�(1∕𝑗)

𝛽
∶= 𝑀

(1∕𝑗)

(𝛽1,…,𝛽𝑠,0,…,0)
, where we have chosen 𝑗 ≥ 𝐴ℎ, taking into account that the asso-

ciate function is increasing on (0, +∞)𝑑. Note also that if 𝑗 ≥ 𝑗0 then𝐌(1∕𝑗) ≤ 𝐌(1∕𝑗0) and hence 𝜔𝐌(1∕𝑗) ≥ 𝜔𝐌(1∕𝑗0) . Since
𝜔�̄�(1∕𝑗) (𝐴ℎ) is a new constant depending on 𝓁 (𝐴 and 𝑗 depend on ℎ that depends on 𝓁), substituting Equation (6.23) into
Equation (6.22) we have that

∀𝓁 ∈ ℕ∃𝑗 ∈ ℕ, 𝐶 ≥ 1 s.t.∀𝐜 ∈ Λ()

sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐍(1∕𝓁) (𝓁𝛼1∕2) ≤ 𝐶 sup
𝛼∈ℕ𝑑

0

|𝑐𝛼|e𝜔𝐌(1∕𝑗) (𝑗�̄�
1∕2).

(6.24)

For 𝛽 ∈ ℕ𝑑
0 we now consider 𝐜𝛽 = (𝑐

𝛽
𝛼)𝛼∈ℕ𝑑

0
defined by

𝑐
𝛽
𝛼 ∶= 𝛿𝛼𝛽 =

{
1 if 𝛼 = 𝛽

0 if 𝛼 ≠ 𝛽.

Clearly, 𝐜𝛽 ∈ Λ() since

sup
𝛼∈ℕ𝑑

0

|𝑐𝛽𝛼|e𝜔𝐌(1∕ℎ) (ℎ𝛼
1∕2) = e𝜔𝐌(1∕ℎ) (ℎ𝛽

1∕2) < +∞

for every 𝛽 ∈ ℕ𝑑
0 and ℎ ∈ ℕ, by assumption (6.4) which implies that𝐌(1∕ℎ) satisfies Equation (5.1) and hence 𝜔𝐌(1∕ℎ) (𝑡) <

+∞ for all 𝑡 ∈ ℝ𝑑.
We apply Equation (6.24) to the sequences 𝐜𝛽 and get that for all 𝓁 ∈ ℕ there exist 𝑗 ∈ ℕ and 𝐶 ≥ 1 such that for all

𝛽 ∈ ℕ𝑑
0 we have

e𝜔𝐍(1∕𝓁) (𝓁𝛽
1∕2) ≤ 𝐶e𝜔𝐌(1∕𝑗) (𝑗𝛽

1∕2)

or equivalently

𝜔𝐍(1∕𝓁) (𝓁𝛽1∕2) ≤ log 𝐶 + 𝜔𝐌(1∕𝑗) (𝑗𝛽1∕2). (6.25)

If 𝑡 ∈ (0, +∞)𝑑 then there exist 𝛽 ∈ ℕ𝑑
0 with 𝛽

1∕2 < 𝑡 ≤ (𝛽 + 𝟏)1∕2 so that, from Equation (6.25):

𝜔𝐍(1∕𝓁) (𝓁𝑡) ≤ 𝜔𝐍(1∕𝓁) (𝓁(𝛽 + 𝟏)1∕2) ≤ log 𝐶 + 𝜔𝐌(1∕𝑗) (𝑗(𝛽 + 𝟏)1∕2)

≤ log 𝐶 + 𝜔𝐌(1∕𝑗) (2𝑗𝛽1∕2) ≤ log 𝐶 + 𝜔𝐌(1∕𝑗) (2𝑗𝑡)

since the associate function is increasing on (0, +∞)𝑑 and (𝛽 + 𝟏)1∕2 ≤ 2𝛽1∕2.
It finally follows from Equations (5.6) and (5.7) that for all 𝓁 ∈ ℕ there exist 𝑗 ∈ ℕ and 𝐶 ≥ 1 such that

𝑁
(1∕𝓁)
𝛼 ≥ sup

𝑡∈(0,+∞)𝑑

𝑡𝛼

exp𝜔𝐍(1∕𝓁) (𝑡)
= sup

𝑠∈(0,+∞)𝑑

(𝑠𝓁)𝛼

exp𝜔𝐍(1∕𝓁) (𝑠𝓁)

≥ 𝓁|𝛼|
𝐶

sup
𝑠∈(0,+∞)𝑑

𝑠𝛼

exp𝜔𝐌(1∕𝑗) (2𝑗𝑠)
=
𝓁|𝛼|
𝐶

sup
𝑡∈(0,+∞)𝑑

(
𝑡

2𝑗

)𝛼
exp𝜔𝐌(1∕𝑗) (𝑡)

=
1

𝐶

(
𝓁

2𝑗

)|𝛼|
𝑀

(1∕𝑗)
𝛼

and we have thus proved that(⪯) , since the sequences𝐌(1∕𝑗) and𝐍(1∕𝓁) are normalized.
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Finally, the implication (𝑏) ⇒ (𝑎) in (𝑖𝑖𝑖) follows from the closed graph theorem by De Wilde [9]; we also refer to [13,
Prop. 4.5/Rem. 4.6]. □

Remark 6.2. In Theorem 6.1, we used Theorem 5.2 to characterize the inclusion relations of the spaces for any dimension
𝑑, which was not possible in the analogous results [3, Theorems 4.4–4.6], where we needed 𝑑 = 1 in one implication since
formula (5.7) was not available for the general anisotropic case.
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