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Using data samples collected with the BESIII detector at the BEPCII collider at center-of-mass energies
ranging from 3.80 to 4.95 GeV, corresponding to an integrated luminosity of 20 fb−1, a measurement of
Born cross sections for the eþe− → D0D̄0 andDþD− processes is presented with unprecedented precision.
Many clear peaks in the line shape of eþe− → D0D̄0 and DþD− around the mass range of Gð3900Þ,
ψð4040Þ, ψð4160Þ, Yð4260Þ, and ψð4415Þ, etc., are foreseen. These results offer crucial experimental
insights into the nature of hadron production in the open-charm region.
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The production of hadrons in eþe− annihilation above
the open-charm threshold is a topic of ongoing theoretical
and experimental research. In 1980, a theoretical calcu-
lation for the charm cross section in eþe− annihilation was
first attempted based on a coupled-channel potential
model [1]. This calculation presented a prediction of the
ΔR value (ΔR ¼ P

i Ri, where Ri stands for the ratio of
individual hadron cross section to muon cross section in
electron-positron collisions and i runs over the two-body
channels) with the DD̄ final states. According to this
prediction, there are five vector charmonium states between
3.773 [ψð3773Þ, 1D state] and 4.95 GeV, namely, the 3S,
2D, 4S, 3D, and 5S states, dominated by the DD̄ final
states. In experimental studies, besides the three well-
established structures observed in the inclusive hadronic
cross sections [2], i.e., ψð4040Þ, ψð4160Þ, and ψð4415Þ,
many new states, such as Yð4230Þ, Yð4260Þ, Yð4360Þ, and
Yð4660Þ, have been reported in the initial state radia-
tion (ISR) processes at the B factories [3–11] or in the
direct eþe− production at the CLEO [12] and BESIII
experiments [13–20]. Among them, the BESIII experiment
found that the mass of Yð4360Þ is around 4.3 GeV=c2 [14],
which is different from the value given by the Particle Data
Group (PDG) [2]. The overpopulation of structures in this
region and the mismatch of the properties between the
potential model predictions and experimental measure-
ments have led to various interpretations, such as hybrid
states, tetraquark states, or molecular states [21,22].
Although this information enriches our understanding of

these exotic structures, the nature of these states is still not
understood.
The studies of charmed meson pairs in eþe− annihilation

above the open-charm threshold are expected to clarify the
current understanding of these states. At present, the
available observed cross sections of the eþe− → DD̄
process with limited energy points have been reported
by B factories [23,24] using the ISR process and through
direct eþe− production at the CLEO experiment [25].
Although the interpretations for the possible structure
featured in the DD̄ final states are performed [26,27],
the understanding for the properties of vector charmonium
(like) states is still limited except for the ψð3770Þ state. A
precise measurement, particularly of the exclusive Born
cross sections for eþe− → DD̄, is highly desirable to
validate the interpretations of the established states and
provide insight into the energy region above the open-
charm threshold.
In this Letter, we report a precise measurement of Born

cross sections for the eþe− → D0D̄0 and eþe− → DþD−

processes, specifically, at 150 center-of-mass (c.m.) energy
points. Many clear structures in the line shape of eþe− →
D0D̄0 and eþe− → DþD− in the c.m. energy at 3.90, 4.05,
4.20, 4.42 GeV, etc., can be seen. The datasets used in this
Letter correspond to a total luminosity of approximately
20 fb−1 of eþe− collisions, which includes the so-called
XYZ data sample [28,29] and the R-scan data sample [30],
collected at c.m. energies from 3.80 to 4.95 GeV with the
BESIII detector [31] at the BEPCII collider [32].
The BESIII detector’s cylindrical core, encapsulating

93% of the 4π solid angle, integrates a helium-based
multilayer drift chamber (MDC), a plastic scintillator
time-of-flight (TOF) system, and a CsI (Tl) electromagnetic
calorimeter. These components are all nestled within a
superconducting solenoidal magnet that generates a 1.0 T
magnetic field. An octagonal flux-return yoke, fortified with
steel-interleaved resistive plate chamber muon identifier
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modules, supports the solenoid. This sophisticated setup
achieves a charged-particlemomentum resolution of 0.5%at
1 GeV=c and a dE=dx resolution of 6% for electrons
emanating fromBhabha scattering. TheTOF system’s barrel
section boasts a time resolution of 68 ps, in contrast to the
end cap section’s 110 ps. Notably, the end cap TOF system
underwent an enhancement in 2015, adopting multigap
resistive plate chamber technology to furnish a time reso-
lution of 60 ps.
In order to achieve a high efficiency for the selection of

eþe− → DD̄ events, we employ a single tag technique
instead of a full reconstruction. With this technique, we
reconstruct only oneD0 (Dþ)meson through theK−πþπþπ−

(K−πþπþ) mode, while the corresponding antiparticle D̄0

(D−) is extracted from the recoil side. Unless otherwise
noted, the charge-conjugate mode of theD0 (Dþ) process is
included by default. To determine the detection efficiency for
eþe− → DD̄, 50 000 simulated events are generated for each
energy point using the KKMC generator [33,34] according to
theVSSmodel [35,36], where the ISR effect is included. The
D0 (Dþ) meson decays to theK−πþπþπ− (K−πþπþ) modes
are simulated with the amplitude sampling [37] via
EVTGEN [35,36], and the antimesons are set to decay
inclusively according to the known branching fractions
provided by PDG [2]. The response of the BESIII detector
is modeled with Monte Carlo (MC) simulation using a
framework based on GEANT4 [38,39].
Charged tracks are reconstructed in the MDC with points

of closest approach to the eþe− interaction point that are
within 10 cm in the beam direction and 1 cm transverse to
the beam direction and within the angular coverage of the
MDC j cos θj < 0.93, where θ is the polar angle with
respect to the symmetry axis of the MDC. Information
from the specific ionization energy loss measured in the
MDC, combined with the time of flight, is used to
determine the particle identification (PID) confidence
levels for the pion and kaon hypotheses. Each track is
assigned to the particle type with the higher probability. For
the D0 mode, events with at least one negatively charged
kaon, one negatively charged pion, and two positively
charged pions are kept for further analysis; for the Dþ
mode, events with at least one negatively charged kaon and
two positively charged pions for the Dþ mode are kept for
further analysis. The D0 (Dþ) candidates are reconstructed
from the K−πþπþπ− (K−πþπþ) combination by requiring
its invariant mass to be within 14ð16Þ MeV=c2 around the
nominal D0 (Dþ) mass, which corresponds to 3 times the
mass resolution.
The antimeson candidates D̄0 (D−) are inferred by the

mass recoiling against the tagged meson (Mrecoil
D ) via the

K−πþπþπ− (K−πþπþ) system:

Mrecoil
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

s
p

− EDÞ2 − jpDj2
q

; ð1Þ

where ED and pD are the energy and momentum of the
selected K−πþπþπ− (K−πþπþ) candidate in the c.m.
system, respectively, and

ffiffiffi
s

p
is the c.m. energy [40]. To

improve the resolution, a correction is applied to Mrecoil
D

given by Mrecoil
D þMD −mD, where MD is the invariant

mass of the selected K−πþπþπ− (K−πþπþ) candidate and
mD is the nominal D mass [2]. Figure 1 shows the 2D
distributions of Mrecoil

D versus MD for the K−πþπþπ−

(K−πþπþ) final states at
ffiffiffi
s

p ¼ 4.1992 GeV. After apply-
ing all the aforementioned selection criteria, the remaining
background exhibits a smooth shape in the region of
interest based on the sideband study.
The signal yields for the eþe− → DD̄ process at each

energy point are extracted by performing an extended
maximum likelihood fit to the Mrecoil

D spectrum in the
range from 1.80 to 1.95 GeV=c2. In the fit, the signal shape
for the eþe− → DD̄ process is described by the convolu-
tion of the MC-simulated shape with a Gaussian function,
which accounts for the difference in mass resolution
between the data and the MC simulation. The parameters
of the Gaussian function are floating for XYZ data points

FIG. 1. The two-dimensional distributions ofMD versusMrecoil
D

at
ffiffiffi
s

p ¼ 4.1992 GeV. The dashed lines represent the signal
region for the D meson in the D0D̄0 mode (top) and the
DþD− mode (bottom).
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and some R-scan data points with higher statistics, while
they are fixed for the other R-scan data points with low
statistics. The fixed parameters are determined from the
fits to the neighbor XYZ data points. The background
contributions are modeled using a second-order polyno-
mial function. Figure 2 illustrates the results of the fits to
the Mrecoil

D distributions at
ffiffiffi
s

p ¼ 4.1992 GeV. The signal
yields obtained from the fits are summarized in
Supplemental Material [41].
The Born cross section for eþe− → DD̄ is calculated by

σBðsÞ ¼ Nobs

2Lð1þ δÞ 1

j1−
Q

j2 ϵB
; ð2Þ

where Nobs represents the number of observed signal
events, the factor of 2 accounts for the charge-conjugate
mode,L corresponds to the integrated luminosity, (1þ δ) is
the ISR correction factor, ð1=j1 −Q j2Þ is the vacuum
polarization correction factor [45], ϵ denotes the detection
efficiency, and B stands for the branching fractions of
D0 → K−πþπþπ− mode and Dþ → K−πþπþ mode, taken

from the Particle Data Group [2]. The ISR correction factor
is obtained through QED calculations [46], where the cross
sections measured in this analysis are used as inputs and
iterated until convergence. The measured Born cross
sections, along with the results from the CLEO-c [25],
BABAR [23], and Belle [24] experiments, are shown in
Fig. 3 and summarized in Ref. [41], which also includes all
the numbers used in the calculation. To evaluate the
resonance influence to the measurement of Born cross
section, a least-χ2 method combined with the simultaneous
fit of the dressed cross sections σdressed ¼ σB=j1 −Q j2 for
the eþe− → D0D̄0 and DþD− processes, parametrized as
the coherent sum of eight relativistic Breit-Wigner (BW)
functions:

σdressedð ffiffiffi
s

p Þ ¼
�����
X8
k¼1

eiϕkBWkð
ffiffiffi
s

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð ffiffiffi

s
p Þ

PðMÞ

s �����
2

; ð3Þ

has been attempted, where BWð ffiffiffi
s

p Þ is given by

BWð ffiffiffi
s

p Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12πΓeeBΓ

p
s −M2 þ iMΓ

: ð4Þ

Here, the massesM and total widths Γ for seven known res-
onances ψð3770Þ, ψð4040Þ, ψð4160Þ, Yð4230Þ, Yð4360Þ,
ψð4415Þ, and Yð4660Þ are fixed at individual PDG
values [2], while they are free for another structure regarded
as Gð3900Þ around 3.9 GeV [42–44]. For Γee, electronic
partial widths, and B, the branching fractions of the decay,
they are free for all resonances. The relative phase between
different BW functions is denoted by ϕ, which is set to be
different in the simultaneous fit for both modes. And
Pð ffiffiffi

s
p Þ represents the two-body phase space factor. To

account for the beam energy spread, σdressedð ffiffiffi
s

p Þ is con-
volved with a Gaussian function with the standard
deviation σ ¼ ð−2.147þ 0.9454

ffiffiffi
s

p Þ GeV. The influence
to the measurement of Born cross section has been
incorporated in the uncertainty of the line-shape model
below. Note that the parameters for all assumed resonances
strongly depend on the chosen fit model and indicating the
need for further in-depth research, such as a coupled-
channel K-matrix analysis [43]. The details for this fit are
listed in Supplemental Material [41].
Systematic uncertainties in the measurement of the cross

sections for the eþe− → D0D̄0 and DþD− processes
originate from the luminosity measurement, the efficiencies
of tracking and PID, the requirement of the D mass
window, the fit of the Mrecoil

D spectrum, the branching
fractions of D0 → K−πþπþπ− and Dþ → K−πþπþ, and
the line-shape structures. The uncertainty due to the
vacuum polarization is negligible. The integral luminosity
is measured to an uncertainty up to 1.0% [28]. The
uncertainties due to data-MC differences in BESIII tracking
and particle ID efficiencies are both 1% per track [47]. The

FIG. 2. Fits to the Mrecoil
D spectra at

ffiffiffi
s

p ¼ 4.1992 GeV for the
D0D̄0 mode (top) and the DþD− mode (bottom). The dots with
error bars represent the data, the blue solid lines indicate the fit
results, the red short-dashed lines represent the signal, and the
green long-dashed lines correspond to the background.
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requirement of the D mass window is studied by varying
the nominal requirements by�1σ, resulting in uncertainties
of 2.1% and 1.8% in the neutral and charged modes,
respectively. The systematic uncertainty arising from the
fit of the Mrecoil

D spectrum includes the fit range and the
background shape. Varying the mass range by�5 MeV=c2

results in an uncertainty of 1.5% for the neutral mode and
1.6% for the charged mode. The uncertainty due to the
background shape is estimated to be 1.0% for the neutral
mode and 0.9% for the charged mode using alternative fits
with a second- or third-order polynomial function. The
branching fractions of D0 → K−πþπþπ− and Dþ →
K−πþπþ are quoted with uncertainties of 2.4% for both
modes from the PDG [2]. The uncertainty arising from the
line-shape model, including the ISR correction factor, is
estimated by comparing the ð1þ δÞ · ϵ values with and
without the addition of one more resonance in the fit of the
cross sections as the input line shape, which introduces an
uncertainty of 1.5% for the neutral mode and 1.6% for the
charged mode between the nominal and alternative models.
Assuming all sources are independent, the total systematic
uncertainties on the cross section measurements are deter-
mined to be 7.0% for the eþe− → D0D̄0 mode and 6.5% for
the eþe− → DþD− mode by quadratic sum.
In summary, a measurement of exclusive Born cross

sections for the eþe− → D0D̄0 and DþD̄− processes is
presented at 150 c.m. energy points ranging from 3.80 to
4.95 GeV with unprecedented precision. The result is in
qualitative agreementwith previous experiments [23–25] and

the prediction of the coupled-channel model [1]. Many clear
peaks in the line shape of eþe− → DD̄ around themass range
ofGð3900Þ,ψð4040Þ,ψð4160Þ,ψð4260Þ, andψð4415Þ, etc.,
are identified. It implies that there may be some potential
contributions from charmonium(like) states. In particular, the
possible structure around 3.9 GeV, which was featured
and interpreted by Gð3900Þ at the B factories [23,24], has
been discussed recently by the theoretical models as the
first P-wave DD̄� molecular resonance [42], threshold
enhancement [43], or the final-state interaction [44]. Thus,
more detailed study related to a coupled-channel K-matrix
analysis is needed to validate this structure.
Our results for describing the cross section provided in

Supplemental Material [41] depend on the chosen model,
which simplifies the analysis by ignoring the interactions
between different decay channels. However, according to
the model calculation by the Cornell group [1], strong
coupled-channel effects need to be considered, which also
is proposed by the recent theoretical works [42–44]. It is
out of the scope of this Letter, but a more comprehensive
approach based on K-matrix formalism to fit the cross
section results of various exclusive channels is expected to
test the scenarios [26,27,48–52] of charmonium(like) states
above the open-charm threshold. This Letter provides
important experimental evidences with unprecedented pre-
cision and insights into the nature above the open-charm
region, especially for the understanding of the property of
charmoniumlike states.

FIG. 3. Cross sections with total uncertainties for the eþe− → DD̄ process as a function of c.m. energy from 3.80 to 4.95 GeV
compared between this Letter for Born cross section (σB) and the previous measurements for observed cross section (σobs). Clear peaks
around the mass range of Gð3900Þ, ψð4040Þ, ψð4160Þ, ψð4415Þ, etc. can be seen.
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