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Abstract We show how an inaccurate determination of
experimental uncertainty correlations in high-precision LHC
measurements may undermine the reliability of the associ-
ated χ2. We formulate the problem rigorously, and devise
a regularisation procedure that increases the stability of the
χ2 by altering the covariance matrix of the measurement as
little as possible. We apply the procedure to the NNPDF4.0
global analysis of parton distribution functions that utilises
a large amount of LHC measurements. We find that the reg-
ularised χ2 of the NNPDF4.0 determination is lowered by
about 3σ , without significantly altering the resulting PDFs
upon refitting.

1 Introduction

With the restart of the Large Hadron Collider (LHC),
particle physics is getting into the thick of a new era,
whereby measurements are anticipated to attain an unprece-
dented, percent-level, statistical precision [1]. These mea-
surements are utilised to improve the determination of Stan-
dard Model (SM) parameters [2], to constrain Parton Dis-
tribution Functions (PDFs) [3], to evaluate backgrounds for
missing energy searches [4], or more generally to constrain
higher-dimensional operators in the SM Lagrangian [5], and
eventually to stress-test the properties of the Higgs boson [6].

In all of these cases, measurements are contrasted with the-
oretical predictions by means of statistical inference: a model
is chosen and compared or optimised to the data through
maximum likelihood estimation. The goal is to reject a test
hypothesis or to obtain a confidence interval of model param-
eters. Because experimental uncertainties in LHC measure-
ments are commonly assumed to be Gaussian, the figure of
merit utilised for the statistical test or to optimise the model
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is the χ2 statistic, which is monotonic in the likelihood of
sampling the experimental data given the theory.

The robustness of the χ2 as a figure of merit relies on
the accuracy of theoretical expectations and of experimen-
tal uncertainties. In this paper we assume that the χ2 is not
spoiled by inaccuracies in theoretical expectations — a fact
that is possibly not true now, but that will become increas-
ingly realistic in the future [7] — and focus only on inaccu-
racies of experimental uncertainties.

A proper estimation of uncertainties in LHC measure-
ments is indeed becoming increasingly delicate. The large
event samples collected during Run I and II have been mak-
ing statistical uncertainties generally smaller than systematic
uncertainties; the upcoming Run III will make the former
even smaller. In contrast to statistical uncertainties, system-
atic uncertainties (which are not related to event counts but,
e.g., to limitations of the detector or to assumptions made
in their modelling) are more difficult to estimate. The rea-
son being that custom procedures and subjective choices
are involved in their quantification [8]. Furthermore, system-
atic uncertainties are usually correlated across different kine-
matic bins, both within the same measurement and across dif-
ferent measurements. Determining these correlations is even
more difficult, and often it is not even attempted. In this case,
simple assumptions, such as taking systematic uncertainties
to be fully correlated or fully uncorrelated, may misrepre-
sent the truth. More elaborated guesswork can be performed
in order to devise ad-hoc correlation models, which however
have no generality and can be time consuming.

Because the uncertainties on LHC measurements are
being increasingly dominated by systematic uncertainties,
any analysis that utilises them is implicitly dependent on
the choices made in their characterisation. While this depen-
dence is generally unavoidable, some care must be taken to
prevent it from hampering the use of the data in precision
physics analyses based on statistical inference.
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The aim of this paper is to formulate and address this
problem rigorously. We first demonstrate how inaccuracies
in the estimation of systematic uncertainty correlations, even
if small, can lead to instabilities in the experimental covari-
ance matrix and how these can ultimately undermine the reli-
ability of the χ2. We then devise a regularisation procedure
whereby these instabilities are removed with minimal infor-
mation on their source, and without loss of generality. The
idea is to define a bound on the singular values of the cor-
related part of the matrix of uncertainties, and to clip them
to a suitably chosen value that alters only the small subset
of directions associated to instability. We finally apply this
procedure to a particular problem relevant to LHC precision
physics that utilises statistical inference: PDF determination.
Although we orient our discussion towards this problem, our
regularisation procedure is completely general, and can be
applied to any statistical analysis that involves the evaluation
of the χ2.

The structure of the paper is as follows. In Sect. 2 we
introduce the matrix of uncertainties and formulate a sta-
bility criterion for it. In Sect. 3 we derive our regularisation
procedure and demonstrate how it works with a toy model. In
Sect. 4 we apply the procedure to PDF determination using
the recently released NNPDF4.0 parton sets [9]. We sum-
marise our results in Sect. 5. The paper is completed by two
appendices: Appendix A is a glossary of some useful defini-
tions used through the paper; Appendix B contains the proof
of Eq. (14). Our regularisation procedure is made publicly
available as part of the NNPDF software [10].

2 Matrix of uncertainties and its stability

In this section we formulate the problem of the reliability
of the χ2 if instabilities, even if small, appear in the covari-
ance matrix that enters its computation. We first introduce the
matrix of uncertainties and write the χ2 in terms of it. We
then derive an upper bound on the instability of the matrix of
uncertainties that ensures the stability of the χ2 with minimal
information.

2.1 Matrix of uncertainties and χ2

The format of LHC measurements, as often made public
through the HepData repository [11], consists of a central
value and of a set of uncertainties for each of the data points
that form the measurement itself. The set of uncertainties
usually encompass a total statistical uncertainty and a set
of independent systematic uncertainties. The latter are typ-
ically correlated across data points, by an amount that may
be specified or not.

Let us consider an experimental measurement made of
Ndat data points, each of which has Nerr independent uncer-

tainties. We call d the vector of experimental mean values,
d = {Di }, and A the Ndat × Nerr matrix of uncertainties,
A = {Ai j }, with i = 1, . . . , Ndat, and j = 1, . . . , Nerr.
Assuming that all uncertainties are Gaussian and that they are
combined additively, the experimental measurement defines
a multi-Gaussian distribution with mean d, given by the
experimental central values, and covariance matrix C , given
by the product of the matrix of uncertainties and its transpose,
C = AAt .

Depending on the information provided with a given
experimental measurement, each element of the matrix of
uncertainties can be obtained from knowledge of C , for
example by taking its Cholesky decomposition, or from direct
knowledge of experimental uncertainties. In this latter case,
should Oi be the physical observable corresponding to the
data points Di , and {u j } the set of independent variables
which contribute to the experimental uncertainty and on
which the observable depends (each described by a Gaus-
sian distribution with central value u0

j and uncertainty s j ),
any element of the matrix of uncertainties reads as

Ai j = ∂Oi

∂u j

∣
∣
∣
∣
u=u0

s j . (1)

If a given source of uncertainty ul affects a single data point
k, then ∂Oi/∂ul = 0 for i �= k, and it corresponds to a row
in A with a single non-zero entry Akl . For instance, this is
the case for statistical uncertainties that originate from bin-
by-bin event counts. These uncertainties, together with sim-
ilarly fully uncorrelated systematic uncertainties, can there-
fore be encoded in a Ndat × Ndat diagonal sub-matrix of
A. We assume that such uncertainties are always present in
a measurement, therefore we will henceforth consider that
Nerr ≥ Ndat, and that both A and C be full rank.

The inverse of the covariance matrix C is C−1 = A+t A+,
where A+ is the right inverse of A (see Appendix A). Denot-
ing with t = {Ti }, i = 1, . . . , Ndat, the vector of theoretical
predictions corresponding to the data mean values d, the χ2

can be written as

χ2 = (d − t)tC−1(d − t) = ∥
∥A+(d − t)

∥
∥

2
. (2)

In this equation we have explicitly factorised the two con-
tributions that determine the value of the χ2: the difference
between the mean experimental central values and the theo-
retical expectation values, encoded in d − t; and the experi-
mental uncertainties, encoded in the error matrix A.

Concerning the (d− t) term in Eq. (2), we assume perfect
knowledge of theoretical expectations. This means that the
vector of differencesd−t is a realisation of a random variable
which follows a multivariate Gaussian distribution with mean
zero and covariance matrixC . The corresponding probability
density can be given in terms of the matrix of uncertainties
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A and of a vector of Nerr independent standard Gaussian
random variables, n = {

n j
}

, j = 1, . . . , Nerr,

d − t = An, n ∼ N (0, I ). (3)

Concerning the matrix of uncertainties A in Eq. (2), we
consider two different cases. The first case corresponds to
assuming that A has been estimated accurately. Substituting
Eq. (3) in Eq. (2), we obtain that the expected value of the
χ2 over samples of d − t is

〈χ2〉 = 〈∥∥A+An
∥
∥

2〉. (4)

Using the fact that, for independent standard Gaussian vari-
ables, 〈n jnl〉 = δ jl , we find that 〈χ2〉 is given in terms of the
Frobenius norm (see Appendix A) of A+A:

〈χ2〉 =
Nerr∑

j,l

(A+A)2
j,l = ∥

∥A+A
∥
∥

2
F = Ndat, (5)

where the last equality follows from the singular value
decomposition of A+, see Appendix A.

The second case corresponds to assuming that there are
inaccuracies in the estimation of uncertainties, which do not
need to be large. We define as Ā the matrix of uncertainties
that contains such inaccuracies. This is different from A,
which is therefore unknown. The covariance matrix used to
compute the χ2 is now C̄ = Ā Āt . However, because we still
assume perfect knowledge of theoretical expectations, Eq. (3)
continues to hold. Therefore, in analogy with Eqs. (4)–(5),
the expectation value of the χ2 reads as

〈χ̄2〉 = ∥
∥ Ā+A

∥
∥

2
F . (6)

A comparison between Eqs. (6) and (5) allows one to for-
mulate a stability criterion for the expectation value of the
χ2 and for the matrix of uncertainties A upon substituting A
with Ā, as we explain next.

2.2 Stability criterion

We state that the matrix of uncertainties A is stable upon
the replacement A → Ā in the computation of the χ2 when
the difference in its expected value, �χ2, is smaller than
statistical fluctuations of theχ2 statistic itself, as measured by
the standard deviation of the corresponding χ2 distribution,
which is equal to

√
2Ndat. We can therefore write a stability

criterion for the expectation value of the χ2 as:

�χ2 =
∣
∣
∣〈χ̄2〉 − 〈χ2〉

∣
∣
∣ <

√

2Ndat. (7)

Substituting Eqs. (5) and (6) in Eq. (7), we can equivalently
write
∥
∥ Ā+A

∥
∥

2
F − Ndat <

√

2Ndat. (8)

We now seek to find an upper bound to the inaccuracies
of the matrix Ā that satisfies the stability criterion on the χ2,
Eq. (8), using minimal information. To this purpose, we write
the matrix of uncertainties A, which we do not know, as a
perturbation to the matrix Ā, which we are given,

A = Ā + δF, (9)

where F is a matrix of perturbations and δ is a scalar parame-
ter controlling the size of the fluctuation. We assume that δ is
sufficiently small that we can linearly expand around δ = 0.
Replacing Eq. (9) into Eq. (6), we find

〈χ̄2〉 = ∥
∥ Ā+( Ā + δF)

∥
∥

2
F . (10)

Using the triangle inequality, we can derive the upper bound

〈χ̄2〉 ≤ (∥
∥ Ā+ Ā

∥
∥
F + δ

∥
∥ Ā+F

∥
∥
F

)2
. (11)

Then expanding the square, and using the fact that Ā is full
rank since it corresponds to the covariance matrix obtained
in the experimental analysis, we obtain

〈χ̄2〉 ≤ Ndat + 2δ
√

Ndat
∥
∥ Ā+F

∥
∥
F + (δ2). (12)

Now, neglecting the quadratic terms in δ, we arrive at

�χ2 ≤ 2δ
√

Ndat
∥
∥ Ā+F

∥
∥
F . (13)

We apply the following inequality

‖XY‖F ≤ min (‖X‖F ‖Y‖2 , ‖X‖2 ‖Y‖F ) , (14)

which holds for arbitrary matrices X and Y of compatible
shape (see Appendix B for a proof), to Eq. (13) and find

�χ2 ≤ 2δ
√

Ndat
∥
∥ Ā+∥

∥
2 ‖F‖F , (15)

where
∥
∥ Ā+∥

∥
2 denotes the Euclidean (or L2) norm of

Ā (see Appendix A). Choosing
∥
∥ Ā+∥

∥
2 ‖F‖F instead of

∥
∥ Ā+∥

∥
F ‖F‖2 as bound in Eq. (15) results in tighter con-

straints. The reason being that, in practice, instabilities occur
when Ā+ has large singular values.

Finally, combining Eq. (15) with Eq. (7), we conclude that
the condition

∥
∥ Ā+∥

∥
2 ‖F‖F ≤ 1√

2δ
(16)

is sufficient to avoid that the expectation value of the χ2 over-
estimates its true value by an amount larger than its statistical
fluctuation. The advantage of Eq. (16) with respect to Eq. (8)
is to provide a stability criterion that does not depend on the
unknown matrix of uncertainties A, but only on the Frobe-
nius norm of the matrix of fluctuations F . This dependence
can be easily modelled as we explain in the next section.
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3 Regularising the matrix of uncertainties

In this section we devise a procedure to regularise the matrix
of uncertainties in such a way that the χ2 becomes insen-
sitive to inaccuracies in the estimation of the experimental
uncertainties. We then demonstrate the effectiveness of the
procedure in a toy model that is representative of realistic
LHC measurements.

3.1 Regularisation procedure

Our aim is to obtain a regularised matrix of uncertainties Areg

which, for a given model of instabilities, fulfills the following
criteria: i) Areg is more stable that Ā; ii) Areg is compatible
with Ā within the precision with which this is determined;
and iii) the uncertainty estimated by Areg never decreases
in comparison to that estimated by Ā. To this purpose, we
first need to characterise the inaccuracies in the matrix Ā,
by means of a simplified model that builds upon the stability
criterion, Eq. (16). We note that sometimes such a character-
isation comes as part of the measurement itself, generally as
the result of a dedicated analysis. In these cases, this charac-
terisation has to be preferred to the model discussed below.

The model of inaccuracies that we devise ought to be min-
imal, general, and realistic. Minimal, because it should alter
the matrix of uncertainties Ā as little as possible; general,
because it should be applied to any data set with no further
information; and realistic, because it should capture the most
likely sources of inaccuracy. These features lead us to making
two assumptions.

The first assumption is that the correlations of experimen-
tal uncertainties across data points are determined much less
precisely than the uncertainties for each data point, which
we presume to be exact. This assumption is known to hold
in practice, since the determination of certain correlations —
such as those for two-point uncertainties defined as the dif-
ference between estimates obtained with two different Monte
Carlo generators — require a certain amount of guesswork.
This fact is occasionally reflected in different correlation
models being presented with the measurement. Therefore
we write

A = DAcorr, (17)

where D is the Ndat × Ndat diagonal matrix of standard devi-
ations for each data point

Dii =

√
√
√
√
√

Nerr∑

j

A2
i j . (18)

We then assume that the covariance matrix provided by or
built from the experiment has the true standard deviations,
but correlations (encoded in Ācorr below) may be different

from the truth. Analogously to Eq. (9) we can therefore write

A = D( Ācorr + δFcorr). (19)

Note that AcorrAt
corr is the covariance matrix of the reduced

differences (di − ti )/Dii , hence the analysis carried out in
Sect. 2 can be repeated verbatim for these variables. Analo-
gously to Eq. (8), we can write

�χ2 = ∥
∥A+

corrAcorr
∥
∥ − Ndat, (20)

and finally arrive at a stability criterion, similar to Eq. (16),
under the assumption that D is well determined,

∥
∥ Ā+

corr

∥
∥

2 ‖Fcorr‖F ≤ 1√
2δ

. (21)

The second assumption is that ‖Fcorr‖F is independent of
the number of data points or correlated experimental uncer-
tainties in the measurement. The model then implies that the
prevalent source of inaccuracy in the correlation matrix con-
centrates on a subset of data points and originates from a
small number of correlated experimental uncertainties (for
example the correlation of some two-point systematic uncer-
tainties between the most extreme kinematic bins). While
this assumption is a simplification, we find that the model is
effective, as we will discuss in the context of both a toy model
(see Sect. 3.2) and of a realistic case (see Sect. 4.2). If instead
the source of inaccuracy in the correlation matrix arised from
a number of systematic uncertainties that increased, e.g., with
the number of data points Ndat, the regularisation procedure
described below would over-regularise small data sets and
under-regularise large ones when simultaneously applied to
a collection of measurements.

Since Fcorr is a matrix of adimensional coefficients (both
units and magnitude of the data uncertainties are absorbed in
D), we can simply set the norm to a constant, e.g. ‖Fcorr‖F =
1/

√
2. Therefore, with the assumptions we have made, the

model of uncertainties required to implement the stability
criterion Eq. (7) contains one single adimensional parameter,
δ, and the stability condition is

∥
∥ Ā+

corr

∥
∥

2 ≤ 1

δ
. (22)

The free parameter δ characterises the precision of the corre-
lation matrix. Its optimal value depends on the features of the
measurement, and clearly cannot be obtained from the matrix
itself. In the case of PDF determination, we will obtain it by
studying the dependence of global fits on it, as we will discuss
in Sect. 4.

The stability condition Eq. (22), together with the require-
ments presented at the beginning of this section, lay out a
regularisation procedure. Specifically, Eq. (22) implies that
the largest singular values of Ā+

corr must be bound by δ−1, and
conversely that the smallest singular values of Ācorr must be
bound by δ from below. The requirement that the regularised
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matrix gives the same description as the original one in the
directions that do not contribute to instability implies that
the singular vectors with singular values greater than δ−1 are
unchanged. Following Eq. (17), we write Ā in terms of the
singular value decomposition of Ācorr, Ācorr = USV t

Ā = DUSV t , (23)

and we can then define the regularised matrix Areg as

Āreg = DUSregV
t , (24)

where Sreg is the matrix of singular values whose non-zero
entries are

Sreg(i i) =
{

δ si < δ

si otherwise
. (25)

Note that, beside the formulation of the regularisation pro-
cedure laid out above, the stability condition, Eq. (22), can
be inverted to quickly assess the stability of experimental
uncertainties in a given measurement. We define the condi-
tion number Z as

Z = ∥
∥ Ā+

corr

∥
∥

2 = ∥
∥ Ācorr

∥
∥

−1
2 . (26)

It follows from Eqs. (22) and (25) that, if Z > δ−1, then it
is likely that the precision with which correlations are deter-
mined is insufficient to ensure that they will not alter the
expectation value of the χ2. This is demonstrated below with
a toy model.

We note that the regularisation procedure can apply with-
out modification to joint matrices constructed from multiple
measurements when assuming the same value of δ for each
of them. For example, if the measurements are independent,
and the joint matrix is block diagonal, with each block corre-
sponding to the covariance matrix from one measurement, the
effect of the regularisation on the joint matrix is the same as
applying it independently to each of the individual matrices,
while the Z condition number will be the maximum across
the measurements. Systematic uncertainties that are shared
between measurements (hence making the joint matrix not
completely block diagonal) also require no change in the
procedure.

Finally, we remark that Eq. (25) should work for any value
of δ, even if it has been derived by neglecting terms of O(δ2)

in Eq. (12). This neglect, however, may make the interpre-
tation of δ−1 as a measure of the precision with which cor-
relations need to be known to ensure the stability of the χ2

looser for small values of δ.

3.2 Toy model

We now apply the regularisation procedure devised in
Sect. 3.1 to a toy model which is representative of a real-
istic LHC data set. This exercise will show how inaccuracies

in the degree of correlation of uncertainties can undermine
the reliability of the χ2 as a figure of merit.

The model consists of a data set made of four experimental
data points, with a small uncorrelated statistical uncertainty
of size ε, equal for each data point, and one correlated sys-
tematic uncertainty of size 1, affecting only the first three
data points. The fourth point also has a systematic uncer-
tainty, whose correlation with the other points is, however,
not precisely known. We parametrise this lack of knowledge
in terms of the variable x , and write the systematic uncer-
tainty on the fourth point as a fluctuation, by an amount x ,
with respect to the other systematic uncertainty of size 1. We
assume that the total variance is known. Note that this is con-
sistent with the assumptions made in Sect. 3.1: correlations
can fluctuate (in a way that, in the model, is parametrised by
x), while variances remain fixed.

The matrix of uncertainties describing this toy model is

A(x) =

⎛

⎜
⎜
⎝

ε 0 0 0 1 0
0 ε 0 0 1 0
0 0 ε 0 1 0

0 0 0 ε 1 − x
√

1 − (1 − x)2

⎞

⎟
⎟
⎠

. (27)

By fixing the variance due to the systematics to 1 we let the
parameter ε � 1 control the relative size of the uncorre-
lated to correlated uncertainties. The parameter x can take
values in the interval [0, 2]: x = 0 corresponds to the case
in which the systematic uncertainty on the fourth data point
is fully correlated with that of the other data points; x = 1
corresponds to the case of full decorrelation; and x = 2 cor-
responds to the case of full anti-correlation.

We now consider the situation in which the correlation is
(inaccurately) estimated to be maximal, that is x = x̄ = 0.
This inaccuracy is encoded in the matrix of uncertainties
Ā = A(x̄):

Ā =

⎛

⎜
⎜
⎝

ε 0 0 0 1 0
0 ε 0 0 1 0
0 0 ε 0 1 0
0 0 0 ε 1 0

⎞

⎟
⎟
⎠

. (28)

According to Eq. (6), the expectation value of the χ2 given
Ā is

〈χ̄2〉(x) = ∥
∥ Ā+A(x)

∥
∥

2
F = 4 + 6x

ε2(ε2 + 4)
, (29)

which has to be compared with the true expectation value
given A(x), see Eq. (5):

〈χ2
true〉(x) = ∥

∥A+A(x)
∥
∥

2
F = Ndat = 4. (30)

The situation is depicted in Fig. 1, where the curves
obtained with either Eq. (29) or Eq. (30) are contrasted as
a function of the true (unknown) variable x . We consider two
illustrative values of the model parameter ε, 0.1 and 0.25,
that correspond to the situation in which the uncorrelated
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Fig. 1 The expectation value of the χ2, as a function of the variable
x , in the toy model, for two values of the parameter ε: ε = 0.1 (left)
and ε = 0.25 (right). We show: the true expectation value of Eq. (30),
〈χ2

true〉 (with one and six standard deviations for reference), given the
matrix of uncertainties A, Eq. (27); the expectation value of Eq. (29),

〈χ̄2〉, given the inaccurate matrix of uncertainties Ā, Eq. (28); and the
expectation value of Eq. (36), 〈χ̄2

reg〉, given the matrix of uncertainties

Āreg, Eq. (34), obtained after applying the regularisation procedure with
δ = 1

statistical uncertainty is equal, respectively, to 10% or 25%
of the correlated systematic uncertainty. These values reflect
the relative ratio of uncorrelated to correlated uncertainties in
realistic current and future LHC measurements. As is appar-
ent from Fig. 1, the incorrect estimation of x̄ leads to a large
deviation of the expectation value of the χ2 from its true
value. The smaller the value of ε, the larger the deviation.
For example, for a value of ε equal to 0.25, it is sufficient
that the true value of x is 0.12 instead of zero to run afoul of
the stability criterion of Eq. (7). For ε = 0.1, the true value
of x can be as small as 0.02 to encounter a similar instability.

We now apply the regularisation procedure devised in
Sect. 3.1. We first write the matrix Ā, Eq. (28), in terms
of the matrices D and Ācorr, as per Eq. (17), which read

D =
√

1 + ε2 I4×4 and Ācorr = 1√
1 + ε2

Ā. (31)

The matrix of singular values for Ācorr is

S = 1√
1 + ε2

⎛

⎜
⎜
⎝

ε 0 0 0 0 0
0 ε 0 0 0 0
0 0 ε 0 0 0
0 0 0

√
4 + ε2 0 0

⎞

⎟
⎟
⎠

. (32)

We denote the first three singular values as s1,2,3 =
ε/

√
1 + ε2 and the fourth one as s4 = √

4 + ε2/
√

1 + ε2,
and note that 0 < s1,2,3 < s4 < 2 for any value of ε > 0. We
then apply the regularisation prescription given by Eqs. (23)–
(25), by choosing s1,2,3 < δ−1 < s4. The regularised matrix
of singular values therefore reads

Sreg =

⎛

⎜
⎜
⎜
⎝

δ−1 0 0 0 0 0
0 δ−1 0 0 0 0
0 0 δ−1 0 0 0

0 0 0
√

4+ε2√
1+ε2 0 0

⎞

⎟
⎟
⎟
⎠

, (33)

and the regularised matrix of uncertainties

Āreg =

⎛

⎜
⎜
⎝

a b b b 1 0
b a b b 1 0
b b a b 1 0
b b b a 1 0

⎞

⎟
⎟
⎠

, (34)

where

a = 1

4

(

ε + 3δ−1
√

1 + ε2
)

and

b = 1

4

(

ε − δ−1
√

1 + ε2
)

. (35)

The expected value of the χ2 is finally

〈χ̄2
reg〉(x) =

∥
∥
∥ Ā+

regA(x)
∥
∥
∥

2

F
= 4 + 6x

(
δ2

1 + ε2 − 1

4 + ε2

)

+12 δ2ε2

1 + ε2 . (36)

The expression in Eq. (36) is compared to those in
Eqs. (29)–(30) in Fig. 1 for the value δ = 1. We note that this
value fulfils the requirement s1,2,3 < δ−1 < s4 for any value
of the parameter ε. As is apparent from Fig. 1, the regularisa-
tion procedure successfully achieves the goal for which it was
devised: the expectation value of the regularised χ2, 〈χ2

reg〉,
does not differ from the true expectation value, 〈χ2〉true, by
more than one standard deviation of the χ2 distribution for
any value of x .
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Fig. 2 Stability of the toy model with additional assumptions on the
value of the correlation. The green curve shows the deviation in χ2

averaged over the assumed prior of the x parameter, Eq. (39). The black
dashed horizontal line marks the limit from the stability criterion Eq. (7).
The orange dashed vertical line, in the intersection, shows the most
likely value of x that fulfills the stability criterion, Eq. (40)

The optimal value of δ should be determined on a case-
by-case basis depending on the precision with which x is
known. This is the topic that we will investigate in the next
section in the context of PDF determination.

We now turn our attention to the situation where we can
make further assumptions on the uncertainties in the deter-
mination of the correlation structure, for example when hav-
ing access to additional information during the experimen-
tal analysis. In that case it might be advisable to study the
effects on stability of various modelling choices, and the cor-
responding regularisation, in a more refined way than the one
described in Sect. 3.1, where we strived for generality. We
simulate this situation by assuming a specific prior for the
value of the x parameter. We choose that prior to be a beta
distribution with support in x ∈ [0, 1] and such that x = 0 is
the mode value. Specifically,

x ∼ Beta(1, 5) , (37)

which corresponds to the probability density

fx (ξ) = 5(1 − ξ)4 . (38)

Our discussion implies that even though x = 0 is the most
likely value, analyses using it are subject to instabilities. We
can quantify this by computing the expected error in the χ2

we would incur when assuming a particular value of x and
when averaging over the distribution of possible values:

〈�χ2〉(x) =
∫ 1

0

∣
∣
∣

∥
∥ Ā+(ξ)A(x)

∥
∥

2
F − N

∣
∣
∣ fx (ξ)dξ . (39)

We represent 〈�χ2〉x (x) in Fig. 2, where we have set
ε = 0.1. The comparison with the limit imposed by the
stability criterion Eq. (7), also displayed in Fig. 2, shows
that presenting the covariance matrix with values too close

to the most likely value of the correlation under the prior
yields large instabilities that would hamper the subsequent
analysis. Selecting the most likely value that satisfies the
stability criterion

x∗ = argmax
ξ :〈�χ2〉(ξ)≤√

2N

fx (ξ) (40)

may be a way to decide the value of the correlation with which
to present the covariance matrix. This would correspond to
x ≈ 0.04 under the settings presented here. Note that this
small correction is consistent with the assumed knowledge
of x , Eq. (37), but it would notably increase the accuracy of
χ2 computations using the covariance matrix.

The obvious disadvantage of this analysis is the difficulty
of obtaining estimates for the covariance matrix parameters
such as Eq. (37). These are unattainable outside the exper-
imental collaborations responsible for the analysis and pre-
sumably challenging within. However, it may be useful to
assess and refine correlation models internally. The regular-
isation procedure presented in Sect. 3 and applied to the toy
model in Eq. (36) is indicated for the more common situation
where such detailed information is missing. We demonstrate
its usage for the problem of PDF determination next.

4 Determining PDFs with a regularised data set

In this section, we apply the regularisation procedure devised
in Sect. 3 to a data set utilised for PDF determination. This is
a particular problem relevant to LHC precision physics that
relies on the χ2 as a figure of merit. We first discuss how
the regularisation procedure can be applied to characterise
the data set that enters a given PDF determination. We then
show how PDFs change if the nominal data set is replaced
by a suitably regularised one, and study their dependence on
the regularisation parameter δ. We finally investigate how the
regularisation procedure performs in comparison to the cor-
relation models provided with the measurements in the few
cases in which these are available. All of our investigations
are performed in the framework of the recent NNPDF4.0
PDF determination [9].

4.1 Characterising the data set

The NNPDF4.0 data set is the widest data set used for PDF
determination to date. It consists of legacy fixed-target and
collider deep-inelastic scattering and fixed-target Drell–Yan
measurements, and of a wide range of measurements for var-
ious production processes in proton–proton collisions at the
LHC. These include both Run I and Run II measurements
and make about 30% of the NNPDF4.0 data set. Experimen-
tal uncertainties are typically of the order of few percent, the
largest part of which is made of correlated systematic uncer-

123



956 Page 8 of 20 Eur. Phys. J. C (2022) 82 :956

tainties. A detailed description of the NNPDF4.0 data set is
provided in Sect. 2 of [9].

Here we take a closer look at the LHC measurements that
are part of the NNPDF4.0 data set, and in particular scrutinise
the matrix of uncertainties of each measurement that contains
more than one data point. The goal is to identify the measure-
ments for which an inaccurate estimation of experimental
correlations may significantly affect their χ2. To this purpose,
for each measurement, we compute the condition number Z ,
Eq. (26), apply the regularisation procedure delineated in
Sect. 3 for different values of the parameter δ, and evaluate
how much the regularised covariance matrix differs from the
nominal one. This piece of information is collected in Table 1,
where we indicate, for each LHC measurement included in
the NNPDF4.0 data set, its reference and the condition num-
ber Z ; we also indicate the maximum relative difference of
the variances �σr and the maximum absolute difference of
the correlation |�ρ| computed between the nominal data set
and the data set regularised with δ−1 = 1, 2, 3, 4, 5, 7. Blank
spaces indicate that �σr = |�ρ| = 0, that is the regularisa-
tion procedure does not alter the nominal covariance matrix.
We make two remarks.

First, one can single out the data sets for which an inaccu-
rate estimation of experimental correlations may be of con-
cern in a PDF fit. These are the data sets with the largest value
of the condition number Z . If these data sets turn out to also
have an unsatisfactory χ2 in the fit, then additional inves-
tigations are needed to establish whether this is due solely
to inaccurate experimental correlations, solely to inaccurate
theoretical predictions, or to a combination of both. Con-
versely, if a data set has a low condition number Z but a
large value of the χ2, the large value of the χ2 is reason-
ably due to genuine inconsistencies between the data set and
theory predictions. These considerations may help determine
the optimal data set utilised as input to PDF determination, as
done for the NNPDF4.0 parton set (see in particular Sect. 4.2
in [9]).

Second, one can determine the optimal value of the regu-
larisation parameter δ in such a way that variances and corre-
lations are not modified too much by the regularisation pro-
cedure in comparison to the nominal values. In this respect,
inspection of Table 1 reveals that regularising the NNPDF4.0
data set with δ−1 = 1 or δ−1 = 2 is too aggressive, in that it
leads to an increase of variances by an amount between 10%
and 90%, and a variation of correlations between 0.1 and 0.5,
depending on the data set. These figures are reduced, respec-
tively, below 10% and 0.1 for δ−1 = 3 and even further, to
a few percent and below 0.05 for δ−1 = 4 and δ−1 = 5.
Higher values of δ alter the nominal data set only minimally.
As expected, the data sets associated to the highest condition
number Z are those that are generally most affected by the
regularisation procedure, in that they display the largest vari-
ation of variances and correlation; they also remain sensitive

to the regularisation procedure even if a modest amount of
regularisation (that is, a high value of δ−1) is applied. In the
next section we shall see how these variations affect a fit of
PDFs.

Among all of the LHC data sets collected in Table 1, we
single out the two measurements that are associated to large
values of Z and χ2 (see Table 2) at the same time: ATLAS
W, Z 7 TeV CC [15] and ATLAS dijets R=0.6 7 TeV [24].
They are representative of extreme cases in which small
inaccuracies in the determination of experimental correla-
tions can have a large impact on the computation of the χ2.
Indeed these data sets have been the subject of much scrutiny
[9,15,44,45]. With a value of Z of order 10, it means that
correlations must be estimated with an absolute uncertainty
of roughly less than 0.1 in order to ensure that they make
the χ2 fluctuate by less than one standard deviation. If the
correlation between two bins is estimated to be 1.0 while
its real value is instead 0.9, one can expect the χ2 to devi-
ate significantly (by more than one standard deviation) from
unity, even if there is good consistency between experimental
central values and theoretical expectations.

Note that other data sets may have a large value of Z , e.g.
CMS Z pT 8 TeV [32], but not an anomalously large χ2 (see
Table 2). While our decorrelation procedure will also affect
these data sets, as seen in Table 1, we do not consider them
in the following discussion.

In Fig. 3 we show how the regularisation procedure
described in Sect. 3.1 affects the covariance and correlation
matrices of the two data sets singled out above. Specifically,
we show the relative difference of the covariance matrix
�σr and the difference of the correlation matrix �ρ for
each of their elements, computed between the nominal data
sets and the data set regularised with δ−1 = 4. For ATLAS
W, Z 7 TeV CC, we indicate the bins, differential in the
rapidity of the lepton, η, corresponding to W+, W− and Z
production (the latter in three kinematic regions); for ATLAS
dijets R=0.6 7 TeV, we indicate the bins, differential in the
invariant mass of the dijet, m12, corresponding to the six
measured intervals of the absolute rapidity difference of the
two leading jets, |y∗|: 0.0 ≤ |y∗| ≤ 0.5; 0.5 ≤ |y∗| ≤ 1.0;
1.0 ≤ |y∗| ≤ 1.5; 1.5 ≤ |y∗| ≤ 2.0; 2.0 ≤ |y∗| ≤ 2.5;
and 2.5 ≤ |y∗| ≤ 3.0. As already noted, differences are
small and do not exceed 5% for variances and 0.05 for cor-
relations. These variations seem very reasonable to us; their
effect, as well as that induced by larger (smaller) variations
corresponding to more (less) aggressive regularisation will
be investigated next.

4.2 Fitting PDFs

We now study the sensitivity of PDF determination to the reg-
ularisation procedure. To this purpose, we perform a series of
fits, all based on the experimental, theoretical, and method-

123



Eur. Phys. J. C (2022) 82 :956 Page 9 of 20 956

Table 1 The LHC measurements included in the NNPDF4.0 data set
[9]. For each measurement we indicate its reference, the condition num-
ber Z of the corresponding experimental covariance matrix, Eq (26),
and the maximum relative difference of the variances �σr (in percent)
and the maximum absolute difference of the correlation |�ρ| computed
between the nominal data set and the data set obtained by applying the

regularisation procedure delineated in Sect. 3 for δ−1 = 1, 2, 3, 4, 5, 7.
Blank spaces indicate that �σr = |�ρ| = 0, that is the regularisation
procedure does not alter the nominal covariance matrix. For ATLAS
W, Z 7 TeV, CC and CF stand, respectively, for central-central and
central-forward rapidity selections. We omit the data sets with a single
data point

Data set Ref. Z δ−1 = 1 δ−1 = 2 δ−1 = 3 δ−1 = 4 δ−1 = 5 δ−1 = 7

�σr |�ρ| �σr |�ρ| �σr |�ρ| �σr |�ρ| �σr |�ρ| �σr |�ρ|
ATLAS LM DY 7 TeV [12] 3.7 71.0 0.51 12.0 0.15 2.51 0.03

ATLAS HM DY 7 TeV [13] 3.1 67.3 0.50 8.99 0.13 0.43 0.01

ATLAS W, Z 7 TeV [14] 3.5 87.2 0.45 15.2 0.13 2.36 0.02

ATLAS W, Z 7 TeV CC [15] 9.0 94.4 0.50 21.9 0.19 8.63 0.09 4.15 0.05 2.12 0.02 0.50 0.01

ATLAS W, Z 7 TeV CF [15] 2.8 69.7 0.49 9.13 0.10

ATLAS LM DY 2D 8 TeV [16] 1.1 15.1 0.09

ATLAS HM DY 2D 8 TeV [17] 2.6 79.6 0.40 8.42 0.08

ATLAS σ tot
W,Z 13 TeV [18] 5.0 57.6 0.60 11.1 0.18 3.72 0.07 1.15 0.02

ATLAS W++jet 8 TeV [19] 4.0 78.7 0.52 12.2 0.16 2.55 0.05 0.03

ATLAS W−+jet 8 TeV [19] 5.7 82.0 0.54 14.9 0.18 4.74 0.07 1.78 0.03 0.51 0.01

ATLAS Z pT ,m�� 8 TeV [20] 3.3 71.6 0.44 7.99 0.09

ATLAS Z pT , yZ 8 TeV [20] 8.8 83.1 0.43 11.6 0.11

ATLAS t t̄ �+jets yt 8 TeV [21] 1.6 37.3 0.34

ATLAS t t̄ �+jets yt t̄ 8 TeV [21] 2.2 52.5 0.41 2.31 0.03

ATLAS t t̄ 2� yt t̄ 8 TeV [22] 1.9 31.5 0.28

ATLAS jets R=0.6 8 TeV [23] 5.5 93.6 0.48 20.6 0.17 7.21 0.07 2.61 0.03 0.53 0.01

ATLAS dijets R=0.6 7 TeV [24] 10 95.7 0.51 22.3 0.19 9.08 0.09 4.54 0.05 2.53 0.03 0.80 0.01

ATLAS γ 13 TeV [25] 1.3 38.2 0.14

ATLAS single t dyt 7 TeV [26] 1.3 20.8 0.22

ATLAS single t yt̄ 7 TeV [26] 1.4 29.7 0.25

ATLAS single t dyt 8 TeV [27] 1.2 13.5 0.12

ATLAS single t yt̄ 8 TeV [27] 1.2 15.6 0.17

CMS W e asy. 7 TeV [28] 1.0 9.17 0.03

CMS W μ asy. 7 TeV [29] 1.2 30.3 0.12

CMS DY 2D 7 TeV [30] 8.8 85.2 0.52 17.0 0.18 5.99 0.08 2.86 0.04 1.53 0.02 0.42 0.01

CMS W rapidity 8 TeV [31] 13 93.9 0.59 22.6 0.21 9.39 0.10 4.88 0.05 2.79 0.03 1.03 0.01

CMS Z pT 8 TeV [32] 9.5 87.7 0.46 15.9 0.14 3.09 0.03

CMS dijets 7 TeV [33] 4.7 88.8 0.48 18.2 0.15 5.51 0.05 1.22 0.01

CMS jets 8 TeV [34] 6.3 92.4 0.53 20.2 0.19 7.14 0.08 2.78 0.03 0.93 0.01

CMS t t̄ �+jets 8 TeV [35] 1.6 41.9 0.26

CMS t t̄ 2D 2� 8 TeV [36] 1.9 58.3 0.33 5.84 0.06

CMS t t̄ 2� 13 TeV [37] 5.2 76.6 0.48 11.5 0.13 2.11 0.03 0.51 0.01 0.05

CMS t t̄ �+jet 13 TeV [38] 7.5 83.3 0.51 17.7 0.17 6.36 0.07 2.67 0.03 1.06 0.01 0.07

LHCb Z → ee 7 TeV [39] 1.4 55.1 0.34

LHCb W, Z → μ 7 TeV [40] 2.9 66.6 0.40 5.22 0.08

LHCb Z → ee 8 TeV [41] 1.4 45.3 0.20

LHCb W, Z → μ 8 TeV [42] 2.5 69.8 0.43 5.28 0.07

LHCb Z → ee 13 TeV [43] 2.4 54.9 0.26

LHCb Z → μμ 13 TeV [43] 1.6 74.9 0.39 5.69 0.06
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Table 2 The number of data points, Ndat , and the χ2 per data point, χ2/Ndat , for the NNPDF4.0 NNLO baseline fit and for each of the fits
performed with the regularisation procedure delineated in Sect. 3 for δ−1 = 1, 2, 3, 4, 5, 7

Data set Ndat χ2/Ndat

NNPDF4.0 δ−1 = 1 δ−1 = 2 δ−1 = 3 δ−1 = 4 δ−1 = 5 δ−1 = 7

Deep-inelastic scattering 3089 1.12 0.64 1.02 1.09 1.11 1.12 1.12

Fixed-target Drell–Yan 195 0.98 0.48 0.90 0.96 0.97 0.97 0.99

Tevatron Drell–Yan 65 1.11 0.48 0.71 0.85 0.93 1.02 1.10

ATLAS total 679 1.24 0.50 0.84 0.97 1.04 1.10 1.19

LM DY 7 TeV 6 0.88 0.22 0.60 0.85 0.88 0.88 0.88

HM DY 7 TeV 5 1.69 0.44 1.25 1.64 1.69 1.69 1.69

W, Z 7 TeV 30 0.98 0.24 0.65 0.96 1.01 1.01 1.00

W, Z 7 TeV CC 46 1.92 0.31 0.74 0.94 1.21 1.47 1.76

W, Z 7 TeV FC 15 1.03 0.48 0.96 1.04 1.04 1.04 1.04

LM DY 2D 8 TeV 48 1.11 0.61 1.09 1.12 1.11 1.11 1.12

HM DY 2D 8 TeV 60 1.22 1.18 1.21 1.22 1.22 1.22 1.22

σ tot
W,Z 13 TeV 3 0.77 0.30 0.39 0.46 0.62 0.79 0.77

W++jet 8 TeV 15 0.79 0.45 0.58 0.70 0.79 0.79 0.79

W−+jet 8 TeV 15 1.49 0.79 1.15 1.29 1.38 1.44 1.49

Z pT ,m�� 8 TeV 44 0.90 0.43 0.86 0.90 0.91 0.90 0.90

Z pT , yZ 8 TeV 48 0.90 0.22 0.65 0.91 0.90 0.90 0.90

σt t̄ 7, 8, 13 TeV 3 1.64 1.47 1.70 1.74 1.79 1.77 1.70

t t̄ �+jets yt 8 TeV 4 3.28 1.42 2.45 2.92 2.98 3.01 3.09

t t̄ �+jets yt t̄ 8 TeV 4 3.83 1.00 2.62 3.32 3.40 3.46 3.52

t t̄ 2� yt t̄ 8 TeV 5 1.62 0.65 1.46 1.55 1.57 1.59 1.59

jets R=0.6 8 TeV 171 0.68 0.38 0.60 0.68 0.69 0.69 0.69

dijets R=0.6 7 TeV 90 2.14 0.23 0.59 0.85 1.10 1.38 1.87

γ 13 TeV 53 0.76 0.58 0.72 0.76 0.77 0.76 0.76

single t Rt 7, 13 TeV 2 0.28 0.24 0.27 0.28 0.28 0.28 0.28

single t dyt 7 TeV 3 0.96 0.94 0.98 0.97 0.96 0.96 0.96

single t yt̄ 7 TeV 3 0.06 0.03 0.06 0.06 0.06 0.06 0.06

single t dyt 8 TeV 3 0.25 0.20 0.23 0.24 0.24 0.24 0.24

single t yt̄ 8 TeV 3 0.19 0.17 0.19 0.19 0.19 0.19 0.19

CMS total 474 1.31 0.39 0.83 1.08 1.21 1.26 1.28

W e asy. 7 TeV 11 0.84 0.71 0.79 0.79 0.79 0.79 0.81

W μ asy. 7 TeV 11 1.70 1.34 1.76 1.76 1.76 1.76 1.75

DY 2D 7 TeV 110 1.36 0.43 1.05 1.27 1.33 1.35 1.36

W rapidity 8 TeV 22 1.33 0.13 0.16 0.22 0.33 0.46 0.80

Z pT 8 TeV 28 1.40 0.21 0.75 1.25 1.40 1.40 1.40

dijets 7 TeV 54 1.79 0.63 1.40 1.73 1.84 1.84 1.82

jets 8 TeV 185 1.19 0.24 0.53 0.84 1.07 1.15 1.18

σt t̄ 5, 8, 7, 13 TeV 4 0.45 0.39 0.49 0.51 0.53 0.52 0.48

t t̄ �+jets 8 TeV 9 1.25 0.67 1.13 1.22 1.23 1.23 1.23

t t̄ 2D 2� 8 TeV 16 1.01 0.41 0.86 1.07 1.07 1.06 1.04

t t̄ 2� 13 TeV 10 0.52 0.09 0.26 0.37 0.43 0.50 0.51

t t̄ �+jet 13 TeV 11 0.64 0.04 0.15 0.33 0.42 0.51 0.59

single t Rt 7, 8, 13 TeV 3 0.42 0.38 0.41 0.42 0.42 0.42 0.42

LHCb total 116 1.55 0.73 1.41 1.53 1.56 1.55 1.55
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Table 2 continued

Data set Ndat χ2/Ndat

NNPDF4.0 δ−1 = 1 δ−1 = 2 δ−1 = 3 δ−1 = 4 δ−1 = 5 δ−1 = 7

Z → ee 7 TeV 9 1.64 0.88 1.55 1.62 1.63 1.63 1.65

W, Z → μ 7 TeV 29 1.94 0.66 1.61 1.93 1.97 1.97 1.96

Z → ee 8 TeV 17 1.34 0.88 1.30 1.31 1.33 1.33 1.33

W, Z → μ 8 TeV 30 1.42 0.73 1.31 1.41 1.45 1.43 1.43

Z → ee 13 TeV 15 1.73 0.95 1.71 1.72 1.73 1.73 1.72

Z → μμ 13 TeV 16 1.00 0.31 0.91 0.98 0.99 0.99 0.99

Total 4618 1.16 0.58 0.97 1.07 1.11 1.13 1.15

ological input that enters the default next-to-next-to-leading
order (NNLO) NNPDF4.0 parton set (see [9] for details), in
which we regularise the data set. Specifically, we perform
six fits in each of which we consider a different amount of
regularisation, namely δ−1 = 1, 2, 3, 4, 5, 7. All the fits are
made of Nrep = 100 Monte Carlo replicas. Note that these fits
are different from those presented in Sect. 8.7 of [9]: here the
regularisation procedure is applied to the NNPDF4.0 data set
as a whole (and indeed to the total covariance matrix), while
there it was applied only to a specific measurement (that was
part of the NNPDF4.0 data set or not) at a time.

In Table 2 we display the value of the χ2 per data point,
χ2/Ndat, for each of these fits, and compare it to that of
the NNLO NNPDF4.0 default fit. Deep-inelastic scattering,
fixed-target Drell–Yan, and Tevatron Drell–Yan measure-
ments, which are mostly unaffected by the regularisation
procedure, are all aggregated; ATLAS, CMS and LHCb mea-
surements are instead displayed individually. The total values
(for each experiment and for the total data set) are also shown,
as well as the corresponding number of data points.

In Fig. 4 we then display the resulting PDFs, specifically
the up, anti-up, down, anti-down, strange, anti-strange, charm
and gluon PDFs at a scale Q = 100 GeV. PDFs are compared
to the NNPDF4.0 NNLO baseline parton set, and are nor-
malised to its central value. For δ−1 = 1, 3, 5, 7 we display
only the central value. Otherwise uncertainties correspond to
68% confidence levels.

A joint inspection of Table 2 and of Fig. 4 reveals some
interesting features. We first observe that, as expected, the
regularisation procedure has a significant effect on the χ2.
A general decrease of its value is observed in comparison to
NNPDF4.0, by an amount that increases with the increase in
the amount of regularisation (that is, with the decrease of the
value of δ−1). For the largest value δ−1 = 7, no statistically
significant differences are seen with respect to NNPDF4.0,
neither in the value of the χ2 per data point nor in PDFs.
Conversely, for small values of δ−1, δ−1 = 1 and δ−1 = 2,
the total χ2 per data point drops from 1.16 to 0.58 and 0.97,
respectively. These variations correspond to a 28σ and a 9σ

fluctuation in units of the χ2 standard deviation, which obvi-
ously denote an excessive regularisation of the NNPDF4.0
data set. As noted at the end of Sect. 3, such an excessive
regularisation may also arise from neglecting terms of O(δ2)

in Eq. (12).
The PDFs obtained in the fit with δ−1 = 1 (and sim-

ilarly in the fit with δ−1 = 2, which is not displayed in
Fig. 4) are indeed consistently distorted in comparison to
NNPDF4.0. The central value of the former fluctuates, in
units of the NNPDF4.0 PDF uncertainty around the central
value of the latter, by about one standard deviation for the up,
anti-up, down and anti-down PDFs, and slightly more for the
strange, anti-strange, charm and gluon PDF. In this respect,
it is worth noting that the strange and gluon PDFs are sen-
sitive, respectively, to the ATLAS W, Z 7 TeV CC [15] and
ATLAS dijets R=0.6 7 TeV [24] data sets: these have some
of the largest values of Z and display the largest reduction of
χ2 upon regularisation.

The outer cases corresponding to δ−1 = 1, 2, 7 are there-
fore to be interpreted as a validation of the regularisation
procedure, which behaves as expected. The fits correspond-
ing to δ−1 = 3, δ−1 = 4 and δ−1 = 5 are instead more
interesting. Variations of the χ2 with respect to NNPDF4.0
correspond, respectively, to a 3.8σ , 2.4σ and 1.4σ fluctua-
tion in units of the χ2 standard deviation. Interestingly, the
difference between the expected χ2/Ndat = 1 and the χ2

obtained in the fits corresponding to δ−1 = 3, 4, 5 amounts,
respectively, to 3.3σ , 5.3σ and 6.2σ in units of the χ2 stan-
dard deviation. This is a significant reduction in comparison
to 7.7σ of the default NNPDF4.0 determination.

Such an improvement in the χ2 statistic is accompanied
by remarkably limited PDF variations if one compares the
fits with δ−1 = 3, 4, 5 with NNPDF4.0. Central values fluc-
tuate by a small fraction of the NNPDF4.0 PDF uncertainty,
except for the gluon PDF, which varies by up to half of the
NNPDF4.0 uncertainty around x ∼ 0.3; PDF uncertainties
are almost unaffected. Remarkably, all these variations are
much smaller than those due to variations of the data set itself
(see Sect. 7 in [9]).
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Fig. 3 The relative difference of the covariance matrix �σr (top) and
the difference of the correlation matrix �ρ (bottom) for each of their
elements, computed between the regularised data sets and the data set
nominal with δ−1 = 4. We show results for the two measurements in the
NNPDF4.0 data set that have the largest value of Z , see Table 1: ATLAS
W, Z 7 TeV CC [15] (left) and ATLAS dijets R=0.6 7 TeV [24] (right).

For ATLAS W, Z 7 TeV CC, we indicate the bins, differential in the
rapidity of the lepton, η, corresponding to W+, W− and Z production
(the latter in three kinematic regions); for ATLAS dijets R=0.6 7 TeV
we indicate the bins, differential in the invariant mass of the dijet, m12,
corresponding to the six measured intervals of the absolute rapidity
difference of the two leading jets, |y∗|, see text for details

The fact that PDFs do not vary significantly in the fits to
the regularised data set with δ−1 = 3, 4, 5 is further dis-
played in Fig. 5, where we show a data–theory compari-
son for some selected bins of the ATLAS W, Z 7 TeV CC
[15] and dijets R=0.6 7 TeV [24] measurements. Specifi-
cally, we show the W+ and W− subsets, as a function of
the absolute value of the lepton rapidity η, for the former,
and two bins in the absolute rapidity difference between
the two leading jets |y∗| as a function of the di-jet invariant
mass m12, for the latter. Theoretical predictions are obtained
with the NNPDF4.0 baseline parton set and with the PDFs
obtained by fitting the NNPDF4.0 data set regularised with
δ−1 = 1, 3, 4, 5, 7. They are all accurate to NNLO in the
strong coupling, both in the PDFs and in the matrix ele-
ments. Results are shown as ratios to the experimental central
value, with one-sigma experimental and PDF uncertainties.

The experimental uncertainty is the sum in quadrature of the
statistical and of all systematic uncertainties.

As noted in Sect. 4.1, the data sets displayed in Fig. 5
are those with large values of Z and χ2, and for which the
regularisation procedure introduces some of the largest dif-
ferences in the variances and correlations of the data, see
Table 1 and Fig. 3. In spite of this, only small differences are
observed between predictions obtained with NNPDF4.0 and
any of the regularised fits with δ−1 = 1, 3, 4, 5, 7; slightly
larger fluctuations are observed in the fit with a large amount
of regularisation (δ−1 = 1), albeit only for the data points
at central rapidity, for ATLAS W, Z 7 TeV CC, or at large
invariant mass, for ATLAS dijets R = 0.6 7 TeV.

We therefore conclude that the PDFs obtained from any
of the regularised fits with δ−1 = 3, 4, 5 represent the same
underlying truth as the NNPDF4.0 parton set. They however
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Fig. 4 The PDFs obtained by fitting the NNPDF4.0 data set after reg-
ularisation with different values of the parameter δ−1 = 1, 3, 4, 5, 7.
From top to bottom, left to right, we show the up, anti-up, down,
anti-down, strange, anti-strange, charm and gluon PDFs at a scale

Q = 100 GeV. PDFs are compared to the NNPDF4.0 baseline par-
ton set, and normalised to its central value. For δ−1 = 1, 3, 5, 7 we
display only the central value. Otherwise uncertainties correspond to
68% confidence levels. All PDF fits are accurate to NNLO
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Fig. 5 Data–theory comparison for the W± subset of the ATLAS
W, Z 7 TeV CC measurement [15], as a function of the absolute lepton
rapidity η (top), and for two bins in the absolute rapidity difference
between the two leading jets |y∗| of the ATLAS dijets R=0.6 7 TeV
measurement [24], as a function of the di-jet invariant mass m12. The-
oretical predictions are obtained with the NNPDF4.0 baseline parton

set and with the PDFs obtained by fitting the NNPDF4.0 data set regu-
larised with δ−1 = 1, 3, 4, 5, 7. They are all accurate to NNLO in the
strong coupling, both in the PDFs and in the matrix elements. Results
are shown as ratios to the experimental central value, with one-sigma
PDF and experimental uncertainties. The latter is the sum in quadrature
of the statistical and of all systematic uncertainties

lead to a χ2 that is better than the NNPDF4.0 one by up to 4σ ,
in units of the χ2 standard deviation, and that is only about 3σ

away from the expectation of unit χ2 (instead of about 8σ ).
In other words, the nominal χ2 determined in [9] is likely to
be spuriously inflated by inaccuracies in the estimation of the
experimental correlations in the LHC data. Further discrim-
ination among the equally good values δ−1 = 3, 4, 5 can be
made on the basis of how big the changes to the covariance
matrices are in relation to the precision at which they are esti-
mated. Since the precision is unknown, this entails a degree
of subjectivity. We deem that the values of �σr < 5% and
|�ρ| < 0.05 implied by δ−1 = 4 suggest it safe to assume
that the resulting regularised covariance matrices are com-
patible with the original ones within the precision at which
they were determined, while ensuring stability against pos-
sibly bigger inaccuracies in the correlations. Therefore, the
fit with δ−1 = 4 will be used as reference in the remainder
of this paper.

4.3 Correlating and decorrelating experimental
uncertainties with more information

As we have mentioned in Sect. 3.1, the correlation models
provided with the measurements have to be preferred to our
regularisation procedure whenever these are available, and
if they result in a stable covariance matrix. For example,
the correlation model recommended in [23] for the analysis
of the ATLAS jets R=0.6 8 TeV measurement is used by
default in the NNPDF4.0 determination [9] and in all the fits
presented in Sect. 4.2. It is therefore not surprising that the
regularisation procedure has almost no impact on the χ2 of
this specific data set.

Correlation models, which follow from a careful experi-
mental analysis of all of the sources of systematic uncertain-
ties and of their correlations, are however not always avail-
able. Sometimes they become available only long after the
measurement is published, and sometimes a clear recommen-
dation for their usage is not provided. In order to remedy this
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lack of information, some guesswork is carried out to identify
the systematic uncertainties whose nominal correlations are
likely to be too strong. For instance, two of these [46,47] have
targeted, respectively, the ATLAS 7 TeV single-inclusive jet
measurement [48] and the 8 TeV top-pair lepton+jet mea-
surement [21]. They were performed in the framework of the
MMHT2014 global analysis [49] by inspecting the nuisance
parameters associated to each systematic uncertainty in the
χ2. Similar studies [50,51], targeting the same measurements
and based on complete decorrelation of certain systematic
uncertainties, were also carried out in the framework on the
NNPDF3.1 global analysis [52]. Sometimes these analyses
have been used to inform and/or validate the experimental
correlation models. In this respect, our regularisation proce-
dure can be utilised in the same spirit, with the advantage
that it is more general and requires less information than the
aforementioned analyses.

Here we investigate how the regularisation procedure per-
forms in comparison to the correlation models provided with
the measurement in the few cases in which these are available.
We consider two cases. The first case concerns the ATLAS
dijets R=0.6 7 TeV [24] measurement, for which a STRONG
and a WEAK (de-)correlation models are provided on top
of the nominal correlation model used in NNDPF4.0 and in
all the fits of Sect. 4.2. None of these models are clearly
recommended in [24], hence why they have not been previ-
ously considered. The second case concerns three ATLAS
8 TeV measurements, namely the W±+jet [19], the t t̄ �+jets
[21], and the single-inclusive jets R=0.6 [23] measurements.
Details on how to correlate or decorrelate systematic uncer-
tainties between bins within and across these measurements
have been provided only very recently [53]. This is the reason
why they have not been previously considered. We will refer
to this correlation model with the label ATLAS henceforth.

We then perform four fits, all based on the experimental,
theoretical, and methodological input that enters the default
NNPDF4.0 parton set, by considering these correlation mod-
els. The first two fits are performed using, respectively, the
STRONG and WEAK correlation models for the ATLAS
dijets R = 0.6 7 TeV measurement. Experimental corre-
lations for all of the other data sets are otherwise as in
NNPDF4.0. The third fit is performed using the ATLAS cor-
relation model for all the concerned ATLAS 8 TeV measure-
ments. This correlation model was not completely utilised
in NNPDF4.0 (in particular for what concerns correlations
between pairs of points belonging to different data sets). It
also does not enter the two aforementioned fits. The fourth
fit is performed by combining the WEAK and ATLAS cor-
relation models at the same time.

In Table 3 we display the value of the χ2 per data point,
χ2/Ndat, for each of these fits and compare it to that of the
NNLO NNPDF4.0 default fit, and of the fit obtained by reg-
ularising the NNPDF4.0 data set with δ−1 = 4. For con-

ciseness, we aggregate the data sets into one of the follow-
ing classes: deep-inelastic scattering, fixed-target Drell–Yan,
Tevatron Drell–Yan, ATLAS, CMS, and LHCb. For ATLAS,
we also indicate the individual χ2 of the data sets affected by
the correlation models. The corresponding number of data
points, Ndat, is also indicated.

In Fig. 6 we show the resulting PDFs, specifically the
anti-up, anti-down, charm and gluon PDFs at a scale Q =
100 GeV. PDFs are compared to the NNPDF4.0 NNLO base-
line parton set, and to the PDFs obtained by regularising the
NNPDF4.0 data set with δ−1 = 4. All the curves are nor-
malised to the NNPDF4.0 central value. For all PDFs but the
NNPDF4.0 NNLO baseline, we show only the central value.
Otherwise the uncertainty corresponds to the 68% confidence
interval.

A joint inspection of Table 3 and Fig. 6 reveals two fea-
tures. First, the fit quality, as quantified by the value of the χ2

per data point, does not change upon variation of the avail-
able correlation models, either for the data sets affected by
the model, or for the other data sets. This behaviour contrasts
with the larger variations seen upon refitting a regularised
data set, even when the amount of regularisation is fairly
limited, see Table 2. Second, the shifts of PDF central values
induced by a given correlation model, however modest they
turn out to be, are generally very close to the shifts induced by
the regularisation of the data set (specifically with δ−1 = 4).
This is apparent for the WEAK correlation model, whose
only feature is to partially decorrelate certain uncertainties
in one of the data sets with the largest condition number,
ATLAS dijets R=0.6 7 TeV [24]. In this respect, this correla-
tion model is relatively close to what the regularisation pro-
cedure achieves. For other correlation models, qualitatively
similar shifts are also seen, although with some quantitative
differences.

The fact that our regularisation procedure captures the
same qualitative shifts on PDF central values as experimen-
tal correlation models, once one or the others are used to
determine the PDFs, is suggestive. Whether this is a coinci-
dental feature, limited to the correlation models considered,
or a more general one, could only be investigated if additional
correlation models become available to be tested. In general,
it is reasonable that a correlation model altering the original
covariance matrix as little as possible while improving the
stability of the χ2 leads to results similar to those obtained
with the regularisation procedure. That being said, the shift
in central value remains so small that it would be hard to
make any conclusions based on its statistical significance.

On the other hand, the fact that using correlation mod-
els does not lead to a better χ2 is a consequence of the fact
that the condition number of the corresponding experimental
covariance matrix is almost unaltered, as we have explicitly
checked. We therefore conclude that the available correla-
tion models are not enough to lead to a stable experimental
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Table 3 The number of data points, Ndat , and the χ2 per data point, χ2/Ndat , for the NNPDF4.0 NNLO baseline fit, for each of the fits performed
with a different correlation model (see text for details), and for the fit to the NNPDF4.0 data set regularised with δ−1 = 4

Data set Ndat NNPDF4.0 χ2/Ndat

STRONG WEAK ATLAS ATLAS+WEAK δ−1 = 4

Deep-inelastic scattering 3089 1.12 1.12 1.12 1.12 1.12 1.11

Fixed-target Drell–Yan 195 0.98 1.00 0.99 0.99 0.99 0.97

Tevatron Drell–Yan 65 1.11 1.10 1.09 1.09 1.10 0.93

ATLAS total 679 1.24 1.24 1.24 1.23 1.24 1.04

W++jet 8 TeV 15 0.79 0.78 0.79 0.79 0.79 0.79

W−+jet 8 TeV 15 1.49 1.49 1.49 1.49 1.50 1.38

t t̄ �+jets yt 8 TeV 4 3.28 3.14 3.06 3.04 3.16 2.98

t t̄ �+jets yt t̄ 8 TeV 4 3.83 3.58 3.57 3.54 3.65 3.40

jets R=0.6 8 TeV 171 0.68 0.69 0.68 0.68 0.68 0.69

dijets R=0.6 7 TeV 90 2.14 2.16 2.15 2.14 2.15 1.10

CMS total 474 1.31 1.31 1.31 1.31 1.30 1.21

LHCb total 116 1.55 1.56 1.54 1.55 1.55 1.56

Total 4618 1.16 1.16 1.16 1.16 1.16 1.11

Fig. 6 The PDFs obtained by fitting the NNPDF4.0 data set with corre-
lation models provided by the experiment for a subset of measurements
(see text for details). From top to bottom, left to right, we show the
anti-up, anti-down, charm and gluon PDFs at a scale Q = 100 GeV.
PDFs are compared to the NNPDF4.0 baseline parton set, and nor-

malised to its central value. Also shown are the PDFs obtained in a fit
to the NNPDF4.0 data set regularised with δ−1 = 4. For all PDFs but
the NNPDF4.0 baseline, we show only the central value. Otherwise the
uncertainty corresponds to the 68% confidence interval. All PDFs are
accurate to NNLO
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covariance matrix and χ2. In light of these considerations, we
find that our regularisation procedure can possibly be used
as a useful diagnosis tool to inform and validate correlation
models not only at the level of PDF fits, but also at the level
of the corresponding experimental analyses.

5 Conclusions

In this paper we have shown how an (even slightly) inaccu-
rate determination of bin-by-bin correlations in the uncertain-
ties of experimental measurements may make the χ2 statis-
tic fluctuate substantially, by more than one standard devia-
tion. This problem is particularly relevant when dealing with
high-precision measurements, in which the largest fraction
of the uncertainty is correlated. This is the case for current
and future LHC measurements that are routinely confronted
with theoretical predictions by means of statistical inference.
Because the χ2 is routinely utilised as a figure of merit in
these analyses, instabilities in its computation can make the
interpretation of the results unreliable.

We have formulated the problem rigorously, by deriving a
stability criterion for the acceptable fluctuations of the uncer-
tainties on data correlations. The criterion ensures that the
expectation value of the χ2 does not overestimate its true
value by an amount larger than its statistical fluctuation. To
this aim, the criterion defines a bound on the singular values
of the correlated part of the matrix of uncertainties. Build-
ing upon this criterion, we have then devised a regularisation
procedure, whereby instabilities in the correlations of exper-
imental uncertainties are removed with minimal information
and without loss of generality. The idea is to clip the singular
values of the correlated part of the matrix of uncertainties
to a constant δ, whenever these are smaller than that, while
leaving the rest of the singular vectors unchanged. This way,
directions that do not contribute to instability are not affected
and the alteration to the original matrix is minimal.

The key assumptions underlying the regularisation pro-
cedure are that correlations of experimental uncertainties
across data points are determined much less precisely than
the uncertainties on each data point, and that the prevalent
source of inaccuracy on correlations concentrates on a subset
of data points and originates from a small number of corre-
lated uncertainties. The regularisation procedure leads to a
covariance matrix that is more stable than the original one,
when used to compute the χ2, is compatible with it within
the precision with which it is determined, and does not lead
to a reduction of the total uncertainty.

We have demonstrated how the regularisation procedure
works in a toy model, and in a particular problem relevant
to LHC precision physics that relies on the evaluation of the
χ2 as a figure of merit: PDF determination. Specifically, we
have considered the NNPDF4.0 determination [9], which is

based on the widest data set to date. We have shown how
the regularisation procedure can be utilised as a diagnosis
tool to characterise the data set, in particular to single out
those measurements for which an inaccurate estimation of
experimental correlations may significantly affect their χ2.
We have also studied how PDFs change if the nominal data set
is replaced by a suitably regularised data set, and how these
changes depend on the regularisation parameter δ. To this
purpose, we have repeated the NNPDF4.0 baseline fit, now
utilising a data set regularised with δ−1 = 1, 2, 3, 4, 5, 7.

We have found that the χ2 of some LHC data sets can be
indeed significantly affected by inaccuracies in the determi-
nation of the correlations of their uncertainties. These inaccu-
racies can be reasonably regularised by choosing δ−1 = 4.
This value sets the precision with which uncertainties and
correlations are known to less than 5% and 0.05, respectively.
We have demonstrated that, by regularising the NNPDF4.0
data set with δ−1 = 4, the global χ2 is smaller than that of
the baseline NNPDF4.0 determination by about 2.4σ . This
means that it is only 5.3σ away from the unity expectation
(instead of 7.7σ in the baseline NNPDF4.0 determination).
At the same time, PDFs remain unaltered. These results high-
light the fact that the nominal χ2 determined in [9] is likely
to be spuriously inflated by inaccuracies in the estimation of
the experimental correlations in the LHC data.

Finally, we have studied how the regularisation procedure
performs in comparison to correlation models provided with
the measurements in the few cases in which these are avail-
able. We have found that our regularisation procedure cap-
tures the same qualitative shifts on PDF central values as
experimental correlation models, once one or the others are
used to determine the PDFs. Whether this is a coinciden-
tal feature, limited to the correlation models considered, or a
more general one, could only be investigated if additional cor-
relation models become available to be tested. On the other
hand, using correlation models does not lead to a better χ2

(or to a decrease in the condition number of the correspond-
ing experimental covariance matrix). We therefore conclude
that the available correlation models are not enough to lead
to a stable χ2. In light of these considerations, we find that
our regularisation procedure can possibly be used as a use-
ful diagnosis tool to inform and validate correlation models
not only at the level of PDF fits, but also at the level of the
corresponding experimental analyses.
Our regularisation procedure is made publicly available as
part of the NNPDF software [10]. The PDF sets discussed in
this paper are available, in the LHAPDF format [54], from
the NNPDF web page [55].
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A Glossary

In this Appendix we recall the linear algebra definitions and
the notation that are used throughout the paper. Let A be a
N × M real matrix, A ∈ R

N×M , such as the error matrix
introduced in Sect. 2. Then the following statements hold.
Singular value decomposition The matrix A admits a sin-
gular value decomposition of the form

A = USV t , (41)

where U and V are N × N and M × M orthogonal matrices,
respectively, and S is a N × M diagonal matrix with non
negative real numbers in the principal diagonal. The diagonal
entries of S, si , i = 1, . . . , min(N , M), are the singular
values of A, ordered by decreasing size, with smax = s1

being the largest singular value.
Rank The rank of the matrix A, denoted as rank(A), is the
number of strictly positive singular values. The matrix A if
full rank if its rank is min(N , M).
Pseudoinverse The pseudoinverse of the matrix A is

A+ = V S+Ut , (42)

where S+ is a M × N diagonal matrix with entries

S+
i i =

{

1/si si �= 0

0 si = 0
, i = 1, . . . , min(N , M). (43)

Right inverse The right inverse of the matrix A (which we
denote with the same notation used for the pseudoinverse) is
the M × N matrix A+ such that

AA+ = IN×N . (44)

EuclideannormThe Euclidean (or vector-induced L2) norm
of the matrix A is

‖A‖2 = max{x∈RM :‖x‖=1} ‖Ax‖ = smax. (45)

Frobenius norm The Frobenius norm of the matrix A is

‖A‖F =
√

∑

i

∑

j

A2
i j = √

tr(AAt ) =
√
√
√
√

rankA
∑

i

s2
i . (46)

In Sects. 2–3 we always indicate with a subindex whether we
are referring to the Euclidean or the Frobenius norm of the
matrix A. By noting that si ≤ smax, it follows from Eqs. (45)
and (46) that

‖A‖2 ≤ ‖A‖F ≤ √

rank(A) ‖A‖2 . (47)

B Proof of Eq. (14)

In this Appendix, we provide a proof of Eq. (14). Let X and
Y be arbitrary matrices of dimensions M × N and N × M ,
respectively. We first show that

‖XY‖F ≤ ‖X‖F ‖Y‖2 . (48)

We write the respective singular value decompositions,
X = UX SXV t

X and Y = UY SY V t
Y , and define

W = V t
XUY , (49)

which is orthogonal because both factors are. Then

‖XY‖2
F = ‖SXW SY ‖2

F . (50)

Hence

‖XY‖2
F =

∑

i

∑

j

(

SX (i i)W(i j)SY ( j j)
)2

, (51)

where the sums are implied to run over the relevant matrix
dimensions M and N . We bind the singular values SY ( j j) by
their maximum, the Euclidean norm of Y. That is

‖XY‖2
F ≤

∑

i

⎛

⎝S2
X (i i)

∑

j

W 2
(i j) ‖Y‖2

2

⎞

⎠ . (52)

Because W is orthogonal, it follows that

‖XY‖2
F ≤

(
∑

i

S2
X (i i)

)

‖Y‖2
2 = ‖X‖2

F ‖Y‖2
2 . (53)

The converse relation

‖XY‖F ≤ ‖X‖2 ‖Y‖F (54)

can be proven analogously. Hence we obtain the result,
Eq. (14),

‖XY‖F ≤ min (‖X‖F ‖Y‖2 , ‖X‖2 ‖Y‖F ) . (55)
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