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Summary

In the last decade, multimodal medical imaging has been increasingly employed
in the management of many pathologies thanks to its intrinsic ability to integrate
complementary information from different imaging modalities. Although radiomics
has been extensively studied for tissue characterization, relatively few strategies
have been developed and optimized for tissue characterization in multimodal im-
ages. The aim of this thesis is to present a set of innovative multimodal-based
strategies for accurate and robust tissue characterization in three different clinical
contexts: thyroid cancer, neuroendocrine tumor and prostate cancer.

First, a novel strategy was developed to quantitatively describe the vascular-
ization of thyroid nodules in terms of architecture, tortuosity and flow in three-
dimensional (3D) power-doppler ultrasound (PDUS) images. The main novelty of
this approach is the distinction between peripheral and central vascularization of
the nodule in a 3D framework. A classifier was trained and cross-validated on a
dataset of 30 thyroid nodules in order to differentiate benign from malignant thyroid
nodules, achieving a sensitivity and specificity equal to 93.33 % and 73.33 %, respec-
tively. Without considering distinction between peripheral and central vasculariza-
tion, sensitivity of the predictive model drops to 66.67 %. This result confirms the
importance of vascularity distribution (i.e., peripheral and central) in the differen-
tiation between benign and malignant nodules. Integration with contrast-enhanced
ultrasound is complex due to pitfalls associated with the image acquisition protocol
but a strategy is under working for a more complete characterization of the nodule
microvascularization.

Second, a semi-automatic algorithm for the segmentation of neuroendocrine tu-
mors (NETs) in 68Ga-DOTA-TOC PET/CT images is proposed. Although several
radiomics approaches have been developed for tumor characterization in 18F-FDG
PET/CT images, investigation has to be made on the recent 68Ga-DOTA-TOC
PET imaging. The segmentation algorithm requires the user intervention only for
the initial definition of the region-of-interest on PET and CT images, then, it ex-
ploits clustering techniques and active contours guided by image and edge informa-
tion. Validation on 57 primary and metastatic neuroendocrine lesions with hetero-
geneous intensity and contrast demonstrate that the developed algorithm could be
used to reduce analysis time and variability of manual segmentation. Furthermore,
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robustness analysis on 45 radiomics features extracted from the neuroendocrine tu-
mors show that only 22 out of 45 are robust to both segmentation and discretisation.
In particular, textural features based on low grey levels or large runs/zones empha-
sis are not robust, hence, their use is not recommended for multi-centric studies.
Although CT images are fundamental for anatomic localization of these tumors,
the current acquisition protocol makes difficult the extraction of quantitative data
for segmentation and characterization in multimodal fashion.

Finally, a fully multimodal pipeline for the differentiation of healthy and can-
cerous prostatic tissue in multiparametric magnetic resonance images (mpMRI) is
presented. The pipeline incorporates optimized algorithms for image registration
of apparent diffusion coefficient/T2-weighted (ADC/T2w) sequences and whole-
mount histology/T2w (WMH/T2w) images. The main advantage is that contour-
ing of the tumor in the WHM directly defines the region-of-interest on the ADC and
the T2w images, thus, limiting the subjectivity of manual tumor annotation on the
mpMRI. Multivariate analysis is then performed using first-order textural features
extracted from mpMRI (ADC and T2w) images. Results on 30 peripheral zone can-
cers demonstrate that the use of mpMRI improves diagnostic accuracy compared to
single sequences. Moreover, ADC values are lower in cancer than in normal tissue
(P<0.0005), whereas T2w image heterogeneity (standard deviation and entropy)
is lower in cancer than in normal tissue (P<0.005). These findings confirm that
multimodal integration is beneficial for prostate cancer characterization.

In conclusion, although multimodal integration has great potential in every
clinical context analyzed, it is not always feasible due to pitfalls in image acquisition.
The strategies proposed in this thesis obtained promising results in segmentation,
registration and characterization of tissue. These methodologies will be extended
to larger datasets and additional imaging modalities to create robust and high-
throughput multimodal radiomics systems for the diagnosis of diseases with the
ultimate goal of improving the patient’s health and lifestyle.
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Chapter 1

Introduction

1.1 Tissue characterization
It is difficult to give a single and complete definition to the term "tissue charac-

terization", but the definition used by R.C. Chivers, almost 40 years ago, can serve
as an introduction to the work of this thesis as it highlights some fundamental
concepts that will be constantly used during the manuscript. He wrote [1]:

"Tissue characterization may be defined in its purest form as the identi-
fication of one or more physical parameters of a small volume of tissue
that are sufficiently well correlated with the type or condition of the
tissue"

The keywords to highlight in this definition are: "physical parameters", "small vol-
ume of tissue", "correlated with the type or condition". The first keyword, "physical
parameters", represents what we measure and implies the kind of interaction with
the tissue, a physical interaction. The second highlighted term, "small volume of
tissue", is where we extract these physical parameters from and the use of the
adjective "small" gives the idea of a local measurement. Finally, the third term,
"correlated with the type or condition", indicates the reason why these physical
parameters are identified, that is, the correlation with the type or condition of the
tissue.

This definition may encompass a wide spectrum of methodologies but it has
a tight connection with medical imaging (after all, R.C. Chivers is an ultrasound
imaging researcher). Medical imaging refers to a set of techniques able to create
images of internal parts of the body for the purpose of diagnosising disease, mon-
itoring disease and aiding the treatment strategy decision [2]. There are different
medical imaging techniques, such as ultrasound imaging, radiography, magnetic res-
onance imaging, nuclear medicine imaging, and the common feature among these
techniques is a physical interaction with the tissue. What differentiates one tech-
nique from the other is the way it interacts with the tissue. For example, in the
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Introduction

case of ultrasound imaging the tissue is excited using acoustic waves [1] whereas in
radiography, electromagnetic waves with frequency within a specific range radiate
the tissue [3]. By changing the method of energy transmission and other param-
eters, such as the frequency of excitation, it is possible to interact with different
tissues and to identify, using Chivers’ words, different "physical parameters" of a
tissue. Further, the excitation wavelength, which in case of electromagnetic waves
is related to the energy by the Planck equation, regulates the scale at which the
physical interaction with the tissue occurs. The adjective "small" in the definition
of tissue characterization refers to this, and in medical imging terms it is known as
image resolution. Therefore, tissue imaging can be definitely seen as a pure form
of tissue characterization.

Over time, medical imaging has become a fundamental and necessary tool for
the diagnosis, active suirvellance, and the treatment response assessment of the
majority of existing pathologies. Furthermore, in the new era of Big Data and
Artificial Intelligence, medical images are increasingly seen as data arrays from
which quantitative parameters describing the tissue physiology or pathology. This
practice is called Radiomics and was described by Gillies at al. in 2016 in the work
Radiomics: Images Are More than Pictures, They Are Data [4] as:

"the development of processes for high-throughput extraction of quanti-
tative features that result in the conversion of images into mineable data
and the subsequent analysis of these data for decision support"

In this respect, the interpretation that has been given in this thesis to the term
"tissue characterization" is the cascade of Chivers’ vision with that of Gillies; in
other words, a process that starting from the local physical interaction leads to the
extraction of features that are able to quantitatively and globally characterize a
tissue.

1.2 Multimodal medical imaging
In the last decade, multimodal medical imaging has been showing significant

improvements of imaging-based computer-aided systems for detection, diagnosis,
treatment response quantification, and surgical guidance. The basic concept is the
integration of medical images from different imaging modalities into a single system.
This concept may be incorporated in the more general term of data fusion, i.e. the
process of integrating data from different sources in order to obtain inferences that
could not be obtained using a single source [5].

Since different imaging modalities reflect different intrinsic properties of a tissue
which may be complementary to each other, it is reasonable that their integration
may yield to more reliable and deepen characterization of a tissue. A typical com-
bination of imaging modalities includes a functional and an anatomical imaging
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1.3 – Thesis objectives

modality. The functional modality depicts the tissue functionality, such as its
metabolism or blood flow, whereas anatomical imaging (also known as morpholog-
ical or structural imaging) excels in depiction of the anatomy and the morphology
of tissues [6]. For example multimodal positron-emission tomography/computed
tomography (PET/CT) imaging, which is extensively used in clinical practice, com-
bines the sensitivity of functional PET images to detect tissue with abnormal func-
tionality with the high-resolution anatomical description of CT images. With the
growing development of new hybrid systems for multimodal image acquisition and
novel functional images, there is a growing need for novel and reliable strategies for
multimodal medical image processing.

Multimodality pitfalls When applied to real clinical data, multimodal strate-
gies have to cope with some critical points:

• large amount of images could require high computational cost for processing;

• in some cases, different imaging modalities need to be registered, and this
may be very complex depending on the modalities;

• different imaging modalities have different artifacts which must be dealt be-
fore analysis;

• data extracted from different imaging modalities may be redundant.

Therefore, for some clinical problems multimodality may present more pitfalls than
pearls.

1.3 Thesis objectives
The aim of this thesis is to present a set of innovative strategies for tissue char-

acterization in multimodal medical images. Potential and pitfalls of multimodal
integration are discussed in three different clinical applications: i.e. thyroid can-
cer, neuroendocrine tumor and prostate cancer. The proposed approaches include
advanced techniques for image segmentation, registration and feature extraction
and are optimized to work on ultrasound, nuclear medicine and magnetic reso-
nance images. The ultimate goal is to identify and overcome current limitations of
the traditional medical image processing techniques and pave the way towards the
clinical use of computer-aided systems based on multimodal medical images.

1.4 Thesis outline
The thesis is divided into 6 chapters. The second chapter provides a technical

background about the main multimodal imaging techniques and a description of
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current strategies for multimodal tissue characterization. In the third chapter, a
novel strategy is proposed for the three-dimensional quantification and characteri-
zation of thyroid nodule vascularization in power doppler ultrasound images. In the
fourth chapter, the clinical problem of neuroendocrine tumor is discussed, a semi-
automatic algorithm for neuroendocrine tumor segmentation in positron emission
tomography images is proposed, in addition, robustness of radiomics features ex-
tracted from neuroendocrine tumors is evaluated. In the fifth chapter, an innovative
strategy based on advanced image registration algorithms for the differentiation be-
tween healthy and cancerous tissue in multiparametric magnetic resonance images
is presented. Finally, the conclusions of the thesis and future works are reported in
the last chapter.
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Chapter 2

Background

This chapter summarizes the most used medical imaging modalities. Imaging
modalities are described in terms of physical principles, technology and main ap-
plications. Subsequently, the main multimodal combinations are outlined. Finally,
current strategies for tissue characterization in multimodal images are discussed.

2.1 Imaging modalities
2.1.1 Ultrasound imaging
Physical principles Ultrasounds are acoustic waves with a frequency above
20 kHz, hence, above the frequency band audible from humans. Acoustic waves
propagate through a medium with a velocity v which depends on the coefficient of
stifness C (or bulk modulus) and the density ρ of the medium through the following
expression:

v =
√︄

C

ρ
(2.1)

An important medium property is the acoustic impedance Z which represents
the resistance that the medium presents to the sound wave and depends on the
density and the coefficient of stifness:

Z =
√︂

ρC = ρv (2.2)

When propagating through a homogeneous medium, the sound wave is continously
attenatued due to the absorption effect:

A(z) = A0e
−µ0z (2.3)

where A0 is the initial amplitude of the wave before absorption, µ0 is the absorption
coefficient which depends on the medium material and on the wave frequency; z is
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the travelled distance through the medium. This equation is called Lambert-Beer
law and was originally used to model attenuation of electromagnetical waves [1].

Absorption is not the only kind of interaction with the medium. Indeed, when
a sound wave with amplitude A0 meets a planar interface between two media with
different acoustic impedances Z1 and Z2, generates a reflected sound wave (reflec-
tion), called echo, of amplitude Ar given by:

Ar = A0

(︃
Z1 − Z2

Z1 + Z2

)︃
(2.4)

The energy which is not reflected is propagated to the second medium (transmis-
sion).

Technology In its simplest form, the technology consists of a ultrasound trans-
ducer which produces ultrasounds in response to an electrical impulse thanks to
piezoelectric effect. An ultrasound probe contains, therefore, a set of piezoelectric
crystals on its surface that emit ultrasound waves. Since the piezoelectric effect
is reversible (a mechanical stress of a piezoelectric material produces a electrical
field), the same crystals are able to receive ultrasound waves. Therefore, the ul-
trasound probe is used to insonate the tissue with an ultrasound pulse, then, the
pulse propagates through the tissue and produces an echo when encounters an in-
terface between two tissues with different acoustic impedance, the echo produced
is received by the same probe.

Modes

Brightness-mode Brightness-mode, abbreviated as B-mode, is the most com-
mon ultrasound imaging mode. The amplitude of the echo and the time interval
between the emission of the ultrasound pulse and the echo detection are measured.
Assuming an average propagation velocity of ultrasounds in biological tissues equal
to c = 1540 m s−1, it is possible to find the depth d at which the echo is produced:

d = c∆t

2 (2.5)

On one hand, the amplitude of the echo which is related to the strongness of the
reflection is converted in to brightness of a pixel (also called echogenicity). On the
other hand, the time interval is needed for the spatial localization of the echo source.
To have a two-dimensional image, a multitude of ultrasound scan lines produced by
a string of piezoelectric crystals are combined, this process is called beamforming.
B-mode is widely used in many clinical fields, such as vascular medicine [2], cardi-
ology [3], gynecology [4], ophtalmology [5], otolaryngology [6], musculoskeletal [6]
and urology [7]. B-mode is mostly used for visualization and size measurement of
anatomical structures [5, 2], but also for detection of abnormalities [6, 8]. Figure
2.1 shows example of B-mode images of thyroid gland and testicle.
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2.1 – Imaging modalities

A B

Figure 2.1: B-mode image of testicle (A) in transversal and longitudinal view. B-mode image
of thyroid gland with a nodule (B). Testicular B-mode ultrasound can be used for testicular
volume estimation and heterogenity evaluation for fertility evaluation [8]. On the other hand,
ultrasonographic features extracted from B-mode images of thyroid nodules are used for risk
stratification [9]

Color and power doppler ultrasound Color doppler ultrasound (CDUS)
and power doppler ultrasound (PDUS) are two ultrasound-based functional modal-
ities. They allow for visualization and measuring of blood flow thanks to the ex-
ploitation of the Doppler effect. Given a source and a observer, the doppler effect
is the increase/decrease of the wave frequency detected by the observer when there
is a non-null relative velocity of the source with respect to the observer. The fre-
quency shift ∆f is related to the wave frequency f to the relative velocity of the
source vr and the angle θ between the source velocity direction and the direction
from the source to the observer through the following equation [10] :

∆f = 2fvr cos(θ)
c

(2.6)

In Doppler ultrasound imaging, the source are the blood cells while the observer
is the ultrasound probe. To maximize the Doppler signal, the ultrasound beam
should have the same direction of the blood flow (cos(θ) = 1), but this is not
feasible, hence, an angle between 30° to 60° is commonly used for a fair trade-off
between sensitivity and ease of acquisition operation. Figure 2.2 is a graphical
illustration of the Doppler image acquisition.

In CDUS, the Doppler shift frequency is used to compute the blood flow di-
rection and velocity. The result is showed through a colormap, i.e. flow moving
away from the probe the flow is represented in blue, otherwise in red. The color
intensity represents the velocity of blood cells. In PDUS, the power of the Doppler
signal, which is derived from the echoes amplitudes, is measured. This quantity is
related to the number of blood cells moving in the sample volume. In this case, a
monochromatic colormap is used. Figure 2.3 shows a CDUS and a PDUS image of
a thyroid nodule.
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Figure 2.2: Graphical illustration of the Doppler ultrasound image acquisition [10].θ is the angle
between the source velocity direction and the direction from the probe to the moving object.

Some of the clinical applications of doppler ultrasound imaging are transcranial
doppler ultrasound [11], vascular doppler ultrasound [12], doppler echocardiogra-
phy [13] and oncology [14, 15].

A B

Figure 2.3: Color doppler ultrasound image (A) and power doppler ultrasound image (B) depicting
the blood flow of a thyroid nodule. The arrangement of the vascular network is associated with
the malignancy of the thyroid nodule [14]

Contrast-enhanced ultrasound In contrast-enhanced ultrasound (CEUS),
a contrast agent which consists of microbubbles with a size from 1 µm to 8 µm filled
with a low-solubility perfluorinated gas and stabilized in phospholipid membrane
is used. The contrast agent is intravenously administrated to the patient when
insonated the microbubbles which travel in the blood enhance the reflection of ul-
trasounds increasing the contrast of images and thus, creating images which depict
the blood perfusion in tissues. Further, the small size allows the microbubbles
to travel also through the microcirculation making this mode suitable for charac-
terizing microvasculature [16]. In the clinic, CEUS imaging is used for liver and
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2.1 – Imaging modalities

thyroid lesion vascularity characterization [17, 18], detection and characterization
of cardiovascular diseases such as artherosclerosis [19].

Superb microvascular imaging Superb microvascular imaging (SMI) is a
novel ultrasound mode which exploits the Doppler effect, as CDUS and PDUS, but
uses advanced image filtering techniques for clutter (strong echoes generated by
very slow moving tissue) suppression in order to detect with a better sensitivity
blood flow of small vessels [20]. Due to its recent introduction, there is no evidence
of its effectiveness in a clinical context. Anyway, preliminary research results on the
microvascular characterization of thyroid nodules [20], breast lesions [21] and liver
lesions [22] are promising. Figure 2.4 shows an example of superb microvascular
image of a thyroid nodule.

Figure 2.4: Superb microvascular image of a thyroid nodule.

Elastosonography Elastosonography exploits the physical concept of elastic
strain, i.e. an elastic material under a mechanical stress produces a strain which is
proportional to the mechanical stress applied. In this mode, ultrasound waves are
used to stress mechanically a tissue, then, the strain field (strain elastosonography)
or the shear wave (shear wave elastosonography) are using different techniques and
the Young modulus which measures the stiffness of the tissue can be estimated [23].
Elastonography has been used and is most effective in the characterization of tissues
which change their elastic properties when in pathological condition, e.g. muscu-
loskeletal diseases [24], breast lesion differentiation [25] and thyroid nodule risk
stratification [26] where generally malignant thyroid nodules have a higher stiffness
than benign ones. Figure 2.5 shows the elastonographical examination for a benign
and a malignant thyroid nodule.
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A B

Figure 2.5: Strain elastosonographical image of a benign thyroid nodule (A) and a papillary
caricinoma (B). The malingnant nodule had higher stiffness compared to the benign one, this
feature may be associated with an increased risk of malignancy in thyroid nodules [26].

2.1.2 Magnetic resonance imaging
Nuclear magnetic resonance Magnetic resonance imaging (MRI) exploits

the phaenomenon of nuclear magnetic resonance (NMR) which was discovered by
Bloch and Purcell in 1946 [27, 28]. NMR involves three actors, nuclei with non-null
magnetic moment, a static magnetic field and an oscillant magnetic field. When a
nucleus with a gyromagnetic ratio, γ, under a static magnetic field, B0, is excited
with an oscillating magnetic field, B1, with a frequency equal to ω = γB0 (in usual
applications, this frequency belongs to the radiofrequency spectrum) it experiences
a transition between two energy states. In the lower energy state, i.e. B1 is off,
most part of the magnetic moments of the nuclei are parallel to the B0 field; in
the higher energy state, i.e. B1 is on, most part of the magnetic moments of the
nuclei are anti-parallel to the B0. Transition from lower energy to higher energy
state is called excitation, the inverse transition is called relaxation. Excitation
gives rise to a rotation of the magnetization vector, M , which is the vectorial sum
of the nuclei magnetic moments, producing a transversal component (Mtr /= 0)
of the magnetization vector1. In the relaxation phase, the transversal component
of M decays and the longitudinal component Mz returns to its original value [29].
Bloch equations describe the dynamics of relaxation after a B1 radiofrequency pulse
through two characteristic times, i.e. T1 and T2. The first one regulates how fast
the longitudinal component of M reaches its original value:

dMz

dt
= M0 −Mz

T1
(2.7)

1Using a laboratory coordinate system, where z is the longituginal direction parallel to B0,
x and y are the directions of the plane transveral to B0, Mtr is used to indicate the transversal
component of M
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2.1 – Imaging modalities

where M0 is the initial value of Mz. T1 is called spin-lattice relaxation time.
On the other hand, T2 regulates the dynamics of the decay of the transversal

components of M :
dMx

dt
= −Mx

T2
+ γMyB0 (2.8)

dMy

dt
= −My

T2
+ γMxB0 (2.9)

T2 is called spin-spin relaxation time. Figure 2.6 shows the solutions of the two
Bloch equations.

Figure 2.6: Solution of Bloch equations describing relaxation dynamics [29]

Technology Figure 2.7 graphically describes a magnetic resonance imaging sys-
tem.

Briefly, a magnetic resonance system consists of:

• Superconductive magnet which produces the static magnetic field B0;

• Radiofrequency coils which emit the radiofrequency magnetic field B1 and
receives the FID signal;

• Gradient coils which are responsible of the spatial localization.

Image contrast and sequences In MRI, hydrogen nuclei are the target nuclei
thanks to their favorable gyromagnetic ratio and their abundant presence in tissues.
Nuclei are excited by a series of radiofrequency pulses. Each pulse is characterized
by an angle which represents the angle formed by the magnetization vector and
the longitudinal direction, e.g. right after a 90° pulse Mz = 0 and |Mtr| = M0.
A receiver coil is used to measure the free induction decay (FID) signal which
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Figure 2.7: Graphical illustration of the components of a magnetic resonance imaging system,
from https://science.howstuffworks.com/mri.htm

is proportional to the transversal component of the magnetization. By analyzing
the Fourier spectrum of the FID signal, it is possible to estimate the dynamics of
relaxation. Each tissue present different dynamics of relaxation (T1 and T2 values
for different human tissues are reported in figure 2.8).

Figure 2.8: T1 and T2 values at 1.5 T of different tissues [29]

Main sources of image contrast in MRI are given by variations of local relaxation
times, e.g. T1 and T2, and varations of hydrogen nuclei density (also called proton
density, PD). Indeed image intensity I can be expressed as:

I ∝ PD · e−T E/T 2 · (1− e−T R/T 1) (2.10)

where TE is called echo time and TR is called repetition time and are characteristic
timing parameters of the sequence used. A sequence consists of a series of pulses of
different angles temporally spaced from each other. Depending on the tissue to be
imaged a different sequence of pulses is chosen. Further, depending on the problem,
more than one sequence can be selected. For example, a morphological sequence to
study the anatomy of an organ, e.g. T2-weighted sequence, and a functional one
to study the tissue physiology, e.g. diffusion-weighted.

12
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2.1 – Imaging modalities

Proton density Proton density (PD) images are obtained by using a TE ≪
T2 and a TR≫ T1. The image obtained reflects the proton density in tissue. The
use of this sequence is diffused in the anatomical imaging of articular cartilage [30]
and brain tumor detection and characterization [31].

T1-weighted T1-weighted (T1w) images are acquired with a TE ≪ T2 and
TR ∼ T1. These images are used for anatomical imaging of bones and brain,
but also for detection of pathological conditions of myocardial tissue [32], brain
tissue [33] and musculoskeletal tissue [34].

T2-weighted A T2-weighted (T2w) sequence is characterized by TE ∼ T2
and TR≫ T1. The T2w sequence has been extensively used for anatomical descrip-
tion of pelvic area soft tissues [35], brain tumor imaging and characterization [34,
36].

Diffusion-weighted The image contrast in diffusion-weighted (DW) imaging
is the diffusion of water molecules. Cell membranes act as microbarriers to the dif-
fusion of water molecules in tissue. Different tissue can exhibit different diffusion
coefficients D of water molecules, hence, image contrast can be generated. By ap-
plying a magnetic gradient in a specific direction, it is possible to estimate diffusion
of water molecules along that direction using the Stejskal-Tanner equation which re-
lates the diffusion coefficient D with the NMR signal attenuation with the following
exponential e−bD, where b depends on the gradient strength and timing [29]. The
coefficient b is called b-value and typical values are in the range from 400 s mm−2

to 1400 s mm−2. Tissues with higher diffusion have lower diffusion-wieghted image
intensity, and viceversa. In practice, there are many sources of signal attenuation
and it is difficult to measure real diffusion. To reduce other signal attenuation
sources, DW images acquired with different b are combined to build maps of the
apparent diffusion, for example:

ADC1000 = log DWb1000

log DWb0

(2.11)

These maps are called apparent diffusion coefficient (ADC) maps and they showed
excellent results for detection and characterization of pathologies in brain [37],
prostate [38] and muscles [39].

Dynamic contrast-enhanced Dynamic contrast-enhanced imaging requires
the injection of a contrast medium with particular paramagnetic properties, such
as gadolinium, which interacts with hydrogen nuclei and enhances the NMR sig-
nal [29]. After the contrast agent administration, the MR image intensities dynam-
ically change due to the relaxation times shortening. Hence, multiple acquisitions
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at different time points are performed and semi-quantitative parameters about the
dynamics of perfusion of the contrast agent are extracted. This modality showed
successful results in the angiogenesis characterization of brain tumor [40], breast
cancer [41] and prostate cancer [42].

Quantitative magnetic resonance imaging So far, we discussed about
what is called "conventional" MRI. Quantitative MRI (which is not to be coun-
founded with the quantitative analysis of MRI) consists of a set of imaging tech-
niques which are able to acquire maps of physical or chemical variables that can
be measured. Compared with "conventional" MRI, these maps are expressed in
physical units and absolute values can be compared among different sequences and
patients [43]. However, in most of usual applications, conventional MRI is preferred
to quantitative MRI due to the reduction of acquision time.

2.1.3 Nuclear medicine imaging
Nuclear medicine imaging belongs to the family of functional imaging. Coun-

trary to the imaging techniques described so far where the energy is transmitted
by a device external to the patient, in nuclear medicine (NM) imaging the source
of radiation is located within the patient.

Physical principles A radiotracer, which consists of a radioisotope tagged to
a tracer which biochemically interacts with substances or cells inside the body,
is administered to the patient [10]. Over time, the radioisotope begins ejecting
particles from its nucleus to reach energy stability. This process is called radioactive
decay and its dynamics depend on the isotope. The radioactivity (R) of a isotope
is defined as the amount of atoms which decay per second and is measured in
Becquerel (Bq). The process of radioactive decay can be modeled by the exponential
law:

S(t) = S0e
− ln 2t/t1/2 (2.12)

where S0 is the initial radioactivity and t1/2 is the isotope’s half-life which is the
time that the isotope takes to lose half of its initial radioactivity [10]. There
are multiple modes of decay, in each one different particles are emitted. For NM
imaging, two particels are of interest: β+ and γ. The β+ particles are positrons
which get annihilated when they encounter an electron; after annihilation two γ
photons with an energy of 511 keV which travel in opposite directions are produced
(figure 2.9). In γ decay, a γ particle is directly ejected from the nucleus (figure 2.9).

The two main NM imaging modalities are positron-emission tomography (PET)
and single photon-emission computed tomography (SPECT). The former one ex-
ploits the β+ decay mode, while the latter one exploits the γ decay mode.
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A B

Figure 2.9: Illustration of the β+ (A) and γ (B) decay [10].

Modalities Both modalities allow the visualization of the distribution of the
radiotrace throughout the body. Further, a huge advantage of these modalities is
the possibility to extract quantitative parameters of the concentration of radiotracer
which allow the comparison across different patients or time points, such as the
standardized uptake value (SUV) parameter which is the ratio between radioactivity
concentration and the whole-body concentration of the injected radioactivity [10].
Anyway, the technology behind PET and SPECT modalities is slightly different.

PET A PET imaging system consists of a ring with several detector blocks
which are composed of a scintillator crystal, which transforms γ photons in visible
photons, connected to a photomultiplier tube, which converts the photon energy to
an electrical signal thanks to the photoelectric effect. Since the nature of the β+
decay and the opposite directions of the two γ photons, the ring geometry is re-
quired in order to count the number and the position of annihilations (figure 2.10).
Indeed, through electronics, only γ photons that are detected simultaneously along
the same scanning line (in practice, within a specified delay) are counted. Then,
combining informations between different scanning lines, time-of-flight of photons
and image reconstruction algorithms, an estimate of the annihilation sources loca-
tion is obtained [10].

Depending on the target physiological or pathological process, a radiotracer is
chosen. The most used radiotracer in PET imaging is the 18F -fludeoxyglucose (18F -
FDG) where the isotope is 18F and the tracer is a molecule (fludeoxyglucose) of the
glucose family. 18F -FDG-PET imaging are used to detect areas characterized by
high glucose metabolism, hence, its use is diffused in oncological applications, since
most part of tumoral cells have a glucose metabolism higher than normal cells [44].
18F -FDG-PET images can be used for detection, stratification, radiotherapy and
treatment response evaluation of lung tumors, brain lymphomas and melanomas,
breast tumors [45] but also for non-oncological applications [46], such as the evalu-
ation of the progression rate of Parkinson’s disease [47]. Although 18FDG-PET is
the most widely used radiotracer in NM imaging, other radiotracers were proposed.
For example, new radiotracers based on 68Ga-DOTA-peptides have been introduced
in order to study the neuroendocrine tumors (NET). These tracers are able to bind
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Figure 2.10: PET ring detector and the coincidence detection principle. Only γ photons that are
detected simultaneously along the same scanning line (in practice, within a specified delay) are
considered for image formation [10].

to somatostatin receptors which are expressed by NETs [48].

SPECT In SPECT imaging, photons are detected by a device called Gamma
camera. This device is composed of three main parts: i) a collimator which is
an array of holes separated by high attenuating material (such as lead) and used
to limit the angle of acceptance of photons; ii) a scintillator and iii) an array
of photomultiplier tubes. Advanced hardware and software systems are used to
estimate position and the energy of the emitted photon.

Clinical applications of SPECT imaging are dopamine receptor imaging for the
study of Parkinson’s disease or multiple system artophies using the 123I-IBZM ra-
diotracer [49], early detection of cardiac amyloids [50] or to detect bone metastasis
using 99mTc bonded to phosphorous compounds [51].

2.1.4 Multimodal imaging modalities
It is important to note that the image modalities listed above are only a part of

the existing ones. As discussed in the introduction, when it comes to multimodality,
multiple modalities are integrated into one system. In reality, one can talk of multi-
modality even when integrating information from two types of images coming from
the same imaging modality. To give an example, there are multimodal systems that
provide for the simultaneous extraction of information from the elastonographic im-
age and the B-mode image, in that case we talk of multimodal ultrasound imaging.
Another classic example is multiparametric-MRI (mp-MRI) where anatomical MRI
sequences are combined with functional MRI sequences (e.g. T2w + DW or T1w
+ DCE).
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First multimodal modalities were software fusion, i.e. modalities were acquired
using different acquisition system and fused using registration algorithms. In the
late 1990s, the first hybrid acquisition system was proposed, it was a PET/CT
scanner. Nowadays, hybrid acquisition systems which allow for the "simultane-
ous" acquisition of images of different modalities using the same acquisition system
(hardware fusion) are increasingly used. The advantage of using hybrid acquisition
technology is the intrinsic co-registration of modalities due to significantly lower
changes in patient position. The most diffuse hybrid scanners are PET/CT and
SPECT/CT scanners. Recently a new hybrid acquisition technology has been pro-
posed for multimodal PET/MRI images. Further, efforts for combining MRI with
ultrasound are currently under development [52, 53].

2.2 Multimodal image analysis strategies
Figure 2.11 shows a general pipeline of a system for the quantitative tissue

characterization in unimodal images. The first step is the loading of the image,
subsequently, there is the segmentation process, in which the regions-of-interest of
the image are identified. At that point, feature extraction is performed to compute
descriptive features of the tissue in the regions-of-interest, for example texture de-
scriptors. The last step could be whether classification (in the case of differentiation
systems, for example healthy/pathological differentiation) or statistical analysis (in
the case of stratification systems, for example tumor aggressiveness evaluation).

Image Loading Image Segmentation Feature Extraction
Classification

(Statistical analysis)

Figure 2.11: General pipeline of a unimodal system for tissue characterization

In a multimodal system, for simplicity let us consider only two images of different
modality, multiple strategies are feasible based on which level data fusion occurs [54]
(figure 2.12). Three levels of fusion can be identified: i) classifier level fusion; ii)
feature level fusion; iii) image level fusion. As the level of data fusion affects the
final outcome, it is important to choose the right strategy. This choice has to be
made considering several factors, whether the two images can be registered or not,
how much information do the images share, a-priori knowledge about significant
patterns in images.
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Image Loading Image Segmentation Feature Extraction
Classification

(Statistical analysis)

Classifier level fusion

Feature level fusion

Image level fusion

Figure 2.12: General pipeline of a multimodal system for tissue characterization

2.2.1 Classifier level fusion
In this strategy, both images are processed separately, two classifiers are trained

separately using the unimodal feature sets, then, final output is obtained by fus-
ing the output of both classifiers (for example majority voting or weighted sum of
single outputs). In rare cases, this strategy may be preferred to others, e.g. when
image registration between the two imaging modalities is unfeasible (different ac-
quisition views, lack of anatomical reference) and when the nature of the extracted
features makes it impossible or incorrect to merge the two modalities or more com-
monly, when the designed system must be able to produce a final outcome also
when an imaging modality is missing for any reason. This strategy was applied to
predict distant failure in lung cancer after stereotactic body radiation in PET/CT
images [55]. Other examples of this strategy were only found in multimodal image
segmentation studies [56, 57].
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2.2.2 Feature level fusion
Feature level fusion means that features previously extracted from single imag-

ing modalities are concatenated or combinated in some way. This feature set is then
used to train a unique classifier model. Features may be combined using either prin-
cipal component analysis (PCA) to reduce data redundancy or multivariate analysis
or simple average. This strategy is more common than the classifier level fusion
and its advantage is the ability to merge information from different modalities into
a single set of features. Applications include prognostic prediction for nasopharyn-
geal carcinoma in 18F -FDG-PET/CT images [58], radiotherapy treatment response
quantification for lung cancer in 18F -FDG-PET/CT images [59], diagnosis of non-
palpable breast lesions in digital mammography/DCE-MRI images [60], progression
evaluation of mild cognitive impairment and early Alzheimer’s disease in 18F -FDG-
PET/MRI images [61].

2.2.3 Image level fusion
By adopting this strategy, the two images need to be fused in a single image

which combine the information of both modalities. At that point, all the process-
ing is performed on the fused image. Several studies showed that image fusion
achieves excellent results thanks to the effects of image sharpening and significant
feature enhancement [62]. Most common image fusion methods are based on PCA
and Wavelet transform [62]. A limitation of the image level fusion strategy is that
it requires accurate image registration, indeed, a misalignment between the im-
ages can produce blurring artifacts and image quality deterioration, and this can
significantly affect the predictive performance. Anyway, with the development of
novel fast and accurate registration algorithms, this strategy is increasingly used.
Examples are the fusion of PET/CT images for the prediction of immunotherapy
response of non-small cell lung cancer [63], quantification of local metabolic tumor
volume in PET/CT fused images [64], the fusion of 18F -FDG-PET/MRI images
(wavelet-based) for prediction of lung metastases in soft-tissue sarcomas [65] and
for the quantification of mild cognitive impairment progression [66].

2.2.4 Other strategies
Recently, novel strategies which are difficult to assign to the aforementioned

categories have been proposed. In [67], authors developed a multiparametric imag-
ing radiomic (mpRAD) framework. This framework was based on the concept of
tissue signature which was the array of intensity values corresponding to the same
voxel across all image modalities. From the tissue signature map, different matri-
ces, similar to the classic texture matrices, were computed to finally obtain a set
of multiparametric textural features. The strategy was tested in mpMRI images

19



Background

of breast cancer, the result was the improvement of performance for diagnosis of
breast cancer compared to radiomics features extracted from single modalities.

Furthermore, with the fast growing development of deep learning techniques,
efforts have been made on adapting convolutional neural networks (CNN) to mul-
timodal images for tissue segmentation and classification. In [68], thee CNN-based
strategies, by fusing layer outputs at different levels, were implemented for soft
tissue sarcomas segmentation in PET, CT and MRI images. Regarding tissue clas-
sification, different CNN-based strategies especially in the neuroimaging field for
Alzheimer’s disease staging were proposed which differ in CNN architecture and
level of fusion [69].
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Chapter 3

Thyroid nodule characterization

3.1 Introduction
According to American Cancer Society, the incidence of thyroid cancer is rapidly

increasing and the chance of being diagnosed with thyroid nodule has tripled in
the past three decades [1]. Thyroid nodules are pathologies characterized by the
formation of solid or liquid lumps within the thyroid gland caused by anomalous
growth of thyroid cells [2]. Most thyroid nodules are benign and do not show any
sign of cancerous cell growth. Previous studies showed a malignancy rate of thyroid
nodules from 5 % to 10 % [3, 4].

With the high incidence of thyroid nodules and the low malignancy rate, the
risk of overdiagnosis is important [5].

The standard method for diagnosing a thyroid nodule is by ultrasound-guided
fine-needle aspiration (US-FNAB), where a fine-needle is guided by ultrasound
imaging to collect samples of tissue from the thyroid nodule. The result of FNAB
is the cyological classification. Different cytological classification systems exist (e.g.
Thy classification proposed by the British Thyroid Association, Bethesda classifica-
tion [6]). In Italy, the standard classification is guided by the SIAPEC-IAP Italian
Consensus Working Group whose most recent guideline was proposed in 2014 [7].
According to the SIAPEC-IAP, the tissue sample is classified in seven cytological
subtypes:

• TIR 1 malignancy risk can not be quantified due to low quality sample, a
repeated FNAB is recommended.

• TIR 1C the sample contains fluid from a cyst but low presenza of epithelial
cells or colloid to confirm cyst type. Low malignancy risk but a repeated
FNAB could be recommended depending on the clinical context.

• TIR 2 goiter with malignancy risk lower than 3%. Follow up is recommended.
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• TIR 3A high cellular density, not enough microfollicular structures to assess
follicular neoplasm. Malignancy risk is lower than 10%. Recommendations
are follow up or repeated FNAB.

• TIR 3B high cellular density and presence of microfollicular trabecular struc-
tures which suggest follicular neoplasm or presence of cellular nuclei alter-
ations suggesting papillary carcinoma. Malignancy risk higher than 15-30%.
Recommendation is surgical treatment.

• TIR 4 high suspect of papillary carcinoma. Malignancy risk higher than
60-80%.

• TIR 5 samples with malignancy risk higher than 95% including papillary car-
cinoma, medullary carcinoma, anaplastic carcinoma, lymphoma and metastatic
neoplasia.

Although cytological examination does not provide a definitive diagnostic as-
sessment, each cytological class leads to different treatment strategies. The classes
with most diagnostic uncertainty are TIR3A and TIR3B. In the previous Italian
Society of Pathological Anatomy and Diagnostic Citology - International Academy
of Pathology (SIAPEC-IAP) classification (2007), these two classes were merged
into a unique undetermined cytology TIR3 which in most cases was treated with
surgery, leading over-treatment since only half of TIR3 nodules were actually ma-
lignant [8]. Although the new cytological classification provides better detection
accuracy of thyroid nodule malignancy, diagnostic efficiency of TIR3B class is still
under debate due to its variability in malignancy rate. Improving the character-
ization of these nodules with alternative techniques may lead to a reduction of
clinical cost thanks to avoidance of unnecessary surgeries while improving patients’
lifestyle.

It is well known that tumor vascularization plays a fundamental role in cancer
growth, invasion, and metastasis [9]. In fact, angiogenesis (i.e., the formation of
new vessels) is a key process during the early or middle stages of cancer, since
they are highly oxygen demanding and therefore produce a large quantity of an-
giogenetic growth factors [10]. Indeed, papillary carcinomas have a vessel density
that is three-fold higher than the adjacent normal thyroid tissue [11]. Further, also
morphology of intratumoral vessels in papillary carcinoma is relevant: these vessels
typically present a more tortuous vascularization with respect to those in benign
nodules [11]. Regarding follicular carcinomas, it was previously shown that whereas
degree of vascularity between the follicular adenomas and the follicular carcinomas
is relatively similar, vascular distribution, meaning the spatial distribution of vessels
throughout the nodule, is a relevant factor for their differentiation [11]. In overall,
more than 40% of nodules that present a central hypervascularity are found to be
malignant, whereas a benign marker is a predominant peripheral flow [12].
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Numerous imaging techniques are clinically used to assess tumor vasculariza-
tion, such as magnetic resonance imaging (MRI) [13], contrast-enhanced computed
tomography (CT) [14], and ultrasonography (US). Compared to MRI and CT, ul-
trasonography has emerged as an optimal imaging modality, despite its lower image
resolution, thanks to being inexpensive and not using ionizing radiation. Further-
more, the use of the Power-Doppler ultrasound (PDUS) and Contrast-Enhanced
ultrasound (CEUS) gives forth important information of vasculature. The addi-
tional use of a mechanical 3D ultrasound probe can further improve sensitivity
in vascularization quantification, as the probe does not require movement and the
acquisition of the entire nodule volume allows a more complete vascularization anal-
ysis and allows the differentiation between central and peripheral blood flow in a
3D context.

Recent research has focused greatly on the quantification of the vascular pattern
in numerous imaging modalities, using quantitative vascular parameters that can
be employed to differentiate between benign and malignant or healthy and diseased
tissue [15, 16]. In this respect, in the specific field of thyroid nodule differentiation
using ultrasonography, many studies have focused on the use of only 2D images.
Specifically, Lyshchik et al. [17] analyzed 86 thyroid nodules on 2D PDUS images
and extracted parameters that quantify the vascular density and the strength of
flow. Sultan et al [18] quantified the vascular network and pattern in three different
regions of the nodule (central, rim and surrounding) in 2D Color Doppler US im-
ages, demonstrating that the vascular density and the flow velocity in the central
region were significant (P < 0.05) for thyroid nodule differentiation while not in
the whole nodule. Finally, Baig et al. [19] showed that vascular density computed
in the central and peripheral regions combined with other sonographic features can
increase the diagnostic accuracy of thyroid nodule. Some authors proposed the
use of an additional architectural feature, number of penetrating vessels, which
quantifies the number of vessels that cross the border between the central and pe-
ripheral region and resulted to be associated with malignancy [20, 21]. However,
these methods were limited to 2D images of the nodule. Previous studies using
3D CEUS and or PDUS images can be found in the works by Molinari et al. [22],
where the entire 3D vascular network of the thyroid nodule was reconstructed using
3D CEUS images and by Caresio et al. [23] ,who extended the work and analyzed
both 3D CEUS and PDUS images of the nodule. Both of these studies that worked
on 3D images computed the vasculature skeleton from the acquired images and
further calculated various quantitative features on the skeleton that take into con-
sideration the morphology and the tortuosity of the nodule vasculature, which were
proven able to discriminate between malignant and benign nodules. The features in
these studies, however, were calculated in volumes-of-interest throughout the entire
nodule, without distinguishing between the central and the peripheral vasculature.
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Objectives The aim of this chapter is to differentiate between TIR3A with low
suspect of malignancy and TIR3B with high suspect of papillary carcinoma by
quantitative characterization of the nodule vascularization in terms of flow, vas-
cular architecture, and vessel tortuosity using 3D PDUS images. The novelty in
this study is the use of a fully 3D approach which takes into consideration the
entire volume of the nodule, and the subsequent distinction between central and
peripheral vasculature which is determinant in diagnostical differentiation between
benign thyroid nodules and papillary carcinomas. An innovative method to quan-
tify the number of penetrating vessels in 3D images was proposed. Although in
this research phase the use of CEUS images has not yet been introduced and ma-
lignancy of 10 out 15 TIR3B nodules has not yet been histologically confirmed, this
is the first methodology proposed for the 3D quantitative characterization of the
vascularization of the nodules and could have a strong impact in the improvement
of diagnostic differentiation between benign and malignant nodules. This study is a
part of a project which was born through the collaboration with the endocrinology
division of the Molinette and Mauriziano hospitals (Torino, Italy) with the final
aim of improving the diagnosis of thyroid nodules with undetermined TIR3 cytol-
ogy through the quantitative description of the vascular network from functional
ultrasound images.

3.2 Materials and methods
The proposed method were developed and validated on a 2.21 GHz quad-core

and 16GB RAM.

Patients A total of 62 patients with a thyroid nodule underwent PDUS and
CEUS examination. Only patients whose nodules were cytologically examined and
with TIR3A and TIR3B outcomes were included in this study. The final database
was made up of 30 thyroid nodule PDUS volumes acquired on 30 patients (15
TIR3A and 15 TIR3B). High suspiciousness of papillary carcinoma thyroid nod-
ules for TIR3B nodules were evaluated looking to the presence of nuclear changes
suggestive of papillary carcinoma by an expert pathologist. For 5 out of the 15
TIR3B nodules, papillary carcinoma was histologically confirmed. The mean age
of the patients was 55.5 ± 14.7 years, and there was a prevalence of females com-
pared to males (females = 18, 60%). The average dimensions of the nodules in
terms of longitudinal diameter (LD), anteroposterior diameter (AD) and transver-
sal diameter (TD) were as follows: TIR3A, LD = 21.77 ± 11.25 mm, AD = 14.55
± 7.5 mm, TD = 17.91 ± 9.47 mm; TIR3B: LD = 25.35 ± 14 mm, AD = 18.25
± 9.89 mm, TD = 21.58 ± 13.65 mm. The ultrasound volumes were acquired at
two hospitals in Torino, Italy, specifically the Molinette A.O.U. Città della Salute
e della Scienza and the A.O.U. Ordine Mauriziano di Torino. The study complies
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with the Declaration of Helsinki and all patients were informed of the study and
signed an informed consent before being included.

Image acquisition Three-dimensional PDUS scans were acquired on all patients
using the same experimental protocol. Two expert operators (R.G. with more than
30 years of experience, M.D. with more than 20 years of experience) acquired all
volumes. The same model ultrasound device was used at both centers, specifically a
MyLab 70 (Esaote, Genova, Italy) equipped with a 4-13 MHz 3D linear-volumetric
array transducer (BL433). This transducer allows a 3D scan to be done without
physically moving the probe. The scanning angle was set to 50°, using a scanning
step within the range from 0.24° to 0.30°. The B-mode gain setting was fixed at 50%
and the time gain compensation was maintained neutral. The Power Doppler gain
was adjusted and standardized by initial increasing the gain until noise appeared
and then gradually decreasing the gain until the noise disappeared. Finally, the
central frequency was kept at 5 MHz, the wall filter was set to 4 Hz, and the pulse
repetition frequency was fixed at 1 kHz.

Thyroid nodule segmentation Segmentation of the thyroid nodule was essen-
tial for two reasons: i) to extract features only within the vascular network of the
nodule; ii) to allow the separation of the peripheral and the central part of the
nodule. Each thyroid nodule was segmented as following:

1. The initial PDUS volume was sub-sampled reducing the number of frames to
30% of the total number of frames (on average about 40 frames per volume),
so that the manual segmentation could be performed on a reasonable number
of images;

2. the sub-sampled volume was manually segmented frame-by-frame by an ex-
pert operator (R.G.) creating a 3D binary mask;

3. the mask was up-sampled to the original number of frames with a cubic
interpolation.

3.2.1 Vascular network extraction
The method adopted to extract the vascular network of the nodule consisted of

the following processing steps:

1. The Doppler signal, which is represented in light blue scale, was extracted
from the PDUS volume (figures.3.1A and 3.1E) by computing the standard
deviation of the volume across the color channels (figures 3.1B and 3.1F).
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2. Vessel-like structures were enhanced using the filter proposed by Caresio et
al. [23]. Similarly to the Frangi filter [24], this filter computes the Hessian of
the image by convolving the image with a Gaussian kernel at different σ. For
each σ, the vesselness response is computed as:

VRσ(i, j, k) =
{︄

0, S(i, j, k) = 0
λ1(i,j,k)
S(i,j,k) , S(i, j, k) /= 0 (3.1)

where
S(i, j, k) =

√︂
λ2

1(i, j, k) + λ2
2(i, j, k) + λ2

3(i, j, k) (3.2)

The final filtered image is obtained as follows:

VR(i, j, k) = max
σmin<σ<σmax

VRσ(i, j, k)) (3.3)

In other words, the output image represents the vesselness response at differ-
ent scales σ (i.e. size of vessels). As suggested by Caresio et al., a range from
1 to 5 was used as σ. The final result is an image where the blood information
is enhanced and noise is reduced (Fig. 3.1C and 3.1G).

3. The filtered image was thresholded using Otsu’s method to obtain a binary
volumetric image where true voxels contain a vessel (Fig. 3.1D and 3.1H).

4. Skeletonization was performed to the binarized volume to extract a topologi-
cal description of the vessel network. As the nodule vascularization might be
very complex, a ridge tracking approach such as the height ridge transversal
algorithm [25] would be computationally expensive and fail in complicated
branching points. The skeletonization algorithm used in this work is based
on the medial axis thinning which is one of the most used in this kind of
application [26, 27]. This algorithm iteratively removes border voxels from
the object while preserving the topology and the Euler number, until the cen-
terline of the object is obtained. In order to correct some imperfections of
the skeleton, isolated voxels were removed. Figure 3.2 shows the result of the
skeletonization.

3.2.2 Central and peripheral segmentation
In order to obtain the masks of the peripheral (Mp) and central (Mc) region of

the nodule, 3D morphological operators were used. In particular, Mc was obtained
by eroding the mask of the nodule (Mn) with a spherical structuring element while
Mp was computed as the set subtraction of Mc from Mn. The radius of the spherical
structuring element was set to obtain a thickness of the peripheral crown equal to
10% of the radius of the equivalent sphere of the thyroid nodule. This specific
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A B C D

E F G H

Figure 3.1: Vascular extraction algorithm steps. (A,E) Original PDUS volume frames of a TIR3A
and a TIR3B nodule, respectively. (B,F) Extraction of Doppler signal. (C,G) Result of the
vesselness filter. (D,H) Image binarization with Otsu thresholding.

A B

Figure 3.2: Three-dimensional rendering of the final skeleton of the vascular network for a TIR3A
nodule (A) and a TIR3B nodule (B).

percentage (Percentage Ratio of the Equivalent Radius, PRER) was determined
using an optimization procedure (described in 3.2.4). Figure 3.3 shows an example
of the vascularization segmentation in central (in red) and peripheral (in green)
regions of a TIR3A (panel A) and a TIR3B nodule (panel B).
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A B

Figure 3.3: Central and peripheral segmentation of the vascular network of a TIR3A (panel A)
and TIR3B (panel B) nodule. Green and red lines represent the centerlines of peripheral and
central vessels, respectively.

3.2.3 Quantitative features extraction
The extracted quantitative features can be classified in three groups:

Architectural features Cancer angiogenesis process determines changes of the
vascular architecture such as increase of vessels and intersections. Furthermore,
papillary carcinomas can present vascular invasion from the peripheral to the central
area [11]. In order to measure architectural changes the following three features
were computed from the vascular network model:

• Number of vascular Trees (NT), which is the number of vessel trees of the
skeleton. This feature was computed as the number of 26-connected objects
of the skeleton.

• Number of vascular Branches (NB), which is the number of vessels
branching from trees of the skeleton; This feature was computed as the num-
ber of intersections between the main path (longest path between every pair
of endpoints) of each tree and branches.

• Number of Penetrating Vessels (NPV), number of vessels crossing the
interface between the peripheral and central regions of the nodule. To com-
pute this feature, the central mask Mc was dilated using a spherical structur-
ing element with radius equal to 5 voxels. The interface mask was computed
as the difference between the eroded central mask and the original central
mask. Subsequently, a binary volume was obtained by logically intersecting
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the interface mask with the skeleton volume. The number of penetrating ves-
sels was defined as the number of 26-connected objects present in this new
binary volume.

Tortuosity features Since vascularity of malignant thyroid nodules present higher
tortuosity than that of benign ones, tortuosity was measured using the following
metrics:

• Distance Metric (DM), which is defined as the ratio between the arc length
of the vessel and the Euclidean distance between its endpoints:

DM =
∑︁N−1

k=1 ∥Pk+1 − Pk∥
∥PN − P1∥

(3.4)

• Inflection Count Metric (ICM), which is the product between the number
of inflections, Ninf , and the distance metric plus 1:

ICM = Ninf ·
∑︁N−1

k=1 ∥Pk+1 − Pk∥
∥PN − P1∥

+ 1 (3.5)

• Sum of Angles Metric (SOAM), which is computed as:

SOAM =
∑︁N−3

k=1 CPk∑︁N−2
k=1 ∥Pk+1 − Pk∥

(3.6)

where CPk represents the total angle (torsional and in-plane) at point k;
hence, this metric is the total curvature along the curve normalized by the
arc length and is measured as radians/voxel.

Tortuosity metrics were extracted from the principal paths of the trees, i.e.
excluding the branches. Further, the vascular network skeleton always contains
more than one vessel, whereas the previously defined metrics are intended for one
single vessel. In order to effectively assign each nodule a vascularization tortuosity
descriptor, it is therefore necessary to combine the metrics computed on various
vessels into one final value that correctly describes the vessel cluster tortuosity. A
simple average of the metric values would erroneously give the same weight to long
and short vessels. In order to assign a tortuosity value to a cluster of vessels, the
three metrics were computed for each vessel. Then, the final DM and ICM were
obtained by summing numerators of DM and ICM, respectively, and dividing by
the sum of denominators. For the SOAM, the angles of each vessel were summed
and divided by the sum of the arc length of each vessel [15].
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Flow features Peripheral and central regions of thyroid nodules present differ-
ent patterns in terms of blood flow and their quantification is useful for the dif-
ferentiation between benign and malignant thyroid nodules. Then, blood flow was
quantitatively characterized using the following conventional indices:

• Vascularization Index (VI), which describes the vascularization of tissue
and is defined as the ratio between the number of voxels with non-zero doppler
signal (Nc) and the total number of voxels of the region under analysis (Nt):

V I = Nc

Nt

(3.7)

• Flow Index (FI), which is proportional to the average number of blood cells
and is computed as:

FI =
∑︁Nc

i gli
Nt

(3.8)

where gli is the intensity of the i-th voxel with non-zero doppler signal.

Every feature, except for NT, NB and NPV, was calculated for each of the three
regions segmented (peripheral, central and total nodule). NT and NB were calcu-
lated only for the total nodule since in most cases the vascular trees are extended
throughout the nodule and the segmentation in peripheral and central region could
create spurious trees and branches. In overall, 18 features were extracted for each
nodule. Features extracted from the peripheral and central region will be referred
using the subscript “p” and “c”, while for features extracted from the entire nodule,
the subscript “t” will be used. Figure 3.4 graphically describes the extraction of
architectural and tortuosity features.

3.2.4 Statistical analysis and classification
In this preliminary study, we considered TIR3B nodules which showed high

suspectness of papillary carcinoma at the cytological examination as malignant
nodules. TIR3A nodules were considered benign nodules. Mean and standard
deviation values of features were computed for both groups. Mann-Whitney U-test
was performed to test the null hypothesis that data extracted from the two groups
were from continuous distributions with equal medians. The level of significance
was set to 0.05.

One-way multivariate analysis of variance (MANOVA) was performed to com-
pare the group means. MANOVA combines linearly the initial features to create
new variables called canonical variables which maximize the variance among groups.
Canonical variables were ordered in decreasing explained variance. Level of signif-
icance was set to 0.05.
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Figure 3.4: Graphical illustration of architectural and tortuosity features extraction.

Automatic classification was performed using fuor different models: i) Multi-
variate linear regression (MLR), ii) Linear support vector machine (lSVM), iii)
Gaussian support vector machine (gSVM) and iv) artificial neural network (ANN).
Models were trained and validated using the quantitative features extracted to eval-
uate their differentiation capability [28]. Five-fold cross-validation was performed
to avoid over-fitting. Two feature selection methods were compared: i) Principal
component analysis (PCA) which transforms the initial variables into a reduced
number of principal components which explain a portion of the total variance; the
first four principal components were retained as they always explained at least
90% of the total variance as empirically showed best performance ii) minimum re-
dundance maximum relevance (mrMR) algorithm which calculates a subset of the
initial features by maximizing the relevance with respect to the response variable
and minimizing the redundancy among variables; the ten features with highest
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ranking were selected. The five-fold cross-validation scheme works as follows:

1. Randomly split the dataset in five stratified folds. Each fold will include 3
TIR3A nodules and 3 TIR3B nodules;

2. select four folds as training set. Perform feature selection;

3. Classify the test set with the learned model and save the confusion matrix;

4. go back to step 2 until each fold is used as test set;

5. sum up the confusion matrices to obtain a unique confusion matrix. The
same classification experiment was performed using only features extracted
from the total nodule to test whether if the peripheral/central division could
increase the differentiation performance. Traditional accuracy (ACC), sen-
sitivity (SENS) and specificity (SPEC) were computed from the confusion
matrix.

Tuning the percentage ratio of the equivalent radius In order to optimize
the percentage ratio of the equivalent radius (PRER) for dividing the nodule mask
in peripheral and central mask, the experiment was repeated five times using five
different values for the percentage parameter: 5%, 10%, 15%, 20% and 30%.

3.3 Results
The computational time required for vascular network extraction and the cal-

culation of the features was about 2.5 ± 0.4 min for nodule. Tables 3.1, 3.2 and
3.3 report the mean, standard deviation and P-values of the features extracted
from the vascular network of the total nodule, the peripheral part and the central
part. The Mann-Whitney U-test showed that malignant nodules had higher val-
ues of NTt (P<0.005), NPV (P<0.005), DMt (P<0.05), ICMt (P<0.05), ICMp

(P<0.005), SOAMp (P<0.05) and ICMc (P<0.05). No flow parameters showed
statistical differences between TIR3A and TIR3B nodules.

MANOVA assessed the existence of one canonical variable (c1) which differs
among the two groups, dimension of the space containing the group means was
equal to 1 with a p-value lower than 0.005. Figure 3.5 shows the scatter plot
of the two most discriminant canonical variables (c1 and c2). PCA showed best
performance compared to mrMR algorithm (Table 3.4 and Table 3.5). The lSVM
and the ANN classifiers yielded the best classification accuracy equal to 83.33%,
a sensitivity of 93.33% and a specificity of 73.33% (Table 3.4). When the model
was trained using only features from the whole nodule, the classification accuracy
and sensitivity dropped to 66.67% and 60%, respectively, while specificity remained
unchanged.
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Feature TIR3B nodules TIR3A nodules P-value
NTt 10.31 ± 8.12 4.31 ± 4.41 <0.005
NBt 16.12 ± 14.22 11.33 ± 12.92 0.26

NPV 5.44 ± 2.21 3.17 ± 1.97 <0.005
DMt 2.67 ± 0.19 2.48 ± 0.19 <0.05
ICMt 101.43 ± 27.62 78.87 ± 24.25 <0.05

SOAMt 1.49 ± 0.02 1.48 ± 0.03 0.20
V It 0.71 ± 0.24 0.61 ± 0.25 0.20
FIt 0.38 ± 0.17 0.31 ± 0.11 0.25

Table 3.1: Mean and standard deviation values of the features extracted from the vascular network
of the whole nodule. Every feature is dimensionless apart from SOAM which is measured in
radians/voxel. NT = number of trees; NB = number of branches; NPV = number of penetrating
vessels; DM = distance metric; ICM = inflection count metric; SOAM = sum of angles metric;
VI = vascularization index; FI = flow index. Subscript “t” indicates that the feature is extracted
from the total nodule.

Feature TIR3B nodules TIR3A nodules P-value
DMp 1.84 ± 0.17 1.76 ± 0.17 0.26

ICMp 63.18 ± 18.52 36.79 ± 15.34 <0.005
SOAMp 1.43 ± 0.03 1.38 ± 0.06 <0.05

V Ip 0.76 ± 0.23 0.66 ± 0.22 0.25
FIp 0.42 ± 0.16 0.35 ± 0.12 0.28

Table 3.2: Mean and standard deviation values of the features extracted from the peripheral
vascular network of the nodule. Subscript “p” indicates that the feature is extracted from the
peripheral region of the nodule.

Best percentage ratio of the equivalent radius Regarding PRER tuning,
five-fold cross validation with the lSVM classifier revealed that the percentage equal
to 10% obtained the best accuracy, sensitivity and specificity. Table 3.6 shows the
classification performance for each value of PRER tested.

3.4 Discussion
Vascularization is known to be an important biomarker for the characterization

and differentiation of thyroid nodules. Several studies confirmed that malignant
thyroid nodules present a denser and more complex vascular network than benign
ones. Vascularity pattern, i.e. how the vessels are distributed spatially throughout
the nodule, plays a relevant role in the differentiation of benign and malignant
nodules [11]. More than 40% of nodules which show central hypervascularity are
malignant, while a predominant peripheral flow is a benign marker [12]. Further,
each histological subtype of thyroid cancer have different characteristics in terms of
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Feature TIR3B nodules TIR3A nodules P-value
DMc 2.11 ± 0.17 2.09 ± 0.16 0.46

ICMc 88.23 ± 23.98 59.62 ± 23.40 <0.05
SOAMc 1.46 ± 0.02 1.45 ± 0.03 0.16

V Ic 0.68 ± 0.26 0.58 ± 0.27 0.25
FIc 0.36 ± 0.18 0.28 ± 0.11 0.38

Table 3.3: Mean and standard deviation values of the features extracted from the central vascular
network of the nodule. Subscript “c” indicates that the feature is extracted from the central
region of the nodule.

Model ACC SENS SPEC
MLR 23/30 11/15 12/15
lSVM 25/30 14/15 11/15
gSVM 20/30 10/15 10/15
ANN 25/30 14/15 11/15

Table 3.4: Classification performance with Multivariate Linear Regression (MLR), linear support-
vector machine (lSVM), gaussian support-vector machine (gSVM) and artificial neural network
(ANN) using principal component analysis as feature selection method. Performance was mea-
sured using accuracy (ACC), sensitivity (SENS) and specificity (SPEC).

vascular density, distribution and morphology [11]. For these reasons, quantitative
description of the vascular network in terms of flow, architecture and tortuosity
in functional modalities such as PDUS could be a powerful tool for aiding in the
correct diagnosis of thyroid nodules, which is known to present pitfalls in both
ultrasound and cytological evaluation especially in TIR3 nodules [29, 6].

In this study, 30 thyroid nodules with an undetetermined cytology were retro-
spectively analyzed, 15 TIR3A nodules with low presence of microfollicular/trabecular
structures and 15 TIR3B nodules with high suspect of papillary carcinoma due to
nuclei alterations.

Quantitative analysis considering the total nodule showed that in agreement
with previous studies [22, 23] architectural feature NTt resulted to be higher in
TIR3B nodules (p<0.005) suggesting that papillary carcinoma had higher number
of vessel trees due to tumor angiogenesis whereas NBt did not reach level of signif-
icance in contrast to previous studies. This may be possible for two likely reasons:
i) TIR3B nodules present lower number of branches with respect to TIR4 nodules
which show more distinctive features of papillary carcinoma; ii) PDUS is not the
best imaging modality for detection small branches formation, indeed, for microvas-
cularization characterization CEUS imaging is the preferred imaging modality [22].
In this study, the number of penetrating vessels, which showed to be higher in ma-
lignant nodules in previous studies based on 2D CDUS images [20], was introduced
in a 3D analysis of the nodule vascular network for the first time. As expected,
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Model ACC SENS SPEC
MLR 21/30 11/15 10/15
lSVM 21/30 10/15 11/15
gSVM 20/30 10/15 10/15
ANN 21/30 12/15 9/15

Table 3.5: Classification performance with Multivariate Linear Regression (MLR), linear support-
vector machine (lSVM), gaussian support-vector machine (gSVM) and artificial neural network
(ANN) using minimum redundancy maximum relevance as feature selection method. Performance
was measured using accuracy (ACC), sensitivity (SENS) and specificity (SPEC).
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Figure 3.5: (Left) Scatter plot of the canonical variables computed by MANOVA grouped by
TIR3A and TIR3B cytological classification; (Right) Weights of original features into the canonical
variable c1. The first canonical variable (c1) was able to discriminate the two groups with a p-
value lower than 0.005. Architectural features NTt and NPV , and ICM computed from total,
peripheral and central region were the features with highest weights in the first canonical variable.

NPVt resulted to be higher in suspicious malignant nodules (p<0.005) suggesting
that the two types of nodules have differences in the perfusion of the central region
of the nodule confirming the importance of vascularity distribution in the charac-
terization of TIR3 nodules. It is known that global morphology of intratumoral
vessels in papillary carcinoma is relevant [11, 23], however morphology has never
been described in function of the region of the nodule. Both global and regional (pe-
ripheral and central) tortuosity resulted to be higher in malignant nodules, indeed
DMt, ICMt, ICMp, SOAMp and ICMc resulted to be higher in malignant nodules
(p<0.05). Interestingly, SOAM, which is specialized in detecting vessels forming
high frequency coils [15], resulted to be significantly higher only when computed in
the peripheral region suggesting that peripheral network of TIR3B nodules contain
vessels arranged in a more serpiginous way than benign ones. Surprisingly, no flow
parameters differed significantly between the two groups, suggesting that vascular
density and strength of flow properties are similar in these cytological borderline
nodules. In previous studies [22, 23], every architectural and tortuosity feature was
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PRER ACC SENS SPEC
5% 66.67% 80% 53.33%
10% 83.33% 93.33% 73.33%
15% 70% 73.33% 66.67%
20% 56.67% 53.33% 60%
30% 53.33% 53.33% 53.33%

Table 3.6: Five-fold cross-validation PCA-SVM model accuracy, sensitivity and specificity varying
the percentage ratio of the equivalent radius. Ten percent revealed to be the best choice as it
yielded the best classification performance. PRER = percentage ratio of the equivalent radius;
ACC = accuracy; SENS = sensitivity; SPEC = specificity.

resulting higher in malignant nodules, anyway, in these other studies the tortuosity
was calculated in volumes-of-interest which were typically located in the central
region of the nodule and not on the entire nodule, as done in this study. Moreover,
the two other studies considered a dataset containing also TIR2 and TIR4 nodules
with different histological cancer subtypes (cystic lesions, papillary carcinoma, fol-
licular carcinoma and Hurtle cell carcinomas) whereas in the current study only
TIR3B nodules which presented typical features of papillary carcinoma were in-
cluded. This study is a preliminary quantitative analysis of vascular network of
undetermined TIR3A and TIR3B nodules. Compared to other quantitative studies
of thyroid nodule vascularization, the main novelty of this study is the quantitative
analysis of the 3D model of the thyroid nodule vascular network in peripheral and
central region (table 3.7).
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A classification experiment was performed using different classifier models and
different feature selection methods. PCA was used in order to reduce the data
dimensionality, as some features presented high correlation (ICMt-ICMc and NTt-
NPV , r equal to 0.86 and 0.81). mrMR feature selection method performed worse
than PCA, likely to the difficuly of choosing the number of features to be kept
in the final subset and the exclusion of significant variables which did not show
high relevance. In a 5-fold cross-validation scheme, lSVM and ANN yielded best
classification performances in terms of accuracy, sensitivity and specificity equal to
83.33%, 93.33% and 73.33% , respectively. Anyway, it is not appropriate to claim
the superiority of the two classifiers over the others, given the small performance
differences and the dataset numerosity. Training and validating the same classifier
model using only features extracted from the whole nodule produced a decrease in
the performance (ACC = 66.67%, SENS = 60%, SPEC = 73.33%). This confirms
that the division in peripheral and central region increases the diagnostic accuracy
of the system.

Some limitations have to be acknowledged. First of all, papillary carcinoma was
histologically confirmed for only 5 out of 15 TIR3B thyroid nodules. For the rest of
TIR3B nodules histological confirmation will be available in short time. Second, for
TIR3A nodules surgical removal is not recommended, follow-up repeated biopsies
will be considered.

Pitfalls in multimodal ultrasound evaluation of thyroid nodules Multi-
modal ultrasound has great potential in thyroid nodule differentiation: B-mode
images have the ability of depicting tissue microstructure hetereogeneity and sev-
eral studies confirm that echogenicity and echotexture are significantly different
between benign and malignant nodules [31, 32, 33]. In this study, we demonstrated
the potentiality of PDUS in the characterization of the vascularity pattern of thy-
roid nodules. Other studies claimed the usefulness of CEUS and SMI modes for a
more deepen characterization of vascularity [22, 23, 34] (figure 3.6). Ideally, inte-
gration of these modalities in a unique characterization system may have a great
potential in the diagnosis of thyroid nodules. However, co-registration between
these modalities is very challenging. The main reason is the 3D ultrasound image
acquisition protocol: using the 3D probes, orientation of slices and field of view of
these volumes may change significantly between different acquisitions due to slight
differences in probe positioning. Due to these limitations, so far, the only feasi-
ble multimodal strategy is the feature level or classifier level fusion where features
are extracted separately from each modality. These strategies would have limited
ability to fuse complementary multimodal features. We are currently working to a
method to co-register B-mode, PDUS and CEUS. The basic idea is: i) excluding
the Doppler signal from the PDUS images to align B-mode and PDUS images, ii)
co-registering the PDUS and CEUS images through a structural-based registration
between the segmented vascular networks.
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Figure 3.6: Vascular network extraction of a thyroid nodule in a PDUS image (a) and a CEUS
image (b). Due to the contrast-enhancement effect and the reduced size, microbubbles allow for
depiction of microcirculation of the central part of the nodule [23]

3.5 Conclusions
A novel method for quantitative analysis of vascularization in 3D Power Doppler

images of thyroid nodules was proposed. Quantitative features describing the ar-
chitecture, tortuosity and flow were extracted from the total nodule and from the
peripheral and central region of the nodule. A dataset including 30 thyroid nodules,
15 TIR3A benign and 15 TIR3B with high suspect of papillary carcinoma, was used.
A classification experiment with support vector machine confirms that the division
in peripheral and central region increased the diagnostic accuracy (from 66.67%
to 83.33%) of the differentiation between the two groups. Histological examination
will be considered for increase results reliability. Furthermore, the methodology will
be extended to contrast-enhanced ultrasound imaging and superb micro-enhanced
imaging for a deepen characterization of thyroid nodule vascularization.
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4.1 Introduction
According to the National Cancer Institute, the incidence rate of neuroendocrine

neoplasms increased by 6.4-fold over the last two decades [1]. NENs are a hetero-
geneous group of malignancies represented by different histological subtypes and
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different primary locations, frequently localized in the lung and gastroenteropan-
creatic (GEP) site. These neoplasms arise from neuroendocrine cells which are
cells that can produce neuroamines and peptide hormones [2]. NENs are divided in
well-differentiated neuroendocrine tumors (NETs), which are mainly indolent neo-
plasms, and poorly differentiated neuroendocrine carcinomas (NECs), which are
highly aggressive cancer [3]. A remarkable sign of NENs is the expression of so-
matostatin receptors (SSTRs), with SSTRs 1 and 2 present in the vast majority of
GEP-NENs, SSTRs 3 and 5 expressed by approximately 60% of cases and SSTR 4
rarely represented; moreover, the poorly differentiated NECs appeared to express
lower percentage of SSTR [4].

An accurate characterization of these tumors is fundamental, as their biological
heterogeneity is strongly connected with their prognosis and treatment response [5].
In this scenario, PET/CT imaging is a powerful tool for in-vivo characterization,
monitoring and treatment response quantification thanks to the possibility of ex-
tracting semi-quantitative parameters from images [6, 5]. Moreover, integration of
PET imaging with CT imaging gives a complete picture of the functionality and the
anatomical location of the NENs. Although 18F-FDG-PET is the most widely used
radiotracer in nuclear medicine, in the specific case of NETs, new radiotracers based
on 68Ga-DOTA-peptides have been introduced. These are able to bind to STTRs
which are expressed by NETs. While 18F-FDG-PET is the preferred choice for
NECs, 68Ga-DOTA-peptides PET is useful for characterization of NETs. Multiple
studies confirmed the diagnostic and prognostic role of 68Ga-DOTA-peptides PET,
as SUV values of the lesion are correlated with survival rates [7] and treatment
response [8, 9, 6, 5].

In this scenario, radiomics analysis could be a powerful tool as more advanced
features than conventional SUV-based parameters, e.g. maximum and minimum
SUV value of the lesion, could turn out to be imaging biomarkers related to the
aggressiveness grade of the tumor. This would allow to better characterize the
tumor phenotype in-vivo and to optimally choose the treatment strategy or the need
for other diagnostic tests, such as 18F-FDG-PET exam. Recent studies showed that
advanced textural features extracted from 68Ga-DOTA-peptides PET images are
able to characterize NETs in terms of lymph nodal involvement [10] and to predict
response to peptide receptor radionuclide therapy (PRRT) in patients affected by
NET [11].

As the field of radiomics grows, there is an increasing need for a standardized
protocol for the extraction of radiomics features (RFs). Furthermore, researchers
are increasingly investigating about automatic tumor segmentation methods, PET
image reconstruction algorithms and RFs robustness. Regarding tumor segmen-
tation, automatic and semi-automatic segmentation methods are becoming more
used as manual segmentation is time-consuming and highly subjective [12]. Auto-
matic segmentation of NETs is a complex task because of partial volume effects,
high variability in tumor size and in some cases low contrast of the tumor with
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neighbouring tissue [12, 13]. Thresholding is very used for PET tumor segmen-
tation where an operator define an initial region-of-interest including the tumor
and then voxels with a value above a percentage of the maximum SUV, usually
20% or 40%, are considered for the tumor mask [12]. Other thresholding methods,
such as OTSU thresholding, are able to automatically determine a threshold from
the image properties [14]. However, so far, thresholding methods were validated
on 18F-FDG-PET where high SUVs directly implies a pathology or an inflamma-
tory condition [12], whereas SUVs of NETs in 68Ga-DOTA-peptides PET images
show high variability due to the inter-tumoral heterogeneity in the expression of
SRRTs [15]. Further, thresholding techniques have the following drawbacks: i) seg-
mentation result is strongly dependent on the choice of the region of interest; ii)
possible exclusion of voxels belonging to the NET for their low SUVs (e.g. necrotic
tissue) iii) possible inclusion of voxels belonging to healthy tissue when the site
of NET have high physiological SUVs (e.g. liver NETs) [15, 16]. For these rea-
sons, more advanced PET tumor segmentation methods have been proposed such
as clustering techniques such as the fuzzy C-means (FCM) clustering algorithm,
watersheds, deep learning and active contours [17]. Active contours are deformable
models able to evolve in the image by optimizing an energy functional. Their use
is widespread thanks to their flexibility, i.e. energy functional can be modified
depending on the segmentation task, and excellent performance for many medi-
cal segmentation tasks. Most part of used active contours are either region-based,
e.g. the Chan-Vese active contour (CVAC) [18] or edge-based, e.g. geodesic ac-
tive contours [19]. However, the aforementioned active contours are not directly
employable for NET segmentation as NETs show high variability in terms of edges
and foreground/background contrast ratios. Hybrid active contours (HACs) are
active contours which combine a region-based and an edge-based term in a unique
energy functional [20]. This feature confers reproducibility of segmentation results
in cases where the object-of-interest present diverse intensities and gradient values
image-by-image, which is the case of NETs in 68Ga-DOTA-peptides PET images.
Nevertheless, so far, no attempts have been made on automatic segmentation of
NETs.

Given the diagnostic and prognostic potential role of a radiomic model based
on 68Ga-DOTA-peptides PET imaging, model robustness is fundamental. In other
words, it is necessary that the extracted imaging biomarkers are robust under the
variation of some fundamental factors of the radiomic model such as segmentation,
discretization settings and PET image reconstruction algorithms. Bailly et al. [21]
studied the robustness of 2 conventional PET parameters, 6 GLCM-based features,
3 GLRLM-based features and 6 GLSZM-based features in 68Ga-DOTA-NOC PET
images as a function of image reconstruction settings on a cohort of 29 patients
diagnosed with NET. The main limitations of their study are the limited number
of patients and texture features analysed. In another study, robustness of intensity
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histogram and shape features among two 68Ga-DOTA-TATE PET/CT scans ac-
quired two days apart was measured [22]. To the best of our knowledge, these are
the only examples of published robustness studies in 68Ga-DOTA-peptides PET
images, while in literature there are several examples of RFs robustness analysis in
18F-FDG-PET images [23, 24, 25].

Objectives Given the relatively recent introduction of 68Ga-DOTA-peptides ra-
diotracers in the clinical imaging and the lack of comparative studies on (semi-)
automatic neuroendocrine tumor segmentation methodologies, in this chapter, a
novel semi-automatic segmentation algorithm based on fuzzy C-means clustering
and hybrid active contours (FCM-HAC) is proposed for the NET segmentation in
68Ga-DOTA-peptides PET images. The algorithm is validated on a dataset of 60
NET lesions and compared with other methods. Subsequently, robustness analysis
of RFs extracted from NETs is performed in function of segmentation and discreti-
sation settings to identify a set of robust radiomics features for the characterization
of NETs.

4.2 Materials and methods
Every algorithm proposed in this section was developed and tested in MATLAB

(MathWorks, Natick, MA, USA, version r2019a) on a 2.21 GHz quad-core and 16
GB RAM.

Patients A total of 270 consecutive patients were enrolled between February 2017
and July 2019. The inclusion criteria were: i) presence of NET at histological ex-
amination; ii) treatment-naïve patients who underwent 68Ga-DOTA-TOC PET/CT
for staging or restaging after surgery; iii) patients who signed an informed consent
form. Finally, 49 patients with a total of 60 lesions were found to be compatible
with the inclusion criteria and were included in the study. Fourty-two lesions were
primary, 18 were metastastis. Primary tumors were pancreatic NET, gastro-enteric
NET, lung NET and others NET in 57.9%, 42.1%, 18.4% and 4.1% of cases, re-
spectively. The NET histological sub-types were G1 (67.4%), G2 (12.2%), G3 in
(2.0%), atypical carcinoid (8.2%) and typical carcinoid (10.2%).

Image acquisition and reconstruction The PET/CT scanner was an analog
3D PET scanner (Philips Gemini Dual-slice EXP scanner – PET AllegroTM sys-
tem with Brilliance CT scanner – Philips Medical Systems, Cleveland, OH). As sug-
gested by the procedure guidelines for PET imaging [26], the injected tracer activity
was 145.1±25.3 MBq of 68Ga-DOTA-TOC. After 60 minutes of uptake, PET data
were acquired in 3D mode, covering the same anatomical region of the CT. Ordered
subset expectation maximization (OSEM) algorithm (3D-RAMLA) was used for
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PET image reconstruction using the following settings: 4 iterations, 8 subsets and
field of view (FOV) of 576 mm. PET image resolution was 4 mm× 4 mm× 4 mm,
CT image resolution was 1.1719 mm× 1.1719 mm× 6.5 mm.

SUV conversion The standardized uptake value is a semi-quantitative measure
of the radiotracer activity concentration which can be extracted from PET images
and is defined as:

SUV(kg/cc) =
Activity Concentration(Bq/cc)

Injected dose(Bq)
Body weight (kg)

(4.1)

In this study, standardized uptake value (SUV) was obtained by multiplying the
image intensity values by the SUV scale factor which is included in the DICOM
header of the PET image in Allegro and Gemini PET image acquisition systems
(DICOM tag: 7053,1000) [27].

Manual annotation Each lesion was manually delineated on the PET image by
two independent observers, both nuclear medicine physicians (FC, VL with 10 and
7 years of expertise respectively), by using the software LIFEx v 4.81 [28].

Image registration In this study, the CT volume will be used in conjunction
with the PET volume, as structural reference for identifying the anatomical lo-
cation of the NET and define an initial region-of-interest. For this reason, there
was no need to correct image artifacts such as physiological motion (peristaltic
and breathing) which would require non-rigid transformations. In order to register
PET and CT images, transformation from Image-Based Coordinate System (ICS)
to Patient-Based Coordinate System (PCS) was performed in both modalities, as
described in A.5. Since in this study all image processing, from segmentation to ra-
diomics analysis, will take place on the PET image, the CT image was interpolated
to match the PET image size and resolution.

4.2.1 Tumor segmentation using fuzzy C-means and hybrid
active contours

The segmentation algorithm contours the NET in 3D PET/CT images and
requires the user intervention to define an initial region-of-interest (ROI) including
the tumor. The general pipeline consists of three steps: i) ROI definition; ii) Tumor
mask initialization by fuzzy C-means clustering; iii) Tumor segmentation by hybrid
active contour.
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ROI definition The user chooses the patient to be analyzed, a graphical-user-
interface (GUI) shows the patient’s PET and CT images on the screen and gives
the possibility to define a parallelepiped ROI centered on the tumor. Starting from
the central slice, the user can easily shrink/enlarge the ROI on the xy-plane by
using either the mouse wheel or by dragging the sides of the ROI using the left
mouse button. Then, the user can extend the ROI in the z-direction by pressing
CTRL + left mouse click on the new slice. Figure 4.1 shows a screenshot of the
developed GUI.

Figure 4.1: Screenshot of the graphical user-interface (GUI) developed for the tumor ROI defini-
tion.

Tumor mask initialization by fuzzy C-means clustering As tumoral tissue
shows higher SUV compared to normal tissue, the idea is to identify an initial
mask positioned within the lesion and then refine the contours using an active
contour sensitive to the image edges. The clustering algorithm used is the fuzzy C-
means (FCM) [29] which allows the partitioning of voxels into classes by iteratively
minimizing the objective function:

O =
C∑︂

i=1

N∑︂
j=1

wm
ij ∥xj − ci∥2 (4.2)

where C is the number of clusters, N is the number of voxels belonging to the
ROI, xj is the intensity of jth voxel, m is a fixed parameter which controls the
fuzzyness of clusters, ci is the centroid of the ith cluster computed as the mean of
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the elements of the cluster weighted by their degree of membership to the cluster
wij which is defined as:

wij = 1∑︁C
k=1

(︂
∥xj−ci∥
∥xj−ck∥

)︂ 2
m−1

(4.3)

The algorithm iteratively updates ci and wij in order to minimize the objective
function O until the maximum absolute difference of centroids between two con-
secutive iterations is below a threshold (thdc). In this application the number of
clusters (C) was set to 3 in order to partition the ROI in background (low SUV),
tumor edges and tissue with a physiological uptake (medium SUV) and the core of
the tumor (high SUV). Figure 4.2 shows the FCM membership maps in a volume
slice. Other parameters set were q = 2 and thdc = 1e−3 whose values were cho-
sen after experimental tuning. Then, the membership map of the cluster with the
highest centroid value corresponding to the tumor core is isolated. Based on the
assumption that the user positioned the ROI so that the tumor is approximately
in its center and since the ROI could include tissue with uptake values similar to
the tumor, in order to exclude these regions from the initial mask an anisotropic
gaussian kernel is used. This gaussian kernel is centered at the central voxel of the
ROI and has the same size of the ROI and standard deviations along x, y and z
equal to a quarter of the columns, rows and slices of the ROI, respectively. Subse-
quently, the filtered membership map is thresholded using a global threshold equal
to 0.5. Final result of the tumor mask initialization is shown in figure 4.2.

CBA

Figure 4.2: Tumor mask initialization by fuzzy C-means (FCM) clustering. Panel (A) shows the
central slice of the volume after ROI cropping. Panel (B) shows the FCM membership maps
codified in RGB (Each color channel value is the membership value to a cluster, R is the first
cluster, G is the second cluster and B is the third cluster). The third cluster (highest average
intensity value) is then isolated, multiplied by the gaussian kernel and thresholded. Final result
is shown in panel (C).

Tumor segmentation by hybrid active contour Active contours are one of
the most used segmentation methods. They are deformable models able to evolve
on an image by minimizing an energy functional. Two categories of active contours
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can be distinguished: parametric and geometrical active contours. The former
use an explicit formulation of the curve (2D) or of the surface (3D) and are often
recognized as "snakes" [30]. Geometrical active contours instead use an implicit
formulation: the curve or surface are represented by the zero level-set of a higher-
order a function [18]. This property makes the geometrical active contour more
effective in the case of irregular shapes and topological changes [18]. The Chan-
Vese active contour (CVAC) is an example of geometrical active contour which uses
a level-set formulation and a region-based energy functional [18]. Let ΩϵRn be the
spatial domain of the image I, where n is the dimension (n = 3 for volumetric
images), the function ϕ : (Ω, t) → R is the level-set function. The curve C can be
defined implicitly as the zero level-set of ϕ:

C = {(x, y, z, t)|ϕ(x, y, z, t) = 0} (4.4)

We also define Cin and Cout are the regions inside and outside the curve C, respec-
tively:

Cin = {(x, y, z, t)|ϕ(x, y, z, t) > 0} (4.5)
Cout = {(x, y, z, t)|ϕ(x, y, z, t) < 0} (4.6)

The energy functional proposed by Chan and Vese is:

FCVAC = µ · Length(C) + ν · Area(Cin)

+ λ1

∫︂
Cin

|I(x, y, z)− c1|2 dxdydz + λ2

∫︂
Cout

|I(x, y, z)− c2|2 dxdydz
(4.7)

where µ ≥ 0, ν ≥ 0, λ1 ≥ 0, λ2 ≥ 0 are fixed constants, c1 and c2 are the average
grey value of the image inside and outside the curve, respectively.

The same energy functional (4.7) can be written in a level-set formulation using
the Heaviside H function1:

FCV AC(c1, c2, ϕ) = µ
∫︂

Ω
|∇H(ϕ)| dΩ + ν

∫︂
Ω

H(ϕ)dΩ

+ λ1

∫︂
Ω
(I − c1)2H(ϕ)dΩ + λ2

∫︂
Ω
(I − c2)2(1−H(ϕ))dΩ

(4.9)

In a level-set framework, evolving the curve means minimizing the functional energy
with respect to ϕ. Mathematically, the curve evolution (∂ϕ

∂t
) is derived by solving

the Euler-Lagrange equation associated to ϕ. For the numerical implementation,

1

H(ϕ) =
{︃

0, if ϕ < 0
1, if ϕ ≥ 0 (4.8)
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the solution is discretized defining a time step ∆t and using a finite difference
scheme:

ϕn+1
i,j,k − ϕn

i,j,k

∆t
= δϵ(ϕn)

[︄
µ · div

(︄
∇ϕn

|∇ϕn|

)︄
− ν − λ1(Ii,j,k − c1(ϕn))2 + λ2(Ii,j,k − c2(ϕn))2

]︄
(4.10)

where δϵ is the Dirac function using a spatial step ϵ for numerical implementation,
div(·) is the divergence operator, n is the iteration number. As already mentioned,
the CVAC exhibits good performances when applied to images where the object-
of-interest and the background are two homogenous and distinct regions. This is
not the case of NETs mainly for two reasons: (i) some NETs appear heteroge-
neous on the PET image due to heterogenous tracer distribution of the radiotracer
throughout the lesion, for example necrotic areas of the tumoral mass do not up-
take radiotracer [13]; (ii) depending on the tumor location, the neighbouring tissue,
physiologically, can exhibit uptake values similar to the NET [13]. To solve these
problems, an hybrid active contour (HAC) model which involves the combination
of a regional-based and a edge-based term in the energy functional [20], was used.
The functional energy was defined as:

FHAC = −α
∫︂

Ω
(I(x, y, z)− µm) dΩ + β

∫︂
Ω

g |∇H(ϕ)| dΩ (4.11)

where α ≥ 0, β ≥ 0 are fixed parameters which regulate the importance of the
regional and edge terms, respectively, µm is an estimate of the lower gray-level of
the object to be segmented and g is a feature map which is a function of the image
gradient:

g(∇I) = 1
1− |∇I|2

(4.12)

When ϕ is a signed distance function, the HAC discretized curve evolution is
the following:

ϕn+1
i,j,k − ϕn

i,j,k

∆t
= α(I − µm) + βdiv(g∇ϕn) (4.13)

Compared to the CVAC curve evolution 4.10, the most important difference is
the presence of the image gradient ∇I which forces the active contour to stop
propagating in correspondence of edges. In this application, µm was automatically
determined for each image as the average intensity of the second FCM cluster which
corresponded approximately to the tumor edges, α = 0.05, β = 0.005, ∆t = 0.05
and number of iterations was set to 10. Morphological operation (erosion and
dilatation with a spherical structural element of radius of 4 mm) was performed in
order to remove mask imperfections.

Comparison with other methods In order to benchmark the proposed ap-
proach, four segmentation methods were implemented. The first method was Otsu
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global thresholding which works by minimizing intra-class intensity variance [14].
The second one was Fuzzy C-means (FCM) clustering, which is described in 4.2.1.
Then, two active contour models were implemented: the Chan-Vese active con-
tour (CVAC) model and the Caselles geodesic active contour (GAC) which is an
edge-based active contour2 [19]. Experimental tuning was performed for optimal
configuration of parameters of each method 3. For each method, segmentation
result was compared to a common ground truth calculated from Op1 and Op2
segmentations using the STAPLE algorithm [31].

Performance metrics Dice-similarity coefficient (DSC), relative volume differ-
ence (RVD) and average boundary distance (ABD) were adopted as performance
metrics for segmentation. Let V1 and V2 be the two volumetric logical masks to be
compared, DSC is defined as:

DSC = 2 |V1 ∩ V2|
|V1|+ |V2|

(4.14)

where |V | is the number of true voxels of V . The DSC measures the overlap
between two masks and ranges from 0 (no overlap) to 1 (total overlap). The RVD
measures the difference between the number of true voxels of the masks:

RVD = 100 ·
(︄
|V1|
|V2|
− 1

)︄
(4.15)

A positive RVD value means that V1 has a greater number of true voxels than
V2 and vice versa. In our scenario, if V1 is the algorithm segmentation and V2 is
the ground-truth (manual segmentation), then, this metric is an index of under-
(negative RVD values) or over- (positive RVD values) segmentation. If RVD is
equal to zero, then, the two segmentations have the same number of true voxels.
When evaluating comparison between operator and FCM-HAC algorithm, V1 is the
algorithm mask and V2 is the operator mask. When evaluating the inter-operator
variability (Op1 vs Op2), V1 is the Op2 mask and V2 is the Op1 mask.

The ABD measures the average distance in millimeters between the segmenta-
tion surfaces and is defined as:

ABD =
∑︁

x∈δV1 d(x, V2) +∑︁
x∈δV2 d(x, V1)

|δV1|+ |δV2|
(4.16)

where d is the Euclidean distance operator, δV1 and δV2 are the set of surface points
of V1 and V2, respectively.

2Curve evolution equation: ∂ϕ
∂t = αdiv(g∇ϕ/|∇u|)|∇ϕ|+ βg|∇ϕ|

3For CVAC model: λ1 = 0.95 · 10−4, λ2 = 1.05 · 10−4, ν = 0, µ = 1 · 10−7, ∆t = 0.05
For GAC model: α = 0.01, β = 0.01, ∆t = 0.05
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4.2.2 Tumor characterization using radiomics features
A total of fourty-five radiomics features (RFs) were extracted from PET images

considering only voxels belonging to the volume-of-interest (VOI) of the NET. In
particular, for each NET, four VOIs were considered, which corresponded to the two
experts segmentation (Op1 and Op2), the semi-automatic algorithm segmentation
proposed (FCM-HAC) and the STAPLE mask obtained by collecting Op1, Op2
and FCM-HAC segmentations. Additionally, to analyze the impact of SUVmax
thresholding on the robustness of RFs, a 40% SUVmax thresholding was applied
to VOI obtained after each segmentation. The choice of the intensity discretisa-
tion settings is fundamental and strongly affects the final value of the calculated
feature. With the aim of evaluating which RFs are robust to the discretization set-
tings variation, the images were discretized using different number of levels (32, 64
and 128). A maximum SUV of 80 was chosen for the discretisation, as the nearest
integer to the 99th percentile of the maximum SUVs among lesions. Every RF was
implemented in MATLAB using the formulation described in the Image Biomarker
Standardisation Initiative document which aims to propose standardized nomen-
clatures and definitions of radiomics features for the whole radiomics-field research
community [32]. The computed RFs are listed in table 4.1.
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4.2 – Materials and methods

Each family of features quantitatively describes different textural properties of
the image. For example, conventional PET parameters are the most used quan-
titative parameters used in PET imaging for tracer uptake quantification thanks
to their simple description and high concreteness. Intensity histogram features de-
scribe the SUV values distribution of the NET in terms of asymmetry, peakdness
or degree of randomness. Morphological features describe the shape geometry and
complexity of the VOI. Features extracted from the GLCM, GLRLM, GLSZM and
NGTDM have a less direct meaning but have the ability to investigate spatial rela-
tionships between voxels with similar SUV values, and therefore are those able to
provide additional and advanced information about tumor heterogeneity compared
to the eye of a expert radiologist.

4.2.3 Radiomics features robustness to segmentation and
discretisation

As already discussed, several factors such as segmentation method/operator,
discretisation setting and image reconstruction method have a strong impact on
feature values. Robustness analysis has the purpose of measuring consistency of
features when one or more factors are perturbed. The syntax: "robustness of feature
i to factor k" will be used for indicating the robustness of feature i when perturbat-
ing factor k. For example, one can measure the robustness of GLCM_Correlation
to segmentation by repeating measurements of GLCM_Correlation changing the
segmentation mask for each repetition. In this study, robustness was measured by
varying segmentation (Op1, Op2 and FCM-HAC) and number of discretisation lev-
els. RFs were calculated for a total of 12 combinations by changing segmentation
VOI, number of levels and SUVmax threshold as described in table 4.2.

Robustness to Number of levels VOI SUVmax threshold

Segmentation 64 Op1, Op2, FCM-HAC \
64 Op1, Op2, FCM-HAC 40%

Number of levels 32, 64, 128 STAPLE \
32, 64, 128 STAPLE 40%

Table 4.2: Combinations of VOI and discretisation settings for robustness analysis.

Robustness can be evaluated under two different aspects: consistency and agree-
ment. In this study, only consistency was evaluated, as agreement is not the critical
point for modern classification techniques such as machine learning which extrapo-
lates higher-level relation between features rather than using cut-off on the feature
absolute values. Consistency concerns if different measurements of the same RF are
correlated in an additive manner [33]. In order to measure consistency, the intra-
class correlation coefficient (ICC) was used. This metric measures the proportion of
a variance that is attributable to objects of measurements [34]. There are 10 forms
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of ICC which involve different assumptions on the model (one-way or two-way,
random or mixed effects), the type (single measurement or mean of multiple mea-
surements) and the relationship to measure (agreement or consistency) [33]. Based
on the practical guideline proposed by Koo et al. [33], the most appropriate form of
ICC for measuring consistency of RFs to segmentation and discretisation was the
two-way random-effects, consistency, single measurement ICC which is defined as

ICC = MSR −MSE

MSR + (k − 1)MSE

(4.17)

where k is the number of measurements, MSR is the mean square for rows4 and
MSE is the mean square error. ICC ranges from 0 to 1, where 0 indicates no
consistency and 1 indicates total consistency.

4.3 Results
4.3.1 Segmentation results

Three tumors were excluded from the segmentation and robustness analysis
due to a number of voxels lower than 16 voxels. Hence, a total of 57 tumors were
studied.

FCM-HAC algorithm vs manual segmentation Figure 4.3 shows three dif-
ferent examples of NET segmentation using the FCM-HAC algorithm proposed.
The algorithm was able to succesfully segment every primary and metastatic le-
sions of the dataset. Quantitative comparison between FCM-HAC algorithm and
manual segmentations is shown in table 4.3. DSC analysis showed an agreement
between FCM-HAC and manual segmentation comparable to inter-operator agree-
ment. RVD values show a tendency of the FCM-HAC to slightly over-segment the
NET.

DSC RVD ABD (mm)
FCM-HAC vs Op1 0.68± 0.13 22.54± 31.05 2.91± 1.47
FCM-HAC vs Op2 0.71± 0.14 13.23± 40.67 2.68± 1.21

Op1 vs Op2 0.70± 0.09 −6.97± 48.69 2.06± 1.07

Table 4.3: FCM-HAC performance evaluation: mean and standard deviation values of Dice-
Similarity Coefficient (DSC), Relative Volume Difference (RVD) and Average Boundary Distance
(ABD).

4rows correspond to observations and columns to measurements
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D E F

Op1

Op2

Algorithm

A B C

Figure 4.3: Example of segmentation of NETs extracted from three different patients. (A,D) lung
primary NET; (B,E) metastatic lesion in a mediastinal lymph node; (C,F) metastatic liver lesion.
The first row shows the maximum intensity projection (MIP) of the PET volumes, black arrows
point at the segmented lesions. The second row shows the contours of manual segmentation (Op1
in green, Op2 in yellow) and the FCM-HAC segmentation contour in red

Comparison with other methods Table 4.4 shows segmentation performance
of FCM-HAC and the other implemented segmentation methods. FCM-HAC achieved
the highest DSC and lowest RVD compared to other standard segmentation meth-
ods.

Method DSC RVD ABD (mm)
OTSU 0.53± 0.25 17.68± 73.27 5.98± 3.43

FCM 0.54± 0.14 −72.03± 60.29 4.11± 3.09
CVAC 0.54± 0.17 29.84± 124.36 4.62± 3.44

GAC 0.61± 0.11 −47.45± 86.34 3.35± 1.59
HAC 0.66± 0.14 19.52± 35.48 3.01± 1.22

Table 4.4: Quantitative comparison between methods using the Dice similarity coefficient (DSC),
relative volume difference (RVD) and average boundary distance (ABD). STAPLE mask of manual
segmentations was used as reference ground-truth. Methods were: OTSU thresholding, fuzzy C-
means clustering (FCM), Chan-Vese active contour (CVAC), geodesic active contour (GAC),
hybrid active contour (HAC). Initialization for CVAC, GAC and HAC was the same. Parameters
of each method were tuned to reach best mean DSC.
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OTSUOp FCM CVAC GAC HAC

Lesion 1

Lesion 9

Lesion 41

Figure 4.4: Qualitative comparison between FCM-HAC and other methods for three different le-
sions. The methods were OTSU thresholding, Fuzzy C-Means (FCM), Chan-Vese Active Contour
(CVAC), Geodesic Active Contour (GAC). Green line is the Op1 contour, yellow line is the Op2
contour, red line is the FCM-HAC algorithm contour. Lesion 1 and lesion 9 are duodenum pri-
mary NETs, lesion 41 is a ileum primary NET. In lesion 1 image, lesion and background are two
well-distinct regions. Lesion 9 image has a heterogeneous background due to adjacent uptaking
tissue. Lesion 41 has a necrotic core and the background is heterogeneous.

4.3.2 Robustness analysis results
Figures 4.5 and 4.6 show ICC values in the form of diagram bars for consis-

tency of radiomics features to segmentation and number of levels respectively. In
overall, 22 out of 45 RFs resulted highly robust to segmentation (ICC > 0.9) us-
ing no threshold and 39 out of 45 when using 40% SUVmax threshold. Regarding
discretisation, 16 out of 45 RFs resulted highly robust using no threshold and 13
out of 45 when using 40% SUVmax threshold. In order to have a graphical rep-
resentation of which RFs were consistent to both segmentation and discretisation,
figure 4.7 shows a scatter plot where the x-axis is the segmentation ICC and the
y-axis is the discretisation ICC. Eight RFs were highly robust to both segmentation
and discretisation using no threshold, whereas using 40% SUVmax threshold led to
thirteen highly robust RFs.

4.4 Discussion
Neuroendocrine tumor segmentation Since radiomics has a strong poten-
tial in the diagnosis and prognosis of neuroendocrine tumor in 68Ga-DOTA-TOC
PET/CT images, accurate semi-automatic segmentation of these tumors is useful
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Figure 4.5: Diagram bars of intra-class correlation coefficient (ICC) for consistency to segmenta-
tion (Op1, Op2, FCM-HAC). In this experiment, number of levels was fixed at 64. Blue bars are
ICC values without thresholding while red ones are ICC values obtained using a 40% SUVmax
threshold.

for saving time and increase reproducibility of results with respect to manual seg-
mentation. However, neuroendocrine tumor segmentation is not a trivial task due
to high variability in size, low contrast with neigbouring tissue, and partial volume
effects of PET images. A novel semi-automatic segmentation algorithm based on
fuzzy c-means clustering and hybrid (image and edge-based) level set (FCM-HAC)
was proposed. Quantitative comparison between FCM-HAC and manual segmen-
tations by two expert operators was performed using Dice similarity coefficient
(DSC) and relative volume difference (RVD). The FCM-HAC was able to correctly
segment lesions from different locations and with different background (figure 4.3).
Agreement between FCM-HAC and manual segmentations was comparable to the
inter-operator agreement (FCM-HAC vs Op1 DSC = 0.68±0.13; FCM-HAC vs Op2
DSC = 0.71± 0.14; Op1 vs Op2 DSC = 0.70± 0.09) suggesting that the algorithm
might substitute/aid an expert operator for the tumor segmentation task. RVD
analysis showed that FCM-HAC tended to over-segment the tumor (FCM-HAC vs
Op1 RVD = 22.54± 31.05 ; FCM-HAC vs Op2 RVD = 13.23± 40.67; Op1 vs Op2
RVD = −6.97± 48.69) with respect to manual segmentation. This occured mainly
in the initial and final slices of the tumor region of interest where the contrast
between tumor and adjacent tissue was even less evident and therefore the algo-
rithm has difficulty in detecting the tumor boundaries. However, the comparison
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Figure 4.6: Diagram bars of intra-class correlation coefficient (ICC) for consistency to number of
levels (32, 64, 128). In this experiment, the VOI was obtained by using STAPLE. Blue bars are
ICC values without thresholding while red ones are ICC values obtained using a 40% SUVmax
threshold.

of the FCM-HAC algorithm with other methods highlighted the superior perfor-
mance of FCM-HAC for NET tumors in terms of accuracy (highest mean DSC and
lowest mean RVD) and reproducibility (second-lowest standard deviation of DSC
and lowest standard deviation of RVD) (table 4.4). This may be motivated by
the hybrid nature of the active contour used. Indeed, the curve evolution equation
of the HAC (equation 4.13) provided for the contribution of a region-based term
and a edge-based term, giving stability to the method both in images where the
lesion and the background were two distinct homogeneous regions (region-based
term predominance) and in images in which the lesion and the background had
similar SUVs and therefore the image gradient was fundamental for the detection
of tumor contours (edge-based term predominance). As shown by figure 4.4, the
OTSU thresholding method was able to accurately segment the tumor when the
image histogram was bimodal (lesion and background were two distinct peaks in the
image histogram) but failed when the ROI included uptaking tissue other than the
lesion. This led to high variability of performances and a tendency to over-segment
majority of tumors (OTSU vs STAPLE RVD = 17.68±73.27), hence, good sensitiv-
ity but low specificity. The FCM, using 3 clusters, produced slightly more accurate
and reproducible segmentations than OTSU, but the method under-segmented the
NET as most part of the lesions present lower SUV in the periphery. Merging the
two highest intesity clusters or using 2 FCM clusters did not improve the results.
Among active contour methods, the Chan-Vese active contour (CVAC) had the
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Figure 4.7: Scatter plot of segmentation ICC vs discretisation ICC. Blue points represent ICC
values obtained without thresholding while red ones are ICC values obtained using a 40% SUVmax
threshold.

worst performance in images with a medium SUV background where the average
intensity outside the curve c2 did not provide a good estimate of the background
(equation 4.7), hence, the algorithm failed to stop evolution in correspondence of
tumor boundaries. On the other hand geodesic active contours (GAC) which are
edge-based active contours, showed high specificity but low sensitivity due to early
stopping in correspondence of high image gradient. Average boundary distance
(ABD) analysis confirmed the superiority of HAC among other methods showing
the best ABD both in terms of mean value and standard deviation.

Multimodal PET/CT NET segmentation An advantage of active contours
is their versatility. In fact, it is possible to add other terms in the evolution equa-
tion, for example a term related to the texture of the image that is being segmented
or, even more interesting for the purpose of the thesis, some terms calculated on
a second image such as the CT image in our case. In this regard, as additional
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experiments, other two active contours were tested: i) FCM-HACmm1 where the
region-based term of the HAC evolution was computed on the CT image and the
edge-based on the PET image ii) FCM-HACmm2 where the region-based term of
the HAC evolution was computed on the PET image and the edge-based on the CT
image. FCM-HACmm2 resulted to perform better with respect to FCM-HACmm1,
however, both multimodal active contours performed worse than unimodal seg-
mentation methods for two main reasons: firstly, CT images are acquired at low
resolution to minimize patient exposure to radiations; secondly, most part of NETs
do not exhibit differences in CT image intensity, especially GEP metastasis. Figure
4.8 show some representative examples of NET in both PET and CT images.

Radiomics features robustness Robustness of radiomics features (RFs) is fun-
damental for the creation of convincing and reliable radiomics model which in the fu-
ture may be used in clinical practice. Results showed that 31 RFs were robust (ICC
> 0.8) to segmentation, 22 of them were highly robust (ICC > 0.9). Every conven-
tional RF was highly robust except from SUVmin which is the minimum SUV inside
the VOI. This is motivated by the high variability between segmentations in the
tumor edges where generally uptake is lower. Morphological features describe vol-
ume and shape of the tumor, hence, among them M_Volume_mL showed highest
robustness (ICC = 0.86) followed by M_Sphericity (ICC = 0.81) and M_Solidity
(ICC = 0.74). Indeed, no morphological features yielded high robustness, reasoned
by the high influence of the segmentation on these features. However, results show
that M_Sphericity has to be preferred compared to M_Solidity for its higher con-
sistency. Among advanced textural features, GLCM showed better consistency.
In line with previous studies [24, 25], textural features measuring runs or zones
with low grey level, such as GLRLM_SRLGE, GLSZM_SZLGE, GLSZM_LZLGE
were not robust to segmentation. This is due to the lower uptake values in lesions
edges, where operator and FCM-HAC segmentation showed higher variability. For
the same reason, NGTDM_Coarseness and NGTDM_Busyness resulted to be not
robust to segmentation. Therefore, the main effect of changing VOI is the inclu-
sion/exclusion of low SUV voxels belonging to the lesion edges leading to high
variability of some RFs describing morphology and tumor heterogeneity in terms
of runs and zones with low grey level. In overall, 5/6 conventional features, 3/5 in-
tensity histogram features, 0/3 morphological features, 5/6 GLCM based features,
4/11 GLRLM based features, 5/11 GLSZM based features and 0/3 NGTDM based
features resulted highly robust to segmentation. As expected, using a 40% SU-
Vmax threshold had a positive impact on the robustness of RFs to segmentation:
from 22 to 39 highly robust features. Indeed, the following RF became highly ro-
bust: SUVmin, M_Volume_mL, M_Sphericity, M_Solidity, GLCM_Correlation,
GLRLM_LGRE, GLRLM_LRE, GLRLM_LRLGE, GLRLM_RLNU, GLRLM_RP,
GLRLM_SRE, GLRLM_SRLGE, GLSZM_LGZE, GLSZM_SZLGE, GLSZM_ZP.
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Figure 4.8: Examples of primary and metastatic neuroendocrine lesions in three patients in PET
(left) and CT (right) images. First row represents a metastatic liver lesion (first row): the lesion
is visible on the PET image (white arrow) but not on the CT image. Second row represents
a primary pancreatic NET visible on the CT image but with blurry edges due to low image
resolution. Finally, a lung primary NET is shown in the last row. In this case lesion is visible on
both PET and CT images and multimodal segmentation could be useful.

Since some of these features may provide useful information for diagnosis and prog-
nosis, the suggestion is to compute them after applying a SUVmax threshold for
better reliability. Anyway, applying SUVmax threshold could lead to esclusion of
voxels which contribute to the heterogeneity.
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Previous studies showed that the choice of discretisation has a huge impact
on RFs values [24, 25]. One of the most important discretisation parameter is the
number of levels which determines the intensity discretisation resolution and, hence,
affecting values of histogram-based features and advanced textural features which
require discrete intensity levels. Only 20 out of 45 resulted robust to number of
levels, among them 16 RFs were highly robust. Obviously, discretisation does not
affect conventional and morphological features (ICC = 1). Regarding histogram-
based features, only H_Skewness, H_Kurtosis and H_Entropy resulted to be highly
robust histogram with ICC equal to 0.92, 0.95 and 0.98. These finding are in accor-
dance with other studies performed on 18F-FDG-PET images [35]. It is known that
discretisation has great impact on advanced textural features computation. Indeed,
only 8 of them resulted robust: GLCM_ID, GLCM_Correlation, GLCM_Entropy,
GLRLM_GLNU, GLRLM_RLNU, GLSZM_GLNU and NGTDM_Coarseness. The
low number of robust features is due to the construction of the GLCM, GLRLM,
GLSZM and NGTDM matrices which is strongly dependent on the number of lev-
els. Interestingly, among robust advanced textural features, no features measuring
emphasis of high or low grey level as the definition of low and gray is strictly con-
nected to the number of levels used. In this case, applying a 40% SUVmax threshold
had a negative impact on the robustness of H_Skewness (ICC from 0.92 to 0.52),
H_Kurtosis (ICC from 0.95 to 0.46) and NGTDM_Coarseness (ICC from 0.93 to
0.54). For the rest of RFs the SUVmax threshold had not a significant impact on
robustness to number of levels. It has to be noted that whereas segmentation is a
predominantly stochastic factor (especially if manual), number of levels is a factor
which can be controllated by the user who performs the radiomics analysis, hence
is a less critical point.

Overall, when considering robustness to both segmentation and discretisation
(Figure 4.7), only 15 out of 45 RFs resulted robust, 8 of them were highly robust
using no threshold: SUVmax, SUVmean, SUVpeak, SUVstd, TLSRE, H_Entropy,
GLCM_ID, GLCM_Entropy. Four additional RFs were highly robust after the
40% SUVmax threshold: SUVmin, M_Volume_mL, M_Solidity, M_Sphericity
and GLCM_Correlation mainly due to increased similarity between segmentations
and, therefore, higher consistency to segmentation variation. On the other hand,
the following RFs showed an ICC < 0.8 for both segmentation and discretisation:
GLSZM_LZE, GLSZM_LZLGE whatever the threshold. Hence, their use is not
recommended due to unconsistency.

The results reported in this chapter, from the semi-automatic segmentation to
RFs robustness, are a fundamental preliminary step towards the clinical translation
of radiomis analysis of NET in 68Ga-DOTA-peptides PET/CT images. However,
some limitations have to be acknowledged. Despite the good performance in the
NET segmentation by HAC, as every active contour model, the choice of parameters
was fundamental. In this study HAC parameters were tuned by testing different
combination of parameters and choosing the one with highest DSC, anyway, there is
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the need of a larger dataset for validating the FCM-HAC, as NETs present a high
inter-tumoral heterogeneity. In the dataset analysed, only 2% of cases were G3
as they are rare and generally evaluated with 18F-FDG-PET imaging. Moreover,
most part of NETs were G1 (67.4% of cases). Therefore, it was not possible to
evaluate the correlation of RFs with tumor NET grade. No robustness analysis
in function of the image reconstruction was performed due to technical difficulties
with the PET/CT scanner, even if it is well known that PET image reconstruction
algorithm has an impact on the RFs values [36].

In the next future, the methodology will be tested with a larger and more bal-
anced dataset to evaluate RFs correlation with tumor histopathological subtypes.
Finally, work is already underway on the design of antropomorphic phantoms con-
taining NET prototypes modeled using 68Ga-DOTA-peptides PET/CT images and
created by a 3D printer. This gives the possibility of testing each piece of the
radiomics model on lesions with different customized features.

4.5 Conclusions
Although the topic of radiomics for tumor characterization was extensively dis-

cussed for 18F-FDG-PET images, its application in 68Ga-DOTA-peptides PET/CT
images was barely examined due to relatively recent introduction of 68Ga-DOTA-
peptides-based radiotracers in clinics. A novel algorithm for neuroendocrine tumor
segmentation in 68Ga-DOTA-peptides PET/CT images was proposed. Agreement
between algorithm and operators was comparable to inter-operator variability sug-
gesting that the algorithm could substitute/aid an expert operator in the segmen-
tation task saving time and reducing variability. Robustness analysis of radiomics
features revealed a higher impact of discretisation settings on radiomics features
than segmentation. Using a SUVmax threshold improved robustness to segmen-
tation significantly. Overall, only 15 out of 45 radiomics features resulted robust
(ICC > 0.8) to both segmentation and discretisation. Advanced textural features
based on low grey level values or large runs/zones emphasis resulted to be not ro-
bust to both discretisation and segmentation, hence, their use is not recommended
in 68Ga-DOTA-peptides-based radiomics model construction. Current technology
of PET/CT scanners limits the use of CT images for multimodal segmentation and
characterization of these tumors due to low image resolution, especially along the
longitudinal direction. These results are a step towards the clinical translation of
radiomics models for the characterization of neuroendocrine tumors in 68Ga-DOTA-
peptides PET/CT images.
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Chapter 5

Prostate cancer characterization

Part of this chapter has been published as:

• Conference proceeding: B. De Santi, M. Salvi, V. Giannini, K.M. Meiburger, N.
Michielli, S. Seoni, D. Regge, F. Molinari Multimodal T2w and DWI Prostate
Gland Automated Registration, 2019 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2019

• Conference proceeding: B. De Santi, M. Salvi, V. Giannini, K.M. Meiburger, F.
Marzola, F. Russo, M. Bosco, F. Molinari Comparison of Histogram-based
Textural Features between Cancerous and Normal Prostatic Tissue in
Multiparametric Magnetic Resonance Images, 2020 42nd Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2020

Part of this work was funded by Fondazione Cassa di Risparmio di Cuneo (CRC).

5.1 Introduction
According to the American Cancer Society, prostate cancer (PCa) is the most

common cancer in American men, other than skin cancer, with about 190000 new
cases of PCa estimated for 2020. For men over 65 years old, there is an incidence
of 6 cases in 10 men. In 2018, PCa was also the most diagnosed cancer among
european men with about 450000 new cases [1]. The estimated number of deaths
in 2020 for PCa in Europe is 78800 making PCa the third cancer with highest
number of deaths, after lung and colorectum cancer [2].

Prostate gland anatomy The prostate is a gland of the male reproductive sys-
tem. Its main function is to produce and release semen fluid during the ejaculation.
The gland is located adjacent to the rectum and below the bladder and protects
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Figure 5.1: Graphical illustration of the prostate gland morphology and location in coronal (left)
and sagittal (right) view. Figure available at https://www.cancer.gov/types/prostate/

the urethra which crosses the prostate gland (PG) from the bladder to the penis.
The morphology and size is often compared to that of a nut (figure 5.1).

Conventionally, the PG can be divided in three parts along the longitudinal
direction: base, midgland and apex. Further, from a histological point of view four
different zones are identified: transition zone (TZ), central zone (CZ), peripheral
zone (PZ) and anterior fibromuscolar stroma (AFS). As shown in figure 5.2, the
base of the gland includes the AFS, CZ, the TZ and a small part of the PZ, the
midgland includes the AFS, the PZ and the TZ and the apex includes the AFS,
the PZ and the TZ.

Prostate cancer As most part of glandular tissue is confined in the central and
the peripheral zone, PCa mostly originate in these zones. Indeed, the most diffused
type of PCa is adenocarcinoma which originates from gland cells. Although PCa
generally grows slowly, cancer cells may multiply and form tumoral masses which
can invade neighbouring tissues such as bones and lymph nodes [4]. Figure 5.3
shows a typical example of tumoral growth in the PG. Other PCa types less common
than adenocarcinoma are:

• Small cell carcinoma

• Transitional cell carcinoma

• Sarcoma

• Neuroendocrine tumor
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Figure 5.2: Graphical illustration of the prostate gland zones in coronal view (upper-left), sagittal
view (bottom-left) and in base, mid and apex slices (right side, from top to bottom) [3].

Early detection, diagnosis and staging PCa begins to show its symptoms
only after a time when the tumor invades other parts of the genitourinary system
causing for example disturbances during urination, pain during ejaculation, or even
more serious, the presence of blood in the urine or semen. The functionality of
other systems can also be altered such as the skeletal one, when the tumor invades
the bones, causing pain in the hips, thigs and pelvis [5]. Currently, digital rectal ex-
amination and prostate-specific antigen are the most used tests for early diagnosis
of PCa. In the digital rectal examination (DRE) test, the urologist inserts a finger
into the patient’s rectum to identify irregularities of the rectal wall by palpation.
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Figure 5.3: Graphical example of a cancerous tumor growth. Figure available at cancer.org

Texture abnormalities can be associated to the presence of adenocarcinoma. Al-
though this procedure is non-expensive and low invasive, its diagnostic accuracy is
strongly dependent on the examiner’s experience. Further, i) only peripheral zone
cancer with a significant size can be palpated through the rectal wall, ii) a part
from size and solidity evaluation, this examination does not allow to assess cancer
aggresiveness [5]. Unlike DRE, the prostate-specific antigen test is a quantitative
test. In fact, the amount of the prostate-specific antigen protein, which is respon-
sible for improving sperm flowability after ejaculation, in the blood is measured.
A high concentration of PSA in the blood could be associated with a pathology of
the PG. PSA concentration is measured in ng mL−1 and a concentration greater
than 4 ng mL−1 is considered abnormal [6]. However, this test has an important
drawback: PSA is not specific for PCa, in fact, even benign prostatic hypertro-
phy or prostatitis can raise the PSA concentration in the blood. According to the
American Cancer Society, only 25% of patients with a PSA level between 4 and
10 ng mL−1 are diagnosed with PCa, and PSA values above 10 ng mL−1 increase the
percentage to 50%. There is also a sensitivity problem, indeed, 15% of patients with
a PSA level below 4 ng mL−1 have PCa. These statistics have been at the center of
the discussion of the scientific community that questions the actual advantage of
screening and early diagnosis of PCa through PSA, which for some may only lead
to over-diagnosis and therefore to excessive clinical cost [7].

Gold-standard technique for PCa diagnosis is fine-needle aspiration biopsy (FNA
biopsy). The procedure consists in the insertion of a needle into the prostatic tissue
in order to extract small portions of the cancerous tissue to be observed under the
lens of a microscope. Obviously, FNA biopsy is performed once the presence of PCa
had been confirmed either by DRE or by PSA test [5]. Usually, the entire procedure
is guided by trans-rectal ultrasound (TRUS) imaging, hence, an ultrasound probe
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is coupled with the fine-needle and inserted through the rectum, as shown in figure
5.4. In order to increase sensitivity, the test is repeated from 6 to 16 times to be
sure to collect enough cancerous tissue [5].

Figure 5.4: Graphical illustration of the transrectal ultrasound-guided fine-needle aspiration
biopsy. Available at https://www.cancerresearchuk.org/

The analysis of the tissue under the microscope is entrusted to a pathologist
who evaluates the size and regularity of the glands, the arrangement of the nuclei,
the presence of fused glands, and many other image patterns. The gold-standard
system for grading PCa in terms of aggresiveness is the Gleason system: a Gleason
pattern/score which ranges from 1 to 5 is assigned to the tumoral tissue, where 1
represesents well-differentiated and not aggressive tumoral cells and 5 represents
poorly differentiated or anaplastic tumoral cells which are more aggressive and can
rapidly invade nearby tissues [8]. Figure 5.5 shows examples of tissue appearance
in histological images of PCas with different Gleason patterns. Usually, the sample
includes multiple tumoral areas with different features. For this reason, a Gleason
group is used which sums up the Gleason patterns of the two most extended tumoral
areas [8].

However, FNA biopsy has some important drawbacks [9]:

• The procedure is invasive and may be not comfortable for the patient and
could lead to infections and damages to the rectal wall.

• The aspirated tissue is only a small part of the tumor, therefore, it is diffi-
cult to have a complete characterization of the tumor, therefore, potentially
leading to wrong diagnosis.

Tumor characterization and detection using multiparametric MRI In
the last decade, multiparameter magnetic resonance imaging (mp-MRI) is emerging
as a fundamental tool for the characterization of PCa [10]. Figure 5.6 shows the
significant increase in PCa studies using mp-MRI.
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Figure 5.5: Drawing by Dr. Gleason of the five Gleason patterns. [8]

Figure 5.6: PubMed results by year for "Multiparametric MRI Prostate Cancer"

The term "multiparametric" indicates the combination of one or more morpho-
logical images, for example T1w and T2w, with or one or more functional images,
for example ADC and DCE. In the particular case of PCa, several studies have
shown that combining multiple images increases the performance in the detection
and characterization of PCa tissue, both in diagnostic and prognostic terms [10].
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Particular attention is given to the use of the T2w image to study the morphology
of the gland, while as regards the tissue functionality the most used modality is the
ADC. Figure 5.7

The ADC image adds information regarding the diffusion of water molecules
within the tissue. Figure 5.7 shows a case of prostate with a PZ adenocarcinoma in
a T2w, DW0 (b-value=0 s mm−2), DW1000(b-value=1000 s mm−2) and ADC image.
In this case, even if the tumor is visible on the T2w image as a partial darkening
of the pixels, on the ADC image the distinction between tumor tissue and healthy
tissue is more definite. This is due to the fact that the cancerous tissue is a tissue
with high density and complexity which significantly hinders the diffusion of water
molecules, and for this reason, the tumor areas on the ADC image have a lower
intensity value. On the other hand, on the T2w image it is easy to observe different
tissues such as bladder, seminal vesicles, pelvic muscles, rectum, in addition, the
clear distinction of the PZ with respect to the central gland (CZ + TZ).

A B C D

Figure 5.7: Example of peripheral zone (PZ) adenocarcinoma in a T2w image (A), DW image
with b-value=0 s mm−2 (B), DW image with b-value = 1000 s mm−2 (C), and finally, ADC image
(D) which is computed from the two previous DW images. Although the PZ adenocarcinoma
(indicated by the white arrows) is visibile on the T2w image as a zone with lower image intensities,
this difference is most evident on the ADC image which is extracted by a log-difference operation
from the DW images. Moreover, one can notice the different background features between the
T2w image, where one can see for example the obturator internus muscle, the psoas muscle or the
ischial tuberosities, and the DW images where background is predominantly noisy.

Over the past decade, interest in the development of automatic or semi-automatic
systems for the quantitative analysis of PCa in mpMRI has grown in the research
community. These studies follow a process consisting essentially of: i) the ex-vivo
histological image analysis to determine the histological sub-type of the cancer or
evaluate its aggressiveness; ii) definition of a region-of-interest (ROI) on the mpMRI
image, in-vivo or in some cases ex-vivo, by visual comparison with the annotations
of the histological image; iii) texture analysis on the defined ROI; iv) evaluation
of the correlation of textural features with the presence or with the phenotype
of the cancer. For example, an automatic computer-aided detection sysytem for
the detection of PCa was proposed using first-order and GLCM-based textural
features extracted from ex-vivo T2w images [11]. Quantitative differentation be-
tween normal and cancerous tissue was also evaluated using first-order and textural

83



Prostate cancer characterization

features extracted from in-vivo T2w, ADC together with pharamacokinetic param-
eters from DCE images [12, 13]. Tumor aggresiveness was also predicted using
GLCM-based textural features [14]. Prognosis, in terms of Gleason score upgrad-
ing or biochemical recurrence following radiotherapy, resulted to be correlated with
textural features extracted from the histogram of PZ cancers in ADC images [15]
and in T2w images [16]. However, there is a critical point that is worth raising: in
all these studies the ROI on the cancerous tissue was traced on the mpMRI images
by operators through visual comparison with histological images. This introduces
a dependence of the ROI tracing on the experience of the operator, and therefore
also a high inter-operator variability especially in the case of tumors that appear
heterogeneous on the mpMRI image. The (semi-) automatic registration of the his-
tological and mpMRI image could partially solve the problem because the definition
of the tumor area on the histological image would uniquely determine the ROI on
the MR image. The only studies that used a registration-based approach are stud-
ies that work with ex-vivo MRI images, however, to pave the way for the future
clinical use of quantitative mpMRI for PCa it is necessary to develop quantitative
systems using in-vivo images.

Image registration To conduct a mpMRI-based PCa study, the first problem
to be addressed is the registration between the mpMRI images, the morphological
and the functional one. This is not a trivial task for several reasons

• patient motion between acquisitions

• physiological motion of organs

• presence of geometric distortion in the phase encode direction caused by the
air-filled balloon surrounding the endorectal coil and magnetic field inhomo-
geneities.

So far, the most used methods to co-register the T2 image and the ADC are
semi-automatic, in which an experienced operator defines a series of corresponding
points, which represent anatomical landmarks such as the urethra, between the two
images. However, these methods are time-consuming and suffer from high inter-
operator variability. In order to cope with these limitations, automatic registration
methods are beginning to spread in PCa research studies. The common pipeline of
these methods consists of a first affine registration phase where motion misalign-
ments are corrected followed by a non-rigid registration phase to correct non-linear
geometric distortions. Buerger et al. [17] compared five standard non-rigid regis-
tration algorithms in a dataset of T2w and ADC images of 20 patients diagnosed
with PCa. In the era of multimodal integration, several medical image registration
toolboxes have been developed which allow easy use of a wide range of different
registration algorithms. One such toolbox is Elastix which is an ITK-based open-
source software package [18]. However, while these toolboxes offer a wide variety
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of transformations, metrics and registration parameters, their effectiveness depends
on the images to be registered. In the particular case of mpMRI prostate regis-
tration, a simple and direct application of these toolboxes may lead to registration
inaccuracy due to the following main reasons:

• the background characteristics of the T2w image are completely different from
those of the DW image. In the T2w image, anatomical structures are visi-
ble that are not present in the functional image. This can adversely affect
the quality of the registration when the registration metric used is based on
intensities (e.g. mutual information) or correlation (e.g. cross-correlation)
between images. For this reason, extracting a ROI within which the regis-
tration metric is calculated can significantly improve the performance of the
registration algorithm.

• initial deformation between the ADC and T2w images is highly variable due
to patient or organs motion which has a stochastic nature and the effectiveness
of the metrics implemented in these toolboxes (e.g. mutual information, mean
square error, cross-correlation) is highly dependent on the initial deformation
In this regard, again ROI extraction and an initialization of the non-rigid
transformation based on other metrics adapted to the mpMRI prostate images
could improve the registration results.

If registration between T2w and ADC is a difficult task, registration between
whole-mount histology (WMH) and MRI is even more challenging. Indeed, in
addition to the problems introduced by the artifacts present on the MR images,
registration between in-vivo MR and ex-vivo WMH images is an extremely difficult
task for several reasons [19]: i) the histological image suffers from artifacts caused
for example by dehydration and sectioning operations; ii) while the MR image is
acquired in-vivo, the histological image is acquired ex-vivo, therefore, the gland is
deformed because it is no longer supported by the adjacent anatomical structures;
iii) the WMH is a color image while the mpMRI are grey scale images iv) different
resolutions (WMH: units of µm at 20 x scale, MR: hundreds of µm; v) depending
on the image acquisition protocol, the orientation of the histological slices may not
coincide with that of the MR slices. These reasons make the automated registra-
tion of these images difficult, therefore, often the image acquisition protocols must
be chosen in order to minimize orientation errors of the slices, in addition, the al-
gorithm is supported by expert annotations, such as defining anatomical reference
points in both images and correspondences between WMH and MR slices.

Objectives In this chapter, a methodology is proposed to differentiate healthy
prostate tissue from cancerous tissue in mpMRI images (ADC and T2w). The main
novelty of this methodology is the use of advanced and optimized multimodal reg-
istration algorithms. Particular attention will, therefore, be given to the automatic
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algorithm developed for the registration of DW and T2w images and, subsequently,
to the registration between T2w and WMH images. Finally, the texture analysis
performed on mpMRI images will reveal the presence of imaging biomarkers ca-
pable of differentiating, in a multivariate fashion, cancerous tissue from healthy
tissue.

5.2 Materials and methods
Each method was developed and validated on a 2.21 GHz quad-core and 16GB

RAM.

Patients A total of 25 patients who performed mpMRI examination at the Can-
diolo Cancer Institute - IRCCS with a biopsy-proven PZ prostate adenocarcinoma
greater than 0.5 mL were included in this study. Twenty-one patients underwent
a radical prostatectomy within two months of the mpMRI examination. Eight pa-
tients showed multiple foci of PCa (3 patients with 3 foci and 5 patients with 2
foci). In overall, 37 tumors were diagnosed: Gleason group 2 (13 cases), Gleason
group G3 (13 cases), Gleason group 4 (11 cases). All the participants signed an
informed consent form and the study was approved by the local Ethics Committee.

Only for the validation of the ADC/T2w registration algorithm, another 26
patients were included in the study whose images were acquired at the National
Institutes of Health (NIH), Bethesda, Maryland between 2008 and 2010. These
patients were also diagnosed with PCa. The dataset is public and accessible from
the website cancerimagingarchive.net under the name of "PROSTATE-MRI".

Image acquisition

Multiparametric magnetic resonance In the IRCCS dataset, mpMRI im-
ages were acquired using a 1.5 T scanner (Signa Excite HD, General Electrics
Helathcare, USA) with a phased-array coil and an endorectal coil (Medrad, Indi-
anola, USA). T2w axial volumes were acquired using a field of view of 160 mm× 160
mm, TR/TE of 3020/85 ms, acquisition and reconstruction matrix of 384 x 288 and
512 x 512 pixels, slice thickness of 3 mm. DW images were acquired at two differ-
ent b-values: 0 and 1000 s mm−2 using the following acquisition parameters: field of
view of 160 mm× 160 mm, TR/TE of 7000/101 ms, acquisition and reconstruction
matrix of 128 x 128 and 256 x 256 pixels, slice thickness of 3 mm. Voxel reso-
lution was 0.3125 mm× 0.3125 mm× 3 mm and 0.625 mm× 0.625 mm× 3 mm for
the T2w and the DW volumes respectively.

Regarding the NIH dataset, a 3 T scanner was used (Philips Achieva, Best,
The Netherlands) with the following acquisition parameters: field of view of 140
mm× 140 mm, TR/TE of 8870/120 ms, slice thickness 3 mm, voxel resolution of
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0.27 mm× 0.27 mm× 3 mm for the T2w and field of view of 160 mm× 180 mm,
TR/TE of 4584/59 ms, slice thickness of 3 mm, voxel resolution of 1.03 mm× 1.03
mm× 2.73 mm for the DW volumes. The DW volumes were acquired at different
b-values: 0, 188, 375, 563 and 750 s mm−2.

Whole-mount histology Whole-mount histological (WMH) images were ac-
quired after radical prostatectomy at the San Lazzaro Hospital, Alba, Cuneo by
an expert pathologist (M.B. wtih 15 years of experience in uropathology). The
prostate specimen was sectioned along the longitudinal direction (apex-base axis)
using a slice spacing of 3 mm, thus, reproducing the MR image acquisition. Tis-
sue slices were thick 5 µm and were mounted onto adhesive slides and stained with
haematoxylin and eosin.

Apparent diffusion coefficient calculation Apparent diffusion coefficient maps
were computed from DW images acquired at b-value = 0 s mm−2, DW0 and b-value
= 1000 s mm−2, DW1000, using equation 2.11.

Manual annotations The PG was segmented by two expert radiologist (D.R.
and F.R. with 9 and 11 years of experience in mpMRI prostate examination) in T2w
and DW0 volumes using the 3D Slicer software [20]. The radiologist D.R. also anno-
tated a set of corresponding anatomical landmarks between T2w and DW0 images.
For each volume, from 30 to 60 landmarks points were defined in correspondence of
relevant anatomical references such as urethra, ejaculatory ducts, cysts, peripheral
zone boundaries and eventually adenomas by the radiologist (D.R.).

T2w image pre-processing Image pre-processing of the T2w image is funda-
mental for both the registration step and the texture analysis. In particular, two
corrections are important: i) bias field correction: bias field is a low-frequency illu-
mination field produced by the endorectal coil which significantly alters the signal
intensity especially near the coil. This artefact was corrected using the N4ITK
algorithm1 which adopts a strategy based on smoothing Bsplines [21]. ii) inten-
sity standardization: in this study, the T2w acquired image was not quantitative,
hence, the signal intensity values have no a direct physical meaning and are not
consistent among patients. Image standardization means reducing the inter-volume
variability of signal intensities of same body regions. Intensity standardization was
performed using an algorithm which estimates from a training set the parameters
of a standardized histogram [22]. Subsequently, the test set images are transformed

1The source code available to the public and is implemented in the 3DSlicer software. Bsline
grid resolution was set to 3 mm× 3 mm× 3 mm and order was set to 3
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in order to match the intensity standardized histogram. As the T2w images pre-
sented bimodal histograms, the histogram landmark chosen was the local minimum
between the two peaks by detecting zero-crossing points on the derivative of the
histogram2. In our implementation, since histogram landmarks had similar values
between volumes, the standardized histogram parameters were estimated using the
whole dataset as training test. The transformation was then applied to the whole
dataset of volumes.

5.2.1 Automatic ADC/T2w image registration
In order to align the ADC image and the T2w image, a fully automatic algorithm

was developed. The algorithm was able to: i) transform both T2w and ADC images
from Image Coordinate System (ICS) to Patient Coordinate System (PCS); ii)
define a volume-of-interest (VOI) on both T2w and the DW (b-value = 0 s mm−2),
DW0, volumes that includes the PG; iii) detect relevant keypoints in both images;
iv) identify correspondences between keypoints between the T2w and DW0 images;
v) estimate the deformation field as a cascade of an affine and a Bspline non-
rigid registration using a multimetric registration cost function (euclidean distance
between corresponding keypoints and advanced Mattes mutual information).

Coordinates transformation Slice origins and orientations of T2w and DW
images were adjusted by transforming image coordinates in the patient coordinate
system, as described in the Appendix section A.5. DW and T2w images were
interpolated in order to have an isotropic voxel resolution equal to 0.5 mm× 0.5
mm× 0.5 mm.

Automatic VOI definition Five central slices 3 mm a part of the T2w and DW0
volumes were processed. In the DW image, a 3 mm× 3 mm is applied 2-D median
filtering was applied. Subsequently, an object-based detection algorithm, which was
originally delevoped for histological image analysis [23], was adapted and applied
in order to identify the PG and the endorectal coil. PG medio-lateral width and
antero-posterior height were estimated by using two scanning lines passing by the
mask centroid. At this point, it is possible to define a rectangle with height equal
to the PG antero-posterior height and width equal to the PG medio-lateral width.
This rectangle is enlarged by a factor equal to 1.2 to ensure the total inclusion of
the PG in the ROI. The T2w image is median filtered (3 mm× 3 mm) and OTSU
thresholded. The rectum is segmented using the region growing algorithm in order
to identify the lower bound of the PG. The rectangle obtained in the DW0 image

2Other parameters chosen were pc1 = 2, pc2 = 99.5, s1 = 0, s2 = 255. For a detailed
description of these parameters refer to the original paper [22]
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is positioned in the T2w image to match the lower bound of the PG. The rectangle
is enlarged by a factor equal to 1.2. Figure 5.8 graphically describes the image
processing steps for the automatic ROI definition. Once the procedure was repeated
for each central slice, a volume-of-interest (VOI) with height and weight equal to
the height and weight of the largest ROI and depth equal to the number of slices
of the volumes was defined.

A C E G I

B D F H L

Figure 5.8: Automatic ROI definition in a DW0 central slice (first row) and in a T2w central slice
(second row). Panels A and B are the original images; C and D are the filtered images; E and
F are the thresholded images using the object-based detection algorithm in DW0 and OTSU in
T2w; G represents the antero-posterior (yellow points) and medio-lateral (green points) bounds
estimation; H is the rectum segmentation (red line); I and L represent the initial rectangle (dashed
line) and the final ROI (solid line).

SIFT extraction and matching The T2w and the DW0 volumes were cropped
in correspondence of the VOI automatically obtained. The cropped volumes were
filtered using Laplacian of Gaussian (LoG) kernels at different scales. Being the
Gaussian kernel with standard deviation:

G(x, y, z) = 1
σ3(2π)3/2 exp

[︄
−x2 + y2 + z2

2σ2

]︄
(5.1)

the LoG kernel is defined as the laplacian of G(x, y, z). The LoG kernel is known
as a blob detector because it enhances blob-like structures with size proportional to
the standard deviation (σ) of the Gaussian kernel. Thanks to the application of the
gaussian kernel which is a smoothing kernel, the filtering is also robust to noise. In
this study, LoG filtering was applied using different scales (σ from 1 to 4 mm using
a step equal of 0.5 mm). Then, the filtered images were summed to obtain a unique
image containing image features at different scales. For this reason, this filtering
approach was called multiscale LoG filtering. Figure 5.9 (C,D) show examples of
the multiscale LoG filtering result for a T2w and aDW0 image. The most notable
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effect of the filter is to highlight common structures in both images and in the same
time reducing low-scale textural features which are peculiar to the image modality.

Subsequently, the scale-invariant feature transform (SIFT) algorithm was ap-
plied to detect keypoints in both filtered images. This algorithm has been exten-
sively used in image registration, also in the medical field [24]. Firstly, candidate
key points at different scales using a difference-of-Gaussian function are detected,
then low contrast points with respect to the neighborhood or points localized along
an edge are discarded. Each key point is descripted by a 128-element vector which
is computed from the local image gradient [25]. Figure 5.9 (E,F) show the SIFT
key points detected in a DW0 and in a T2w image.

Let A be the set of SIFT descriptors in the DW image and B be the set of
SIFT descriptors in the T2w image, the key point matching task can be addressed
as a linear assignment problem which means finding a bijection f : A → B that
minimizes the cost function:

∑︂
a∈A

C(a, f(a)) (5.2)

where C(a, f(a)) is the cost of assigning the descriptor a ∈ A to a descriptor
b = f(a) which belongs to B. The Kuhn-Munkres algorithm, also known as Hun-
garian algorithm, provides an optimal solution to the linear assignment problem
in polynomial runtime complexity by operating on the cost matrix [26]. For our
application, we used the Kuhn-Munkres algorithm by defining the cost of assigning
a SIFT descriptor a to a SIFT descriptor b as the Euclidean distance between the
two descriptor vectors. Matches where partner key points were distant more than
3 mm along the phase-encode direction were discarded considering that geometric
distortion mainly occur along this direction [27]. Figure 5.9 (G,H) show an example
of matching between key points.

Outlier matches detection In order to discard further false matches, the ran-
dom sample consensus (RANSAC) algorithm was applied [28]. Given a model and a
dataset, the RANSAC algorithm randomly selects k sample data points, estimates
the model parameters by fitting the model, then apply the model to the rest of
data points and measures the fitting error. If the fitting error is below a threshold
t the data point is considered an inlier. This procedure is iterated n times, for
each iteration, the number of inliers is saved. The parameter models that yield the
highest number of inliers is the optimal model. In this study, we adopted an affine
model and the RANSAC pseudocode is reported in Algorithm 1.
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A C E G

B D F H

Figure 5.9: SIFT extraction and matching. A and B are the DW0 and T2w slices cropped; C and
D are the results of the multiscale Log filtering; E and F represent the keypoints (blue points)
detected by the SIFT algorithm; in G and H the keypoints are matched using the Kuhn-Munkres
algorithm, green points are some of the approved matches while red points are matches discarded
by the algorithm because they did not meet the heuristic criteria because the partner key points
were distant more than 3 mm along the phase-encode direction

Algorithm 1 Random sample consensus for affine transformation estimation
1: for iteration = 1; iteration < n, iteration + + . . . do
2: Randomly select k pairs of matching points
3: Estimate affine transformation parameters (A) by minimizing least squares

error
4: for each remaining pair of matching points do
5: Compute affine transformation of the DW0 key point using A parameters
6: Measure error (ϵ) as the distance between the DW0 transformed key

point and the matching T2w key point
7: if ϵ < t then
8: nInliers = nInliers + 1
9: end if

10: end for
11: if nInliers > Best_nInliers then
12: BestAffine← A
13: Best_nInliers← nInliers
14: end if
15: end for

In this application, k = 15, t = 3 mm, n = 30000.
At the end of this stage, a set of corresponding keypoints were defined in the

T2w and DW0 volumes.
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Non-rigid registration The final deformation field was estimated using the
open-source Elastix software package (version 4.9) which is based on ITK. A tool-
box capable of interfacing Matlab and Elastix, ElastixFromMatlab3, was used to be
able to manage both image processing and non-rigid registration on the MATLAB
environment. The T2w cropped volume (fixed image) and the DW0 cropped (mov-
ing image) were used as input images for the registration. Both volumes were first
filtered with the multiscale log kernel described in 5.2.1. A two-step registration
strategy was adopted: affine, as initialization for motion correction, followed by a
Bspline (order 3) for non-linear geometric distortions correction. A multi-metric
registration cost function was used:

C(Tµ, T2w, DW0) = w1TRE(Tµ, T2w, DW0) + w2amMI(Tµ, T2w, DW0) (5.3)

where Tµ is the deformation fields, TRE is the target registration error, computed
as mean euclidean distance, between the corresponding SIFT keypoints automati-
cally identified as previously described and amMI is the advanced Mattes mutual
information computed using a number of histogram bins equal to 64 [29]. The
latter metric was used given the excellent effectiveness in multimodal image reg-
istration and the reduced computational cost compared to the standard mutual
information [29]. The weights w1 and w2 were set to 0.25 and 0.75, respectively.
Multi-resolution was adopted using 2 pyramid levels: control point grid spacing
equal to 32 and 16 mm. Random sampler was adopted using a number of samples
equal to 4096. Adaptive stochastic gradient descent optimizer was used. For final
interpolation, a Bspline interpolator with order equal to 3 was chosen. Each of
these choices were made after an experimental tuning. This approach will be called
mm_Affine_Bspline where mm stays for "multimetric".

Other experiments Further experiments were carried out to verify that the reg-
istration pipeline chosen was the optimal one. In particular, three other approaches
were tested:

• only a non-rigid Bspline transformation was calculated, using the amMI as
the only metric without any initialization to correct motion artifacts. This
approach will be called amMI_Bspline

• an affine transformation estimated from the corresponding SIFT points was
calculated using least square error minimization, and subsequently, a Bspline
transformation using the amMI as the only metric. This approach will be
called SIFT_Affine + amMI_Bspline

3Copyright (C) CNRS and Riverside Research Contributors: Alain Coron, Jonathan Mamou
(2010). Website: https://sourcesup.renater.fr/www/elxfrommatlab/
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• a two-step transformation was calculated: Affine + Bspline, using the amMI
as the only metric. This approach will be called amMI_Affine_Bspline.

An experimental tuning was carried out to choose the best parameters for the
amMI_Affine and the amMI_Bspline. In both cases, best parameters were: two
resolutions, grid spacing equal to 32 and 16 mm, number of random samples equal
to 4096, maximum number of iterations to 35 and number of histogram bins equal
to 64.

Performance metrics and statistical analysis Alignment between volumes
was evaluated pre- and post-registration considering using three different metrics.
The first metric was the target registration error which is the mean euclidean dis-
tance between the corresponding anatomical landmarks annotated by the expert
radiologist. The measurement unit is mm. A decrease in TRE after registration in-
dicates that the same corresponding anatomical structures are closer to each other
and therefore the images are more aligned. In addition, the overlap between the
manual segmentation mask of the PG contoured on the T2w image and the one
drawn on the DW0 image was evaluated pre- and post-registration. Overlap was
measured using the Dice-Similarity Coefficient (DSC), defined in equation 4.14 and
ranges from 0 (no overlap) to 1 (total overlap). The better the alignment, the higher
the DSC value. Finally, mutual information (MI) which measures the amount of
information in common between the images [30], was measured within a VOI man-
ually defined by the expert radiologist in order to avoid bias due to the different
background properties of the T2w and DW0 images. For a detailed description of
TRE and MI, it is possible to refer to Appendix A.

A statistical test, two-tailed paired t-test, was performed to compare values of
metrics pre- and post-registration using a level of significance of 0.05.

5.2.2 Comparison of first-order textural features between
cancerous and normal tissue

In this study, first-order textural features were extracted from cancerous and
normal tissue in mpMRI and compared in order to identify whether these features
or the combination of these features were associated to the presence of PCa. The
pipeline consisted of six steps: i) T2w and DWI (b = 0 and b = 1000 s mm−2 volumes
acquisition and ADC map calculation; ii) Automatic ADC/T2w image registration;
iii) Semi-automatic whole-mount histological slice/T2w slice image registration; iv)
Tumoral and normal tissue region-of-interest extraction; v) Tissue characterization
using first-order textural features; vi) Statistical analysis.

Step i) was already described in this chapter under the paragraphs "Image ac-
quisition" and "Apparent diffusion coefficient calculation". Step ii) was described
in 5.2.1. The following paragraphs will describe in detail steps from iii) to vi).
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Semi-automatic whole-mount histological slice/T2w slice image registra-
tion For each whole-mount histological (WMH) slice, the pathologist (M.B.) and
the radiologist (F.R.) manually selected the corresponding T2w slice by visually
identifying anatomical landmarks. Further, a set of approximately 20 correspond-
ing points were annotated in correspondence of identifiable anatomical landmarks
in both T2w and WMH slices (e.g. urethra, ejaculatory ducts, adenomas). The
selected T2w image was cropped as described in 5.2.1. The T2w cropped image
and the red channel of the WMH slice were used as fixed and moving image, re-
spectively. A multi-metric and multi-resolution (two pyramid levels) registration
was adapted: advanced Mattes mutual information and Euclidean distance between
corresponding points with equal weights. An affine transformation followed by a
B-spline with grid spacing equal to 32 pixels were computed. Number of iterations
was equal to 10. The final registration parameters were tuned by visual assessment
and minimization of TRE.

Tumoral and normal tissue region-of-interest extraction Once the defor-
mation field between WMH and T2w was estimated, the tumor mask annotated on
the WMH slice was registered to the T2w. Subsequently the same registered mask
is positioned on the ADC registered image. This mask will be used as ROI for the
cancerous tissue.

In order to reduce bias in the comparison of textural between normal and tu-
moral tissue due to ROI with either different sizes or slices or zones, the ROI on
the normal tissue was obtained automatically by reflecting the ROI of the tumor
across the minor axis of an ellipse approximating the PG mask (figure 5.10).

Figure 5.10: Normal tissue region-of-interest extraction. The tumoral mask (contour in red line)
is reflected across the minor axis (black dotted line) of the ellipse (grey dotted line) with the same
second moment of the prostate gland mask (white mask). The green line are the final normal
tissue region-of-interest boundaries.

Tissue characterization using first-order textural features The texture of
tumoral and normal tissue was analyzed in the T2w and ADC images using six
first-order features: the mean image intensity in the ROI (I_Mean), the stan-
dard deviation of image intensities in the ROI (I_SD), the kurtosis of image in-
tensities in the ROI (I_Kurtosis), the skewness of image intensities in the ROI
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(I_Skewness), the entropy of the grey level histogram (H_Entropy) and energy
of the grey level histogram (H_Energy). While the former four listed features
were computed direcyly from the images, the latter two features were computed
from the grey level histograms. The histograms were computed using 256 num-
ber of levels and the 1st percentile and 99th percentile of grey values in the image
dataset as minimum and maximum values, separately for the T2w and the ADC
images. It is worthy note that the T2w images were not quantitative, hence, the
absolute values of the features have not a direct physical meaning, but they were
normalized as described in 5.2 to ensure consistency of image intensities between
different volumes. On the other hand, ADC image intensities have a direct physical
meaning which is expressed in 10−6 mm2 s−1.

Statistical analysis The texture features extracted from healthy and tumor tis-
sue were compared in terms of mean and standard deviation. Two-tailed paired
t-test was used to test the null hypothesis that the mean of the distribution of the
difference between the two observations, healthy and tumoral tissue, was zero. The
level of significance was set to 0.05. Variables collinearities were measured in a
multiple linear regression using the Belsley collinearity. After removing collinear
variables, multivariate analysis of variance (MANOVA) was used to compare the
means of the two data groups in three conditions: i) using only features extracted
from the T2w image; ii) using only features extracted from the ADC image; iii)
combining features extract from both modalities (T2w + ADC). A standard cut-
off analysis was performed for each single feature and for the MANOVA canonical
variables in order to compute the receiver operating characteristics (ROC) curve
and the area under it (AUC).

5.3 Results
5.3.1 ADC/T2w registration results

The proposed algorithm took 108.81 ± 29.42 seconds to register each pair of
volumes (ADC and T2w). Six volumes from the NIH dataset were discarded as
they presented strong image corruption, as was done in a previous study [17].

Mean and standard deviation of metrics pre- and post-registration using the pro-
posed approach (mm_Affine_Bspline) are reported in table 5.1 for the two datasets
analysed (IRCCS and NIH). For each metric, paired t-test analysis showed statis-
tical significant improvement of each metric between pre- and post-registration for
both datasets. For all patients, registration has always improved image alignment.

Figure 5.11 shows two qualitative examples of registration results.
Quantitative comparison between the proposed algorithm and the other tested

approaches is shown in table 5.2. The proposed algorithm achieved the best TRE
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Dataset Metric Pre-registration Post-registration ∆(%)

IRCCS, 1.5 T
TRE (mm) 2.34± 0.80 1.33± 0.31 −40.12± 14.42

DSC 0.87± 0.04 0.90± 0.04 3.60± 2.28
MI 0.38± 0.51 0.49± 0.09 30.75± 13.71

NIH, 3 T
TRE (mm) 2.04± 0.65 1.39± 0.17 −25.14± 13.97

DSC 0.91± 0.04 0.93± 0.02 1.89± 2.22
MI 0.45± 0.15 0.59± 0.13 40.87± 30.13

Total
TRE (mm) 1.93± 0.51 1.35± 0.26 −33.46± 15.95

DSC 0.89± 0.04 0.91± 0.03 2.84± 2.39
MI 0.44± 0.14 0.53± 0.12 35.24± 22.81

Table 5.1: Mean and standard deviation values of target registration error (TRE), dice-similarity
coefficient (DSC) and mutual Information (MI) pre- and post-registration using the proposed
approach (mm_Affine_Bspline) for the IRCCS and the NIH dataset. Relative difference (∆) is
the mean increase (if positive) or decrease (if negative) of the metric normalized to the metric
value pre-registration and multiplied by 100.

Patient 0022 (3 T)

Patient 2010 (1.5 T)

Pre-registration

Post-registration

Pre-registration

Post-registration

Figure 5.11: Registration results for Patient 2010 and 0022, acquired with the 1.5 T and the
3 T scanner, respectively. For each patient, the first row are the fused images (T2w in grey
colormap, DW0 in red colormap) pre-registration while the second row are the fused images
post-registration. Only six equidistant slices from the volumes, from apex to base, are shown
here. White arrows indicate misalignents which were corrected after the proposed registration
algorithm. The algorithms was able to correctly align the prostate gland in every zone, from apex
to base.

among other methods. However, the approach amMI_Affine_Bspline yielded best
results in terms of DSC, MI and computational time.
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Method Metric Post-registration ∆(%) ∆t

amMI_Bspline
TRE (mm) 1.52± 0.42 −25.61± 21.98

4.72 ± 0.25DSC 0.91± 0.03 2.67± 2.35
MI 0.57± 0.13 43.25± 27.21

SIFT_Affine + amMI_Bspline
TRE (mm) 1.43± 0.43 −28.61± 25.81

72.66± 29.71DSC 0.91± 0.03 2.25± 3.05
MI 0.58± 0.13 46.32± 28.81

amMI_Affine_Bspline
TRE (mm) 1.47± 0.42 −26.95± 25.27

7.40± 0.37DSC 0.92 ± 0.03 3.58 ± 3.08
MI 0.59 ± 0.13 50.28 ± 29.03

mm_Affine_Bspline (proposed)
TRE (mm) 1.35 ± 0.26 −33.46 ± 15.95

108.81± 29.42DSC 0.91± 0.02 2.84± 2.39
MI 0.53± 0.12 35.24± 22.81

Table 5.2: Mean and standard deviation values of target registration error (TRE), dice-similarity
coefficient (DSC) and mutual Information (MI) post-registration for the other registration ap-
proaches: Bspline using advanced Mattes mutual information as metric (amMI_Bspline); Affine
between SIFT matching keypoints + Bspline using advanced Mattes mutual information as met-
ric (SIFT_Affine + amMI_Bspline); Affine + Bspline using advanced Mattes mutual informa-
tion as metric (amMI_Affine_Bspline) on the total dataset. Finally, the proposed algorithm,
mm_Affine_Bspline, is the multimetric registration using target registration error between SIFT
keypoints and advanced Mattes mutual information. Relative difference (∆) is the mean increase
(if positive) or decrease (if negative) of the metric normalized to the metric value pre-registration
and multiplied by 100. ∆t is the computational time on a 2.21 GHz quad-core and 16GB RAM.

5.3.2 Comparison of first-order features between cancerous
and normal tissue

Seven tumors were discarded from the study, since no slice correspondence
(WMH slice - T2w slice) could be established by the experts with certainty. In
overall, a total of 19 patients with 30 lesions were texture analysed (3 patients with
3 foci, 5 patients with 2 foci, 11 patients with single foci). Regarding WMH-T2w
registration, post-registration TRE was 2 mm ± 1.2 mm compared to an average
equivalent lesion diameter of 9.3 mm± 6.1 mm.

Figure 5.12 shows the comparison between grey level histograms computed in
a normal and a cancerous region for a representative case of the study.

Table 5.3 shows the quantitative comparison between first-order features ex-
tracted from normal and cancerous tissue in T2w and ADC in terms of mean and
standard deviation values, AUC, and paired t-test.

Pearson correlation analysis highlighted high correlation (r > 0.9) for the follow-
ing pairs of features: H_EntropyT 2w - I_SDT 2w, H_EntropyT 2w - H_EnergyT 2w,
H_EntropyADC - I_SDADC , H_EntropyT 2w - H_EnergyADC . Indeed, Belsley
collinearity assessed multicollinearity introduced by H_EntropyT 2w and H_EntropyADC

with a proportion of variance-decomposition equal to 0.94 for both modalities.
These two features were removed before performing MANOVA analysis.

The MANOVA null hypothesis was rejected with the dimension of the space
containing the group means equal to 1 for every subset of features (T2w with
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Figure 5.12: Comparison of grey level histograms between normal (green line) and cancerous (red
line) tissue in T2w and ADC images of a peripheral zone cancer. Although mean signal intensity
appears to be significantly different from the two regions in both images, mean is not the only
histogram descriptor which seems to be significant. Indeed, for this case, the T2w histogram of
the cancerous region had lower standard deviation than the normal one. The same pattern cannot
be observed on the ADC image in which, however, the two distributions are clearly separated from
each other.

P < 0.05, ADC with P < 0.005, and T2w + ADC features with P < 0.005).
The scatter plot of T2w + ADC features for normal and canceours tissue in the
MANOVA canonical variables projection is shown in figure 5.13 panel (a). Figure
5.13 panel (b) shows the three ROC curves obtained for the first canonical variables
obtained from the T2w, ADC and T2w + ADC features. AUC values were 74.33,
85.89 and 88.33, respectively for T2w, ADC and T2w + ADC.

5.4 Discussion
The use of multiparametric magnetic resonance imaging (mpMRI) for the char-

acterization of prostate cancer is increasing over the last decade. The proposed
methodology was able to register T2w, ADC and histological images in order to
compare texture of cancerous and normal tissue in in-vivo mpMRI images of pa-
tients diagnosed with peripheral zone prostate cancer.
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Modality Feature Normal tissue Cancerous tissue AUC

T2w

I_Mean ∗∗ 145.98± 67.42 106.61± 52.75 0.68
I_SD ∗∗ 43.38± 23.28 27.71± 14.94 0.71
I_Kurtosis 0.44± 0.67 0.82± 0.66 0.66
I_Skewness 3.25± 1.16 4.20± 1.47 0.68
H_Entropy ∗∗ 5.26± 0.77 4.67± 0.81 0.71
H_Energy ∗ 0.04± 0.03 0.06± 0.03 0.71

ADC

I_Mean ∗ ∗ ∗ 1278.68± 297.17 994.25± 291.26 0.85
I_SD 248.41± 90.23 207.29± 64.45 0.65
I_Kurtosis ∗ −0.07± 0.84 0.29± 0.59 0.64
I_Skewness 3.14± 1.43 3.33± 0.85 0.65
H_Entropy 5.92± 0.56 5.88± 0.44 0.58
H_Energy 0.02± 0.01 0.02± 0.01 0.56

Table 5.3: Mean and standard deviation values of first-order features for normal and cancerous
tissue in T2w and ADC images. AUC is the area under the curve. Number of asterisks indicates
the P-value (e.g. ** means P<0.005). I_Mean and I_SD in ADC are measured in 10−6 mm2 s−1.
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Figure 5.13: Projection of T2w + ADC features in the MANOVA space (panel a) using the first
two canonical variables (C1T 2w+ADC , C2T 2w+ADC and receiver-operating characteriscs curve
(panel b) for the first canonical variable for T2w, ADC and T2w + ADC features).

Image Registration Image registration is an essential step and a low accuracy in
the registration between structures in images may affect final diagnostic accuracy.
The proposed automatic algorithm for ADC/T2w registration provided excellent
results for the private (IRCCS) and public (NIH) datasets acquired using differ-
ent scanners at 1.5 T and 3 T respectively. The proposed algorithm exploits image
processing techniques for automatic region-of-interest extraction, computer vision
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algorithms (scale-invariant feature transform) to detect corresponding points be-
tween images, a multiscale laplacian-of-gaussian (LoG) image processing filter and a
two-step registration approach (Affine + Bspline) using a registration cost function
formed by an intensity-based term as the advanced mattes mutual information and
a geometric term as the Euclidean distance between the corresponding SIFT points.
Performance was measured by three metrics: target registration error (TRE), dice-
similarity coefficient (DSC) between manual prostate gland segmentation masks
and mutual information (MI). TRE is decreased from pre- to post- registration for
each case analyzed. Although TRE is the most reliable metric because it measures
the true misalignment between reference anatomical structures, DSC and MI were
also used. The DSC can be useful in a context where registration can serve as
an initialization for segmentation of the prostate in the functional image, whereas
the MI is one of the most used metric for multimodal registration. However, DSC
is affected by error and variability of the manual segmentations and values of MI
strongly depends on the intensity distributions of the involved images [30]. Post-
registration TRE in the total dataset resulted 1.35 mm ± 0.25 mm compared to a
pre-registration TRE of 1.93 mm ± 0.51 mm with an average decrease of −33.46 %
± 15.95 %. The other metrics also showed an increase in alignment between images
(∆DSC = 2.78 % ± 2.53 %, ∆MI = 36.53 % ± 21.63 %).

The algorithm has been shown to achieve excellent results when evaluated in
datasets acquired with different scanners (IRCCS: TRE = 1.33± 0.31, NIH: TRE
= 1.39 ± 0.17, Wilcoxon test: P = 0.10). The substantial difference between the
two scanners (the one used in IRCCS and the one in NIH) is the intensity of the
static magnetic field, in the case of IRCCS equal to 1.5 T and in the case of NIH
equal to 3 T It is well known that this parameter has a heavy influence on the
image quality and the presence of artifacts in both sequences [31]. Also, the two
datasets had significant differences in inital deformation (IRCCS: initial TRE of
2.34 ± 0.80, NIH: inital TRE of 2.04 ± 0.65, Wilcoxon test: P = 0.048) and this
motivates the inferior value ∆TRE obtained in the NIH compared to IRCCS. It
has to be highlighted that tuning of parameters led to the same configuration of
parameters for both datasets. These results suggest that this registration algorithm
may be used also in multi-centric datasets.

In comparison with the other registration approaches, the proposed method re-
ported the best value of TRE. Looking at the other metrics, the amMI_Affine_Bspline
approach showed the best results in terms of DSC and MI (table 5.2). Nevertheless,
priority was given to the TRE metric because aligment of internal structures is the
most important factor for a tissue characterization system. Regarding computa-
tional time, amMI_Bspline and amMI_Affine_Bspline had the lowest computa-
tional time (table 5.2). Introducing image processing for the extraction of SIFT
points and above all the RANSAC method to detect outliers between the corre-
sponding points significantly increases the computational time (amMI_Affine_Bspline:
∆t = 7.40 s ± 0.37 s, (mm_Affine_Bspline: ∆t = 108.81 s ± 29.42 s). However,
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by reducing the number of iterations of RANSAC it is possible to reduce computa-
tional times at the expense of robustness registration. The choice of the parameter
must be faced according to the application scenario; in this study, computational
time was not a critical point, hence, we preferred high accuracy and robustness
with respect to lower computational time.

The issue of multimodal registration between MR images of the prostate has
already been addressed in the literature [17]. In their experiment, the Bspline
registration method based on the normalized correlation coefficient (NCC) metric
showed the largest post-registration TRE equal to 2.05 mm ± 1.05 mm concluding
that the Bsplines appear not be suitable for DW/T2w image registration. Although
this conclusion seems to be in contrast with the results of this study, it should be
noted that in this study important preprocessing steps (multiscale LoG filtering),
region-of-interest extraction, detection of corresponding points through the SIFT
algorithm, correction of the movement through affine and a multimetric registration
cost function were introduced. This motivates the significant improvement in the
performance of the final registration compared to the use of the non-rigid Bspline
transformation based onthe single NCC metric. This is also confirmed by the
decrease in performance obtained using the amMI_Bspline approach, which showed
the worst post-registration TRE equal to 1.59 mm ± 0.55 mm.

Compared to ADC/T2w image registration, registration between histological
image and MR is even more challenging. It is difficult to find corresponding points
automatically since the two images present different image patterns and the res-
olutions are orders of magnitude apart. Further, in the in-vivo MR images the
prostate gland is subject to deformations due to the presence of surrounding organs
and the endorectal coil. To cope with these critical points, the user intervention
was fundamental to reach a satisfactory registration accuracy (post-registration
TRE was 2 mm ± 1.2 mm compared to an average equivalent lesion diameter of
9.3 mm± 6.1 mm).

Comparison of first-order features between cancerous and normal tissue
The ultimate goal of this work was to evaluate the ability of mpMRI, through first-
order characteristics and multivariate analysis, to differentiate cancerous tissue from
healthy tissue. The methodology was developed with the aim of minimizing user
intervention that could introduce errors and variability due to the interpretation and
experience of the radiologist. The proposed methodology is innovative since, unlike
other studies in the literature in which either the ex-vivo mpMRI images are used
or the tumor is segmented on the mpMRI images by visual comparison, here the
tumor mask annotated in the histological images was semi-automatically registered
on the mpMRI image, which was previously obtained by automatic registration of
T2w and ADC images. It is important to note that the only user interventions in
this methodology are to establish the correspondence between T2w slice and WHM
slice and to insert corresponding points on the pair of T2w/WMH images in order
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to make the registration, hence the mpMRI tumor segmentation, as accurate as
possible. Furthermore, image registration is fundamental for the development of
systems for the automated detection of prostate cancer in in-vivo mpMRI images.

The choice to extract only first-order features from images has two main reasons:

• more advanced features such as GLCM-based or GLRLM-based features re-
quire a larger number of voxels to estimate the textural characteristics of the
image. The analyzed dataset included small tumors of which the ROI had a
few tens of pixels.

• first-order features have a greater robustness to the variation of the shape of
the ROI than the advanced features.

Results obtained showed the presence of 4 features extracted from the T2w im-
age able to distinguish the two classes: I_Mean, I_SD, H_Entropy and H_Energy.
As expected and as confirmed by other studies [13, 32, 11], cancerous tissue had
lower T2w signal intensity values (table 5.3).

The other two features describe the heterogeneity of the image and reported
the same AUC value equal to 0.71. Symmetry and tailness of the T2w image did
not appear to be associated with the differentiation between healthy and cancerous
tissue. In ADC image, I_Mean had AUC = 0.85 and P < 0.0005. This is in total
agreement with the literature, in fact, the high cell density in the tumor areas is an
obstacle to the diffusion of water molecules, causing a clear darkening of the image.
I_Kurtosis extracted from ADC images was lower in normal tissue (−0.07± 0.84)
than in cancerous tissue (0.29 ± 0.59), meaning that the cancerous tissue ADC
distribution had heavier tails with respect to normal tissue, however, significance
and AUC value were low and further investigation is needed.

Analyzing in general the results obtained considering the single features, it can
be concluded that if on the one hand, the average value of the ADC was a very
important parameter, on the other hand, the T2w image was able to describe in
greater detail the heterogeneity of the tissue, due to its better resolution, which
was correlated with the presence of cancerous tissue.

As shown by figure 5.12, multi-variate analysis of variance (MANOVA) high-
lighted the superior performance of the functional ADC image in the tissue dif-
ferentation with respect to the morphological T2w image (ADC: P = 0.0003 and
AUC = 0.86; T2w: P = 0.03 and AUC = 0.74). Other studies claimed that
the combination of ADC and T2w modalities increases the diagnostic accuracy of
PCa [33]. This is confirmed by the results, indeed, combinining ADC and T2w fea-
tures increased the differentiation accuracy (AUC = 0.88). An interesting result,
especially in a PCa screening scenario, is the increase in sensitivity introduced by
the combination of the two modalities which can be observed on the ROC curve (fig-
ure 5.13) with specificity equal to 1 (T2w sensitivity = 0.33, ADC sensitivity =0.47,
T2w + ADC sensitivity = 0.73). Interestingly, the highest MANOVA weights of
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the first canonical variables were I_MeanADC with w = 1.3, I_KurtosisT 2w with
w = −1 and I_SkewnessT 2w with w = 0.7 suggesting that: i) the main contri-
bution of the T2w modality is the heterogeneity characterization and ii) features
which did not show high statistical significance in a univariate analysis can be useful
in a multivariate framework.

Limitations and future works Some limitations have to be acknowledged.
First of all, the advantage of introducing SIFT points matching could be also tested
using other nonrigid registration algorithms such as Demons [34], fast elastic image
registration [35] and hierarchical local affine registration [36] which showed reg-
istration performance comparable to the mm_Affine_Bspline proposed here [17].
Qualitative assessment of corresponding WHM/MR slices is prone to errors due
to slight slice orientation difference between WMH and MR images. In future,
quantitative approaches will be implemented to find slice correspondences. Fi-
nally, the methodology will be extended to other functional imaging modality such
as dynamic-contrast enhanced and to central zone cancers which exhibit different
image patterns [10].

5.5 Conclusions
In this chapter, a complete methodology for prostate cancer characterization was

proposed. The methodology was based on automatic and semi-automatic innovative
registration algorithms in order to reduce user intervention which could be prone
to errors and high variability. First-order features extracted from mpMRI images
resulted to be correlated with presence of prostate cancer. While apparent diffusion
coefficient values are lower in cancerous tissue than in normal tissue, T2-weighted
images add discriminating features regarding tissue heterogeneity. To conclude,
multimodal analysis is a powerful tool for in-vivo prostate cancer characterization.
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Chapter 6

Conclusions

With the rapid development of novel imaging modalities and new hybrid scan-
ners, multimodal medical imaging has become a fundamental tool for the diagnosis
and prognosis of a large part of existing pathologies. However, due to the complex-
ity of these images and pitfalls associated with the image acquisition, accurate and
efficient strategies for quantitative characterization of tissue are needed. This work
aims to present innovative approaches for tissue characterization in multimodal
images with the purpose of improving diagnosis and prognosis in three important
oncological applications: thyroid cancer, neuroendocrine tumors and prostate can-
cer. Since different imaging modalities explains different physical/biochemical in-
formation, strategies were developed and optimized for each single clinical context.
The proposed algorithms work on functional ultrasound images, nuclear medicine
images and multiparametric magnetic resonance images.

Regarding thyroid cancer, multimodal ultrasound imaging is a powerful tool
for in-vivo and non-invasive characterization of thyroid nodules, thanks to the wide
spectrum of available modes. For example, B-mode imaging can accurately describe
morphology and tissue microstructure of the thyroid nodule in terms of echogenic-
ity and heterogeneity. Power doppler ultrasound (PDUS), contrast-enhanced ul-
trasound (CEUS) and the novel superb microvascular imaging (SMI) allow the
visualization and the quantitative characterization of the nodule vascularization at
different scales. In this work, an innovative strategy for the three-dimensional and
quantitative description of the vascular network of thyroid nodules in PDUS im-
ages was presented. The system showed promising results in the differentiation of
cytological borderline nodules. Integration with other functional modalities such as
CEUS and SMI, or with anatomical B-mode can be performed only in a feature or
classifier level fusion strategy due to difficulties in co-registering ultrasound modes.

Multimodal imaging is already widely used in the field of nuclear medicine imag-
ing. The integration of functional positron emission tomography (PET) and single
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photon emission computed tomography images which are able to target physio-
logical or pathological activities, with anatomical images, such as computed to-
mography and more recently magnetic resonance images, offers a complete and
quantitative in-vivo mapping of tissue functionality. Furthermore, with the recent
developments of novel radiotracers it is possible to trace proteins which are tumor-
specific. One example is the use of 68Ga-DOTA-peptides radiotracers targetting
somatostatin receptors which is a protein expressed by neuroendocrine tumors. In
this study, with the final aim of establishing an optimized and reliable radiomics
model for NETs characterization, a novel semi-automatic pipeline for the segmen-
tation of neuroendocrine primary and metastatic lesions was developed and vali-
dated, showing that the methodology was able to correctly segment lesions from
different sites with high heterogeneity variability. Furthermore, as first step to-
wards translation of radiomics model for NET into clinical use, robustness analysis
of radiomics features extracted from the lesions was performed in order to identify
a subset of features which were reproducible under different segmentation and in-
tensity discretisation settings. Future works will focus on correlation of radiomics
features with clinical outcomes of patients. Although CT images are fundamental
for anatomical localization of these tumors, their quantitative analysis is limited
by the low image resolution. However, in the perspective of automatic detection of
NETs, CT imaging will be used for increasing specificity by removing physiological
uptaking tissues by means of anatomic atlas registration.

High incidence makes prostate cancer one of the most expensive clinical prob-
lems. Development of hardware and software technologies for improvement of diag-
nosis and prognosis of prostate cancer could have a huge clinical impact. Over the
last decade, multiparametric magnetic resonance imaging is increasing its role in
the clinical pathway of prostate cancer thanks to its broad spectrum of anatomical
and functional sequences. In this work, a full pipeline for differentiation between
healthy and cancerous tissue in multiparametric magnetic resonance images (T2w
and ADC images) using advanced and optimized image registration methods and
texture analysis. The results from the validation on thirty peripheral zone cancer
lesions demonstrated the improvement of the diagnostic accuracy when integrating
information from T2w and ADC sequences. In future, methodology will be ap-
plied to larger dataset and extended for automatic detection of prostate cancer in
multiparametric magnetic resonance images.

In conclusion, multimodal imaging was evaluated and discussed in three dif-
ferent clinical contexts. Although multimodal integration in thyroid cancer and
neuroendocrine tumors present important pitfalls associated with the image acqui-
sition, quantitative analysis of multiparametric magnetic resonance images is yet
feasible and useful for prostate cancer characterization. Nonetheless, the (semi-)
automatic approaches proposed in this study resulted to be accurate and robust
and can be used for reducing current clinical costs, and improving patient’s health
and lifestyle.
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Appendix A

Image registration

This appendix introduces basic principles of image registration1. As discussed
throughout this thesis, image registration is fundamental in many clinical situations.
Image registration is the process of finding a spatial transformation mapping one
image to another.

A.1 Image registration framework
Image registration requires at least two images to be registered. Let IM(x) be

the moving image and IF (x) be the fixed image, defined on their spatial domains
ΩM and ΩF of dimension d, image registration is finding the displacement u(x) that
makes IM(x + u(x)) spatially aligned to IF (x). A tranformation T can be defined
as the function T : ΩF ⊂ Rd → ΩM ⊂ Rd. Finding T the spatially aligns the fixed
and the moving image is an optimisation problem which can be written as:

T ∗ = arg min
T

C(T ; IF , IM) (A.1)

where C is a cost function that has to be minimized. In most applications this
cost function includes two terms: a similarity term S which which measures the
similarity between the two images through a registration metric and a regularization
term R which penalizes irregular transformations:

C(T ; IF , IM) = −S(T ; IF , IM) + γR(T ) (A.2)

Two approaches are possible for solving the minimization problem of cost func-
tion C: parametric and non-parametric approach. In this appendix only the para-
metric approach is discussed as it was the only one used for the ADC/T2w prostate
gland registration (section 5.2.1).

1For writing this appendix the main reference was the Elastix manual [1]
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A.2 Parametric registration algorithms
In the parametric approach, a parametrisation of the transformation is intro-

duced to rewrite the initial minimization problem (equation A.1) as:

µ∗ = arg min
µ

C(µ; IF , IM) (A.3)

where µ is the vector of the transformation parameters. In this new form, C
is minimized over the elements of the vector µ and not over the entire space of
transformations T , thus, reducing the search space. The next section will provide a
summary of the most used transformation models and explain how to parametrise
them.

A.3 Transformation models
• Translation The image is translated by a translation vector as follows:

T (x) = x + t (A.4)

where t is the translation vector. The registration parametrization is µ = t

• Rigid A rigid transformation implies rotation and translation of the image,
and can be defined as:

T (x) = Rx + t (A.5)
where R is the rotation matrix. R can be parametrised using Euler angles,
hence, rigid transformation parameters are u = (θ, t)

• Similarity A similarity transformation is a rigid transformation with isotropic
scaling, and is defined as:

T (x) = sRx + t (A.6)
where s is the scaling factor. A possible parametrization is obtained by using
versors q for the rotation angles so that the transformation parameters are
u = (s, q, t).

• Affine An affine transformation includes translation, rotation, scaling and
shearing of the image. This can be defined as:

T (x) = Ax + t (A.7)

where A is the affine matrix and is composed by elements aij which do not
present any restrictions. The transformation parameters are u = (a, t).
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A.4 – Registration metrics

• B-spline This transformation belongs to the non-rigid transformations. B-
splines are piecewise polynomial functions defined on a grid of control points
xk. Transformation is computed as:

T (x) = x +
∑︂

xk∈Xk

pkβn
(︃

x− xk

σ

)︃
(A.8)

where Xk is the local support of the control point xk, pk are the coefficients of
each B-spline, β is the B-spline polynomial, n is the order of the polynomial,
and σ is control point spacing. In words, the deformation field is computed
locally for each control point, then, the image deformation is obtained by in-
terpolation using polynomial functions. Usually control points are distributed
on a regular grid, spacing between points is regulated by σ: a large σ pro-
duces more regular deformation field but with lower registration accuracy in
the control points, small σ produces irregular deformation fields but accurate
on control points. The transformation can be parametrised using the order
n of the polynomials and B-spline coefficients pk, which represent the control
points displacement.

Depending on the application, a transformation model may be preferred to
others. For example, rigid and affine transformations are commonly used for intra-
patient image registration (e.g. patient motion), whereas a non rigid transformation
may be applied in case of non-linear image distortion, inter-patient alignment or
atlas matching. Figure A.1 shows an example of registration between two brain
images using different transformation models.

A.4 Registration metrics
The choice of registration metric is fundamental for a successful image registra-

tion. One can compute a custom registration metric depending on the images to
be registered or use a combination of standard metrics, as described in 5.2.1. Most
common image registration metrics are the following:

• Mean square difference Mean square difference (MSD) measures a differ-
ence between intensities of the two images and is defined as:

MSD(u, IF , IM) = 1
|ΩF |

∑︂
x∈ΩF

[IF (x)− IM(x + u(x))]2 (A.9)

The minimum value of MSD is ideally 0 when the two images are perfectly
aligned. This metric may be preferred when corresponding structures have
similar intensity values in the fixed and the moving image, e.g. registration
of unimodal images.
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Figure A.1: Image registration between two brain magnetic resonance images using different
transformation models. (a) is the fixed image, (b) is the moving image, (c) deformed moving
image using translation model. (d) rigid model, (e) affine model and (f) B-spline. Available at
https://elastix.lumc.nl/

• Normalised correlation coefficient Normalised correlation coefficient (NCC)
is a measure of correlation between images and is computed as:

NCC(u, IF , IM) =
∑︁

x∈ΩF
(IF (x)− µF )(IM(x + u(x))− µM)√︂∑︁

x∈ΩF
(IF (x)− µF )2 ·∑︁x∈ΩF

(IM(x + u(x))− µM)2

(A.10)
where µF and µM are the average intensities of image IF and IM in the domain
ΩF . NCC ranges between -1 and 1. Higher the absolute value of NCC better
is the alignment, the sign indicates if positive or negative correlation. This
metric is used when exists a linear relation between the intensities of the
images to be registered.

• Mutual information Mutual information measures the amount of informa-
tion shared by two images and is defined as:

MI(u, IF , IM) = H(IF (x)) + H(IM(x + u(x)))−H(IF (x), IM(x + u(x)))
(A.11)
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A.5 – DICOM coordinate systems

where H(IF (x)) and H(IM(x + u(x))) are the marginal entropies of the fixed
and the moving image, respectively, and H(IF (x), IM(x + u(x))) is their joint
entropy. MI ranges from 0 to infinite. This metric assumes that intensities of
the two images are related. Its generality make this metric suitable for mul-
timodal image registration where the relation between intensities is generally
unknown.
Several variants of MI have been introduced. For example, the normalized
mutual information (NMI) is a normalized version of the classic MI which
is computed as:

NMI(u, IF , IM) = H(IF (x)) + H(IM(x + u(x)))
H(IF (x), IM(x + u(x))) (A.12)

The NMI ranges from 0 to 2 (maximum alignment). Compared to MI, the
NMI has the advantage of allowing direct comparison of registration accura-
cies.
Another variant is the advanced Mattes mutual information (amMI).
This metric is substantially equal to MI but entropies are not computed con-
sidering each histogram bin, hence, reducing computational cost [2].

• Target registration error The target registration error measures the mean
euclidean distance between corresponding points in the two images:

TRE(u, PF , PM) = 1
NP

NP∑︂
k=1
∥xF k − T (xMk)∥ (A.13)

where NP is number of corresponding points, xF k ∈ PF and xMk ∈ PM are
the point coordinates of the k-th correspondence in the fixed and the moving
image, respectively. T (xMk) is the transformed moving point. Corresponding
points can be defined manually or automatically by searching similar image
features in both fixed and moving images [3].

A.5 DICOM coordinate systems
Medical images are generally stored in DICOM (Digital Imaging and COmmu-

nications in Medicine) format. The DICOM file includes the image data and a
header which reports several information about the image. The image data is a
matrix containing intensity values of voxels2. The position of each voxel can be
identified using the Image Coordinate System (ICS). In the ICS, the three axes i,

2Assuming volumetric images for consistency with images studied in this thesis
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j and k have their origin at the first voxel transmitted and increase their value to
the right for the i-axis, the bottom for the j-axis, and backwards for the k-axis.
Another possible coordinate system is the patient coordinate system (PCS) which
is based on the anatomical directions, hence, x-axis increases from the right to the
left hand side of the patient, y-axis increases from the anterior to the posterior
side of the patient and z-axis increases from the feet to the head of the patient.
Moreover, in PCS the coordinates are expressed in mm. In case of multimodal
images, each modality respects its ICS, whereas the PCS is unique for all. There-
fore, it is common practice to transform image coordinates of every volume into
patient coordinates to have a unique reference system and to be consistent with
voxel resolutions.

The transformation from ICS to PCS follows an affine model whose parameters
can be obtained by the DICOM header. The affine matrix is:

AICS→PCS =

⎡⎢⎢⎢⎢⎢⎣
F11∆r F12∆c

T 1
1 −T N

1
1−N

T 1
1

F21∆r F22∆c
T 1

2 −T N
2

1−N
T 1

2

F31∆r F32∆c
T 1

3 −T N
3

1−N
T 1

3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (A.14)

where F is a 3x2 matrix containing the direction cosines which define the ori-
entation, using cosine directions, of the first row and the first column of the image
in the PCS (first column of F is the orientation of the first row and the second
column of F is the orientation of the first column), T 1 and T N are 3 element vec-
tors specifying the coordinates in the PCS of the upper left hand corner of the
first slice and the last slice, respectively. F and T can be found in the DICOM
header under the name of Image Orientation (tag: 0020,0032) and Image Position
(tag: 0020,0037) in the Image Plane module. The symbols ∆r and ∆c indicate the
row and column pixel resolutions, respectively, and can are contained in the Pixel
Spacing (tag: 0028,0030). Assuming two volumes V1 and V2, to transform3 image
coordinates of V1 and V2 in the PCS:⎡⎢⎢⎢⎣

P V1
x

P V1
y

P V1
z

1

⎤⎥⎥⎥⎦ = MV1
ICS→PCS

⎡⎢⎢⎢⎣
iV1

jV1

kV1

1

⎤⎥⎥⎥⎦ (A.15)

and

3In equations A.15 and A.16 homogeneous coordinates were used to convert the affine trans-
formation in a linear transformation
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⎡⎢⎢⎢⎣
P V2

x

P V2
y

P V2
z

1

⎤⎥⎥⎥⎦ = MV2
ICS→PCS

⎡⎢⎢⎢⎣
iV2

jV2

kV2

1

⎤⎥⎥⎥⎦ (A.16)

Once voxel coordinates of both volumes are in the same reference system (PCS),
it is possible to decide whether to interpolate the first image to match the second
image resolution or viceversa.
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