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Abstract: Inflammatory bowel disease (IBD) includes patients affected by Crohn’s disease or ulcera-
tive colitis. IBD is thought to be a chronic immune-mediated disease, but its origin remains elusive,
and this limits new therapeutic approaches. Human endogenous retroviruses (HERVs) originate from
ancestral infections and represent 8% of the human genome. HERVs are no longer infectious, but
some retroviral sequences can be activated, and their aberrant expressions have been implicated in
inflammatory and autoimmune disorders. HERV transcription is regulated by TRIM28 and SETDB1,
which are also directly involved in epigenetic processes and modulation of the immune response.
Using a PCR real-time Taqman amplification assay, we assessed, for the first time, the transcription
levels of pol genes of HERV-H, -K, and -W families of env genes of syncytin 1 (SYN1), SYN2, and
HERV-W, as well as of TRIM28 and SETDB1 in the whole blood of 48 patients with Crohn’s disease
(CD), 20 with ulcerative colitis (UC), and in healthy controls (HC) of comparable age. The transcrip-
tional levels of HERV-H-pol (p = 0.0003) and HERV-K-pol (p = 0.001) were significantly higher in IBD
patients compared with HC, with no differences between patients with CD and UC. No significant
differences were found for the remaining HERVs between IBD patients and HC. The transcript levels
of TRIM28 were significantly downregulated in IBD patients (p < 0.001), without differences between
CD and UC, while the SETDB1 levels were preserved. The enhanced transcription of HERV-H-pol
and HERV-K-pol, as well as the impaired activation of TRIM28, were not influenced by clinical disease
activity and type of treatment. The overexpression of HERVs and impaired transcription of TRIM28
in patients affected by CD or UC suggest that they might be the main actors in the pathophysiology
of IBD, opening the way to innovative targeted interventions.

Keywords: Crohn’s disease; ulcerative colitis; IBD; human endogenous retroviruses; TRIM28;
SETDB1; pathogenesis

1. Introduction

Inflammatory bowel disease (IBD) is a major cause of chronic disability. It is consid-
ered an immune-mediated disease, but its pathogenesis remains poorly understood and
this limits the identification of novel therapeutic measures [1,2]. The contribution of hered-
itable genetic factors is increasingly recognized [3–5]. Epigenetics is an emerging element
through which environmental factors can modulate gene expressions without changing
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their fundamental structure. An accumulating body of literature highlights that epigenetic
factors are highly involved in the development Crohn’s disease (CD) and ulcerative colitis
(UC) [3,4,6–8]. Recent studies have also shown that the gut microbiota plays a pivotal role in
maintaining gut homeostasis, and regulating local and systemic immune responses, while
its imbalance may give rise to microbial metabolites able to trigger epigenetic variations
in IBD patients [9,10]. Toll-like receptors (TLRs) participate in the immune response to
microbial components. They contribute to preserving the intestinal epithelial barrier that
can be compromised by dysregulated TLR signaling, allowing microbes to penetrate and
trigger inflammatory responses in IBD [11].

Human endogenous retroviruses (HERVs) originate from the ancient infections of
germinal cells of primates millions of years ago. Due to evolutionary mutations, they
have lost the ability to produce infectious particles. However, HERVs still retain their
retroviral structure, which consists of three principal genes: group-associated antigens (gag),
polymerase (pol), and envelope (env), flanked by two regulatory long terminal repeats
(LTRs) [12]. Most HERVs are inactive, but some elements are transcribed and a few encode
proteins. Increasing evidence documents the essential role of HERVs during the intrauterine
life. For instance, two envelope proteins, referred to as syncytin 1 (SYN1) [13] and syncytin
2 (SYN2) [14], contribute to the placental syncytiotrophoblast formation and the materno-
foetal tolerance through their vigorous immune-suppressive effects [15]. Postnatally, the
physiologic actions of HERVs are unclear: while activated retroviruses can act as the
promoters or enhancers of cellular genes [16,17], their RNAs can be retrotranscribed and
reintegrated into the DNA or, being recognized as non-self by TLRs, induce innate and
specific immune responses [17–19]. In fact, HERVs have been studied and proposed in
the pathophysiology of many inflammatory immune-mediated diseases [20–24]. HERVs
also have a mutual influence on microbiota, and their enhanced expression promotes
microbiota-mediated gut inflammation [25].

HERV transcription is influenced by environmental factors through epigenetic mech-
anisms, such as DNA methylation and histone modification, leading to heterochromatin
silencing. The tripartite motif-containing 28 (TRIM28, also known as KAP1 or TIF1-b),
functions as a nuclear corepressor for Krüppel-associated box domain zink finger proteins
(KRAB-ZFPs), which are the largest family of transcriptional regulators in the human
genome [26]. SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is a
methyltransferase highly specific for the lysine 9 residue of histone H3 [27]. It has mul-
tifaced biological properties, such as T cell development, intestinal epithelial cell differ-
entiation, and the prevention of gut inflammation [28–30]. Both TRIM28 and SETBD1 are
specific tags for the epigenetic transcriptional repression of HERVs [31–33]. Furthermore,
they regulate the transactivation of thousands of cellular genes [34,35] and are directly
involved in epigenetic processes [32], including the modulation of innate and adaptive
immune responses [36,37].

Despite the aforementioned elements supporting the potential role of HERVs, TRIM28,
and SETDB1 in inducing and/or maintaining immune-mediated inflammatory disorders,
no studies investigated their expressions in patients affected by IBD except for one study
on syncytin expression in intestinal biopsies from CD patients [38]. Therefore, the aims of
our research were to evaluate the transcriptional levels of pol genes of HERV-H, HERV-K,
and HERV-W, the three retroviral families most widely studied [12,39]; env genes of SYN1,
SYN2, and HERV-W [21,40]; as well as TRIM28 and SETDB1 in the whole blood from adults
affected by CD or UC, and in healthy controls (HC) of comparable age.

2. Material and Methods
2.1. Study Populations

The diagnosis of CD and UC was based on clinical, radiological, and endoscopic
findings according to the European guidelines [41]. Patients’ peripheral blood samples
were collected during routine laboratory checks. Healthy adult volunteers of comparable
age were the control group.
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2.2. Sample Storage

Of the whole blood, 200 µL was added to 800 µL of the RNApro solution (Biomole,
Turin, Italy) in a 1.5 mL Eppendorf tube and resuspended by vortexing; the samples were
stored at −80 ◦C [42].

2.3. Total RNA Extraction

Total RNA was extracted using the Maxwell automated extractor in combination with
the RNA Blood Kit (Promega, Madison, WI, USA). This kit includes DNase treatment
during the extraction process. To ensure no genomic DNA contamination, RNA extracts
were directly amplified without reverse transcription to validate the extraction protocol.
RNA concentration and purity were evaluated by UV spectroscopy, measuring absorbance
at 260 and 280 nm SimpliNano spectrophotometer (Biochrom US, Holliston, MA, USA).
The RNAs were stored at −80 ◦C until use.

2.4. Reverse Transcription

Four hundred nanograms of total RNA were reverse-transcribed in a 20 µL reaction
mixture containing 2 µL of a 10× buffer, 4.8 µL of 25 mM MgCl2, 2 µL ImProm-II reverse
transcriptase (Promega), 1 µL of RNase inhibitor (20 U/L), 0.4 µL of 250 µM random
hexamers (Promega), 2 µL of 100 mM dNTP mix (Promega), and nuclease-free water. The
reverse transcription reaction was performed in a GeneAmp PCR system 9700 Thermal
Cycle (Applied Biosystems, Foster City, CA, USA) under the following conditions: 5 min at
25 ◦C, 60 min at 42 ◦C, followed by 15 min at 70 ◦C for enzyme inactivation. The cDNAs
were stored at −20 ◦C until use.

2.5. Transcription Levels of pol Genes of HERV-H, -K, -W; env Genes of SYN1, SYN2, and
HERV-W; as Well as TRIM8/SETDB1 by a Real-Time PCR Assay

The relative expression levels of pol genes from HERV-H, HERV-K, and HERV-W; env
genes from SYN1, SYN2, and HERV-W; along with TRIM28/SETDB1 were measured, as
previously detailed, using the primers and probes listed in Supplementary Table S1 [22–24].
Briefly, 40 ng of cDNA was amplified in a 20 µL reaction containing 2.5 U goTaQ MaterMix
(Promega), 1.25 mmol/L MgCl2, 500 nmol of specific primers, and 200 nmol of specific
probes. All the amplifications were performed in a 96-well plate under the following
conditions: initial denaturation at 95 ◦C for 10 min, followed by 45 cycles at 95 ◦C for 15 s
and at 60 ◦C for 1 min. Each sample was analyzed in triplicate. The relative expression
of target gene transcripts was carried out according to the 2−∆∆Ct method [43]. GAPDH
was chosen as the reference gene, due to its consistent expression in human leukocytes
and its proven efficiency and excellent reproducibility [44], as previously observed in our
studies [22–24]. Briefly, after normalization of the PCR result of each target gene with
the housekeeping gene, the method includes additional calibration of this value with
the median expression of the same gene emerging in a pool of healthy controls. The
results of the 2−∆∆Ct method show variations in target gene transcripts relative to the
standard set of controls. As documented in this and other investigations, the expression
of HERVs, TRIM28, and SETDB1 varies greatly among healthy individuals. The reason is
unknown and in the literature, no definition of normal values or normal threshold has been
proposed; consequently the analyses to assess potential significant differences between
IBD patients and HC were performed by comparing all their values. Since we measured
Ct for every target in all samples, we argue that our methods were suitable for HERV and
TRIM28/SETDB1 quantifications. All analyses were carried out in a laboratory of biosafety
level 2 (BSL-2) according to the Office of Science Policy and WHO guidelines [45,46].

2.6. Statistical Analysis

A one-way ANOVA test was employed to compare the transcriptional levels of each
target gene among patients with CD, UC, and HC. Since the Shapiro–Wilk test to evaluate
the distribution of data of every group of subjects demonstrated non-normally distributed
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continuous variables, the Mann–Whitney test was used to assess differences in the relative
transcription levels of pol genes from HERV-H, HERV-K, and HERV-W; env genes from
SYN1, SYN2, and HERV-W; and TRIM28 and SETDB1 genes between two groups of subjects.
Statistical analyses were performed using the Prism 7 software (GraphPad Software);
p < 0.05 was considered statistically significant.

3. Results
3.1. Study Population

A total of 68 patients affected by IBD were studied: 48 with CD (Group A1) and
20 with UC (Group A2). The control subjects grouped healthy volunteers, selected without
selection criteria. They were divided into two groups according to the tests performed:
Group B1 included 104 subjects whose blood samples were also used for other studies and
whose stored cDNAs were sufficient to be tested for pol genes of HERV-H, HERV-K, and
HERV-W; while Group B2 included 81 healthy volunteers tested for the other targets. The
control subjects were selected with the gender and age comparable to the patients. The
median ages of IBD patients were comparable to those of HC: A1 vs. B1 p = 0.1376, A2 vs.
B2 p = 0.1950. The characteristics of the patients and control subjects are detailed in Table 1.

Table 1. Demographics and clinical characteristics of patients with Crohn’s disease (CD) or ulcerative
colitis (UC), and healthy volunteers (Groups B1 and B2).

Group A1 (CD)
n = 48

Group A2 (UC)
n = 20

Group B1 (HC)
n = 104

Group B2 (HC)
n = 81

Median age
(IQR)

46.3 years
(33.3–56.2)

55.9 years
(42.8–65.8)

41.5 years
(34.7–55.4)

41.0 years
(33.9–52.7)

Males n (%) 26 (53.1) 12 (60.0) 62 (59.6) 48 (59.3)
Duration of disease (yrs)
(IQR)

8
(3–20.3)

8.5
(5–22.3)

Resection n (%) 19 (39.6) 3 (15)
Clinical disease activity *
Remission n (%) 28 (58.3) 12 (60)
Mild n (%) 13 (27.1) 8 (40)
Moderate n (%) 6 (12.5) -
Severe n (%) 1 (2.1) -

Treatment
Mesalazine n (%) 33 (68.8) 12 (60)
Topic steroids n (%) 11 (22.9) 3 (15)
Systemic steroids n (%) 6 (12.5) 3 (15)
Anti-TNF n (%) 14 (29.2) 5 (25)
Ustekinumab n (%) 4 (8.3) -
Vedolizumab n (%) 1 (2.1) -
Anti-Jak n (%) 1 (2.1) 1 (5)

n: number; IQR: interquartile range, expressed as 25 and 75 quartile values; TNF: tumor necrosis factor. * According
to HBI score in CD [47] and pMAYO score in UC [48].

3.2. Transcription Levels of HERV-H-pol, HERV-K-pol, and HERV-W-pol in the Whole Blood of
Patients with Crohn’s Disease, Ulcerative Colitis, and HC

The transcriptional levels of HERV-H-pol and HERV-K-pol were significantly higher
in patients with CD or UC than in HC of comparable age, while no differences were found
between the two subpopulations of IBD patients (Figure 1). The mRNA levels of HERV-W-
pol were comparable between subjects with CD, UC, and HC. The medians and IQR 25–75%
were as follows: HERV-H-pol CD 1.53, 1.22–2.02; UC 1.56, 0.96–1.99, HC 1.24, 0.63–1.63;
HERV-K-pol CD 1.27, 1.00–1.76; UC 1.41, 0.99–1.85; HC 0.97, 0.71–1.34; HERV-W-pol CD
1.09, 0.78–1.27; UC 1.03, 0.88–1.32; HC 1.32, 0.86–1.59 (Figure 1).
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Figure 1. Transcription levels of the pol genes of HERV-H, HERV-K, and HERV-W in the whole blood
from 48 patients with Crohn’s disease, 20 with ulcerative colitis (UC), and 104 healthy controls (HC).
2−∆∆Ct = relative expression according to the 2−∆∆Ct method. Circles, squares, and triangles show
the median of three individual measurements; horizontal lines represent the median values. The
boxed p-values represent the result of a one-way ANOVA test, while the other p-values represent the
result of the Mann–Whitney test.

3.3. Transcription Levels of the env Genes of Syncytin 1, Syncytin 2, and HERV-W in the Whole
Blood of Patients with Crohn’s Disease, Ulcerative Colitis, and HC

The median values of the env genes of SYN1, SYN2, and HERV-W were similar in
patients with CD, UC, and HC of comparable age (Figure 2). The medians and IQR 25–75%
were as follows: syncytin 1 CD 1.14, 0.66–1.52; UC 0.79, 0.6–1.33; HC 1.02, 0.70–1.48;
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syncytin 2 CD 0.95, 0.59–1.17; UC 1.15, 0.91–1.53; HC 0.93, 0.70–1.38. HERV-W CD 0.93,
0.81–1.25; UC 1.17, 0.9–1.34; HC 0.98, 0.73–1.44 (Figure 2).
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Figure 2. Transcription levels of the env genes of syncytin 1, syncytin 2, and HERV-W in the whole
blood from 48 patients with Crohn’s disease (CD), 20 with ulcerative colitis (UC), and 81 healthy
controls (HC). 2−∆∆Ct = relative expression according to the 2−∆∆Ct method. Circles, squares, and
triangles show the median of three individual measurements; horizontal lines represent the median
values. The boxed p-values represent the result of a one-way ANOVA test, while other p/values
represent the result of the Mann–Whitney test.

3.4. Transcription Levels of TRIM28 and SETDB1 in Patients with Crohn’s Disease, Ulcerative
Colitis, and HC

As reported in Figure 3, the median transcript levels of TRIM28 were significantly
lower in patients with CD or UC than in HC of comparable age, without a significant
difference between the two groups of patients. The transcription levels of SETDB1 were
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comparable in the three groups of subjects. The medians and IQR 25–75% were as follows:
TRIM28 CD 0.73, 0.56–0.92; UC 0.76, 0.60–0.92; HC 1.01, 0.79–1.25; SETDB1 CD 1.00,
0.81–1.29; UC 0.96, 0.75–1.29; HC 1.00, 0.74–1.40 (Figure 3).
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Figure 3. Transcription levels of TRIM28 and SETDB1 in the whole blood from 48 patients with
Crohn’s disease (CD), 20 with ulcerative colitis (UC), and 81 healthy controls (HC). 2−∆∆Ct = relative
expression according to the 2−∆∆Ct method. Circles, squares, and triangles show the median of
three individual measurements; horizontal lines represent the median values. The boxed p-values
represent the result of a one-way ANOVA test, while the other p-values represent the result of the
Mann–Whitney test.

3.5. Expressions of HERVs, TRIM28, and SETDB1 in IBD Patients According to Disease Activity

No significant differences emerged for HERVs, TRIM28, and SETDB1 between patients
in remission (R) compared with those with active disease (including mild, moderate, and
severe clinical disease activity, MMS) (Supplementary Figure S1). The medians and IQR
25–75% were as follows: HERV-H-pol R 1.58, 1.12–2.10; MMS 1.49, 1.22–1.91; HERV-K-pol
R 1.29, 1.07–1.78; MMS 1.13, 0.90–1.79; HERV-W-pol R 1.11, 0.88–1.35; MMS 0.98, 0.81–1.24;
syncytin 1 R 1.12, 0.65–1.50; MMS 0.98, 0.60–1.43; syncytin 2 R 1.03, 0.68–1.29; MMS 1.00,
0.59–1.17; HERV-W-env R 1.11, 0.84–1.27; MMS 0.95, 0.75–1.18; TRIM28 R 0.76, 0.58–0.92;
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MMS 0.72, 0.58–0.90; SETDB1 R 0.97, 0.86–1.30; MMS 0.98, 0.70–1.27 (Supplementary
Figure S1).

3.6. Transcription Levels of HERVs, TRIM28, and SETDB1 in IBD Patients According to
Mesalazine Treatment

The median mRNA levels of HERVs, TRIM28, and SETDB1 were comparable be-
tween patients treated with mesalazine (Mes) and those without mesalazine (No Mes)
(Supplementary Figure S2). The medians and IQR 25–75% were as follows: HERV-H-pol
Mes 1.48, 1.16–2.07; No Mes 1.64, 1.09–1.82; HERV-K-pol Mes 1.26, 1.03–1.79; No Mes 1.29,
0.91–1.70; HERV-W-pol Mes 1.09, 0.88–1.36; No Mes 0.97, 0.82–1.20; Syncytin 1 Mes 1.08,
0.59–1.48; No Mes 0.99, 0.66–1.51; Syncytin Mes 1.06, 0.66–1.29; No Mes 0.91, 0.58–1.05;
HERV-W-env Mes 1.07, 0.85–1.33; No Mes 0.84, 0.78–1.09; TRIM28 Mes 0.76, 0.59–0.93; No
Mes 0.67, 0.50–0.85; SETDB1 Mes 0.99, 0.84–1.29; No Mes 0.97, 0.71–1.28 (Supplementary
Figure S2).

3.7. Transcription Levels of HERVs, TRIM28, and SETDB1 in IBD Patients According to
Steroid Treatment

The median transcription levels of HERVs, TRIM28, and SETDB1 were comparable
between patients treated with steroids and those untreated (Supplementary Figure S3).
The medians and IQR 25–75% were as follows: HERV-H-pol steroids 1.56, 1.24–1.96; no
steroids 1.48, 1.00–2.05; HERV-K-pol steroids 1.29, 1.08–1.73; no steroids 1.27, 0.87–1.79;
HERV-W-pol steroids 1.12, 0.89–1.28; no steroids 1.06, 0.86–1.27; syncytin 1 steroids 1.23,
0.68–1.53; no steroids 0.99, 0.56–1.36; syncytin 2 steroids 0.89, 0.63–1.18; no steroids 1.06,
0.64–1.19; HERV-W-env steroids 1.00, 0.84–1.26; no steroids 1.02, 0.80–1.28; TRIM28 steroids
0.68, 0.57–0.83; no steroids 0.75, 0.58–0.96; SETDB1 steroids 1.01, 0.78–1.26; no steroids 0.96,
0.80–1.29 (Supplementary Figure S3).

3.8. Expressions of HERVs, TRIM28, and SETDB1 in IBD Patients with and without Anti-Tumor
Necrosis Factor (TNF) Treatment

The expressions of HERVs, TRIM28, and SETB1 were comparable between IBD pa-
tients treated (anti-TNF POS) or untreated with anti-TNF (anti-TNF NEG) (Supplementary
Figure S4). The medians and IQR 25–75% were as follows: HERV-H-pol anti-TNF POS
1.75, 1.27–2.31; anti-TNF NEG 1.48, 1.13–1.94; HERV-K-pol POS 1.31, 1.08–1.86; NEG
1.27, 0.93–1.70; HERV-W-pol anti-TNF POS 1.15, 0.97–1.26; anti-TNF NEG 1.03, 0.83–1.33;
Syncytin 1 anti-TNF POS 0.97, 0.62–1.33; anti-TNF NEG 1.05, 0.62–1.53; Syncytin 2 anti-
TNF POS 0.99, 0.84–1.18; anti-TNF NEG 1.03, 0.60–1.20; HERV-W-env anti-TNF POS 1.03,
0.84–1.32; anti-TNF NEG 1.00, 0.79–1.25; TRIM28 anti-TNF POS 0.87, 0.58–0.95; anti-TNF
NEG 0.73, 0.58–0.88; SETDB1 anti-TNF POS 1.20, 0.94–1.30; anti-TNF NEG 0.95, 0.75–1.23
(Supplementary Figure S4).

4. Discussion

Our results document, for the first time, that patients affected by IBD exhibit signifi-
cantly higher transcriptional levels of HERV-H-pol and HERV-K-pol in peripheral blood
compared with healthy controls of similar age. The RNA levels of HERV-W-pol and the
env genes of SYN1, SYN2, and HERV-W were comparable between patients and the control
group. No significant difference in the expression of every HERV was observed between
patients with CD and those with UC.

The HERV-H is the largest family of retroviruses in the human genome, while the
HERV-K is the most recent component, present only in humans. The underlying biological
mechanisms responsible for their aberrant expression in patients with IBD and their clinical
significance remain to be elucidated. An extensive body of literature highlights that
TRIM28 is implicated in maintaining endogenous retroviruses in a silent state [31,32].
The impaired transcriptional levels of TRIM28 in our patients may thus account for the
enhanced expression of some HERV elements. SUMOylated TRIM8 is a scaffold protein
recruiting SETDB1 to interact with KRAB-ZFPs to repress retroelements [32,49]. SETDB1
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expression was normally represented in whole blood of our patients, in line with the
preserved mucosal SETDB1 transcript levels in most patients with IBD [50], though others
found a relative deficiency [28]. Rare missense variants of SETDB1 are over-represented
in IBD and these have been suggested to participate in its pathogenesis [29]. It cannot be
overlooked that functional interactions between TRIM28/SETDB1 and single HERVs may
originate from post-translational events between the encoded proteins, while we assessed
only their transcriptional landscape. Finally, in addition to the TRIM28/SETDB1/KRAB-
ZFP complex, presumably a number of other genes are implicated in the control of HERV
silencing; therefore, they could contribute to the abnormal expression of some retroviral
elements in our patients.

Growing data document the increased release of pro-inflammatory cytokines in sub-
jects with IBD [2]. Inflammatory cytokines give rise to the proteasome-driven activation of
the NF-kB signaling pathway. The active isoform of NF-kB, after passage into the nucleus,
binds to specific retroviral sequences that, along with inflammatory cytokines, lead to their
enhanced transactivation [51]. It must be underlined that HERVs can, in turn, evoke robust
inflammatory and immune responses [12,39] and exert several pathogenetic actions. It
is worth mentioning that, recently, the gene enhancer ETS2, located in the non-coding
desert zone of chr21q22, has been shown to play a major role in IBD, directing macrophage
inflammation [5]. Interestingly, HERVs can be the promoters and enhancers of cellular
genes [16,17]. HERV RNAs can be retrotranscribed and reintegrated into the DNA, causing
possible mutations. The recognition of HERV RNAs by nucleic acid-sensing TLRs may
lead to activation of the inflammasome [17,18]; for instance, HERV-K stimulates the NF-kB
pathway through TLR8 [19]. Additionally, HERV antigens can trigger targeted responses,
including specific and/or cross-reactive antibodies with tissue epitopes [52–55]. The final
result may be a vicious circle leading to chronic inflammatory and immune reactions. In this
context, it must be pointed out that enhanced HERV expressions have been documented in
several autoimmune diseases [21–23,39].

There are mutual interactions between gut microbiota and endogenous retroviruses [25].
Germ-free mice lose intestinal expression of many retroviruses, while exposure to bacteria
and their products can stimulate retroviral transcription [56]. The dysbiosis of the gut mi-
crobiota present in IBD patients might thus contribute to their enhanced HERV expression.

In contrast to our findings, the downregulation of syncytins has been reported in
intestinal biopsies of patients affected by CD compared to those of normal subjects [38].
This discrepancy might be due to the sample size or the effect of certain treatments. On
the other hand, the intestinal mucosa shows a regular expression of HERVs [57]. Diffuse
staining of normal crypt cells was seen using an anti-HERV monoclonal antibody, whereas
no background staining was observed in endothelial and infiltrating immune cells [58]. In
CD, patients’ intestinal cells and stem cells [59], which are characterized by the highest
levels of HERV expression [31,32], are reduced and replaced by the intense leukocyte
infiltrate. These histologic changes might account for the defective syncytin expression in
biopsies from CD patients.

There is wide consensus that abnormal epigenetic processes triggered by environ-
mental factors contribute to the development of IBD [3,6–8], but the precise responsible
pathways remain unknown. TRIM28 is highly implicated in the regulation of epigenetic
mechanisms; its impaired transcription in our patients is the first specific molecular al-
teration documented in subjects affected by IBD. TRIM28 influences the differentiation,
expansion and activation of T cells. Through a complex with KRAB-ZFPs and Foxp3, it
modulates Treg suppressor activity [50,60]. Furthermore, TRIM28 represses the expression
of inflammatory genes, while its deficiency increases the expansion of DCs and enhanced T
cell priming toward inflammatory effector T cells via HERV activation [50]. Therefore, the
reduced transcript levels of TRIM28 in IBD patients may contribute to their deficiency in
T regulatory cells and the expansion of reactive T lymphocytes, ultimately giving rise to
derailed local and systemic immune responses, with consequent autoimmune phenomena
in the intestinal tract [36].
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The expression levels of every HERV and TRIM28/SETDB1 were not associated with
disease activity or treatment with mesalazine, steroids, or anti-TNF. These findings suggest
that the variables here taken into consideration are independent from the disease state and
are not influenced by these therapies. The prevalent number of patients in remission or
with mild disturbances does not allow, however, for definitively ruling out the potential
relationship of some variables with moderate/severe forms of disease in untreated or
unresponsive patients. In contrast, all our patients were treated with one or more drugs,
which played the main role in keeping the disease under control.

The high incidence and prevalence of IBD has reached a plateau in recent years in the
Western world, whereas the disease burden is continuously increasing in newly industrial-
ized Asian Pacific countries [61,62]. The reason(s) is ill-defined. Changes in diet and the
addition of food additives [63], Western lifestyle, smoking, urban environment, and com-
position of enteric microbiome have been associated with an increased frequency of IBD
in a genetically susceptible host [64]. Diet [65], smoking [66], and dysbiosis in commensal
microorganisms [67] can act as epigenetic elements promoting CD and UC [68,69]. In addi-
tion, cigarette smoking [70], pollution [71], nutritional changes linked to lifestyle [72], and
gut microbiota [56] are implicated in retrovirus expression too. Therefore, environmental
factors, thought to play an essential role in the development of IBD, could exert their effects
via HERV- and/or TRIM28-driven changes in specific biologic pathways.

Our findings raise further intriguing questions. Are the overexpression of HERVs
and the downregulation of TRIM28 the biomarkers of IBD? Several anti-HERV therapeutic
measures might be adopted, such as specific anti-RNAs, monoclonal antibodies, cytotoxic
T lymphocytes against HERV antigens, and antiretroviral treatments [73–75]. Antiretroviral
drugs inhibited both HIV viral burden and HERV expression in HIV+ subjects [76,77].
Combined antiretroviral treatment in patients with amyotrophic lateral sclerosis showed a
better disease course in those with positive antiviral findings [15]. A novel anti-HIV prod-
uct [78] induced positive effects in a phased II study in patients with UC [79]. Antiretroviral
drugs inhibit proteasome activity [80], with a consequent blocking of NF-kB-driven HERV
transcription [51]. Epigenetic variations observed in IBD are increasingly indicated as
potential therapeutic targets [6,69,81], in particular the TRIM protein family [82].

In conclusion, our results suggest that HERVs and TRIM28 might be implicated in
the pathophysiology of CD and UC, and may provide insights toward the development of
innovative therapeutic interventions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/v16101570/s1, Figure S1: Expression of HERVs, TRIM28 and SETDB1
according to disease activity; Figure S2: Expression of HERVs, TRIM28 and SETDB1 with and without
Mesalazine; Figure S3: Expression of HERVs, TRIM28 and SETDB1 with and without Steroids;
Figure S4: Expression of HERVs, TRIM28 and SETDB1 with and without anti-TNF; Table S1: Primers
and probes used to assess expression of HERVs, TRIM28 and SETDB1.
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