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Abstract

Causal Modeling Semantics (CMS, e.g., Galles and Pearl 1998; Pearl
2000; Halpern 2000) is a powerful framework for evaluating counter-
factuals whose antecedent is a conjunction of atomic formulas. We ex-
tend CMS to an evaluation of the probability of counterfactuals with
disjunctive antecedents, and more generally, to counterfactuals whose
antecedent is an arbitrary Boolean combination of atomic formulas. Our
main idea is to assign a probability to a counterfactual (A ∨ B) � C
at a causal model M as a weighted average of the probability of C in
those submodels that truthmake A∨B (Briggs 2012; Fine 2016, 2017). The
weights of the submodels are given by the inverse distance to the orig-
inal modelM, based on a distance metric proposed by Eva, Stern, and
Hartmann (2019). Apart from solving a major problem in the epistemol-
ogy of counterfactuals, our paper shows how work in semantics, causal
inference and formal epistemology can be fruitfully combined.
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1 Introduction

How should we evaluate counterfactuals like “if it had rained, the football
match would have been cancelled”? There is an abundance of logical theo-
ries analyzing their truth conditions, such as the strict conditional analysis
(Warmbrod 1981; Gillies 2007) or premise semantics (Veltman 1976; Kratzer
1981). Much less theories, however, propose a unified treatment of the truth
conditions and probability of counterfactuals. The principal contenders, and
the ones to which we restrict our attention in this paper, are Stalnaker-Lewis
similarity semantics (SLSS) and causal modeling semantics (CMS).

Stalnaker-Lewis similarity semantics (SLSS: Stalnaker 1968; Lewis 1973a,b)
is based on the idea that a counterfactual A � B is true at a possible world
w (i.e., a complete valuation of all sentences of the language) if and only
if the consequent B is true in the closest possible worlds where A is true.
Formally, for each sentence A, one defines a selection function f mapping
a possible world w to the set of A-worlds closest to w, denoted by fA(w).
A counterfactual A � B is true if and only if B holds at fA(w), and its
probability is the cumulative probability of the possible worlds where it is
true, i.e., p(A� B) =

∑
w|=A�B p(w).

As Lewis (1976) showed, this value does not correspond in general to the
conditional probability p(B|A). As an alternative algorithmic characterization
of p(A� B), we may image the probability distribution p on the A-worlds: we
assign the probability mass of the ¬A-worlds to the A-worlds that are closest
to them, and evaluate B relative to that distribution pA. However, an equation
of the type p(A� B) = pA(B) holds only under specific assumptions on the
selection function.1 The probability of a counterfactual in SLSS is therefore
still an open question (see also Gärdenfors 1982; Günther 2022).

The dominant paradigm in computer science and formal epistemology,
by contrast, is causal modeling semantics (CMS): a counterfactual A � B is
interpreted relative to a causal model M. It is true if an intervention forcing
the event A inM also yields B, and false if this intervention does not yield B
(Pearl 2000, 2017; Gibbard and Harper 1976). This proposal, which relies on
causal models as a graphical tool for reasoning and inference, is elaborated
in Galles and Pearl (1998). On this account, the “probability of counterfactual
statements” (Pearl 2000, p. 205) is interpreted as the probability that after an
intervention on A (written do(A)), B will hold: p(A� B) = pdo(A)(B).

The divergences and convergences of CMS and SLSS have been stud-
ied from various angles. Pearl (2000, pp. 72–73) shows that a particular type
of imaging is equivalent to an intervention on A that is represented by the
do-operator (see also Section 6). It is agreed, however, that standard CMS

1Specifically, it is required that the selection function always chooses a unique closest A-
world (Stalnaker 1968, 1980), but Lewis (1973b) argues that this assumption should be relaxed.
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and SLSS are different in at least one crucial respect: they assign truth con-
ditions to different classes of counterfactuals. The SLSS framework assigns
truth values—and probabilities—to counterfactuals A � B with arbitrary
antecedents, regardless of their logical complexity, since for any sentence A,
the set of closest possible A-worlds is well-defined.2

By contrast, Standard CMS, as developed in Galles and Pearl (1998), can-
not account for the truth conditions or probability of counterfactuals with
disjunctive antecedents of the form (A ∨ B) � C, e.g., “if it had rained or
there had been riots, the football match would have been cancelled”. The
reason is that it is simply not clear which intervention corresponds to the
logical disjunction of two atomic interventions. In other words, while CMS
has a strong theoretical motivation and a history of successful applications,
it has limited expressive power. To the extent that CMS aims at providing a
semantics for natural language counterfactuals, this is a major limitation (see
also Santorio 2019, p. 8).

Our paper closes the above gap: building on Briggs’ 2012 pioneering work
on expanding CMS and ideas from truthmaker semantics (Fine 2016, 2017),
we propose a CMS-based account for evaluating the probability of counter-
factuals with disjunctive antecedents. Specifically, we propose to evaluate the
probability of (A∨B)� C as the weighted probability of C in all submodels
that truthmake A ∨ B. The relative weights of the submodels are determined
by their distance to the original model, based on a metric developed in Eva,
Stern, and Hartmann (2019). This procedure extends CMS to calculating the
probability of counterfactuals with arbitrary Boolean compounds of atomic
formulas in the antecedent. We also show that the predictions of our account
are superior to the ones obtained in SLSS.

The paper is structured as follows. In Section 2 and 3, respectively, we reca-
pitulate the basics of causal modeling semantics and explain how truthmaker
semantics can serve to establish a logic of counterfactuals. Section 4 intro-
duces probabilistic causal models, Section 5 outlines our account and Section
6 compares it with the SLSS treatment of the probability of counterfactuals.
Section 7 wraps up our results and suggests future work.

2 Causal Modeling Semantics (CMS)

This section recaps the causal modeling framework for the semantics of coun-
terfactuals (CMS, e.g., Galles and Pearl 1998; Pearl 2000; Halpern 2000), as
presented by Briggs (2012). First, we need to introduce causal models, us-

2However, the interpretation and logical properties of counterfactuals with disjunctive
antecedents are the subject of substantive debate (e.g., Nute 1975; Loewer 1976; McKay and
Van Inwagen 1977), and SLSS does not determine a canonical algorithm for calculating p((A∨
B)� C).
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ing a running example (simplified from Pearl 2000) that will accompany us
throughout the paper. It involves four Boolean variables, whose values are
represented by the numbers zero and one.

A prisoner is condemned to death and led to the execution court. He
stands in front of two soldiers, who will fire at the captain’s signal. If
at least one of the soldiers fires, the prisoner dies. The captain gives the
signal (C = 1), the two soldiers fire (X = 1, Y = 1), and the prisoner dies
(D = 1).

The main ingredients of this causal model are a set of variablesV = {C, X, Y, D},
and the set of structural equations that describe their causal dependencies:
S = {X = C, Y = C, D = max(X, Y)}. This means that the executioners fire
if the captain gives the signal and the prisoner dies if one of the two execu-
tioners fires. The dependencies can also represented graphically, as in Figure
1 below.

D

X Y

C

Figure 1: Causal graph for the prisoner execution story. C stands for the captain (not)
firing, X, Y for the soldiers (not) shooting, D for the prisoner dying/living.

The parents PA(V) of a variable V are simply the variables from which
there is an arrow into V. For example, C is the only parent of X and Y, and
X and Y are the parents of D. Structural equations describe the value of a
variable as a function of the value of its parents. In general, a causal model
M is a tripleM = ⟨V,S, a⟩where:

• V is a non-empty finite set of variablesV = {V1, V2, ..., Vn};

• S is a set of structural equations, where each element has the form
V = fV(Vi1 , Vi2 , . . . , Vin) and PA(V) = {Vi1 , . . . , Vin} (i.e., each structural
equation defines the value of V uniquely by the value of its parents; no
cycles are allowed);

• a : V → R(V) is a function assigning an actual value to each variable
V, in a way that is consistent with the range of V and the structural
equations.

The last part, the assignment of actual values, is not necessarily required
for making predictions with causal models, but it is crucial when we want to
use them for counterfactual reasoning.
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Some additional terminology will be useful: when a variable V1 is con-
nected to another variable V2 via a sequence of directed arrows from V1 into
V2, we say that V2 is a descendant of V1. For instance, in Figure 1, D is a de-
scendant of C, X and Y. As in Briggs (2012), we will restrict our attention to
models not containing any loops, i.e., models where there is no sequence of
arrows connecting a variable to itself. Moreover, in a causal model, we say
that a variable is exogenous when it has no parents (e.g., C in Figure 1) and
endogenous when it is not exogenous, so that its value can be determined by
the value of other variables in the model (e.g., X, Y and D in Figure 1).

Now, we introduce the notion of an intervention on a causal model. An
atomic formula in our language has the form V = v, expressing the fact
that the variable V takes a certain value v. The intervention do(V = v) on a
causal modelM breaks the dependency of V on its parents via the structural
equations (i.e., it eliminates all arrows into V) and assigns the value V = v to
it. The intervention generates a causal submodelM′where the formula V = v
is true and the structural equation fV is no longer part of the causal model:
the variable V now depends on the intervention, but no longer depends on
its parents.

We can generalize this idea to conjunctions of interventions. For a causal
model M = ⟨V,S, a⟩, the intervention do(V1 = v1, V2 = v2, . . . , Vn = vn)

generates a submodelM′ = ⟨V′,S′, a′⟩ ofM such that:

• V′ = V, i. e.M′ has the same variables asM;

• S′ = S\ { fV1 , . . . , fVn};

• a′ : V\ {V1, V2, . . . , Vn} → R(V) assigns actual values to the variables
not affected by the intervention, in line with the structural equations in
S
′.

Conceptually, an intervention on a causal model manipulates some variables,
forces them to take a certain value and breaks the causal mechanism between
them and their parents. For an example, consider the causal model of the
execution story depicted above; we want to know what would have happened
if the two executioners had not fired (X = 0∧Y = 0). The answer is given by
the intervention do(X = 0, Y = 0) which would generate the model in Figure
2.

Our intervention has broken the causal mechanism that links C to X and
Y, and we have forced X and Y to value zero. What happens to D now? It
continues to be determined by the structural equation D = max(X, Y), but
X = 0 and Y = 0 as a result of our intervention, hence D = max(0, 0) = 0.
And so the prisoner will live.

Our intuitive counterfactual reasoning seems to run along these lines: in
order to know what would have happened to the prisoner had the executioners
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D

X Y

C

Figure 2: Causal graph for the prisoner execution story, where we intervene on X
and Y and break the dependency on the captain’s signal C.

not fired, we perform an intervention on the latter and see how it would have
affected the prisoner, according to the known causal mechanisms, and without
changing any facts that are causally independent of the executioners’ actions.
CMS explicates this line of thought in a mathematically precise way (e.g., Pearl
2000, p. 205). A counterfactual supposition in a causal model amounts to an
external action on the model that enforces that supposition with a minimal
change in the structure of the network (i.e., an intervention).

Specifically, a counterfactual sentence of the form (A1∧A2∧ ...∧An)� B
is true at a causal modelM that contains A1, . . . , An and B as variables if and
only if at the causal modelM′ generated by the intervention do(A1 = 1, A2 =

1, . . . , An = 1) on M, we also have B = 1.3 For instance, the counterfactual
“if the two executioners hadn’t fired, then the prisoner would not have died”
is true at the causal model of the execution story since, as we have seen
above, D = 0 holds in the new submodel after performing the intervention
do(X = 0, Y = 0).

Notice that an intervention of the form do(A) is only defined when A is an
atomic formula or a conjunction of atomic formulas. This imposes a restriction
on the class of counterfactuals that standard CMS can account for: only coun-
terfactuals of the form (A1∧A2∧ ...∧An)� B can assume a truth value. CMS
does not provide truth conditions for counterfactuals with logically complex
antecedents. For instance, we cannot say whether the counterfactual “if one
of the two executioners hadn’t fired, then the prisoner would not have died”
((X = 0 ∨ Y = 0)� D = 0) is true or false at the causal model of the exe-
cution story. This limitation is due to the fact that the disjunctive intervention
do(X = 0 ∨ Y = 0) is not defined (see also Pearl 2017). Intuitively, there is
more than one possible realization of do(X = 0∨ Y = 0): we could manipu-
late X, Y, or both variables at the same time (compare Sartorio 2006; Briggs
2012; Günther 2017). Each of the three interventions do(X = 0), do(Y = 0)
and do(X = 0, Y = 0) would be a good candidate for an intervention that

3As before, we use A1 = 1 for expressing that the Boolean variable A1 takes the value
“true”.
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brings about the state “X = 0 or Y = 0”. But their effects on D = max(X, Y)
differ. For the intervention do(X = 0) and do(Y = 0), the prisoner would still
die (since the other soldier fires) but for the intervention do(X = 0, Y = 0), he
would live. Thus, if just one executioner hadn’t fired, the prisoner would have
died anyway; if both hadn’t fired, he would live. So, in the end, standard CMS
as presented in Galles and Pearl (1998) and Pearl (2000) does not provide a
unique answer to the question of evaluating counterfactuals with disjunctive
antecedents. This is arguably a disadvantage of CMS with respect to SLSS,
where selection functions provide definite answers to the question of which
are the relevant worlds for evaluating counterfactuals, and how the results
need to be combined (e.g., Lewis demands that the consequent holds in all
nearest possible worlds where the antecedent is true). In order to overcome
this shortcoming, Briggs (2012) has proposed an extension of CMS that we
present in the next section.

3 Truthmaker Semantics for Causal Modeling

Briggs’ extension of CMS relies on truthmaker semantics (TMS), a semantic
framework developed in a series of recent publications by Kit Fine (2016,
2017). The idea underlying TMS is that of an exact truthmaker of a sentence
A, namely something in the world which is responsible and wholly relevant
for the truth of A. One of the motivations behind truthmaker semantics is
to be able to draw hyperintesional distinctions between propositions, i.e., to
distinguish propositions that would be otherwise identical in the classical
possible worlds framework, like p and p ∨ (p ∧ q), or tautologies like p ∨ ¬p
and q∨¬q. More precisely, the fundamental structure in TMS is that of a state
space ⟨S,⊑⟩ where S is a non-empty set of states which stand for portions
of reality (e.g., facts, events, individuals etc.), and ⊑ is a partial order over S
that can be understood as parthood relation between the elements in S. We
can then define an operation ⊔ of fusion between states: given two states s
and t, their fusion of s ⊔ t is the least upper bound of the set {s, t}. We can
equip a state space with interpretation functions so as to define a relation of
exact truthmaking and exact falsemaking between sentences and states so that
those states can be truthmakers or falsemakers of formulas (for more details
on TMS see for instance Fine (2017) and Fine and Jago (2019)). s ⊩ A (s ⊩A)
indicates that s is an exact truthmaker (falsemaker) of A.

Briggs (2012) shows how truthmaker semantics can expand the scope of
CMS. An intervention do(A) is admissible on a causal modelM when it does
not perform two inconsistent value assignments to the same variable, like
do(V1 = 0 ∧V1 = 1). For a causal model M = ⟨V,S, a⟩, we can define the
set of submodels ofM generated by any intervention do(A) as S(M) = ⟨S,⊔⟩
where
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• S is the set of submodels ofM generated by any admissible intervention
do(A);

• M[A] indicates the submodel generated by performing do(A) onM;

• ⊔ is an operation of fusion among the models in S defined by M[A] ⊔

M[B] :=M[A∧ B].

In other words, the fusion of the two submodelsM[A] andM[B], defined by
the interventions do(A) and do(B), corresponds to the submodel defined by
the fusion of the two interventions, where the fusion of two interventions is
simply the intervention that encodes both, i.e., the conjunctive intervention
of both of them. We assume that only logically consistent fusions are allowed.
For instance, let X be a variable in a modelM which stands for the status of
the light: X = 0 means that the light is off, and X = 1 means that the light is
on. It is then impossible to fuseM[X = 0] andM[X = 1], because their fusion
would yield a model where the light is both on and off, or in other words, the
intervention do(X = 0∧X = 1) is not admissible.

Now, consider a language Lwhere atomic formulas have the form V = v
and complex formulas are obtained from Boolean combinations of atomic
formulas. For a model M, consider its space of proper submodels S(M) =

⟨S,⊔⟩ where M < S. We can inductively define relations of truthmaking ⊩ ⊆
S×L and and falsemaking ⊩⊆ S×L between any member s of S and formulas
in the language as follows:

s ⊩ V = v ⇔ s =M[V = v]
s ⊩V = v ⇔ s =M[V = v′] for some v , v′

s ⊩ ¬A ⇔ s ⊩A
s ⊩¬A ↔ s ⊩ A
s ⊩ A∧ B ⇔ f or some t, u (t ⊩ A, u ⊩ B and s = t⊔ u)
s ⊩A∧ B ⇔ s ⊩A, s ⊩B, or s ⊩A∨ B
s ⊩ A∨ B ⇔ s ⊩ A, s ⊩ B, or s ⊩ A∧ B
s ⊩A∨ B ⇔ f or some t, u (t ⊩A, u ⊩B and s = t⊔ u)

where s ⊩ A means that s truthmakes (=is a truthmaker of) A. State s is a
truthmaker of V = v if and only if it corresponds to the submodel defined
by the intervention do(V = v), and a falsemaker of V = v if and only if it
corresponds to the submodel defined by an intervention that sets V to a value
different from v. Since states in S(M) can be identified with interventions,
we can say, for simplicity, that an intervention do(V1 = v1, ..., Vn = vn) onM
truthmakes a formula A if and only ifM[V1 = v1, ..., Vn = vn] is a truthmaker
of A.

Evidently, s falsemakes A iff s is a truthmaker of ¬A. State s truthmakes
a conjunction of variable assignments iff it is the fusion of two states that
truthmake the two individual assignments—in other words, iff s is the causal
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submodel defined by the intervention that assigns the right values to both
variables. Finally, s is truthmaker of a disjunction of variable assignments iff it
truthmakes one of the two assignments, or its conjunction. This interpretation
of truthmaking a disjunction is also at the center of Briggs’ (and our own)
proposal for expanding CMS.

Consider a propositional languageL, which we extend to a languageL�

with a simple, non-nested counterfactual operator: for any formulas A, B ∈ L,
let A� B ∈ L�. We can now give inductively defined truth conditions for
formulas of L�, including simple counterfactuals.

Truth Conditions for Formulas of L� (Briggs) AL�-formula is true at
a causal modelM = ⟨V,S, a⟩ in the following conditions:

M ⊨ V = v ⇔ a(V) = v
M ⊨ ¬A ⇔ M ⊭ A
M ⊨ A∧ B ⇔ M ⊨ A andM ⊨ B
M ⊨ A∨ B ⇔ M ⊨ A orM ⊨ B
M ⊨ A� B ⇔ f or every s in S(M) such that s ⊩ A, s ⊨ B

Thus, a counterfactual A � B is true at a causal model M if and only if
B is true at all the members of S(M) that truthmake A. Consider again the
execution example and the counterfactual “if one of the two executioners
had not fired, then the prisoner would not have died”. We can formalize
this counterfactual as (X = 0 ∨ Y = 0) � D = 0. The truthmakers of
X = 0∨Y = 0 are the submodelsM[X = 0],M[Y = 0] andM[X = 0∧Y = 0].
The first two submodels validate D = max(X, Y) = 1 since the second soldier
is not affected by the intervention, and so (X = 0∨Y = 0)� D = 0 is false
atM.

Briggs’ extension of CMS allows us to assign a truth value to counterfac-
tuals with disjunctive antecedents—and in fact, to counterfactuals with ar-
bitrary Boolean compounds of atomic formulas in the antecedent. The main
innovation to CMS consists in evaluating counterfactuals in the submodels
that truthmake the antecedent. Implicit in Briggs’ approach is a relevance
principle for the truth conditions of counterfactuals, which we will also use
later when defining their probability:

Relevance Principle (Truth Conditions) The truth value of a counterfac-
tual A� B at a causal modelM depends exclusively on the truth value
of B in the submodelsM1,M2, . . . ,Mn generated by the interventions
on the variables inM that truthmake A.

Objections to truthmaker semantics will be dealt with in the discussion
section: we now proceed to developing our proposal in the framework of
probabilistic causal models.
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4 Probabilistic Causal Models

In this section, we introduce probabilistic causal models and explain how
CMS assigns a probability to counterfactuals. We will also see how the prob-
lem of the limited expressive power of CMS re-emerges at the probabilistic
level: causal modeling semantics does not allow to assign a probability to
counterfactuals with disjunctive antecedents.

A probabilistic causal model is a tupleM = ⟨V,G, p⟩where

• V is a set of variables;

• G ⊂ V×V is a set of directed edges between the variables inV, defining
the parents and descendants of each variable;

• p is a probability distribution onV subject to the Markov condition, that is,
each variable V is probabilistically independent of its non-descendants,
conditional on its parents.

In a probabilistic causal model, the behavior of exogenous variables, and
the dependencies of the endogenous variables on their parents, are described
via a probability distribution. This differs from the non-probabilistic models
of Section 2 whose variables are governed by structural equations.4 Consider
again the execution scenario from Section 2 with the probability distribution p
described in Table 1. Thanks to the Markov condition, it is sufficient to specify
the probability of the exogenous variables, and the conditional probability of
the endogenous variables, given the values of their parents.

Analogously to the non-probabilistic case, probabilistic causal models pro-
vide an excellent tool for reasoning about counterfactuals. Again, the notion
of an intervention is crucial. Pearl (2000) proposes that the probability of a
counterfactual A � B at a probabilistic causal model M, given a certain
evidence E, amounts to the probability of B in the submodel generated by
the intervention do(A) after updating on E, where A is an atomic formula or
a conjunction of atomic formulas. In other words, p(A � B|E) = p′do(A)

(B),
where p′(·) = p(·|E). This corresponds to the following procedure:

1. Update the probability p(U = u) of each exogenous variable U on
the evidence E, via Bayesian conditionalization, to the new probability
p′(U′ = u) = p(U = u|E), without changing the conditional dependencies
among the variables. This is because the evidence should not change the
structure of the causal relationships between the variables: it just informs
us which context we are likely to be in (see Pearl 2000, pp. 33–38). So p′

4The probabilistic nature of the models does not entail that the mechanism of dependence
is intrinsically non-deterministic: for example, Pearl (2009, p. 26) seems to favor the view that
the non-deterministic dependencies of the variables are due the lack of knowledge about the
underlying deterministic mechanism.
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C
C

X
C

Y
X Y

D
1 0.5 1 0 1 0 0 1
0 0.5 1 0.9 0.1 1 0.9 0.1 1 0 0.5 0.5

0 0.1 0.9 0 0.1 0.9 0 1 0.5 0.5
0 0 0.9 0.1
1 1 0.1 0.9

Table 1: Probability distribution for the variables in the execution example, as a
function of the values of their parents. Intuitively, the table describes the dependen-
cies among the variables; for instance we have that the value of X will be 1 with
90% probability if the value of C is 1, i.e. p(X = 1|C = 1) = 0.9. This means that
it is almost certain that the executioner X fires under the order of the captain, but
there is a little chance (10%) that X might miss the shot, (for example, if the weapon
jammed). Also, according to the table, it is almost certain that the prisoner dies if
both the executioners fire, p(D = 1|X = 1, Y = 1), but there is a little chance (10%)
that he might survive. Of course, this probability distribution must be intended as a
toy example.

induces a new probability distribution on the (endogenous) variables,
too.

2. Perform the intervention do(A) onM to obtain a new submodelM′ of
M; accordingly, change the probability distribution p′ so that variables
involved in the intervention do not depend on their parents anymore.

3. Use the new submodel M′ = ⟨V,G′, p′do(A)
⟩ with post-intervention

graphG′ ⊆ G and probability distribution p′do(A)
(·) to calculate the prob-

ability of B atM′ (i.e., p′do(A)
(B)).

For example, consider the probabilistic execution model with the numbers
from Table 1. Assume that we have learned about the death of the prisoner,
without knowing whether the captain has given the signal, or whether the
executioners have fired. We have thus learnt the evidence E = {D = 1}. By the
procedure specified above, we need to update the probability of the exogenous
variables, i.e., p′(C = 1) = p(C = 1|D = 1) = 0.82, which induces a new
probability distribution p′ on the endogenous variables.5 Now, we want to
compute the probability of D = 0 under the counterfactual assumption that X
has not fired, X = 0, corresponding to the probability to the counterfactual “if
executioner X hadn’t fired, then the prisoner would not have died” (X = 0�
D = 0). Following the above procedure, we should intervene by assigning
value zero to X; this intervention do(X = 0) can be understood as an external
action that forces the prisoner not to fire, for instance we sabotage X’s weapon.

5Henceforth, unless otherwise stated, we will use p′ to refer to the probability distribution
induced by p′(C = 1) = p(C = 1|E) = 0.82.
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The action does not affect the probability of variables causally upstream of X:
indeed our action is limited to X and does not influence the behavior of C.
Instead, it preempts the causal power of C on X, and therefore we delete the
arrow connecting C to X. However, this intervention does affect the variables
causally downstream of X, imposing a new distribution on the model. Indeed, if
we want how the prisoner is affected by this intervention, we need to calculate
p′do(X=0)(D = 0). Following the above procedure, we obtain that

p′do(X=0)(D = 0) =
∑

y,c∈{0,1}

p(D = 0|X = 0, Y = y) × p(Y = y|C = c) × p(C = c|D = 1)

= 0.598.

In other words, it is 59.8% probable that the prisoner would not have died
under the counterfactual supposition that the executioner X hadn’t fired. This
is, by the way, much less than the conditional probability p′(D = 0|X = 0) =
0.752 because updating on X = 0 (with all other variables being unknown)
would suggest an inference to the best explanation, i.e., that the captain did
not give the signal. Hence, also the probability of Y = 0 goes up sharply when
we learn X = 0, and so does the probability of D = 0.

Like deterministic CMS, the probabilistic framework does not account for
the probability of counterfactuals with disjunctive antecedents since inter-
ventions are only defined for atomic formulas and their conjunctions. We will
now develop a proposal that expands probabilistic CMS to arbitrary Boolean
compounds of atomic formulas in the antecedent, similar to what Briggs has
achieved for deterministic CMS.

5 CMS with Similarity Metrics

Suppose that we want to use probabilistic CMS in order to calculate the
probability of a counterfactual with disjunctive antecedents. When we apply
Pearl’s procedure described in the previous section, steps 2 and 3 fail because
the model generated by the intervention do(X = 0∨Y = 0) is not well defined
and consequently we cannot compute p′(D = 0).

A first step toward solving this problem is to impose a probabilistic version
of the Relevance Principle from Section 3:

Relevance Principle (Probability) The probability of a counterfactual A�
B at a causal model M depends exclusively on the probability of B in
the submodels M1,M2, . . . ,Mn generated by the interventions on the
variables inM that truthmake A.

Thus, the probability of (X = 0 ∨ Y = 0) � D = 0 depends exclusively
on the probability of D = 0 in the three submodels generated by do(X = 0),
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D D

X Y = 0 X = 0 Y

C C

do(Y = 0) do(X = 0)

D

X = 0 Y = 0

C

do(X = 0∧Y = 0)

Table 2: The three submodels that truthmake the sentence X = 0 ∨ Y = 0 in the
execution example, with the interventions used to generate them.

do(Y = 0) and do(X = 0 ∧ Y = 0). See Table 2. Step 2 is working now:
performing the intervention do(X = 0 ∨ Y = 0) amounts to selecting three
specific submodels. However, step 3 is still problematic: it is not clear how the
probabilities of D = 0 in the three submodels should be combined. In fact, for
p′do(X=0)(D = 0) = p′do(Y=0)(D = 0) = 0.598, whereas p′do(X=0,Y=0)(D = 0) =
0.9.

It is clear that Briggs’ solution for the truth conditions of a counterfactual
with disjunctive antecedents will not help. There, the consequent needed to
be true in all states that truthmake the antecedent. Briggs (2012, pp. 152–154)
recognizes that this is a choice. The motivation is that there is no convincing
argument for preferring a specific submodel. Moreover, also in Lewis’ pre-
ferred version of SLSS, whenever there is a tie between the closest possible
A-worlds, the counterfactual A � B is evaluated as true only if B holds in
all of these worlds. While this is a reasonable choice in the context of a logic
of counterfactuals, we cannot transfer it to the probability of counterfactuals
where the output of the submodels are not Boolean values, but real numbers.
We need to assign relative weights to the truthmaking submodels, and this
problem is specific to the probabilistic extension of Briggs’ approach.
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A natural requirement is that the values of p′s(B) in the relevant submodels
indexed by s should bound the overall probability of the counterfactual A� B
from above and below:

Convexity Principle For the probability of a counterfactual A � B at a
model M, and the set of submodels |A|M where we intervene on the
variables inM as to truthmake A,

min({ps(B) : s ∈ |A|M}) ≤ p(A� B) ≤ max({ps(B) : s ∈ |A|M})

where ps denotes the probability distribution of the variables in sub-
model s, after updating on the available evidence and performing the
truthmaking intervention.

In other words, the probability of a counterfactual cannot be greater (smaller)
than the maximum (minimum) probability of the consequent in the causal
models that truthmake the antecedent (see also Pearl 2017, p. 9).

The Convexity Principle still leaves space for a large class of weighting
functions. A natural starting point is the straight average of p′(D = 0) in the
three submodels generated by do(X = 0 ∨ Y = 0). In this way, we would
obtain p′do(X=0∨Y=0)(D = 0) = 0.598+0.598+0.9

3 = 0.698. However, straight aver-
aging is at best a default assumption and devoid of a compelling motivation.
An alternative is to make the relative weight of the three submodels gener-
ated by do(X = 0), do(Y = 0) and do(X = 0, Y = 0) depend on their degree
of similarity to the original model. Once we have weights α1,α2,α3 for each of
them, we can compute the post-intervention probability as

p′do(X=0∨Y=0)(D = 0) = α1 × 0.598 + α2 × 0.598 + α3 × 0.9.

The question is how to measure this degree of similarity. A possible an-
swer comes from a recent work of Eva, Stern, and Hartmann (2019) where the
authors introduce two notions of similarity distance between causal models:
evidential similarity distance, based on the shared probabilistic (in)depencies,
and counterfactual similarity distance, based on shared counterfactual depen-
dencies. In what follows, we restrict our attention to the latter since probabilis-
tic independencies can hide true causal and counterfactual dependencies.6

Counterfactual Dependence between Variables A variable V2 is coun-
terfactually dependent on another variable V1 when an intervention on
V1 affects the probability distribution of V2, i.e., for some v ∈ R(V1),
pdo(V1=v)(V2) , p(V2).7

6In the causal modeling literature, this is known as failure of the Faithfulness Condition.
7For example, in the execution model, D counterfactually depends on X, Y and C; while X

and Y counterfactually depends on C.
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Counterfactual Similarity Distance (Eva et al., 2019) Two (probabilistic)
causal modelsM andM′ are more or less similar to each other, the more
counterfactual dependencies they agree on. Specifically, the counterfac-
tual distance betweenM andM′ is the absolute value of the difference
of their counterfactual dependencies normalized by the total number of
possible counterfactual dependencies:

d(M,M′) =
|CM −CM′ |

NC
∈ [0, 1].

Recall that a variable V2 is counterfactually dependent on another variable
V1 if we can go from V1 to V2 by following a sequence of arrows from V1

to V2: arrows represent the structural equations, i.e., the mechanisms or laws
that connect variables. Hence, if two models disagree on some counterfactual
dependencies among the variables, they disagree on the mechanism connecting
those variables. So, intuitively, the more laws governing the original model
are broken inM′, the more counterfactual-distant fromM a causal modelM′

is (see also Lewis 1973a).
There are two principled options for calculating the probability of coun-

terfactuals. First, we could focus on the submodel that is most similar toM in
the above metric, and neglect the contribution of the other submodels. This is
feasible, but it would privilege a particular model and a specific way of truth-
making the antecedent. This is especially implausible when the truthmaking
models have a similar distance to the original model and express qualitatively
different ways of changing the mechanisms to make the antecedent true.

Second, we could propose that the weight of each submodelM′ should
be inversely proportional to its distance to the original modelM, according
to the above distance measure. This is our preferred approach since it takes
into account all relevant submodels that truthmake the antecedent (and only
them).

For example, consider the execution story and the three submodels gen-
erated by do(X = 0), do(Y = 0) and do(X = 0∧ Y = 0). The number of total
pairwise counterfactual dependencies is NC = 12; the original modelM en-
codes CM = 5 counterfactual dependencies; each of the models generated by
do(X = 0) and do(Y = 0) encodes CM′ = 4 counterfactual dependencies and
the model generated by do(X = 0∧ Y = 0) encodes CM′ = 2 counterfactual
dependencies. Table 3 describes the counterfactual dependencies of the execu-
tion story and its submodels, where V1 � V2 means that V2 counterfactually
depends on V1:

15



Original Model do(X = 0) do(Y = 0) do(X = 0∧Y = 0)
C� X Yes No Yes No
C� Y Yes Yes No No
C� D Yes Yes Yes No
X� D Yes Yes Yes Yes
X� Y No No No No
X� C No No No No
Y� D Yes Yes Yes Yes
Y� X No No No No
Y� C No No No No
D� X No No No No
D� Y No No No No
D� C No No No No

Table 3: Counterfactual Dependencies for the Execution Example.

CallM the original execution model. By looking at the table we can deduce
that

d(M,M[X = 0]) =
1

12
d(M,M[Y = 0]) =

1
12

d(M,M[X = 0∧Y = 0]) =
3
12

So,M[X = 0] andM[Y = 0] are equally similar toM andM[X = 0∧Y = 0]
is the most distant from M. Hence, M[X = 0 ∧ Y = 0], which is the most
distant submodel, will receive the least weight. Call |A|M = {s|s ⊩ A} the set
of truthmakers of A, i.e., the submodels generated by the intervention do(A)

onM. In the modelM of the execution story,

|X = 0∨Y = 0|M = {M[X = 0],M[X = 0],M[X = 0∧Y = 0]}.

For s ∈ |X = 0∨Y = 0|M, we define its weight as

α(s) =
d(M, s)−1∑

t∈|X=0∨Y=0|M d(M, t)−1
,

following the rationale that the weight should be inversely proportional to
the distance from the original model, normalized by the sum of all weights.

By some computation, we get that

α(M[X = 0]) = α(M[Y = 0]) =
3
7

α(M[Y = 0∧X = 0]) =
1
7
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Applied to the execution story, we then find that

p′((X = 0∨Y = 0)� D = 0) =
3
7
× 0.598 +

3
7
× 0.598 +

1
7
× 0.9 ≈ 0.64,

in agreement with the Convexity Principle. We can generalize the weighting
procedure as follows: for a causal modelM, for an arbitrary formula A in L,
for s ∈ |A|M,

α(s) =
d(M, s)−1∑

t∈|A|M d(M, t)−1
.

Consequently, we calculate the probability of a counterfactual A � B with
L-sentences A and B, relative to a causal modelM, as

p(A� B) =
∑

s∈|A|M

α(s) × ps(B) (1)

=
∑

s∈|A|M

d(M, s)−1∑
t∈|A|M d(M, t)−1

× ps(B)

Equation (1) expresses our main idea in a nutshell: the probability of the
counterfactual p(A � B) is the probability of the consequent B in all sub-
models that truthmake the antecedent, weighted inversely by their similarity
to the original model, where similarity is measured by the number of shared
counterfactual dependencies. Our account thus synthesizes Causal Modeling
Semantics with the Relevance Principle (=focusing on models that truthmake
the antecedent, as in Briggs (2012)) and Eva, Stern, and Hartmann’s (2019)
proposal for measuring similarity between causal models.

It is easy to see that our definition of the probability of a counterfactual
with disjunctive antecedents extends to more complex sentences, too. Fine’s
truthmaker semantics indicates the truthmaking space states of all Boolean
compunds of atomic sentences. Thus, for any sentence that we wish to take
as the antecedent of a counterfactual, we simply determine the truthmaking
states, the interventions on the causal model that correspond to them, and the
corresponding counterfactual probabilities. Then we can use the Eva-Stern-
Hartmann procedure for weighting the causal models that correspond to the
truthmaking states.

For example, if, for binary variables A and B, our counterfactual is “if
A = B, then C = 1” (with actual values A = 1 and B = 0), the antecedent
has two truthmakers: the model generated by do(A = 1, B = 1) and the
one generated by do(A = 0, B = 0). The two causal models obtained will
then have the same weight according to our procedure, since the intervention
affects the same variables and yields the same counterfactual dependencies.
In other words, the probability of the counterfactual “if A = B, then C = 1” is
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simply the straight average of the probability of C = 1 under the interventions
do(A = 1, B = 1) and do(A = 0, B = 0).8

Taking stock, we have developed a procedure that goes beyond the achieve-
ments of Galles and Pearl (1998) and Halpern (2000), who can calculate prob-
abilities of counterfactuals, but only for antecedents representing a (conjunc-
tive) set of interventions. On the other hand, Briggs (2012) has a general logic
of counterfactuals, allowing for arbitary Boolean compounds as antecedents,
but no extension to probabilistic reasoning. Our contribution provides a prob-
abilistic counterpart of her logic motivated from the very same principles.

6 Back to Lewis: Comparison with Imaging

In this section, we compare our account to the predictions of Stalnaker-Lewis
similarity semantics (SLSS), and specifically, to imaging procedures (Lewis 1976;
Gärdenfors 1982) for assigning a probability to a counterfactual with disjunc-
tive antecedents. Imaging has been proposed not only in the logical analysis
of counterfactuals, but also as an alternative to Bayesian conditionalization
in the context of Causal Decision Theory (Joyce 1999), and so it needs to be
taken seriously as a competitor to CMS.

The basic ingredients of SLSS are a space of possible worlds W together
with a similarity order and a probability distribution p on the elements of
W. Possible worlds are complete valuations of the sentences of L and an
“A-world” is a possible world where A is true. The probability of a sentence
A ∈ L� is the cumulative probability of the worlds where it is true, that is,
p(A) =

∑
w|=A p(w). For each A ∈ L�, we can moreover define a selection

function fA : W → P(W) that maps world w to the A-worlds that are most
similar to w, with the additional assumption that each world is most similar
to itself (i.e., if w |= A, then fA(w) = {w}).

This definition of probability does not yet allow for an algorithmic char-
acterization of the probability of counterfactuals. Suppose therefore that the
selection function fA always identifies a single closest A-world. Then we can
define the probability distribution pA (“p imaged on A”) as follows:

pA(w) :=
∑
v∈W

p(v) ×

1 if fA(v) = {w}

0 otherwise
(2)

8Note that this also holds if it is actually the case that A = B = 1. Calculating the probability
of the counterfactual does not privilege the actual values of variables; all that matters is whether
the distance of the truthmaking models from the original model in terms of counterfactual
dependencies.
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Lewis (1976, p. 310) shows that in this case, the probability of a counterfactual
A� B is equal to the probability of B after imaging on A:

p(A� B) = pA(B) =
∑
w|=B

pA(w)

According to Lewis (1976, p. 311), imaging is a “minimal revision of the
probability function to make the antecedent certain”, and this motivates why it
could be the appropriate way of belief revision for evaluating a counterfactual.

However, when the selection function does not identify unique possible
worlds, and there can be ties between closest possible worlds, as argued by
Lewis (1973b, pp. 77–83), we need to generalize imaging beyond Equation (2).
Günther (2022) shows that there are numerous ways of doing so, depending
on how one distributes the mass of a ¬A-world w among the selected worlds
fA(w). For the purposes of counterfactual and causal reasoning, the following
function proposed by Gärdenfors (1982) is especially attractive:

pA(w) =
∑
v∈W

p(v) ×


p(w)∑

w′∈ fA(v) p(w′) if w ∈ fA(v)

0 otherwise
(3)

In this case, each world w where A is false transfers its probability mass to
the closest worlds where A is true, in proportion to the prior probability of
these worlds. This type of imaging, which respects the prior probability ratio
among the worlds that receive mass from w, is called Bayesianized imaging by
Joyce (1999). Indeed, in the extreme case where fA(w) = {v|v |= A} if w < A
(i.e., all A-worlds are selected), this form of imaging amounts to Bayesian
conditionalization on A (Pearl 2000, p. 73; compare also Proposition 1 in
Günther 2022).

There is a deep connection between Bayesianized imaging and CMS. Pearl
(2017) shows that the probability of a counterfactual A � B, with A =

A1 ∧ ....∧An being a conjunction of atomic formulas, can be characterized in
two equivalent ways: either, in Causal Modeling Semantics, by

p(A� B) := pdo(A)(B) (4)

or, when we count worlds with equal causal histories as equally similar, and use the
Bayesianized imaging function pA from Equation (3), by

p(A� B) := pA(B) =
∑
w|=B

pA(w) (5)

The first condition (“equal causal history”) means that the most similar A-
worlds to a ¬A-world w contain all and only those A-worlds that agree with
w on the value of the variables that cannot be affected by do(A), i.e., the
non-descendants of A.
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Pearl then shows that these two characterizations are equivalent, i.e.,

pA(B) = pdo(A)(B). (6)

In other words, the transformation defined by the do-operator can, for atomic
interventions or their conjunctions, be interpreted as an imaging-type mass-
transfer. This is a significant result showing that Bayesianized imaging and
CMS agree for a large class of interventions. This result also motivates why
we put Bayesianized imaging (as opposed to, e.g., equal weights imaging) at
the center of the comparison of our own proposal with SLSS.

Worlds Values Closest worlds for imaging wi on X = 0∨Y = 0
C X Y D Option 1: f1(wi) = . . . Option 2: f2(wi) = . . .

w1 1 1 1 1 {w3, w4, w7, w8} {w3, w4, w5, w6, w7, w8}

w2 1 1 1 0 {w3, w4, w7, w8} {w3, w4, w5, w6, w7, w8}

w3 1 1 0 1 {w3} {w3}

w4 1 1 0 0 {w4} {w4}

w5 1 0 1 1 {w5} {w5}

w6 1 0 1 0 {w6} {w6}

w7 1 0 0 1 {w7} {w7}

w8 1 0 0 0 {w8} {w8}

w9 0 1 1 1 {w11, w12, w15, w16} {w11, w12, w13, w14w15, w16}

w10 0 1 1 0 {w11, w12, w15, w16} {w11, w12, w13, w14w15, w16}

w11 0 1 0 1 {w11} {w11}

w12 0 1 0 0 {w12} {w12}

w13 0 0 1 1 {w13} {w13}

w14 0 0 1 0 {w14} {w14}

w15 0 0 0 1 {w15} {w15}

w16 0 0 0 0 {w16} {w16}

Table 4: Two plausible selection functions f1 and f2 in the execution example with
disjunctive interventions. The two selection functions correspond to two different
ways of identifying, for any wi ∈W, the closest possible world where X = 0∨Y = 0
holds.

We now extend Bayesianized imaging to the probability of counterfactuals
with disjunctive antecedents. Consider the execution model again. We asso-
ciate a possible world w to each possible realization of the binary variables
C, X, Y, D; so there are 16 possible worlds in total. The probability of each of
them is simply the joint probability of the realizations of the variables in that
possible world, respecting the conditional independence relations imposed
by modelM and the Causal Markov Condition. For modeling Bayesianized
imaging on a sentence A, we develop a three-step procedure analogous to the
one recommended by CMS:
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1. Update the prior probability of the exogenous variables U on the ob-
served evidence E from p(U = u) to the posterior probability p′(U =

u) = p(U = u|E). For all endogenous variables, their conditional prob-
ability distribution continues to be given by the probabilistic causal
modelM.

2. Transfer the mass of the ¬A-worlds to the closest possible A-worlds
(chosen by the selection function f ), weighted by the posterior proba-
bility of the latter. This will yield the probability function p′A(·).

3. Calculate the probability of any sentence B as p′A(B).

In the execution model, only C is an exogenous variable and this means
that the joint posterior distribution after the first step of the above procedure
will look as follows:

p′(C, X, Y, D) = p′(C) × p(X|C) × p(Y|C) × p(D|X, Y)

Now we proceed to the second step and image p′ on (X = 0 ∨ Y = 0). This
means that four worlds will have weight zero in p′X=0∨Y=0: w1, w2, w9 and w10

in Table 4. The question is how their weight should be distributed to the rest;
and this depends on what are the closest neighbors to these possible worlds.

The first conceptual obstacle in defining a similarity order is to decide
which variables are not affected by do(X = 0 ∨ Y = 0). Again, we translate
the problem into Causal Modeling Semantics. According to Briggs (2012), the
disjunctive intervention do(X = 0∨Y = 0) can be regarded as encoding three
different interventions, do(X = 0), do(Y = 0), and do(X = 0 ∧ Y = 0). The
closest worlds to w1 for the first intervention are w7 and w8, for the second,
they are w3 and w4, and for the third, w5 and w6. Depending on how seriously
we consider the option of intervening on both variables as a way of expressing
do(X = 0 ∨ Y = 0), this gives us two options for the most similar worlds
to w1: {w3, w4, w7, w8} or {w3, w4, w5, w6, w7, w8}. And vice versa for the other
worlds whose weight needs to be cancelled. Both options are represented in
the rightmost columns of Table 4.9

However, if we calculate the probability of the counterfactual (X = 0∨Y =

0)� D = 0, after having learnt the evidence D = 1, the result of Bayesian-
ized imaging will, for either of these similarity orders, differ from our pro-
posal. For Option 1, we obtain p′X=0∨Y=0(D = 0) ≈ 0.56, and for Option 2, we
obtain p′X=0∨Y=0(D = 0) ≈ 0.57.10 This is arguably a bad prediction since it vi-
olates the plausible Convexity Principle: the probability of the counterfactual
should be bounded from above and below by the (maximal and minimal)

9A potential third option that also takes into account the value of D, i.e., f (w1) = {w3, w7},
does not yield qualitatively different results.

10Alessandro Zangrandi’s GitHub https://github.com/zazangra/lewis_imaging offers
a Python program to perform Bayesianized imaging on a causal model.
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probability of the consequent in the causal submodels that truthmake the
antecedent. To recall:

p′(X = 0� D = 0) = 0.598 p′((X = 0∧Y = 0)� D = 0) = 0.9

p′(Y = 0� D = 0) = 0.598

To the extent that the Convexity Principle is plausible and compelling,
we should reject any procedure that violates this constraint. Why should the
probability of the counterfactual be above or below the probability of the
consequent in all relevant submodels? It is simply paradoxical that the death
of the prisoner, D = 1, is more probable under the hypothetical assumption
that at least one of the two executioners did not fire (p′X=0∨Y=0(D = 0) ≈ 0.56)
than under the assumption that only one did not fire (p′X=0(D = 0) = 0.598).

Primarily, the failure of Convexity in imaging is due to the fact that there
is no systematic connection between p′X=0(D = 0) and p′X=0∨Y=0(D = 0), like
in our own proposal. For instance, when imaging on X = 0, part of the mass
of w3 is transferred to w5, whose probability mass makes a contribution to
p′X=0(D = 0), but not to p′X=0∨Y=0(D = 0) (in Option 1). This explains why
the latter probability falls below p′X=0(D = 0), i.e., below the bounds resulting
from the Convexity Principle. In other words, the violation of the Convexity
Principle is due to the fact that Bayesianized imaging does not respect the
Relevance Principle: the possible worlds do not contain any information about
the causal structure of the model.

Of course, generalized imaging offers an entire universe of different mass
transfer functions. So we do not exclude that the imaging theorist can find
a function that complies with the Convexity Principle.11 However, this must
come at the price of choosing a procedure that deviates systematically from
CMS for (conjunctions of) atomic interventions. What the imaging theorist
cannot have is a probability mass transfer function that agrees in regular
circumstances with CMS, and that satisfies at the same time the Convexity
Principle when applied to more complex interventions. Indeed, Pearl (2017,
pp. 6–7) explicitly advises caution when applying imaging to disjunctive inter-
ventions, such as the ones that we discussed in this paper. Hence, we conclude
that the combination of SLSS and imaging has not yet delivered a convincing
response to the problem of evaluating the probability of counterfactuals with
disjunctive antecedents.

11Equal weights imaging, a possible alternative, respects the Convexity Principle because
it trivializes the problem: imaging on X = 0, Y = 0, X = 0∧Y = 0 and X = 0∨Y = 0 all yield
the same probability p′(D = 0) = 0.5615. This is obviously an unacceptable result.
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7 Conclusions

The present paper extends Causal Modeling Semantics to the evaluation of
the probability of counterfactuals with disjunctive antecedents, and more
generally, to any counterfactuals whose antecedents are truth-functional com-
pounds of atomic sentences. To the best of our knowledge, no other proposal
has been advanced in the literature to achieve this goal. Our approach is
very natural combines three well-established ideas: (1) Briggs’ characteriza-
tion of disjunctive interventions relying on truthmaking causal submodels;
(2) weighting the contributions of these submodels according to their simi-
larity with the original world; (3) Eva et al.’s definition of a similarity metric
between causal models by counting shared counterfactual dependencies.

As an alternative to our approach, one can assign probabilities to counter-
factuals with disjunctive antecedents by imaging mass transfers, and Bayesian-
ized imaging in particular. However, this option does not return plausible
predictions about the probability of counterfactuals. What is more, it violates
intuitive requirements such as the Convexity Principle and the Relevance
Principle.

It could be objected that we have not motivated the use of truthmaker
semantics properly, and that we could also use, as an alternative, complete
value assignments to the variables in the antecedent, e.g.,M[X = 0, Y = 1],
M[X = 1, Y = 0] andM[X = 0, Y = 0]. Our response is twofold: First, our
contributions in Section 5 and 6 would still stand since nothing specific de-
pends on the choice of truthmaker semantics in weighting the contributions
of the submodels. If the readers prefer a different set of relevant submodels,
they could still follow our similarity-based weighting procedure for assign-
ing a probability to counterfactuals with disjunctive antecedents. This is our
dialectical point. The substantial point is that the truthmaking submodels of
a disjunction are consistent with each other under state fusion; this is not true
of the above alternative proposal.

Another open question is whether our work is really an explication of the
“probability of counterfactuals”. CMS reads this term as the probability of
a causal effect, given a minimal intervention, but it is not clear whether this
really corresponds to the probability (plausibility, assertability) of a counter-
factual sentence. Experiments in linguistics would be required to confirm the
adequacy of the CMS interpretation, and our principle that the probability
of a counterfactual A � B should be bounded from above and below by
the best and worst scenarios for B that we could imagine when supposing A.
Another future application of our work is to shed new lights on the notion of
disjunctive causes introduced by Sartorio (2006). Finally, we should spell out
the implications of our findings for premise semantics and their relationship
to causal modeling semantics (Kaufmann 2013; Santorio 2019).
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