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Algebraic nature of
singular Riemannian foliations in spheres

By Alexander Lytchak at Köln and Marco Radeschi at Münster

Abstract. We prove that singular Riemannian foliations in Euclidean spheres can be
defined by polynomial equations.

1. Introduction

Isoparametric hypersurfaces in Euclidean spheres have been studied by Cartan in the
thirties (cf. [7]) and then forgotten for a long period of time. Such hypersurfaces are natu-
ral and very interesting generalizations of (orbits of) isometric cohomogeneity one actions on
spheres. A major step towards the understanding of isoparametric hypersurfaces has been done
by Münzner in [20, 21]. He proved a finiteness result controlling the topology of the hypersur-
faces and an algebraicity result building a bridge between geometry and algebra: any isopara-
metric hypersurface is given as the zero set of a polynomial equation. Starting from these results
essentially all isoparametric hypersurfaces have been classified by combining deep topological,
geometric and algebraic insights [1, 8, 11, 16, 24].

In the same way isoparametric hypersurfaces generalize isometric cohomogeneity one
actions, singular Riemannian foliations generalize (orbit decompositions of) arbitrary isometric
actions on spheres. Besides the intrinsic interest in such objects, related to the study of Euclid-
ean submanifolds with special properties, singular Riemannian foliations in round spheres
describe the local structure of singular Riemannian foliations in arbitrary Riemannian man-
ifolds (cf. [19]). Thus the understanding of singular Riemannian foliations in spheres is of
major importance in the theory. Molino, not being aware of the existence of non-homogeneous
isoparametric foliations (cf. [13]), has conjectured that all singular Riemannian foliations in
Euclidean spheres are homogeneous. However, there is in fact a vast class of non-homogeneous
examples (cf. [23]). Despite this, all singular Riemannian foliations with closed leaves are of
algebraic origin as our main theorem shows:

Theorem 1.1. Let .Sn;F / be a singular Riemannian foliation with closed leaves. Then
there exists a polynomial map � D .�1; : : : ; �k/ W RnC1 ! Rk such that any leaf of F co-
incides with some fiber of �. The induced map Sn=F ! Rk is a homeomorphism onto the
image.
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2 Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres

Our result identifies the quotient space Sn=F as a semi-algebraic set and provides a rela-
ted finitely generated algebra of F -invariant polynomials (Proposition 4.2 below). This result
opens the way to algebraic methods in the theory of singular Riemannian foliations. For appli-
cations of this approach, see for example [18].

As a direct consequence of Theorem 1.1 we deduce:

Corollary 1.2. Let .Sn;F / be a singular Riemannian foliation with closed leaves. Then
any leaf of F is a real algebraic subvariety of the Euclidean space RnC1.

We would like to mention a recent result of a similar spirit and origin. For a submanifold
L � Sn, being a leaf of a singular Riemannian foliation imposes a severe restriction on the set
of focal vectors in the normal bundle �L, cf. [4, 6]. A slightly related restriction on the set of
focal vectors of a submanifold is imposed by the assumption of the tautness of the submanifold,
cf. [9, 10, 26]. All isoparametric hypersurfaces are taut (cf. [15]) and thus the recent result of
Q. Chi that all taut submanifolds of the Euclidean space are algebraic [10], can be seen as
a different generalization of Münzner’s theorem.

A fundamental tool in the proof of Theorem 1.1 is the control of the averaging operator,
a replacement of the averaging with respect to the Haar measure:

Definition 1.3. Let .Sn;F / be a singular Riemannian foliation. For f 2 L2.Sn/ the
average of f with respect to F is the function Œf � 2 L2.Sn/ defined at almost every p 2 Sn

by

(1.1) Œf �.p/ D

«
Lp

f D
1

vol.Lp/

Z
Lp

f;

where the integral is taken with respect to the induced Riemannian volume on the leaf Lp
through p.

The operator f ! Œf � is the orthogonal projection from L2.Sn/ onto the closed linear
subspaceL2.Sn;F / of all representatives of square integrable basic functions, see Section 3.1.
Recall that a function is called basic (with respect to F ) if it is constant on any leaf of F .
Much less obvious are the smoothness properties of the average function near singular leaves.
A very closely related problem has been solved in [22] for the averaging operator of a regular
Riemannian foliation with non-closed leaves. In our case the smoothness is preserved, too:

Theorem 1.4. Let .Sn;F / be a singular Riemannian foliation with closed leaves. If
f 2 L2.Sn/ has a smooth, respectively polynomial representative, then so does the averaged
function Œf �.

Indeed, it can be shown that the smooth representative for Œf � can be defined pointwise
by (1.1). Since the result of this pointwise statement is not needed in the paper, we will not
provide the slightly technical proof.

Theorem 1.4 implies that the ring of basic polynomials is finitely generated (Proposi-
tion 4.2) and provides enough basic polynomials to deduce Theorem 1.1.

The averaging operator is defined for any Riemannian manifoldM and singular Riemann-
ian foliation F with compact leaves. If the singular foliation F is given by leaf closures of some
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Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres 3

regular Riemannian foliation G onM , then our averaging operator with respect to F coincides
with the averaging operator with respect to G , as defined in [22]. Thus, Theorem 1.4, Theo-
rem 3.3 and [22] give rise to the hope that the following question has an affirmative answer:

Question 1.1. Let F be a singular Riemannian foliation with compact leaves on a com-
plete Riemannian manifold M . Does the averaging operator f ! Œf � send smooth functions
to smooth functions?

The proof would require a deeper understanding of the structures of the singularities
of a singular Riemannian foliation, in particular the behavior of the mean curvature vectors
of regular leaves in a small neighborhood of singular leaves. No problems arise if the mean
curvature field is basic in the regular part of F , a very well-known condition in the analysis
of Riemannian foliations (cf. [22] and the literature therein). In this case the answer to the
question above is indeed affirmative (Theorem 3.3).

Acknowledgement. The authors would like to thank Marcos Alexandrino, Miguel
Domínguez-Vázquez, Fernando Galaz-Garcia, Ken Richardson, Wolfgang Ziller and the
anonymous referee for helpful comments on a previous version of this paper.

2. Preliminaries

Let M always denote a connected Riemannian manifold and let F always denote a sin-
gular Riemannian foliation onM with compact leaves, i.e., a decomposition ofM as a disjoint
union of compact smooth submanifolds Lp, called the leaves of F , such that the leaves are
equidistant, and such that smooth vector fields everywhere tangent to the leaves span all tan-
gent spaces to the leaves. We refer the reader to [3, 19] and the literature therein for introduc-
tions to the subject. Note that the assumption that all leaves are compact makes further usual
assumptions on M like compactness or completeness irrelevant.

The manifold M decomposes as a locally finite union of strata, which are smooth sub-
manifolds of M . There is exactly one open and dense stratum, the principal stratum of M ,
denoted by M0. The restriction of F to M0 is given by a Riemannian submersion with com-
pact fibers � WM0 ! B0 onto some Riemannian manifold B0. For a point p 2M we denote
by H.p/ the mean curvature vector of the leaf Lp through p. By � we denote the dual 1-form
�.v/ WD hv;H i. Note that � is a smooth form on M0. But be aware that � is definitely non-
smooth at singular leaves (indeed, kHk2 explodes quadratically as one approaches a singular
point, [5, Proposition 4.3]).

We say that F has basic mean curvature if the form � is a basic 1-form on the regular
part M0, hence if the smooth horizontal vector field H on M0 is the horizontal lift of a vector
field on B0.

The union M1 of all strata of codimension at most 1 consists only of leaves of maxi-
mal dimension. The restriction of F to M1 is thus a regular Riemannian foliation, and either
M1 DM0 (which is always the case, if M is simply connected), or the restriction of F to M1

is not transversally oriented. In the former case,M1 has a double coverM 01 such that the lift F

to M 01 has only principal leaves.
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4 Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres

Any singular Riemannian foliation given by an isometric group action has basic mean
curvature. For a general manifold M and a general inhomogeneous foliation this condition
may not hold, even if M has constant (negative) curvature, cf. [14, Propositon 4.1.2 and
Example 4.1.1 (i)]. However, in the case M D RnC1 or M D Sn with constant curvature any
singular Riemannian foliation has basic mean curvature, since in this case the distance to the
focal points determines the eigenvalues of the second fundamental form, see [4, Propositon 3.1
and Remark 3.2].

If F is a singular Riemannian foliation on Sn, there is a natural extension of F to a sin-
gular Riemannian foliation CF on RnC1. The leaves of the cone CF of F are the images of
leaves of F under the natural dilations x ! r � x, for r 2 Œ0;1/.

3. Smoothness of the averaging operator

3.1. Measure-theoretic properties. Let .M;F / be a singular Riemannian foliation
with compact leaves. Let M0 be the principal stratum as above. Since M0 has full Riemann-
ian measure in M , we can restrict ourselves to M0 in all questions which concern only almost
everywhere properties of functions, in particular, when dealing with integrable and square-inte-
grable functions. The subsequent considerations can be found in a much more general situation
in [22], thus we only sketch the arguments.

Applying Fubini’s theorem to the Riemannian submersion � WM0 ! B0 we see that for
any locally integrable function f 2 L1loc.M/, the restriction of f to almost any fiber of � (i.e.,
a leaf of F ) is integrable. Moreover, for any compact subset of K of B0 we have the equalityZ

��1.K/

f D

Z
K

�Z
��1.q/

f

�
dvolB.q/:

Thus the averaging map f ! Œf � is well defined for any f 2 L1loc.M/. We identify
L2.M/ with L2.M0/. From the above formula and the inequality of Cauchy–Schwarz we
deduce (cf. [22]) that for any f 2 L2.M0/ the average Œf � defined by equation (1.1) is indeed
an element of L2.M0/. Moreover, we see that the averaging operator has norm 1, henceZ

M

f 2 �

Z
M

Œf �2:

By definition, the averaging operator is linear. For any function f 2 L2.M0/ D L
2.M/ the

average function Œf � is constant on almost all leaves, hence it has a basic representative. On the
other hand, if f is constant on almost all leaves, then Œf � D f in L2.M0/. The kernel of the
averaging operator consists of all functions g 2 L2.M0/ whose average on almost any leaf is
zero. In this case, for any basic function f 2 L2.M0/ the product f � g still has average 0 on
almost all leaves and therefore

R
M f � g D 0. Hence the kernel of the averaging operator Œ � � is

orthogonal to its image. This shows that Œ � � is indeed the orthogonal projection from L2.M/

onto the subset L2.M;F / of all functions in L2.M/ which have a basic representative.

3.2. Commuting operators. Let us now assume that F has basic mean curvature H .
Denote as above by � the corresponding basic smooth 1-form onM0. Note that for any smooth
function f WM0 ! R the average function Œf � WM0 ! R is a smooth basic function. The
smoothness is evident, since in M0 the leaves depend smoothly on the point. Indeed, the
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Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres 5

smoothness statement is a trivial case of [22]. Using our assumption on the mean curvature
we are going to conclude that the average operator (on the principal part M0) commutes with
basic horizontal derivatives and with the Laplacian.

First we claim:

Lemma 3.1. Let X be a smooth, basic horizontal vector field on M0 and let f be
a smooth function. Then ŒX.f /� D X.Œf �/.

Proof. Both sides are linear in f and clearly agree on smooth basic functions. Thus it
suffices to prove the equality for all smooth functions f with Œf � D 0, since any function f is
the sum of Œf � and f � Œf �.

Denote by ! the volume form of the leaves, well defined up to a sign. The mean curva-
ture describes the infinitesimal volume change along the flow of X , hence the Lie derivative
of the measures ! along the vector field X is given by LX .!/ D ��.X/ � ! (see [14, Propo-
sition 4.1.1]). Since � is basic, the function �.X/ is constant along each leaf. Thus for any
function f with Œf � � 0 and any p 2M0 we have

0 D X.0/ D X

�Z
Lp

f!

�
D

Z
Lp

X.f /! C

Z
Lp

fLX .!/

D

Z
Lp

X.f /! � �.X/.p/

Z
Lp

f!:

The last summand vanishes by assumption, hence
R
Lp
X.f / D 0. The above equation implies

ŒX.f /� D 0 D XŒf �.

From the previous lemma we are going to deduce that the averaging operator commutes
with the Laplacian (cf. [22, Propositions 4.1 and 4.3]).

Lemma 3.2. If � denotes the Laplacian on M0, then �Œf � D Œ�f � for any smooth
function f WM0 ! R.

Proof. Fix a point p 2M0, consider an orthonormal frame ¹X1; : : : ; Xk; V1; : : : ; Vn�kº
in a neighborhood of p where the Xi are basic and the Vi are vertical.

Define the basic, resp. vertical Laplacians �h; �v as

�hf D

kX
iD1

�
XiXi .f / � rXi

Xi .f /
�
; �vf D

n�kX
iD1

�
ViVi .f / � rVi

Vi .f /
�
:

The operators �v, �h do not depend on the choice of the vertical and horizontal frames, and
moreover � D �h C�v is the usual Laplacian. Hence it suffices to prove the following iden-
tities:

�hŒf � D Œ�hf �;(3.1)

�vŒf � D Œ�vf �:(3.2)

Since the O’Neill tensor is skew-symmetric. we see that

�hf D
X
i

.XiXi .f / � r
h
Xi
Xi .f //:
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6 Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres

Hence�h is a sum of compositions of derivatives along basic horizontal fields. But the averag-
ing operator Œ � � commutes with derivations along basic horizontal fields by Lemma 3.1. This
implies equation (3.1).

On the other hand, consider the operator�l.f / WD
Pn�k
iD1 .ViVi .f / � r

v
Vi
Vi .f // which

is just the Laplacian along the leaves of the restriction of f to the leaves. By definition,

�l.f / D �v.f /C

n�kX
iD1

r
h
Vi
Vi .f / D �

v.f /CH.f /:

Due to Lemma 3.1, the derivation along the basic field H commutes with Œ � �. Moreover, since
the Laplacian of a constant function is 0 and since the integral of the Laplacian of any function
on any compact manifold is 0, we get for any smooth function f WM0 ! R

�l Œf � � 0 � Œ�lf �:

In particular, �l commutes with the averaging operator as well. This implies (3.2).

3.3. Boot-strapping to smoothness. Under the assumptions above we are going to
prove that for any smooth function f WM ! R, the smooth average function Œf � WM0 ! R
has a smooth extension to M .

Theorem 3.3. Let F be a singular Riemannian foliation with compact leaves on
a Riemannian manifold M . Assume that F has basic mean curvature. Then for any smooth
function f WM ! R the average function Œf � 2 L1loc.M/ has a smooth representative.

Proof. For any smooth function f WM ! R, denote by Œf � WM0 ! R the smooth rep-
resentative of the averaged function defined at every point of M0 by (1.1). We claim that Œf �
has a smooth extension to M1, the union of all strata of codimension at most 1. (This is again
a special case of [22].) Indeed, either M1 DM0, or the lift F 0 of F to a double cover M 01
of M1 has only principal leaves. Since the averaging in M 01 with respect to F 0 commutes with
the deck transformations of the cover M 01 !M1, we obtain the smoothness of the lift of Œf �
to M 01 and therefore the smoothness of Œf � on M1. Note that since F is a regular foliation on
M1 the mean curvature fieldH extends to a smooth vector field onM1. Moreover, Lemma 3.1
and Lemma 3.2 remain true for smooth functions on M1.

Next, we claim that Œf � has a locally Lipschitz extension to M . Consider an arbitrary
point p 2M . It is enough to find a neighborhood U of p in M such that Œf � W U \M1 ! R
is Lipschitz continuous. In order to do so, consider an open F -saturated pre-compact neigh-
borhood V of p in M . Since f is smooth and NV compact, f must be K-Lipschitz on V for
some K > 0. Hence, for any unit basic horizontal vector field X on V1 WD V \M1 we have
jX.f /j � K. Due to Lemma 3.1, we deduce that

ˇ̌
X.Œf �/

ˇ̌
� K on V1. Since Œf � is basic, its

gradient field is basic as well and we deduce that Œf � W V1 ! R is locally K-Lipschitz. Con-
sider now a small convex ball U � V around p in M . Since M nM1 has codimension at
least 2 in M , any pair of points in U1 WD U \M1 can be connected in U1 by a smooth curve
of length arbitrary close to the distance between these points. Integrating along this curve we
deduce that Œf � W U1 ! R is K-Lipschitz continuous. This finishes the proof of the claim.

The function�f is smooth as well as f . Due to the previous claim, the functions Œf � and
Œ�f � are both locally Lipschitz in M . If we proved that Œf � 2 C2 for any smooth function f
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Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres 7

and that �Œf � D Œ�f � on the whole of M , then a standard bootstrap argument, obtained for
example by applying iteratively [12, Section 6.3.1, Theorem 2] would prove the smoothness
of Œf �. Since the complement Y DM nM1 of the regular stratum has codimension � 2 inM ,
the following analytic Proposition 3.4 together with Lemma 3.2 provides exactly what we need,
thus finishing the proof of the theorem.

Proposition 3.4. LetM be an n-dimensional Riemannian manifold and let Y be a closed
subset of M with vanishing .n � 1/-dimensional Hausdorff measure. Assume that u and g are
locally Lipschitz functions on M such that �u D g on M n Y in the sense of distributions.
Then the function u is of class C2. Moreover, �u D g on M .

Proof. The question is local and we may restrict to a small open ball B around a given
point in M . In this ball we can solve the Dirichlet problem and find a map u1 in the Sobolev
classH 1;2.B/, with�u1 D g in B . Since g is Lipschitz continuous, elliptic regularity (see for
example [12, Section 6.3.1, Theorem 1]) gives us u1 2 C2.B/. If we can prove that the locally
Lipschitz function u2 D u � u1 is harmonic in B , then the regularity of u would follow from
the regularity of u1 and u2.

Since u and u1 are in the Sobolev space H 1;2.B/, so is their difference u2. Hence the
Laplacian �u2 is a distribution in the Sobolev space H�1;2.B/. By assumption this distribu-
tion has its support on Y \ B . Since Y has vanishing .n � 1/-dimensional Hausdorff measure,
it follows from [17, p. 16] and [2, p. 70] that the only distribution in H�1;2.B/ with support
in Y is 0. Therefore, �u2 D 0 on B .

4. Homogeneous basic polynomials

In this section, we consider a singular Riemannian foliation F with compact leaves on
a round sphere Sn. Consider the induced foliation CF on the Euclidean space V D RnC1

invariant under the canonical dilations. By [4], both foliations have basic mean curvature and
the results from the previous section show that, for a smooth function f W V ! R, its averaged
function Œf � is smooth as well. Since the leaves of CF through points in Sn coincide with the
corresponding leaves of F , the average of f jSn with respect to F is just the restriction of Œf �
to the sphere Sn.

The following observation together with Theorem 3.3 finishes the proof of Theorem 1.4:

Proposition 4.1. If f W V ! R is a homogeneous polynomial, then Œf � is a homoge-
neous polynomial of the same degree.

Proof. A smooth function f W V ! R is contained in the vector space of homogeneous
polynomials of degree m if and only if

(4.1) f .rx/ D rmf .x/

holds true for all x 2 V and r 2 Œ0;1/, as one can see from the Taylor expansion. Since the
foliation CF is invariant under dilations, equality (4.1) for the function f implies the same
equality for the average function Œf �. Thus the result follows from Theorem 3.3.
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8 Lytchak and Radeschi, Algebraic nature of singular Riemannian foliations in spheres

Consider now the ring RŒV �b of basic polynomials on V with respect to CF . This is
a subring of the ring RŒV � D RŒx1; : : : ; xnC1�. Since the average Œ � � W RŒV �! RŒV �b pre-
serves the degree, we see that RŒV �b is homogeneous: for any polynomial p 2 RŒV �b , the
homogeneous summands of p are again in RŒV �b .

Hilbert’s proof of finite generation of the rings of invariants (cf. [25, p. 274]) applies to
our situation:

Proposition 4.2. The ring RŒV �b of basic polynomials is finitely generated.

Proof. By Hilbert’s Basis Theorem, the ideal I in RŒV � generated by the subring RŒV �b
C

of basic polynomials of positive degree, is finitely generated (as a module over RŒV �). Thus we
can find homogeneous basic polynomials �1; : : : ; �k of positive degrees which generate I as
an ideal.

We now prove that RŒV �b D RŒ�1; : : : ; �k� as a ring, proceeding by induction on the
degree. Assume that all q 2 RŒV �b of degree smaller than m are contained in RŒ�1; : : : ; �k�,
and consider some homogeneous p 2 RŒV �b of degree m. Since p 2 RŒV �b

C
� I , we can find

polynomials a1; : : : ; ak 2 RŒV � such that

p D
X

ai�i :

Moreover, we may assume that each ai is homogeneous of degree smaller than m. We apply
our averaging operator to this equation and obtain

p D
X

Œai ��i :

By induction, the basic polynomials Œai � are contained in RŒ�1; : : : ; �k�. Therefore, p is con-
tained in RŒ�1; : : : ; �k� as well.

There are plenty of basic polynomials:

Proposition 4.3. The ring of basic polynomials separates different leaves of CF .

Proof. Given two leaves Lx and Ly , consider a smooth function f (a bump function)
which is constant 1 in Ly and constant 0 in Lx . By the theorem of Weierstrass, there exists
a polynomial P W RnC1 ! R such that jf � P j < � on the compact set Lx [ Ly . Then we
have ŒP �.x/ 2 .��; �/ and ŒP �.y/ 2 .1 � �; 1C �/, therefore ŒP � separates Lx; Ly .

The following result finishes the proof of Theorem 1.1:

Proposition 4.4. In the notations above, let �1; : : : ; �k be generators of the ring RŒV �b

of basic polynomials. The map � D .�1; : : : ; �k/ W RnC1 ! Rk descends to a homeomorphism
of RnC1=F onto its image.

Proof. Since any coordinate �i of � is basic, it follows that the map � descends to a map
�� W RnC1=F ! Rk . Since the basic polynomials separate points and �i generate the ring of
all basic polynomials, the map �� W RnC1=F ! Rk is a bijection onto its image. In particular,
the non-empty fibers of � coincide with leaves of CF , thus � is proper and so is ��. Therefore,
the map � W RnC1=F ! Rk is a homeomorphism onto the image.
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