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Upper bounds for the resultant
and Diophantine applications.

Francesco Amoroso*

Abstract. Let F , G ∈ C[x] be two square-free polynomials. We prove a general inequality
for the resultant of F and G, which gives an unified and short proof of several known
results in Diophantine approximation in one variable.

1991 Mathematics Subject Classification: 11J25, 26C05, 11J68.

1. Introduction.

Let

F (x) = aD

D∏
h=1

(x− αh), G(x) = bd

d∏
k=1

(x− βk)

be two non-zero polynomials with complex coefficients. The resultant of F and G
is

Res(F,G) = adDb
D
d

D∏
h=1

d∏
k=1

(αh − βk).

Let l and m be two non-negative integers satisfying l ≤ D and m ≤ d. Since

|αh − βk| ≤ 2 max{|αh|, 1}max{|βk|, 1}

we have the upper bound (as usual, we use the convention that the value of an
empty product is 1)

|Res(F,G)|
M(F )dM(G)D

≤ 2dD−lm
l∏

h=1

m∏
k=1

|αh − βk| (1.1)

where M(F ) is the Mahler measure of F , i.e.

M(F ) = |aD|
D∏
i=1

max{|αi|, 1}.

* Dipartimento di Matematica, Via Carlo Alberto 10, I-10123 Torino.
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Let us consider some special cases of the previous inequality.

First case: l = m = 0. Then (1.1) gives

|Res(F,G)| ≤ 2dDM(F )dM(G)D.

Now choose G(x) = x− z where z is a complex number with |z| = 1. Then

|F | ≤ 2DM(F ) (1.2)

where |F | is the maximum modulus of F (x) on the unit circle.

Second case: l = m = 1. Let α and β be two non-conjugate algebraic numbers
of degrees D and d respectively. Choose for F and G the minimal polynomial over
Z of α and β. Then we have the Liouville inequality

|α− β| ≥ 2−dD+1M(α)−dM(β)−D (1.3)

where the Mahler measure of an algebraic number is the Mahler measure of its
minimal polynomial over Z.

Third case: l = D, m = 1. Let F be a polynomial with integer coefficients and
degree D and let β be an algebraic number of degree d over Q. Then, if F (β) 6= 0,

|F (β)| ≥ max{1, |β|}D2−(d−1)DM(F )−dM(β)−D. (1.4)

Similarly, choosing l = 1 and m = d,

|G(α)| ≥ max{1, |α|}d2−d(D−1)M(α)−dM(G)−D (1.5)

for any polynomial G with integer coefficients and degree d and for any algebraic
number α of degree D over Q such that G(α) 6= 0.

In 1979, in a remarkable paper, M. Mignotte improved (1.3) when D is much
bigger than d. Let β∗ = max{|β|, 1} and assume D logD ≥ 2d log(4Dβ∗M(α)).
Then Mignotte’s result is (see [M1] and also [S]):

|α− β| ≥M(β)−2D exp
{
−4
√
dDβ∗ log(4DM(α)) log(2D)

}
. (1.6)

To prove this inequality, Mignotte uses Siegel’s Lemma to construct a polynomial
P with integer coefficients and low height vanishing at β with relatively high
multiplicity. Now (1.6) follows applying the “Liouville inequality” (1.5) to the
polynomial P . The method of Mignotte also provides a good lower bound for∏
h=1,...,l

|G(αh)|, where α1, . . . αl are some of the conjugates of α and G ∈ Z[x] (see

[M2]).

The inequality (1.2) was later improved by Mignotte and Glesser - Mignotte
(see [M3] and [GM]). They found that for any irreducible polynomial F with
integer coefficients and degree D we have

‖F‖ ≤
√

2DM(F ) exp
{

2
√
D(1 + log(1 +

√
D/2)

)
log
(√

2DM(F )
)}

. (1.7)
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Here ‖F‖ is the euclidean norm of F , i.e. the quadratic mean of the moduli of the
coefficients of F . Note that (1.7) yelds an improvement of (1.2), since

|F | ≤
√
D + 1‖F‖.

Again, the proof of (1.7) was based on Siegel’s lemma, replacing Liouville’s inequal-
ity by an inequality involving the height of the factors of a univariate polynomial.

The motivation of this paper is to deduce, using Michel Laurent’s interpolation
determinants (see [L1] and [L2]), a general inequality which improves (1.1) for
square-free polynomials with complex coefficients. This inequality gives an unified
and short proof of several known results in Diophantine approximation in one
variable.

Let F and G be as before and assume that they are square-free. Let also

disc(F ) = a
2(D−1)
D

∏
i>j

(αi − αj)

2

and

µ(F ) =
M(F )2−2/D

|disc(F )|1/D
.

We remark that µ(F ) is invariant by scalar multiplication and that µ(F ) ≥ 1/D
(see lemma 2.4).

Our main result is the following:

Theorem 1.1. Let F , G ∈ C[x] be two square-free polynomials of degree D and
d, respectively. Let α1, . . . αl be some of the roots of F and let β1, . . . , βm be some
of the roots of G. Assume µ(F ) ≤ µF and µ(G) ≤ µG for some constants µF , µG.
Then, if

3dmax
{

log(2DµF )
log(2DµG)

, 1
}
≤ D, (1.8)

we have†

|Res(F,G)|
M(F )dM(G)D

≤
(

2eD
max{l,m}

)lm
(2DµG)d/2

× exp
{√

dD log(2DµF ) log(2DµG)
} l∏
h=1

m∏
k=1

|αh − βk|.
(1.9)

A similar theorem, which gives better results when l is close to D, will be stated
at the end of section 3.

† We use the following convention:
(

2eD
max{l,m}

)lm
= 1 if l = m = 0.
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In order to compare (1.9) with (1.1), let µ = max{1, µ(F ), µ(G)} and assume
D ≥ 3d. Then (1.9) implies

|Res(F,G)|
M(F )dM(G)D

≤ (2eD)lm(2µD)
√
dD+d/2 (1.10)

Inequality (1.10) is sharper than (1.1) if

2lm log(2eD) ≤ dD log 2− (
√
dD + d/2) log(2µD).

This inequality is satisfied if, for instance,

D ≥ max
{(

7 log(6µ)
)2
, 20

lm

d
log(2eD)

}
.

If F and G are co-prime integral polynomials, then |Res(F,G)| ≥ 1, whence
theorem 1.1 provides lower bounds for the product

∏
|αh−βk|. This lower bounds

contain a slightly improved version of (1.6) (see corollary 4.1) and also improve-
ments of (1.4) and (1.5) (see corollaries 4.2 and 4.3).

Section 5 deals with inequalities involving the heights of square-free polynomials
(not necessarly with integer coefficients). In particular, we deduce an improved
version of (1.7) (see corollary 5.2).

Finally, in section 6 we deduce from theorem 1.1 a lower bound for the Mahler
measure first proved by Dobrowolski (see [D]). Of course, this is not surprising
at all, since the proof of Dobrowolski’s theorem given by Cantor and Straus (see
[CS]) uses an interpolation determinant.

2. Auxiliary results.

Let d, D, r be positive integers and let N = D + rd. We consider the N × N
determinant

V (z1, . . . , zD, w1, . . . , wd) =

∣∣∣∣∣∣∣∣
(
zjh

)
h=1,...,D;

j=0,...,N−1((
j
k

)
wj−kh

)
h=1,...,d; k=0,...,r−1

j=0,...,N−1

∣∣∣∣∣∣∣∣ . (2.1)

This determinant was evaluated by C. Méray in 1899 (see [Me] and also the annex
of [R]):

|V | =
∏
i,j

|zi − wj |r ·
∏
i>j

|zi − zj | ·
∏
i>j

|wi − wj |r
2
. (2.2)

Lemma 2.1. The polynomial V has degree N−1 with respect to zh (h = 1, . . . , D)
and degree r(N − r) with respect to wk (k = 1, . . . , d). Moreover the maximum H
of |V | on the polydisk B = {|z1| = · · · = |zD| = |w1| = · · · = |wd| = 1} is bounded
by N (D+r2d)/2.
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Proof. The first assertion easily follows from (2.2). For the second, we use Hada-
mard’s inequality to bound the determinant (2.1). This gives

H ≤ ND/2
d∏

h=1

r−1∏
k=0

N−1∑
j=k

(
j

k

)2
1/2

≤ ND/2
d∏

h=1

r−1∏
k=0

Nk+1/2 = N (D+r2d)/2.

ut

Let now l, m be such that 0 ≤ l ≤ D and 0 ≤ m ≤ d and consider the
polynomial

F (z1, . . . , zD, w1, . . . , wd) =
V (z1, . . . , zD, w1, . . . , wd)

l∏
h=1

m∏
k=1

|zh − wk|r
.

Lemma 2.2. The polynomial F has degree ≤ N − 1 with respect to zh and degree
≤ r(N − r) with respect to wk. Moreover the maximum of |F | on B is bounded by
C(D + rd− r,D/r + d− 1/r, l,m)rH where†

C(s, t, l,m) = min

{(
ss

ll(s− l)s−l

)m
,

(
tt

mm(t−m)t−m

)l}
. (2.3)

Proof. The first assertion is obvious. For the second, let ρ, τ ≥ 1, ρ 6= τ be two
parameters to be chosen later and consider the polydisk

B′ = {|z1| = · · · = |zl| = ρ, |zl+1| = · · · = |zD| = 1,
|w1| = · · · = |wm| = τ, |wm+1| = · · · = |wd| = 1}.

Then, by the maximum principle and by lemma 2.1,

max
B
|F (z, w)| ≤

max
B′
|V (z, w)|

min
B′

l∏
h=1

m∏
k=1

|zh − wk|r
≤ Hρl(N−1)τmr(N−r)

|ρ− τ |rlm
.

Let s = N − r = D+ rd− r ≥ D and t = (N − 1)/r = D/r+ d− 1 ≥ d. Choosing
ρ = 1 and τ = s/(s− l) we obtain

max
B
|F (z, w)| ≤

(
ss

ll(s− l)s−l

)mr
H,

while the choice ρ = m/(t−m) and τ = 1 gives

max
B
|F (z, w)| ≤

(
tt

mm(t−m)t−m

)lr
H.

† as usual, bb

aa(b−a)(b−a) = 1 if a = 0 or a = b.
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ut

Since our bounds depend on the discriminants of the polynomials involved, it
is worth remarking that the following well-known bound holds:

Lemma 2.3. Let F (x) = aD

D∏
i=1

(x−αi) be a square-free polynomial with complex

coefficients. Then the discriminant

disc(F ) = a
2(D−1)
D

∏
i>j

(αi − αj)

2

satisfies the inequality |disc(F )| ≤ DDM(F )2(D−1). Hence, µ(F ) ≥ 1/D.

Proof. We express |disc(F )| in terms of a Vandermonde determinant:

|disc(F )| = |aD|2(D−1)

∣∣∣∣∣∣∣Det


1 α1 · · · αD−1

1

· · · · · ·
· · · · · ·
1 αD · · · αD−1

D


∣∣∣∣∣∣∣
2

.

Hadamard’s inequality gives

|disc(F )| ≤ |aD|D−1

(
D∏
i=1

D1/2 max{|αi|, 1}D−1

)2

≤ DDM(F )2(D−1).

ut

3. Inequalities for the resultant.

Now we can state our main inequality.

Proposition 3.1. Let

F (x) = aD

D∏
h=1

(x− αh), G(x) = bd

d∏
k=1

(x− βk)

be square-free polynomials with complex coefficients. Let α1, . . . αl be some of the
roots of F and let β1, . . . , βm be some of the roots of G. Then for any positive
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integer r we have

|Res(F,G)|
M(F )dM(G)D

≤ C(D + rd− r,D/r + d− 1/r, l,m)

×((D + rd)µ(F ))D/2r((D + rd)µ(G))rd/2
l∏

h=1

m∏
k=1

|αh − βk|
(3.1)

where the function C is defined by (2.3).

Proof. By (2.2),

|Res(F,G)|r|disc(F )|1/2|disc(G)|r
2/2

= |aN−1
D b

r(N−r)
d V (α1, . . . , αD, β1, . . . , βd)|.

(3.2)

Applying the maximum principle to the polynomial

P (z, w) = V (z, w)
l∏

h=1

m∏
k=1

|zh − wk|−r

on the polydisk

B′ =
{
|zh| = max{|αh|, 1}, h = 1, . . . , D,

|wk| = max{|βk|, 1}, k = 1, . . . , d
}

we obtain

|V (α1, . . . , αD, β1, . . . , βd)| ≤ max
(z,w)∈B′

|P (z, w)|
l∏

h=1

m∏
k=1

|αh − βk|r. (3.3)

Let C = C(D + rd− r,D/r + d− 1/r, l,m). The bounds of lemma 2.2 give

max
(z,w)∈B′

|P (z, w)| ≤ CrN (D+r2d)/2

(
M(F )
|aD|

)N−1(
M(G)
|bd|

)r(N−r)
.

Therefore, by (3.2) and (3.3),

|Res(F,G)|r ≤ CrN (D+r2d)/2M(F )N−1M(G)r(N−r)|disc(F )|−1/2|disc(G)|−r
2/2

×
l∏

h=1

m∏
k=1

|αh − βk|r,

whence

|Res(F,G)|
M(F )dM(G)D

≤ C · (D + rd)D/2r+rd/2µ(F )D/2rµ(G)rd/2
l∏

h=1

m∏
k=1

|αh − βk|.

ut
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Proposition 3.1 is, in some cases, sharp. For example, let n be a positive integer
and consider the polynomials F (x) = xn−1 + · · ·+ x+ 1 and G(x) = x− 1. Since
M(F ) = M(G) = disc(G) = 1 and disc(F ) = nn−2, we have µ(F ) = (D+1)−1+1/D

(with D = degG = n − 1) and µ(G) = 1. Moreover Res(F,G) = n = D + 1.
Substituting into (3.1) we obtain, with l = m = 0,

D + 1 ≤
(
D + r

D + 1

)(D−1)/(2r)

(D + r)(r+1/r)/2

for any integer r ≥ 1. This inequality is sharp for r = 1.

Remark 3.1. If r ≤ D/d we have

C(D + rd− r,D/r + d− 1/r, l,m) ≤
(

2eD
max{l,m}

)lm
.

Moreover,
C(D + rd− r,D/r + d− 1/r, l,m) ≤ l(D−l+rd)m

for l ≥ 5.

Proof. Let as before s = D + rd − r and t = D/r + d − 1/r. We can assume
1 ≤ l ≤ s− 1 and 1 ≤ m ≤ t− 1 since otherwhise C(s, t, l,m) = 1. We first recall
the inequality

bb

aa(b− a)b−a
≤ min

{
(eb/a)a, (eb/(b− a))b−a

}
(3.4)

which holds for integers a, b satisfying 1 ≤ a ≤ b − 1. Assume r ≤ D/d. Then
s, t ≤ 2D, whence, by (3.4),

C(s, t, l,m) ≤ min
{
es

l
,
et

m

}lm
≤
(

2eD
max{l,m}

)lm
.

On the other hand, again by (3.4),

C(s, t, l,m) ≤
(

es

s− l

)(s−l)m

≤ l(s−l+1)m,

provided that l ≥ 5. ut

Proof of theorem 1.1.

Let r be a positive integer ≤ D/d. By proposition 3.1 and by the first bound
of remark 3.1 we have

|Res(F,G)|
M(F )dM(G)D

≤
(

2eD
max{l,m}

)lm
eφ(r)

l∏
h=1

m∏
k=1

|αh − βk|
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where

φ(r) =
D

2r
log(2DµF ) +

rd

2
log(2DµG).

We choose

r = 1 +

[√
D log(2DµF )
d log(2DµG)

]
.

Therefore
D

r
≤

√
dD log(2DµG)

log(2DµF )
(3.5)

and

rd ≤ d+

√
dD log(2DµF )

log(2DµG)
. (3.6)

Moreover (1.8) implies

r ≤ D

3d
+

D√
3d
≤ D

d
. (3.7)

By (3.5), (3.6) and (3.7) we have

φ(r) ≤ d

2
log(2DµG) +

√
dD log(2DµF ) log(2DµG).

ut

The following theorem improves upon theorem 1.1 when l is close to D.

Theorem 3.1. Let F , G be two square-free polynomials of degree d and D, re-
spectively. Let α1, . . . αl be some of the roots of F and let β1, . . . , βm be some of
the roots of G. Assume µ(F ) ≤ µF and µ(G) ≤ µG for some constants µF , µG.
Then, if

3dmax
{

log(2DµF )
2m log l + log(2DµG)

, 1
}
≤ D (3.8)

and l ≥ 5 we have

|Res(F,G)|
M(F )dM(G)D

≤ l2(D−l)m(2DµG)d/2

× exp
{√

dD log(2DµF )(4m log(2D) + log(2DµG))
} l∏
h=1

m∏
k=1

|αh − βk|.

Proof. Proposition 3.1 and the second bound of remark 3.1 give

|Res(F,G)|
M(F )dM(G)D

≤ l(D−l)meφ(r)
l∏

h=1

m∏
k=1

|αh − βk|
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for l ≥ 5, where

φ(r) =
D

2r
log(2DµF ) +

rd

2
(
2m log l + log(2DµG)

)
.

We choose

r = 1 +

[√
D log(2DµF )

d(2m log l + log(2DµG))

]
.

Therefore
D

r
≤

√
dD(2m log l + log(2DµG))

log(2DµF )
(3.9)

and

rd ≤ d+

√
dD log(2DµF )

2m log l + log(2DµG)
. (3.10)

Moreover (3.8) implies

r ≤ D

3d
+

D√
3d
≤ D

d
. (3.11)

By (3.9), (3.10) and (3.11) we have

φ(r) ≤ d

2
log(2DµG) +

√
dD log(2DµF )(2m log l + log(2DµG)).

ut

4. Lower bounds for
∏
|αh − βk|.

In this section we assume that F and G are integral co-prime polynomials. Then

|Res(F,G)| ≥ 1, µ(F ) ≤M(F )2, µ(G) ≤M(G)2.

Hence theorem 1.1 and theorem 3.1 provides lower bounds for
∏
|αh − βk|. As a

simple example, choose l = m = 1 in theorem 1.1. We find the following improved
version of (1.6):

Corollary 4.2. Let α, β 6= 0 be non-conjugate algebraic numbers of degrees D
and d. Then

|α−β|−1 ≤ e(2D)1+d/2M(α)2dM(β)D exp
{√

dD log(2DM(α)2) log
(
2DM(β)2

)}
provided that

3dmax
{

log(2DM(α)2)
log(2DM(β)2)

, 1
}
≤ D.
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Choosing l = 1 and m = d in theorem 1.1 we obtain the following improvement
of (1.5):

Corollary 4.3. Let G ∈ Z[x] be a square-free polynomial of degree d and let α 6= 0
be an algebraic number of degree D such that G(α) 6= 0. Then

|G(α)|−1 ≤
(

4eD
d

)d
(2D)d/2M(α)2dM(G)D

× exp
{√

dD log(2DM(α)2) log(2DM(G)2)
}

provided that

3dmax
{

log(2DM(α)2)
log(2DM(G)2)

, 1
}
≤ D.

In the special case l = D and m = 1, we apply theorem 3.1 instead of theorem
1.1 to deduce the following improvement of (1.4):

Corollary 4.4. Let F ∈ Z[x] be a square-free polynomial of degree D ≥ 5 and let
β 6= 0 be an algebraic number of degree d such that F (β) 6= 0. Then

|F (β)|−1 ≤ (2D)d/2M(F )2dM(β)D exp
{√

5dD log(2DM(F )) log(2DM(β)2)
}

provided that

3dmax
{

log(2DM(F )2)
2m logD + log(2DM(β)2)

, 1
}
≤ D.

5. Inequalities for the height.

Choosing m = 1 and G(x) = x− z in theorem 1.1 we get

Corollary 5.1. Let F be a square-free polynomial of degree D and let P a monic
polynomial of degree l which divides F . Assume

3dmax
{

log(2Dµ(F ))
log(2D)

, 1
}
≤ D.

Then for any complex number z with |z| = 1 we have

|F (z)|
M(F )

≤ (2eD)l(2D)1/2 exp
{√

D log(2Dµ(F )) log(2D)
}
|P (z)|.

As a special case of corollary 5.1, we find
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Corollary 5.2. Let F be a square-free polynomial of degree D. Then we have

|F |
M(F )

≤
√

2D exp
{√

D log(2D) log(2Dµ(F ))
}
.

Proof. By lemma 2.4,
√

2D exp
{√

D log(2D) log(2Dµ(F ))
}
≥
√

2DM(F ) exp
{√

D log(2D) log 2
}

> 2D

for D ≤ 7. Hence, if D ≤ 7 (1.2) implies our claim. Otherwise, corollary 5.1 (with
l = 0) gives

|F |
M(F )

≤
√

2D exp
{√

D log(2D) log(2Dµ(F ))
}
,

provided that 3 log(2Dµ(F )) ≤ D log(2D). If this condition is not satisfied we have
√

2D exp
{√

D log(2D) log(2Dµ(F ))
}
> (2D)D/

√
3+1/2 > 2D,

whence (1.2) again implies our claim. ut

If F ∈ Z[x] is a square-free polynomial, we have µ(F ) ≤ M(F )2. Therefore
corollary 5.2 implies a somewhat improved version of (1.7).

6. Dobrowolski’s theorem.

In this section we prove the following version of Dobrowolski’s theorem (see [D]):

Corollary 6.1. For any ε > 0 there exists a constant d(ε) > 0 such that

logM(β) ≥ (2− ε)
(

log log d
log d

)3

for any non-zero algebraic number β be of degree d ≥ d(ε) which is not a root of
unity.

Proof. Let ε ∈ (0, 1) and put δ = (1−ε/24)−1. Let d be a sufficiently large positive
integer and let β be a non-zero algebraic number of degree d which is not a root
of unity. We may assume that β is an algebraic integer and that logM(β) ≤
(log log d)3/(log d)3. Let G be the minimal polynomial of β and let, for a prime
number p,

Gp(z) =
d∏
j=1

(z − βpj ),

where β = β1, . . . , βd are the conjugates of β. By lemma 2 of [D] the polynomials
G, G2, G3, G5, . . . are pairwise coprime. Moreover, we may also assume that
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Gp is irreducible (see [R] p. 139). Hence, for any real x, the polynomials G and
F =

∏
p≤x

Gp are square-free and coprime. We choose x = (log d)2/(log log d). By

the Prime Number Theorem,

D := deg F =
∑
p≤x

d ≤ δ d(log d)2

2(log log d)2
≤ d2

2
, (6.1)

logM(F ) =
∑
p≤x

p logM(β) ≤ δ (log d)4 logM(β)
4(log log d)3

≤ log d, (6.2)

and, since
∏
p≤x p

d |Res(F,G) by lemma 2 of [D],

log |Res(F,G)| ≥
∑
p≤x

d log p ≥ δ−1 d(log d)2

log log d
. (6.3)

We also have D ≥ 9d and, by (6.2),

max
{

log(2DM(F )2)
log(2DM(β)2)

, 1
}
≤ 1 +

2 logM(F )
log d

≤ 3 ≤ D

3d
.

Therefore we can apply theorem 1.1 (with l = m = 0), which gives

log |Res(F,G)| ≤ d

2
log(2D) + d logM(F ) + (D + d)µ

+
√
dD log(2DM(F )2) log(2DM(β)2).

(6.4)

By (6.1) and (6.2) we have

d

2
log(2D) + d logM(F ) + (D + d) logM(β) ≤ 2d log d (6.5)

and

dD log(2DM(F )2) log(2DM(β)2)

≤ δ2 d2(log d)4

4(log log d)2

(
2 +

(log d)3 logM(β)
(log log d)3

)
.

(6.6)

Substituting (6.3), (6.5) and (6.6) into (6.4) we obtain

δ−1 d(log d)2

log log d
≤ 2d log d+ δ

d(log d)2

2 log log d

√
2 +

(log d)3 logM(β)
(log log d)3

≤ δ2 d(log d)2

2 log log d

√
2 +

(log d)3 logM(β)
(log log d)3

,

whence

logM(β) ≥
(
4δ−6 − 2

)( log log d
log d

)3

≥ (2− ε)
(

log log d
log d

)3

.

ut
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[Me] C. Méray, “Sur un déterminant dont celui de Vandermonde n’est qu’un cas parti-
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