

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Upper bounds for the resultant and Diophantine applications

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1944849 since 2023-11-28T13:43:49Z
Published version:
DOI:10.1007/978-94-017-0990-3_2
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

[Page 1]

Upper bounds for the resultant and Diophantine applications.

Francesco Amoroso*

Abstract. Let $F, G \in \mathbb{C}[x]$ be two square-free polynomials. We prove a general inequality for the resultant of F and G, which gives an unified and short proof of several known results in Diophantine approximation in one variable.

1991 Mathematics Subject Classification: 11J25, 26C05, 11J68.

1. Introduction.

Let

$$F(x) = a_D \prod_{h=1}^{D} (x - \alpha_h), \quad G(x) = b_d \prod_{k=1}^{d} (x - \beta_k)$$

be two non-zero polynomials with complex coefficients. The $\mathit{resultant}$ of F and G is

$$\operatorname{Res}(F,G) = a_D^d b_d^D \prod_{h=1}^D \prod_{k=1}^d (\alpha_h - \beta_k).$$

Let l and m be two non-negative integers satisfying $l \leq D$ and $m \leq d$. Since

 $|\alpha_h - \beta_k| \le 2 \max\{|\alpha_h|, 1\} \max\{|\beta_k|, 1\}$

we have the upper bound (as usual, we use the convention that the value of an empty product is 1)

$$\frac{|\text{Res}(F,G)|}{M(F)^d M(G)^D} \le 2^{dD-lm} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|$$
(1.1)

where M(F) is the Mahler measure of F, i.e.

$$M(F) = |a_D| \prod_{i=1}^{D} \max\{|\alpha_i|, 1\}.$$

^{*} Dipartimento di Matematica, Via Carlo Alberto 10, I-10123 Torino.

Let us consider some special cases of the previous inequality.

First case: l = m = 0. Then (1.1) gives

$$|\operatorname{Res}(F,G)| \le 2^{dD} M(F)^d M(G)^D.$$

Now choose G(x) = x - z where z is a complex number with |z| = 1. Then

$$|F| \le 2^D M(F) \tag{1.2}$$

where |F| is the maximum modulus of F(x) on the unit circle.

Second case: l = m = 1. Let α and β be two non-conjugate algebraic numbers of degrees D and d respectively. Choose for F and G the minimal polynomial over \mathbb{Z} of α and β . Then we have the Liouville inequality

$$|\alpha - \beta| \ge 2^{-dD+1} M(\alpha)^{-d} M(\beta)^{-D}$$
(1.3)

where the Mahler measure of an algebraic number is the Mahler measure of its minimal polynomial over \mathbb{Z} .

Third case: l = D, m = 1. Let F be a polynomial with integer coefficients and degree D and let β be an algebraic number of degree d over \mathbb{Q} . Then, if $F(\beta) \neq 0$,

$$|F(\beta)| \ge \max\{1, |\beta|\}^D 2^{-(d-1)D} M(F)^{-d} M(\beta)^{-D}.$$
(1.4)

Similarly, choosing l = 1 and m = d,

$$|G(\alpha)| \ge \max\{1, |\alpha|\}^d 2^{-d(D-1)} M(\alpha)^{-d} M(G)^{-D}$$
(1.5)

for any polynomial G with integer coefficients and degree d and for any algebraic number α of degree D over \mathbb{Q} such that $G(\alpha) \neq 0$.

In 1979, in a remarkable paper, M. Mignotte improved (1.3) when D is much bigger than d. Let $\beta^* = \max\{|\beta|, 1\}$ and assume $D \log D \ge 2d \log(4D\beta^*M(\alpha))$. Then Mignotte's result is (see [M1] and also [S]):

$$|\alpha - \beta| \ge M(\beta)^{-2D} \exp\left\{-4\sqrt{dD\beta^* \log(4DM(\alpha))\log(2D)}\right\}.$$
 (1.6)

To prove this inequality, Mignotte uses Siegel's Lemma to construct a polynomial P with integer coefficients and low height vanishing at β with relatively high multiplicity. Now (1.6) follows applying the "Liouville inequality" (1.5) to the polynomial P. The method of Mignotte also provides a good lower bound for $\prod_{h=1,\ldots,l} |G(\alpha_h)|$, where α_1,\ldots,α_l are some of the conjugates of α and $G \in \mathbb{Z}[x]$ (see [M2]).

The inequality (1.2) was later improved by Mignotte and Glesser - Mignotte (see [M3] and [GM]). They found that for any irreducible polynomial F with integer coefficients and degree D we have

$$||F|| \le \sqrt{2D}M(F) \exp\left\{2\sqrt{D(1 + \log(1 + \sqrt{D}/2))}\log\left(\sqrt{2D}M(F)\right)\right\}.$$
 (1.7)

Here ||F|| is the euclidean norm of F, i.e. the quadratic mean of the moduli of the coefficients of F. Note that (1.7) yelds an improvement of (1.2), since

$$|F| \le \sqrt{D+1} \|F\|.$$

Again, the proof of (1.7) was based on Siegel's lemma, replacing Liouville's inequality by an inequality involving the height of the factors of a univariate polynomial.

The motivation of this paper is to deduce, using Michel Laurent's interpolation determinants (see [L1] and [L2]), a general inequality which improves (1.1) for square-free polynomials with complex coefficients. This inequality gives an unified and short proof of several known results in Diophantine approximation in one variable.

Let F and G be as before and assume that they are square-free. Let also

disc
$$(F) = a_D^{2(D-1)} \left(\prod_{i>j} (\alpha_i - \alpha_j) \right)$$

and

$$\mu(F) = \frac{M(F)^{2-2/D}}{|\text{disc}(F)|^{1/D}}$$

We remark that $\mu(F)$ is invariant by scalar multiplication and that $\mu(F) \ge 1/D$ (see lemma 2.4).

Our main result is the following:

Theorem 1.1. Let $F, G \in \mathbb{C}[x]$ be two square-free polynomials of degree D and d, respectively. Let $\alpha_1, \ldots, \alpha_l$ be some of the roots of F and let β_1, \ldots, β_m be some of the roots of G. Assume $\mu(F) \leq \mu_F$ and $\mu(G) \leq \mu_G$ for some constants μ_F, μ_G . Then, if

$$3d \max\left\{\frac{\log(2D\mu_F)}{\log(2D\mu_G)}, 1\right\} \le D,\tag{1.8}$$

2

we have^{\dagger}

$$\frac{|\operatorname{Res}(F,G)|}{M(F)^{d}M(G)^{D}} \leq \left(\frac{2eD}{\max\{l,m\}}\right)^{lm} (2D\mu_{G})^{d/2} \\
\times \exp\left\{\sqrt{dD\log(2D\mu_{F})\log(2D\mu_{G})}\right\} \prod_{h=1}^{l} \prod_{k=1}^{m} |\alpha_{h} - \beta_{k}|.$$
(1.9)

A similar theorem, which gives better results when l is close to D, will be stated at the end of section 3.

[†] We use the following convention:
$$\left(\frac{2eD}{\max\{l,m\}}\right)^{lm} = 1$$
 if $l = m = 0$.

In order to compare (1.9) with (1.1), let $\mu = \max\{1, \mu(F), \mu(G)\}$ and assume $D \ge 3d$. Then (1.9) implies

$$\frac{|\text{Res}(F,G)|}{M(F)^d M(G)^D} \le (2eD)^{lm} (2\mu D)^{\sqrt{dD} + d/2}$$
(1.10)

Inequality (1.10) is sharper than (1.1) if

$$2lm\log(2eD) \le dD\log 2 - (\sqrt{dD} + d/2)\log(2\mu D).$$

This inequality is satisfied if, for instance,

$$D \ge \max\left\{\left(7\log(6\mu)\right)^2, 20\frac{lm}{d}\log(2eD)\right\}$$

If F and G are co-prime integral polynomials, then $|\text{Res}(F,G)| \geq 1$, whence theorem 1.1 provides lower bounds for the product $\prod |\alpha_h - \beta_k|$. This lower bounds contain a slightly improved version of (1.6) (see corollary 4.1) and also improvements of (1.4) and (1.5) (see corollaries 4.2 and 4.3).

Section 5 deals with inequalities involving the heights of square-free polynomials (not necessarily with integer coefficients). In particular, we deduce an improved version of (1.7) (see corollary 5.2).

Finally, in section 6 we deduce from theorem 1.1 a lower bound for the Mahler measure first proved by Dobrowolski (see [D]). Of course, this is not surprising at all, since the proof of Dobrowolski's theorem given by Cantor and Straus (see [CS]) uses an interpolation determinant.

2. Auxiliary results.

Let d, D, r be positive integers and let N = D + rd. We consider the $N \times N$ determinant

$$V(z_1, \dots, z_D, w_1, \dots, w_d) = \begin{vmatrix} \left(z_h^j \right)_{\substack{h=1, \dots, D; \\ j=0, \dots, N-1}} \\ \left(\left({j \atop k} w_h^{j-k} \right)_{\substack{h=1, \dots, d; \ k=0, \dots, r-1 \\ j=0, \dots, N-1}} \end{vmatrix}.$$
 (2.1)

This determinant was evaluated by C. Méray in 1899 (see [Me] and also the annex of [R]):

$$|V| = \prod_{i,j} |z_i - w_j|^r \cdot \prod_{i>j} |z_i - z_j| \cdot \prod_{i>j} |w_i - w_j|^{r^2}.$$
 (2.2)

Lemma 2.1. The polynomial V has degree N-1 with respect to z_h (h = 1, ..., D)and degree r(N-r) with respect to w_k (k = 1, ..., d). Moreover the maximum H of |V| on the polydisk $B = \{|z_1| = \cdots = |z_D| = |w_1| = \cdots = |w_d| = 1\}$ is bounded by $N^{(D+r^2d)/2}$.

Proof. The first assertion easily follows from (2.2). For the second, we use Hadamard's inequality to bound the determinant (2.1). This gives

$$H \le N^{D/2} \prod_{h=1}^{d} \prod_{k=0}^{r-1} \left(\sum_{j=k}^{N-1} {j \choose k}^2 \right)^{1/2} \le N^{D/2} \prod_{h=1}^{d} \prod_{k=0}^{r-1} N^{k+1/2} = N^{(D+r^2d)/2}.$$

Let now $l,\ m$ be such that $0 \leq l \leq D$ and $0 \leq m \leq d$ and consider the polynomial

$$F(z_1, \dots, z_D, w_1, \dots, w_d) = \frac{V(z_1, \dots, z_D, w_1, \dots, w_d)}{\prod_{h=1}^l \prod_{k=1}^m |z_h - w_k|^r}.$$

Lemma 2.2. The polynomial F has degree $\leq N-1$ with respect to z_h and degree $\leq r(N-r)$ with respect to w_k . Moreover the maximum of |F| on B is bounded by $C(D+rd-r,D/r+d-1/r,l,m)^rH$ where[†]

$$C(s,t,l,m) = \min\left\{ \left(\frac{s^s}{l^l(s-l)^{s-l}}\right)^m, \left(\frac{t^t}{m^m(t-m)^{t-m}}\right)^l \right\}.$$
 (2.3)

Proof. The first assertion is obvious. For the second, let ρ , $\tau \ge 1$, $\rho \ne \tau$ be two parameters to be chosen later and consider the polydisk

$$B' = \{ |z_1| = \dots = |z_l| = \rho, \quad |z_{l+1}| = \dots = |z_D| = 1, \\ |w_1| = \dots = |w_m| = \tau, \quad |w_{m+1}| = \dots = |w_d| = 1 \}.$$

Then, by the maximum principle and by lemma 2.1,

$$\max_{B} |F(z,w)| \le \frac{\max_{B'} |V(z,w)|}{\min_{B'} \prod_{h=1}^{l} \prod_{k=1}^{m} |z_h - w_k|^r} \le H \frac{\rho^{l(N-1)} \tau^{mr(N-r)}}{|\rho - \tau|^{rlm}}.$$

Let $s = N - r = D + rd - r \ge D$ and $t = (N - 1)/r = D/r + d - 1 \ge d$. Choosing $\rho = 1$ and $\tau = s/(s - l)$ we obtain

$$\max_{B} |F(z,w)| \le \left(\frac{s^s}{l^l(s-l)^{s-l}}\right)^{mr} H,$$

while the choice $\rho = m/(t-m)$ and $\tau = 1$ gives

$$\max_{B} |F(z,w)| \le \left(\frac{t^t}{m^m (t-m)^{t-m}}\right)^{lr} H.$$

 $\overline{\dagger}$ as usual, $\frac{b^b}{a^a(b-a)^{(b-a)}} = 1$ if a = 0 or a = b.

Since our bounds depend on the discriminants of the polynomials involved, it is worth remarking that the following well-known bound holds:

Lemma 2.3. Let $F(x) = a_D \prod_{i=1}^{D} (x - \alpha_i)$ be a square-free polynomial with complex coefficients. Then the discriminant

$$\operatorname{disc}(F) = a_D^{2(D-1)} \left(\prod_{i>j} (\alpha_i - \alpha_j) \right)^2$$

satisfies the inequality $|\operatorname{disc}(F)| \leq D^D M(F)^{2(D-1)}$. Hence, $\mu(F) \geq 1/D$.

Proof. We express $|\operatorname{disc}(F)|$ in terms of a Vandermonde determinant:

$$|\operatorname{disc}(F)| = |a_D|^{2(D-1)} \left| \operatorname{Det} \begin{pmatrix} 1 & \alpha_1 & \cdots & \alpha_1^{D-1} \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ 1 & \alpha_D & \cdots & \alpha_D^{D-1} \end{pmatrix} \right|^2.$$

Hadamard's inequality gives

$$|\operatorname{disc}(F)| \le |a_D|^{D-1} \left(\prod_{i=1}^D D^{1/2} \max\{|\alpha_i|, 1\}^{D-1}\right)^2 \le D^D M(F)^{2(D-1)}.$$

3. Inequalities for the resultant.

Now we can state our main inequality.

Proposition 3.1. Let

$$F(x) = a_D \prod_{h=1}^{D} (x - \alpha_h), \quad G(x) = b_d \prod_{k=1}^{d} (x - \beta_k)$$

be square-free polynomials with complex coefficients. Let $\alpha_1, \ldots \alpha_l$ be some of the roots of F and let β_1, \ldots, β_m be some of the roots of G. Then for any positive

 $\mathbf{6}$

 $integer \ r \ we \ have$

$$\frac{|\operatorname{Res}(F,G)|}{M(F)^d M(G)^D} \le C(D+rd-r,D/r+d-1/r,l,m) \times ((D+rd)\mu(F))^{D/2r}((D+rd)\mu(G))^{rd/2} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|$$
(3.1)

where the function C is defined by (2.3).

Proof. By (2.2),

$$|\operatorname{Res}(F,G)|^{r}|\operatorname{disc}(F)|^{1/2}|\operatorname{disc}(G)|^{r^{2}/2} = |a_{D}^{N-1}b_{d}^{r(N-r)}V(\alpha_{1},\ldots,\alpha_{D},\beta_{1},\ldots,\beta_{d})|.$$
(3.2)

Applying the maximum principle to the polynomial

$$P(z,w) = V(z,w) \prod_{h=1}^{l} \prod_{k=1}^{m} |z_h - w_k|^{-r}$$

on the polydisk

$$B' = \left\{ |z_h| = \max\{|\alpha_h|, 1\}, \quad h = 1, \dots, D, \\ |w_k| = \max\{|\beta_k|, 1\}, \quad k = 1, \dots, d \right\}$$

we obtain

$$|V(\alpha_1, \dots, \alpha_D, \beta_1, \dots, \beta_d)| \le \max_{(z,w) \in B'} |P(z,w)| \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|^r.$$
(3.3)

Let C = C(D + rd - r, D/r + d - 1/r, l, m). The bounds of lemma 2.2 give

$$\max_{(z,w)\in B'} |P(z,w)| \le C^r N^{(D+r^2d)/2} \left(\frac{M(F)}{|a_D|}\right)^{N-1} \left(\frac{M(G)}{|b_d|}\right)^{r(N-r)}.$$

Therefore, by (3.2) and (3.3),

$$|\operatorname{Res}(F,G)|^{r} \leq C^{r} N^{(D+r^{2}d)/2} M(F)^{N-1} M(G)^{r(N-r)} |\operatorname{disc}(F)|^{-1/2} |\operatorname{disc}(G)|^{-r^{2}/2} \\ \times \prod_{h=1}^{l} \prod_{k=1}^{m} |\alpha_{h} - \beta_{k}|^{r},$$

whence

$$\frac{|\operatorname{Res}(F,G)|}{M(F)^d M(G)^D} \le C \cdot (D+rd)^{D/2r+rd/2} \mu(F)^{D/2r} \mu(G)^{rd/2} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|.$$

Proposition 3.1 is, in some cases, sharp. For example, let n be a positive integer and consider the polynomials $F(x) = x^{n-1} + \cdots + x + 1$ and G(x) = x - 1. Since M(F) = M(G) = disc(G) = 1 and $\text{disc}(F) = n^{n-2}$, we have $\mu(F) = (D+1)^{-1+1/D}$ (with $D = \deg G = n - 1$) and $\mu(G) = 1$. Moreover Res(F, G) = n = D + 1. Substituting into (3.1) we obtain, with l = m = 0,

$$D+1 \le \left(\frac{D+r}{D+1}\right)^{(D-1)/(2r)} (D+r)^{(r+1/r)/2}$$

for any integer $r \ge 1$. This inequality is sharp for r = 1.

Remark 3.1. If $r \leq D/d$ we have

$$C(D+rd-r,D/r+d-1/r,l,m) \le \left(\frac{2eD}{\max\{l,m\}}\right)^{lm}$$

Moreover,

$$C(D+rd-r,D/r+d-1/r,l,m) \leq l^{(D-l+rd)m}$$

for $l \geq 5$.

Proof. Let as before s = D + rd - r and t = D/r + d - 1/r. We can assume $1 \le l \le s - 1$ and $1 \le m \le t - 1$ since otherwhise C(s, t, l, m) = 1. We first recall the inequality

$$\frac{b^b}{a^a(b-a)^{b-a}} \le \min\left\{(eb/a)^a, (eb/(b-a))^{b-a}\right\}$$
(3.4)

which holds for integers a, b satisfying $1 \le a \le b - 1$. Assume $r \le D/d$. Then $s, t \le 2D$, whence, by (3.4),

$$C(s,t,l,m) \le \min\left\{\frac{es}{l}, \frac{et}{m}\right\}^{lm} \le \left(\frac{2eD}{\max\{l,m\}}\right)^{lm}$$

On the other hand, again by (3.4),

$$C(s,t,l,m) \le \left(\frac{es}{s-l}\right)^{(s-l)m} \le l^{(s-l+1)m},$$

provided that $l \geq 5$.

Proof of theorem 1.1.

Let r be a positive integer $\leq D/d.$ By proposition 3.1 and by the first bound of remark 3.1 we have

$$\frac{|\operatorname{Res}(F,G)|}{M(F)^d M(G)^D} \le \left(\frac{2eD}{\max\{l,m\}}\right)^{lm} e^{\phi(r)} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|$$

.

where

$$\phi(r) = \frac{D}{2r}\log(2D\mu_F) + \frac{rd}{2}\log(2D\mu_G).$$

We choose

$$= 1 + \left[\sqrt{\frac{D \log(2D\mu_F)}{d \log(2D\mu_G)}} \right].$$

r

Therefore

$$\frac{D}{r} \le \sqrt{\frac{dD\log(2D\mu_G)}{\log(2D\mu_F)}} \tag{3.5}$$

and

$$rd \le d + \sqrt{\frac{dD\log(2D\mu_F)}{\log(2D\mu_G)}}.$$
(3.6)

Moreover (1.8) implies

$$r \le \frac{D}{3d} + \frac{D}{\sqrt{3}d} \le \frac{D}{d}.$$
(3.7)

By (3.5), (3.6) and (3.7) we have

$$\phi(r) \le \frac{d}{2}\log(2D\mu_G) + \sqrt{dD\log(2D\mu_F)\log(2D\mu_G)}.$$

The following theorem improves upon theorem 1.1 when l is close to D.

Theorem 3.1. Let F, G be two square-free polynomials of degree d and D, respectively. Let $\alpha_1, \ldots, \alpha_l$ be some of the roots of F and let β_1, \ldots, β_m be some of the roots of G. Assume $\mu(F) \leq \mu_F$ and $\mu(G) \leq \mu_G$ for some constants μ_F , μ_G . Then, if

$$3d \max\left\{\frac{\log(2D\mu_F)}{2m\log l + \log(2D\mu_G)}, 1\right\} \le D \tag{3.8}$$

and $l \geq 5$ we have

$$\begin{aligned} \frac{|\operatorname{Res}(F,G)|}{M(F)^d M(G)^D} &\leq l^{2(D-l)m} (2D\mu_G)^{d/2} \\ & \times \exp\left\{\sqrt{dD\log(2D\mu_F)(4m\log(2D) + \log(2D\mu_G))}\right\} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|. \end{aligned}$$

Proof. Proposition 3.1 and the second bound of remark 3.1 give

$$\frac{|\text{Res}(F,G)|}{M(F)^d M(G)^D} \le l^{(D-l)m} e^{\phi(r)} \prod_{h=1}^l \prod_{k=1}^m |\alpha_h - \beta_k|$$

for $l \geq 5$, where

$$\phi(r) = \frac{D}{2r} \log(2D\mu_F) + \frac{rd}{2} (2m \log l + \log(2D\mu_G)).$$

We choose

$$r = 1 + \left[\sqrt{\frac{D\log(2D\mu_F)}{d(2m\log l + \log(2D\mu_G))}}\right]$$

Therefore

$$\frac{D}{r} \le \sqrt{\frac{dD(2m\log l + \log(2D\mu_G))}{\log(2D\mu_F)}}$$
(3.9)

and

$$rd \le d + \sqrt{\frac{dD\log(2D\mu_F)}{2m\log l + \log(2D\mu_G)}}.$$
(3.10)

Moreover (3.8) implies

$$r \le \frac{D}{3d} + \frac{D}{\sqrt{3}d} \le \frac{D}{d}.$$
(3.11)

By (3.9), (3.10) and (3.11) we have

$$\phi(r) \le \frac{d}{2}\log(2D\mu_G) + \sqrt{dD\log(2D\mu_F)(2m\log l + \log(2D\mu_G))}.$$

4. Lower bounds for $\prod |\alpha_h - \beta_k|$.

In this section we assume that F and G are integral co-prime polynomials. Then

$$|\operatorname{Res}(F,G)| \ge 1, \quad \mu(F) \le M(F)^2, \quad \mu(G) \le M(G)^2$$

Hence theorem 1.1 and theorem 3.1 provides lower bounds for $\prod |\alpha_h - \beta_k|$. As a simple example, choose l = m = 1 in theorem 1.1. We find the following improved version of (1.6):

Corollary 4.2. Let α , $\beta \neq 0$ be non-conjugate algebraic numbers of degrees D and d. Then

$$|\alpha - \beta|^{-1} \le e(2D)^{1+d/2} M(\alpha)^{2d} M(\beta)^D \exp\left\{\sqrt{dD \log(2DM(\alpha)^2) \log\left(2DM(\beta)^2\right)}\right\}$$

provided that

$$3d \max\left\{\frac{\log(2DM(\alpha)^2)}{\log(2DM(\beta)^2)}, 1\right\} \le D.$$

Choosing l = 1 and m = d in theorem 1.1 we obtain the following improvement of (1.5):

Corollary 4.3. Let $G \in \mathbb{Z}[x]$ be a square-free polynomial of degree d and let $\alpha \neq 0$ be an algebraic number of degree D such that $G(\alpha) \neq 0$. Then

$$|G(\alpha)|^{-1} \le \left(\frac{4eD}{d}\right)^d (2D)^{d/2} M(\alpha)^{2d} M(G)^D \\ \times \exp\left\{\sqrt{dD \log(2DM(\alpha)^2) \log(2DM(G)^2)}\right\}$$

provided that

$$3d \max\left\{\frac{\log(2DM(\alpha)^2)}{\log(2DM(G)^2)}, 1\right\} \le D.$$

In the special case l = D and m = 1, we apply theorem 3.1 instead of theorem 1.1 to deduce the following improvement of (1.4):

Corollary 4.4. Let $F \in \mathbb{Z}[x]$ be a square-free polynomial of degree $D \ge 5$ and let $\beta \neq 0$ be an algebraic number of degree d such that $F(\beta) \neq 0$. Then

$$|F(\beta)|^{-1} \le (2D)^{d/2} M(F)^{2d} M(\beta)^D \exp\left\{\sqrt{5dD\log(2DM(F))\log(2DM(\beta)^2)}\right\}$$

provided that

$$3d \max\left\{\frac{\log(2DM(F)^2)}{2m\log D + \log(2DM(\beta)^2)}, 1\right\} \le D.$$

5. Inequalities for the height.

Choosing m = 1 and G(x) = x - z in theorem 1.1 we get

Corollary 5.1. Let F be a square-free polynomial of degree D and let P a monic polynomial of degree l which divides F. Assume

$$3d \max\left\{\frac{\log(2D\mu(F))}{\log(2D)}, 1\right\} \le D.$$

Then for any complex number z with |z| = 1 we have

$$\frac{|F(z)|}{M(F)} \le (2eD)^l (2D)^{1/2} \exp\left\{\sqrt{D\log(2D\mu(F))\log(2D)}\right\} |P(z)|.$$

As a special case of corollary 5.1, we find

Corollary 5.2. Let F be a square-free polynomial of degree D. Then we have

$$\frac{|F|}{M(F)} \le \sqrt{2D} \exp\left\{\sqrt{D\log(2D)\log(2D\mu(F))}\right\}.$$

Proof. By lemma 2.4,

$$\begin{split} \sqrt{2D} \exp\left\{\sqrt{D\log(2D)\log(2D\mu(F))}\right\} &\geq \sqrt{2D}M(F)\exp\left\{\sqrt{D\log(2D)\log 2}\right\} \\ &> 2^D \end{split}$$

for $D \leq 7$. Hence, if $D \leq 7$ (1.2) implies our claim. Otherwise, corollary 5.1 (with l = 0) gives

$$\frac{|F|}{M(F)} \le \sqrt{2D} \exp\left\{\sqrt{D\log(2D)\log(2D\mu(F))}\right\},\,$$

provided that $3\log(2D\mu(F)) \leq D\log(2D)$. If this condition is not satisfied we have

$$\sqrt{2D} \exp\left\{\sqrt{D\log(2D)\log(2D\mu(F))}\right\} > (2D)^{D/\sqrt{3}+1/2} > 2^{D},$$

whence (1.2) again implies our claim.

If $F \in \mathbb{Z}[x]$ is a square-free polynomial, we have $\mu(F) \leq M(F)^2$. Therefore corollary 5.2 implies a somewhat improved version of (1.7).

6. Dobrowolski's theorem.

In this section we prove the following version of Dobrowolski's theorem (see [D]):

Corollary 6.1. For any $\varepsilon > 0$ there exists a constant $d(\varepsilon) > 0$ such that

$$\log M(\beta) \geq (2 - \varepsilon) \left(\frac{\log \log d}{\log d}\right)^3$$

for any non-zero algebraic number β be of degree $d \ge d(\varepsilon)$ which is not a root of unity.

Proof. Let $\varepsilon \in (0, 1)$ and put $\delta = (1 - \varepsilon/24)^{-1}$. Let *d* be a sufficiently large positive integer and let β be a non-zero algebraic number of degree *d* which is not a root of unity. We may assume that β is an algebraic integer and that $\log M(\beta) \leq (\log \log d)^3/(\log d)^3$. Let *G* be the minimal polynomial of β and let, for a prime number *p*,

$$G_p(z) = \prod_{j=1}^d (z - \beta_j^p),$$

where $\beta = \beta_1, \ldots, \beta_d$ are the conjugates of β . By lemma 2 of [D] the polynomials G, G_2, G_3, G_5, \ldots are pairwise coprime. Moreover, we may also assume that

 G_p is irreducible (see [R] p. 139). Hence, for any real x, the polynomials G and $F = \prod_{p \leq x} G_p$ are square-free and coprime. We choose $x = (\log d)^2/(\log \log d)$. By the Prime Number Theorem,

$$D := \deg F = \sum_{p \le x} d \le \delta \frac{d(\log d)^2}{2(\log \log d)^2} \le \frac{d^2}{2},$$
(6.1)

$$\log M(F) = \sum_{p \le x} p \log M(\beta) \le \delta \frac{(\log d)^4 \log M(\beta)}{4(\log \log d)^3} \le \log d, \tag{6.2}$$

and, since $\prod_{p \leq x} p^d | \operatorname{Res}(F, G)$ by lemma 2 of [D],

$$\log |\operatorname{Res}(F,G)| \ge \sum_{p \le x} d \log p \ge \delta^{-1} \frac{d(\log d)^2}{\log \log d}.$$
(6.3)

We also have $D \ge 9d$ and, by (6.2),

$$\max\left\{\frac{\log(2DM(F)^2)}{\log(2DM(\beta)^2)},1\right\} \leq 1 + \frac{2\log M(F)}{\log d} \leq 3 \leq \frac{D}{3d}$$

Therefore we can apply theorem 1.1 (with l = m = 0), which gives

$$\log |\operatorname{Res}(F,G)| \le \frac{d}{2} \log(2D) + d \log M(F) + (D+d)\mu + \sqrt{dD \log(2DM(F)^2) \log(2DM(\beta)^2)}.$$
(6.4)

By (6.1) and (6.2) we have

$$\frac{d}{2}\log(2D) + d\log M(F) + (D+d)\log M(\beta) \le 2d\log d \tag{6.5}$$

 $\quad \text{and} \quad$

$$dD \log(2DM(F)^{2}) \log(2DM(\beta)^{2}) \leq \delta^{2} \frac{d^{2}(\log d)^{4}}{4(\log \log d)^{2}} \left(2 + \frac{(\log d)^{3} \log M(\beta)}{(\log \log d)^{3}}\right).$$
(6.6)

Substituting (6.3), (6.5) and (6.6) into (6.4) we obtain

$$\begin{split} \delta^{-1} \frac{d(\log d)^2}{\log \log d} &\leq 2d \log d + \delta \frac{d(\log d)^2}{2 \log \log d} \sqrt{2 + \frac{(\log d)^3 \log M(\beta)}{(\log \log d)^3}} \\ &\leq \delta^2 \frac{d(\log d)^2}{2 \log \log d} \sqrt{2 + \frac{(\log d)^3 \log M(\beta)}{(\log \log d)^3}} \;, \end{split}$$

whence

$$\log M(\beta) \ge \left(4\delta^{-6} - 2\right) \left(\frac{\log \log d}{\log d}\right)^3 \ge (2 - \varepsilon) \left(\frac{\log \log d}{\log d}\right)^3.$$

References

- [CS] D. C. Cantor and E. G. Straus, "On a conjecture of D. H. Lehmer", Acta Arith. 42, p. 97-100 (1982);
- [D] E. Dobrowolski, "On a question of Lehmer and the number of irreducible factors of a polynomial", Acta Arith. 34, p. 391-401 (1979);
- [GM] Ph. Glesser and M. Mignotte, "An inequality about irreducible factors of integer polynomials (II)"; in Applied Algebra, Algebraic Algorithm and Error-Correcting Codes, Ed. S. Sakata, Lecture Notes in Computer Science 508, Springer-Verlag, Berlin, p. 160-266 (1991);
- [L1] M. Laurent, "Sur quelques résultats récents de transcendance", Astérisque vol. 198-200, p. 209-230 (1991);
- [L2] M. Laurent, "Linear forms in two logarithms and interpolation determinants", Acta Arith. 66.2, p.182-199 (1994);
- [M1] M. Mignotte, "Approximation des nombres algébriques par des nombres algébriques de grand degré", Ann. Fac. Sci. Toulouse 1, 165-170 (1979);
- [M2] M. Mignotte, "Estimation élémentaires effectives sur les nombres algébriques", Journées Aritmétiques,1980, Exeter, éd. J.V. Armitage, London Math. Soc. Lecture Notes Ser. 56, Cambridge U. Press (1982), 364-371;
- [M3] M. Mignotte, "An inequality about irreducible factors of integer polynomials", J. Number Th., v. 30, n^o 2, p. 156-166 (1988);
- [Me] C. Méray, "Sur un déterminant dont celui de Vandermonde n'est qu'un cas particulier", Revue de Mathématiques Spéciales, 9, p.217-219 (1899);
- [R] U. Rausch, "On a theorem of Dobrowolski about the product of conjugate numbers", Colloquium Math. 50.1, p. 137-142 (1985);
- W. Schmidt, "Diophantine approximations", Lecture Note in Mathematics 785, Springer-Verlag, Berlin 1980.

Francesco Amoroso, Dipartimento di Matematica Via Carlo Alberto, 10 10123 Torino - Italy e-mail: amoroso@dm.unipi.it