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Abstract

Partial differential equations (PDEs) are primary mathematical tools to model the be-
haviour of complex real-world systems. PDEs generally include a collection of parameters
in their formulation, which are often unknown in applications and need to be estimated
from the data. In the present thesis, we investigate the theoretical performance of
nonparametric Bayesian procedures in such parameter identification problems in PDEs.
In particular, inverse regression models for elliptic equations and stochastic diffusion
models are considered.

In Chapter 2, we study the statistical inverse problem of recovering an unknown
function from a linear indirect measurement corrupted by additive Gaussian white noise.
We employ a nonparametric Bayesian approach with standard Gaussian priors, for
which the posterior-based reconstruction corresponds to a Tikhonov regulariser with a
reproducing kernel Hilbert space norm penalty. We prove a semiparametric Bernstein–
von Mises theorem for a large collection of linear functionals of the unknown, implying
that semiparametric posterior estimation and uncertainty quantification are valid and
optimal from a frequentist point of view. The general result is applied to three concrete
examples that cover both the mildly and severely ill-posed cases: specifically, elliptic
inverse problems, an elliptic boundary value problem, and the recovery of the initial
condition of the heat equation. For the elliptic boundary value problem, we also obtain
a nonparametric version of the theorem that entails the convergence of the posterior
distribution to a prior-independent infinite-dimensional Gaussian probability measure
with minimal covariance. As a consequence, it follows that the Tikhonov regulariser is an
efficient estimator, and we derive frequentist guarantees for certain credible balls centred
around it.

Chapter 3 is concerned with statistical nonlinear inverse problems. We focus on the
prototypical example of recovering the unknown conductivity function in an elliptic PDE
in divergence form from discrete noisy point evaluations of the PDE solution. We study
the statistical performance of Bayesian nonparametric procedures based on a flexible class
of Gaussian (or hierarchical Gaussian) process priors, whose implementation is feasible by
MCMC methods. We show that, as the number of measurements increases, the resulting
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posterior distributions concentrate around the true parameter generating the data, and
derive a convergence rate, algebraic in inverse sample size, for the estimation error of the
associated posterior means.

Finally, in Chapter 4 we extend the posterior consistency analysis to dynamical
models based on stochastic differential equations. We study nonparametric Bayesian
models for reversible multi-dimensional diffusions with periodic drift. For continuous
observation paths, reversibility is exploited to prove a general posterior contraction rate
theorem for the drift gradient vector field under approximation-theoretic conditions on
the induced prior for the invariant measure. The general theorem is applied to Gaussian
priors and p-exponential priors, which are shown to converge to the truth at the minimax
optimal rate over Sobolev smoothness classes in any dimension.

Chapter 1 is dedicated to introducing the statistical models considered in Chapters 2
- 4, and to providing an overview of the theoretical results derived therein. The main
theorems of Chapter 2 and Chapter 3 are illustrated via the results of simulations, and
detailed comments are provided on the implementation.
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Chapter 1

Introduction

Partial differential equations (PDEs) are primary mathematical tools to model the
behaviour of complex real-world systems, such as - to name but a few major examples
- transport of mass, diffusing heat and travelling waves, with ubiquitous applications
in physics, engineering and throughout the applied sciences. PDEs generally include
a collection of parameters in their formulation (for example, a conductivity functional
coefficient modelling spatially-varying diffusion of heat throughout an inhomogeneous
medium), which are often unknown in applications. When data are collected from a
system modelled by a PDE, it is then of central interest - for the purpose of scientific
investigation or to make predictions about its future behaviour - to recover the unknown
parameters in the governing equation [88, 220, 122].

The design of algorithms to solve such parameter identification problems in PDEs
must formally incorporate the underlying PDE structure into the analysis, and also
coherently account for (potential) sources of noise within the data generating process.
A realistic description of such measurement errors often requires a probabilisitic model;
furthermore, in many applications the unknown parameter of interest cannot be modelled
by a finite set of numbers (i.e., a finite-dimensional vector), but rather has to be treated
as a genuine function, giving rise to PDE-based infinite-dimensional (also commonly
termed nonparametric) statistical inference problems. In the present thesis, two major,
and intimately related, classes of nonparametric statistical models arising from PDEs of
elliptic and parabolic type are considered:

1. inverse regression models, wherein the parameter of interest is observed indirectly
through noisy point evaluations of the solution of a PDE (e.g., [88, 127, 223, 220,
122]);
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2. stochastic diffusion models, in which the data-generating mechanism is described
by a stochastic differential equation (SDE) (e.g., [188, 145, 96]).

The (nonparametric) Bayesian paradigm of statistical inference provides a principled
and methodologically attractive approach to such statistical models, and has gained great
popularity in the last decade since influential work by Stuart [220, 73]. In the Bayesian
framework, the underlying PDE structure and the statistical properties of the noise are
naturally incorporated into the analysis via the likelihood function, which describes the
data sampling distribution for each given element in the parameter space. Following
the Bayesian paradigm, the unknown parameter is regarded as a random variable (with
values in a function space or a subset thereof) and assigned a prior probability distribution.
The likelihood and the prior then jointly induce, through Bayes’ formula, a posterior
distribution, which represents the conditional distribution of the parameter given the
observations, and is used to draw inferential conclusions about the unknown parameter
of interest.

The posterior distribution can be formally expressed in terms of evaluations only
of the likelihood function and the prior distribution, thereby conceptually sidestepping
the need of an inversion formula for the complex PDE-based relationship between the
parameter and the observations. At the same time, the posterior mean provides a broadly
applicable approach to point estimation that constitutes an attractive alternative to
traditional penalised least squares procedures, which may give rise, in nonlinear likelihood
structures, to non-convex optimisation problems. A further fundamental feature of the
Bayesian methodology is that, alongside point estimates, it also automatically delivers a
quantification of the uncertainty in the reconstruction, measured by the spread of the
posterior distribution around its centre, that may be used in applications to construct
credible sets (i.e., regions of the parameter space of high posterior probability) and
hypothesis tests.

In practice, in the statistical models considered in the present thesis, outside of certain
conjugate settings where explicit formulae for the posterior distribution can be derived,
nonparametric Bayesian procedures are implemented using suitable numerical methods.
In particular, recent advances in high- and infinite-dimensional Markov chain Monte
Carlo (MCMC) algorithms (e.g., [201, 63, 66, 26, 210]) allow to reliably and efficiently
obtain approximate posterior samples that can be used to construct posterior mean
estimates (via MCMC averages) and credible sets (through the empirical quantiles of
the MCMC samples). The Bayesian approach thus provides concrete algorithms for
estimation and uncertainty quantification that can be successfully employed in a great
variety of complex real-world applications.
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It is therefore of great importance to provide theoretical performance guarantees for
nonparametric Bayesian procedures in statistical models arising from PDEs, in order to
certify the validity of the inferential conclusions that such methodology delivers, and
also to allow an objective comparison with potential competing statistical procedures.
In particular, the performance of Bayesian methods depends on a suitable choice of
the prior, which in the nonparametric framework primarily serves as a regularisation
tool for the likelihood (rather than representing subjective beliefs about the unknown),
and whose specification is a complex task in its own merit (cfr. Section 1.2 in [101]).
Thus, a natural question arises as to whether Bayesian procedures may provide valid and
prior-independent inferential conclusions - at least in the presence of informative data.

The established paradigm under which such investigation can be carried out consists
in performing a frequentist analysis of Bayesian methods (see [101], and also Section 7.3
in [104]), assuming that the observations are generated by a fixed ground truth in the
parameter space (as opposed to the parameter being randomly drawn from the prior
distribution), and studying the asymptotic behaviour of the posterior distribution in
the large sample size (or equivalently, small noise variance) limit. More specifically, two
fundamental questions arise in this framework in regards to the theoretical performance
of nonparametric Bayesian procedures:

1. posterior consistency, i.e., the concentration of the posterior distribution around the
assumed true parameter. Related questions are the convergence of relevant Bayesian
estimators, such as the posterior mean, as well as a quantitative characterisation of
the rate at which the contraction occurs;

2. validity of Bayesian uncertainty quantification, that is, whether credible sets are
asymptotically proper confidence set, achieving in the limit frequentist coverage
probability at least equal to their credible level.

While related, the two above questions entail distinct analyses. Indeed, while posterior
consistency pertain to the global behaviour of the posterior distribution, understanding
the frequentist coverage of Bayesian credible sets can be approached by studying the local
microscopic fluctuations of the posterior distribution over set where it concentrates, which,
as we shall elaborate in Chapter 2, may depend subtly on the geometries involved. Both
of these issues have been intensely investigated in the literature in the past two decades
in classical nonparametric statistical models such as regression and density estimation
[104, 101]. More recently, significant advances have been achieved in extending such
results to PDE-based statistical models, including linear [138, 6, 195, 133, 166] and
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nonlinear inverse problems [241, 2, 175, 171, 167, 168], and stochastic diffusion models
[232, 110, 174, 173].

The purpose of the present thesis is to further advance our understanding in this
emerging area. In particular, elliptic equations and stochastic diffusions originating
from advection-diffusion models are considered. Chapter 2 investigates the validity of
Bayesian uncertainty quantification in a class of linear inverse problems. For Bayesian
procedures based on standard Gaussian priors, a (semiparametric) Bernstein–von Mises
theorem is proved, providing a detailed description of the limiting shape of the posterior
distributions of certain functionals of the parameter, and implying that credible intervals
are asymptotically valid confidence intervals with radius shrinking at the optimal rate. For
a concrete example based on an elliptic boundary value problem, an infinite-dimensional
extension of the result is further derived. Chapter 3 is concerned with nonlinear inverse
problems. Focusing on the prototypical example of recovering the conductivity function in
an elliptic PDE in divergence form, guarantees for posterior consistency and convergence
of the posterior mean (with upper bounds, algebraic in inverse sample size, on the rates)
are provided for Bayesian nonparametric procedures based on Gaussian (or hierarchically
Gaussian) priors. The results presented stem from a general posterior contraction rates
theory developed for a class of nonlinear inverse problems. Finally, Chapter 4 extends the
posterior consistency analysis to dynamical models based on SDEs. It is shown that the
posterior distributions on the drift vector field arising from Gaussian and p-exponential
priors contracts towards the ground truth at (minimax) optimal rate in any dimension.
These chapters are aimed to be self-contained and can also be read independently.

The remainder of this introductory chapter is mostly dedicated to presenting the
statistical models considered in Chapters 2 - 4, and to discussing the theoretical results
derived therein, with an overview on the main mathematical challenges and the proofs
strategies. The main theorems of Chapter 2 and Chapter 3 are illustrated via the results
of simulations, and detailed comments are provided on the implementation. Section 1.3
contains additional discussion, with references to relevant related literature and core
background material.

1.1 Advection-diffusion equations and related statis-
tical models

Advection-diffusion equations are a major class of second-order PDEs that describe a
large variety of phenomena in physics and applied mathematics, involving the transfer of
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a physical quantity (such as particles, energy, or individuals in a population) inside a
system due to the superposition of two processes:

1. advection, i.e., the transport by the bulk motion of a fluid containing or holding
the transferred physical quantity;

2. diffusion, that is, the transport from regions of higher concentration to regions of
lower concentration.

See, e.g., [12, Section 3.5]. Formally, let O ⊂ Rd, d ∈ N, be an open and bounded domain
with boundary ∂O, and let u(t, x) denote the density at time t ≥ 0 and location x ∈ O
of a physical quantity being transferred within O. Then, the advection-diffusion model
postulates that the evolution of u is governed by a linear parabolic PDE of the form

∂u

∂t
= ∇ · (A∇u) − b.∇u+ cu+ s, t ≥ 0, x ∈ O, (1.1)

where ∇· = ∑d
i=1 ∂xi

and ∇ denote the divergence and gradient operators respectively.
Above, A = A(x) = [Aij(x)]di,j=1 is a (matrix-valued) diffusion (or conductivity) coefficient
modelling anisotropic and spatially-varying diffusion throughout the domain O, assumed
to satisfy Aij = Aji, i ̸= j, and the uniform ellipticity condition

d∑
i,j=1

Aij(x)ξiξj ≥ a|ξ|2 (1.2)

for some constant a > 0, all x ∈ O and ξ = (ξ1, . . . , ξd) ∈ Rd. The drift vector field
b = b(x) = [b1(x), . . . , bd(x)] represents the velocity of the moving fluid, the scalar field
c = c(x) is an attenuation coefficient modelling local absorption (or release) of the
physical quantity, and the term s = s(x) describes the spatial distribution of local sources
(s(x) > 0) or sinks (s(x) < 0). For the purpose of this thesis, the coefficients A, b, c and
s are assumed to be independent of time. Equation (1.1) is typically complemented with
some initial condition

u(0, x) = h(x), x ∈ O,

and some boundary conditions, which we take to be of Dirichlet type, prescribing for
some function g defined on the boundary ∂O,

u(t, x) = g(x), t ≥ 0, x ∈ ∂O.

The advection-diffusion equation (1.1) can be derived from a continuity equation (e.g.,
[89, Chapter 11]) for the physical quantity being transferred: in particular, the processes
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of advection and diffusion jointly induce a flux

F (t, x, u(t, x)) = b(x)u(t, x) − A(x)∇u(t, x), (1.3)

where the first term represents the advective flux associated to the fluid moving with
velocity b, while the second term is the diffusive flux, proportional, according to Fick’s
first law, to the concentration gradient. Note that, in view of the ellipticity condition
(1.2),

−A(x)∇u(t, x).∇u(t, x) ≤ 0,

i.e., the diffusive flux is directed towards regions of lower concentration. Then, the
continuity equation states that for any open subregion O′ ⊂ O with smooth boundary
∂O′, the rate of change in the total amount of the physical quantity contained in O′

equals the sum of the negative net flux through ∂O′ and the net rate at which the
quantity is created or depleted within O′ (due to attenuation and the presence of sources
or sinks), in integral form:

d

dt

∫
O′
u(t, x)dx = −

∫
∂O′

F.νdS +
∫

O′
[c(x)u(t, x) + s(x)] dx, (1.4)

where ν is the unit outer normal field to the surface ∂O′. By the divergence theorem,∫
∂O′ F.νdS =

∫
O′ ∇ · F (t, x, u(t, x))dx, and therefore Equation (1.4) can be rewritten as

∫
O′

∂

∂t
u(t, x)dx =

∫
O′

[−∇ · F (t, x, u(t, x)) + c(x)u(t, x) + s(x)] dx.

By the arbitrariness of the subdomain O′, it can be concluded that

∂

∂t
u = −∇ · F + cu+ s,

and recalling the specific form of the flux given in (1.3),

∂

∂t
u = ∇ · (A∇u) − ∇ · (bu) + cu+ s

= ∇ · (A∇u) − b.∇u− u∇ · b+ cu+ s,

whence Equation (1.1) follows as a particular case for incompressible flows, characterised
by velocity with zero divergence, ∇ · b = 0.

Assuming that observations from a system governed by an advection-diffusion equation
of the form (1.1) are available, several parameter identification problems can be formulated
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depending on the application and the specific measurement model at hand, including
the recovery of the coefficients A, b, c and s, and of the initial condition h. For
example, among the numerous application areas are tomography and medical imaging
(e.g., [25, 11]), fluid dynamics (e.g., [64]), finance (e.g., [191, 130]), photoacustic and
scattering problems (e.g., [18, 17]) and reservoir hydrology (e.g., [247]); see [16] for an
overview.

In the next subsections, we introduce the two major classes of statistical models
originating from advection-diffusion equations that will be investigated in Chapters 2 - 4.

1.1.1 Inverse regression models for elliptic PDEs

Measurement models based on elliptic PDEs naturally arise from the advection-diffusion
setting for systems in equilibrium, for which the density u in Equation (1.1) satisfies
the steady-state condition ∂tu = 0. Then, denoting by u(x) = u(t, x), Equation (1.1)
simplifies to the elliptic PDE with Dirichlet boundary conditions∇ · (A∇u) − b.∇u+ cu+ s = 0, x ∈ O,

u(x) = g(x), x ∈ ∂O.
(1.5)

Recall that above A = [Aij ]di,j=1, with Aij = Aji, i ̸= j, is a diffusion coefficient satisfying
the uniform ellipticity condition (1.2), b = [b1, . . . , bd] is the velocity vector field, c is the
attenuation coefficient and s is the source term.

Under appropriate regularity conditions on the coefficients A, b, c, s and g, and on the
boundary ∂O, a unique classical twice continuously-differentiable solution u ∈ C2(O) to
(1.5) exists (e.g., [89, Chapter 6]). Assuming that measurements throughout the domain
O are available, a prototypical statistical model for applications based on a system
governed by equation (1.5) then postulates data given by discrete noisy observations of
u over a grid of design points {X1, . . . , XN} ⊂ O,

Yi = u(Xi) + σWi, i = 1, . . . , N, (1.6)

corrupted by statistical measurement errors W1, . . . ,WN scaled by the noise level σ > 0.
Since observational noise typically arise as a superposition of many small independent
random effects, a Gaussian model W1, . . . ,WN

iid∼ N(0, 1) is often realistic in view of the
central limit theorem. The design points can either be derministic (in which case we
speak of fixed design), or themselves be random variables drawn from some probability
distributions on the domain O (random design case). The task at hand is then to infer
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Fig. 1.1 Left: an example of source function s. Right: the corresponding PDE solution
us (for a given diffusion coefficient A).

one of the coefficients appearing in equation (1.5) from data (Yi, Xi)Ni=1, giving rise, in
view of the assumed randomness of the noise, to a statistical inverse (regression) problem.

Concrete instances of statistical inverse problems of the form (1.6) (or a continuous
version thereof) are considered in Chapters 2 and 3. In particular, Chapter 2 investigates
linear inverse problems, wherein the relationship between the unknown parameter of
interest and the observed object (e.g., the PDE solution u in (1.6)) is given by a linear
forward map. The main example considered entails the recovery of the unknown source
function s in the steady-state diffusion equation with zero Dirichlet boundary conditions∇ · (A∇u) = s, x ∈ O,

u(x) = 0, x ∈ ∂O,
(1.7)

from noisy observations of its solution u = us, for smooth ∂O and known diffusion
coefficient A. By standard elliptic theory (e.g., [89, Chapter 6]), the associated forward
map

G : L2(O) → L2(O), s 7→ us,

where L2(O) denotes the usual space of measurable and square integrable functions on
O, defines an injective compact linear operator with unbounded inverse, giving rise to a
linear ill-posed inverse problem. Figure 1.1 provides an illustration of the problem on
the unit disk for a specific choice of the source s (and fixed diffusion coefficient A); see
Section 1.2.1 for details on the implementation and numerical results.

In Chapter 3 the scope of the investigation is broadened to nonlinear inverse problems.
In the representative example considered here, the goal is to recover the unknown positive
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Fig. 1.2 Left: an example of scalar diffusion coefficient a. Right: the corresponding PDE
solution ua (for a given source function s)

scalar diffusion coefficient a : O → [Kmin,∞), Kmin > 0, from noisy discrete observations
of the solution u = ua of the elliptic boundary value problem∇ · (a∇u) = s, x ∈ O,

u(x) = 0, x ∈ ∂O,
(1.8)

for smooth ∂O and known positive source term s satisfying infx∈O s(x) > 0. While the
PDE (1.8) is linear in u, its solution depends nonlinearly on the diffusion coefficient a,
as can be observed already in the simplest one-dimensional setting with O = (0, 1) and
constant a(x) = a > 0 and s(x) = 1:

a
d2u

dx2 = 1, x ∈ (0, 1), u(0) = u(1) = 0,

with unique solution
ua(x) = x(x− 1)

2a , x ∈ [0, 1].

For any continuously differentiable a ∈ C1(O), the Schauder theory for elliptic PDEs
(e.g., Theorem 6.14 in [89]) implies that the boundary value problem (1.8) has a unique
classical solution ua ∈ C2(O), resulting in the nonlinear forward map

G :
{
a ∈ C1(O) : inf

x∈O
a(x) ≥ Kmin

}
→ C2(O), a 7→ ua.

The positivity constraint on the source term s is a natural assumption that guarantees
injectivity of the above forward map (cfr. [199, 176]), a necessary condition for the
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identification of a from observations of the solution ua. The problem is illustrated in
Figure 1.2; see Section 1.2.2 for numerical results.

1.1.2 Stochastic diffusion models

If it is of interest to explicitly take into account the time evolution nature of the advection-
diffusion equation (1.1), an observation model of the form (1.6) may still be relevant,
for example considering measurements of the solution u(T, x), x ∈ O, at some fixed
time instant T > 0 (e.g, as in Example 2.2 in Chapter 2 for the recovery of the initial
condition of the heat equation), or alternatively discrete observations over a collection of
several time instants and spatial locations (e.g., as in [131]). A second class of statistical
models arises from considering the microscopic components of the system. In particular,
the process of advection causes the particles in the system to drift following the bulk
motion of the fluid. Such particles are then further subject to random collisions with
each other, with intensity depending on the characteristic of the medium, that perturb
their trajectories and cause the phenomenon of diffusion. Formally, letting Xt denote the
state of a particle at time t ≥ 0, the trajectory (Xt : t ≥ 0) is modelled probabilistically
as a random process satisfying the multi-dimensional SDE

dXt = b(Xt)dt+ A(Xt)dWt, t ≥ 0, (1.9)

where (Wt : t ≥ 0) is a standard d-dimensional Brownian motion, and where we recall that
b = [b1, . . . , bd] : Rd → Rd is the fluid velocity vector field and A = [Aij]di,j=1 : Rd → Rd,d

is the diffusion coefficient. Advection-diffusion equations of the form (1.1) then provide
a description of the macroscopic behaviour of a system of particles evolving according
to the SDE (1.9): specifically, for any sufficiently regular function h : Rd → R and any
initial state X0 = x ∈ Rd, the conditional expectation u(t, x) = E[h(Xt)|X0 = x] satisfies
the parabolic PDE (e.g., [15, Section 10.1])∂tu = 1

2
∑d
i,j=1

∑d
k=1 aikakj∂

2
xixj

u+∑d
i=1 bi∂xi

u, t ≥ 0, x ∈ Rd,

u(0, x) = h(x), x ∈ Rd.

The collection of all such expectations characterises the conditional law, given the initial
state, of Xt for any time instant t ≥ 0, thereby providing a description of the time
evolution of the spatial distribution of a system composed by a large number of particles
evolving according to the SDE (1.9).
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Fig. 1.3 In red, an example of gradient drift vector field, arising from the potential
B(x, y) = cos2 x+ sin2 y. In blue, a diffusion path.

Under suitable regularity conditions on A and b, there exists a unique strong pathwise
solution to the SDE (1.9), that defines a d-dimensional Markov diffusion process (e.g.,
Chapters 24 and 39 in [19]). Assuming that observations on the state of a particle are
available through time, a coherent measurement model then postulates data given by the
continuous trajectory XT = (Xt : 0 ≤ t ≤ T ) up to time T > 0, or of discrete samples
thereof. The task at hand then consists in inferring either the diffusion coefficient A or
the drift b. Such inferential problems naturally arise in a large variety of applications
areas that involve dynamical models based on SDEs, including finance (e.g., [36, 121]),
life sciences (e.g., [96]), physics (e.g., [58]) and biology (e.g., [245]).

In Chapter 4, a specific instance of the multi-dimensional SDE model (1.9) is con-
sidered, where the diffusion coefficient A is assumed to be known and set equal to the
identity matrix of Rd (cfr. Section 4.3.4 for models with non-constant diffusivity), and
the drift arises as a gradient vector field b = ∇B of some unknown potential B : Rd → R,

dXt = ∇B(Xt)dt+Wt, t ≥ 0.
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Such assumption on the drift reflects a typical physical situation in which a particle
moves within a potential energy field, modelled by the map B, which exerts a force on
the particle directed towards its local extrema (e.g., [77]). Figure 1.3 shows a realisation
of the diffusion path for a specific (periodic) choice of the potential.

1.2 Overview of results

The purpose of the present thesis is to investigate the theoretical properties of Bayesian
nonparametric procedures in the PDE-based statistical models introduced above. Chap-
ters 2 - 3 consider the inverse regression setting described in Section 1.1.1, while Chapter
4 studies the stochastic diffusion models introduced in Section 1.1.2. The next subsections
provide an overview of the results derived in the later chapters, discussing the main
mathematical challenges and the proofs strategies. The theory developed in Chapter 2
and Chapter 3 is illustrated via the results of simulations.

1.2.1 Statistical guarantees for Bayesian uncertainty quantifi-
cation in linear inverse problems

Bernstein–von Mises theorems for linear inverse problems

In Chapter 2, statistical guarantees on the performance of Bayesian nonparametric
procedures based on standard Gaussian priors are provided for a general class of linear
inverse problems, in which the forward map defines an injective linear and continuous
operator between separable Hilbert spaces

G : W1 → W2.

For conciseness, we here present the results in the context of the source identification
problem described in Section 1.1.1, entailing the recovery of the unknown source function
s ∈ L2(O) = W1 in the elliptic boundary value problem (1.7) from noisy observations of
its solution Gs = us ∈ L2(O) = W2. See Section 2.2 for the general theory and Section
2.3 for further examples.

The results are developed in a continuous analogue (in the sense of Le Cam equivalence
[48, 197]) of the discrete inverse regression model (1.6), assuming observations of the
functional equation

Y ε = Gs+ εW, ε > 0, (1.10)
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where W is a Gaussian white noise process indexed by L2(O); see Section 2.2.1 for
details. In particular, observing data Y ε in (1.10) is understood as observing a re-
alisation of the Gaussian process (Y ε(φ) : φ ∈ W2), with marginal distributions
Y ε(φ) ∼ N(⟨Gs, φ⟩L2 , ε2∥φ∥2

L2). Providing that Gs ∈ L2(O), the (cylindrically de-
fined) law P Y ε

s of Y ε in (1.10) is absolutely continuous with respect to the law P Y ε

0 of
εW, with log-likelihood

ℓε(s) = 1
ε2 ⟨Y ε, Gs⟩L2 − 1

2ε2 ∥Gs∥2
L2 .

Assigning to s a prior distribution Π on L2(O) then induces, via Bayes’ formula, the
posterior distribution

Π(B|Y ε) =
∫
B e

ℓε(s)dΠ(s)∫
L2 eℓε(s′)dΠ(s′) , B ⊆ L2(O) measurable.

In particular, Gaussian priors represent a natural choice for Bayesian nonparametric
inference in model (1.10), since, in view of the linearity of the forward map G, they are
conjugate and thus allow for an explicit characterisation of the posterior (cfr. (1.16) and
(1.17) below). Specifically, it is of interest to consider standard Gaussian priors whose
specification does not require additional (and often unavailable) information about the
forward map G, such as its singular value decomposition. In Chapter 2, a large class of
Gaussian priors is considered with reproducing kernel Hilbert spaces (RKHSs) of Sobolev
type: these include the frequently used Matérn processes, as well as Gaussian series on
standard basis functions; see Section 2.3. For such priors, posterior inference can be
concretely implemented exploiting the appropriate conjugate formulae.

As mentioned in the introduction (and as further elaborated in Section 2.1), the
properties of Bayesian credible sets depend on the fine interplay between the local
asymptotic behaviour of the posterior distribution and the geometries involved, which in
the nonparametric setting may give rise to substantial obstructions even in the simplest
direct sequence space model [95]. To address these issues, in Chapter 2 we build on
the semi-parametric approach developed by Castillo and Nickl [52, 53] (and refined
in [166] and [171] in the inverse problems setting), and study the induced posterior
distributions on one-dimensional functionals of the form ⟨s, ψ⟩L2 , for test functions
ψ ∈ L2(O) satisfying a minimal (Sobolev) regularity condition. Our main result is a
semiparametric Bernstein–von Mises theorem (cfr. Theorem 2.2), which, under mild
assumptions on the true source s0 and on the prior regularity, identifies a precise Gaussian
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limit for the (centred and scaled) one-dimensional posterior distributions:

L
(1
ε

⟨s− s̄ε, ψ⟩L2

∣∣∣∣Y ε
)

L−→ N(0, ∥∇ · (A∇ψ)∥2
L2), ε → 0, (1.11)

in P Y
s0 -probability. The asymptotic variance ∥∇ · (A∇ψ)∥2

L2 is minimal, as it can be
shown to coincide with the Cramér-Rao lower bound for estimating ⟨s0, ψ⟩L2 from data
(1.10) (cfr. Appendix 2.A). Above, s̄ε = EΠ[s|Y ε] is the posterior mean, which in view
of the Gaussianity of the posterior distribution coincides with the posterior mode, and
hence can be characterised as a Tikhonov regulariser found by minimising the penalised
least squares functional

Q(s) = −ℓε(s) + 1
2∥s∥2

Hα = − 1
ε2 ⟨Y ε, Gs⟩L2 + 1

2ε2 ∥Gs∥2
L2 + 1

2∥s∥2
Hα , (1.12)

with squared Sobolev norm penalty ∥ · ∥2
Hα induced by the prior; see Section 2.2.2 for

details. From the convergence of moments in (1.11), a central limit theorem for the
plug-in Tikhonov regularisers can then be deduced as well (cfr. Remark 2.1):

1
ε

(⟨s̄ε, ψ⟩L2 − ⟨s0, ψ⟩L2) d−→ N(0, ∥∇ · (A∇ψ)∥2
L2), ε → 0,

showing, in view of the minimality of the asymptotic variance ∥∇ · (A∇ψ)∥2
L2 , that

⟨s̄ε, ψ⟩L2 is an asymptotically efficient estimator of ⟨s0, ψ⟩L2 .
Finally, alongside efficiency of the plug-in Tikhonov regularisers, the Bernstein–

von Mises result (1.11) also implies that Bayesian credible intervals built around such
estimators are asymptotically valid and optimal confidence intervals. In particular, for
any α ∈ (0, 1), the (1 − α)%-credible interval

Cε = {x ∈ R : |⟨s̄ε, ψ⟩L2 − x| ≤ Rε}, Π (s : ⟨s, ψ⟩L2 ∈ Cε|Y ε) = 1 − α,

for Rε > 0 the appropriate posterior quantile, has asymptotically (1 − α)% frequentist
coverage,

P Y ε

s0 (⟨s0, ψ⟩L2 ∈ Cε) → 1 − α, ε → 0,

and radius shrinking at optimal (parametric) rate Rε = OPY ε
s0

(ε−1); see Corollary 2.2.
The results presented in the chapter thus shows that semi-parametric posterior

estimation and uncertainty quantification based on standard Gaussian priors, which can
be straightforwardly implemented in practice thanks to conjugacy, are valid and optimal
from a frequentist point of view. In fact, exploiting the uniformity in the limit (1.11) for
ψ in a Sobolev ball, a nonparametric version of the result is further derived (cfr. Theorem
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Fig. 1.4 Left: N = 1453 nodes in a deterministic triangular mesh. Right: N = 1453
noisy discrete observation of the PDE solution Gs0 over the design points shown on the
left (cfr. Figure 1.1 for the noiseless PDE solution).

2.3), that entails the weak convergence, in a dual Sobolev space topology, of the (scaled
and centred) posterior distribution to a fixed Gaussian measure whose one-dimensional
marginals are identified by the right-hand side of (1.11). As a consequence, a central limit
theorem for the posterior mean s̄ε is derived, as well as frequentist coverage properties
for certain credible balls centred around s̄ε in the dual space where the convergence is
attained.

Implementation of the algorithm

For the inverse problem of recovering the unknown source function s in the elliptic
boundary value problem (1.7), we take the unit disk O = {(x, y) ∈ R2 : x2 + y2 ≤ 1}
as the working domain, and we assume in practice that we are given N noisy point
evaluations of the solution Gs = u over a deterministic grid {x1, . . . , xN} ⊂ O,

Yi = Gs(xi) + σWi, Wi
iid∼ N(0, 1), σ > 0. (1.13)

Specifically, we take the design point as the nodes in a triangular mesh in O (see Figure
1.4, left).

We discretise the parameter space by modelling the unknown source function s as a
finite sum

s =
M∑
m=1

smϕm, sm ∈ R, (1.14)
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Fig. 1.5 Left to right, top to bottom: posterior mean estimates s̄σ of the source function
s for decreasing values of the noise standard deviation σ = .005, .001, .0005, .0001.

where {ϕm : m ≥ 1} is the family of eigenfunctions of the Laplacian on the disk
[61] (satisfying zero Dirichlet boundary conditions), with corresponding eigenvalues
{λm : m ≥ 1}. Such disk harmonics form an orthonormal system in L2(O) and span
the regularity scale of Sobolev functions (with zero-trace). Identifying s in (1.14) with
the coefficient vector s = [s1, . . . , sM ], the observation model (1.13) then becomes, in
vectorial notation,

Y = Gs + σW, (1.15)

where Y = [Y1, . . . , Yn], W = [W1, . . . ,Wn] ∼ N(0, IN) for IN the identity matrix of
RN,N , and where G is the discretisation of the forward operator G given by the N ×M

matrix with entries Gim = Gϕm(xi). The computation of the discretised forward operator
is performed using Matlab PDE Toolbox (which also provides the code to generate the
triangular mesh) and the implementation of the disk harmonics within the Chebfun
package [244].
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Fig. 1.6 In red, cross-section along the x-axis of 2500 posterior samples. In black and
dotted blue respectively, the cross-section of the true source function s0 and of the
posterior mean estimate s̄σ.

For given s ∈ RM , the observation Y in (1.15) has conditional distribution Y|s ∼
N(Gs, σ2IN). Specifying a prior distribution s ∼ N(0,Γ), for some known covariance
matrix Γ ∈ RM,M , then gives, by a standard conjugate computation, the posterior

s|Y ∼ N(s̄σ,Γσ), (1.16)

where
Γσ =

(
σ−2GTG + Γ−1

)−1
; s̄σ = σ−2ΓσGTY. (1.17)

For concrete instances of the prior covariance matrix Γ, the posterior mean s̄σ and
covariance matrix Γσ can readily be computed from the data, allowing direct posterior
sampling according to (1.16). In particular, natural choices are diagonal prior covariance
matrices modelling Sobolev regularities, of the form Γ = diag(λ−α

1 , . . . , λ−α
M ) for α > 0,

and where {λm : m ≥ 1} are the Laplacian eigenvalues.
Figure 1.4 (right) shows noisy discrete observations of the PDE solution corresponding

to the true source function s0(x, y) = e−(5x−2.5)2−(5y)2 + e−(7.5x)2−(2.5y)2 + e−(5x−2.5)2−(5y)2

(shown above in Figure 1.1, left). The diffusion coefficient was taken to be A = aI2,
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for I2 the identity matrix of R2,2 and for, in polar coordinates, a(r, θ) = 40.5 −
40 {cos [(sin(πr) cos(θ) + sin(2πr) sin(θ))/4]} , r ∈ [0, 1], θ ∈ [0, 2π). The triangular
mesh used has N = 1453 nodes, and the noise standard deviation was set σ = .005.
The posterior mean estimates obtained for decreasing values of the noise standard devi-
ation σ = .005, .001, .0005, .0001. are shown in Figure 1.5, to be compared to the true
source function pictured in 1.1, left. For all four estimates, an expansion (1.14) with
M = 210 basis function was used, and the prior covariance matrix was taken to be
Γ = diag(λ−2

1 , . . . , λ−2
210). Finally, Figure 1.6 provides a visualisation of the Bayesian

uncertainty quantification, showing the cross section along the x-axis of 2500 posterior
samples (obtained with σ = .0005).

1.2.2 Consistent Bayesian inference in nonlinear inverse prob-
lems

Posterior contraction rates and convergence of the posterior mean

In Chapter 3, we turn to the study of nonlinear inverse problems. We focus on the
representative elliptic example introduced in Section 1.1.1, consisting in the recovery of
the unknown scalar positive diffusion coefficient a from noisy discrete observations of the
solution G(a) = u of the elliptic PDE (1.8). In particular, we assume observations

Yi = G(a)(Xi) + σWi, Wi
iid∼ N(0, 1), σ > 0, (1.18)

for design points Xi
iid∼ U(O) uniformly drawn at random on O. For any fixed a ∈ C1(O)

satisfying infx∈O a(x) ≥ Kmin, Kmin > 0, the law PN
a of (Y (N), X(N)) = ((Yi)Ni=1, (Xi)Ni=1)

on RN × ON is then absolutely continuous with respect to the (product) Lebesgue
measure, with negative log-likelihood equal to, up to an additive constant, the least-
squares functional

− ℓN(a) = 1
2σ2

N∑
i=1

[Yi −G(a)(Xi)]2 . (1.19)

As observed in Section 1.1.1, the PDE solution G(a) depends nonlinearly on the
diffusion coefficient a, implying that the above functional is non-convex. As a consequence,
commonly used recovery methods (such as maximum likelihood estimators or Tikhonov
regularisers) defined as optimisers of likelihood-based objective functionals cannot be
reliably computed by standard convex optimisation techniques. Bayesian procedures
represent an attractive alternative non-optimisation based approach to estimation and
uncertainty quantification in such non-convex statistical models, that can reliably be
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implemented via modern MCMC methodology; see Section 3.1 for further discussion. In
particular, Gaussian priors are widely used in Bayesian inverse problems [220, 73], due to
advantageous methodological and computational features, including a natural connection
with classical regularisation methods (cfr. (1.12)) and the existence of ad hoc sampling
methods (such as the pCN algorithm used below), as well as for their rich theory on
sample paths properties.

In Chapter 3, we study posterior consistency and the convergence of the posterior
mean for Bayesian nonparametric procedures based on a large class of Gaussian (and
hierarchical Gaussian) priors with RKHSs of Sobolev type, suitably parametrised to
incorporate the positivity constraint on a. Our main results (cfr. Theorems 3.2 and
3.5) show that the posterior distributions arising from such priors concentrate in L2-
distance around the true diffusion coefficient a0 generating the data, with an upper bound
(algebraic in inverse sample size) on the contraction rates:

Π
(
a : ∥a− a0∥L2 > LN−λ|Y (N), X(N)

) Pa0−→ 0, (1.20)

as N → ∞ for large enough L > 0 and some λ > 0 (explicitly characterised in the proofs).
As a corollary, we derive the same convergence rates for the corresponding posterior
mean estimators āN = EΠ[a|Y (N), X(N)] (cfr. Theorems 3.3 and 3.6),

∥āN − a0∥L2 = OPN
a0

(
N−λ

)
, N → ∞. (1.21)

We briefly outline the proofs. Applying ideas developed in [167] for an inverse problem
with (non-Abelian) X-ray transforms, we first consider the related PDE-constrained
regression problem of estimating the true PDE solution G(a0) from data (1.18). Theorems
3.1 and 3.4 show that, if a0 is an α-regular Sobolev function satisfying some minimal
smoothness assumptions, the induced (non-Gaussian) posterior distributions on the PDE
solution G(a) concentrates around G(a0) at the (minimax) optimal posterior contraction
rate,

Π
(
a : ∥G(a) −G(a0)∥L2 > LN− α+2

2α+4+d |Y (N), X(N)
) Pa0−→ 0, (1.22)

as N → ∞ for sufficiently large L > 0. Theorems 3.1 and 3.4 are based on general theory
for posterior contraction rates in forward risk developed in Appendix 3.A for a class of
nonlinear inverse problems with forward map satisfying local Lipschitz regression estimates
and boundedness conditions (see (3.32) and (3.33) below). Under these assumptions, the
Hellinger contraction rates theory for Gaussian priors (for direct models) [235] can be
successfully employed in the inverse problems setting exploiting a standard inequality for
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the Hellinger distance due to Birgé [30]. For the elliptic example considered here, the
specific estimates used were established in [176].

The posterior contraction rates (1.20) for the diffusion coefficient then follow combining
(1.22) with a suitable stability estimate, that is, a ‘local’ Lipschitz estimate (uniform on
sets of bounded Hölder norm) for the inverse of the forward map G, proved in [176],

∥a− a0∥L2 ≲ ∥a∥C1∥G(a) −G(a0)∥H2 ,

holding for all sufficiently regular a, a0, with multiplicative constant independent of a.
Lastly, we deduce the convergence rates (1.21) for the posterior mean using uniform
integrability arguments applied to the contracting posterior distributions.

Apart from the elliptic inverse problem considered here, the general framework
assumed in Appendix 3.A further encompasses several other nonlinear inverse problems,
including the Schrödinger equation [171, 176, 177] and the parabolic Schrödinger equation
[131], as well as many linear inverse problems such as the classical Radon transform
[176], for which the general theory developed in Chapter 3 provides a template to obtain
posterior contraction rates via regression and stability estimates.

The local nature of the Lipschitz condition on the forward map G and of the above
stability estimate implies the necessity of additional a priori regularisation in order to
quantitatively control the norm of the posterior draws (in the relevant function spaces).
In Chapter 3, we first address such issues introducing a sample size dependent scaling of
a base standard Gaussian prior (cfr. (3.11)), which implies asymptotic concentration of
the posterior distribution over sets of bounded Hölder norms. Secondly, we show that
sufficient regularisation can alternatively be achieved by (fully Bayesian) hierarchical
prior modelling, introducing a random truncation point with a suitable hyper-prior in the
series expansion of the base Gaussian prior (cfr. (3.19)). For such hierarchical Gaussian
priors, the forward contraction rates (1.22) for the PDE solution are also shown to be
adaptive to the smoothness α.

Implementation of the algorithm

We take the unit disk O = {(x, y) ∈ R2 : x2 + y2 ≤ 1} as the working domain, and
assume we are given N noisy discrete evaluations of the PDE solution as in (1.18) over a
grid of design points uniformly drawn at random on O, shown in Figure 1.7.

Following the approach in Chapter 3, the positivity constraint on the diffusion
coefficient a is incorporated by modelling a as the composition a = Φ ◦ a′, for a′ : O → R
and where Φ : R → [Kmin,∞), Kmin > 0, is a fixed bijective smooth link function (see
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Fig. 1.7 Left: mesh with N = 1000 random design points. Right: N = 1000 noisy
discrete observation of the PDE solution G(a0) over the design points shown on the left
(cfr. Figure 1.2 for the noiseless PDE solution).

Section 3.2.2 for details). We then discretise the parameter space by assuming that a′ is
given by the finite sum

a′ =
M∑
m=1

a′
mψm, am ∈ R, (1.23)

where {ψ1, . . . , ψM} are piecewise linear functions on a deterministic triangular mesh with
nodes {z1, . . . , zM} ⊂ O (displayed in Figure 1.8), uniquely characterised by the relation
ψm(zm′) = 1{m=m′}. Accordingly, a′ in (1.23) satisfies a′(zm) = a′

m, and for any x ∈ O the
value a′(x) is obtained by linear interpolation over the pairs {(zm, am) : m = 1, . . . ,M}.
We note that a discretisation approach based on an orthonormal system of basis functions
as described in Section 1.2.1 could be used as well.

We assign to a′ a Gaussian process prior Π, which can readily be implemented under
the discretisation described above. In particular, if Π arises as the law of a centred
Gaussian process on O with covariance function C(x, x′), x, x′ ∈ O, a sample a′ ∼ Π is
drawn in practice by sampling the vector of coefficients a′ = [a′

1, . . . , a
′
M ] in (1.23) from

the multivariate Gaussian distribution on RM

a′ ∼ N(0,C), C = [Cmm′ ]Mm,m′=1, Cmm′ = C(zm, z′
m).

Specifically, we consider covariance functions of Matérn type, given by

C(x, x′) = c(|x− x′|), c(r) = 21−ν

Γ(ν)

(
r
√

2ν
ℓ

)ν
Kν

(
r
√

2ν
ℓ

)
, r > 0,
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Fig. 1.8 Left to right, top to bottom: deterministic triangular mesh with M = 1969 nodes;
samples from a Matérn process prior with smoothness parameter ν = 5 and decreasing
length parameter ℓ = .25, .1, .05 respectively.

where Γ denotes the gamma function and Kν is the modified Bessel function of the second
kind. The hyperparameter ν > 0 controls the Sobolev regularity of the sample paths,
while ℓ > 0 determines the characteristic length-scale (cfr. Figure 1.8).

Unlike the conjugate situation considered in Chapter 2, in the nonlinear setting the
posterior distribution is in general not available in closed form. For Gaussian priors,
specific MCMC algorithms have been developed to (approximately) sample from the
posterior distributions, including the preconditioned Crank-Nicholson (pCN) method
[63]. In the present setting, the pCN algorithm generates a Markov chain (ϑk)k≥1 with
invariant measure equal to the posterior distribution of a′, starting from an initialisation
point ϑ0 and then, for k ≥ 0, repeating the following steps:

1. draw a prior sample ξ ∼ Π and for δ > 0 define the proposal p =
√

1 − 2δϑk+
√

2δξ;
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Fig. 1.9 Posterior mean estimate āN of the diffusion coefficient a, computed via the pCN
algorithm.

2. set

ϑk+1 =

p, with probability 1 ∧ eℓN (Φ◦p)−ℓN (Φ◦ϑk),

ϑk, otherwise,

where ℓN is the log-likelihood function in (1.19).

For each iteration, step 2. requires the evaluation of the log-likelihood ℓN (Φ ◦p), which in
turn entails the numerical evaluation of the PDE solution G(Φ ◦ p) at the design points
{X1, . . . , XN} (cfr. (1.19)), performed in practice using Matlab PDE Toolbox (which also
provide an implementation of the triangular mesh for the discretisation of the parameter
space). Prior samples ξ ∼ Π required in step 1. are drawn as described above.

The algorithm is terminated after K steps, returning approximate samples (ϑk : k =
0, . . . , K) from the posterior distribution of a′. Under certain assumptions on the forward
map that are compatible with the present setting, Hairer, Stuart and Vollmer [113]
derived dimension-free spectral gaps which imply rapid convergence towards the invariant
measure. As a consequence, the posterior mean can be reliably computed numerically by
the MCMC average

ϑ̄ = 1
K + 1

K∑
k=0

ϑk,

with non-asymptotic bounds for the numerical approximation error. Posterior credible
sets can likewise be reliably computed by considering the empirical quantiles of the pCN
samples.

Figure 1.7 (right) shows N = 1000 noisy discrete observations of the PDE solu-
tion corresponding to the true diffusion coefficient a0(x, y) = e−(10x−2.5)2−(10y−2.5)2 +
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Fig. 1.10 Left: acceptance rate over K = 25000 pCN samples. The rate stabilises around
30% after the initial burn-in time (first 2000 iterates). Right: in blue, the log-likelihood
ℓN (Φ ◦ ϑk) of the first 2000 iterates (burn-in time); in red, the loglikelihood ℓN (a0) of the
true diffusion coefficient a0.

e−(10x−2.5)2−(10y∗2.5)2 + e−(10x+2.5)2−(10y+2.5)2 + e−(10x+2.5)2−(10y−2.5)2 (shown above in Figure
1.2, left). The source function was taken to be constant s(x, y) = 1. The noise standard
deviation was set σ = .005. The posterior mean estimate, computed via the pCN
algorithm (with K = 25000 iterations), is shown in Figure 1.9, to be compared to the
true diffusion coefficient pictured in Figure 1.2, left. The parameter space was discretised
using a triangular mesh with M = 1969 nodes, and the hyperparameter for the Matérn
process prior were set ν = 5 and ℓ = .125. The step-size δ for the pCN algorithm was set
δ = .00125, tuned so that after the initial burn-in time (here seen to roughly correspond
to the first 2000 iterates), the acceptance rate of new proposals stabilises around 30%; see
Figure 1.10 (left). A non-informative initialisation point ϑ0 = 0 for the pCN algorithm
was chosen. Figure 1.10 (right) shows the log-likelihood ℓN (Φ ◦ ϑk) over the burn-in time,
seen to rapidly increase towards, and then stabilise around, the log-likelihood ℓN(a0)
attained by the true diffusion coefficient a0.

1.2.3 Consistent Bayesian inference in multi-dimensional stochas-
tic diffusion models

In the fourth and final chapter of the present thesis we investigate the posterior consistency
of Bayesian nonparametric procedures in the stochastic diffusion setting introduced in
Section 1.1.2. In particular, we study the problem of estimating a twice-continuously
differentiable potential function B : Rd → R from continuous observations XT = (Xt :
0 ≤ t ≤ T ), T > 0, of the trajectory of the multi-dimensional diffusion process governed
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by the SDE
dXt = ∇B(Xt) + dWt, t ≥ 0, (1.24)

for some initial condition X0 = x0 ∈ Rd, where (Wt : t ≥ 0) is a standard d-
dimensional Brownian motion. Drift vector fields in gradient form naturally arise in
physical applications in the presence of potential energy fields; see Section 4.1 for more
discussion.

In order for consistent estimation of B from XT to be possible, additional assumptions
on the model are typically needed to ensure suitable recurrence properties on the diffusion
sample paths, so that growing information about the value B(x) at each x ∈ Td is
accumulated as the time horizon T increases. As in [181, 187, 1, 173] among others,
we here assume that the unknown potential B is periodic, and regard it as a function
defined on the d-dimensional torus Td. In analogy to Kolmogorov’s characterisation of
time-reversible diffusions on Rd (e.g., [15]), it then follows that the periodised diffusion
(modulo Zd) is reversible on Td, with unique invariant probability density function

µB(x) = e2B(x)∫
Td e2B(x′)dx′ , x ∈ Td, (1.25)

for which it holds that, for any continuous and one-periodic φ ∈ C(Td),

1
T

∫ T

0
φ(Xt) →

∫
Td
φ(x)µB(x)dx

in probability under the law of the data as T → ∞. See Section 4.2.2 for details. In
such periodic setting, for any B ∈ C2(Td), Girsanov’s theorem (e.g., [19]) implies that
the law P T

B of XT in (1.24) is absolutely continuous with respect to the law P T
0 of

(Wt : 0 ≤ t ≤ T ), with log-likelihood

ℓT (B) = −1
2

∫ T

0
∥∇B(Xt)∥2dt+

∫ T

0
∇B(Xt).dXt. (1.26)

In Chapter 4, two major classes of priors for B on C2(Td) are considered, modelling the
unknown potential according to either a Gaussian or a p-exponential prior. Gaussian priors
are widely used in drift estimation problems for diffusions (e.g., [187, 110, 238, 20, 173]),
and, as we show in Section 4.3.1, in the present setting represent a natural choice in view
of conjugacy, which stems from the quadratic dependence on B of the log-likelihood in
(1.26). The class of p-exponential priors [5] (which include Besov priors, popular in the
inverse problem community, e.g., [239, 209, 73, 4]) generalise the series construction of
Gaussian priors allowing for heavier-tailed random coefficients. Such added flexibility has
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been observed to imply a number of desirable properties, including sparsity-promoting
and edge-preserving reconstruction, suited to the recovery of spatially-irregular, blocky
structures such as images. While in general non-conjugate, p-exponential prior maintain
a log-concave structure which, in view of the quadratic form of the log-likelihood in
(1.26), implies that posterior inference in the reversible diffusion model (1.24) can be
approached with convex optimisation and sampling techniques; see Remark 4.1.

Our main results (cfr. Theorems 4.1 and 4.2) show that, for suitable choices of the
prior hyperparameters, the posterior distributions arising from both classes of priors
concentrates around the true potential B0 generating the data at the (minimax) optimal
posterior contraction rates. In particular, if B0 is an (α+ 1)-regular Sobolev function,
then

Π
(
B : ∥∇B − ∇B0∥Lp > LT− α

2α+d |XT
) PB0−→ 0 (1.27)

as T → ∞ for large enough L > 0. Above, p = 2 in the case of Gaussian priors. The
result is formulated in terms of the distance ∥∇B − ∇B0∥Lp , since B is identifiable
only up to additive constants in view of the dependence of ℓT (B) on ∇B in (1.26). In
fact, after a standard identifiability assumption, the same contraction rates in (1.27) are
attained in the Sobolev norm ∥B −B0∥W 1,p ; see the discussion after Theorem 4.1.

While the asymptotic theory for Bayesian nonparametric procedures for drift esti-
mation is well-developed in the one-dimensional case d = 1 (e.g., [232, 238, 174, 1]),
the multi-dimensional setting d ≥ 2 is considerably more challenging and essentially
unexplored, with the exception of the recent work by Nickl and Ray [173] for non-
reversible diffusions. Specifically, the key challenges in studying the asymptotic behaviour
of posterior distributions in the multi-dimensional reversible diffusion model (1.24) are:

1. the non-availability in the multi-dimensional setting of the powerful diffusion local
times techniques;

2. the more involved dependence in the reversible setting of the log-likelihood ℓT (B)
on B, resulting in substantial difficulty in employing the Hellinger testing theory
for contraction rates in diffusion models [232, 173].

More discussion can be found in Section 4.1. In Chapter 4, we address these issues
using ideas developed in [103] for density estimation, and directly construct plug-in tests
with exponentially decaying type-I and type-II error probabilities based on preliminary
estimators with suitable concentration inequalities (see Lemma 4.2). In particular, we
exploit the relationship (1.25) between the invariant measure µB and the potential B to
construct, starting from an estimator µ̂T of µB (of wavelet projection type, cfr. (4.21)),
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the estimator 1
2∇ log µ̂T of the drift ∇B, for which we derive a stability estimate of the

form (cfr. (4.23)) ∥∥∥∥1
2∇ log µ̂T − ∇B

∥∥∥∥
Lp

≲ ∥µ̂T − µB∥W 1,p , (1.28)

holding with high probability under the law of the data XT ∼ P T
B , uniformly for B in sets

of bounded Hölder norm. The required concentration inequality for ∥1
2∇ log µ̂T − ∇B∥Lp

then follows from a key concentration inequality for ∥µ̂T − µB∥W 1,p , which we derive by
a duality argument (cfr. the proof of Lemma 4.3), and a refinement of the bound proved
in [173] for the suprema of the empirical process (see Proposition 4.1).

In following the program outlined above, the nonlinearity in the relationship (1.25)
between the invariant measure µB and the potential B gives rise to certain nonlinear
effects in the proofs similar to those encountered in the inverse problem setting described
in Section 1.2.2, including the locality of the stability estimate (1.28). In Chapter
4 we address such issues using tools from the nonlinear inverse problems literature
[167, 2, 177, 168], introducing a T -dependent scaling of the Gaussian and p-exponential
priors analogous the scaling used in Chapter 3, which enforces a bound on the Hölder
norm of the posterior draws (cfr. Lemma 4.5).

1.3 Further discussion and related literature

1.3.1 Computational guarantees for MCMC algorithms

The focus of the present thesis is on deriving statistical guarantees for Bayesian non-
parametric procedures in statistical models arising from PDEs. As mentioned in the
introduction, outside of certain conjugate settings such as those outlined in Sections
1.2.1 and 1.2.3, the implementation of such procedures rely in practice on numerical
algorithms to extract information from the non-explicitly available posterior distributions.
A fundamental question closely related to the investigation carried out in this thesis
then arises as to whether, and by what algorithms, the numerical implementation of
Bayesian methods can be achieved with a feasible computational cost in complex and
high-dimensional statistical models.

Among the most prominent computational methods for Bayesian inference is (approx-
imate) posterior sampling via MCMC algorithms; see, e.g., [200] for an introduction. In
the last two decades, the design of sampling methods suited to the high- and infinite-
dimensional framework has enjoyed considerable progresses, leading to the development
of a wide range of methodologies; see [165, 203, 224, 29, 63, 66, 62, 26] and the many
references therein. In this setting, two major classes of MCMC algorithms are Metropolis-



28 Chapter 1. Introduction

Hastings methods [28, 29, 120] (including the pCN algorithm [63] implemented for the
simulations in Section 1.2.2), and gradient-based Langevin Monte Carlo methods [202, 9].

Recently, a line of theoretical work has emerged to provide computational guarantees
on the performance and computational cost of such algorithms, which generally aims
to quantify the number of required MCMC iterations in order to numerically evaluate
quantities of interest up to a desired precision level. For the (unadjusted) Langevin
algorithm, the first results in this direction were derived by Dalalyan [69], and by Durmus
and Moulines [81, 82] for posterior distributions with (strongly) log-concave densities,
providing non-asymptotic upper bounds on the mixing times that scale polynomially
with respect to sample size and dimension. Related results are in [44, 85, 84] for
Metropolis-adjusted Langevin algorithms and in [154, 43, 59] for Hamiltonian Monte
Carlo. Extensions under geometric conditions close to log-concavity are studied in
[60, 158, 240].

While the statistical linear inverse problems studied in Chapter 2 and the stochastic
diffusion model considered in Chapter 4 are characterised by log-concave likelihoods,
the posterior densities arising in nonlinear inverse problems are in general non log-
concave (cfr. Sections 1.2.2 and 3.1). In particular, the nonlinearity of the forward
map may cause the presence of multiple posterior modes, potentially leading to mixing
times that depend exponentially on the sample size in the statistically relevant large
sample scenario, in which, due to posterior contraction, the posterior distributions
tend to become increasingly spiked around their modes (cfr. [86], and the discussion
in [177]). In such non log-concave framework, the aforementioned work by Hairer,
Stuart and Vollmer [113] first derived dimension-independent spectral gaps for the pCN
algorithm, under uniformly boundedness and local Lipschitz assumptions compatible
with nonlinear inverse problems in PDEs (including the elliptic example considered
in Chapter 3), which imply dimension-free computational guarantees (however, with
an implicit dependence on sample size, potentially exponential for spiked multimodal
posterior densities, cfr. [177]). The computational cost of MCMC methods in the large
sample scenario for high-dimensional and non log-concave models is investigated in [22]
under a Bernstein–von Mises assumption. Finally, Nickl and Wang [177] very recently
obtained non-asymptotic computational guarantees scaling polynomially in sample size
and dimension for a Langevin-type algorithm in an elliptic nonlinear inverse problem
for the Schrödinger equation, based on a general theory for nonlinear inverse regression
models satisfying local regularity and curvature assumptions. Such results have been
extended in [40] to a general class of PDEs (in particular, to transport equations for
non-Abelian X-ray transforms).
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1.3.2 Classical and statistical approaches to inverse problems

The study of inverse problems arising from PDEs has a long history in applied mathematics
and numerical analysis. The typical general mathematical formulation of an inverse
problem involves a forward operator G : W1 → W2 between two Banach spaces W1, W2,
and the recovery of an unknown element f ∈ W1 from data

Y = G(f) +W, (1.29)

where W represents the observational noise. An intrinsic characteristic of a wide class of
inverse problems is that they are ill-posed (in the sense of Hadamard [112]): the forward
map G is in general not continuously invertible on its range, so that even in the absence of
noise (i.e., W = 0), equation (1.29) might not have a solution, or it might have multiple
solutions or one that depend sensitively on the data Y .

In the classical (deterministic) approach to inverse problems, the observational noise
W is assumed to be a deterministic unknown element of W2 with bounded norm, and
the convergence of recovery algorithms is then evaluated according to a worst-case error
analysis. In particular, in the regularisation approach to inverse problems, originated in
the work of Tikhonov [225, 226] and Philips [184], ill-posed problems are addressed by
constructing a regularised version thereof, typically defined as a penalised minimisation
problem of the form

min
f∈W1

{
∥Y −G(f)∥2

W2 + λR(f)
}
, λ > 0, (1.30)

where R : W1 → [0,∞] is a suitable penalty functional that enforces well-posedness
and imposes particular properties on the solution such as smoothness (e.g., [163]).
The literature on the subject is vast, and for an extensive treatment we refer to the
monographs [88, 135], where many additional references can be found. We further
mention that iterative methods (such as Landweber iteration or ν-method), are often used
in practice to solve the regularised minimisation problem (1.30), in particular in the case
of nonlinear forward maps G, where the objective functional is in general non-convex;
see [114, 192, 129] and the monograph [128].

Explicit statistical models for the noise, on the other hand, have been systematically
studied only more recently [94, 179, 150, 178, 92, 90, 127]. Concretely, given data Y

from model (1.6), the primary goal is then to construct an estimator of the unknown
parameter of interest f . Furthermore, as opposed to the deterministic framework, the
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statistical setting naturally allows to approach quantification of the uncertainty in the
reconstruction and the testing of hypotheses.

The nonparametric estimation theory is relatively well developed for linear inverse
problems, wherein the forward map G is assumed to be a linear and bounded operator.
Broadly speaking, the (minimax) optimal convergence rates achievable by estimators in
linear inverse problems are determined by the degree of ill-posedness, in turn connected
to the smoothing properties of the forward map. A smoothing operator effectively shrinks
the distance between different parameters, rendering more difficult to distinguish between
them based on observations of their image under the forward map: thus, the greater
the smoothing effect of G, the harder the estimation problem. A precise measure of
the degree of ill-posedness can be formulated in terms of the action of G upon different
smoothness scales (e.g., the Sobolev or Besov scale) of functions [159, 161, 111] or via
the decay of the singular values of G (e.g., [55, 195]). According to the latter principle,
two classes of linear inverse problems are identified as:

1. mildly ill-posed problems, characterised by an algebraic decay of the singular values
of the forward map and by algebraic minimax rates of convergence. Concrete
examples of mildly ill-posed problems include the Radon transform in computerised
tomography [169, 126, 195], elliptic pseudo-differential operators (e.g., [6, 133]),
and the recovery of the source function in boundary value problems (e.g., [111]).
The latter two examples are studied in Chapter 2;

2. severely ill-posed problems, characterised by an exponential decay of the singular
values and by logarithmic minimax rates of convergence over smoothness classes.
Examples include the inverse heat equation considered in Chapter 2, Chaucy prob-
lems for the Laplace and Helmotz equations (e.g., [248]) and certain deconvolution
problems with smooth kernels (e.g., [195]).

A number of statistical procedures have been shown to attain such minimax rates of
estimation, including Tikhonov regularised estimators based on penalised least-squares
formulations analogous to (1.30); see, e.g., [178, 65, 162]. A large body of work is
dedicated to develop and study methods based on knowledge of the singular value
decomposition of G, such as spectral cut-off estimators [126, 159, 87, 134, 56]. Further
important classes of methods are wavelet-based estimators [78, 3, 125] and iterative
methods (e.g., [34, 37]). The paper [55] provides an overview on statistical estimation in
linear inverse problems.

Recently, statistical inference methodologies have also been studied in the linear
setting, including the construction of confidence bands and tests in density deconvolution
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problems [32, 35, 156, 212], in inverse regression models with convolution-type forward
operators [31, 189], and for the inverse heat equation [35]. Further results are in
[74, 246, 14], where more references can be found.

The statistical literature on nonlinear inverse problem is, on the other hand, far less
developed. Extensions of the convergence rates theory of Tikhonov-type regularisers are
provided in certain nonlinear setting in [180, 33, 117, 155, 243]. The results in the recent
paper [176] are related to the investigation in Chapter 3, and provide (using variational
arguments) convergence rates for the maximum a posteriori estimators associated to the
scaled Gaussian priors employed in Section 3.3.1. The convergence of iterative methods
in statistical nonlinear inverse problems is studied in [21, 118, 242].

The Bayesian approach to statistical inverse problems was described in the introduction
to this chapter. During the last decade, the frequentist analysis of Bayesian nonparametric
procedures in inverse problems has received a great amount of interest. In particular,
in the linear setting, minimax optimal posterior contraction rates have been derived
in a number of papers under various assumptions on the forward map and the priors
employed (e.g., [138, 139, 195, 93, 137] and references therein). Statistical guarantees
for Bayesian uncertainty quantification are provided in a diagonal SVD-based setting in
[138], and more recently in [166] for X-ray transforms using standard Gaussian process
priors. Further results are derived in Chapter 2 in a general setting and applied to three
concrete examples covering both the mildly and severely ill-posed case.

Regarding nonlinear inverse problems, an early result on posterior consistency was
proved in [241] for the elliptic inverse problem studied in Chapter 3, assuming uniformly
bounded priors. More recently, employing similar bounded random wavelet series priors,
[175] derived posterior contraction rates for estimating the drift and diffusion coefficients
from discretely observed one-dimensional diffusions, while posterior contraction rates
and Bernstein–von Mises theorems, implying coverage properties of posterior credible
sets, were proved in [171] for an inverse problem for the Schrödinger equation and in
[175] for compound Poisson processes.

A very significant recent advance has been the extension of the theory to unbounded
priors, and in particular to Gaussian priors for which ad hoc sampling algorithms are
available. Posterior consistency results for Gaussian priors have been established in
nonlinear inverse problems arising from PDEs of elliptic [2, 177], parabolic [131], and
transport type [167, 168, 39]. In Chapters 3 and 4, further results are derived for the
problem of estimating the scalar diffusion coefficient in an elliptic PDE, and for drift
estimation in reversible diffusion models. Finally, (semi-parametric) Bernstein–von Mises
theorems and statistical guarantees for Bayesian uncertainty quantification have been
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proved in [168] in a class of nonlinear inverse problems that includes the Schrödinger
equation as well as (non-Abelian) X-ray transforms. Some negative results about the
possibility of a Bernstein–von Mises theorem in the elliptic inverse problem considered in
Chapter 3 are discussed in [172].

1.3.3 Background reading

We refer to [101] and to Section 7.3 in [104] for basics on the nonparametric Bayesian
approach to statistical inference, as well as for the general theory of the frequentist
analysis of posterior distributions. Chapter 11 in [101] and Chapter 2 in [104] also cover
fundamental results on Gaussian processes used throughout the thesis. The properties of
p-exponential priors used in Chapter 4 are largely due to [5].

For the general minimax theory of estimation, see [230], while for the semiparametric
theory of efficiency relevant to Chapter 2, see [234].

We refer to [122] for an overview on the field of inverse problems arising from PDEs.
The nonparametric Bayesian approach to inverse problems is described in [220, 73]. For
an introduction to PDEs, see [89, 153]. Finally, we refer to [19, 15] for the theory of
diffusion processes and SDEs.



Chapter 2

Bernstein–von Mises theorems and
uncertainty quantification for linear
inverse problems

We consider the statistical inverse problem of recovering an unknown function f from a
linear indirect measurement corrupted by additive Gaussian white noise. We employ a
nonparametric Bayesian approach with standard Gaussian priors, for which the posterior-
based reconstruction of f corresponds to a Tikhonov regulariser f̄ with a reproducing
kernel Hilbert space norm penalty. We prove a semiparametric Bernstein–von Mises
theorem for a large collection of linear functionals of f , implying that semiparametric
posterior estimation and uncertainty quantification are valid and optimal from a frequen-
tist point of view. The result is applied to study three concrete examples that cover both
the mildly and severely ill-posed cases: specifically, an elliptic inverse problem, an elliptic
boundary value problem and the recovery of the initial condition of the heat equation.
For the elliptic boundary value problem, we also obtain a nonparametric version of the
theorem that entails the convergence of the posterior distribution to a prior-independent
infinite-dimensional Gaussian probability measure with minimal covariance. As a conse-
quence, it follows that the Tikhonov regulariser f̄ is an efficient estimator of f , and we
derive frequentist guarantees for certain credible balls centred at f̄ .

2.1 Introduction

Inverse problems arise in a variety of scientific disciplines, where the relationship between
the quantity of interest and the data collected in an experiment is determined by
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the physics of the underlying system and can be mathematically modelled. Real world
measurements are always discrete and carry statistical noise, which is often most naturally
modelled by independent Gaussian random variables. The observation scheme then gives
rise to an inverse regression model of the form

Yi = (Gf)i +Wi, i = 1, . . . , N, Wi
iid∼ N(0, 1),

where G describes the forward process and (Gf)i is a discrete observation of the trans-
formed signal.

The formulation and analysis of the inverse problem is often best done by working
with an analogous continuous model. This guarantees, among other things, discretisation
invariance that allows to switch consistently between different discretisations [73, 146,
147, 220]. In this chapter we consider the case where the forward operator G : W1 → W2

is linear between separable Hilbert spaces W1 and W2, and assume the continuous
equivalent model (in the sense of [48, 197])

Y ε = Gf + εW, ε > 0, (2.1)

where W is a Gaussian white noise process indexed by W2. Note that while W can be
defined by its actions on W2, it almost surely does not take values on it, making the
noise in (2.1) ‘rougher’ than the forward signal Gf .

We adopt the Bayesian approach to inverse problems [220, 73] and study the perfor-
mance of nonparametric procedures based on centred Gaussian priors Π for f . We are
interested in what kind of objective guarantees can be achieved for Bayesian inference
based on standard Gaussian priors used in practice. The specification of these priors
does not require additional - and often unavailable - information on the forward map G,
such as its singular value decomposition (SVD). The solution to the statistical inverse
problem is the conditional distribution of f given Y ε, whose mean or mode can be used
as point estimators. The main appeal of the method is, however, that it automatically
delivers quantification of uncertainty in the reconstruction, obtained through credible
sets, i.e., regions of the parameter space with specified high posterior probability. In
many applications this method can be efficiently implemented using modern (possibly
infinite-dimensional) MCMC algorithms that allow fast sampling from the posterior
distribution [26, 127].

Our goal is to investigate whether the methodology delivers correct, prior-independent
and possibly optimal inference on the unknown parameter in the small noise limit. These
questions can be addressed under the frequentist assumption that Y ε is in reality generated
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through model (2.1) from a fixed true signal f0 (instead of f being randomly drawn from
Π). We then study the asymptotic concentration of the posterior distribution around
f0 as ε → 0. The frequentist analysis of nonparametric Bayesian procedures for inverse
problems has received increasing interest in the last decade, and several contributions in
the linear setting have established consistency results and derived posterior contraction
rates; see [6, 7, 133, 138, 139, 137, 136, 195, 241] among others. We also mention
[175, 176, 171] for results for nonlinear inverse problems.

However, determining whether the resulting uncertainty quantification is objectively
valid requires finer analysis of the posterior distribution. The central question is: do
credible sets have the correct frequentist coverage in the small noise limit? That is, do
we have, for some set Cε = Cε(Y ε),

Π (f ∈ Cε|Y ε) ≈ 1 − α ⇔ P Y ε

f0 (f0 ∈ Cε) ≈ 1 − α, (2.2)

with small α ∈ (0, 1) as ε → 0? The importance of the above questions is not restricted
just to the Bayesian paradigm. In linear Bayesian inverse problems with Gaussian priors
the conditional mean estimator can be shown to coincide with a Tikhonov regulariser
f̄ε arising from a reproducing kernel Hilbert space norm penalty, see [71, 115]. Thus,
if (2.2) holds for a credible set Cε centred at the posterior mean, we can use Cε as an
(asymptotic) frequentist confidence region based on the Tikhonov regulariser f̄ε.

Obtaining optimal contraction rates is not enough to answer the above question
even in the parametric case. For classical finite-dimensional models the Bernstein–von
Mises (BvM) theorem states that, under mild conditions, the posterior distribution
is approximated in total variation distance by a normal distribution, centred at the
maximum likelihood estimator and with minimal asymptotic variance. This implies
that credible sets are asymptotically valid and optimal confidence regions; see, e.g., [234,
Chapter 10]. Understanding the frequentist properties of nonparametric credible sets
presents a more delicate matter. It was observed by [65], and later in [95], that the
theorem may fail to hold even in a simple nonparametric regression model, for which
credible balls in L2 can be shown to have null asymptotic coverage.

One way of tackling the problem is to start by examining the limit behaviour of the
one-dimensional marginals ⟨f, ψ⟩W1|Y ε instead of the full posterior. This semiparametric
approach was introduced for a direct problem where G = I in [52, 53], where it is shown
that (approximately) in the small noise limit

⟨f, ψ⟩W1|Y ε ∼ N
(
⟨f̄ε, ψ⟩W1 , ε

2I−1(ψ)
)
, (2.3)
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for a large collection of test functions ψ. Above I−1(ψ) is the asymptotic minimal
variance. Note that nonparametric BvM theorems cannot hold in total variation distance
like the classical BvM theorem. Instead one has to employ some metric for weak
convergence of probability measures. Utilising a Wasserstein-type metric [52, 53] achieve
weak convergence of the posterior distribution to a prior-independent infinite-dimensional
Gaussian distribution on a large enough function space. More recently similar techniques
were used in the inverse setting [166], for the linear X-ray transform problem, obtaining
a semiparametric BvM theorem relative to smooth functionals of the unknown, while
[171] proved a nonparametric result for a nonlinear problem arising in partial differential
equations. See also [175, 173] for further related results. Positive results have also been
obtained in [138, 149, 221], for priors defined on the SVD basis of the forward operator.

The first contribution of the present chapter is to extend the semiparametric BvM
theorem in [166] for linear inverse problems of the form (2.1), formulating a general
framework that translates the C∞ smoothness assumption on the test functions ψ into a
general ‘source-type condition’ that depends on the properties of the forward map and of
the chosen prior (cfr. Theorem 2.1). As a consequence, we then deduce that the plug-in
Tikhonov regularisers ⟨f̄ε, ψ⟩W1 are consistent and efficient estimators for ⟨f0, ψ⟩W1 , and
that credible intervals centred at such estimators have asymptotically correct coverage
and optimal width.

We subsequently employ the general theory to study three concrete examples of
interest, where properties of the forward map can be exploited to check the condition
for the semiparametric BvM theorem to hold. Specifically, we consider elliptic inverse
problems on closed manifolds (Example 2.1), an inverse problem arising from an elliptic
boundary value problem (Example 2.1), and the severely ill-posed problem of finding the
initial source of the heat equation (Example 2.2). Similar examples have been considered,
e.g, respectively in [6, 133], in [111] and in [7, 139, 195].

Our second contribution is a refinement of the result obtained for the elliptic boundary
value problem, for which we further relax the assumption on the test functions to a minimal
smoothness requirement that only depends on the degree of ill-posedness (cfr. Theorem
2.2). Adapting the program laid out in [171] to the problem at hand, we show that the
asymptotic approximation of the marginal distributions holds uniformly across a suitable
collection of test functions, leading to the formulation of a nonparametric BvM theorem.
This entails the convergence of the posterior distribution to a limiting Gaussian probability
measure with minimal covariance in suitable function spaces (cfr. Theorem 2.3), and
implies frequentist guarantees for the reconstruction and uncertainty quantification
relative to the entire function f .
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This chapter is organised as follows: we introduce the general setting in Section 2.2,
and state the semiparametric BvM theorem for linear functionals of the unknown in
Section 2.2.1. In Section 2.2.2 we derive the asymptotic normality of ⟨f̄ε, ψ⟩W1 and the
coverage properties of credible intervals. Section 2.3 is dedicated to the examples. In
Section 2.4 we refine the general theorem to achieve optimal semiparametric result for
the elliptic boundary value problem, and obtain the nonparametric BvM theorem. The
proofs are postponed to Section 3.5 and Appendix 2.C. Finally, Appendix 2.A and 2.B
provide some of the background facts used throughout the chapter.

Regarding the notation, we will write ≲ and ≳ for inequalities holding (possibly
asymptotically) up to a universal constant. Also, for two real sequences (an) and (bn),
we say that an ≃ bn if both an ≲ bn and bn ≲ an for all n (large enough). Below,
we will denote by d−→ the usual convergence in distribution of a sequence of random
variables. The notation µε L−→ µ will be used for the weak convergence of random laws in
probability, meaning that for any metric d for weak convergence of probability measures
the real random variables d(µε, µ) converge to zero in probability (see [79] for definitions).

2.2 Results for general inverse problems

2.2.1 A semiparametric Bernstein–von Mises theorem

We start by considering general linear inverse problems with minimal assumptions on
the forward operator. We are interested in the nonparametric statistical inverse problem
of recovering an unknown function f from a noisy measurement of the form

Y ε = Gf + εW, ε > 0. (2.4)

The forward operator G : W1 → W2 is assumed to be linear, bounded and injective
between separable Hilbert spaces W1 and W2 of real valued functions (that can be defined
on different sets). The operator G has a well defined adjoint G∗ : W2 → W1 for which
⟨Gf, g⟩W2 = ⟨f,G∗g⟩W1 , for all f ∈ W1 and g ∈ W2. In order to deal with possibly
non-smooth unknowns, we define a third space W as a separable Hilbert space for which
G : W → W2 is continuous and W1 ⊂ W is dense in the norm of W . In particular, there
exists c > 0 such that

∥Gf∥W2 ≤ c∥f∥W , ∀f ∈ W . (2.5)
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The above can be thought of as a smoothing property of G, in that the more smoothing
the forward operator is, the larger the space W can be chosen. For example, if we assume
that G : L2(Rd) → L2(Rd) is an elliptic (pseudo-)differential operator smoothing of order
t, we may choose W = H−t(Rd), see Section 2.3.1. Since our general semiparametric
result only requires that f ∈ W , this allows dealing with possibly non-smooth unknowns
f ̸∈ L2(Rd) as long as t > 0 (cfr. Example 2.1 and the following discussion). Note that
we can always make the trivial choice W = W1.

The measurement noise W is taken to be a centred Gaussian white noise pro-
cess (W(φ) : φ ∈ W2) defined on some probability space (Ω,Σ,Pr), with covariance
E (W(φ)W(ψ)) = ⟨φ, ψ⟩W2 . Below we often write ⟨W, φ⟩W2 for the random variable
W(φ). The noise amplitude is modelled by ε > 0. Observing data Y ε then means that
we observe a realisation of the Gaussian process (Y ε(φ) = ⟨Y ε, φ⟩W2 : φ ∈ W2) with
marginal distributions ⟨Y ε, φ⟩W2 ∼ N(⟨Gf, φ⟩W2 , ε

2∥φ∥2
W2).

For a fixed f ∈ W , let P Y ε

f = L(Y ε) be the (cylindrically defined) law of Y ε. Arguing
as in Section 7.4 in [171] (see also [67, Theorem 2.23]), we can use the law P Y ε

0 of εW as
a common dominating measure, and apply the Cameron–Martin theorem [38, Corollary
2.4.3.] to define the log-likelihood function as

ℓε(f) = log pf (Y ε) = log
dP Y ε

f

dP Y ε

0
(Y ε) = 1

ε2 ⟨Y ε, Gf⟩W2 − 1
2ε2 ∥Gf∥2

W2 . (2.6)

We consider a Bayesian approach to the problem, assigning f a centred Gaussian
prior Π on W . The reproducing kernel Hilbert space (RKHS) or Cameron-Martin space
of Π is denoted by H. Provided that ℓε(f) can be taken to be jointly measurable, we can
then use Bayes’ theorem to deduce that the posterior distribution of f |Y ε arising from
observation (2.4) can be written as

Π(B|Y ε) =
∫
B pf (Y ε)dΠ(f)∫

W p′
f (Y ε)dΠ(f ′) , B ∈ BW a Borel set in W . (2.7)

In the following we will study the asymptotic behaviour of Π(·|Y ε) in the small noise
limit ε → 0, under the assumption that the measurement is generated from a fixed
true unknown f0 ∈ W . In order to do so, we assume that the prior satisfies a standard
concentration function condition.

Condition 2.1. Let Π be a centred Gaussian Borel probability measure on the sepa-
rable Hilbert space W for which (2.5) holds, and let H be the RKHS of Π. Define the



2.2 Results for general inverse problems 39

concentration function of Π for a fixed f0 ∈ W as

ϕΠ,f0(δ) = inf
g∈H : ∥g−f0∥W ≤δ

∥g∥2
H

2 − log Π(f : ∥f∥W ≤ δ), δ > 0. (2.8)

Given Π and f0 ∈ W, assume that there exists a sequence δε → 0, with δε/ε → ∞ as
ε → 0, such that

ϕΠ,f0

(
δε
2c

)
≤
(
δε
ε

)2

. (2.9)

The above condition characterises the asymptotics of the small ball probabilities,
and guarantees that the prior puts sufficient mass around the truth: in particular
Π(f : ∥f − f0∥W ≤ δε) > e− 1

2 (δε/ε)2 as ε → 0 (cfr. the proof of Lemma 2.C.3). Analogous
conditions underpin many results in Bayesian asymptotics, and play a fundamental role
in the theory of posterior contraction rates, see e.g. [101, 104, 235]. The concentration
functions of Gaussian priors are generally well understood, and explicit forms for the
sequences δε can readily be computed for many standard choices of practical interest,
such as the commonly used Matérn process priors (see Section 2.3).

Next we formulate a semiparametric Bernstein–von Mises theorem in the above
general linear inverse problems setting.

Theorem 2.1. Let P Y ε

f0 be the law of Y ε generated by (2.4) with f = f0 ∈ W , where W
is a separable Hilbert space for which (2.5) holds. We assume a centred Gaussian prior
Π that satisfies Condition 2.1 for a fixed f0 ∈ W and denote its RKHS by H. Consider
a test function ψ ∈ W1 such that |⟨ψ, φ⟩W1| ≲ ∥φ∥W , for all φ ∈ W1, and suppose that
ψ = −G∗Gψ̃ for some ψ̃ ∈ H. Then,

L
(
ε−1

(
⟨f, ψ⟩W1 − Ψ̂

) ∣∣∣Y ε
) L−→ N(0, ∥Gψ̃∥2

W2) (2.10)

in P Y
f0-probability as ε → 0, where

Ψ̂ = ⟨f0, ψ⟩W1 − ε⟨Gψ̃,W⟩W2 . (2.11)

The next corollary states that we can replace the centring Ψ̂ by a linear functional of
the conditional mean. This implies that the posterior distribution of the functionals are
asymptotically approximated by a normal distribution centred at the conditional mean
and with asymptotic minimal variance (see Remark 2.1 below). The proof of Corollary
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2.1 can be adapted from the proof of Theorem 2.7 in [166] and is therefore omitted (see
also Step V in Appendix 2.C at the end of the chapter).

Corollary 2.1. Let f̄ε = EΠ[f |Y ε] be the mean of the posterior Π(·|Y ε). Then, for every
ψ ∈ W1 satisfying the conditions in Theorem 2.1, we have

1
ε

(
⟨f̄ε, ψ⟩W1 − Ψ̂

)
→ 0, (2.12)

in P Y
f0-probability as ε → 0. As a consequence, we can replace Ψ̂ with ⟨f̄ε, ψ⟩W1 in

Theorem 2.1.

Note that, since W1 ⊂ W is dense and Lψ(·) = ⟨·, ψ⟩W1 is assumed to be a bounded
linear operator (and hence uniformly continuous), we can extend Lψ continuously to
W. The condition on the test functions requires that ψ is in the range of the ‘Fisher
information operator’ G∗G acting upon the RKHS of Π. This can normally be translated
into suitable smoothness assumptions on ψ, see Section 2.3 for examples. The requirement
resembles certain source conditions often used in inverse problems [88, 157, 214]. The
main conceptual difference is that instead of requiring extra smoothness for the unknown
f0 to attain convergence in a predefined space, we allow f0 to be non-smooth and impose
constraints on the test functions in order to achieve convergence.

2.2.2 Efficiency and uncertainty quantification for Tikhonov
regularisers

Since the forward operator G is assumed to be linear, the posterior distribution Π(·|Y ε)
is Gaussian. It follows that the conditional mean f̄ε = f̄ε(Y ε) = EΠ[f |Y ε] coincides
with the maximum a posterior (MAP) estimator, and using Corollary 3.10 in [71] (under
appropriate conditions on G) the latter can be seen to be a Tikhonov-type regulariser
found by minimising the following Onsager-Machlup functional:

Q(f) = − 1
ε2 ⟨Y ε, Gf⟩W2 + 1

2ε2 ∥Gf∥2
W2 + 1

2∥f∥2
H.

Using Theorem 2.1 and Corollary 2.1 we can derive the asymptotic distribution of
the plug-in estimators ⟨f̄ε, ψ⟩W1 .

Remark 2.1 (Minimax optimality of the plug-in Tikhonov regulariser). Corollary 2.1
implies that

1
ε

⟨f̄ε − f0, ψ⟩W1
d−→ Z ∼ N(0, ∥Gψ̃∥2

W2) (2.13)
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in P Y
f0-probability as ε → 0. The above random variable Z identifies the asymptotic

minimal variance (in the minimax sense) in estimating ⟨f0, ψ⟩W1 from model (2.4), in
that

lim inf
ε→0

inf
T

sup
f∈Bε

ε−2EY ε

f (⟨f, ψ⟩W1 − T )2 ≥ ∥Gψ̃∥2
W2 , (2.14)

the infimum being over all estimators T = T (Y ε, ψ) of ⟨f0, ψ⟩W1 based on observing Y ε

in (2.4) with f = f0, and the supremum is taken over balls Bε in W centred at f0 and
with radius ε > 0; see Appendix 2.A.

We note that (2.13) implies the convergence of all moments (see Step V in Appendix
2.C). Consequently, for all ψ ∈ W1 fulfilling the conditions of Theorem 2.1, the plug-
in Tikhonov regulariser ⟨f̄ε, ψ⟩W1 attains the lower bound in (2.14), and hence is an
asymptotic minimax estimator of ⟨f0, ψ⟩W1 .

Besides the question of efficiency, the most relevant consequence of Theorem 2.1 is
that credible intervals built around the estimators ⟨f̄ε, ψ⟩W1 are asymptotically valid
frequentist confidence intervals with optimal diameter. Specifically, for ψ as above,
consider a credible interval for ⟨f̄ε, ψ⟩W1 of the form

Cε =
{
x ∈ R : |⟨f̄ε, ψ⟩W1 − x| ≤ Rε

}
, (2.15)

with Rε = Rε(α, Y ε) chosen so that

Π (f : ⟨f, ψ⟩W1 ∈ Cε|Y ε) = 1 − α, α ∈ (0, 1).

Then it follows that Cε has the correct asymptotic coverage and that its diameter shrinks
at the optimal rate ε. The proof of the following corollary can be found in Appendix 2.C.

Corollary 2.2. Let ψ ∈ W1 satisfy the conditions in Theorem 2.1, and let Cε be as in
(2.15). Then, as ε → 0,

P Y ε

f0 (⟨f0, ψ⟩W1 ∈ Cε) → 1 − α

and
ε−1Rε

PY
f0−→ Φ−1(1 − α).

Here Φ(t) = Pr(|Z| ≤ t) with Z ∼ N(0, ∥Gψ̃∥2
W2).

Note that although an explicit formulation of Cε would require the computation of
the quantiles of the posterior distribution of ⟨f, ψ⟩W1 |Y ε, these type of credible intervals
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can often in practice be implemented by numerically approximating the radius Rε with a
posterior sampling method. See, e.g., [127], or Section 2.2 in [166]. The implementation
of the algorithm is further discussed in 1.2.1, where some simulation results are shown.

For the inferential problem for elliptic partial differential equations studied in Section
2.3.2, Remark 2.4 below will extend the conclusions of Corollary 2.2 to entire credible
balls in suitable function spaces centred at f̄ε.

2.3 Examples

In this section we consider examples of linear inverse problems fitting in the framework
of Section 2.2, studying the conditions under which the semiparametric Bernstein–von
Mises phenomenon occurs in such instances. We first need to introduce some notation
on Sobolev spaces (see [153, 164] for background).

The Sobolev space on Rd of order s ∈ R is defined as

Hs(Rd) =
{
u ∈ S ′(Rd) : (1 + | · |2)s/2Fu ∈ L2(Rd)

}
, (2.16)

where S ′(Rd) is the space of tempered distributions on Rd and F is the Fourier transform.
For O ⊂ Rd a non-empty, open and bounded set with smooth boundary ∂O (a smooth
domain), Sobolev spaces on O can be defined via the restriction operator |O as

Hs(O) =
{
u = U |O, U ∈ Hs(Rd)

}
, ∥u∥Hs(O) = inf

U∈Hs(Rd) : U |O=u
∥U∥Hs(Rd). (2.17)

To correctly address issues relative to the behaviour of functions near ∂O, we will
need to consider certain subspaces of Hs(O). We denote the set of functions in Hs(O)
that are compactly supported in O by Hs

c (O), and for any fixed compact subset K ⊂ O,
we write Hs

K(O) := {u ∈ Hs(O) : supp(u) ⊆ K}. Finally, for all s > 1/2, let Hs
0(O) be

the usual subspace of Hs(O) of functions with null trace on ∂O. Below we will often
suppress the dependence on the underlying domain denoting Hs = Hs(O).

2.3.1 Elliptic inverse problems

We start with a basic example to demonstrate how Theorem 2.1 can be applied when
G is assumed to be a smoothing elliptic pseudo-differential operator and O a closed
manifold (see [119, 216] for general theory on pseudo-differential operators). The previous
definitions of Sobolev spaces can straightforwardly be adapted to this setting, see, e.g.,
[216, Chapter I.7]. The absence of a boundary and the properties of the forward map
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allow for a clean exposition of the results. In the Section 2.3.2 we will instead assume
that O is a smooth domain in Rd, and take G to be the solution operator associated
with an elliptic boundary value problem. We then have to refine the results to take into
account some subtleties of the behaviour of functions near the boundary.

Example 2.1. Let O be a closed d-dimensional manifold and G : L2(O) → L2(O)
an injective and elliptic pseudo-differential operator smoothing of order t, that is, G :
Hs(O) → Hs+t(O) with all s ∈ R [216, Section I.5.]. We can then choose W = H−t(O).

Let P Y ε

f0 be the law of Y ε generated by (2.4) with f = f0 ∈ Hα(O), α > −t. We
assume a centred Gaussian prior Π with RKHS H = Hr(O), where r ≥ max{0, d0 − t}
and d0 > d/2. This guarantees that f ∈ Hr−d0(O) ⊂ H−t(O) = W almost surely. For
example, we can take Π = N(0, C), where C is a self-adjoint, injective and elliptic
covariance operator smoothing of order 2r [6, 133]. Another example is to assume Π to
be the law of the Matérn process of smoothness r − d/2 (see Example 11.8 in [101] for
details), namely the centred Gaussian process {M(x), x ∈ O} with covariance kernel

C(x, y) =
∫
Rd
e−i⟨x−y,ξ⟩Rdµ(dξ), µ(dξ) = (1 + |ξ|2)−rdξ.

Since G is elliptic and O is a closed manifold, G∗G has a well defined inverse
(G∗G)−1 : Hs(O) → Hs−2t(O), s ∈ R, see e.g. [132]. We can then take ψ ∈ Hr+2t(O),
which guarantees ψ̃ = −(G∗G)−1ψ ∈ Hr(O) = H and |⟨ψ, φ⟩L2 | ≤ C∥φ∥H−t , for all
φ ∈ L2(O).

Denote by f̄ε = EΠ[f |Y ε] the mean of the posterior distribution Π(·|Y ε) arising from
observing (2.4). Then, for all test functions ψ ∈ Hr+2t(O), the following convergence
occurs in P Y

f0 -probability as ε → 0

L
(
ε−1⟨f − f̄ε, ψ⟩L2

∣∣∣Y ε
) L−→ N

(
0, ∥G(G∗G)−1ψ∥2

L2

)
.

Note that if t > d
2 − 1 we can allow unknowns of bounded variation f0 ∈ BV (O),

since BV (O) ⊂ Hα(O) when α ≤ 1 − d
2 . Functions of bounded variation are widely used,

e.g., in image analysis due to their ability to deal with discontinuities. One standard
example is total variation denoising [51, 207].

Remark 2.2. Let Π and f0 be as above. Then, as δ → 0

ϕΠ,f0(δ) ≲ δ− 2 max{0,r−α}
t+α + δ− d

r+t−d/2 , (2.18)
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so that the concentration condition ϕΠ,f0(δε) ≲ (δε/ε)2 is satisfied by taking

δε ≃ max
{
ε

t+α
t+r , ε

t+r−d/2
t+r

}
.

The proof of Remark 2.2 is omitted since it is a simplified version of the proof
of Remark 2.3 where, O being a closed manifold, one does not need to address the
technicalities arising at the boundary.

2.3.2 An elliptic boundary value problem

Let O ⊂ Rd be a non-empty, open and bounded set with smooth boundary ∂O. We
consider the problem of recovering the unknown source f ∈ L2 = L2(O) in the elliptic
boundary value problem Lu = f, x ∈ O,

u(x) = 0, x ∈ ∂O,
(2.19)

from noisy observations of the solution u corrupted by additive Gaussian white noise in
L2. We take L to be the following partial differential operator in divergence form:

Lu = −
d∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
, (2.20)

for known aij ∈ C∞(O), with aij = aji. The problem represents an ‘elliptic counterpart’
of the transport PDE arising in [166].

Assuming that L is uniformly elliptic (see Appendix 2.B), it follows that for each
f ∈ Hs, s ≥ 0, there exists a unique weak solution L−1f = u ∈ Hs+2

0 to (2.19). In
particular, L−1 : Hs → Hs+2

0 defines a bounded isomorphism, self-adjoint with respect to
⟨·, ·⟩L2 , and for all s ≥ 0 we also have the dual estimates

∥L−1f∥(Hs)∗ = sup
u∈Hs : ∥u∥Hs ≤1

|⟨L−1f, u⟩L2| ≤ cs∥f∥(Hs+2
0 )∗ , cs > 0. (2.21)

Rephrasing in the notation of Section 2.2 with G = L−1, we consider the observation

Y ε = L−1f + εW, ε > 0, (2.22)

where W is Gaussian white noise in L2. For W1 = W2 = L2, the dual estimate (2.21)
implies that we can take W = (H2

0 )∗.
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We assume that f ∼ Π, where Π is a centred Gaussian Borel probability measure on
L2 with RKHS H = Hr, for some r > d/2. For example, we can take Π to be the law of
the Matérn process of smoothness r − d/2 introduced in the previous example.

For f0 ∈ Hα
c , with some α ≥ 0, we show that the semiparametric BvM phenomenon

occurs under appropriate smoothness conditions on the test functions ψ. In particular,
assuming that ψ ∈ Hr+4

c automatically verifies the requirements of Theorem 2.1, since
taking ψ̃ = −LLψ implies ψ̃ ∈ H = Hr and ψ = −L−1L−1ψ̃, as supp(Lψ) ⊆ supp(ψ) ⊊
O. The proof of the following proposition can be found in Section 2.5.2.

Proposition 2.1. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS
H = Hr(O), r > d/2. Assume that f0 ∈ Hα

c (O), α ≥ 0, and let P Y ε

f0 be the law of
Y ε generated by (2.22) with f = f0. Let f̄ε = EΠ[f |Y ε] be the mean of the posterior
distribution Π(·|Y ε) arising from observing (2.22). Then, for all ψ ∈ Hr+4

c (O), we have

L(ε−1⟨f − f̄ε, ψ⟩L2|Y ε) L−→ N(0, ∥Lψ∥2
L2) (2.23)

in P Y
f0-probability as ε → 0.

Remark 2.3. Let Π and f0 be as above. In the proof of Proposition 2.1 we show that
as δ → 0

ϕΠ,f0(δ) ≲ δ− 2 max{0,r−α}
2+α + δ− d

r+2−d/2 , (2.24)

so that the concentration condition ϕΠ,f0(δε) ≲ (δε/ε)2 is satisfied by taking

δε ≃ max
{
ε

2+α
2+r , ε

2+r−d/2
2+r

}
. (2.25)

2.3.3 Recovery of the initial condition of the heat equation

We will conclude this section by applying the general framework studied in Section
2.2 to the severely ill-posed problem of finding the initial source of the heat equation.
Contraction rates for similar inverse problems have been studied in [7, 139, 195].

Example 2.2. Let O ⊂ Rd be an open bounded set with C∞ boundary ∂O. We consider
the boundary value problem for the heat equation


∂tu− ∆u = 0, t ≥ 0, x ∈ O,

u(x) = 0, t ≥ 0, x ∈ ∂O,

u(0, x) = f(x), x ∈ O.



46 Chapter 2. Bernstein–von Mises theorems for linear inverse problems

The inverse problem is to recover the initial heat source f ∈ L2 from a noisy observation
of the solution u at time T , corrupted by additive Gaussian white noise on L2. The
solution to the boundary value problem is given by

u(T, x) = Gf(x) =
∞∑
j=1

⟨f, φj⟩L2e−λjTφj(x), x ∈ O,

where −∆φj = λjφj, and {φj}∞
j=1 forms an orthonormal basis of L2. If we order the

eigenvalues to be increasing, that is, λ1 ≤ λ2 ≤ . . . , then Weyl’s law yields that λj ≃ j2/d

(e.g., [204, Theorem 8.16]). Thus, the singular values of the compact forward operator
G decay exponentially to zero, meaning that the recovery of the initial condition of the
heat equation is a severely ill-posed inverse problem.

Assume that f ∼ Π, where Π is a centred Gaussian Borel probability measure on L2

with RKHS H = Hr, r > d/2. Let ψ ∈ L2 be of the form

ψ = −G∗Gψ̃ = −
∞∑
j=1

⟨ψ̃, φj⟩L2e−2λjTφj, (2.26)

for some ψ̃ ∈ Hr. Then

|⟨ψ, ϕ⟩L2 | =

∣∣∣∣∣∣
〈
ψ,

∞∑
j=1

⟨ϕ, φj⟩L2φj

〉
L2

∣∣∣∣∣∣
≤

∞∑
j=1

|⟨ϕ, φj⟩L2|
∣∣∣∣∣
〈 ∞∑
i=1

⟨ψ̃, φi⟩L2e−2λiTφi, φj

〉
L2

∣∣∣∣∣
≤

∞∑
j=1

|⟨ϕ, φj⟩L2||⟨ψ̃, φj⟩L2|e−2λjT

≤ C∥ϕ∥H−t ,

for all t ≥ 0, verifying the condition of Theorem 2.1. Hence, for f0 ∈ L2 and ψ as above,
we get the following convergence in P Y

f0 -probability as ε → 0

L
(
ε−1⟨f − f̄ε, ψ⟩L2

∣∣∣Y ε
) L−→ N

(
0, ∥Gψ̃∥2

L2

)
.

Note that the contraction rate ε entailed by the semiparametric BvM theorem is a
very strong requirement for severely ill-posed inverse problems, usually characterised
by logarithmic rates even for smooth functionals [139]. To achieve the rate ε, we then
need to assume the analytic-type condition (2.26) on the test function ψ, which reflects
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the natural condition of ψ being in the range of G∗ which is necessary for efficient
semiparametric estimation [234, Theorem 25.32].

2.4 A nonparametric Bernstein–von Mises theorem
for elliptic boundary value problems

In this section we continue the investigation of the BvM phenomenon in the setting of
the elliptic boundary value problem studied in Section 2.3.2. We develop Proposition 2.1
along two related directions: first, we extend the class of test functions ψ for which the
convergence (2.23) occurs, identifying a natural lower limit for the smoothness of ψ that
only depends on the level of ill-posedness of the inverse problem. Secondly, combining
the result with the program laid out in [171], we derive a nonparametric BvM theorem
that entails the weak convergence, in a suitable function space, of the centred and scaled
posterior to a prior-independent infinite-dimensional Gaussian probability measure whose
covariance function attains the information lower bound. From the latter result we then
obtain frequentist guarantees for uncertainty quantification in the reconstruction of the
entire function f .

We briefly recall that, for unknown f ∈ L2 = L2(O), we consider observations
Y ε = L−1f + εW, ε > 0, where L−1 is the solution map associated with the boundary
value problem (2.19) (see Section 2.3.2 for details) and W is a Gaussian white noise in
L2. We assign f a centred Gaussian prior in L2 with RKHS Hr, r > d/2, and assume
that the observation Y ε is generated from a fixed f0 ∈ Hα

c with some α > 0. For the
results in this section we assume an undersmoothing prior. That is, we consider the case
r − d/2 ≤ α. The proofs can be found in Section 3.5.

Theorem 2.2. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS
H = Hr(O), r > d/2. Assume that f0 ∈ Hα

c (O), α ≥ r − d/2, and let P Y ε

f0 be the law
of Y ε generated by (2.22) with f = f0. Let f̄ε = EΠ[f |Y ε] be the mean of the posterior
distribution Π(·|Y ε) arising from observing (2.22). Then, for all β > 2 + d/2, and any
ψ ∈ Hβ

c (O), we have

L(ε−1⟨f − f̄ε, ψ⟩L2|Y ε) L−→ N(0, ∥Lψ∥2
L2) (2.27)

in P Y
f0-probability as ε → 0.

Assuming that β > 2 + d, we will strengthen the above result to a nonparametric
Bernstein–von Mises theorem in the dual spaces (Hβ

K)∗, for any compact set K ⊂ O. In
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particular, we note that the Gaussian laws in the right hand side of (2.27) identify the
one-dimensional marginal distributions of a nonparametric Gaussian probability measure
µ, induced via Kolmogorov’s extension (see, e.g., [79, Section 12.1]) on the cylindrical
σ-field of RHβ

K by the centred Gaussian process

X = (X(ψ) : ψ ∈ Hβ
K), E[X(ψ)X(ψ′)] = ⟨Lψ,Lψ′⟩L2 . (2.28)

In fact, in the view of the efficiency considerations in Appendix 2.A, µ represents
the ‘canonical’ asymptotic distribution for the problem of inferring f in model (2.22), as
its covariance function is minimal in the information theoretic sense of Remark 2.1. In
the following lemma we derive the values of β for which µ is a tight Borel probability
measure on (Hβ

K)∗, a necessary condition for any sequence of laws on such spaces to
weakly converge to µ. The proof adapts the argument in the proof of Proposition 6 in
[171], and is included in Appendix 2.C.

Lemma 2.1. Fix any compact set K ⊂ O. Let X be as in (2.28), and let µ be the law
of X on the cylindrical σ-field of RHβ

K . Then,

1. for all β > 2 + d/2, µ is a tight Gaussian Borel probability measure on (Hβ
K)∗;

2. for β < 2 + d/2, we have

µ
(
x : ∥x∥(Hβ

K)∗ < ∞
)

= 0;

3. for β = 2 + d/2, µ is not tight on (Hβ
K)∗.

Similarly, the stochastic process obtained by collecting the random variables in the
left hand side of (2.27),

Xε =
(
ε−1⟨f − f̄ε, ψ⟩L2 |Y ε : ψ ∈ Hβ

K

)
, ε > 0, (2.29)

can also be shown to induce a tight Borel probability measure on (Hβ
K)∗ when β > 2+d/2

(see Step IV in Section 2.5.3). We will interpret the law of Xε as the nonparametric
centred and scaled posterior distribution arising from observing (2.22), denoted by

L(ε−1(f − f̄ε)|Y ε) = L(Xε). (2.30)

Theorem 2.2 implies the convergence of the finite-dimensional distributions of the
stochastic process Xε to those of X (cfr. Lemma 2.7), and by showing that (2.27) holds
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uniformly across the set of test functions, we then deduce the weak convergence of the
respective induced laws on (Hβ

K)∗. As mentioned in the introduction, nonparametric
BvM theorems cannot hold in total variation distance like the classical BvM theorem in
finite dimensional Euclidean spaces. Instead we use a Wasserstein-type metric for weak
convergence of probability measures. Recall that on a given complete separable metric
space (S, ρ), the notion of weak convergence of sequences of Borel probability measures
can be metrised by the bounded Lipschitz (BL) metric

dS(ν1, ν2) = sup
F :S→R, ∥F∥Lip≤1

∣∣∣∣∫
S
Fd(ν1 − ν2)

∣∣∣∣ , (2.31)

where
∥F∥Lip = sup

x∈S
|F (x)| + sup

x,y∈S, x ̸=y

|F (x) − F (y)|
ρ(x, y) ;

see, e.g., [80, Theorem 3.28].

Theorem 2.3. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS
H = Hr(O), r > d/2. Assume that f0 ∈ Hα

c (O), α ≥ r − d/2, and let P Y ε

f0 be the law
of Y ε generated by (2.22) with f = f0. Let f̄ε = EΠ[f |Y ε] be the mean of the posterior
distribution Π(·|Y ε) arising from observing (2.22). Then, for all β > 2 + d and any
compact K ⊂ O, denoting d(Hβ

K)∗ the BL-metric for weak convergence on (Hβ
K(O))∗,

d(Hβ
K)∗

(
L(ε−1(f − f̄ε)|Y ε), µ

)
→ 0 (2.32)

in P Y
f0-probability as ε → 0. Above L(ε−1(f − f̄ε)|Y ε) is the centred and scaled posterior

(2.30), and µ is the Gaussian distribution induced by X in (2.28).

Similar results as Theorem 2.2 and Theorem 2.3 could be formulated for Example 2.1,
exploiting the fact that the ‘Fisher information operator’ G∗G has a well defined inverse
(G∗G)−1 : Hs(O) → Hs−2t(O), for all s ∈ R. In particular, since O was assumed to be a
closed manifold, the weak convergence will be achieved in H−β(O) for all β > t+ d.

Remark 2.4 (Applications to uncertainty quantification). With similar reasoning as in
Section 2.2.2, Theorem 2.2 implies that for all ψ ∈ Hβ

c , β > 2+d/2, the credible intervals
Cε in (2.15) centred at the plug-in Tikhonov regulariser ⟨f̄ε, ψ⟩L2 have asymptotically
correct frequentist coverage and optimal diameter.

On the other hand, the full strength of Theorem 2.3 can be employed to show that
the posterior distribution delivers valid uncertainty quantification also for the entire
unknown f , by considering credible sets in the weak topology where the limit is attained.



50 Chapter 2. Bernstein–von Mises theorems for linear inverse problems

The weak convergence in the dual space (Hβ
K)∗ is indeed enough to deduce frequentist

guarantees for a sufficiently rich class of credible sets (see the related discussion in Section
7.3.4 in [104]). In particular, choosing posterior quantiles R̃ε = R̃(α, Y ε) so that

C̃ε =
{
f ∈ L2 : ∥f − f̄ε∥(Hβ

K)∗ ≤ R̃ε

}
, Π(C̃ε|Y ε) = 1 − α, α ∈ (0, 1),

we have for all β > 2 + d

P Y ε

f0 (f0 ∈ C̃ε) → 1 − α

as ε → 0, with asymptotically vanishing diameter R̃ε = OPY ε
f0

(ε).
Finally, while the optimal rate ε is obtained for the relatively weak norm of (Hβ

K)∗,
arguing as in Section 2 in [52] (see also Section 5.1 in [171]), we can intersect C̃ε with
additional prior smoothness information (cfr. Step I in Section 2.5.3) to show that the
diameter of C̃ε decays at polynomial rate εγ , for any γ < α/(α+ 2 + d), also with respect
to the stronger norm of interest ∥ · ∥L2(K′), for any compact K ′ ⊊ K.

Remark 2.5 (Smoothness requirement). Regarding the weak convergence to µ on (Hβ
K)∗,

the requirement that β > 2 + d under which (2.32) is obtained is stronger than the
necessary tightness condition β > 2 + d/2 of Lemma 2.1. While the proof of Theorem 2.3
does imply the convergence of the finite-dimensional distributions of L(ε−1(f − f̄ε)|Y ε) to
those of µ in the full range β > 2+d/2 (see Lemma 2.7), the stronger condition β > 2+d

is used crucially in order to control the arising semiparametric bias term uniformly in the
collection {ψ ∈ Hβ

K , ∥ψ∥Hβ ≤ 1}. This in turn implies that the L2-diameter of C̃ε does
not attain the minimax rate εα/(α+2+d/2), and hence can potentially deliver polynomially
sub-optimal results.

To the best of our knowledge, examples of Gaussian priors that attain a nonparametric
BvM theorem in the optimal function space are known in literature only in the SVD-
based framework considered in [52, 53, 196], or in the ‘nearly-diagonal’ problem studied
very recently by [173]. Applying our proof to a Gaussian prior defined via SVD would
here recover the result of [196]. However, the main interest of this chapter is in the
performance of standard Gaussian priors that are not defined on the SVD basis of the
forward operator - such as the Matérn priors considered in the examples - since this
information is rarely available in inverse problems encountered in practice. Our results
show that for the inverse problem (2.22) standard Gaussian priors indeed yield optimal
semiparametric inference for the maximal class of functionals, and provide a validation
of the associated nonparametric credible sets.
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2.5 Proofs

2.5.1 Proof of Theorem 2.1

The proof of Theorem 2.1 follows ideas developed in [166] for the special case of G being
the X-ray transform and ψ ∈ C∞. We will here outline the proof and comment on the
main steps. We start by noting that the posterior concentrates on events that have high
enough prior probability. As a result, one can confine the analysis to an approximate
posterior arising from restricting the prior over such sets. This observation allows to
conveniently incorporate concentration properties of the prior into the analysis.

Lemma 2.2. Let Π(·|Y ε) be the posterior distribution arising from observation Y ε in
(2.4) and prior Π satisfying Condition 2.1 for a fixed f0 ∈ W and some sequence δε → 0,
such that δε/ε → ∞. Then, for any Borel set Dε ⊂ W for which

Π(Dc
ε) ≲ e−D(δε/ε)2

, for some D > 3, (2.33)

and all ε > 0 small enough, we have

Π(Dc
ε|Y ε) → 0 and ∥Π(·|Y ε) − ΠDε(·|Y ε)∥TV → 0 (2.34)

in P Y
f0-probability as ε → 0. Above ΠDε(·|Y ε) is the posterior arising from the prior

Π(· ∩ Dε)/Π(Dε) restricted to Dε and renormalised.

The proof of Lemma 2.2 (and Lemma 2.3 below) can be adapted from the correspond-
ing results in [166]. They are included for completeness in Appendix 2.C.

Next we need to find a suitable set Dε. If f ∼ Π, we have ⟨f, ψ̃⟩H ∼ N(0, ∥ψ̃∥2
H) for

all ψ̃ ∈ H, and the standard Gaussian tail bound guarantees for all t ≥ 0 that

Π
(
f : |⟨f, ψ̃⟩H|

∥ψ̃∥H
>
tδε
ε

)
≤ e− t2

2 (δε/ε)2
.

Hence we can choose

Dε =
{
f : |⟨f, ψ̃⟩H|

∥ψ̃∥H
≤ Tδε

ε

}
, T >

√
6. (2.35)

We assume that the test function ψ ∈ W1 fulfils |⟨ψ, φ⟩W1| ≤ ∥φ∥W , for all φ ∈ W1,
in order to extend Lψ(·) = ⟨·, ψ⟩W1 continuously to W. If we assume furthermore that
ψ = −G∗Gψ̃, with some ψ̃ ∈ H, we can proceed to study the moment generating function
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of ε−1(⟨f, ψ⟩W1 − Ψ̂) under the posterior ΠDε(·|Y ε), and conclude that it converges to
the moment generating function of the limiting Gaussian law.

Lemma 2.3. Under the conditions of Lemma 2.2, consider a test function ψ ∈ W1 such
that |⟨ψ, φ⟩W1 | ≲ ∥φ∥W , for all φ ∈ W1, and suppose that ψ = −G∗Gψ̃, for some ψ̃ ∈ H.
Define the random variable

Ψ̂ = ⟨f0, ψ⟩W1 − ε⟨Gψ̃,W⟩W2 .

Then, for all τ ∈ R we have as ε → 0

EΠDε

[
e

τ
ε

(⟨f,ψ⟩W1 −Ψ̂)
∣∣∣∣Y ε

]
= e

τ2
2 ∥Gψ̃∥2

W2

(
1 + oPY ε

f0
(1)
)
. (2.36)

To conclude, we note that the exponential in the right hand side of (2.36) coincides
with the moment generating function of the N(0, ∥Gψ̃∥2

W2) distribution. Since the
convergence of the Laplace transforms implies weak convergence (see, e.g., Proposition 1
in the supplement of [54]), we obtain from Lemma 2.3 that the conclusion of Theorem
2.1 holds for the approximate posterior ΠDε(·|Y ε). Furthermore, convergence in total
variation distance implies convergence in any metric for weak convergence and hence
Theorem 2.1 follows from Lemma 2.2.

2.5.2 Proof of Proposition 2.1

We now apply Theorem 2.1 to show the semiparametric result in the elliptic boundary
value problem setting of Section 2.3.2. As already noted before Proposition 2.1, any test
function ψ ∈ Hr+4

c = Hr+4
c (O) verifies the requirements of Theorem 2.1. Hence, we only

need to derive Condition 2.1 for the chosen prior. In particular, for Π a Gaussian prior
on L2 with RKHS Hr, r > d/2, and the true unknown f0 ∈ Hα

c , α ≥ 0, we find suitable
sequences δε that satisfy the estimate (2.18) for the concentration function

ϕΠ,f0(δ) = inf
g∈Hr, ∥g−f0∥(H2

0 )∗ ≤δ

∥g∥2
Hr

2 − log Π(f : ∥f∥(H2
0 )∗ ≤ δ), δ > 0. (2.37)

We proceed by calculating suitable upper bounds for the two terms. For the first term,
we need to find approximations for the unknown f0 ∈ Hα

c in the RKHS Hr of Π, for
which we can both control the approximation error and the norm in the latter space. We
employ the approximations used in Section 4.3.3 of [170]. In particular, we fix a compact
set F such that supp(f0) ⊊ F ⊊ O, and a cut-off function ζ ∈ C∞

c (Rd) such that ζ = 1



2.5 Proofs 53

on supp(f0), 0 ≤ ζ ≤ 1 and supp(ζ) ⊆ F. Noting that we can (isometrically) extend f0

to zero outside F to form an element in Hα(Rd), we then define

f0,ε = (ζF−11{|·|≤Nε}Ff0)|O, (2.38)

for a sequence Nε → ∞ as ε → 0 that will be chosen below.

Lemma 2.4. Let f0 ∈ Hα
c (O) for some α > 0, and fix a compact set F such that

supp(f0) ⊊ F ⊊ O. Then we have, for f0,ε as in (2.38) and for any sequence Nε → ∞
as ε → 0,

1. f0,ε ∈ H t
F (O) for all t ≥ 0 and

∥f0,ε∥2
Ht ≤ (1 +N2

ε )max{0,t−α}∥f∥2
Hα ; (2.39)

2. for all 0 ≤ s < α

∥f0,ε − f0∥2
Hs ≤ (1 +N2

ε )s−α∥f0∥2
Hα ; (2.40)

and for all s ≥ 0,

∥f0,ε − f0∥2
(Hs)∗ ≤ (1 +N2

ε )−s−α∥f0∥2
Hα . (2.41)

Proof. Let t ≥ 0 be fixed. Clearly supp(f0,ε) ⊆ supp(ζ) ⊆ F , and we can compute
directly

∥f0,ε∥2
Ht(O) ≤ ∥ζF−11{|·|≤Nε}Ff0∥2

Ht(Rd)

≲
∫
Rd

(1 + |ξ|2)t(1{|ξ|≤Nε}Ff0(ξ))2dξ

=
∫

|ξ|≤Nε

(1 + |ξ|2)t−α(1 + |ξ|2)α(Ff0(ξ))2dξ

≤ (1 +N2
ε )max{0,t−α}∥f0∥2

Hα(O).

For 0 ≤ s < α we proceed similarly, observing that f0 = ζf0 since ζ = 1 on supp(f0).
Then

∥f0,ε − f0∥2
Hs(O) ≤ ∥ζF−11{|·|≤Nε}Ff0 − ζf0∥2

Hs(Rd)

≲
∫
Rd

(1 + |ξ|2)s(1{|ξ|≤Nε}Ff0(ξ) − Ff0(ξ))2dξ

≤ (1 +N2
ε )s−α∥f0∥2

Hα(O).
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Finally, recalling that both f0 and f0,ε are supported in F ⊊ O, we get for all s ≥ 0

∥f0,ε − f0∥2
(Hs(O))∗ = sup

u∈Hs(O), ∥u∥Hs(O)≤1

∣∣∣∣ ∫
F

(f0,ε − f0)udx
∣∣∣∣

≤ sup
U∈Hs(Rd), ∥U∥

Hs(Rd)≤1

∣∣∣∣ ∫
F

(f0,ε − f0)U |Odx
∣∣∣∣

= sup
U∈Hs(Rd), ∥U∥

Hs(Rd)≤1

∣∣∣∣ ∫
F

(ζF−11{|·|≤Nε}Ff0 − ζf0)Udx
∣∣∣∣

≲ ∥F−11{|·|≤Nε}Ff0 − f0∥H−s(Rd)

≤ (1 +N2
ε )−s−α∥f∥2

Hα(O),

where the last line follows arguing just as above for the case 0 ≤ s < α.

We next derive an upper bound for the second term in (2.37). The proof adapts to the
inverse problem (2.22) standard computations in the theory of small balls probabilities
of Gaussian priors (e.g., [104, Section 7.3]).

Lemma 2.5. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS
H = Hr(O), r > d/2. Then, as δ → 0,

− log Π(f : ∥f∥(H2
0 (O))∗ ≤ δ) ≲ δ− d

r+2−d/2 .

Proof. Since for any f ∈ L2 we have f = L(L−1f), we can write

Π(f : ∥f∥(H2
0 )∗ ≤ δ) = Π(f : ∥L(L−1f)∥(H2

0 )∗ ≤ δ).

Recalling that L is self-adjoint when acting on H2
0 , we have for some c > 0 that

∥L(L−1f)∥(H2
0 )∗ = sup

v∈H2
0 , ∥v∥H2 ≤1

|⟨L(L−1f), v⟩L2 | ≤ c∥L−1f∥L2 ,

having used the boundedness of L. Thus,

− log Π(f : ∥f∥(H2
0 )∗ ≤ δ) ≤ − log Π

(
f : ∥L−1f∥L2 ≤ δ/c

)
= − log Π̃ (h : ∥h∥L2 ≤ δ/c)

where h = L−1f ∼ Π̃ for f ∼ Π. From Exercise 2.6.5 in [104] and the linearity of L−1,
we see that Π̃ is a Gaussian probability measure with RKHS H̃ = L−1(Hr) = Hr+2

0 , with
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unit ball BH̃ included in the unit ball Br+2 of Hr+2. We thus get the following upper
bound for the minimal number N(δ;BH̃, ∥ · ∥L2) of L2-balls or radius δ to cover BH̃:

N(δ;BH̃, ∥ · ∥L2) ≤ N(δ;Br+2, ∥ · ∥L2).

Theorem 4.3.36 in [104] now implies that

logN(δ;Br+2, ∥ · ∥L2) ≲ δ− d
r+2 ,

and by applying the small ball estimates in Theorem 1.2 of [152], we obtain that as δ → 0

− log Π̃ (h : ∥h∥L2 ≤ δ/c) ≲ δ− d
r+2−d/2 ,

concluding the proof.

Thus, applying Lemma 2.4, the first term in the estimate (2.24) follows by choosing,
for any fixed δ ≥ 0, Nε in (2.38) in such a way that

(1 +N2
ε )−2−α ≤ δ2,

so that, in view of (2.40) and (2.39) respectively, ∥f0,ε − f0∥(H2
0 )∗ ≲ δ and ∥f0,ε∥2

Hr ≲

δ− 2 max{0,r−α}
2+α . It can then be readily checked from (2.24) that the sequence δε in (2.25)

satisfies the required inequality ϕΠ,f0(δε) ≲ (δε/ε)2, concluding the proof of Proposition
2.1.

2.5.3 Proofs of Theorem 2.2 and Theorem 2.3

The key steps of the proof consist in a refinement of the strategy developed to prove
Theorem 2.1 and Proposition 2.1. Following [52, 53, 171], we first aim at obtaining
the Laplace transform convergence (2.36) uniformly with respect to the test functions
ψ ∈ Hβ

c , β > 2 + d/2 (cfr. Steps I-II). We subsequently exploit the result to show
Theorem 2.2, and to derive the convergence of the finite dimensional distributions of
the centred and scaled posterior L(ε−1(f − f̄ε)|Y ε) to those of the limiting Gaussian
measure µ (Step III). Finally, combining this observation with a suitable bound on the
covariance of the process Xε in (2.29), we show for each β > 2 + d that the distance
between L(ε−1(f − f̄ε)|Y ε) and µ, measured in the BL metric on (Hβ

K)∗, vanishes with
P Y
f0 -probability converging to one (Step IV-V).
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Step I: construction of the approximating sets

Let Π be a centred Gaussian prior on L2 = L2(O) with RKHS Hr, r > d/2, and let
f0 ∈ Hα

c be fixed. Recall that we assume the prior to undersmooth f0, namely that
α ≥ r − d/2. Then Remark 2.3 implies that Condition 2.1 is satisfied by taking

δε ≃ ε
2+r−d/2

2+r . (2.42)

In the first step we need to construct appropriate approximating sets Dε, by adapting
the events introduced in (2.35) for the proof of Theorem 2.1. First, to extend the
semiparametric result in Proposition 2.1 to the range 2 + d/2 < β < r + 4, we replace
the element ψ̃ = −LLψ (here not in the RKHS H = Hr) with a suitable approximation.
To deal with the possibly diverging norm of such approximations, we will then impose
additional constraints to control the size of f ∈ Dε. Finally, to achieve the required
uniformity in the Laplace transform convergence (2.36), we will further intersect the
resulting events across all test functions, in such a way as to maintain the exponential
decay (2.33) for Π(Dc

ε).
To proceed, let β > 2 + d/2, let K ⊂ O be compact and fix a compact set F such

that K ⊊ F ⊊ O. Then, for each ψ in a ball

Bβ
K(z) :=

{
v ∈ Hβ

K , ∥v∥Hβ ≤ z
}

(2.43)

of fixed radius z > 0, consider the approximation of Lψ given by Lemma 2.4, of the form

ψ̃ε =
(
ζF−11{|·|≤Nε}F [Lψ]

)
|O, Nε ≃ ε− 1

2+r . (2.44)

By point 1. in Lemma 2.4, we can uniformly control the Sobolev norms of the resulting
collection of approximations. Indeed, by the continuity of L, for all ψ ∈ Bβ

K(z) we have
∥Lψ∥Hβ−2 ≤ z′ for some constant z′ > 0, so that in view (2.39), for all t ≥ 0,

{
ψ̃ε, ψ ∈ Bβ

K(z)
}

⊆ Bt
F (btε),

where

btε := sup
ψ∈Bβ

K(z)
∥ψ̃ε∥Ht ≤ z′(1 +N2

ε )max{0,t−β+2}/2. (2.45)

Then, for all ψ ∈ Bβ
K(z), it follows in particular ψ̃ε ∈ Br+2

F (br+2
ε ), from which we deduce

that Lψ̃ε ∈ H = Hr. Thus, if f ∼ Π, then ⟨f, Lψ̃ε⟩H ∼ N(0, ∥Lψ̃ε∥2
H), with variance
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uniformly bounded, in view of the isomorphism property of L, by

σ2
ε := sup

ψ∈Bβ
K(z)

EΠ|⟨f, Lψ̃ε⟩H|2 ≃ (br+2
ε )2. (2.46)

Define, for each ε > 0, and D > 0 to be chosen below, the approximating set

Gε =

f : sup
ψ∈Bβ

K(z)
|⟨f, Lψ̃ε⟩H| ≤ Dσεδε/ε

 . (2.47)

Here Gε serves as the counterpart of the events (2.35), with the constraint holding
simultaneously for all ψ.

We derive the exponential decay (2.33) for Π(Gc
ε). First, denoting EΠ the expectation

under the prior, we have by the Borell-Sudakov-Tirelson inequality [104, Theorem 2.5.8]
that for all D̃ > 0

Π
f : sup

ψ∈Bβ
K(z)

|⟨f, Lψ̃ε⟩H| > EΠ sup
ψ∈Bβ

K(z)
|⟨f, Lψ̃ε⟩H| + D̃σεδε/ε

 ≤ e− D̃2
2 (δε/ε)2

. (2.48)

Thus, the condition (2.33) will follow if we show that EΠ supψ∈Bβ
K(z) |⟨f, Lψ̃ε⟩H| ≲ σεδε/ε.

Indeed, in view of (2.45), denoting Bs(z) a ball in Hs of radius z, for general s ≥ 0 and
z > 0,

EΠ sup
ψ∈Bβ

K(z)
|⟨f, Lψ̃ε⟩H| ≤ EΠ sup

v∈Bt+2(z′bt+2
ε )

|⟨f, Lv⟩H| ≲ EΠ sup
w∈Bt(z′′bt+2

ε )
|⟨f, w⟩H|,

and Dudley’s bound for the expectation of suprema of Gaussian processes [104, Theorem
2.3.8] yields, for σε the constant in (2.46),

EΠ sup
w∈Bt(z′′bt+2

ε )
|⟨f, w⟩H| ≲

∫ σε

0

√
logN(η;Bt(z′′bt+2

ε ), ∥ · ∥H)dη

=
∫ σε

0

√√√√logN
(

η

z′′bt+2
ε

, Bt(1), ∥ · ∥H

)
dη.

Fixing t > max{r + d/2, β − 4}, recalling H = Hr and using the known metric entropy
estimates for Sobolev balls (see, e.g., [227]), we then obtain

EΠ sup
w∈Bt(z′′bt+2

ε )
|⟨f, w⟩H| ≲

∫ σε

0

(
bt+2
ε /η

) d
2(t−r) dη ≲ (bt+2

ε )
d

2(t−r)σ
2t−2r−d

2(t−r)
ε .
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Using (2.46), it follows that

1
σε
EΠ sup

w∈Bt(z′′bt+2
ε )

|⟨f, w⟩H| ≲ (bt+2
ε )

d
2(t−r) (brε)

− d
2(t−r)

= (1 +N2
ε )

d(t−β+4)
4(t−r) (1 +N2

ε )− d max{0,r−β+4}
4(t−r)

≤ (1 +N2
ε )d/4.

Recalling that δε ≃ ε
2+r−d/2

2+r the choice Nε ≃ ε− 1
2+r , finally yields

1
σε
EΠ sup

ψ∈Bβ
K(z)

|⟨f, Lψ̃ε⟩H| ≲ ε− d
2(2+r) ≃ δε/ε.

Taking D̃ >
√

6 in (2.48), and sufficiently large D > D̃ in the definition (2.47) of Gε,
yields the exponential decay (2.33) for Π(Gc

ε).
Next, we proceed by suitably controlling the size of the elements in the approximating

sets. To do so, let, for Φ is the standard normal cumulative distribution function,

Qε = −2Φ−1
(
e− D̃2

2 (δε/ε)2
)

≃ δε/ε.

For ρ > 0 to be chose below and arbitrary κ > 0, Consider the event

Fε =
{
f = f1 + f2 : ∥f1∥L2 ≤ ρε

r−d/2
2+r , ∥f2∥H ≤ Qε + κ

}
(2.49)

in which we constraint the prior draws f ∼ Π to belong to (a slight enlargement of) a
ball of the RKHS H of growing radius. By the isoperimetric inequality for Gaussian
processes [104, Theorem 2.6.12] we can lower bound the prior probability of Fε by

Π(Fε) ≥ Φ
(

Φ−1
[
Π
(
f : ∥f∥L2 ≤ ρε

r−d/2
2+r

)]
+Qε

)
. (2.50)

Applying again the small ball estimate for Π in Theorem 1.2 in [152] as in the proof of
Lemma 2.5, we see that for some b > 0

− log Π
(
f : ∥f∥L2 ≤ ρε

r−d/2
2+r

)
≤ bρ− d

r−d/2 ε− d
2+r

and recalling that δε/ε ≃ ε− d/2
2+r , we can choose ρ > 0 so that

− log Π
(
f : ∥f∥L2 ≤ ρε

r−d/2
2+r

)
≤ (δε/ε)2.
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Combining the above with (2.50) yields

Π(Fε) ≥ Φ
(
Φ−1

(
e−(δε/ε)2)+Qε

)
≥ Φ

(
Φ−1

(
e− D̃2

2 (δε/ε)2
)

+Qε

)
= Φ(Qε/2),

and finally Π(F c
ε ) ≤ e− D̃2

2 (δε/ε)2
.

We conclude by taking

Dε = Gε ∩ Fε, (2.51)

for which the bounds on Π(Gc
ε) and Π(F c

ε ) imply Π(Dc
ε) ≤ 2e− D̃2

2 (δε/ε)2 , D̃2/2 > 3.

Step II: Laplace transform expansion

We proceed deriving an asymptotic expression, analogous to the one obtained in Lemma
2.3, for the Laplace transform of the linear functionals ⟨f, ψ⟩L2 . In view of the simultane-
ous constraint imposed in (2.47), the result holds uniformly with respect to test functions
ψ.

Lemma 2.6. Let Π be a Gaussian Borel probability measure on L2(O) with RKHS
H = Hr(O), r > d/2, and assume that f0 ∈ Hα

c (O), α ≥ r − d/2. For all β > 2 + d/2,
and any ψ ∈ Bβ

K(z) (defined as in (2.43)), z > 0, let ψ̃ε be the approximation in (2.44),
and define

Ψ̂(ψ) = ⟨f0, ψ⟩L2 + ε⟨ψ̃ε,W⟩L2 . (2.52)

Then, for all fixed τ ∈ R

EΠDε

[
e

τ2
ε

[⟨f,ψ⟩L2 −Ψ̂(ψ)]
∣∣∣∣Y ε

]
= eRεe

τ2
2 ∥Lψ∥2

L2
Π(Dε,τ |Y ε)
Π(Dε|Y ε) , (2.53)

where Dε,τ = {f − τεLψ̃ε, f ∈ Dε} and Rε → 0 uniformly in Bβ
K(z) for any z > 0 as

ε → 0.

Proof. We have

EΠDε

[
e

τ2
ε

[⟨f,ψ⟩L2 −Ψ̂(ψ)]
∣∣∣∣Y ε

]
= e−τ⟨ψ̃ε,W⟩L2EΠDε

[
e

τ
ε

⟨f−f0,ψ⟩L2

∣∣∣∣Y ε
]
,
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and letting fτ = f − τεLψ̃ε, the expectation in the right hand side becomes (cfr. (2.7))

EΠDε

[
e

τ
ε

⟨f−f0,ψ⟩L2

∣∣∣∣Y ε
]

=
∫

Dε
e

τ
ε

⟨f−f0,ψ⟩L2eℓε(f)−ℓε(fτ )eℓε(fτ )dΠ(f)∫
Dε
eℓε(f)dΠ(f) .

From the expression of the log-likelihood (2.6) we readily obtain

ℓε(f) − ℓε(fτ ) = τ 2

2 ∥ψ̃ε∥2
L2 + τ

ε
⟨L−1(f − f0), ψ̃ε⟩L2 + τ⟨ψ̃ε,W⟩L2 ,

which substituted into the previous expression yields, using the self-adjointness of L−1,

EΠDε

[
e

τ2
ε

[⟨f,ψ⟩L2 −Ψ̂(ψ)]
∣∣∣∣Y ε

]
(2.54)

= e
τ2
2 ∥ψ̃ε∥2

L2e− τ
ε

⟨L−1f0,Lψ−ψ̃ε⟩L2

∫
Dε
e

τ
ε

⟨L−1f,Lψ−ψ̃ε⟩L2eℓε(fτ )dΠ(f)∫
Dε
eℓε(f)dΠ(f) . (2.55)

In view of (2.40), we have that ∥ψ̃ε −Lψ∥L2 → 0 as ε → 0 uniformly in Bβ
K(z) for all

z > 0, and hence

e
τ2
2 ∥ψ̃ε∥2

L2 = (1 + o(1))e
τ2
2 ∥Lψ∥2

L2 . (2.56)

Next we prove that, uniformly in Bβ
K(z),

e− τ
ε

⟨L−1f0,Lψ−ψ̃ε⟩L2 = 1 + o(1). (2.57)

To do so, note

sup
ψ∈Bβ

K(z)

∣∣∣∣∣− 1
ε

⟨L−1f0, Lψ − ψ̃ε⟩L2

∣∣∣∣∣
= 1
ε

∥L−1f0∥Hα+2 sup
ψ∈Bβ

K(z)

∣∣∣∣∣
〈

L−1f0

∥L−1f0∥Hα+2
, Lψ − ψ̃ε

〉
L2

∣∣∣∣∣
≲

1
ε

sup
ψ∈Bβ

K(z)
∥Lψ − ψ̃ε∥(Hα+2

0 )∗

≲ ε−1(1 +N2
ε )

−α−β
2
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where the last line follows by (2.41). Recalling that Nε ≃ ε− 1
2+r , α ≥ r − d/2 and

β > 2 + d/2,

sup
ψ∈Bβ

K(z)

∣∣∣∣∣− τ

ε
⟨L−1f0, Lψ − ψ̃ε⟩L2

∣∣∣∣∣ ≲ 1
ε

(1 +N2
ε )

−α−β
2 ≃ ε

α+β−2−r
2+r → 0.

The following step consists in showing that, uniformly in Bβ
K(z),∫

Dε

e
τ
ε

⟨L−1f,Lψ−ψ̃ε⟩L2eℓε(fτ )dΠ(f) = (1 + o(1))
∫

Dε

eℓε(fτ )dΠ(f). (2.58)

The result will follow from the dominated convergence theorem upon showing that

sup
f∈Dε

sup
ψ∈Bβ

K(z)

∣∣∣∣τε ⟨L−1f, Lψ − ψ̃ε⟩L2

∣∣∣∣ → 0.

Recalling the definition (2.51) of Dε, we bound the left hand side by

sup
f∈Fε

sup
ψ∈Bβ

K(z)

∣∣∣∣τε ⟨L−1f, Lψ − ψ̃ε⟩L2

∣∣∣∣
≲

1
ε

sup
∥f1∥L2 ≤ρε

r−d/2
2+r

sup
ψ∈Bβ

K(z)

∣∣∣⟨L−1f1, Lψ − ψ̃ε⟩L2

∣∣∣
+ 1
ε

sup
∥f2∥H≤Qε+κ

sup
ψ∈Bβ

K(z)

∣∣∣⟨L−1f2, Lψ − ψ̃ε⟩L2

∣∣∣ .
Accordingly, it is enough to show the joint convergence of the two terms above, which
can be done similarly as in the derivation of (2.57). In particular

1
ε

sup
∥f1∥L2 ≤ρε

r−d/2
2+r

sup
ψ∈Bβ

K(z)

∣∣∣⟨L−1f, Lψ − ψ̃ε⟩L2

∣∣∣ ≲ ε
r−d/2

2+r
−1(1 +N2

ε )− β
2 → 0.

On the other hand, recalling that H = Hr,

1
ε

sup
∥f2∥H≤Qε+κ

sup
ψ∈Bβ

K(z)

∣∣∣⟨L−1f2, Lψ − ψ̃ε⟩L2

∣∣∣ ≲ ε−1(Qε + κ)(1 +N2
ε )− r+β

2 → 0,
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since δε ≃ ε
2+r−d/2

2+r and Qε = −2Φ−1
(
c′e− D̃2

2 (δε/ε)2
)

≃ δε/ε. Replacing (2.56), (2.57) and

(2.58) into (2.54) we obtain, uniformly in Bβ
K(z),

EΠDε
[
e

τ
ε

[⟨f,ψ⟩L2 −Ψ̂(ψ)]
∣∣∣Y ε

]
= (1 + o(1))e

τ2
2 ∥Lψ∥2

L2

∫
Dε
eℓε(fτ )dΠ(f)∫

Dε
eℓε(f)dΠ(f) . (2.59)

We conclude by further simplifying the ratio in the right hand side of (2.59) in the
same way as in the conclusion of the proof of Proposition 3.2 in [166]. Let Πτ be the law
of the shifted parameter fτ = f − τεLψ̃ε, and Dε,τ = {f − τεLψ̃ε, f ∈ Dε}. Then, the
Cameron-Martin theorem (e.g., Theorem 2.6.13 in [104]) yields

∫
Dε
eℓε(fτ )dΠ(f)∫

Dε
eℓε(f)dΠ(f) = e− (τε)2

2 ∥Lψ̃ε∥2
H

∫
Dε,τ

eℓε(g)e−τε⟨Lψ̃ε,g⟩HdΠ(g)∫
Dε
eℓε(g)dΠ(g) .

First note that by (2.39),

sup
ψ∈Bβ

K(z)
ε2∥Lψ̃ε∥2

H ≲ sup
ψ∈Bβ

K(z)
ε2∥ψ̃ε∥2

Hr+2 ≲ ε2− 2 max{0,r−β+4}
2+r → 0. (2.60)

Next, recalling the definitions (2.47) and (2.51) of Gε and Dε respectively, we have

sup
g∈Dε,τ

sup
ψ∈Bβ

K(z)
|ε⟨Lψ̃ε, g⟩H| = ε sup

f∈Dε

sup
ψ∈Bβ

K(z)
|(Lψ̃ε, f − τεLψ̃ε⟩H|

≤ ε

 sup
f∈Gε

sup
ψ∈Bβ

K(z)
|⟨Lψ̃ε, f⟩H| + |τ |ε sup

ψ∈Bβ
K(z)

∥Lψ̃ε∥2
H


≲ σεδε + o(1)

and, since β > 2 + d/2 and r > d/2, then σεδε ≲ ε
min{r+2−d/2,β−2−d/2}

2+r → 0. Thus, we
conclude that uniformly in Bβ

K(z) as ε → 0,

∫
Dε
eℓε(fτ )dΠ(f)∫

Dε
eℓε(f)dΠ(f) = (1 + o(1))

∫
Dε,τ

eℓε(g)dΠ(g)∫
Dε
eℓε(g)dΠ(g) = (1 + o(1))Π(Dε,τ |Y ε)

Π(Dε|Y ε) .

Step III: convergence of the finite dimensional distributions

We now exploit the previous lemma to show the convergence of the finite dimensional
distributions of the centred and scaled posterior to those of the Gaussian measure µ
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induced by the process X in (2.28). The result is obtained by showing that the ratio in
the right hand side of (2.53) converges to one, yielding, as in Lemma 2.3, the desired
asymptotic expression for the Laplace transform. This will in turn conclude the proof of
Theorem 2.2.

To proceed, consider the centring Gaussian process obtained by collecting the random
variables introduced in (2.52),

Ψ̂ε =
(
Ψ̂ε(ψ) : ψ ∈ Hβ

c

)
, Ψ̂ε(ψ) = ⟨f0, ψ⟩L2 + ε⟨ψ̃ε,W⟩L2 , ε > 0. (2.61)

In view of Lemma 2.1, and by the continuity of the linear map ψ ∈ Hβ
c 7→ ψ̃ε ∈ H t, t ≥ 0,

Ψ̂ε defines a Borel measurable map on (Hβ
c )∗, for β > 2 + d/2. Then, denote by

L
(
ε−1

(
f − Ψ̂ε

) ∣∣∣Y ε
)

= L(X̂ε), f ∼ Π (2.62)

the tight conditional law on (Hβ
c )∗ of

X̂ε =
(
X̂ε(ψ) : ψ ∈ Hβ

c

)
, X̂ε(ψ) = ε−1

(
⟨f, ψ⟩L2 − Ψ̂ε(ψ)

) ∣∣∣Y ε. (2.63)

Lemma 2.7. For any fixed ψ1, . . . , ψn ∈ Hβ
c , consider the following Borel probability

measures on Rn:

L
(
ε−1(f − Ψ̂ε)

∣∣∣Y ε
)
n

:= L
(
ε−1[⟨f, ψ1⟩L2 − Ψ̂ε(ψ1), . . . , ⟨f, ψn⟩L2 − Ψ̂ε(ψn)]

∣∣∣Y ε
)
,

where f ∼ Π, and
µn := L(X(ψ1), . . . , X(ψn)),

where X is as in (2.28). Then, denoting dRn the BL-metric for weak convergence on Rn,
we have in P Y

f0-probability as ε → 0.

dRn

(
L
(
ε−1

(
f − Ψ̂ε

) ∣∣∣Y ε
)
n
, µn

)
→ 0. (2.64)

Proof. By Lemma 2.2, it is enough to show (2.64) for f ∼ ΠDε , with Dε as in (2.51). Let
ψ ∈ Hβ

c be fixed. Then, by taking K = supp(ψ), Lemma 2.6 implies

EΠDε
[
e

τ
ε

[⟨f,ψ⟩L2 −Ψ̂ε(ψ)]
∣∣∣Y ε

]
= (1 + o(1))e

τ2
2 ∥Lψ∥2

L2
Π(Dε,τ |Y ε)
Π(Dε|Y ε) ,

and the proof is concluded by showing that the ratio on the right hand side converges to
1 in P Y

f0 -probability as ε → 0. Indeed, if this is the case, the convergence of the Laplace
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transform will imply that for any fixed ψ ∈ Hβ
c ,

dR
(
L
(
ε−1

(
⟨f, ψ⟩L2 − Ψ̂ε(ψ)

) ∣∣∣Y ε
)
,L(X(ψ))

)
→ 0, (2.65)

in P Y
f0 -probability as ε → 0; and, by the Cramer-Wold device, also (2.64) will follow by

replacing ψ with any finite linear combination ∑n
i=1 aiψi ∈ Hβ

c .
To proceed, first recall that Lemma 2.2 implies that Π(Dε|Y ε) → 1 in P Y

f0 -probability
as ε → 0. To apply the same result to the numerator, we show that the prior probability
of Dc

ε,τ decays exponentially as required by (2.33). Note

Dε,τ = {f − τεLψ̃ε, f ∈ Gε ∩ Fε} = Gε,τ ∩ Fε,τ ,

where Gε,τ , Fε,τ are defined analogously to the set Dε,τ introduced in the previous lemma.
It is hence enough to deduce (2.33) for Gε,τ and Fε,τ separately.

First, from the definition of Gε in (2.47), we see that

Gε,τ ⊇

g : sup
ϕ∈Bβ

K(z)
|⟨g, Lϕ̃ε⟩H| ≤ Dσεδε/ε− |τε|∥Lψ̃ε∥H sup

ϕ∈Bβ
K(z)

∥Lϕ̃ε∥H

 .
Now, using (2.46) and recalling δε ≃ ε

2+r−d/2
2+r ,

ε∥Lψ̃ε∥H sup
ϕ∈Bβ

K(z)
∥Lϕ̃ε∥H ≲ ε1− max{0,r−β+4}

2+r σε = o (σεδε/ε) .

Then, for all ε > 0 small enough

Gε,τ ⊇

g : sup
ϕ∈Bβ

K(z)
|⟨g, Lϕ̃ε⟩H| ≤ Dσεδε/ε

 ,
and by our particular choices of D > D̃ >

√
6 we obtain (via the Borel-Sudakov-Tirelson

inequality) that Π(Gc
ε,τ ) ≤ e− D̃2

2 (δε/ε)2
. On the other hand, for Fε defined in (2.49),

Fε,τ ⊇
{
f1 + f ′

2 : ∥f1∥L2 ≤ ρε
r−d/2

2+r , ∥f ′
2∥H ≤ Qε + κ− |τ |ε∥Lψ̃ε∥H

}

and since, by (2.60), ε∥Lψ̃ε∥H → 0 as ε → 0, we have Qε + κ − |τ |ε∥Lψ̃ε∥H > Qε for
ε > 0 small enough. Then, for all such ε > 0,

Fε,τ ⊇
{
f1 + f ′

2 : ∥f1∥L2 ≤ ρε
r−d/2

2+r , ∥f ′
2∥H ≤ Qε

}
,
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and by the isoperimetric inequality for Gaussian processes we can conclude that Π(F c
ε,τ ) ≲

e− D̃2
2 (δε/ε)2

, D̃ >
√

6, as required.

Using the same argument as in the conclusion of the proof of Theorem 2.1, we deduce
from the above lemma that the semiparametric BvM phenomenon displayed in (2.27)
does occur for all β > 2 + d/2, concluding the proof of Theorem 2.2.

Step IV: weak convergence in (Hβ
K)∗

Assume now that β > 2 + d. Combining the convergence of the finite dimensional
distribution established in the previous step with a uniform bound on the covariance
of the process X̂ε in (2.63) implied by Lemma 2.6, we show that L(ε−1(f − Ψ̂ε)|Y ε)
converges weakly to µ. That Ψ̂ε can be replaced by the posterior mean f̄ε can then be
shown analogously as in the proof of Theorem 2.7 in [166]; see Step V in Appendix 2.C.

It is again enough to consider the restricted prior ΠDε . Thus, for any fixed compact
set K ⊂ O, let Π̃Dε(·|Y ε) be the tight Gaussian law on (Hβ

K)∗ induced by X̂ε,K :=
(X̂ε(ψ) : ψ ∈ Hβ

K), where X̂ε(ψ) is as in (2.63) with f ∼ ΠDε . To exploit the convergence
of the finite dimensional distributions, we further consider ‘projections’ of Π̃Dε(·|Y ε)
onto suitable subspaces. In particular, let {Φlr, l ≥ −1, r = 1, . . . Nl}, Nl ≲ 2ld, be
an orthonormal basis of L2(O) of sufficiently regular boundary corrected Daubechies
wavelets. We will exploit the fact that such basis conveniently characterises the Sobolev
regularity of the test functions in terms of the decay of the wavelets coefficients (see [228]
or also Chapter 4 of [104] for details).

For any λ ∈ N and all ψ ∈ Hβ
K , let Pλψ denote the projection of ψ onto the finite

dimensional subspace spanned by {Φlr, l ≤ λ, r ≤ Nl}. Next, define the projected
posterior Π̃Dε

λ (·|Y ε) as the law of the process PλX̂ε,K := (X̂ε(Pλψ) : ψ ∈ Hβ
K); define

analogously the projected limiting law µλ. For d = d(Hβ
K)∗ the BL-metric for weak

convergence of probability measures defined on (Hβ
K)∗, the triangular inequality then

yields

d(Π̃Dε(·|Y ε), µ) ≤ d
(
Π̃Dε(·|Y ε), Π̃Dε

λ (·|Y ε)
)

+ d
(
Π̃Dε
λ (·|Y ε), µλ

)
+ d (µλ, µ) . (2.66)

We show that the three term in the right hand side vanish. For the first, recalling the
definition of the BL-metric (2.31), we have
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d
(
Π̃Dε(·|Y ε), Π̃Dε

λ (·|Y ε)
)

= sup
F :(Hβ

K)∗→R, ∥F∥Lip≤1

∣∣∣EΠDε [F (X̂ε,K) − F (PλX̂ε,K)]
∣∣∣

≤ EΠDε
∥∥∥X̂ε,K − PλX̂ε,K

∥∥∥
(Hβ

K)∗
,

which, by definition of the norm in (Hβ
K)∗, equals

EΠDε sup
ψ∈Bβ

K(1)
|X̂ε(ψ − Pλψ)| ≤ EΠDε sup

ψ∈Bβ
K(1)

∑
l>λ

Nl∑
r=1

|⟨ψ,Φlr⟩L2||X̂ε(Φlr)|,

with Bβ
K(1) defined as in (2.43). Note that, as supp(ψ) ⊂ K, for λ large enough (only

depending on K) the above sum involves only wavelets that are compactly supported
within O. We now apply Hölder’s inequality and the wavelet characterisation of Sobolev
norms to upper bound the right hand side by

EΠDε sup
ψ∈Bβ

K(1)

∑
l>λ

√√√√ Nl∑
r=1

⟨ψ,Φlr⟩2
L2

√√√√ Nl∑
r=1

|X̂ε(Φlr)|2 ≲
∑
l>λ

2−lβEΠDε

√√√√ Nl∑
r=1

|X̂ε(Φlr)|2.

Jensen’s inequality implies the further upper bound

∑
l>λ

2−(β−β′)l

√√√√ Nl∑
r=1

EΠDε |X̂ε(2−β′lΦlr)|2

having scaled the wavelets by a factor 2−β′l for some 2 + d/2 < β′ < β − d/2 (possible
since we here assume β > 2 + d). In particular, since ∥Φlr∥2

Hβ′ ≃ 22β′l, we have that
2−β′lΦlr ∈ Bβ′

c (1). Using Lemma 2.6 and the fact that ∥LΦlr∥2
L2 ≲ ∥Φlr∥H2 ≃ 24l, we

obtain

EΠDε

[
eX̂ε(2−β′lΦlr)

∣∣∣Y ε
]

= eRεe
1
2 ∥2−β′lLΦlr∥2

L2
Π(Dε,τ |Y ε)
Π(Dε|Y ε)

≤ eRε

Π(Dε|Y ε)e
2−2β′l−1∥LΦlr∥2

L2

≲ rε

= OPY ε
f0

(1)
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having lower bounded the probability on the denominator by Lemma 2.2. Then, since
x2 ≤ ex + e−x for all x ∈ R,

EΠDε |X̂ε(2−β′lΦlr)|2 ≤ EΠDε
eX̂ε(2−β′lΦlr) + EΠDε

e−X̂ε(2−β′lΦlr) ≲ rε.

We thus obtain, recalling Nl ≃ 2ld,

d
(
Π̃Dε(·|Y ε), Π̃Dε

λ (·|Y ε)
)
≲
∑
l>λ

2−(β−β′)l

√√√√ Nl∑
r=1

rε ≲ r′
ε

∑
l>λ

2−(β−β′−d/2)l.

Since we have chosen β′ < β − d/2, the latter series is convergent, implying that the
right hand side vanishes if λ → ∞.

For the second term in (2.66), we can deduce directly from Lemma 2.7 that for any
fixed λ we have d(Π̃Dε

λ (·|Y ε), µλ) → 0 in P Y
f0 -probability as ε → 0. For the third term we

proceed similarly to the first, obtaining

d(µ, µλ) = E sup
ψ∈Bβ

K(1)
|X(ψ − Pλψ)| ≲

∑
l>λ

2−βl

√√√√ Nl∑
r=1

E|X(Φlr)|2.

Recall X(Φlr) ∼ N(0, ∥LΦlr∥2
L2). Hence

d(µ, µλ) ≲
∑
l>λ

2−βl22l
√
Nl ≤

∑
l>λ

2−(β−2−d/2)l

which again converges since β > 2 + d. To conclude, we can fix arbitrarily ε′ > 0, and
then find λ = λ(ε′) sufficiently large so that the first and third term in (2.66) are smaller
than ε′. For such value of λ, the second term can be made smaller that ε′ by choosing ε
small enough with P Y

f0 -probability approaching one, implying that d(Π̃Dε(·|Y ε), µ) → 0
in P Y

f0 -probability as ε → 0.

Appendix 2.A Information lower bound for linear
inverse problems

Let Y ε be given by (2.4) with f = f0, and let ℓε(f) = log pf(Y ε), f ∈ W , be the
log-likelihood in (2.6). For any h ∈ W , ε > 0, we have

log pf0+εh(Y ε)
pf0(Y ε) = ℓε(f0 + εh) − ℓε(f0) = ⟨Gh,W⟩W2 − 1

2∥Gh∥2
W2 .



68 Chapter 2. Bernstein–von Mises theorems for linear inverse problems

Recalling ⟨Gh,W⟩W2 ∼ N(0, ∥Gh∥2
W2), the model is seen to be locally (asymptotically)

normal (LAN), with LAN-inner product and norm respectively given by

⟨·, ·⟩LAN = ⟨G·, G·⟩W2 , ∥ · ∥LAN = ∥G · ∥W2 .

Let ψ ∈ W1 satisfy the assumptions of Theorem 2.1, and consider the continuous
linear map

Lψ : W → R, Lψ(h) = ⟨h, ψ⟩W1 ,

defined by extension using the fact that W1 ⊆ W is dense. As by assumption ψ = −G∗Gψ̃

for some ψ̃ ∈ H, then for all h ∈ W

Lψ(h) = ⟨h, ψ⟩W1 = ⟨h,−G∗Gψ̃⟩W1 = ⟨h,−ψ̃⟩LAN ,

so that the Riesz representer with respect to the LAN-inner product of the linear
functional Lψ is −ψ̃. We then deduce from the semiparametric theory of efficiency
(see Chapter 25 in [234], or Section 7.5 in [171]) that the information lower bound for
estimating Lψ(f0) = ⟨f0, ψ⟩W1 from model (2.4) is identified by the random variable

Z ∼ N(0, ∥ψ̃∥LAN) = N 0, ∥Gψ̃∥W1),

and we have the lower bound (2.14) for the asymptotic minimal variance . Note that when
G∗G has a well defined inverse we can write ∥Gψ̃∥2

W2 = ∥(G∗G)−1ψ∥2
LAN . In analogy

with the finite-dimensional case, we then sometimes call G∗G the Fisher information
operator.

Appendix 2.B Properties of elliptic boundary value
problems

We list here some key facts relative to the boundary value problem (2.19) following from
the general elliptic theory (see, e.g., the monographs [153, 205]). We start noting that
the operator L defines a bounded linear operator from Hs = Hs(O) into Hs−2 for all
s ≥ 2, and, in view of the symmetry of the coefficients aij, it is also self-adjoint with
respect to ⟨·, ·⟩L2 when acting upon H2

0 .
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If, in addition, we assume the uniform ellipticity condition:

d∑
i,j=1

aij(x)ξiξj ≥ a|ξ|2, ∀x ∈ O, ξ = (ξ1, . . . , ξd) ∈ Rd,

for some constant a > 0, then for all s ≥ 0 and any f ∈ Hs, there exists a unique weak
solution uf ∈ Hs+2

0 of (2.19) satisfying the variational formulation of the problem:

∫
O

d∑
i,j=1

aij
∂uf
∂xi

∂v

∂xj
=
∫

O
fv, ∀v ∈ H1

0 . (2.67)

Furthermore, we have the elliptic estimates

∥uf∥Hs+2 ≤ cs∥f∥Hs ,

for constants cs > 0 depending only on s. These results follow directly from Theorem 5.4
in [153, Chapter 2] (see also remark 7.2 in the same reference) by noting that uf = 0 is
the unique smooth solution of (2.19) with f = 0 (e.g., in view of Theorem 3 and Theorem
4 in [89, Section 6.3]). Finally, as pointed out in Remark (ii), page 310 in [89], it follows
that Luf = f almost everywhere on O.

With a slight abuse of notation, let L−1 denote the solution map, so that L−1f = uf

is the unique element in Hs+2
0 that satisfies (2.67). Also, in view of the uniqueness

of weak solutions, L−1Lu = u for all u ∈ H2
0 . From the above results we have that

L−1 : Hs → Hs+2
0 , s ≥ 0, defines a linear and bounded isomorphism which is self-adjoint

on L2 (following from the self-adjointness of L).

Appendix 2.C Remaining proofs

2.C.1 Proof of Corollary 2.2

The proof follows the argument in Section 2 of [52]. We start by noting that the function
Φ : [0,∞) → [0, 1] is uniformly continuous and strictly increasing, with continuous inverse
Φ−1 : [0, 1] → [0,∞). Thus, for every γ > 0 we can find ε > 0 such that |Φ(t+ε)−Φ(t)| ≤
γ, ∀t ≥ 0. For such ε and for all t ≥ 0, denoting B(0, t) = {x ∈ R, |x| ≤ t}, we have

Pr(t− ε < |Z| ≤ t+ ε) = Φ(t+ ε) − Φ(t− ε) ≤ 2γ.
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Thus, applying Corollary 7.3.22 in [104] to L(ε−1⟨f − f̄ε, ψ⟩W1|Y ε) converging weakly to
L(Z) in P Y

f0 -probability as ε → 0, we deduce that

sup
0≤t<∞

∣∣∣Π(ε−1⟨f − f̄ε, ψ⟩W1 ∈ B(0, t)|Y ε) − Pr(Z ∈ B(0, t))
∣∣∣ = oPY ε

f0
(1)

as ε → 0. Thus, recalling the definition of Rε after (2.15)

Φ(ε−1Rε) = Pr(|Z| ≤ ε−1Rε) − Π(ε−1|⟨f − f̄ε, ψ⟩W1| ≤ ε−1Rε|Y ε) + 1 − α

= 1 − α + oPY ε
f0

(1)

as ε → 0 by the above with t = ε−1Rε. Since Φ−1 is continuous, the continuous mapping
theorem yields

ε−1Rε = Φ−1[Φ(ε−1Rε)]
PY

f0−→ Φ−1(1 − α).

Then the first claim follows using Theorem 2.1, as

P Y ε

f0 (⟨f0, ψ⟩W1 ∈ Cε) = P Y ε

f0 (ε−1|⟨f0 − f̄ε, ψ⟩W1| ≤ ε−1Rε)
= P Y ε

f0

(
ε−1|⟨f0 − f̄ε, ψ⟩W1| ≤ Φ−1(1 − α)

)
+ o(1)

= Pr
(
|Z| ≤ Φ−1(1 − α)

)
+ o(1)

= 1 − α + o(1).

2.C.2 Proof of Lemma 2.1

1. First assume that β > 2 + d/2, and let Bβ
c (1) := {h ∈ Hβ

c , ∥h∥Hβ ≤ 1}. According to
(2.28), X|Bβ

c (1) := (X(ψ) : ψ ∈ Bβ
c (1)) is a Gaussian process with intrinsic distance

d2
X(ψ, ψ′) := E[X(ψ) −X(ψ′)]2 ≲ ∥ψ − ψ′∥2

H2 .

Next, from Edmund and Triebel’s upper bound for the entropy numbers in general
Besov spaces (see [227]) we deduce that, for positive reals s1 < s2, letting Bs(r) := {h ∈
Hs, ∥h∥Hs ≤ r}, r > 0,

logN(η;Bs2(1), ∥ · ∥Hs1 ) ≲ η
− d

s2−s1 , η > 0. (2.68)
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Then it follows from Dudley’s metric entropy inequality [104, Theorem 2.3.7] that for all
z > 0

E sup
ψ∈Bβ

c (1), ∥ψ∥H2 ≤z
|X(ψ)| ≲

∫ z

0

√
2 logN(η;Bβ(1), ∥ · ∥H2)dη ≲

∫ z

0
η− d

2(β−2)dη, (2.69)

which is indeed convergent for all β > 2 + d/2. Thus, letting z → 0 in (2.69) implies that
X|Bβ

c (1) has a version taking values in the separable Banach space

(B, ∥ · ∥B), B = UC(Bβ
c (1), dX), ∥x∥B = sup

ψ∈Bβ
c (1)

|x(ψ)|, (2.70)

of bounded and uniformly continuous (with respect to the metric dX on Bβ
c (1)) pre-linear

functionals on Bβ
c (1), the separability following from Corollary 11.2.5 in [79] since, in

view of (2.68), Bβ
c (1) is totally bounded for the metric dX if β > 2. Finally, as according

to (2.70) B is an isometrically imbedded closed subspace of (Hβ
c )∗, we deduce from

Oxtoby-Ulam theorem (Proposition 2.1.4 in [104]) that X|Bβ
c (1) induces a tight Borel

Gaussian probability measure on B, which has a unique extension to (Hβ
c )∗.

2. For β < 2 + d/2, as Hβ
c ⊂ Hβ′

c with continuous embedding if β′ < β, it is enough
to show that Pr

(
supψ∈Bβ

c (1) |X(ψ)| < ∞
)

= 0 for 2 < β < 2 + d/2. We proceed by
contradiction, assuming on the contrary that

Pr
 sup
ψ∈Bβ

c (1)
|X(ψ)| < ∞

 > 0. (2.71)

In view of (2.68), Bβ
c (1) is separable with respect to the intrinsic metric dX for any β > 2.

Hence, Proposition 2.1.12 in [104] and (2.71) jointly imply, by Proposition 2.1.20 in [104],
that E supψ∈Bβ

c (1) |X(ψ)| < ∞, which we will show to yield a contradiction. To do so,
note that (X(L−1ψ) : ψ ∈ Hβ

c ) has the same law on RHβ
c as the standard Gaussian white

noise W. Thus,
E sup

ψ∈Bβ
c (1)

|X(ψ)| = E sup
ψ∈Bβ

c (1)
|⟨Lψ,W⟩L2|,

and the proof is completed by finding a suitable lower bound to show that the right hand
side diverges.

Considering the orthonormal Daubechies wavelet basis of L2 introduced in Step IV in
Section 2.5.3, select for each j ≥ 1, nj = c′2jd, c′ > 0, wavelets {Φjr, r = 1, . . . , nj} with
disjoint compact support within O. Next, for each m = 1, . . . , 2nj and bm· = (bmr, r =
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1, . . . , nj) ∈ {−1, 1}nj , define

hjm(x) = kj

nj∑
r=1

bmr2−jβΦjr(x), x ∈ O, (2.72)

where kj > 0 is to be fixed. Recall that it is enough to consider 2 < β < 2 + d/2. We
have hjm ∈ Hβ

c , and by the usual wavelet characterisation of the Sobolev norms

∥hjm∥2
Hβ ≃

∑
l≥−1

nj∑
s=1

22lβ⟨hjm,Φls⟩2
L2 = k2

jnj.

Hence, choosing kj < n
−1/2
j guarantees that {hjm, m = 1, . . . , 2nj } ⊂ Bβ

c (1), yielding the
lower bound

E sup
ψ∈Bβ

c (1)
|⟨Lψ,W⟩L2| ≥ E max

m=1,...,2nj
|⟨Lhmj,W⟩L2|, j ≥ 1,

which we can further bound from below by restricting the maximum to a suitable smaller
subset. In particular, the Gaussian vector (W(Lhjm), m = 1, . . . , 2nj ) has intrinsic metric

d2
j(hjm, hjm′) = ∥L(hjm − hjm′)∥2

L2 = k2
j2−2jβ

∥∥∥∥∥
nj∑
r=1

(bmr − bm′r)LΦjr

∥∥∥∥∥
2

L2

;

and arguing as in the proof of Proposition 6 in [171] we can select, for sufficiently large j,
a subset {hj1, . . . , hjmj

} ⊆ {hjm, m = 1, . . . , 2nj } of cardinality mj ≥ 3nj/4, such that

d2
j(hjh, hjk) ≳ 22j(2−β), h ̸= k.

Thus, by applying Sudakov’s lower bound [104, Theorem 2.4.12], we deduce that for all
such j

E max
m=1,...,2nj

|⟨Lhjm,W⟩L2 | ≥ E max
h=1,...,mj

{|⟨Lhjh,W⟩L2|}

≥ c2j(2−β)
√

logN(2j(2−β); {hj1, . . . , hjmj
}, dj)

≥ c′2j(2−β)
√

logmj

≥ c′′2j(2+d/2−β).

The last line diverges as j → ∞ for all β < 2 + d/2, yielding the contradiction.
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3. Assuming tightness on (Hβ
c )∗ for β = 2 + d/2 would imply (exactly as above) that

X were sample bounded and, in view of Proposition 2.1.7 in [104], also sample continuous
with respect to dX . Then, Proposition 2.4.14 in [104] would yield

lim
η→0

η
√

logN(η;Bβ
c (1), d) = 0

which, taking the sequence ηj = 2j(2−β) = 2−jd/2, is in contrast with the fact that

2j(2−β)
√

logN(2j(2−β);Bβ
c (1), d) ≥ 2j(2−β)

√
logN(2j(2−β); {hj1, . . . , hjmj

}, dj),

and that the right hand side is bounded below by a positive constant for β = 2 + d/2, as
seen above.

2.C.3 Proof of supporting lemmas for Theorem 2.1

Proof of Lemma 2.2

We start by noting that Π(B) = Π(B ∩ Dε) + Π(B ∩ Dc
ε) and

Π(B ∩ Dε) − ΠDε(B) = Π(B ∩ Dε)
Π(W)

− Π(B ∩ Dε)
Π(Dε)

= −Π(Dc
ε)ΠDε(B)

which implies ∥Π(·|Y ε) − ΠDε(·|Y ε)∥TV ≤ 2Π(Dc
ε|Y ε). Hence it suffices to prove the

first limit in (2.34). This will be done using Markov’s inequality and showing that
EY ε

f0 (Π(Dc
ε|Y ε)) → 0. In particular, we split the expectation as

EY ε

f0 (Π(Dc
ε|Y ε)) = EY ε

f0 (Π(Dc
ε|Y ε)1Fε) + EY ε

f0 (Π(Dc
ε|Y ε)1Fc

ε
) (2.73)

where Fε is a suitable event to be specified for which P Y ε

f0 (Fε) → 0, yielding the
cancellation of the first term, at a sufficiently slow rate so that also the second vanishes
due to the assumption on Π(Dc

ε).
We proceed constructing Fε. For ℓε(f) the log-likelihood defined in (2.6), we can

rewrite the posterior (2.7) as

Π(B|Y ε) =
∫
B e

ℓε(f)−ℓε(f0)dΠ(f)∫
W eℓε(f)−ℓε(f0)dΠ(f) , B ∈ BW . (2.74)
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It follows from (2.6) that under P Y ε

f0 we have

ℓε(f) − ℓε(f0) = 1
ε

⟨G(f − f0),W⟩W2 − 1
2ε2 ∥G(f − f0)∥2

W2 .

Let ν be any probability measure on the set B = {f : ∥G(f − f0)∥ ≤ δε}. Applying
Jensen’s inequality to the exponential function we get for any C̃ > −1/2

P Y ε

f0

(∫
B
eℓε(f)−ℓε(f0)dν(f) ≤ e−(1+C̃)(δε/ε)2

)
≤ Pr

(
Eν

(1
ε

⟨G(f − f0),W⟩W2 − 1
2ε2 ∥G(f − f0)∥2

W2

)
≤ −(1 + C̃) (δε/ε)2

)
.

Denote Z = 1
ε

∫
B⟨G(f − f0),W⟩W2dν(f) ∼ N(0, CZ) where, using again Jensen’s inequal-

ity,

CZ = 1
ε2E (Eν⟨G(f − f0),W⟩W2)2

≤ 1
ε2E

ν
(
E⟨G(f − f0),W⟩2

W2

)
= 1
ε2

∫
B

∥G(f − f0)∥2
W2dν(f)

≤ (δε/ε)2 .

We can then conclude

P Y ε

f0

(∫
B
eℓε(f)−ℓε(f0)dν(f) ≤ e−(1+C̃)(δε/ε)2

)
= Pr

(
|Z − EZ| ≥

(1
2 + C̃

)
(δε/ε)2

)
≤ e− (1/2+C̃)2

2 (δε/ε)2

the last inequality following from the standard Gaussian tail bound Pr(|Z −EZ| ≥ c) ≤
e−c2/(2V ar(Z)). We can now choose ν = Π(· ∩B)/Π(B) and let

Fε =
{
f :

∫
B
eℓε(f)−ℓε(f0)dν(f) ≤ e− 3

2 (δε/ε)2
}
.

Using the above with C̃ = 1/2 we see that P Y ε

f0 (Fε) ≤ e− 1
2 (δε/ε)2 → 0, which implies that

the first term in (2.73) tends to zero since Π(·|Y ε) ≤ 1.
For the second term study the small ball probabilities Π(B) = Π(f : ∥G(f −f0)∥W2 ≤

δε) using the condition (2.9) on the concentration function. We see from (2.74) that
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EY ε

f0 (Π(Dc
ε|Y ε)1Fc

ε
) ≤ EY ε

f0

 ∫
Dc

ε
eℓε(f)−ℓε(f0)dΠ(f)∫

B e
ℓε(f)−ℓε(f0)Π(B)dν(f) 1Fc

ε


≤ e2(δε/ε)2

Π(f : ∥G(f − f0)∥2
W2 ≤ δ2

ε)

∫
Dc

ε

EY ε

f0

(
eℓε(f)−ℓε(f0)

)
dΠ(f).

For f ∼ Π, denote the concentration function of the (image) Gaussian measure Π̃ = L(Gf)
as

ϕ̃Π,f0(δ) = inf
Gg∈H̃, ∥G(g−f0)∥W2 ≤δ

∥Gg∥2
H̃

2 − log Π(f : ∥Gf∥W2 ≤ δ).

Following Proposition 2.6.19 in [104] we next show that

Π(f : ∥G(f − f0)∥2
W2 ≤ δ2) ≥ e−ϕ̃Π,f0 (δ/2).

Let g ∈ H be such that ∥G(g−f0)∥W2 ≤ δ/2. Then ∥G(f−f0)∥W2 ≤ ∥G(f−g)∥W2 +δ/2.
We denote Πg(B) = Π(B − g) = Π(f : f + g ∈ B). Using the Cameron-Martin theorem
[38, Corollary 2.4.3.] and the fact that f is a centred Gaussian random variable we can
write

Π(f : ∥G(f − f0)∥W2 ≤ δ)
≥ Π(f : ∥G(f − g)∥W2 ≤ δ/2)

= 1
2

(
Π−Gg

(
f : ∥Gf∥W2 ≤ δ

2

)
+ ΠGg

(
f : ∥Gf∥W2 ≤ δ

2

))

= 1
2

∫
{∥f̃∥W2 ≤ δ

2 }

dΠ̃−g̃(f̃)
dΠ̃(f̃)

dΠ̃(f̃) +
∫

{∥f̃∥W2 ≤ δ
2 }

dΠ̃g̃(f̃)
dΠ̃(f̃)

dΠ̃(f̃)


= 1
2

(∫
{∥f̃∥W2 ≤ δ

2 }

(
e−⟨g̃,f̃⟩H̃ + e⟨g̃,f̃⟩H̃

)
e−

∥̃g∥2
H̃

2 dΠ̃(f̃)
)

≥ e−
∥Gg∥2

H̃
2 Π

(
f : ∥Gf∥W2 ≤ δ

2

)

where Gg = g̃ and Gf = f̃ . The last inequality follows from the fact e−x + ex ≥ 2 for all
x ∈ R. We can then conclude

EY ε

f0 (Π(Dc
ε|Y ε)1Fc

ε
) ≤ e2(δε/ε)2

eϕ̃Π,f0 (δε/2)Π(Dc
ε)
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since EY ε

f0

(
eℓε(f)−ℓε(f0)

)
= 1.

Note that G is assumed to be linear and injective and hence the RKHS H̃ = G(H) of
Gf is isometric to H (see Exercise 2.6.5 in [104]). By assumption, ∥Gf∥W2 ≤ c∥f∥W for
all f ∈ W , which implies

− log Π(f : ∥Gf∥W2 ≤ δ) ≤ − log Π (f : ∥f∥W ≤ δ/c) .

We also have ∥G(g−f0)∥W2 ≤ c∥g−f0∥W and hence ϕ̃Π,f0(δ) ≤ ϕΠ,f0(δ/c) for all δ. Thus
by (2.9) and assumption (2.33) we can conclude

EY ε

f0 (Π(Dc
ε|Y ε)1Fc

ε
) ≤ e2(δε/ε)2

eϕΠ,f0 (δε/2c)Π(Dc
ε) ≤ e(3−D)(δε/ε)2 → 0.

Proof of Lemma 2.3

Denote fτ = f + τεψ̃. Then the left hand side of (2.36) can be written as

EΠDε
[
e

τ
ε

⟨f−f0,ψ⟩W1 +τ⟨Gψ̃,W⟩W2
∣∣∣Y ε

]
=
∫

W e
τ
ε

⟨f−f0,ψ⟩W1 +τ⟨Gψ̃,W⟩W2 +ℓε(fτ )−ℓε(fτ )+ℓε(f)dΠDε(f)∫
W eℓε(f)dΠDε(f) .

Using (2.6) we see that under P Y ε

f0

ℓε(f) − ℓε(fτ ) = τ

ε
⟨G(f − f0), Gψ̃⟩W2 + τ 2

2 ∥Gψ̃∥2
W2 − τ⟨Gψ̃,W⟩W2

and hence

EΠDε

[
e

τ
ε

(⟨f,ψ⟩W1 −Ψ̂)
∣∣∣Y ε

]
= e

τ2
2 ∥Gψ̃∥2

W2

∫
Dε
eℓε(fτ )dΠ(f)∫

Dε
eℓε(f)dΠ(f) . (2.75)

Let Πτ be the shifted law of fτ , f ∼ Π. Then by the Cameron-Martin theorem [38,
Corollary 2.4.3.] we get, denoting Dε,τ = {g = fτ : f ∈ Dε},

∫
Dε,τ

eℓε(g) dΠτ (g)
dΠ(g) dΠ(g)∫

Dε
eℓε(g)dΠ(g) =

∫
Dε,τ

eℓε(g)eτε⟨ψ̃,g⟩H− (τε)2
2 ∥ψ̃∥2

HdΠ(g)∫
Dε
eℓε(g)dΠ(g) . (2.76)
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Since ψ̃ is a fixed element in H, we see that ε2∥ψ̃∥2
H → 0 as ε → 0. Using the definition

of Dε in (2.35) we see, as ε → 0,

ε sup
g∈Dε,τ

|⟨ψ̃, g⟩H| = ε sup
f∈Dε

|⟨ψ̃, f + τεψ̃⟩H| ≤ Tδε∥ψ̃∥H + |τ |ε2∥ψ̃∥2
H → 0.

We have thus shown that a small shift of f along H in (2.75) correspond asymptotically
to a shift in Dε:∫

Dε
eℓε(fτ )dΠ(f)∫

Dε
eℓε(f)dΠ(f) =

∫
Dε,τ

eℓε(g)dΠ(g)∫
Dε
eℓε(g)dΠ(g) (1 + o(1)) = Π(Dε,τ |Y ε)

Π(Dε|Y ε) (1 + o(1)).

Using Lemma 2.2 we see that Π(Dε|Y ε) → 1 in P Y
f0 -probability. We also note that

Π(Dc
ε,τ ) = Π

(
g : |⟨ψ̃, g − τεψ̃⟩H|

∥ψ̃∥H
>
Tδε
ε

)

≤ Π
(
g : |⟨ψ̃, g⟩H|

∥ψ̃∥H
>
Tδε
ε

− |τ |ε∥ψ̃∥2
H

)

≤ e− t2
2 (δε/ε)2

,

for any
√

6 < t < T . Using Lemma 2.2 again we then conclude that Π(Dε,τ |Y ε) → 1 in
P Y
f0 -probability.

2.C.4 Step V in the proof of Theorem 2.3: convergence of the
moments

The last step consists in replacing, in the result derived in the previous step, the centring
Ψ̂ε (defined in (2.61)) with the posterior mean f̄ε = EΠ[f |Y ε]. The proof only requires
minor adjustments from the proof of Theorem 2.7 in [166]. In particular, we show that
as ε → 0,

∥ε−1(f̄ε − Ψ̂ε)∥(Hβ
K)∗ = ∥EΠ[ε−1(f − Ψ̂ε)|Y ε]∥(Hβ

K)∗ = oPY ε
f0

(1). (2.77)

W argue by contradiction: let (Ω,Σ,Pr) be the probability space on which Y ε =
L−1f0 + εW is defined, and assume that for some Ω′ ∈ Σ, Pr(Ω′) > 0, and ξ > 0, we
have along a certain vanishing sequence (εn)n≥1

∥EΠ[ε−1
n (f − Ψ̂εn)|Y εn(ω)]∥(Hβ

K)∗ ≥ ξ, ∀ω ∈ Ω′. (2.78)
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In view of the convergence established in Step IV and since convergence in probability
implies almost sure convergence for a subsequence, we can find Ω0 ∈ Σ, Pr(Ω0) = 1,
such that along a further subsequence (denoted again as (εn)n≥1 for convenience)

β(Hβ
K)∗(L(ε−1

n (f − Ψ̂εn)|Y εn(ω)), µ) → 0, ∀ω ∈ Ω0,

as n → ∞. Thus, for each ω ∈ Ω0, recalling the definition (2.63) of the process X̂ε

with law L(ε−1(f − Ψ̂ε)|Y ε) on (Hβ
K)∗, the sequence {X̂εn(ω), n ≥ 1} of Borel random

elements in (Hβ
K)∗ will convergence in distribution to the process X in (2.28). By

Skorohod’s embedding theorem [79, Theorem 11.7.2] we can find a probability space and
random elements with values in (Hβ

K)∗, X̃εn(ω) d= X̂εn(ω), X̃ d= X, defined on it such
that X̃εn(ω) a.s.−→ X̃, or, equivalently,

∥X̃εn(ω) − X̃∥(Hβ
K)∗

a.s.−→ 0. (2.79)

From the standard conjugacy property of Gaussian priors with respect to linear inverse
problems with Gaussian noise, X̂εn(ω) is a Gaussian random element in (Hβ

K)∗ for each
ω ∈ Ω0, n ≥ 1. Then, also X̂εn(ω)−X̃ is Gaussian, and by the Paley-Zygmund argument
in Exercise 2.1.4 in [104], (2.79) in fact implies the convergence of all norm-moments; in
particular:

EΠ∥X̃εn(ω) − X̃∥(Hβ
K)∗ → 0.

Thus, since X is a centred process, we obtain that for each ω ∈ Ω0

∥EΠ[ε−1
n (f − Ψ̂εn)|Y εn(ω)]∥(Hβ

K)∗ = ∥EX̃εn(ω) − EX̃∥(Hβ
K)∗ → 0,

contradicting (2.78) since Pr(Ω0) = 1.



Chapter 3

Consistency of Bayesian inference
with Gaussian process priors in an
elliptic inverse problem

For O a bounded domain in Rd and a given smooth function g : O → R, we consider
the statistical nonlinear inverse problem of recovering the conductivity f > 0 in the
divergence form equation ∇ · (f∇u) = g, x ∈ O,

u(x) = 0, x ∈ ∂O,

from N discrete noisy point evaluations of the solution u = uf on O. We study the
statistical performance of Bayesian nonparametric procedures based on a flexible class
of Gaussian (or hierarchical Gaussian) process priors, whose implementation is feasible
by MCMC methods. We show that, as the number N of measurements increases, the
resulting posterior distributions concentrate around the true parameter generating the
data, and derive a convergence rate N−λ, λ > 0, for the reconstruction error of the
associated posterior means, in L2(O)-distance.

3.1 Introduction

Statistical inverse problems arise naturally in many applications in physics, imaging,
tomography, and generally in engineering and throughout the sciences. A prototypical
example involves a domain O ⊂ Rd, some function f : O → R of interest, and indirect
measurements G(f) of f , where G is a given solution (or ‘forward’) operator of some
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partial differential equation (PDE) governed by the unknown coefficient f . A natural
statistical observational model postulates data

Yi = G(f)(Xi) + σWi, i = 1, . . . , N, (3.1)

where the Xi’s are design points at which the PDE solution G(f) is measured, and where
the Wi’s are standard Gaussian noise variables scaled by a noise level σ > 0. The aim is
then to infer f from the data (Yi, Xi)Ni=1. The study of problems of this type has a long
history in applied mathematics, see the monographs [88, 128], although explicit statistical
noise models have been considered only more recently [127, 33, 34, 117]. Recent survey
articles on the subject are [23, 10] where many more references can be found.

For many of the most natural PDEs – such as the divergence form elliptic equation
(3.2) considered below – the resulting maps G are nonlinear in f , and this poses various
challenges: among other things, the negative log-likelihood function associated to the
model (3.1), which equals the least squares criterion (see (3.10) below for details), is
then possibly non-convex, and commonly used statistical algorithms (such as maximum
likelihood estimators, Tikhonov regularisers or MAP estimates) defined as optimisers in f
of likelihood-based objective functions can not reliably be computed by standard convex
optimisation techniques. While iterative optimisation methods (such as Landweber
iteration) may overcome such challenges [114, 192, 128, 129], an attractive alternative
methodology arises from the Bayesian approach to inverse problems advocated in an
influential paper by Stuart [220]: one starts from a Gaussian process prior Π for the
parameter f or in fact, as is often necessary, for a suitable vector-space valued re-
parameterisation F of f . One then uses Bayes’ theorem to infer the best posterior guess
for f given data (Yi, Xi)Ni=1. Posterior distributions and their expected values can be
approximately computed via Markov Chain Monte Carlo (MCMC) methods (see, e.g.,
[63, 62, 26] and references therein) as soon as the forward map G(·) can be evaluated
numerically, avoiding optimisation algorithms as well as the use of (potentially tedious, or
non-existent) inversion formulas for G−1; see Section 3.4.1 below for more discussion. The
Bayesian approach has been particularly popular in application areas as it does not only
deliver an estimator for the unknown parameter f but simultaneously provides uncertainty
quantification methodology for the recovery algorithm via the probability distribution of
f |(Yi, Xi)Ni=1 (see, e.g., [73]). Conceptually related is the area of ‘probabilistic numerics’
[47] in the noise-less case σ = 0, with key ideas dating back to work by Diaconis [75].

As successful as this approach may have proved to be in algorithmic practice, for the
case when the forward map G is nonlinear we currently only have a limited understanding
of the statistical validity of such Bayesian inversion methods. By validity we mean here
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statistical guarantees for convergence of natural Bayesian estimators such as the posterior
mean f̄N = EΠ[f |(Yi, Xi)Ni=1] towards the ground truth f0 generating the data. Without
such guarantees, the interpretation of posterior based inferences remains vague: the
randomness of the prior may have propagated into the posterior in a way that does not
‘wash out’ even when very informative data is available (e.g., small noise variance and/or
large sample size N), rendering Bayesian methods potentially ambiguous for the purposes
of valid statistical inference and uncertainty quantification.

In the present chapter we attempt to advance our understanding of this problem area
in the context of the following basic but representative example for a nonlinear inverse
problem: let g be a given smooth ‘source’ function, and let f : O → R be a an unknown
conductivity parameter determining solutions u = uf of the PDE

∇ · (f∇u) = g, x ∈ O,

u(x) = 0, x ∈ ∂O,
(3.2)

where we denote by ∇· the divergence and by ∇ the gradient operator, respectively. Under
mild regularity conditions on f , and assuming that f ≥ Kmin > 0 on O, standard elliptic
theory implies that (3.2) has a unique classical C2-solution G(f) = uf . Identification of
f from an observed solution uf of this PDE has been considered in a large number of
articles both in the applied mathematics and statistics communities – we mention here
[199, 91, 116, 144, 8, 141, 123, 140, 220, 72, 215, 241, 73, 42, 26, 176, 47] and the many
references therein.

The main contributions of this chapter are as follows: we show that posterior means
arising from a large class of Gaussian (or conditionally Gaussian) process priors for f
provide statistically consistent recovery (with explicit polynomial convergence rates as the
number N of measurements increases) of the unknown parameter f in (3.2) from data in
(3.1). While we employ the theory of posterior contraction from Bayesian non-parametric
statistics [235, 236, 101], the nonlinear nature of the problem at hand leads to substantial
additional challenges arising from the fact that a) the Hellinger distance induced by the
statistical experiment is not naturally compatible with relevant distances on the actual
parameter f and that b) the ‘push-forward’ prior induced on the information-theoretically
relevant regression functions G(f) is non-explicit (in particular, non-Gaussian) due to the
nonlinearity of the map G. Our proofs apply recent ideas from [167] to the present elliptic
situation. In the first step we show that the posterior distributions arising from the priors
considered (optimally) solve the PDE-constrained regression problem of inferring G(f)
from data (3.1). Such results can then be combined with a suitable ‘stability estimate’
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for the inverse map G−1 to show that, for large sample size N , the posterior distributions
concentrate around the true parameter generating the data at a convergence rate N−λ

for some λ > 0. We ultimately deduce the same rate of consistency for the posterior
mean from quantitative uniform integrability arguments.

The first results we obtain apply to a large class of ‘re-scaled’ Gaussian process
priors similar to those considered in [167], addressing the need for additional a-priori
regularisation of the posterior distribution in order to tame nonlinear effects of the
‘forward map’. This rescaling of the Gaussian process depends on sample size N . From a
non-asymptotic point of view this just reflects an adjustment of the covariance operator
of the prior, but following [75] one may wonder whether a ‘fully Bayesian’ solution of this
nonlinear inverse problem, based on a prior that does not depend on N , is also possible.
We show indeed that a hierarchical prior that randomises a finite truncation point in
the Karhunen-Loève-type series expansion of the Gaussian base prior will also result in
consistent recovery of the conductivity parameter f in eq. (3.2) from data (3.1), at least
if f is smooth enough.

Let us finally discuss some related literature on statistical guarantees for Bayesian
inversion: to the best of our knowledge, the only previous paper concerned with (frequen-
tist) consistency of Bayesian inversion in the elliptic PDE (3.2) is by Vollmer [241]. The
proofs in [241] share a similar general idea in that they rely on a preliminary treatment
of the associated regression problem for G(f), which is then combined with a suitable
stability estimate for G−1. However, the convergence rates obtained in [241] are only
implicitly given and sub-optimal, also (unlike ours) for ‘prediction risk’ in the PDE-
constrained regression problem. Moreover, when specialised to the concrete nonlinear
elliptic problem (3.2) considered here, the results in Section 4 in [241] only hold for priors
with bounded Cβ-norms, such as ‘uniform wavelet type priors’, similar to the ones used
in [174, 171, 175] for different nonlinear inverse problems. In contrast, our results hold for
the more practical Gaussian process priors which are commonly used in applications, and
which permit the use of tailor-made MCMC methodology – such as the pCN algorithm
discussed in Section 3.4.1 – for computation.

The results obtained in [176] for the maximum a posteriori (MAP) estimates associated
to the priors studied here are closely related to our findings in several ways. Ultimately
the proof methods in [176] are, however, based on variational methods and hence entirely
different from the Bayesian ideas underlying our results. Moreover, the MAP estimates
in [176] are difficult to compute due to the lack of convexity of the forward map, whereas
posterior means arising from Gaussian process priors admit explicit computational
guarantees, see [113] and also Section 3.4.1 for more details.
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It is further of interest to compare our results to those recently obtained in [2],
where the statistical version of the Calderón problem is studied. There the ‘Dirichlet-
to-Neumann map’ of solutions to the PDE (3.2) is observed, corrupted by appropriate
Gaussian matrix noise. In this case, as only boundary measurements of uf at ∂O are
available, the statistical convergence rates are only of order log−γ(N) for some γ > 0 (as
N → ∞), whereas our results show that when interior measurements of uf are available
throughout O, the recovery rates improve to N−λ for some λ > 0.

There is of course a large literature on consistency of Bayesian linear inverse problems
with Gaussian priors, we only mention [138, 195, 6, 133, 166] and references therein. The
nonlinear case considered here is fundamentally more challenging and cannot be treated
by the techniques from these papers – however, some of the general theory we develop in
the appendix provides novel proof methods also for the linear setting.

This chapter is structured as follows. Section 3.2 formally introduces the problem
and the Bayesian approach. Section 3.3 contains all the main results for the inverse
problem arising from the PDE model (3.2). The proofs, which also include some theory
for general nonlinear inverse problems that is of independent interest, are given in Section
3.5 and Appendix 3.A. Finally, Appendix 3.B provides additional details on some facts
used throughout the chapter.

3.2 A statistical inverse problem with elliptic PDEs

3.2.1 Main notation

Throughout the chapter, O ⊂ Rd, d ∈ N, is a given nonempty open and bounded set
with smooth boundary ∂O and closure Ō.

The spaces of continuous functions defined on O and Ō are respectively denoted
C(O) and C(Ō), and endowed with the supremum norm ∥ · ∥∞. For positive integers
β ∈ N, Cβ(O) is the space of β-times differentiable functions with uniformly continuous
derivatives; for non-integer β > 0, Cβ(O) is defined as

Cβ(O) =

f ∈ C⌊β⌋(O) : ∀|i| = ⌊β⌋, sup
x,y∈O : x ̸=y

|Dif(x) −Dif(y)|
|x− y|β−⌊β⌋ < ∞

,
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where ⌊β⌋ denotes the largest integer less than or equal to β, and for any multi-index
i = (i1, . . . , id), Di is the i-th partial differential operator. Cβ(O) is normed by

∥f∥Cβ(O) =
∑

|i|≤⌊β⌋
sup
x∈O

|Dif(x)| +
∑

|i|=⌊β⌋
sup

x,y∈O : x ̸=y

|Dif(x) −Dif(y)|
|x− y|β−⌊β⌋ ,

where the second summand is removed for integer β. We denote by C∞(O) = ∩βC
β(O)

the set of smooth functions, and by C∞
c (O) the subspace of elements in C∞(O) with

compact support contained in O.
Denote by L2(O) the Hilbert space of square integrable functions on O, equipped

with its usual inner product ⟨·, ·⟩L2(O). For integer α ≥ 0, the order-α Sobolev space on
O is the separable Hilbert space

Hα(O) = {f ∈ L2(O) : ∀|i| ≤ α, ∃ Dif ∈ L2(O)}, ⟨f, g⟩Hα(O) =
∑

|i|≤α
⟨Dif,Dig⟩L2(O).

For non-integer α ≥ 0, Hα(O) can be defined by interpolation, see, e.g., [153]. For
any α ≥ 0, Hα

0 (O) will denote the completion of C∞
c (O) with respect to the norm

∥ · ∥Hα(O). Finally, if K is a nonempty compact subset of O, we denote by Hα
K(O) the

closed subspace of functions in Hα(O) with support contained in K. Whenever there is
no risk of confusion, we will omit the reference to the underlying domain O.

Throughout, we use the symbols ≲ and ≳ for inequalities holding up to a universal
constant. Also, for two real sequences (aN) and (bN), we say that aN ≃ bN if both
aN ≲ bN and bN ≲ aN for all N large enough. For a sequence of random variables ZN
we write ZN = OPr(aN) if for all ε > 0 there exists Mε < ∞ such that for all N large
enough, Pr(|ZN | ≥ MεaN) < ε. Finally, we will denote by L(Z) the law of a random
variable Z.

3.2.2 Parameter spaces and link functions

Let g ∈ C∞(O) be an arbitrary source function, which will be regarded as fixed throughout.
For f ∈ Cβ(O), β > 1, consider the boundary value problem∇ · (f∇u) = g, x ∈ O,

u(x) = 0, x ∈ ∂O.
(3.3)

If we assume that f ≥ Kmin > 0 on O, then standard elliptic theory (e.g., [102]) implies
that (3.3) has a classical solution G(f) = uf ∈ C(Ō) ∩ C1+β(O).
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We consider the following parameter space for f : for integer α > 1+d/2, Kmin ∈ (0, 1),
and denoting by n = n(x) the outward pointing normal at x ∈ ∂O, let

Fα,Kmin
=

f ∈ Hα(O) : inf
x∈O

f(x) > Kmin, f|∂O = 1, ∂
jf

∂nj |∂O
= 0 for 1 ≤ j ≤ α− 1

.
(3.4)

Our approach will be to place a prior probability measure on the unknown conductivity
f and base our inference on the posterior distribution of f given noisy observations
of G(f), via Bayes’ theorem. It is of interest to use Gaussian process priors. Such
probability measures are naturally supported in linear spaces (in our case Hα

0 (O)) and
we now introduce a bijective re-parametrisation so that the prior for f is supported in the
relevant parameter space Fα,Kmin

. We follow the approach of using regular link functions
Φ as in [176].

Condition 3.1. For given Kmin > 0, let Φ : R → (Kmin,∞) be a smooth, strictly
increasing bijective function such that Φ(0) = 1, Φ′(t) > 0, t ∈ R, and assume that all
derivatives of Φ are bounded on R.

For some of the results to follow it will prove convenient to slightly strengthen the
previous condition.

Condition 3.2. Let Φ be as in Condition 3.1, and assume furthermore that Φ′ is
nondecreasing and that lim inft→−∞ Φ′(t)ta > 0 for some a > 0.

For a = 2, an example of such a link function is given in Example 3.1 below. Note
however that the choice of Φ = exp is not permitted in either condition.

Given any link function Φ satisfying Condition 3.1, one can show (cfr. [176], Section
3.1) that the set Fα,Kmin

in (3.4) can be realised as the family of composition maps

Fα,Kmin
= {Φ ◦ F : F ∈ Hα

0 (O)}, α ∈ N.

We then regard the solution map associated to (3.3) as one defined on Hα
0 via

G : Hα
0 (O) → L2(O), F 7→ G (F ) := G(Φ ◦ F ), (3.5)

where G(Φ ◦ F ) is the solution to (3.3) now with f = Φ ◦ F ∈ Fα,Kmin
. In the results to

follow, we will implicitly assume a link function Φ to be given and fixed, and understand
the re-parametrised solution map G as being defined as in (3.5) for such choice of Φ.
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3.2.3 Measurement model

Define the uniform distribution on O by µ = dx/vol(O), where dx is the Lebesgue
measure and vol(O) =

∫
O dx, and consider random design variables

(Xi)Ni=1
iid∼ µ, N ∈ N. (3.6)

For unknown f ∈ Fα,Kmin
, we model the statistical errors under which we observe

the corresponding measurements {G(f)(Xi)}Ni=1 by i.i.d. Gaussian random variables
Wi ∼ N(0, 1), all independent of the Xi’s. Using the re-parameterisation f = Φ ◦ F via
a given link function from the previous subsection, the observation scheme is then

Yi = G (F )(Xi) + σWi, i = 1, . . . , N, (3.7)

where σ > 0 is the noise amplitude. We will often use the shorthand notation Y (N) =
(Yi)Ni=1, with analogous definitions for X(N) and W (N). The random vectors (Yi, Xi) on
R × O are then i.i.d with laws denoted as P i

F . Writing dy for the Lebesgue measure on
R, it follows that P i

F has Radon-Nikodym density

pF (y, x) := dP i
F

dy × dµ
(y, x) = 1√

2πσ2
e−[y−G (F )(x)]2/(2σ2), y ∈ R, x ∈ O. (3.8)

We will write PN
F = ⊗N

i=1P
i
F for the joint law of (Y (N), X(N)) on RN × ON , with Ei

F , EN
F

the expectation operators corresponding to the laws P i
F , P

N
F respectively. In the sequel

we sometimes use the notation PN
f instead of PN

F when convenient.

3.2.4 The Bayesian approach

In the Bayesian approach one models the parameter F ∈ Hα
0 (O) by a Borel probability

measure Π supported in the Banach space C(O). Since the map (F, (y, x)) 7→ pF (y, x)
can be shown to be jointly measurable, the posterior distribution Π(·|Y (N), X(N)) of
F |(Y (N), X(N)) arising from data in model (3.7) equals, by Bayes’ formula (p.7, [101]),

Π(B|Y (N), X(N)) =
∫
B e

ℓ(N)(F )dΠ(F )∫
C(O) e

ℓ(N)(F ′)dΠ(F ′)
any Borel set B ⊆ C(O), (3.9)

where
ℓ(N)(F ) = − 1

2σ2

N∑
i=1

[Yi − G (F )(Xi)]2 (3.10)
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is (up to an additive constant) the joint log-likelihood function.

3.3 Main results

In this section we will show that the posterior distribution arising from certain priors
concentrates near any sufficiently regular ground truth F0 (or, equivalently, f0), and
provide a bound on the rate of this contraction, assuming the observation (Y (N), X(N))
to be generated through model (3.7) of law PN

F0 . We will regard σ > 0 as a fixed and
known constant; in practice it may be replaced by the estimated sample variance of the
Yi’s.

The priors we will consider are built around a Gaussian process base prior Π′, but
to deal with the nonlinearity of the inverse problem, some additional regularisation
will be required. We first show how this can be done by a N -dependent ‘rescaling’
step as suggested in [167]. We then further show that a randomised truncation of a
Karhunen-Loève-type series expansion of the base prior also leads to a consistent, ‘fully
Bayesian’ solution of this inverse problem.

3.3.1 Statistical convergence rates with re-scaled Gaussian pri-
ors

We will freely use terminology from the basic theory of Gaussian processes and measures,
see, e.g., [104], Chapter 2 for details.

Condition 3.3. Let α > 1 + d/2, β ≥ 1, and let H be a Hilbert space continuously
imbedded into Hα

0 (O). Let Π′ be a centred Gaussian Borel probability measure on the
Banach space C(O) that is supported on a separable measurable linear subspace of Cβ(O),
and assume that the reproducing-kernel Hilbert space (RKHS) of Π′ equals H.

As a basic example of a Gaussian base prior Π′ satisfying Condition 3.3, consider
a Matérn process M = {M(x), x ∈ O} indexed by O and of regularity α − d/2
(cfr. Example 3.2 below for full details). We will assume that it is known that F0 ∈ Hα(O)
is supported inside a given compact subset K of the domain O, and fix any smooth
cut-off function χ ∈ C∞

c (O) such that χ = 1 on K. Then, Π′ = L(χM) is supported on
the separable linear subspace Cβ′(O) of Cβ(O) for any β < β′ < α− d/2, and its RKHS
H = {χF, F ∈ Hα(O)} is continuously imbedded into Hα

0 (O) (and contains Hα
K(O)).

The condition F0 ∈ H that is employed in the following theorems then amounts to the
standard assumption that F0 ∈ Hα(O) be supported in a strict subset K of O.
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To proceed, if Π′ is as above and F ′ ∼ Π′, we consider the ‘re-scaled’ prior

ΠN = L(FN), FN = 1
Nd/(4α+4+2d)F

′, (3.11)

Then ΠN again defines a centred Gaussian prior on C(O), and a basic calculation (e.g.,
Exercise 2.6.5 in [104]) shows that its RKHS HN is still given by H but now with norm

∥F∥HN
= Nd/(4α+4+2d)∥F∥H ∀F ∈ H. (3.12)

Our first result shows that the posterior contracts towards F0 in ‘prediction’-risk at
rate N−(α+1)/(2α+2+d) and that, moreover, the posterior draws possess a bound on their
Cβ-norm with overwhelming frequentist probability.

Theorem 3.1. For fixed integer α > β + d/2, β ≥ 1, consider the Gaussian prior ΠN in
(3.11) with base prior F ′ ∼ Π′ satisfying Condition 3.3 for RKHS H. Let ΠN (·|Y (N), X(N))
be the resulting posterior distribution arising from observations (Y (N), X(N)) in (3.7), set
δN = N−(α+1)/(2α+2+d), and assume F0 ∈ H.

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α, β, as
well as on O, d, g) such that, as N → ∞,

ΠN(F : ∥G (F ) − G (F0)∥L2 > LδN |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ), (3.13)

and for sufficiently large M > 0 (depending on σ,D, α, β)

ΠN(F : ∥F∥Cβ > M |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ). (3.14)

Following ideas in [167], we can combine (3.13) with the regularisation property (3.14)
and a suitable stability estimate for G−1 to show that the posterior contracts about f0

also in L2-risk. We shall employ the stability estimate proved in [176, Lemma 24] which
requires the source function g in the base PDE (3.3) to be strictly positive, a natural
condition ensuring injectivity of the map f 7→ G(f), see [199]. Denote the push-forward
posterior on the conductivities f by

Π̃N(·|Y (N), X(N)) := L(f), f = Φ ◦ F : F ∼ ΠN(·|Y (N), X(N)). (3.15)

Theorem 3.2. Let ΠN (·|Y (N), X(N)), δN and F0 be as in Theorem 3.1 for integer β ≥ 2.
Let f0 = Φ ◦F0 and assume in addition that infx∈O g(x) ≥ gmin > 0. Then for any D > 0
there exists L > 0 large enough (depending on σ, f0, D, α, β,O, gmin, d) such that, as
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N → ∞,

Π̃N(f : ∥f − f0∥L2 > LN−λ|Y (N), X(N)) = OPN
f0

(e−DNδ2
N ), λ = (α + 1)(β − 1)

(2α + 2 + d)(β + 1) .

We note that as the smoothness α of f0 increases, we can employ priors of higher
regularity α, β. In particular, if F0 ∈ C∞ = ∩α>0H

α, we can let the above rate N−λ be
as closed as desired to the ‘parametric’ rate N−1/2.

We conclude this section showing that the posterior mean EΠ[F |Y (N), X(N)] of
ΠN (·|Y (N), X(N)) converges to F0 at the rate N−λ from Theorem 3.2. We formulate this
result at the level of the vector space valued parameter F (instead of for conductivities
f), as the most commonly used MCMC algorithms (such as pCN, see Section 3.4.1)
target the posterior distribution of F .

Theorem 3.3. Under the hypotheses of Theorem 3.2, let F̄N = EΠ[F |Y (N), X(N)] be the
(Bochner-) mean of ΠN(·|Y (N), X(N)). Then, as N → ∞,

PN
F0

(
∥F̄N − F0∥L2 > N−λ

)
→ 0. (3.16)

The same result holds for the implied conductivities, that is, for ∥Φ ◦ F̄N − f0∥L2

replacing ∥F̄N − F0∥L2 , since composition with Φ is Lipschitz.

3.3.2 Extension to high-dimensional Gaussian sieve priors

It is often convenient, for instance for computational reasons as discussed in Section 3.4.1,
to employ ‘sieve’-priors that are concentrated on a finite-dimensional approximation of
the parameter space supporting the prior. For example a truncated Karhunen-Loève-type
series expansion (or some other discretisation) of the Gaussian base prior Π′ is frequently
used [72, 113]. The theorems of the previous subsection remain valid if the approximation
spaces are appropriately chosen.

Let us illustrate this by considering a Gaussian series prior based on an orthonormal
basis {Φlr, l ≥ −1, r ∈ Zd} of L2(Rd) composed of sufficiently regular, compactly
supported Daubechies wavelets (see Chapter 4 in [104] for details). We assume that
F0 ∈ Hα

K(O) for some K ⊂ O, and denote by Rl the set of indices r for which the
support of Φlr intersects K. Fix any compact K ′ ⊂ O such that K ⊊ K ′, and a cut-off
function χ ∈ C∞

c (O) such that χ = 1 on K ′. For any real α > 1 + d/2, consider the prior
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Π′
J arising as the law of the Gaussian random sum

Π′
J = L(χF ), F =

∑
l≤J,r∈Rl

2−lαFlrΦlr, Flr
iid∼ N(0, 1), (3.17)

where J = JN → ∞ is a (deterministic) truncation point to be chosen. Then Π′
J defines

a centred Gaussian prior that is supported on the finite-dimensional space

HJ = span{χΦlr, l ≤ J, r ∈ Rl} ⊂ C(O). (3.18)

Proposition 3.1. Consider a prior ΠN as in (3.11) where now F ′ ∼ Π′
J and J = JN ∈ N

is such that 2J ≃ N1/(2α+2+d). Let ΠN (·|Y (N), X(N)) be the resulting posterior distribution
arising from observations (Y (N), X(N)) in (3.7), and assume F0 ∈ Hα

K(O). Then the
conclusions of Theorems 3.1-3.3 remain valid (under the respective hypotheses on α, β, g).

A similar result could be proved for more general Gaussian priors (not of wavelet
type), but we refrain from giving these extensions here.

3.3.3 Statistical convergence rates with randomly truncated
Gaussian series priors

In this section we show that instead of rescaling Gaussian base priors Π′,Π′
J in a

N−dependent way to attain extra regularisation, one may also randomise the dimen-
sionality parameter J in (3.17) by a hyper-prior with suitable tail behaviour. While this
is computationally somewhat more expensive (by necessitating a hierarchical sampling
method, see Section 3.4.1), it gives a possibly more principled approach to (‘fully’)
Bayesian regularisation in our inverse problem. The theorem below will show that such
a procedure is consistent in the frequentist sense, at least for smooth enough F0.

For the wavelet basis and cut-off function χ introduced before (3.17), we consider
again a random (conditionally Gaussian) sum

Π = L(χF ), F =
∑

l≤J,r∈Rl

2−lαFlrΦlr, Flr
iid∼ N(0, 1) (3.19)

where now J is a random truncation level, independent of the random coefficients Flr,
satisfying the following inequalities

Pr(J > j) = e−2jd log 2jd ∀j ≥ 1; Pr(J = j) ≳ e−2jd log 2jd

, j → ∞. (3.20)



3.3 Main results 91

When d = 1, a (log-) Poisson random variable satisfies these tail conditions, and for d > 1
such a random variable J can be easily constructed too – see Example 3.3 below.

Our first result in this section shows that the posterior arising from the truncated series
prior in (3.19) achieves (up to a log-factor) the same contraction rate in L2-prediction
risk as the one obtained in Theorem 3.1. Moreover, as is expected in light of the results
in [236, 195], the posterior adapts to the unknown regularity α0 of F0 when it exceeds
the base smoothness level α.

Theorem 3.4. For any α > 1 + d/2, let Π be the random series prior in (3.19),
and let Π(·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in (3.7). Then, for each α0 ≥ α and any F0 ∈ Hα0

K (O), we have that for
any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α,O, d, g) such that,
as N → ∞,

Π(F : ∥G (F ) − G (F0)∥L2 > LξN |Y (N), X(N)) = OPN
F0

(e−DNξ2
N ),

where ξN = N−(α0+1)/(2α0+2+d) logN . Moreover, for HJ the finite-dimensional subspaces
in (3.18) and JN ∈ N such that 2JN ≃ N1/(2α0+2+d), we also have that for sufficiently
large M > 0 (depending on D,α)

Π(F : F ∈ HJN
, ∥F∥Hα ≤ M2JNαNξ2

N |Y (N), X(N)) = 1 −OPN
F0

(e−DNξ2
N ). (3.21)

We can now exploit the previous result along with the finite-dimensional support
of the posterior and again the stability estimate from [176] to obtain the following
consistency theorem for F0 ∈ Hα0 if α0 is large enough (with a precise bound α0 ≥ α∗

given in the proof of Lemma 3.2).

Theorem 3.5. Let the link function Φ in the definition (3.5) of G satisfy Condition
3.2. Let Π(·|Y (N), X(N)), ξN be as in Theorem 3.4, assume in addition g ≥ gmin > 0
on O, and let Π̃(·|Y (N), X(N)) be the posterior distribution of f as in (3.15). Then for
f0 = Φ ◦ F0 with F0 ∈ Hα0

K (O) for α0 large enough (depending on α, d, a) and for any
D > 0 there exists L > 0 large enough (depending on σ, f0, D, α,O, gmin, d) such that, as
N → ∞,

Π̃(f : ∥f − f0∥L2 > LN−ρ|Y (N), X(N)) = OPN
f0

(e−DNξ2
N ), ρ = (α0 + 1)(α− 1)

(2α0 + 2 + d)(α + 1) .
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Just as before, for f0 ∈ C∞ the above rate can be made as close as desired to N−1/2

by choosing α large enough. Moreover, the last contraction theorem also translates into
a convergence result for the posterior mean of F .

Theorem 3.6. Under the hypotheses of Theorem 3.5, let F̄N = EΠ[F |Y (N), X(N)] be the
mean of Π(·|Y (N), X(N)). Then, as N → ∞,

PN
F0

(
∥F̄N − F0∥L2 > N−ρ

)
→ 0. (3.22)

We note that the proof of the last two theorems crucially takes advantage of the
‘non-symmetric’ and ‘non-exponential’ nature of the stability estimate from [176], and
may not hold in other nonlinear inverse problems where such an estimate may not
be available (e.g., as in [167, 2] or also in the Schrödinger equation setting studied in
[171, 176]).

Let us conclude this section by noting that hierarchical priors such as the one studied
here are usually devised to ‘adapt to unknown’ smoothness α0 of F0, see [236, 195]. Note
that while our posterior distribution is adaptive to α0 in the ‘prediction risk’ setting of
Theorem 3.4, the rate N−ρ obtained in Theorems 3.5 and 3.6 for the inverse problem
does depend on the minimal smoothness α, and is therefore not adaptive. Nevertheless,
this hierarchical prior gives an example of a fully Bayesian, consistent solution of our
inverse problem.

3.4 Concluding discussion

3.4.1 Posterior computation

As mentioned in the introduction, in the context of the elliptic inverse problem considered
in the present chapter, posterior distributions arising from Gaussian process priors such as
those above can be computed by MCMC algorithms, see [63, 62, 26], and computational
guarantees can be obtained as well: for Gaussian priors, [113] establish non-asymptotic
sampling bounds for the ‘preconditioned Crank-Nicholson (pCN)’ algorithm, which hold
even in the absence of log-concavity of the likelihood function, and which imply bounds
on the approximation error for the computation of the posterior mean. The algorithm
can be implemented as long as it is possible to evaluate the forward map F 7→ G (F )(x) at
x ∈ O, which in our context can be done by using standard numerical methods to solve
the elliptic PDE (3.3). In practice, these algorithms often employ a finite-dimensional
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approximation of the parameter space (cfr. Section 3.3.2). See Section 1.2.2 for further
discussion on the implementation of the algorithm and for some numerical results.

In order to sample from the posterior distribution arising from the more complex
hierarchical prior (3.19), MCMC methods based on fixed Gaussian priors (such as
the pCN algorithm) can be employed within a suitable Gibbs-sampling scheme that
exploits the conditionally Gaussian structure of the prior. The algorithm would then
alternate, for given J , an MCMC step targeting the marginal posterior distribution of
F |(Y (N), X(N), J), followed by, given the actual sample of F , a second MCMC run with
objective the marginal posterior of J |(Y (N), X(N), F ). A related approach to hierarchical
inversion is empirical Bayesian estimation. In the present setting this would entail first
estimating the truncation level J from the data, via an estimator Ĵ = Ĵ(Y (N), X(N))
(e.g., the marginal maximum likelihood estimator), and then performing inference based
on the fixed finite-dimensional prior ΠĴ (defined as in (3.19) with J replaced by Ĵ). See
[137] where this is studied in a diagonal linear inverse problem.

3.4.2 Open problems: towards optimal convergence rates

The convergence rates obtained in this chapter demonstrate the frequentist consistency
of a Bayesian (Gaussian process) inversion method in the elliptic inverse problem (3.2)
with data (3.1) in the large sample limit N → ∞. While the rates approach the optimal
rate N−1/2 for very smooth models (α → ∞), the question of optimality for fixed α

remains an interesting avenue for future research. We note that for the ‘PDE-constrained
regression’ problem of recovering G (F0) in ‘prediction’ loss, the rate δN = N−(α+1)/(2α+2+d)

obtained in Theorems 3.1 and 3.4 can be shown to be minimax optimal (as in [176,
Theorem 10]). But for the recovery rates for f obtained in Theorems 3.3 and 3.6, no
matching lower bounds are currently known. Related to this issue, in [176] faster (but
still possibly suboptimal) rates are obtained for the modes of our posterior distributions
(MAP estimates, which are not obviously computable in polynomial time), and one may
loosely speculate here about computational hardness barriers in our nonlinear inverse
problem. These issues pose formidable challenges for future research and are beyond the
scope of the present investigation.

3.5 Proofs

We assume without loss of generality that vol(O) = 1. In the proof, we will repeatedly
exploit properties of the (re-parametrised) solution map G defined in (3.5), which was
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studied in detail in [176]. Specifically, in the proof of Theorem 9 in [176] it is shown that,
for all α > 1 + d/2 and any F1, F2 ∈ Hα

0 (O),

∥G (F1) − G (F2)∥L2(O) ≲ (1 + ∥F1∥4
C1(O) ∨ ∥F2∥4

C1(O))∥F1 − F2∥(H1(O))∗ , (3.23)

where we denote by X∗ the topological dual Banach space of a normed linear space X.
Secondly, we have (Lemma 20 in [176]) for some constant c > 0 (only depending on d, O
and Kmin),

sup
F∈Hα

0

∥G (F )∥∞ ≤ c∥g∥∞ < ∞. (3.24)

Therefore the inverse problem (3.7) falls in the general framework considered in Appendix
3.A below (with β = κ = 1, γ = 4 in (3.32) and S = c∥g∥∞ in (3.33)) ; in particular
Theorems 3.1 and 3.4 then follow as particular cases of the general contraction rate
results derived in Theorem 3.8 and Theorem 3.9, respectively. It thus remains to derive
Theorems 3.2 and 3.3 from Theorem 3.1, and Theorems 3.5 and 3.6 from Theorem 3.4,
respectively.

To do so we recall here another key result from [176], namely their stability estimate
Lemma 24: for α > 2 + d/2, if G(f) denotes the solution of the PDE (3.3) with g

satisfying infx∈O g(x) ≥ gmin > 0, then for fixed f0 ∈ Fα,Kmin
and all f ∈ Fα,Kmin

∥f − f0∥L2(O) ≲ ∥f∥C1(O)∥G(f) −G(f0)∥H2(O), (3.25)

with multiplicative constant independent of f .

3.5.1 Proofs for Section 3.3.1

Proof of Theorem 3.2

The conclusions of Theorem 3.1 can readily be translated for the push-forward posterior
Π̃N(·|Y (N), X(N)) from (3.15). In particular, (3.13) implies, for f0 = Φ ◦ F0, as N → ∞,

Π̃N(f : ∥G(f) −G(f0)∥L2 > LδN |Y (N), X(N)) = OPN
f0

(e−DNδ2
N ); (3.26)

and using Lemma 29 in [176] and (3.14) we obtain for sufficiently large M ′ > 0

Π̃N(f : ∥f∥Cβ > M ′|Y (N), X(N)) ≤ ΠN(F : ∥F∥Cβ > M |Y (N), X(N)) = OPN
f0

(e−DNδ2
N ).

(3.27)
From the previous bounds we now obtain the following result.
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Lemma 3.1. For ΠN (·|Y (N), X(N)), δN and F0 as in Theorem 3.1, let Π̃N (·|Y (N), X(N))
be the push-forward posterior distribution from (3.15). Then, for f0 = Φ ◦ F0 and any
D > 0 there exists L > 0 large enough such that, as N → ∞,

Π̃N(f : ∥G(f) −G(f0)∥H2 > Lδ
(β−1)/(β+1)
N |Y (N), X(N)) = OPN

F0
(e−DNδ2

N ).

Proof. Using the continuous imbedding of Cβ ⊂ Hβ, β ∈ N, and (3.27), for some M ′ > 0
as N → ∞,

Π̃N(f : ∥f∥Hβ > M ′|Y (N), X(N)) = OPN
F0

(e−DNδ2
N ).

Now if f ∈ Hβ with ∥f∥Hβ ≤ M ′, Lemma 23 in [176] implies G(f), G(f0) ∈ Hβ+1, with

∥G(f0)∥Hβ+1 ≲ 1 + ∥f0∥β(β+1)
Hβ < ∞, ∥G(f)∥Hβ+1 ≲ 1 + ∥f∥β(β+1)

Hβ < M ′′ < ∞;

and by the usual interpolation inequality for Sobolev spaces [153],

∥G(f) −G(f0)∥H2 ≲ ∥G(f) −G(f0)∥(β−1)/(β+1)
L2 ∥G(f) −G(f0)∥2/(β+1)

Hβ+1

≲ ∥G(f) −G(f0)∥(β−1)/(β+1)
L2 .

Thus, by what precedes and (3.26), for sufficiently large L > 0

Π̃N(f : ∥G(f) −G(f0)∥H2 > Lδ
(β−1)/(β+1)
N |Y (N), X(N))

≤ Π̃N(f : ∥G(f) −G(f0)∥L2 > L′δN |Y (N), X(N)) + Π̃N(f : ∥f∥Hβ > M ′′|Y (N), X(N))
= OPN

F0
(e−DNδ2

N ),

as N → ∞.

To prove Theorem 3.2 we use (3.25), (3.27) and Lemma 3.1 to the effect that for any
D > 0 we can find L,M > 0 large enough such that, as N → ∞,

Π̃N

(
f : ∥f − f0∥L2 > Lδ

β−1
β+1
N

∣∣∣∣Y (N), X(N)
)

≤ Π̃N

(
f : ∥G(f) −G(f0)∥H2 > L′δ

β−1
β+1
N

∣∣∣∣Y (N), X(N)
)

+ Π̃N

(
f : ∥f∥Cβ > M |Y (N), X(N)

)
= OPN

F0
(e−DNδ2

N ).
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Proof of Theorem 3.3

The proof largely follows ideas of [167] but requires a slightly more involved, iterative
uniform integrability argument to also control the probability of events {F : ∥F∥Cβ > M}
on whose complements we can subsequently exploit regularity properties of the inverse
link function Φ−1.

Using Jensen’s inequality, it is enough to show, as N → ∞,

PN
F0

(
EΠ

[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]
> N−λ

)
→ 0.

For M > 0 sufficiently large to be chosen, we decompose

EΠ
[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]

= EΠ
[
∥F − F0∥L21{∥F∥

Cβ ≤M}

∣∣∣Y (N), X(N)
]

+ EΠ
[
∥F − F0∥L21{∥F∥

Cβ>M}

∣∣∣Y (N), X(N)
]
. (3.28)

Using the Cauchy-Schwarz inequality we can upper bound the expectation in the second
summand by√

EΠ
[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]√

ΠN(F : ∥F∥Cβ > M |Y (N), X(N)).

In view of (3.14), for all D > 0 we can choose M > 0 large enough to obtain

PN
F0

(
EΠ

[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]

ΠN(F : ∥F∥Cβ > M |Y (N), X(N)) > N−2λ
)

≤ PN
F0

(
EΠ

[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]
e−DNδ2

N > N−2λ
)

+ o(1).

To bound the probability in the last line, let BN be the sets defined in (3.34) below, note
that Lemma 3.3 and Lemma 3.9 below jointly imply that ΠN(BN) ≥ ae−ANδ2

N for some
a,A > 0. Also, let ν(·) = ΠN(· ∩ BN)/ΠN(BN), and let CN be the event from (3.40), for
which Lemma 7.3.2 in [104] implies that PN

F0(CN) → 1 as N → ∞. Then

PN
F0

(
EΠ

[
∥F − F0∥2

L2

∣∣∣Y (N), X(N)
]
e−DNδ2

N > N−2λ
)

≤ PN
F0

∫C(O) ∥F − F0∥2
L2
∏N
i=1 pF/pF0(Yi, Xi)dΠN(F )

Π(BN)
∫

BN

∏N
i=1 pF/pF0(Yi, Xi)dν(F )

e−DNδ2
N > N−2λ, CN

+ o(1)

≤ PN
F0

( ∫
C(O)

∥F − F0∥2
L2

N∏
i=1

pF/pF0(Yi, Xi)dΠN(F ) > N−2λae(D−A−2)Nδ2
N

)
+ o(1)
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which is upper bounded, using Markov’s inequality and Fubini’s theorem, by

1
a
e−(D−A−2)Nδ2

NN2λ
∫
C(O)

∥F − F0∥2
L2EN

F0

 N∏
i=1

pF
pF0

(Yi, Xi)
dΠN(F ).

Taking D > A + 2 (and M large enough in (3.28)), using the fact that EN
F0

(∏N
i=1

pF/pF0(Yi, Xi)
)

= 1, and that EΠN ∥F∥L2 < ∞ (by Fernique’s theorem, e.g., [104,
Exercise 2.1.5]), we then conclude

PN
F0

(
EΠ

[
∥F − F0∥2

L21{∥F∥
Cβ>M}

∣∣∣Y (N), X(N)
]
> N−λ

)
→ 0, N → ∞. (3.29)

To handle the first term in (3.28), let f = Φ ◦ F and f0 = Φ ◦ F0. Then for all x ∈ O,
by the mean value and inverse function theorems,

|F (x) − F0(x)| = |Φ−1 ◦ f(x) − Φ−1 ◦ f0(x)| = 1
|Φ′(Φ−1(η))| |f(x) − f0(x)|

for some η lying between f(x) and f0(x). If ∥F∥Cβ ≤ M then, as Φ is strictly increasing,
necessarily f(x) = Φ(F (x)) ∈ [Φ(−M),Φ(M)] for all x ∈ O. Similarly, the range of f0 is
contained in the compact interval [Φ(−M),Φ(M)] for M ≥ ∥F0∥∞, so that

|Φ−1 ◦ f(x) − Φ−1 ◦ f0(x)| ≤ 1
minz∈[−M,M ] Φ′(z) |f(x) − f0(x)| ≲ |f(x) − f0(x)|

for a multiplicative constant not depending on x ∈ O. It follows

∥F − F0∥L21{∥F∥
Cβ ≤M} ≲ ∥f − f0∥L21{∥F∥

Cβ ≤M},

and
EΠ

[
∥F − F0∥L21{∥F∥

Cβ ≤M}

∣∣∣Y (N), X(N)
]
≲ EΠ̃

[
∥f − f0∥L2

∣∣∣Y (N), X(N)
]
.

Noting that for each L > 0 the last expectation is upper bounded by

LN−λ + EΠ̃
[
∥f − f0∥L21{∥f−f0∥L2>LN−λ}|Y (N), X(N)]

≤ LN−λ +
√
EΠ̃[∥f − f0∥2

L2|Y (N), X(N)]
√

Π̃N(f : ∥f − f0∥L2 > LN−λ|Y (N), X(N)),

we can repeat the above argument, with the event {F : ∥F∥Cβ > M} replaced by the
event {f : ∥f − f0∥L2 > LN−λ}, to deduce from Theorem 3.2 that for D > A+ 2 there
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exists L > 0 large enough such that

PN
F0

(
EΠ̃[∥f − f0∥2

L2|Y (N), X(N)]Π̃N(f : ∥f − f0∥2
L2 > LN−λ|Y (N), X(N)) > N−λ

)
≲ e−(D−A−2)Nδ2

NN2λ

which combined with (3.29) and the definition of δN concludes the proof.

3.5.2 Sieve prior proofs

The proof only requires minor modification from the proofs of Section 3.3.1. We only
discuss here the main points: one first applies the L2-prediction risk Theorem 3.8 with a
sieve prior. In the proof of the small ball Lemma 3.3 one uses the following observations:
the projection PJF0 ∈ HJ of F0 ∈ Hα

K defined in (3.61) satisfies by (3.63)

∥F0 − PJF0∥(H1(O))∗ ≲ 2−J(α+1);

hence choosing J such that 2J ≃ N1/(2α+2+d), and noting also that ∥PJF0∥C1 ≤ ∥F0∥C1 <

∞ for all J by standard properties of wavelet bases, it follows from (3.23) that

∥G (F0) − G (PJF0)∥L2 ≲ ∥F0 − PJF0∥(H1)∗ ≲ N−(α+1)/(2α+2+d) = δN .

Therefore, by the triangle inequality,

ΠN(F : ∥G (F ) − G (F0)∥L2 ≥ δN/q) ≥ ΠN(F : ∥G (F ) − G (PJF0)∥L2 ≥ q′δN).

The rest of the proof of Lemma 3.3 then carries over (with PJF0 replacing F0), upon
noting that (3.60) and a Sobolev imbedding imply

sup
J∈N

EΠ′
J ∥F∥2

C1 < ∞, as well as ∥F∥Hα ≤ c∥F∥HJ
for all F ∈ HJ

for some constant c > 0 independent of J . Moreover, the last two properties are sufficient
to prove an analogue of Lemma 3.4 as well, so that Theorem 3.8 indeed applies to the
sieve prior. The proof from here onwards is identical to the ones of Theorems 3.1-3.3
for the unsieved case, using also that what precedes implies that supJ EΠ′

J ∥F∥2
L2 < ∞,

relevant in the proof of convergence of the posterior mean.
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3.5.3 Proofs for Section 3.3.3

Inspection of the proofs for re-scaled priors implies that Theorems 3.5 and 3.6 can be
deduced from Theorem 3.4 if we can show that posterior draws lie in a α-Sobolev ball of
fixed radius with sufficiently high frequentist probability. This is the content of the next
result.

Lemma 3.2. Under the hypotheses of Theorem 3.5, there exists α∗ > 0 (depending on
α, d and a) such that for each F0 ∈ Hα0

K (O), α0 > α∗, and any D > 0 we can find M > 0
large enough such that, as N → ∞,

Π(F : ∥F∥Hα ≤ M |Y (N), X(N)) = 1 −OPN
F0

(e−DNξ2
N ).

Proof. Theorem 3.4 implies that for all D > 0 and sufficiently large L,M > 0, if
JN ∈ N : 2JN ≃ N1/(2α0+2+d) and denoting by

AN =
{
F ∈ HJN

: ∥F∥Hα ≤ M2JNα
√
NξN , ∥G (F ) − G (F0)∥L2 ≤ LξN

}
,

then as N → ∞
Π(AN |Y (N), X(N)) = 1 −OPN

F0
(e−DNξ2

N ). (3.30)

Next, note that if F ∈ HJN
, then by standard properties of wavelet bases (cfr. (3.64)),

∥F∥Hα ≲ 2JNα∥F∥L2 for all N large enough. Thus, for PJN
F0 the projection of F0 onto

HJN
defined according to (3.61),

∥F∥Hα ≤ ∥F − PJN
F0∥Hα + ∥PJN

F0∥Hα ≲ 2JNα∥F − F0∥L2 + ∥F0∥Hα ,

and a Sobolev imbedding further gives ∥F∥L∞ ≤ M ′2JNα
√
NξN , for some M ′ > 0. Now

letting f = Φ ◦ F and f0 = Φ ◦ F0, by similar argument as in the proof of Theorem 3.3
combined with monotonicity of Φ′, we see that for all N large enough

∥F − F0∥L2 ≤ 1
Φ′(−M ′2JNα

√
NξN)

∥f − f0∥L2 .

Then, using the assumption on the left tail of Φ in Condition 3.2, and the stability
estimate (3.25),

∥F − F0∥L2 ≲ (2JNα
√
NξN)a∥f∥Hα∥G(f) −G(f0)∥H2 .



100 Chapter 3. Consistent Bayesian inference in an elliptic inverse problem

Finally, by the interpolation inequality for Sobolev spaces [153] and Lemma 23 in [176],

∥G(f) −G(f0)∥H2 ≲ ∥G(f) −G(f0)∥(α−1)/(α+1)
L2 ∥G(f) −G(f0)∥2/(α+1)

Hα+1

≲ ξ
(α−1)/(α+1)
N (∥G(f)∥Hα+1 + ∥G(f0)∥Hα+1)2/(α+1)

≲ ξ
(α−1)/(α+1)
N (1 + ∥f∥α2+α

Hα )2/(α+1),

so that, in conclusion, for each F ∈ AN and sufficiently large N ,

∥F∥Hα ≲ 1 + 2JNα(2JNα
√
NξN)a∥f∥Hαξ

α−1
α+1
N (1 + ∥f∥α2+α

Hα )
2

α+1 .

The last term is bounded, using Lemma 29 in [176], by a multiple of

ξ
α−1
α+1
N 2JNα(2JNα

√
NξN)2α2+2α+a = N

− (α0+1)(α−1)
(2α0+2+d)(α+1)N

2α3+(2+d)α2+(1+a+d)α+ad/2
2α0+2+d

the last identity holding up to a log factor. Hence, if

α0 > α∗ := [2α3 + (2 + d)α2 + (1 + a+ d)α + ad/2](α + 1)
(α− 1)

then we conclude overall that ∥F∥Hα ≲ 1 + o(1) as N → ∞ for all F ∈ AN , proving the
claim in view of (3.30).

Replacing β by α in the conclusion of Lemma 3.1, the proof of Theorem 3.5 now
proceeds as in the proof of Theorem 3.2 without further modification. Likewise, Theorem
3.6 can be shown following the same argument as in the proof of Theorem 3.3, noting
that for Π the random series prior in (3.19), it also holds that EΠ∥F∥2

L2 < ∞.

Appendix 3.A Results for general inverse problems

Let O ⊂ Rd, d ∈ N, be a nonempty open and bounded set with smooth boundary,
and assume that D is a nonempty and bounded measurable subset of Rp, p ≥ 1. Let
F ⊆ L2(O) be endowed with the trace Borel σ-field of L2(O), and consider a Borel-
measurable ‘forward mapping’

G : F → L2(D), F 7→ G (F ).
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For F ∈ F , we are given noisy discrete measurements of G (F ) over a grid of points
drawn uniformly at random on D,

Yi = G (F )(Xi) + σWi, i = 1, . . . , N, Xi
iid∼ µ, Wi

iid∼ N(0, 1), (3.31)

for some σ > 0. Above µ denotes the uniform (probability) distribution on D and the
design variables (Xi)Ni=1 are independent of the noise vector (Wi)Ni=1. We assume without
loss of generality that vol(D) = 1, so that µ = dx, the Lebesgue measure on D.

We take the noise amplitude σ > 0 in (3.31) to be fixed and known, and work under
the assumption that the forward map G satisfies the following local Lipschitz condition:
for given β, γ, κ ≥ 0, and all F1, F2 ∈ Cβ(O) ∩ F ,

∥G (F1) − G (F2)∥L2(D) ≲ (1 + ∥F1∥γCβ(O) ∨ ∥F2∥γCβ(O))∥F1 − F2∥(Hκ(O))∗ (3.32)

where we recall that X∗ denotes the topological dual Banach space of a normed linear
space X. Additionally, we will require G to be uniformly bounded on its domain,

S := sup
F∈F

∥G (F )∥L∞(D) < ∞. (3.33)

As observed in (3.23), the elliptic inverse problem considered in this chapter falls in this
general framework, which also encompasses other examples of nonlinear inverse problems
such as those involving the Schrödinger equation considered in [171, 176], for which the
results in this section would apply as well. It also includes many linear inverse problems
such as the classical Radon transform, see [176].

3.A.1 General contraction rates in Hellinger distance

Using the same notation as in Section 3.2.2, and given a sequence of Borel prior prob-
ability measures ΠN on F , we write ΠN(·|Y (N), X(N)) for the posterior distribution of
F |(Y (N), X(N)) (arising as after (3.9) and (3.10)). We also continue to use the notation
pF for the densities from (3.8) now in the general observation model (3.31) (and implicitly
assume that the map (F, (y, x)) 7→ pF (y, x) is jointly measurable to ensure existence of
the posterior distribution). Below we formulate a general contraction theorem in the
Hellinger distance that forms the basis of the proofs of the main results. It closely follows
the general theory in [101] and its adaptation to the inverse problem setting in [167] –
we include a proof for conciseness and convenience of the reader.
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Define the Hellinger distance h(·, ·) on the set of probabilities density functions on
R × D (with respect to the product measure dy × dx) by

h2(p1, p2) :=
∫
R×D

[√
p1(y, x) −

√
p2(y, x)

]2
dydx.

For any set A of such densities, let N(η; A, h), η > 0, be the minimal number of Hellinger
balls of radius η needed to cover A.

Theorem 3.7. Let ΠN be a sequence of prior Borel probability measures on F , and
let ΠN(·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in model (3.31). Assume that for some fixed F0 ∈ F , and a sequence δN > 0
such that δN → 0 and

√
NδN → ∞ as N → ∞, the sets

BN :=
{
F : E1

F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]
≤ δ2

N , E
1
F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]2
≤ δ2

N

}
, (3.34)

satisfy for all N large enough

ΠN(BN) ≥ ae−ANδ2
N , for some a,A > 0. (3.35)

Further assume that there exists a sequence of Borel sets AN ⊂ F for which

ΠN(Ac
N) ≲ e−BNδ2

N , for some B > A+ 2 (3.36)

for all N large enough, as well as

logN(δN ; AN , h) ≤ CNδ2
N , for some C > 0. (3.37)

Then, for sufficiently large L = L(B,C) > 4 such that L2 > 12(B ∨ C), and all
0 < D < B − A− 2, as N → ∞,

ΠN

(
F ∈ AN : h(pF , pF0) ≤ LδN |Y (N), X(N)

)
= 1 −OPN

F0
(e−DNδ2

N ). (3.38)

Proof. We start noting that by Theorem 7.1.4 in [104], for each L > 4 satisfying
L2 > 12(B ∨ C) we can find tests (random indicator functions) ΨN = ΨN(Y (N), X(N))
such that as N → ∞

EN
F0ΨN → 0, sup

F∈AN : h(pF ,pF0 )≥LδN

EN
F (1 − ΨN) ≤ e−BNδ2

N . (3.39)
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Next, denote the set whose posterior probability we want to lower bound by

ÃN = {F ∈ AN : h(pF , pF0) ≤ LδN};

and, using the first display in (3.39), decompose the probability of interest as

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N

)
= PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 0

)
+ PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 1

)
= PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 0

)
+ o(1).

Next, let ν(·) = ΠN(· ∩ BN)/ΠN(BN) be the restricted normalised prior on BN , and
define the event

CN =
{ ∫

BN

N∏
i=1

pF
pF0

(Yi, Xi)dν(F ) ≥ e−2Nδ2
N

}
, (3.40)

for which Lemma 7.3.2 in [104] implies that PN
F0(CN) → 1 as N → ∞. We then further

decompose

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 0

)
= PN

F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 0, CN

)
+ o(1)

and in view of condition (3.35) and the above definition of CN , we see that

PN
F0

(
ΠN(Ãc

N |Y (N), X(N)) ≥ e−DNδ2
N ,ΨN = 0, CN

)

= PN
F0

∫Ãc
N

∏N
i=1 pF/pF0(Yi, Xi)dΠN(F )∫

F
∏N
i=1 pF/pF0(Yi, Xi)dΠN(F )

≥ e−DNδ2
N ,ΨN = 0, CN


≤ PN

F0

∫Ãc
N

(1 − ΨN)∏N
i=1 pF/pF0(Yi, Xi)dΠN(F )∫

BN

∏N
i=1 pF/pF0(Yi, Xi)dν(F )

≥ ΠN(BN)e−DNδ2
N , CN


≤ PN

F0

∫
Ãc

N

(1 − ΨN)
N∏
i=1

pF
pF0

(Yi, Xi)dΠN(F ) ≥ ae−(A+D+2)Nδ2
N

.
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We conclude applying Markov’s inequality and Fubini’s theorem, jointly with the fact
that for all F ∈ F

EN
F0

[
(1 − ΨN)

N∏
i=1

pF
pF0

(Yi, Xi)
]

= EN
F0

[
(1 − ΨN)

N∏
i=1

dP 1
F

dP 1
F0

(Yi, Xi)
]

= EN
F [1 − ΨN ],

to upper bound the last probability by

1
a
e(A+D+2)Nδ2

N

( ∫
Ac

N

EN
F [1 − ΨN ]dΠN(F ) +

∫
{F∈AN : h(pF0 ,pF )>LδN }

EN
F [1 − ΨN ]dΠN(F )

+
∫

{F∈Ac
N : h(pF0 ,pF )>LδN }

EN
F [1 − ΨN ]dΠN(F )

)
≤ 1
a
e(A+D+2)Nδ2

N

(
2ΠN(Ac

N) +
∫

{F∈AN : h(pF0 ,pF )>LδN }
EN
F [1 − ΨN ]dΠN(F )

)
≲ e−(B−A−D−2)Nδ2

N = o(1)

as N → ∞ since B > A+D + 2, having used the excess mass condition (3.36) and the
second display in (3.39).

3.A.2 Contraction rates for re-scaled Gaussian priors

While the previous result assumed a general sequence of priors, we now derive explicit
contraction rates in L2-prediction risk for the specific choices of priors considered in
Section 3.3. We start with the ‘re-scaled’ priors of Section 3.3.1.

Theorem 3.8. Let the forward map G satisfy (3.32) and (3.33) for given β, γ, κ,≥ 0
and S > 0. For integer α > β + d/2, consider a Gaussian prior ΠN constructed as in
(3.11) with scaling Nd/(4α+4κ+2d) and with base prior F ′ ∼ Π′ satisfying Condition 3.3
with RKHS H. Let ΠN (·|Y (N), X(N)) be the resulting posterior arising from observations
(Y (N), X(N)) in (3.31), assume F0 ∈ H and set δN = N−(α+κ)/(2α+2κ+d).

Then for any D > 0 there exists L > 0 large enough (depending on σ, F0, D, α, and
β, γ, κ, S, d) such that, as N → ∞,

ΠN(F : ∥G (F ) − G (F0)∥L2(D) > LδN |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ), (3.41)

and for sufficiently large M > 0 (depending on σ,D, α, β, γ, κ, d)

ΠN(F : ∥F∥Cβ > M |Y (N), X(N)) = OPN
F0

(e−DNδ2
N ). (3.42)
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Remark 3.1. Inspection of the proof (cfr. after (3.45)) shows that if κ = 0 in (3.32),
then the RKHS H in Condition 3.3 can be assumed to be continuously imbedded in
Hα(O) instead of Hα

0 (O). The same remark in fact applies for κ < 1/2.

Proof. In view of the boundedness assumption (3.33) on G , we have by Lemma 3.9 below
that for some q > 0 (depending on σ, S)

E1
F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]
∨ E1

F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]2
≤ q∥G (F0) − G (F )∥2

L2(D).

Hence, for BN the sets from (3.34) we have {F : ∥G (F0) − G (F )∥L2(D) ≤ δN/q} ⊆
BN , which in turn implies the small ball condition (3.35) since by Lemma 3.3 below
(premultiplying, if needed, δN by a sufficiently large but fixed constant)

ΠN(F : ∥G (F ) − G (F0)∥L2(D) ≤ δN/q) ≳ e−ANδ2
N

for some A > 0 and all N large enough. Next, for all D > 0 and any B > A + D + 2,
we can choose sets AN as in Lemmas 3.4 and 3.5 and verify the excess mass condition
(3.36) as well as the complexity bound (3.37). Note that ∥F∥Cβ ≤ M for all F ∈ AN .
We then conclude by Theorem 3.7 that for some L′ > 0 large enough

ΠN(F ∈ AN : h(pF , pF0) ≤ L′δN |Y (N), X(N)) = 1 −OPN
F0

(e−DNδ2
N )

yielding the claim for some appropriate L > 0 using the first inequality in (3.57).

The following key lemma shows that the (non-Gaussian) prior induced on the regression
functions G (F ) assigns sufficient mass to a L2-neighbourhood of G (F0).

Lemma 3.3. Let ΠN , F0 and δN be as in Theorem 3.8. Then, for sufficiently large c > 0
there exists A > 0 (depending on c, F0, α, β, γ, κ, d) such that

ΠN(F : ∥G (F ) − G (F0)∥L2(D) ≤ cδN) ≳ e−ANδ2
N (3.43)

for all N large enough.
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Proof. Since F0 ∈ H, ∥F0∥Cβ < ∞ by a Sobolev imbedding. Let M > ∥F0∥Cβ ∨ 1 be a
fixed constant. Using (3.32), we obtain for some k > 0

ΠN(F : ∥G (F ) − G (F0)∥L2(D) ≤ cδN)
≥ ΠN(F : ∥F − F0∥(Hκ)∗ ≤ ckM−γδN , ∥F − F0∥Cβ ≤ M)
= ΠN(F : F − F0 ∈ C1 ∩ C2),

where
C1 := {F : ∥F∥(Hκ)∗ ≤ ckM−γδN}, C2 := {F : ∥F∥Cβ ≤ M}.

Then, recalling that the RKHS HN of ΠN coincides with H with RKHS norm ∥ · ∥HN

given in (3.12), now with scaling Nd/(4α+4κ+2d) =
√
NδN , we can use Corollary 2.6.18 in

[104] to lower bound the last probability by

e
−∥F0∥2

HN
/2ΠN(C1 ∩ C2) = e− 1

2Nδ
2
N ∥F0∥2

HΠN(C1 ∩ C2)
≥ e− 1

2Nδ
2
N ∥F0∥2

H
(
ΠN(C1) − ΠN(Cc

2)
)

To upper bound ΠN(Cc
2), note that by construction of ΠN

ΠN(Cc
2) = Pr(∥F ′∥Cβ > MNδ2

N), F ′ ∼ Π′.

By Condition 3.3, F ′ defines a centred Gaussian Borel random element in a separable
measurable subspace C of Cβ, and by the Hahn-Banach theorem and the separability of
C, ∥F ′∥Cβ can then be represented as a countable supremum

∥F ′∥Cβ = sup
T∈T

|T (F ′)|

of actions of bounded linear functionals T = (Tm)m∈N ⊂ (Cβ)∗. It follows that the
collection {Tm(F ′)}m∈N is a centred Gaussian process with almost surely finite supremum,
so that by Fernique’s theorem [104, Theorem 2.1.20]

E∥F ′∥Cβ = E sup
m∈N

|Tm(F ′)| < ∞; τ 2 := sup
m∈N

E|Tm(F ′)|2 < ∞.

We then apply the Borell-Sudakov-Tirelson inequality [104, Theorem 2.5.8] to obtain for
all N large enough,

Pr
(
∥F ′∥Cβ ≥ M

√
NδN

)
≤ Pr

(
∥F ′∥Cβ ≥ E∥F ′∥Cβ +M

√
NδN/2

)
≤ e− 1

8 (M/τ)2Nδ2
N .

(3.44)
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We proceed finding a lower bound for the prior probability of C1, which, by construc-
tion of ΠN , satisfies

ΠN(F ∈ C1) = Π′
(
F ′ : ∥F ′∥(Hκ)∗ ≤ ckM−γ

√
Nδ2

N

)
.

For any integer α > 0 and any κ ≥ 0, letting Bα
0 (r) := {F ∈ Hα

0 , ∥F∥Hα ≤ r}, r > 0,
we have the metric entropy estimate:

logN(η;Bα
0 (r), ∥ · ∥(Hκ)∗) ≲ (r/η)d/(α+κ) ∀η > 0; (3.45)

see the proof of Lemma 19 in [176] for the case κ ≥ 1/2, and Theorem 4.10.3 in [227] for
κ < 1/2 (in the latter case, we note in fact that the estimate holds true also for balls in
the whole space Hα). Hence, since H is continuously imbedded into Hα

0 , letting BH(1)
be the unit ball of H, we have BH(1) ⊆ Bα

0 (r) for some r > 0, implying that for all η > 0

logN(η;BH(1), ∥ · ∥(Hκ)∗) ≤ logN(η;Bα
0 (r), ∥ · ∥(Hκ)∗) ≲ η−d/(α+κ). (3.46)

Then, for all N large enough, the small ball estimate in Theorem 1.2 in [152] yields

− log Π′(F ′ : ∥F ′∥(Hκ)∗ ≤ ckM−γ
√
Nδ2

N)

≲ (cM−γ
√
Nδ2

N)−2 d
α+κ

(2−d/(α+κ))−1

= (Mγ/c)
2d

2α+2κ−d [N−(α+κ−d/2)/(2α+2κ+d)]−
2d

2α+2κ−d

= (Mγ/c)
2d

2α+2κ−dNδ2
N .

Thus, for k′ > 0 a fixed constant, we obtain the lower bound

ΠN(F : ∥G (F ) − G (F0)∥L2(D) ≤ cδN)

≥ e− 1
2Nδ

2
N ∥F0∥2

H

(
e−k′(Mγ/c)

2d
2α+2κ−dNδ2

N − e− 1
8 (M/τ)2Nδ2

N

)
≳ e−ANδ2

N

having taken c > 0 large enough (satisfying k′(Mγ/c)
2d

2α+2κ−d < 1
8(M/τ)2), and where

A = 1
2∥F0∥2

H + k′(Mγ/c)
2d

2α+2κ−d .

We now construct suitable approximating sets for which we check the excess mass
condition (3.36).
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Lemma 3.4. Let ΠN and δN be as in Theorem 3.8. Define for any M,Q > 0

AN =
{
F : F = F1 + F2 : ∥F1∥(Hκ)∗ ≤ QδN , ∥F2∥H ≤ M, ∥F∥Cβ ≤ M

}
. (3.47)

Then for any B > 0 and for sufficiently large M,Q (both depending on B,α, β, γ, κ, d),
for all N large enough,

ΠN(Ac
N) ≤ 2e−BNδ2

N . (3.48)

Proof. By (3.44), taking M ≳
√
B, we obtain for all N large enough that ΠN(F :

∥F∥Cβ ≤ M) ≥ 1 − e−BNδ2
N . Thus, the claim will follow if we can derive a similar lower

bound for

ΠN

(
F : F = F1 + F2 : ∥F1∥(Hκ)∗ ≤ QδN , ∥F2∥H ≤ M

)
= Π′

(
F ′ : F ′ = F ′

1 + F ′
2, ∥F ′

1∥(Hκ)∗ ≤ Q
√
Nδ2

N , ∥F ′
2∥H ≤ M

√
NδN

)
,

having used that Nd/(4α+4κ+d) =
√
NδN . Using Theorem 1.2 in [152] as after (3.46), we

deduce that for some q > 0

− log Π′
(
F ′ : ∥F ′∥(Hκ)∗ ≤ Q

√
Nδ2

N

)
≤ q(Q

√
Nδ2

N)− 2d
2α+2κ−d

so that for any Q > (B/q)−(2α+2κ−d)/(2d)

− log Π′
(
F ′ : ∥F ′∥(Hκ)∗ ≤ Q

√
Nδ2

N

)
≤ B(

√
Nδ2

N)− 2d
2α+2κ−d = BNδ2

N . (3.49)

Next, denote by
MN = −2Φ−1(e−BNδ2

N )

where Φ is the standard normal cumulative distribution function. Then by standard
inequalities for Φ−1 we have MN ≃

√
BNδN as N → ∞, so that taking M ≳

√
B implies

Π′
(
F ′ : F ′ = F ′

1 + F ′
2, ∥F ′

1∥(Hκ)∗ ≤ Q
√
Nδ2

N , ∥F ′
2∥H ≤ M

√
NδN

)
≥ Π′

(
F ′ : F ′ = F ′

1 + F ′
2, ∥F ′

1∥(Hκ)∗ ≤ Q
√
Nδ2

N , ∥F ′
2∥H ≤ MN

)
.

By the isoperimetric inequality for Gaussian processes [104, Theorem 2.6.12], the last
probability is then lower bounded, using (3.49), by

Φ
(
Φ−1

[
Π′
(
F ′ : ∥F ′∥(Hκ)∗ ≤ Q

√
Nδ2

N

)]
+MN

)
≥ Φ

(
Φ−1[e−BNδ2

N ] +MN

)
= 1 − e−BNδ2

N ,

concluding the proof.



3.A Results for general inverse problems 109

We conclude with the verification of the complexity bound (3.37) for the sets AN .

Lemma 3.5. Let AN be as in Lemma 3.4 for some fixed M,Q > 0. Then,

logN(δN ; AN , h) ≤ CNδ2
N ,

for some constant C > 0 (depending on σ,M,Q, α, β, γ, κ, d, S) and all N large enough.

Proof. If F ∈ AN , then F = F1 +F2 with ∥F1∥(Hκ)∗ ≤ QδN and ∥F2∥Hα ≤ M ′, the latter
inequality following from the continuous imbedding of H into Hα

0 . Thus, recalling the
metric entropy estimate (3.45), if

{H1, . . . , HP} ⊂ Bα
0 (M ′), P ≤ e−qδ−d/(α+κ)

N = e−qNδ2
N , q > 0,

is a δN -net with respect to ∥ · ∥(Hκ)∗ , we can find Hi such that ∥F2 − Hi∥(Hκ)∗ ≤ δN .
Then, using the second inequality in (3.57) below and the local Lipschitz estimate (3.32),

h(pF , Hi) ≲ ∥G (F ) − G (Hi)∥L2(D)

≲ (1 + ∥F∥γCβ ∨ ∥Hi∥γCβ )∥F −Hi∥(Hκ)∗ .

Recalling that if F ∈ AN then also ∥F∥Cβ ≤ M , and using the Sobolev imbedding of
Hα into Cβ to bound ∥Hi∥Cβ , we then obtain

h(pF , Hi) ≲ ∥F −Hi∥(Hκ)∗ ≲ ∥F − F2∥(Hκ)∗ + ∥F2 −Hi∥(Hκ)∗ ≲ δN .

It follows that {H1, . . . , HP} also forms a q′δN -net for AN in the Hellinger distance for
some q′ > 0, so that

logN(δN ; AN , h) ≤ logN(δN/q′;Bα
0 (M), ∥ · ∥(Hκ)∗) ≲ Nδ2

N .

3.A.3 Contraction rates for hierarchical Gaussian series priors

We now derive contraction rates in L2-prediction risk in the inverse problem (3.31), for
the truncated Gaussian random series priors introduced in Section 3.3.3. The proof again
proceeds by an application of Theorem 3.7.
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Theorem 3.9. Let the forward map G satisfy (3.32) and (3.33) for given β, γ, κ ≥
0 and S > 0. For any α > β + d/2, let Π be the random series prior in (3.19),
and let Π(·|Y (N), X(N)) be the resulting posterior distribution arising from observations
(Y (N), X(N)) in (3.31). Then, for each α0 ≥ α, any F0 ∈ Hα0

K (O) and any D > 0 there
exists L > 0 large enough (depending on σ, F0, D, α, β, γ, κ, S, d) such that, as N → ∞,

Π(F : ∥G (F ) − G (F0)∥L2(D) > LξN |Y (N), X(N)) = OPN
F0

(e−DNξ2
N ), (3.50)

where ξN = N−(α0+κ)/(2α0+2κ+d) logN . Moreover, for HJ the finite-dimensional subspaces
from (3.18) and JN ∈ N such that 2JN ≃ N1/(2α0+2κ+d), we also have that for sufficiently
large M > 0 (depending on D,α, β, d)

Π
(
F : F ∈ HJN

, ∥F∥Hα ≤ M2JNαNξ2
N |Y (N), X(N)

)
= OPN

F0
(e−DNξ2

N ). (3.51)

We begin deriving a suitable small ball estimate in the L2-prediction risk.

Lemma 3.6. Let Π, F0 and ξN be as in Theorem 3.9. Then, for sufficiently large q > 0
there exists A > 0 (depending on q, F0, α, β, γ, κ, d) such that

Π(F : ∥G (F ) − G (F0)∥L2(D) ≤ qξN) ≳ e−ANξ2
N (3.52)

for all N large enough.

Proof. For each j ∈ N, denote by Πj the Gaussian probability measure on the finite
dimensional subspace Hj in (3.18) defined as after (3.19) with the series truncated at j.
For JN ∈ N : 2JN ≃ N1/(2α0+2κ+d), note

2JNd log 2JNd ≃ Nd/(2α0+2κ+d) logN = Nξ2
N , (3.53)

so that, recalling the properties (3.20) of the random truncation level J , for some s > 0,

Pr(K = JN) ≳ e−2JN d log 2JN d ≥ e−sNξ2
N

for all N large enough. It follows

Π(F : ∥G (F ) − G (F0)∥L2 ≤ qξN) ≥ ΠJN
(F : ∥G (F ) − G (F0)∥L2 ≤ qξN) Pr(K = JN)

≳ ΠJN
(F : ∥G (F ) − G (F0)∥L2 ≤ qξN)e−sNξ2

N .
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Next, let
PJN

F0 = χ
∑

l≤JN ,r∈Rl

⟨F0,Φlr⟩L2Φlr

be the ‘projection’ of F0 onto HJN
. Since F0 ∈ Hα0

K ⊂ Cβ by a Sobolev imbedding, it
follows using (3.32) and standard approximation properties of wavelets (cfr. (3.63)),

∥G (F0) − G (PJN
F0)∥L2(D) ≲ ∥F0 − PJN

F0∥(Hκ)∗ ≲ 2−JN (α0+κ) = N
− α0+κ

2α0+2κ+d ,

which implies by the triangle inequality that

ΠJN
(F : ∥G (F ) − G (F0)∥L2 ≤ qξN)
≥ ΠJN

(F : ∥G (F ) − G (PJN
F0)∥L2 ≤ qξN − ∥G (F0) − G (PJN

F0)∥L2)
≥ ΠJN

(F : ∥G (F ) − G (PJN
F0)∥L2 ≤ q′ξN).

Using again that Hα imbeds continuously into Cβ as well as (3.32) and (4.30), we can
lower bound the last probability by

ΠJN
(F : ∥G (F ) − G (PJN

F0)∥L2(D) ≤ q′ξN , ∥F − PJN
F0∥Hα(O) ≤ ξN)

≥ ΠJN
(F : ∥F − PJN

F0∥(Hκ(O))∗ ≤ q′′ξN , ∥F − PJN
F0∥Hα(O) ≤ ξN)

≥ ΠJN
(F : ∥F − PJN

F0∥Hα(O) ≤ q′′′ξN),

which, by Corollary 2.6.18 in [104] and in view of (3.59) is further lower bounded by

e
− 1

2 ∥PJN
F0∥2

HJN ΠJN
(F : ∥F∥Hα ≤ q′′′ξN) ≥ e−s′∥F0∥2

Hα0 ΠJN
(F : ∥F∥Hα ≤ q′′′ξN).

Now since f 7→ χf, χ ∈ C∞(O), is continuous on Hα(O),

ΠJN
(F : ∥F∥Hα ≤ q′′′ξN) = Pr

(∥∥∥∥χ ∑
l≤JN ,r∈Rl

2−lαFlrΦlr

∥∥∥∥
Hα

≤ q′′′ξN

)

≥ Pr
 dim(HJN

)∑
m=1

Z2
m ≤ tξ2

N
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for some t > 0, where Zm iid∼ N(0, 1), and where we have used the wavelet characterisation
of the Hα(Rd) norm. To conclude, note that the last probability is greater than

Pr
(√

dim(HJN
) max
m≤dim(HJN

)
|Zm| ≤

√
tξN

)
≥ Pr

(
max

m≤dim(HJN
)
|Zm| ≤ t′N

− α0+κ

2α0+2κ+dN
− d/2

2α0+2κ+d

)
=

∏
m≤dim(HJN

)
Pr
(

|Zm| ≤ t′N
− α0+κ+d/2

2α0+2κ+d

)
.

Finally, a standard calculation shows that Pr(|Z1| ≤ t) ≳ t if t → 0, and hence the last
product is lower bounded, for large N , by

(
t′N

− α0+κ+d/2
2α0+2κ+d

)dim(HJN
)

= e
dim(HJN

) log
(
t′N

− α0+κ+d/2
2α0+2+d

)
≥ e−t′′2JN d logN

= e−t′′′Nξ2
N .

In the following lemma we construct suitable approximating sets, for which we check
the excess mass condition (3.36) and the complexity bound (3.37) required in Theorem
3.7.

Lemma 3.7. Let Π, ξN and JN be as in Theorem 3.4, and let HJN
be the finite

dimensional subspace defined in (3.18) with J = JN . Define for each M > 0

AN =
{
F ∈ HJN

, ∥F∥Hα ≤ M2JNαNξ2
N

}
. (3.54)

Then, for any B > 0 there exists M > 0 large enough (depending on B,α, β, d) such that,
for sufficiently large N

Π(Ac
N) ≤ 2e−BNξ2

N . (3.55)

Moreover, for each fixed M > 0 and all N large enough

logN(ξN ; AN , h) ≤ CNξ2
N (3.56)

for some C > 0 (depending on σ, α, β, γ, κ, S, d).
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Proof. Letting Zm iid∼ N(0, 1), noting ∥F∥2
Hα ≤ 22JNα

∑
l≤JN ,r∈Rl

F 2
lr for all F ∈ HJN

(cfr.
(3.59)) and using (3.53) and (3.20), we have for sufficiently large N

Π(Ac
N) ≤ Pr(J > JN) + Pr

 ∑
l≤J∧JN ,r∈Rl

F 2
lr ≤ MNξ2

N


≤ e−2JN d log 2JN d + Pr

 ∑
m≤dim(HJN

)
Z2
m > MNξ2

N


≤ e−BNξ2

N + Pr

 ∑
m≤dim(HJN

)
(Z2

m − 1) > M̄Nξ2
N


for any constant 0 < M̄ < M2 − 1, since dim(HJN

) ≲ 2JNd ≃ Nd/(2α+2+d) = o(Nξ2
N).

The bound (3.55) then follows applying Theorem 3.1.9 in [104] to upper bound the last
probability, for any B > and for sufficiently large M and M̄ , by

e
−

M̄2(Nξ2
N

)2

4dim(HJN
)+M̄Nξ2

N ≤ e−BNξ2
N .

We proceed with the derivation of (3.56). By choice of JN , if F ∈ AN then ∥F∥2
Hα ≲

N (2α)/(2α+2κ+d)Nξ2
N . Hence, by the second inequality in (3.57), using (3.32) and the

Sobolev imbedding of Hα into Cβ, if F1, F2 ∈ AN then

h(pF1 , pF2) ≲ ∥G (F1) − G (F2)∥L2(D)

≲ (1 + (N
α

2α+2κ+d

√
NξN)γ)∥F1 − F2∥(Hκ)∗

≲ N
αγ

2α+2κ+d (
√
NξN)γ

√ ∑
l≤JN ,r∈Rl

(F1,lr − F2,lr)2.

Therefore, using the standard metric entropy estimate for balls BRp(r), r > 0, in
Euclidean spaces [104, Proposition 4.3.34], we see that for N large enough

logN(ξN ; AN , h) ≲ logN
(
ξNN

−αγ
2α+2κ+d (

√
NξN)−γ;BRdim(HJN

)(M
√
NξN), ∥ · ∥Rdim(HJN

)

)

≤ dim(HJN
) log 3M

√
NξN

ξNN
αγ

2α+2κ+d (
√
NξN)−γ

≲ Nξ2
N .
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3.A.4 Information theoretic inequalities

In the following lemma (due to [30]) we exploit the boundedness assumption (3.33) on G

to show the equivalence between the Hellinger distance appearing in the conclusion of
Theorem 3.7 and the L2-distance on the ‘regression functions’ G (F ).

Lemma 3.8. Let the forward map G satisfy (3.33) for some S > 0. Then, for all
F1, F2 ∈ F

1 − e−S2/(2σ2)

4S2 ∥G (F1) − G (F2)∥2
L2(D) ≤ h2(pF1 , pF2) ≤ 1

4σ2 ∥G (F1) − G (F2)∥2
L2(D). (3.57)

Proof. Note h2(pF1 , pF2) = 2 − 2ρ(pF1 , pF2), where

ρ(pF1 , pF2) :=
∫
R×D

√
pF1(y, x)pF2(y, x)dydx

is the Hellinger affinity. Using the expression of the likelihood in (3.8) (with D instead
of O), the right hand side is seen to be equal to

∫
R×D

1√
2πσ2

e−{[y−G (F1)(x)]2−[y−G (F2)(x)]2}/(4σ2)dydx

=
∫

D
e−{[G (F1)(x)]2+[G (F2)(x)]2}/(4σ2)

[ ∫
R

e−y2/(2σ2)
√

2πσ2
ey[G (F1)(x)+G (F2)(x)]/(2σ2)dy

]
dx

=
∫

D
e−{[G (F1)(x)]2+[G (F2)(x)]2}/(4σ2)e[G (F1)(x)+G (F2)(x)]2/(8σ2)dx

having used that the moment generating function of Z ∼ N(0, σ2) satisfies EetZ =
eσ

2t2/2, t ∈ R. Thus, the latter integral equals∫
D
e−{[G (F1)(x)]2+[G (F2)(x)]2−2G (F2)(x)G (F2)(x)}/(8σ2)dx = Eµe−{G (F1)(X)−G (F2)(X)}2/(8σ2).

To derive the second inequality in (3.57), we use Jensen’s inequality to lower bound
the expectation in the last line by

e−Eµ{G (F1)(X)−G (F2)(X)}2/(8σ2) = e
−∥G (F1)−G (F2)∥2

L2(D)
/(8σ2)

.

Hence
h2(pF1 , pF2) ≤ 2

[
1 − e

−∥G (F1)−G (F2)∥2
L2(D)

/(8σ2)
]
,

whereby the claim follows using the basic inequality 1 − e−z/c ≤ z/c, for all c, z > 0.
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To deduce the first inequality we follow the proof of Proposition 1 in [30]: note that
for all 0 ≤ z1 < z2

e−z1 ≤ z1

z2
e−z2 +

(
1 − z1

z2

)
= e−z2 − 1

z2
z1 + 1.

Then taking z1 = {G (F1)(X) − G (F2)(X)}2/(8σ2) and z2 = S2/(2σ2),

Eµe−{G (F1)(X)−G (F2)(X)}2/(8σ2) ≤ e−S2/(2σ2) − 1
4S2 ∥G (F1) − G (F2)∥2

L2(D) + 1

which in turn yields the result.

The next lemma bounds the Kullback-Leibler divergences appearing in (3.34) in terms
of the L2-prediction risk.

Lemma 3.9. Let the observation Yi in (3.31) be generated by some fixed F0 ∈ F . Then,
for each F ∈ F ,

E1
F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]
= 1
σ2 ∥G (F0) − G (F )∥2

L2(D),

and
E1
F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]2
≤ 2(S2 + σ2)

σ4 ∥G (F0) − G (F )∥2
L2(D).

Proof. If Y1 = G (F0)(X1) + σW1, then

logpF0(Y1, X1)
pF (Y1, X1)

= − 1
2σ2 {[G (F0)(X1) + σW1 − G (F0)(X1)]2 − [G (F0)(X1) + σW1 − G (F )(X1)]2}

= 1
2σ2 {G (F0)(X1) − G (F )(X1)}2 + 1

σ
W1{G (F0)(X1) − G (F )(X1)}.

Hence, since EW1 = 0 and X1 ∼ µ,

E1
F0

[
log pF0(Y1, X1)

pF (Y1, X1)

]
= Eµ

[ 1
2σ2 {G (F0)(X1) − G (F )(X1)}2

]
= 1

2σ2 ∥G (F0) − G (F )∥2
L2(D).
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On the other hand,
[

logpF0(Y1, X1)
pF (Y1, X1)

]2

=
[ 1
2σ2 {G (F0)(X1) − G (F )(X1)}2 + 1

σ
W1{G (F0)(X1) − G (F )(X1)}

]2

≤ 2
[ 1
2σ2 {G (F0)(X1) − G (F )(X1)}2

]2
+ 2

[ 1
σ
W1{G (F0)(X1) − G (F )(X1)}

]2

= 2S2

σ4 {G (F0)(X1) − G (F )(X1)}2 + 2
σ2W

2
1 {G (F0)(X1) − G (F )(X1)}2,

whence the second claim follows since EW 2
1 = 1.

Appendix 3.B Additional background material

In this final appendix we collect some standard materials used in the proofs for convenience
of the reader.

Example 3.1. Take

ϕ : R → (0,∞), ϕ(t) = 1
1 − t

1{t<0} + (1 + t)1{t≥0},

and let ψ : R → [0,∞) be a smooth compactly supported function such that
∫
R ψ(t)dt = 1.

Define for any Kmin ∈ (0, 1)

Φ(t) = Kmin + 1 −Kmin

ψ ∗ ϕ(0) ψ ∗ ϕ(t), t ∈ R. (3.58)

Then it is elementary to check that Φ is a regular link function that satisfies Condition
3.2 (with a = 2).

Example 3.2. For any real α > d/2, the Matérn process with index set O and regularity
α − d/2 > 0 (cfr. Example 11.8 in [101]) is the stationary centred Gaussian process
M = {M(x), x ∈ O} with covariance kernel

C(x, y) =
∫
Rd
e−i⟨x−y,ξ⟩Rdµ(dξ), µ(dξ) = (1 + ∥ξ∥2

Rd)−αdξ, x, y ∈ O.

From the results in Chapter 11 in [101] we see that the RKHS of (M(x) : x ∈ O) equals
the set of restrictions to O of elements in the Sobolev space Hα(Rd), which equals,
with equivalent norms, the space Hα(O) (since O has a smooth boundary). Moreover,
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Lemma I.4 in [101] shows that M has a version with paths belonging almost surely
to Cβ′ for all β′ < α − d/2. Let now K ⊂ O be a nonempty compact set, and let
M be a Cβ′-smooth version of a Matérn process on O with RKHS Hα(O). Taking
F ′ = χM implies (cfr. Exercise 2.6.5 in [104]) that Π′ = L(F ′) defines a centred Gaussian
probability measure supported on Cβ′ , whose RKHS is given by

H = {χF, F ∈ Hα(O)},

and the RKHS norm satisfies that for all F ∈ Hα(O) there exists F ∗ ∈ Hα(O) such that
χF = χF ∗ and

∥χF∥H = ∥F ∗∥Hα(O).

Thus if F ′ = χF is an arbitrary element of H, then

∥F ′∥Hα = ∥χF ∗∥Hα ≲ ∥F ∗∥Hα = ∥F ′∥H,

which shows that H is continuously embedded into Hα
0 (O).

Remark 3.2. Let {Φlr, l ≥ −1, r ∈ Zd} be an orthonormal basis of L2(Rd) composed
of S-regular and compactly supported Daubechies wavelets (see Chapter 4 in [104] for
construction and properties). For each 0 ≤ α ≤ S, we have

Hα(Rd) =
{
F ∈ L2(Rd) :

∑
l,r

22lα⟨F,Φlr⟩2
L2(Rd) < ∞

}
,

and the square root of the latter series defines an equivalent norm to ∥ · ∥Hα(Rd). Note
that S > 0 can be taken arbitrarily large.

For any α ≥ 0 the Gaussian random series

F̄j =
∑

l≤j,r∈Rl

Flr2−lαΦlr, Flr
iid∼ N(0, 1)

defines a centred Gaussian probability measure supported on the finite-dimensional space
H̄j spanned by the {Φlr, l ≤ j, r ∈ Rl}, and its RKHS equals H̄j endowed with norm

∥H̄j∥2
H̄j

=
∑

l≤j,r∈Rl

22lαH2
lr = ∥H̄j∥2

Hα(Rd) ∀H̄j ∈ H̄j

(cfr. Example 2.6.15 in [104]). Basic wavelet theory implies dim(H̄j) ≲ 2jd.
If we now fix compact K ′ ⊂ O such that K ⊊ K ′, and consider a cut-off function

χ ∈ C∞
c (O) such that χ = 1 on K ′, then multiplication by χ is a bounded linear operator
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χ : Hs(Rd) → Hs
0(O). It follows that the random function

Fj = χ(F̄j) =
∑

l≤j,r∈Rl

Flr2−lαχΦlr, Flr
iid∼ N(0, 1)

defines, according to Exercise 2.6.5 in [104], a centred Gaussian probability measure
Πj = L(Fj) supported on the finite dimensional subspace Hj from (3.18), with RKHS
norm satisfying∥∥∥∥χ( ∑

l≤j,r∈Rl

HlrΦlr

)∥∥∥∥
Hj

≤
∥∥∥∥ ∑
l≤j,r∈Rl

HlrΦlr∥H̄j
=
√ ∑
l≤j,r∈Rl

22lαH2
lr. (3.59)

Arguing as in the previous remark one shows further that for some constant c > 0,

∥Hj∥Hα(O) ≤ c∥Hj∥Hj
∀Hj ∈ Hj. (3.60)

Remark 3.3. Using the notation of the previous remark, for fixed F0 ∈ Hα
K(O), consider

the finite-dimensional approximations

PJF0 =
∑

l≤j,r∈Rl

⟨F0,Φlr⟩L2χΦlr ∈ Hj, j ∈ N. (3.61)

Then in view of (3.59), we readily check that for each j ≥ 1

∥PJF0∥Hj
≤
√ ∑
l≤j,r∈Rl

22lα⟨F0,Φlr⟩2
L2 ≤ ∥F0∥Hα(O) < ∞. (3.62)

Also, for each κ ≥ 0, and any G ∈ Hκ(O), we see that (implicitly extending to 0 on
Rd\O functions that are compactly supported inside O)

⟨F0 − PJF0, G⟩L2(O) = ⟨F0 − PJF0, χ
′G⟩L2(Rd)

where χ′ ∈ C∞
c (O), with χ′ = 1 on supp(χ). We also note that, in view of the localisation

properties of Daubechies wavelets, for some Jmin ∈ N large enough, if l ≥ Jmin and the
support of Φlr intersects K, then necessarily supp(Φlr) ⊆ K ′, so that

χΦlr = Φlr ∀l ≥ Jmin, r ∈ Rl.
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Therefore, for j ≥ Jmin, by Parseval’s identity and the Cauchy-Schwarz inequality

⟨F0 − PJF0, χ
′G⟩L2(Rd)

=
∑

l′>j,r′∈Rl

2lα⟨F0,Φl′r′⟩L2(Rd)2l
′κ⟨χ′G,Φl′r′⟩L2(Rd)2−l′(α+κ)

≤ 2−j(α+κ)
√ ∑
l′>j,r′∈Rl

22lα⟨F0,Φl′r′⟩2
L2(Rd)

√ ∑
l′>j,r′∈Rl

22lκ⟨χ′G,Φl′r′⟩2
L2(Rd)

≤ 2−j(α+κ)∥F0∥Hα(O)∥χ′G∥Hκ(Rd).

It follows by duality that for all j large enough

∥F0 − PjF0∥(Hκ(O))∗ ≲ 2−j(α+κ)∥F0∥Hα(O). (3.63)

We conclude remarking that

∥F∥Hα(O) ≲ 2jα∥F∥L2(O), ∀F ∈ Hj, j ≥ Jmin. (3.64)

Indeed, let j ≥ Jmin, and fix F ∈ Hj; then

F = PJmin
F + (F − PJmin

F ) =
∑

l≤Jmin,r∈Rl

FlrχΦlr +
∑

Jmin<l≤j,r∈Rl

FlrΦlr.

But as HJmin
is a fixed finite dimensional subspace, then we have ∥PJmin

F∥Hs(O) ≲

∥PJmin
F∥L2(O) ≤ ∥F∥L2(O) for some fixed multiplicative constant only depending on Jmin.

On the other hand, we also have

∥F − PJmin
F∥2

Hα(O) =
∑

Jmin<l≤j,r∈Rl

22lαF 2
lr

≤ 22jα∥F − PJmin
F∥2

L2(O)

≤ 22jα∥F∥2
L2(O),

yielding (3.64).

Example 3.3. Consider the integer-valued random variable

J = ⌊log2(ϕ−1(T )1/d)⌋ + 1, T ∼ Exp(1),

where ϕ(x) = x log x, x ≥ 1. Then for any j ≥ 1

Pr(J > j) = Pr(ϕ−1(T ) ≥ 2jd) = Pr(T ≥ 2jd log 2jd) = e−2jd log 2jd

.
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On the other hand, since e−2jd(1−2−d) log 2(j−1)d → 0 as j → ∞,

Pr(J = j) = Pr
(
2(j−1)d ≤ ϕ−1(T ) < 2jd

)
= e−2(j−1)d log 2(j−1)d + 1 − e−2jd log 2jd − 1

≥ e−2(j−1)d log 2(j−1)d(1 − e−2jd(1−2−d) log 2(j−1)d)
≳ e−2jd log 2jd

.



Chapter 4

Nonparametric Bayesian inference
for reversible multi-dimensional
diffusions

We study nonparametric Bayesian models for reversible multi-dimensional diffusions
with periodic drift. For continuous observation paths, reversibility is exploited to prove
a general posterior contraction rate theorem for the drift gradient vector field under
approximation-theoretic conditions on the induced prior for the invariant measure. The
general theorem is applied to Gaussian priors and p-exponential priors, which are shown
to converge to the truth at the minimax optimal rate over Sobolev smoothness classes in
any dimension.

4.1 Introduction

Consider observing a continuous trajectory XT = (Xt = (X1
t , . . . , X

d
t ) : 0 ≤ t ≤ T ) of

the multi-dimensional Markov diffusion process given by the solution to the stochastic
differential equation (SDE)

dXt = b(Xt)dt+ dWt, X0 = x0 ∈ Rd, t ≥ 0, (4.1)

where (Wt = (W 1
t , . . . ,W

d
t ) : t ≥ 0) is a standard Brownian motion on Rd and b =

(b1, . . . , bd) is a Lipschitz vector field. We are interested in nonparametric Bayesian
inference on the drift term b in the practically important case when the diffusion process
is time-reversible. By a result of Kolmogorov, this is equivalent to the drift b equalling
the gradient vector field ∇B of a potential function B : Rd → R (e.g., [15], p. 46).
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In many applications, reversibility arises due to physical considerations and is a key
property which one wants to incorporate into the model. Indeed, one is often interested in
inference on the potential B, which carries important physical information. For example,
the SDE (4.1) with b = ∇B arises as the Smoluchowski-Kramers approximation to the
Langevin equation for the motion of a chemically bounded particle [143, 58, 213], in which
case B describes the chemical bonding forces. Other applications of the reversible diffusion
model (4.1) in physics and chemistry include vacancy diffusion and Lennard-Jones clusters
[185, 186] and chemical reaction equations [41].

A Bayesian who wants to model reversible diffusion dynamics must do so explicitly via
the prior, namely by constructing one that draws gradient vector fields for b. The natural
approach is then to directly place a prior on the potential B rather than on b, which is
the approach we pursue here. Moreover, B typically has a strong physical meaning and
estimating it is often the primary inferential goal, in which case explicitly modelling the
potential provides interpretable inference. Our goal is to provide theoretical guarantees
for this Bayesian approach, which arises directly from physical considerations in the
modelling step.

The theoretical performance of nonparametric Bayesian procedures for drift estimation
is well-studied in the one-dimensional case d = 1 [232, 187, 110, 238, 174, 1, 237].
However, much less is known in the general multi-dimensional setting d ≥ 2, even for
nonparametric frequentist methods. In the continuous observation model, Dalalyan and
Reiß [68] established pointwise convergence rates and Strauch [217–219] obtained adaptive
rates, both using multivariate kernel-type estimators. In the Bayesian setting, Nickl and
Ray [173] obtained L2 and L∞ posterior contraction rates, as well as Bernstein–von Mises
results, for certain non-reversible drift vector fields - more discussion can be found below.

In this chapter, we obtain contraction rates for the posterior distribution of B about
the true potential B0 in the model (4.1). We prove a general theorem for diffusions
governed by gradient vector fields based on the classical testing approach of Bayesian
nonparametrics [99, 235], and firstly apply it to Gaussian priors for B, obtaining minimax
optimal rates over Sobolev smoothness classes in any dimension. Gaussian priors are
widely used in diffusion models [187, 208, 110, 238, 237, 20, 173] and are a canonical
choice, not least for computational reasons [181, 208, 231]. Apart from the non-reversible
results in [173], these are the first multi-dimensional Bayesian contraction results for
diffusions, and the first for potential-modelling priors.

In applications, the potential B is often spatially inhomogeneous for physical reasons,
for instance being spiky in some regions and flat or smooth in others (e.g., molecular
communication [98]), see Figure 4.1 for an illustrative example. Gaussian priors are
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Fig. 4.1 Left: an example of a spatially heterogeneous potential B. Right: the corre-
sponding gradient vector field ∇B. Note the axis scales are different for clarity.

known to be unsuited to modelling such inhomogeneities (see, e.g., [5]), which has
motivated the use of heavier tailed priors, especially Besov space priors in the inverse
problems [195, 4, 73, 5] and medical imaging [209, 239] communities. To address such
physically motivated situations, we also consider modelling the potential using heavier-
tailed p-exponential priors [5], for which we establish minimax optimal rates. Such
priors have been employed to recover spatially inhomogeneous functions, such as those
with a ‘blocky’ structure with sudden changes from one block to another. They have
a number of attractive properties including edge preservation, discretization invariance
[147, 146], promoting sparse solution representations, while also maintaining a log-concave
structure that aids posterior sampling. Contraction rates for such priors have recently
been obtained in direct linear models [5], and we present here a first extension to a
nonlinear diffusion setting.

The multi-dimensional case d ≥ 2 is intrinsically more challenging than the one-
dimensional case. The testing approach has been used for model (4.1) first by van
der Meulen et al. [232] to obtain contraction rates in the ‘natural distance’ induced
by the statistical experiment, which is a ‘random Hellinger semimetric’ depending on
the observation path (Xt : 0 ≤ t ≤ T ). In dimension d = 1, the theory of diffusion
local times can then be used to relate this random path-dependent metric to the L2-
distance [232, 187, 238], but when d > 1 such local time arguments are not available. In
the multi-dimensional setting, Nickl and Ray [173] relate this random Hellinger metric
to the L2-distance for specific truncated Gaussian series product priors on b. They
exploit concentration properties of the high-dimensional random matrices induced by the
Hellinger semimetric on finite-dimensional projection spaces to relate this problem to a
random design type regression problem. However, this approach crucially uses that the
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priors for each coordinate of b = (b1, . . . , bd) are supported on the same finite-dimensional
projection spaces, which is typically only the case if b1, . . . , bd have independent priors.
Since product priors for b draw gradient vector fields b = ∇B with probability zero, they
are inherently unable to model reversibility.

Aside from requiring different priors, modelling the potential B introduces funda-
mentally new features to the inference problem at hand. Whereas one can relate the
non-gradient vector field case to a direct linear regression type model [173], modelling
B is equivalent to modelling the invariant measure (see (4.6)) and leads to a genuinely
nonlinear regression problem. We must thus employ a completely different approach to
[173] here, using instead tools from nonlinear inverse problems [167, 2, 106, 177, 168]
- our work can thus also be viewed as a contribution to the Bayesian inverse problem
literature.

Instead of Hellinger testing theory, we develop concentration inequalities for prelimi-
nary estimators to directly construct suitable plug-in tests following ideas in [103], see
also [195, 174, 1, 2, 160]. In the present setting, the invariant measure µb of the diffusion
describes the probabilities

µb(A) a.s.= lim
T→∞

1
T

∫ T

0
1A(Xt)dt, (4.2)

corresponding to the average asymptotic time spent by the process (Xt) in a given
measurable subset A of the state space. In the reversible case, we can exploit the
one-to-one correspondence µb ∝ e2B (see (4.6) below) between the potential B and the
invariant measure µb, to construct estimators for B based on preliminary estimators
for µb. We then combine elliptic PDE and martingale techniques with concentration of
measure arguments to obtain exponential inequalities for such estimators, and hence
bounds for the type-II errors of suitable tests.

As in [181, 187, 238, 1, 97, 237, 173], we restrict to the periodic setting and thus peri-
odic potentials B. Under this simplification, a potential B still implies the corresponding
(periodised) diffusion is reversible ([97], Proposition 2) and so our results maintain the
key modelling link between reversibility and potential functions. As well as ensuring
mixing of the diffusion, periodicity simplifies the elliptic PDE arguments involved in
studying the mapping properties of the generator of the underlying semigroup, see, e.g.,
[24]. The underlying PDE techniques in principle extend to the non-periodic setting
under certain conditions [182], albeit at the expense of additional technicalities that are
beyond the scope of the present chapter.
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As well as deriving theoretical results, we also discuss numerical implementation in
the continuous observation model considered here. Posterior sampling using simulation
techniques is well-studied for ‘real-world’ discrete data, including for some priors we
study here, which we highlight when discussing concrete prior choices. For recent work on
this active research topic, see for example [27, 181, 208, 231, 210, 20, 97] and references
therein.

4.2 Inference for reversible multi-dimensional diffu-
sions

4.2.1 Basic notation and definitions

Let Td be the d-dimensional torus, isomorphic to [0, 1]d with the opposite points on the
cube identified. We denote by Lp(Td) the usual Lebesgue spaces on Td equipped with
norm ∥ · ∥p, and by ⟨·, ·⟩2 the inner product on L2(Td). We further define the subspaces

L̇2(Td) :=
{
f ∈ L2(Td) :

∫
Td
fdx = 0

}
, L2

µ(Td) :=
{
f ∈ L2(Td) :

∫
Td
fdµ = 0

}
,

where µ is a probability measure on Td.
Let C(Td) be the space of continuous functions on Td, equipped with the supremum

norm ∥·∥∞. For β > 0, denote by Cβ(Td) the usual Hölder space of ⌊β⌋-times continuously
differentiable functions on Td whose ⌊β⌋th-derivative is (β − ⌊β⌋)-Hölder continuous. We
let Hα(Td), α ∈ R, denote the usual L2-Sobolev spaces on Td, defined by duality when
α < 0. We further define the Sobolev norms ∥f∥W 1,q = ∥f∥q +∑d

i=1 ∥∂xi
f∥q, and note

that ∥ · ∥W 1,2 is equivalent to ∥ · ∥H1 .
Let {Φlr : l ∈ {−1, 0} ∪ N, r = 0, . . . ,max(2ld − 1, 0)} be an orthonormal tensor

product wavelet basis of L2(Td), obtained from a periodised Daubechies wavelet basis of
L2(T), which we take to be S-regular for S ∈ N large enough; see Section 4.3. in [104]
for details. For J ∈ N, define the finite-dimensional approximation space

VJ := span
{
Φlr : l ≤ J, r = 0, . . . ,max(2ld − 1, 0)

}
(4.3)

and let PJ : L2(Td) → VJ be the associated L2-projection operator. Note that VJ has
dimension vJ := dim(VJ) = O(2Jd) as J → ∞. For 0 ≤ t ≤ S, 1 ≤ p, q ≤ ∞, define the
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Besov spaces via their wavelet characterisation:

Bt
pq(Td) =

f ∈ Lp(Td) : ∥f∥qBt
pq

:=
∑
l

2ql(t+
d
2 − d

p)
(∑

r

|⟨f,Φlr⟩2|p
) q

p

< ∞

 ,
replacing the ℓp or ℓq-norm above with ℓ∞ if p = ∞ or q = ∞, respectively. Recall
that H t(Td) = Bt

22(Td) and the continuous embedding Ct(Td) ⊆ Bt
∞∞(Td) for t ≥ 0, see

Chapter 3 in [211].
When no confusion may arise, we suppress the dependence of the function spaces on the

underlying domain, writing for example Bt
pq instead of Bt

pq(Td). We also employ the same
function space notation for vector fields f = (f1, . . . , fd). For instance, f ∈ Hα = (Hα)⊗d

will mean each fi ∈ Hα and the norm on Hα is ∥f∥Hα = ∑d
i=1 ∥fi∥Hα . Similarly,

∥∇g∥p = ∑d
i=1 ∥∂xi

g∥p.
We write ≲, ≳ and ≃ to denote one- or two-sided inequalities up to multiplicative

constants that may either be universal or ‘fixed’ in the context where the symbols appear.
We also write a+ = max(a, 0) and a∨ b = max(a, b) for real numbers a, b. The ε-covering
number of a set Θ for a semimetric d, denoted N(ε; Θ, d), is the minimal number of
d-balls of radius ε needed to cover Θ.

4.2.2 Diffusions with periodic drift and Bayesian inference

Consider the SDE (4.1) with drift b = ∇B, for a twice-continuously differentiable and
one-periodic potential B : Rd → R, that is B(x+m) = B(x) for all m ∈ Zd,

dXt = ∇B(Xt)dt+ dWt, X0 = x0 ∈ Rd, t ≥ 0. (4.4)

There exists a d-dimensional strong pathwise solution X = (Xt = (X1
t , . . . , X

d
t ) : t ≥ 0)

with cylindrically defined law on the path space C([0,∞);Rd); see, e.g., Chapters 24 and
39 in [19]. For T > 0, let XT := (Xt : 0 ≤ t ≤ T ) and denote by P T

B the law of XT on
C([0, T ],Rd). We omit the dependence on the initial condition X0 = x0 since it plays no
role in our results.

By periodicity, we can consider B as a function on Td. In model (4.4), the law P T
B

depends on B only through b = ∇B (see (4.7) below), which is thus only identifiable up to
an additive constant. We therefore without loss of generality assume that

∫
Td B(x)dx = 0,

i.e., B ∈ L̇2(Td). Our goal is to estimate the drift b = ∇B : Rd → Rd from an observed
trajectory XT ∼ P T

B . We will sometimes write P T
b when a technical result also applies to

possibly non-gradient vector field drifts, but this will be clarified in each instance.
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The periodic model effectively restricts the diffusion to the bounded state space Td.
More precisely, while the diffusion defined in (4.4) takes values on all of Rd, its values
(Xt) modulo Zd contain all the relevant statistical information about ∇B (note that (Xt)
will not be globally recurrent on Rd). This allows us to define an invariant measure on
Td, since it holds that (arguing as in the proof of Lemma 6 in [173])

1
T

∫ T

0
φ(Xs)ds

PB−→
∫
Td
φdµb, T → ∞, ∀φ ∈ C(Td),

where µb is a uniquely defined probability measure on Td and we identify φ with its
periodic extension to Rd on the left-hand side. The measure µb thus inherits the usual
probabilistic interpretation as the limiting ergodic average in (4.2).

Recall that the periodic generator Lb : H2(Td) → L2(Td) of the possibly non-reversible
diffusion from (4.1) is

Lb = 1
2∆ + b.∇ = 1

2

d∑
i=1

∂2

∂x2
i

+
d∑
i=1

bi(·)
∂

∂xi
. (4.5)

The corresponding invariant measure µb is known to be the weak solution of the PDE
L∗
bµb = 0 on Td, where L∗

b = 1
2∆ − b.∇ − ∇ · b is the L2-adjoint operator of Lb, see, e.g., p.

45 in [15] (in a slight abuse of notation, we use µb for both the probability measure and
its density function). If b = ∇B for some potential B ∈ C2(Td), one can check directly
that

µB(x) = e2B(x)∫
Td e2B(x′)dx′ , x ∈ Td, (4.6)

is a classical C2 solution to L∗
∇BµB = 0 and hence is the unique invariant probability

density function of the diffusion (again in a slight abuse of notation, we write µB instead
of µ∇B when b = ∇B). In particular, if we have a potential B, then we can recover b
from µb via b = ∇B = 1

2∇ log µb, a connection we exploit in our proofs.
The log-likelihood for B ∈ C2(Td) for our observation model is given by Girsanov’s

theorem (e.g., Section 17.7 in [19]):

ℓT (B) := log dP
T
B

dP T
0

(XT ) = −1
2

∫ T

0
∥∇B(Xt)∥2dt+

∫ T

0
∇B(Xt).dXt, (4.7)

where P T
0 is the law of a d-dimensional Brownian motion (Wt : 0 ≤ t ≤ T ). We consider

a Bayesian approach to the problem, assigning a (possibly T -dependent) prior Π = ΠT

to B, which for identifiability we assume is supported on L̇2(Td) ∩C2(Td). The posterior
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Π(·|XT ) then takes the form

Π(A|XT ) =
∫
A e

ℓT (B)dΠ(B)∫
C2(Td) e

ℓT (B′)dΠ(B′) , any Borel A ⊆ C2(Td). (4.8)

Note that this induces a prior and posterior for both b = ∇B and µB. In the following,
we study the concentration of the posterior about the ‘ground truth’ gradient vector field
b0 = ∇B0, assuming that the observation XT ∼ P T

B0 is generated according to the SDE
(4.4) with B = B0.

4.3 Main results

4.3.1 Gaussian process priors

Posterior contraction rates

Gaussian priors are widely employed for diffusion models [181, 187, 208, 110, 238, 231,
237, 20, 173] and we provide here theoretical guarantees for such priors. We consider a
class of Gaussian process priors constructed from a base Gaussian probability measure
ΠW , which we assume satisfies the following condition. We refer, e.g., to Chapter 2 in
[104] for definitions and terminology regarding the theory of Gaussian processes and
measures.

Condition 4.1. For α > d/2+(d/2−1)+, let ΠW be a centred Gaussian Borel probability
measure on the Banach space C(Td) that is supported on a separable (measurable) linear
subspace of C(d/2+κ)∨2(Td) for some κ > 0, and assume its reproducing kernel Hilbert
space (RKHS) (H, ∥ · ∥H) is continuously embedded into the Sobolev space Hα+1(Td).

Examples of Gaussian processes priors satisfying Condition 4.1 include the periodic
Matérn process and high-dimensional Gaussian series expansions, see Examples 4.1-4.2
below.

To account for the nonlinearity of the problem, we rescale the base Gaussian processes
following ideas from the Bayesian inverse problem literature [168, 2, 106, 177, 168].
Given a random draw W ∼ ΠW satisfying Condition 4.1, consider the following rescaled
function:

B(x) := W (x)
T d/(4α+2d) , x ∈ Td, (4.9)

whose law Π we take as the prior for the potential B. It follows that Π is a centred
Gaussian probability measure on C(Td), with the same support and RKHS as ΠW , but
with rescaled RKHS norm ∥h∥HB

= T d/(4α+2d)∥h∥H.
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The rescaling enforces additional regularisation in the induced posterior distribution
for the invariant measure µB, implying in particular a bound for ∥µB∥C(d/2+κ)∨2 , needed
to control the nonlinear map B 7→ µB given in (4.6) under the posterior. Such issues
are commonly encountered in nonlinear inverse problems, where one often requires the
posterior to place most of its mass on sets of bounded higher-order smoothness in order
to use stability estimates. Note that such priors are special cases of the rescaled Gaussian
process priors considered in several benchmark statistical settings in [233].

Theorem 4.1. Let Π be the rescaled Gaussian process prior for B in (4.9) with W ∼ ΠW

satisfying Condition 4.1 for some α > d/2 + (d/2 − 1)+, κ > 0, and RKHS H. Suppose
that B0 ∈ Hα+1(Td) and that there exists a sequence B0,T ∈ H such that ∥B0 −B0,T∥C1 =
O(T−α/(2α+d)) and ∥B0,T∥H = O(1) as T → ∞. Then for M > 0 large enough, as
T → ∞,

P T
B0Π(B : ∥∇B − ∇B0∥2 ≥ MT−α/(2α+d)|XT ) → 0.

The resulting posterior thus contracts about the truth at the minimax rate (cfr. [68])
for any dimension d. We recall that the law P T

B depends on the potential B only through
∇B in (4.4), and thus it is natural to study recovery of the gradient vector field ∇B0. In
fact, after making the identifiability assumption B,B0 ∈ L̇2(Td), the norm ∥∇B−∇B0∥2

is equivalent to the usual Sobolev norm ∥B −B0∥H1 .
Theorem 4.1 requires that the true B0 be approximable by elements B0,T of the RKHS

of W at a suitable rate, which reflects the notion of smoothness being modelled by the
Gaussian process prior. One can thus think of this condition as ‘B0 is (α+ 1)-smooth’ in
both the Sobolev and prior sense. For instance, if the Gaussian prior already models
Sobolev smooth functions (e.g., a Matérn process prior - see Example 4.1), then this
poses no additional conditions.

Examples of Gaussian priors

We now provide concrete examples of Gaussian priors to which Theorem 4.1 applies. As
discussed in Section 4.2.2, the potential B is only identified up to an additive constant,
which we without loss of generality select via

∫
Td B(x)dx = 0. For series expansions, one

can enforce this by setting the coefficient of e0 ≡ 1 (Fourier basis) or Φ−10 ≡ 1 (wavelet
basis) equal to zero. For more general Gaussian processes, one can simply recenter the
prior draws by B 7→ B −

∫
Td B(x)dx.

A common choice for this problem is a mean-zero Gaussian process with covariance
operator equal to an inverse power of the Laplacian [187, 238, 237], for which posterior
inference based on discrete data can be computed efficiently using a finite element method
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[181] (note that in the continuous model considered here, Gaussian priors for B are
conjugate, see Lemma 4.1 below). Such priors can be defined via a Karhunen-Loève
expansion in the Fourier basis and are equivalent to periodic Matérn processes, see
Appendix 4.A.1 for details

Example 4.1 (Periodic Matérn process). For α+ 1 > d/2 + (d/2) ∨ 2, consider the base
Gaussian prior

W (x) = (2π)d/2 ∑
k∈Zd

1
(1 + 4π2∥k∥2)(α+1)/2 gkek(x), gk

iid∼ N(0, 1), x ∈ Td, (4.10)

corresponding to the series expansion of a periodic Matérn process with smoothness
parameter α+ 1 − d/2 (cfr. Appendix 4.A.1 for details). By the Fourier series charac-
terisation of Sobolev spaces, its RKHS H equals Hα+1(Td) with equivalent RKHS norm
∥ · ∥H ≃ ∥ · ∥Hα+1. Furthermore, W defines a Borel random element in Cα+1− d

2 −η(Td)
for all η > 0, which is a separable linear subspace of C(d/2+κ)∨2(Td) for some κ, η > 0 if
α + 1 > d/2 + (d/2) ∨ 2. Condition 4.1 therefore holds for periodic Matérn processes.

We may thus apply Theorem 4.1 to the periodic Matérn base prior in (4.10) and
any B0 ∈ Hα+1(Td) = H with α + 1 > d/2 + (d/2) ∨ 2 by taking the trivial sequence
B0,T = B0 ∈ Hα+1(Td).

Another common approach to prior modelling is to obtain a high-dimensional dis-
cretisation by a truncated Gaussian series expansion. We illustrate this considering a
wavelet expansion for concreteness, but analogous results can be derived for any basis
compatible with the Sobolev smoothness scales, such as the Fourier basis.

Example 4.2 (Truncated Gaussian series). Let {Φlr, l ≥ −1, r = 0, . . . ,max(2ld− 1, 0)}
be a periodised Daubechies wavelet basis of L2(Td) as described in Section 4.2.1, and
consider the base prior

W (x) =
∑
l≤J

∑
r

2−l(α+1)glrΦlr(x), glr
iid∼ N(0, 1), x ∈ Td,

for some α > d/2 + (d/2 − 1)+, where 2J ≃ T 1/(2α+d), which tends to infinity as T → ∞,
is the optimal dimension of a finite-dimensional model for α-smooth functions. The
support of ΠW equals the finite-dimensional approximation space VJ , which is a separable
linear subspace of C(d/2+κ)∨2(Td). Its RKHS H equals VJ with norm

∥h∥2
H =

∑
l≤J

∑
r

22l(α+1)|⟨h,Φlr⟩2|2 = ∥h∥2
Hα+1 , h ∈ VJ ,
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so that ΠW satisfies Condition 4.1.
For B0 ∈ Hα+1(Td) ∩ Cα+1(Td), the wavelet projections B0,T = PJB0 ∈ VJ = H

satisfy ∥PJB0∥H ≤ ∥B0∥Hα+1 < ∞ and ∥B0 − PJB0∥C1 ≲ 2−Jα ≃ T−α/(2α+d). Theorem
4.1 therefore applies with ΠW a Gaussian wavelet series and all B0 ∈ Hα+1(Td)∩Cα+1(Td)
with α > d/2 + (d/2 − 1)+.

In Section 4.3.2, we extend the last result to truncated p-exponential series priors. For
p = 2, Theorem 4.2 below shows that the above additional smoothness requirement B0 ∈
Cα+1(Td) can be removed under the slightly stronger minimal smoothness assumption
α + 1 > (d/2) ∨ 2 + d/2.

Conjugacy of Gaussian priors

For the continuous observation model XT = (Xt : 0 ≤ t ≤ T ), the likelihood (4.7) is of
quadratic form in the potential B, and hence Gaussian priors are conjugate as we now
show. This parallels the known conjugacy property of Gaussian priors for the drift vector
field b [187], which in our setting corresponds to Gaussianity of the posterior on ∇B.

Lemma 4.1. Let Π be a centred Gaussian Borel probability measure on L2(Td) that is
supported on C2(Td) ∩ L̇2(Td). Then the posterior distribution (4.8) is almost surely
(under the law of the data XT ) Gaussian on L2(Td).

The C2(Td) condition is a standard assumption on B to ensure the existence of a
strong pathwise solution to the SDE (4.4), see, e.g., [19], and thus is natural in our
setting. Conjugacy implies that posterior sampling is straightforward to implement in
this model. Consider a discretisation step by a Karhunen-Loève (KL) truncation, taking
as prior the random function

B(x) =
K∑
k=1

υkgkhk(x), gk
iid∼ N(0, 1), x ∈ Td, (4.11)

for some fixed K ∈ N, scaling coefficients υk > 0, and some ‘basis’ functions (hk, k ∈ N) ⊂
C2(Td)∩L̇2(Td) (e.g., the Fourier or wavelet bases). Identifying a function B = ∑K

k=1 Bkhk

with its coefficient vector B = (B1, . . . , BK)T ∈ RK , a standard conjugate computation
yields

B|XT ∼ N
(
(Σ + Υ−1)−1H, (Σ + Υ−1)−1

)
, (4.12)

where Υ = diag(υ2
1, . . . , υ

2
K) is a K ×K diagonal matrix and

Σ =
[∫ T

0
∇hk(Xt).∇hk′(Xt)dt

]
k,k′

∈ RK,K , H =
(∫ T

0
∇hk(Xt).dXt

)K
k=1

T ∈ RK .
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Additional details and the proof of Lemma 4.1 can be found in Appendix 4.A.1. For
concrete basis choices for the KL-expansion (4.11), Σ and H can be computed from the
data, allowing direct posterior sampling according to (4.12). Gaussian conjugacy no
longer holds for the more realistic discrete data setting, where more advanced sampling
techniques must be employed, see for instance [181, 208, 210, 20].

4.3.2 p-exponential priors

We next consider modelling the potential function B using the class of heavier-tailed
p-exponential priors [5], known in the inverse problems literature as Besov priors [147].
These priors are constructed via random basis expansions, assigning i.i.d. random coeffi-
cients distributed according to the probability density function

fp(x) ∝ e− |x|p
p , x ∈ R, p ∈ [1, 2].

This generalises the series construction of Gaussian priors (p = 2), allowing heavier-tailed
random coefficients for p < 2, while preserving a log-concave structure favourable to
computation, see Remark 4.1. The class includes products of Laplace distributions
(p = 1), which have recently received significant interest in the Bayesian inverse problem
community [142, 70, 195, 50, 73, 4] due to their edge-preserving and sparsity-promoting
properties. For Laplace priors, these advantages stem from the ℓ1-type penalty induced
by the prior, which promotes sparse reconstructions that have been observed to perform
better in practice for the recovery of spatially-irregular, blocky structures such as images,
see, e.g., [193, 151, 142, 49, 124] and references therein. It is therefore of interest to
provide theoretical guarantees for these methods which are employed in practice.

We consider p-exponential priors defined via a truncated wavelet expansion. Let
{Φlr, l ≥ −1, r = 0, . . . ,max(2ld − 1, 0)} be a periodised Daubechies wavelet basis of
L2(Td) as described in Section 4.2.1. For p ∈ [1, 2] and s ≥ 0, consider the p-exponential
measure [5] ΠW arising as the law of the random function

W (x) =
J∑
l=0

∑
r

2−l(α+1+ d
2 − d

p)ξlrΦlr(x), x ∈ Td, (4.13)

where the truncation level satisfies 2J ≃ T 1/(2α+d) as J → ∞. Note that this class
includes both the product Laplace prior (p = 1) and Gaussian series prior (p = 2). For
identifiability, the wavelet coefficient corresponding to Φ−10 ≡ 1 is again set to zero to
enforce the zero-integral condition, so that W ∈ L̇2(Td) almost surely. Similar to the
Gaussian priors considered in the previous section, we introduce a suitable scaling of
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W ∼ ΠW , taking as prior Π for B the law of

B(x) = W (x)(
T

d
2α+d

) 1
p

, x ∈ Td. (4.14)

This is the correct scaling, since scaling at a different rate yields suboptimal contraction
rates even in the simpler Gaussian white noise model [5, Proposition 5.8]. The next
theorem shows that the resulting posterior contracts about the truth at the minimax
optimal rate in any dimension d, extending the Gaussian white noise results of [5] to the
present nonlinear diffusion setting.

Theorem 4.2. Let Π be the scaled p-exponential truncated series prior (4.14), where
W is as in (4.13) for some α > [(d/2 + κ) ∨ 2] + d/p − 1 and p ∈ [1, 2]. Suppose that
B0 ∈ Hα+1(Td). Then, for M > 0 large enough, as T → ∞,

P T
B0Π

(
B : ∥∇B − ∇B0∥p ≥ MT−α/(2α+d)

∣∣∣XT
)

→ 0.

For p = 2, Theorem 4.2 implies the result in Example 4.2 for truncated Gaussian
wavelet series priors, but removes the additional assumption that B0 ∈ Cα+1(Td) under
a slightly stronger minimal smoothness assumption on α.

Remark 4.1 (MAP estimation and sampling). For the p-exponential prior (4.14), the
posterior density for any B = ∑

l≤J,r BlrΦlr ∈ VJ takes the form dΠ(B|XT ) ∝ e−ΨT (B),
where

ΨT (B) = −ℓT (B) + (T
d

2α+d )
1
p

p
∥B∥p

Bα+1
pp

= 1
2
∑
l≤J,r

∑
l′≤J,r′

BlrBl′r′

[∫ T

0
∇Φlr(Xt).∇Φl′r′(Xt)dt

]

−
∑
l≤J,r

Blr

[∫ T

0
∇Φlr(Xt).dXt

]
+ (T

d
2α+d )

1
p

p

∑
l≤J,r

2pl(α+1+ d
2 − d

p)|Blr|p.

Since p ≥ 1, ΨT (B) is, given the data XT , a convex functional of B, implying that the
posterior is log-concave. Computation of the Bayesian MAP (maximum-a-posteriori)
estimator, defined as the minimiser over VJ of ΨT (·), can then be performed using efficient
high-dimensional convex optimisation algorithms [46, 109, 57]. Furthermore, (approx-
imate) sampling from the posterior distribution is also feasible by employing MCMC
algorithms for log-concave distributions. In particular, non-asymptotic convergence
guarantees suitable for high-dimensional settings have been derived for gradient-based
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Langevin Monte Carlo methods [69, 81, 82] (also for the relevant non-smooth case p = 1,
using suitable proximal regularisation of the log-posterior density [183, 83]).

4.3.3 A general contraction theorem for multi-dimensional dif-
fusions with gradient drift vector field

The results for Gaussian and p-exponential priors presented in the preceding sections
are based on the following general contraction rate theorem for the drift b = ∇B. We
employ the testing approach of [99], which requires the construction of suitable tests
with exponentially decaying type-II errors. This has been done in [232] for the ‘natural
distance’ for this model, which is an observation-dependent ‘random Hellinger semimetric’.
In dimension d = 1, this can be related to the L2 distance using the theory of diffusion
local times, something which is unavailable in dimension d > 1. We instead directly
construct plug-in tests based on the concentration properties of preliminary estimators
following ideas from the i.i.d. density estimation model [103]. In the present multi-
dimensional diffusion setting, suitable estimators can be obtained by exploiting the
one-to-one connection between the potential B and the invariant measure µB given by
(4.6).

Theorem 4.3. Let q ∈ [1, 2], J ∈ N, εT → 0 and ξT → 0 satisfy 2J → ∞ , Tε2
T → ∞

and T−1/22Jd/2 + εT = O(ξT ), and let Π = ΠT be priors for B supported on the Banach
space C2(Td). Assume further that

2J [d/2+κ+(d/2+κ−1)+]εT = O(1) and T−1/22J [d+κ+(d/2+κ−1)+] = O(1) (4.15)

for some κ > 0. Consider sets

ΛT ⊆
{
µ :

∫
Td
µ(x)dx = 1, µ(x) ≥ δ, ∥µ∥C(d/2+κ)∨2 ≤ m, ∥µ− PJµ∥W 1,q ≤ CΛξT

}
(4.16)

for some δ, CΛ,m > 0 and define ΘT = {B : ∇B = 1
2∇ log µ for some µ ∈ ΛT}. Let B0

be the true potential and suppose that µ0 = e2B0∫
Td e

2B0(x)dx
satisfies ∥µ0 − PJµ0∥W 1,q ≤ D0ξT .

Suppose further that

(i) Π(Θc
T ) ≤ e−(C+4)Tε2

T ,
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(ii) there exist deterministic sets SBT for B with Π(SBT ) ≥ e−CTε2
T and

P T
B0

(
sup

B∈SBT

d∑
i=1

∫ T

0
∥∂xi

B(Xs) − ∂xi
B0(Xs)∥2ds ≤ Tε2

T

)
→ 1. (4.17)

Then for M > 0 large enough, as T → ∞,

P T
B0Π

(
B : ∥∇B − ∇B0∥q ≥ MξT |XT

)
→ 0.

Remark 4.2 (Small ball probability). One can always take SBT = {B : ∑i ∥∂xi
B −

∂xi
B0∥2

∞ ≤ ε2
T}, in which case (4.17) holds automatically. However, for truncated wavelet

series priors, this leads to unnecessary smoothness conditions on the true underlying
function B0, which can be avoided by instead taking SBT = {B : ∥∇B − ∇B0∥2

L2(µ0) ≤
ε2
T} and verifying (4.17) directly (cfr. Lemma 4.4). Note that SBT is required to be

deterministic in order to apply certain martingale arguments in the proof of Theorem
4.3.

Beyond the ‘usual’ conditions arising from the testing approach [99], the main
additional assumption in the last theorem is that the prior puts most of its mass on a
set of potentials ΘT , where the corresponding invariant measures µ ∈ ΛT can be well
approximated by their wavelet projections PJµ (cfr. the last inequality in (4.16)). If this
is the case, it suffices to study the deviations of the wavelet projection estimator µ̂T about
its expectation PJµ. We then use results from empirical process theory, martingale theory
and PDEs in order to obtain suitable concentration inequalities, and hence exponential
probability bounds for the type-II errors of suitable tests.

A significant additional difficulty in carrying out this program is the nonlinearity
of the map B 7→ µB given by (4.6). One can relate the error of ∇B − ∇B0 to that of
µB − µB0 by a type of stability estimate, see the proof of Lemma 4.3 below. However,
without controlling the norm ∥µ∥C(d/2+κ)∨2 , the constant for this stability estimate grows
rapidly, rendering it unusable in the proofs. This reinforces the connection of recovery of
the gradient vector field ∇B0 in the diffusion model (4.4) with nonlinear inverse problems,
where similar phenomena are often encountered, and indeed motivated the use of rescaled
priors to overcome these considerable technical challenges [168, 2, 106, 177, 168].

4.3.4 On models with non-constant diffusivity

We comment on some implications for likelihood-based estimation in generalizations of the
models (4.1) and (4.4). Consider observing a continuous trajectory XT = (Xt : 0 ≤ t ≤ T )
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from a diffusion dynamics of the form

dXt = b(Xt)dt+ Σ1/2(Xt)dWt, X0 = x0 ∈ Rd, t ≥ 0,

with non-constant local variance (diffusion or volatility matrix) Σ : Rd → Rd,d. For
general positive-definite Σ(·), this model is not identifiable and so we restrict to the case
of scalar local variance Σ(Xt) = σ(Xt)Id, where σ : Rd → [0,∞) and Id is the d × d

identity matrix.
In this model, one can exactly recover the quadratic variation process of any component

of X, namely ([X i]t =
∫ t

0 σ(Xs)2ds : 0 ≤ t ≤ T ), i = 1, . . . , d, and hence {σ(Xt) : 0 ≤
t ≤ T} is perfectly identified from the data XT . In the well-studied scalar case d = 1,
this corresponds to knowledge of {σ(x) : inft∈[0,T ] Xt ≤ x ≤ supt∈[0,T ] Xt} and yields the
conventional wisdom in the statistical diffusion literature with continuous data that
one can treat σ(·) as known, usually taking σ(x) ≡ 1 for simplicity as we do here. For
dimension d ≥ 2, while we still perfectly identify σ along the trajectory of the diffusion,
this trajectory now has zero Lebesgue measure in Rd (note that for d ≥ 2, the diffusion
process will not be recurrent). Thus the diffusivity function σ(·) is a non-trivial parameter
and there may still be statistical interest in modelling it.

Consider placing a prior on σ(·) and let Pb,σ = P T
b,σ be the law of the above process.

Girsanov’s theorem (e.g., Section 17.7 in [19]) implies that the two measures Pb,σ = Pb′,σ′

are singular unless σ = σ′. The likelihood eℓT (b,σ) is thus zero unless σ exactly matches
the observed diffusivity along the trajectory. Therefore, for a Bayesian posterior to be
well-defined, the prior must assign positive probability to {σ(·) : σ(Xt) = ( d

dt
[X i]t)1/2, 0 ≤

t ≤ T}, i.e., it must be conditioned to match these values along the trajectory. Since the
random trajectory XT typically has fractal-like behaviour, this is a highly non-standard
and non-trivial prior construction. It is a somewhat unusual feature of this model that
any prior for σ(·) must heavily rely on the observed data XT . Similar considerations
apply to other likelihood-based procedures, such as maximum likelihood estimation.

The above features stem from the continuous observation model and do not occur in
the more realistic low frequency discrete observation model, where estimation of (b, σ)
is an ill-posed inverse problem, see [108] for the scalar case d = 1. While both cases
are interesting mathematically, the continuous and discrete models are fundamentally
different problems with regards to estimating the diffusivity σ(·). We are unaware of any
results concerning minimax rates in dimension d ≥ 2 in the low frequency setting.
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4.4 Proof of Theorem 4.3

We employ the general testing approach for non-i.i.d. sampling models [100] combined
with tools from the diffusion setting [232]. In order to construct suitable plug-in tests,
we extend ideas from the i.i.d. density model [103] to the multi-dimensional diffusion
setting with drift arising as a gradient vector field b = ∇B.

We start with the following contraction rate theorem, which applies also to non-
reversible diffusions, based on the existence of abstract tests. In a slight abuse of notation,
denote by P T

b the law of (Xt : 0 ≤ t ≤ T ) from model (4.1), i.e., we do not assume
b = ∇B in the next result.

Theorem 4.4. Let dT be a semimetric on the parameter space D ⊆ C1(Td) for the drift
b and let Π = ΠT be priors for b. Let εT → 0 satisfy

√
TεT → ∞, let ξT → 0, DT ⊆ D

and let ϕT be a sequence of test functions satisfying

P T
b0ϕT → 0, sup

b∈DT : dT (b,b0)≥DξT

P T
b (1 − ϕT ) ≤ Le−(C+4)Tε2

T

for some C,D,L > 0 with Π(Dc
T ) ≤ e−(C+4)Tε2

T . Suppose further that there exist deter-
ministic sets SBT ⊆ D with Π(SBT ) ≥ e−CTε2

T and

P T
b0

(
sup
b∈SBT

∫ T

0
∥b(Xs) − b0(Xs)∥2ds ≤ Tε2

T

)
→ 1,

where b0 is the true drift function. Then for M > 0 large enough, as T → ∞,

P T
b0Π

(
b : dT (b, b0) ≥ MξT

∣∣∣XT
)

→ 0.

The proof of Theorem 4.4 follows similarly to results in [99, 232] and is deferred to
Appendix 4.A.2. The required tests are contained in the next lemma, whose proof can
be found in Section 4.4.2 below.

Lemma 4.2. Let q ∈ [1, 2], J ∈ N, εT → 0 and ξT → 0 satisfy 2J → ∞, Tε2
T → ∞ and

T−1/22Jd/2 + εT = O(ξT ). Assume further that

2J [d/2+κ+(d/2+κ−1)+]εT = O(1) and T−1/22J [d+κ+(d/2+κ−1)+] = O(1)

for some κ > 0. Consider sets

ΛT ⊆
{
µ :

∫
Td
µ(x)dx = 1, µ(x) ≥ δ, ∥µ∥C(d/2+κ)∨2 ≤ m, ∥µ− PJµ∥W 1,q ≤ CΛξT

}
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for some δ, CΛ,m > 0 and define ΘT = {B : ∇B = 1
2∇ log µ for some µ ∈ ΛT}. Let

B0 and µ0 be the true potential and invariant measure, respectively, and assume that
∥µ0 − PJµ0∥W 1,q ≤ D0ξT for some D0 > 0. Then for any M > 0, there exist tests ϕT
such that for D = D(q, δ,m,CΛ, D0,M) > 0 large enough,

P T
B0ϕT → 0, sup

B∈ΘT : ∥∇B−∇B0∥q≥DξT

P T
B (1 − ϕT ) ≤ 4e−MTε2

T .

Proof of Theorem 4.3. The conclusion of Theorem 4.3 follows by applying Theorem 4.4
with the set DT = {b = ∇B : B ∈ ΘT}, the distance dT (f, g) = ∥f − g∥q and the tests
ϕT constructed in Lemma 4.2.

4.4.1 A concentration of measure result for empirical processes

The following concentration inequality is a key technical tool in the proof of Theorem
4.3, providing uniform stochastic control of functionals of the (possibly non-reversible)
diffusion process (4.1). It is based on a chaining argument for stochastic processes with
mixed tails (cfr. Theorem 2.2.28 in Talagrand [222] and Theorem 3.5 in Dirksen [76]). We
again write P T

b for the law of XT to emphasise that we do not assume b = ∇B in the next
result. Recall the notation L̇2 = {f ∈ L2 :

∫
Td fdx = 0} and L2

µ = {f ∈ L2 :
∫
Td fdµ = 0}.

Proposition 4.1. Suppose b ∈ C(d/2+κ)∨1(Td) for some κ > 0, and let FT ⊂ VJ ∩Lµb
(Td)

for J satisfying 2J [d/2+κ+(d/2+κ−1)+] ≲
√
T . Define the empirical process

GT (f) := 1√
T

∫ T

0
f(Xs)ds, f ∈ FT ,

and let DFT
:= dim(FT ) and |FT |H−1 := supf∈FT

∥f∥H−1. Then for all T ≥ η > 0 and
x ≥ 0,

P T
b

(
sup
f∈FT

|GT (f)| ≥ C|FT |H−1

{
D

1/2
FT

+
√
x+ T− 1

2 2J [ d
2 +κ+( d

2 +κ−1)+](DFT
+ x)

})
≤ 2e−x,

where C depends on d, κ, η and upper bounds for ∥b∥
B

|d/2+κ−1|∨1
∞∞

and ∥µb∥∞.

Proof. We first note that since b ∈ C1, a corresponding unique invariant probability
measure µ = µb indeed exists by Proposition 1 of [173]. For f ∈ L2

µ ∩ VJ ⊂ L2
µ ∩Hd/2+κ

and b ∈ Cd/2+κ, by Lemma 4.8 and the Sobolev embedding theorem, the Poisson equation
Lbu = f has a unique solution L−1

b [f ] ∈ L̇2 ∩ Hd/2+κ+2 ⊂ C2 satisfying LbL−1
b [f ] = f .
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For such f , we may thus define

ZT (f) :=
∫ T

0
∇L−1

b [f ](Xs).dWs

= L−1
b [f ](XT ) − L−1

b [f ](X0) −
∫ T

0
LbL

−1
b [f ](Xs)ds

= L−1
b [f ](XT ) − L−1

b [f ](X0) −
√
TGT [f ],

where we have used Itô’s lemma (Theorem 39.3 of [19]). Thus for FT ⊂ L2
µ ∩Hd/2+κ,

sup
f∈FT

|GT [f ]| ≤ 1√
T

sup
f∈FT

|ZT (f)| + 2√
T

sup
f∈FT

∥L−1
b [f ]∥∞. (4.18)

We derive a concentration inequality for supf |ZT (f)| and hence for supf |GT [f ]|.
Recall Bernstein’s inequality for continuous local martingales (p. 153 of [198]): if M

is a continuous local martingale vanishing at 0 with quadratic variation [M ], then for
any stopping time T and any y,K > 0,

Pr
(

sup
0≤t≤T

|Mt| ≥ y, [M ]T ≤ K

)
≤ 2e− y2

2K . (4.19)

For fixed f , (ZT (f) : T ≥ 0) is a continuous square integrable local martingale with
quadratic variation [Z·(f)]T =

∫ T
0 ∥∇L−1

b [f ](Xs)∥2ds. Applying Bernstein’s inequality,

P T
b (|ZT (f)| ≥ x) ≤ P T

b (|ZT (f)| ≥ x, [Z·(f)]T ≤ KT (f)) + P T
b ([Z·(f)]T > KT (f))

≤ 2 exp
(
− x2

2KT (f)

)
+ P T

b ([Z·(f)]T > KT (f))
(4.20)

for any x > 0 and KT (f) > 0. We now upper bound the right-hand side.
Since x 7→ ∥x∥2 is a smooth map, the function

γf (x) = ∥∇L−1
b [f ](x)∥2 −

∫
Td

∥∇L−1
b [f ](y)∥2dµ(y)

is in L2
µ ∩Hd/2+κ for all f ∈ FT . Recall the distance d2

L(f, g) := ∑d
i=1 ∥∂xi

L−1
b [f − g]∥2

∞

defined in Lemma 1 of [173]. Using the Sobolev embedding theorem, Lemma 4.8 and the
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Runst-Sickel lemma ([173], Lemma 2),

dL(γf , 0) ≲ ∥γf∥Hd/2+κ−1

≲
d∑
i=1

∥(∂xi
L−1
b [f ])2 − ∥∂xi

L−1
b [f ]∥2

L2(µ)∥Hd/2+κ−1

≲
d∑
i=1

∥∂xi
L−1
b [f ]∥∞∥∂xi

L−1
b [f ]∥H(d/2+κ−1)+ + ∥∇L−1

b [f ]∥2
L2(µ)∥1∥Hd/2+κ−1

≲ ∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1 + ∥µ∥∞∥f∥2
H−1

≲ ∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1 ,

where the constants depend only on d, κ and upper bounds for ∥b∥
B

|d/2+κ−1|∨1
∞∞

and ∥µ∥∞.
Applying the exponential inequality in Lemma 1 of [173] to the class {γf , 0} gives for
y ≥ 0,

P T
b

(
|GT [γf ]| ≥ 2T−1/2∥L−1

b [γf ]∥∞ + CdL(γf , 0)(1 + y)
)

≤ e−y2/2.

One can identically prove that ∥L−1
b [γf ]∥∞ ≲ ∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1 with the con-

stant depending on the same quantities as above. Since
√
TGT [γf ] = [Z·(f)]T −

T∥∇L−1
b [f ]∥2

L2(µ), this and the last two displays yield

P T
b

(∣∣∣[Z·(f)]T − T∥∇L−1
b [f ]∥2

L2(µ)

∣∣∣ ≥ C
√
T∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1(1 + y)

)
≤ e−y2/2

for all T ≥ η > 0. Since by Lemma 4.8, ∥∇L−1
b [f ]∥2

L2(µ) ≲ ∥µ∥∞∥f∥2
H−1 , substituting the

last display into (4.20) with KT (f) = CT∥f∥2
H−1 +C

√
T∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1(1+y)

gives for all x, y ≥ 0

P T
b (|ZT (f)| ≥ x)

≤ 2 exp
(

− x2

2CT∥f∥2
H−1 + 2C

√
T∥f∥Hd/2+κ−1∥f∥H(d/2+κ−1)+−1(1 + y)

)
+ e−y2/2.

For f ∈ VJ and u ≥ −1, ∥f∥2
Hu = ∑

l≤J
∑
r 22ul|⟨f,Φlr⟩2|2 ≤ 22J(u+1)∥f∥2

H−1 . Using
this bound, that 2J [d/2+κ+(d/2+κ−1)+] ≲

√
T and setting y = x/(CT∥f∥2

H−1)1/2, the last
display gives

P T
b (|ZT (f)| ≥ x) ≤ 3 exp

(
− x2

2CT∥f∥2
H−1 + 2C2J [d/2+κ+(d/2+κ−1)+]∥f∥H−1x

)
.
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Using the linearity of f 7→ ZT (f) and rearranging, we get the following Bernstein
inequality:

P T
b

(
|ZT (f − g)| ≥ C∥f − g∥H−1(

√
Tz + 2J [d/2+κ+(d/2+κ−1)+]z)

)
≤ 3e−z,

where again C depends on d, κ, η and upper bounds for ∥b∥
B

|d/2+κ−1|∨1
∞∞

and ∥µ∥∞.
We now apply Theorem 3.5 in Dirksen [76], which is a refinement of Theorem 2.2.28

in Talagrand [222], to bound the supremum of the random process (ZT (f))f∈FT
. In

particular, the last display shows that the process has ‘mixed tails’ (cfr. (3.8) in [76])
with respect to the metrics d1(f, g) = C2J [d/2+κ+(d/2+κ−1)+]∥f − g∥H−1 and d2(f, g) =
C

√
T∥f − g∥H−1 . The diameters ∆d1(FT ) and ∆d2(FT ) appearing in the second display

of Theorem 3.5 in [76] can be bounded by

∆d1(FT ) := sup
f,g∈FT

d1(f, g) ≤ 2C2J [d/2+κ+(d/2+κ−1)+]|FT |H−1 ,

∆d2(FT ) := sup
f,g∈FT

d2(f, g) ≤ 2C
√
T |FT |H−1 ,

so that Theorem 3.5 of [76] yields that for all x ≥ 0,

P T
b

 sup
f∈FT

|ZT (f)| ≥ C
(
γ2(FT , d2) + γ1(FT , d1) + |FT |H−1

{√
Tx+ 2J [ d

2 +κ+( d
2 +κ−1)+]x

})
≤ e−x,

where γ1, γ2 are ‘generic chaining functionals’. Using the estimate (2.3) in [76], and
recalling that FT ⊂ VJ has dimension DFT

, we can bound γ2(FT , d2) by a multiple of

∫ ∞

0

√
logN(η; FT , d2)dη ≤

∫ ∆d2 (FT )

0

√√√√DFT
log

(
3∆d2(FT )

η

)
dη

= D
1/2
FT

∆d2(FT )
∫ 1

0

√
log (3/u)du

≤ C1D
1/2
FT

√
T |FT |H−1

for C1 > 0, where the first inequality follows from the usual metric entropy estimate for
balls in finite-dimensional Euclidean spaces [104, Proposition 4.3.34]. Similarly, γ1(FT , d1)
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is bounded by a multiple of

∫ ∞

0
logN(η; FT , d1)dη ≤ DFT

∫ ∆d1 (FT )

0
log

(
3∆d1(FT )

η

)
dη

≤ C2DFT
∆d1(FT ) ≤ C3DFT

2J [d/2+κ+(d/2+κ−1)+]|FT |H−1 .

In summary, Theorem 3.5 of [76] implies that for all x ≥ 0

P T
b

(
sup
f∈FT

|ZT (f)| ≥ C|FT |H−1

{√
T (D1/2

FT
+

√
x) + 2J [ d

2 +κ+( d
2 +κ−1)+]DFT

+ x)
})

≤ e−x.

This provides the concentration inequality for the first term in (4.18). For the second
term in (4.18), using the Sobolev embedding theorem and Lemma 4.8,

∥L−1
b [f ]∥∞ ≲ ∥L−1

b [f ]∥Hd/2+κ ≲ ∥f∥Hd/2+κ−1

≤ 2J [ d
2 +κ]∥f∥H−1 ≲ 2J [ d

2 +κ+( d
2 +κ−1)+]|FT |H−1

for all f ∈ FT , where the constant depends on d, κ, η and an upper bound for ∥b∥
B

|d/2+κ−1|∨1
∞∞

.
The result then follows from the last two displays and (4.18).

4.4.2 Construction of tests and proof of Lemma 4.2

Using Proposition 4.1, we now derive concentration inequalities for a preliminary estimator
µ̂T of the invariant measure µ, uniformly over certain sets Γ(δ,m) below. We can then
exploit the correspondence µ ∝ e2B to obtain an estimator for the gradient vector field
∇B = 1

2∇ log µ = 1
2(∇µ)/µ based on µ̂T . Consider the wavelet estimator for the invariant

measure
µ̂T (x) =

∑
l≤J

∑
r

β̂lrΦlr(x), x ∈ Td, (4.21)

where β̂lr = 1
T

∫ T
0 Φlr(Xt)dt and J → ∞ as T → ∞. We now prove the required

concentration inequality for the induced estimator 1
2∇ log µ̂T of ∇B under the conditions

of Theorem 4.3. Recall that PJ denotes the L2-projection onto the wavelet approximation
space VJ given in (4.3), and that we write f ∈ L2

µ if
∫
Td fdµ = 0.

Lemma 4.3. Let q ∈ [1, 2], 2J → ∞ and εT → 0 satisfy Tε2
T → ∞. Assume further that

2J [d/2+κ+(d/2+κ−1)+]εT = O(1) and T−1/22J [d+κ+(d/2+κ−1)+] = O(1)
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for some κ > 0. Define

Γ = Γ(δ,m) =
{
µ :

∫
Td
µ(x)dx = 1, µ(x) ≥ δ for all x ∈ Td, ∥µ∥C(d/2+κ)∨2 ≤ m

}

for some δ,m > 0. Then there exists C = C(δ,m, q) > 0 such that for all T > 0 large
enough and all M > 0,

sup
B:∇B= 1

2 ∇ logµ,
µ∈Γ

P T
B

(
∥∇ log µ̂T − ∇ log µ∥q ≥ C∥µ− PJµ∥W 1,q + C(1 +M)

(
T− 1

2 2J d
2 + εT

))

≤ 4e−MTε2
T .

Proof. All constants in this proof are taken uniform over δ,m > 0 in the definition of the
set Γ above and we write bµ = 1

2∇ log µ. We first derive a preliminary L∞-convergence
rate ζT for µ̂T , for which we establish an exponential inequality. Write

∥µ̂T − PJµ∥∞ = sup
x∈Td

∣∣∣∣∣∣ 1T
∫ T

0

∑
l≤J

∑
r

[Φlr(Xs) − ⟨µ,Φlr⟩2]Φlr(x)ds

∣∣∣∣∣∣ = 1√
T

sup
x∈Td

|GT [hx]|

with hx(u) = ∑
l≤J

∑
r[Φlr(u) − ⟨µ,Φlr⟩2]Φlr(x) ∈ VJ ∩ L2

µ and GT [f ] = 1√
T

∫ T
0 f(Xs)ds

the empirical process for µ-centered functions f ∈ L2
µ. Recalling that the periodised

father wavelet Φ−10 ≡ 1 ([104], p. 354) and that supx
∑
r Φlr(x)2 ≲ 2Jd,

∥hx∥2
H−1 =

J∑
l=0

∑
r

2−2l|Φlr(x)|2 +

∣∣∣∣∣∣
∑
l≤J

∑
r

⟨µ,Φlr⟩2Φlr(x)

∣∣∣∣∣∣
2

≲
J∑
l=0

2J(d−2) + ∥PJµ∥2
∞ ≲ Jd2J(d−2)+ ,

where Jd = J1{d=2} and we have used ∥PJµ∥∞ ≤ ∥µ∥∞ +∥µ−PJµ∥∞ ≲ (1+2−J)∥µ∥B1
∞∞

≲ m. Applying Proposition 4.1 with DFT
= dim(Td) = d, |FT |H−1 = supx∈Td ∥hx∥H−1 =

O(J1/2
d 2J(d/2−1)+) and x = MTε2

T → ∞ then gives

P T
b

(
∥µ̂T − PJµ∥∞ ≥ C(1 +M)J1/2

d 2J(d/2−1)+εT
)

≤ 2e−MTε2
T

for T > 0 large enough, having used that 2J [d/2+κ+(d/2+κ−1)+]εT ≲ 1. Note that the
constant in the last display depends on d, κ and upper bounds for ∥µ∥∞ ≲ ∥µ∥B1

∞∞ ≲ m

and ∥bµ∥
B

|d/2+κ−1|∨1
∞∞

. For this last quantity, by the chain rule, for µ ≥ δ bounded away
from zero, ∥bµ∥Bα

∞∞ ≲ ∥∇ log µ∥Bα
∞∞ ≲ ∥ log µ∥Bα+1

∞∞
≲ ∥ log µ∥Cα+1 ≲ 1 + ∥µ∥Cα+1 for all
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α > 0. Thus in particular, ∥bµ∥
B

|d/2+κ−1|∨1
∞∞

≲ 1 + ∥µ∥C(d/2+κ)∨2 ≲ 1 +m is also uniformly
bounded over Γ. Combined with the bias bound ∥µ − PJµ∥∞ ≲ 2−J∥µ∥B1

∞∞ ≲ 2−Jm,
this yields

P T
b

(
∥µ̂T − µ∥∞ ≥ C(1 +M)J1/2

d 2J(d/2−1)+εT + C2−Jm
)

≤ 2e−MTε2
T (4.22)

with C a uniform constant over Γ. Set ζT = C(1 + M)J1/2
d 2J(d/2−1)+εT + C2−Jm ≲

2J [d/2+κ+(d/2+κ−1)+]εT + 2−Jm → 0. On the event {∥µ̂T − µ∥∞ ≤ ζT}, for x ∈ Td, µ ∈ Γ
and i = 1, . . . , d,

|∂xi
log µ̂T (x) − ∂xi

log µ(x)| =
∣∣∣∣∣∂xi

µ̂T (x)
µ̂T (x) − ∂xi

µ(x)
µ(x)

∣∣∣∣∣
≤
∣∣∣∣∣∂xi

µ̂T (x) − ∂xi
µ(x)

µ̂T (x)

∣∣∣∣∣+ |∂xi
µ(x)|

∣∣∣∣∣µ(x) − µ̂T (x)
µ̂T (x)µ(x)

∣∣∣∣∣
≤ |∂xi

µ̂T (x) − ∂xi
µ(x)|

δ − ζT
+ |∂xi

µ(x)| |µ̂T (x) − µ(x)|
δ(δ − ζT ) .

Taking the qth power, integrating, using that ∥∂xi
µ∥∞ ≲ ∥µ∥C2 ≤ m and (4.22) gives for

large enough T > 0,

inf
B : ∇B= 1

2 ∇ logµ,
µ∈Γ

P T
B (∥∇ log µ̂T − ∇ log µ∥q ≤ C(δ,m)∥µ̂T − µ∥W 1,q) ≥ 1 − 2e−MTε2

T

(4.23)
since ζT → 0. It thus suffices to prove an exponential inequality for ∥µ̂T − µ∥W 1,q .

For 1 ≤ q ≤ 2, we have the continuous embedding H1(Td) = W 1,2(Td) ⊂ W 1,q(Td).
For the variance term, by Hilbert space duality,

∥µ̂T − PJµ∥H1 = sup
φ∈C∞ : ∥φ∥H−1 ≤1

∣∣∣∣∫
Td

[µ̂T (x) − PJµ(x)]φ(x)dx
∣∣∣∣

= sup
φ∈VJ : ∥φ∥H−1 ≤1

∣∣∣∣∣∣
∑
l≤J

∑
r

⟨µ̂T − µ,Φlr⟩2⟨φ,Φlr⟩2

∣∣∣∣∣∣
= sup

φ∈VJ : ∥φ∥H−1 ≤1

∣∣∣∣∣∣ 1T
∫ T

0

∑
l≤J

∑
r

[Φlr(Xs) − ⟨µ,Φlr⟩2]⟨φ,Φlr⟩2ds

∣∣∣∣∣∣
= 1√

T
sup

φ∈VJ : ∥φ∥H−1 ≤1
|GT [gφ]| ,
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where gφ(u) = ∑
l≤J

∑
r[Φlr(u) − ⟨µ,Φlr⟩2]⟨φ,Φlr⟩2 ∈ VJ ∩ L2

µ. Using that Φ−10 ≡ 1, for
∥φ∥H−1 ≤ 1,

∥gφ∥2
H−1 =

J∑
l=0

∑
r

2−2l|⟨φ,Φlr⟩2|2 +

∣∣∣∣∣∣
∑
l≤J

∑
r

⟨µ,Φlr⟩2⟨φ,Φlr⟩2

∣∣∣∣∣∣
2

≤ ∥φ∥2
H−1 + |⟨µ, φ⟩2|2

≤ (1 + ∥µ∥2
H1)∥φ∥2

H−1

≲ 1 + ∥µ∥2
C2 ≤ 1 +m2.

Applying now Proposition 4.1 with DFT
= dim(VJ) = O(2Jd), |FT |H−1 = supφ ∥gφ∥H−1 ≲

1 +m and x = MTε2
T → ∞ gives

P T
B

(
∥µ̂T − PJµ∥H1 ≥ C(1 +M)

(
T−1/22Jd/2 + εT

))
≤ 2e−MTε2

T ,

where we have used 2J [d/2+κ+(d/2+κ−1)+]εT ≲ 1 and T−1/22J [d+κ+(d/2+κ−1)+] ≲ 1 and where
the constant in the last display again depends on d, κ and m. Using the embedding
H1(Td) ⊂ W 1,q(Td), 1 ≤ q ≤ 2, this yields

P T
B

(
∥µ̂T − µ∥W 1,q ≥ ∥µ− PJµ∥W 1,q + C(1 +M)

(
T−1/22Jd/2 + εT

))
≤ 2e−MTε2

T .

Combining the last inequality with (4.23) proves the result.

Proof of Lemma 4.2. Consider the test ϕT = 1{∥∇ log µ̂T − ∇ log µ0∥q ≥ M0ξT}, where
µ̂T is the wavelet estimator in (4.21) and M0 is to be selected below. Since T−1/22Jd/2 +
εT ≲ ξT and ∥PJµ0 − µ0∥W 1,q ≤ D0ξT by assumption, Lemma 4.3 gives that for any
M > 0 and large enough T > 0,

P T
B0 (∥∇ log µ̂T − ∇ log µ0∥q ≥ C(D0 + 1 +M)ξT ) ≤ 4e−MTε2

T .

Taking M0 > C(2 +D0), the type-I error then satisfies P T
B0ϕT ≤ 4e−Tε2

T → 0.
Turning to the type-II error, since ∥µ − PJµ∥W 1,q ≤ CΛξT for all µ ∈ ΛT , and

ΛT ⊂ Γ(δ,m) for Γ(δ,m) the set in Lemma 4.3, applying that lemma yields that for all
M > 0 and large enough T > 0,

sup
B : ∇B= 1

2 ∇ logµ,
µ∈Γ

P T
B (∥∇ log µ̂T − ∇ log µ∥q ≥ C(CΛ + 1 +M)ξT ) ≤ 4e−MTε2

T .
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Now consider B ∈ ΘT (implying ∇B = 1
2∇ log µ for some µ ∈ ΛT ) such that ∥∇B −

∇B0∥q = 1
2∥∇ log µ − ∇ log µ0∥q ≥ DξT . Applying the triangle inequality and the last

display,

P T
B (1 − ϕT ) = P T

B (∥∇ log µ̂T − ∇ log µ0∥q ≤ M0ξT )
≤ P T

B (∥∇ log µ0 − ∇ log µ∥q − ∥∇ log µ− ∇ log µ̂T∥q ≤ M0ξT )
≤ P T

B ((2D −M0)ξT ≤ ∥∇ log µ− ∇ log µ̂T∥q) ≤ 4e−MTε2
T ,

for D > M0/2 + C(CΛ + 1 +M)/2. This completes the proof.

4.5 Proofs for Gaussian and p-exponential priors

4.5.1 Proof of Theorem 4.1

We verify the assumptions of Theorem 4.3 with q = 2, εT = ξT ≃ T−α/(2α+d) and
2J ≃ T 1/(2α+d). In particular, the quantitative conditions (4.15) in Theorem 4.3 are then
satisfied for all α > d/2 + (d/2 − 1)+.

As pointed out in Remark 4.2, the ‘small ball condition’ (assumption (ii) in Theorem
4.3) follows if we show that for some C > 0,

Π
(

d∑
i=1

∥∂xiB − ∂xiB0∥∞ ≤ ε2
T

)
≥ e−CTε2

T . (4.24)

Note that
(

d∑
i=1

∥∂xi
B − ∂xi

B0∥2
∞

)1/2

≤
d∑
i=1

∥∂xi
B − ∂xi

B0∥∞ ≲ ∥B −B0∥C1 ,

and since ∥B0 −B0,T∥C1 = O(T−α/(2α+d)) = O(εT ) by assumption, it thus suffices to lower
bound Π(∥B −B0,T∥C1 ≤ εT/2), upon replacing εT with a multiple of itself if necessary.
Recall that the RKHS HB of the scaled Gaussian process B = W/T d/(4α+2d) = W/(

√
TεT )

equals the RKHS H of W , with scaled norm ∥h∥HB
=

√
TεT∥h∥H. Since ∥B0,T∥H = O(1),

using Corollary 2.6.18 of [104] we lower bound the probability of interest by

e
− 1

2 ∥B0,T ∥2
HB Π(∥B∥C1 ≤ εT/2) ≥ e−c1Tε2

T ΠW (∥W∥C1 ≤
√
Tε2

T/2)



4.5 Proofs for Gaussian and p-exponential priors 147

for some c1 > 0. Since
√
Tε2

T → 0 for α > d/2, the small ball estimate (4.29) below gives

ΠW (∥W∥C1 ≤
√
Tε2

T/2) ≥ e−c2(
√
Tε2

T )−2d/(2α−d) = e−c3Tε2
T ,

for some c2, c3 > 0. Taking C = c1 + c3 < ∞, the last two displays yields (4.24) as
required.

For M > 0 and p = 2, let BT be the set in (4.27) and define ΛT = {µB =
e2B/

∫
Td e2Bdx : B ∈ BT}. Taking M > 0 large enough, Lemma 4.5 (i) implies that

Π(Bc
T ) ≤ e−(C+4)Tε2

T as required by assumption (i) in Theorem 4.3. We now show that
ΛT satisfies the inclusion condition (4.16). Since ∥B∥∞ ≤ ∥B∥C(d/2+κ)∨2 ≤ m for every
B ∈ BT , it holds that µB ≥ e−4m > 0 for all µB ∈ ΛT . Moreover, using again the
boundedness of B ∈ BT ,

∥µB∥C(d/2+κ)∨2 ≤ e2m∥e2B∥C(d/2+κ)∨2 ≲ 1 + ∥B∥C(d/2+κ)∨2 + ∥B∥(d/2+κ)∨2
C(d/2+κ)∨2 ≤ c(m),

where for d ≤ 3 the second inequality (with C(d/2+κ)∨2 = C2) follows readily by differenti-
ation, while for d ≥ 4 it is implied by Lemma 4.6 upon noting that C(d/2+κ)∨2 = Cd/2+κ =
Bd/2+κ

∞∞ , since d/2 + κ /∈ N (cfr. Chapter 3 in [211]). Finally, the bias bound follows
from Lemma 4.7 with p = 2. This shows that ΛT satisfies the required assumptions in
Theorem 4.3.

It remains only to consider the true potential B0. However, since B0 ∈ Hα+1, Lemma
4.6 similarly implies that ∥µ0 − PJµ0∥W 1,2 ≲ 2−Jα∥µ0∥Hα+1 ≃ εT . The result thus follows
from Theorem 4.3.

4.5.2 Proof of Theorem 4.2

We verify the assumptions of Theorem 4.3 with q = p, εT = ξT ≃ T−α/(2α+d) and
2J ≃ T 1/(2α+d). The quantitative conditions (4.15) are satisfied since we have assumed
α > [(d/2 +κ) ∨ 2] + d/p− 1 > d/2 + (d/2 − 1)+. The remaining assumptions are verified
using tools for p-exponential random elements mainly due to [5].

We first consider assumption (ii) in Theorem 4.3. Since α > [(d/2+κ)∨2]+d/p−1 >
d/2 + (d/2 + κ) ∨ 1, and since the prior Π arising as the law of B in (4.14) is supported
on VJ ∩ L̇2, Lemma 4.4 below implies that it is enough to show that for some M,C > 0

Π(∥∇B − ∇B0∥L2(µ0) ≤ MεT ) ≥ e−CTε2
T ,
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where µ0 ∝ e2B0 is the invariant density and ∥f∥2
L2(µ0) =

∫
Td |f(x)|2µ0(x)dx. Since µ0 is

bounded, the probability on the left hand side is greater than

Π(∥∇B − ∇B0∥2 ≤ m1εT ) ≥ Π(∥B −B0∥H1 ≤ m2εT )

for some m1,m2 > 0. Let PJB0 the wavelet projection of B0 ∈ Hα+1 ∩ L̇2 onto VJ . Then
∥B0 − PJB0∥H1 ≲ 2−Jα ≃ εT , so that by the triangle inequality the latter probability
is lower bounded by Π(∥B − PJB0∥H1 ≤ m3εT ) for some m3 > 0. In the language of
[5], the Z-space (Definition 2.8 in [5]) associated to the p-exponential random element
B = W/(T d/(2α+d))1/p = W/(Tε2

T )1/p is equal to VJ ∩ L̇2, with norm

∥h∥Z =
Tε2

T

J∑
l=0

∑
r

2pl
(
α+1+ d

2 − d
p

)
|⟨h,Φlr⟩2|p

 1
p

=
(
Tε2

T

) 1
p ∥h∥Bα+1

pp
, h ∈ Z. (4.25)

Since PJB0 ∈ Z, by Proposition 2.11 in [5] the probability of interest is thus greater than

e− 1
p

∥PJB0∥p
Z Π
(
∥B∥H1 ≤ m3εT

)
≥ e

− 1
p
Tε2

T ∥B0∥p

Bα+1
pp Π

(
∥B∥H1 ≤ m3εT

)
,

where ∥B0∥Bα+1
pp

< ∞ in view of the continuous embedding Hα+1(Td) ⊆ Bα+1
pp (Td) holding

for all p ≤ 2 (e.g., p. 360 in [104]). We conclude estimating the above centred small
ball probability. Using Theorem 4.2 in [13] (whose conclusion can readily be adapted for
double index sums), we have as T → ∞,

− log Π
(
∥B∥H1 ≤ m3εT

)
= − log ΠW

(
∥W∥H1 ≤ m3(Tε2

T )
1
p εT

)
≃
[
(Tε2

T )
1
p εT

]− d
α−d/p

= Tε2
T .

Thus, for c1 > 0 a large enough constant and C = c1 + ∥B0∥pBα+1
pp

/p < ∞, we obtain as
required that Π

(
∥∇B − ∇B0∥L2(µ0) ≤ Mε2

T

)
≥ e−CTε2

T .
The remaining conditions in Theorem 4.3 are verified arguing as in the proof of

Theorem 4.1, using the sets BT in (4.27) with M > 0 large enough and p ∈ [1, 2], taking
ΛT = {µB = e2B/

∫
Td e2Bdx : B ∈ BT}, and noting that since B0 ∈ Bα+1

pp , we have by
Lemma 4.6 that ∥µ0 − PJµ0∥W 1,p ≲ 2−Jα∥µ0∥Bα+1

pp
≲ εT .
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Lemma 4.4. Suppose B0 ∈ Hα+1(Td) ∩ L̇2(Td) for α > d/2 + (d/2 + κ) ∨ 1 and some
κ > 0. If εT = T−α/(2α+d), J ∈ N satisfies 2J ≃ T 1/(2α+d) and M > 0, then as T → ∞,

P T
B0

 sup
B∈VJ ∩L̇2 : ∥∇B−∇B0∥L2(µ0)≤MεT

1
T

∫ T

0
∥∇B(Xs) − ∇B0(Xs)∥2ds ≤ M2ε2

T + o(ε2
T )


→ 1.

The restriction to L̇2 is for identifiability and simplifies certain norms. A similar
result holds under other identifiability constraints.

Proof. We first show that 1
T

∫ T
0 ∥∇B(Xs) − ∇B0(Xs)∥2ds is close to its ergodic average

∥∇B − ∇B0∥2
L2(µ0), uniformly over SBT = {B ∈ VJ ∩ L̇2 : ∥∇B − ∇B0∥L2(µ0) ≤ MεT}.

Define

FT =
{
fB(x) := ∥∇B(x) − ∇B0(x)∥2 − ∥∇B − ∇B0∥2

L2(µ0) : B ∈ SBT ∪ {B0}
}
.

Since x 7→ ∥x∥2 is a smooth function, SBT ⊂ VJ and B0 ∈ Hα+1, it holds that FT ⊂
L2
µ0 ∩Hs. By Lemma 4.8, the Poisson equation LB0u = fB (writing LB0 for L∇B0) has

a unique solution L−1
B0 [fB] ∈ L̇2 for any B ∈ SBT . Applying Lemma 1 of [173], since

α > d/2 + (d/2 + κ) ∨ 1, gives that for any x ≥ 0,

P T
B0

(
sup
fB∈FT

|GT [fB]| ≥ sup
f∈FT

2∥L−1
B0 [fB]∥∞√
T

+ JFT
(4

√
2 + 192x)

)
≤ e−x2/2, (4.26)

where JFT
=
∫DFT

0

√
log 2N(τ ; FT , 6dL)dτ , d2

L(f, g) = ∑d
i=1 ∥∂xi

L−1
B0 [f − g]∥2

∞ and DFT
is

the dL-diameter of FT . We now proceed to bound JFT
.

For B ∈ SBT , write hi = ∂xi
(B − B0) so that fB = ∑d

i=1 h
2
i − ∥hi∥2

L2(µ0). Using the
Sobolev embedding theorem, Lemma 4.8 and the Runst-Sickel lemma ([173], Lemma 2),
for κ > 0,

dL(fB, fB̄) ≲ ∥fB − fB̄∥Hd/2+κ−1

≲
d∑
i=1

∥∥∥∥h2
i − h̄2

i −
∫
Td

(h2
i − h̄2

i )dµ0

∥∥∥∥
Hd/2+κ−1

≲
d∑
i=1

∥hi − h̄i∥∞∥hi + h̄i∥H(d/2+κ−1)+ + ∥hi − h̄i∥H(d/2+κ−1)+ ∥hi + h̄i∥∞

+ ∥µ0∥∞∥hi − h̄i∥2∥hi + h̄i∥2∥1∥Hd/2+κ−1) ,
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where the constants depend only on d, κ and ∥∇B0∥B|d/2+κ−1|
∞∞

≲ ∥B0∥H|d/2+κ−1|+d/2+1 ≲

∥B0∥Hα+1 , and we note that ∥µ0∥∞ ≤ e4∥B0∥∞ < ∞ using (4.6). Since B, B̄ ∈ VJ , we have
∥hi− h̄i∥Hu ≲ ∥B− B̄∥Hu+1 ≤ 2Ju∥B− B̄∥H1 for u ≥ 0 and ∥hi− h̄i∥∞ ≲ ∥B− B̄∥B1

1∞
≲

2Jd/2∥B − B̄∥H1 . Furthermore,

∥hi + h̄i∥Hu ≲ sup
B∈SBT

∥B −B0∥Hu+1 ≲ sup
B∈SBT

∥B − PJB0∥Hu+1 + ∥B0 − PJB0∥Hu+1

≲ 2Ju sup
B∈SBT

∥B − PJB0∥H1 + 2−J(α−u)∥B0∥Hα+1 .

Note that ∥∇B − ∇B0∥L2(µ0) ≃ ∥B − B0∥H1 since µ0 is both bounded and bounded
away from zero and B,B0 ∈ L̇2. Therefore, supB∈SBT

∥B − PJB0∥H1 + 2−Jα∥B0∥Hα+1 ≤
C(M + 1)εT , so that ∥hi + h̄i∥Hu ≤ C(M + 1)2JuεT . Similarly, using the Sobolev
embedding theorem,

∥hi + h̄i∥∞ ≲ sup
B∈SBT

∥B −B0∥B1
1∞

≲ sup
B∈SBT

∥B − PJB0∥B1
1∞

+ ∥B0 − PJB0∥B1
1∞

≲ 2Jd/2 sup
B∈SBT

∥B − PJB0∥H1 + 2−J(α−d/2)∥B0∥Hα+1

≤ C(M + 1)2Jd/2εT .

Combining these bounds yields

dL(fB, fB̄) ≤ C(M + 1)2J [d/2+(d/2+κ−1)+]εT∥B − B̄∥H1 .

Since SBT ⊆ (VJ , ∥ · ∥H1) is finite dimensional, using the last display and the usual
covering argument for balls in finite dimensional spaces (e.g., [104], Proposition 4.3.34),

logN(τ ; FT , 6dL) ≤ logN
(
τ ; SBT , C(M + 1)2J [d/2+(d/2+κ−1)+]εT∥ · ∥H1

)
≲ dim(VJ) log

(
C(M + 1)2J [d/2+(d/2+κ−1)+]εT sup

B,B̄∈SBT

∥B − B̄∥H1/τ

)

≲ dim(VJ) log (CRT/τ) ,

where C > 0 and
RT := (M + 1)22J [d/2+(d/2+κ−1)+]ε2

T → 0

under the current assumption on α. Recall the inequality
∫ a

0

√
log(A/x)dx ≤ 4a

√
log(A/a)

for any A ≥ 2 and 0 < a ≤ 1 ([104], p. 190). Using this inequality, the last display with
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dim(VJ) = O(2Jd), and that FT has dL-diameter DFT
≲ RT → 0, we obtain

JFT
≲ dim(VJ)

∫ DFT

0

√
log([CRT ] ∨ 2/τ)dτ ≲ 2Jd/2DFT

√
log([CRT ] ∨ 2/DFT

).

Taking DFT
≃ RT in the last display gives JFT

≲ 2Jd/2RT

(
1 +

√
log(1/RT )

)
. Arguing

as for the bound for dL(fB, fB̄) above, one has for all B ∈ SBT ,

∥L−1
B0 [fB]∥∞ ≲ ∥fB∥Hd/2+κ−1

≲
d∑
i=1

∥∥∥∥h2
i −

∫
Td
h2
i dµ0

∥∥∥∥
Hd/2+κ−1

≲
d∑
i=1

∥hi∥∞∥hi∥H(d/2+κ−1)+

≲ 2J [d/2+(d/2+κ−1)+](M + 1)2ε2
T

where the constants depend only on d, κ, ∥µ0∥∞ and ∥∇B0∥B|d/2+κ−1|
∞∞

≲ ∥B0∥H|d/2+κ−1|+d/2+1

≲ ∥B0∥Hα+1 . Substituting this bound and JFT
≲ 2Jd/2RT

(
1 +

√
log(1/RT )

)
into (4.26),

P T
B0

(
sup
fB∈FT

|GT [fB]| ≥ C2Jd/2RT

(
1 +

√
log(1/RT )

)
(1 + x)

)
≤ e−x2/2

for any x ≥ 0. Set

ζT = MTT
−1/22Jd/2RT

(
1 +

√
log(1/RT )

)
= O

(
MT

√
log TT− α−d/2−(d/2+κ−1)+

2α+d ε2
T

)
,

which satisfies ζT = o(ε2
T ) for MT → ∞ growing slow enough, since α > d/2+|d/2+κ−1|.

Then using the definition of the empirical process GT [fB], for any MT → ∞,

P T
B0

 sup
B∈SBT

∣∣∣∣∣∣ 1T
∫ T

0
∥∇B(Xs) − ∇B0(Xs)∥2ds− ∥∇B − ∇B0∥2

L2(µ0)

∣∣∣∣∣∣ ≥ ζT

 → 0

as T → ∞. The result then follows because on the complement of the event in the last
display,

sup
B∈SBT

1
T

∫ T

0
∥∇B(Xs) − ∇B0(Xs)∥2ds ≤ sup

B∈SBT

∥∇B − ∇B0∥2
L2(µ0) + ζT

≤ M2ε2
T + o(ε2

T ).
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4.5.3 Concentration inequalities and bias bounds

In this section, we build on techniques for Gaussian process priors [235], p-exponential
priors [5] and rescaled priors [167] to obtain the prior bias bounds needed to apply our
general contraction theorem for multi-dimensional diffusions.

Lemma 4.5. For s,M, κ > 0, p ∈ [1, 2] and sequences εT = T−α/(2α+d), εT =
T−(α+1)/(2α+d), define the sets

BT = {B = B1 +B2 : ∥B1∥∞ ≤ εT , ∥B1∥C1 ≤ εT , ∥B2∥Bα+1
pp

≤ M, ∥B∥C(d/2+κ)∨2 ≤ M}.
(4.27)

Assume either:

(i) p = 2 and B = W/(
√
TεT ) for W ∼ ΠW a Gaussian process satisfying Condition

4.1;

(ii) B = W/(Tε2
T )

1
p for W ∼ ΠW a p-exponential random element as in (4.13) with

α > (d/2 + κ) ∨ 2 + d/p− 1.

Let Π be the law of B. Then, for every K > 0, there exists M > 0 large enough such
that Π(Bc

T ) ≤ e−KTε2
T .

Proof. (i) In the Gaussian case, define the sets

BT,1 := {B = B1 +B2 : ∥B1∥∞ ≤ εT , ∥B1∥C1 ≤ εT , ∥B2∥Bα+1
22

≤ m},

BT,2 := {B : ∥B∥C(d/2+κ)∨2 ≤ m}.

To upper bound Π(Bc
T ) it thus suffices to upper bound Π(Bc

T,1) and Π(Bc
T,2). Since

∥g∥Bα+1
22

= ∥g∥Hα+1 ≤ c0∥g∥H for all g ∈ H under Condition 4.1, Borell’s isoperimetric
inequality ([104], Theorem 2.6.12) gives

Π(BT,1)
= ΠW (W = W1 +W2 : ∥W1∥∞ ≤

√
TεT εT , ∥W1∥C1 ≤

√
Tε2

T , ∥W2∥Bα+1
22

≤ m
√
TεT )

≥ Φ
(
Φ−1

(
ΠW

(
W : ∥W∥∞ ≤

√
TεT εT , ∥W∥C1 ≤

√
Tε2

T

))
+m

√
TεT/c0

)
, (4.28)

where Φ is the standard normal cumulative distribution function. Now for H1 and Hα+1
1

the unit balls of H and Hα+1 respectively, we have under Condition 4.1 that

logN(τ ; H1, ∥ · ∥C1) ≤ logN(τ ; c0H
α+1
1 , ∥ · ∥C1) ≲ τ−d/α,
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where the last inequality follows by arguing as in Theorem 4.3.36 of [104]. By Theorem
1.2 of Li and Linde [152], this yields

ΠW (∥W∥C1 ≤ η) ≥ e−c2
1η

−2d/(2α−d) as η → 0, (4.29)

for any d/2 < s < ∞ and some c1 = c1(d, α, c0) > 0, which implies, since
√
Tε2

T → 0,

ΠW

(
∥W∥C1 ≤

√
Tε2

T

)
≥ e−c2

1(
√
Tε2

T )−2d/(2α−d) = e−c2
1Tε

2
T .

Using the same argument, now with the bound

logN(τ ; H1, ∥ · ∥∞) ≤ logN(τ ; c0H
α+1
1 , ∥ · ∥∞) ≲ τ−d/(α+1),

it follows for some c2 > 0 that ΠW (∥W∥∞ ≤
√
TεT εT ) ≥ e−c2

2Tε
2
T . The Gaussian

correlation inequality (which holds for Gaussian measures in separable Banach spaces,
see Lemma 4.9 below) then gives for c3 = c2

1 + c2
2

ΠW

(
∥W∥∞ ≤

√
TεT εT ,∥W∥C1 ≤

√
Tε2

T

)
≥ ΠW

(
∥W∥∞ ≤

√
TεT εT

)
ΠW

(
∥W∥C1 ≤

√
Tε2

T

)
≥ e−c3Tε2

T .

Using the standard inequality Φ−1(y) ≥ −
√

2 log(1/y) for 0 < y < 1, the right hand side
of (4.28) is thus lower bounded by

Φ
(
(m/c0 −

√
2c3)

√
TεT

)
.

Defining mT = −Φ−1(e−KTε2
T /3), this further gives mT ≤

√
2 log 2 +

√
2KTεT , which

can be made smaller than (m/c0 −
√

2c3)
√
TεT by taking M = M(K, c0, c3) large enough.

For such M , the last display is lower bounded by Φ(mT ) = 1 − Φ(Φ−1(e−KTε2
T /2)) =

1 − 1
3e

−KTε2
T .

To bound Π(Bc
T,2), recall that by Condition 4.1 W defines a Gaussian Borel random

element in a separable linear subspace S of C(d/2+κ)∨2. Using the Hahn-Banach theorem,
we may thus represent its norm as

∥W∥C(d/2+κ)∨2 = sup
L∈L

|L(W )|,
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where L is a countable set of bounded linear functionals on (S, ∥ · ∥C(d/2+κ)∨2). Applying
Fernique’s theorem [104, Theorem 2.1.20] to the centred Gaussian process (X(L) = L(W ) :
L ∈ L), we have E∥W∥C(d/2+κ)∨2 = E supL∈L |X(L)| ≤ D < ∞, and for m = m(D) > 0
large enough and since

√
TεT → ∞,

Π(Bc
T,2) ≤ ΠW

(
W : ∥W∥C(d/2+κ)∨2 − E∥W∥C(d/2+κ)∨2 ≥ M

√
TεT

)
≤ 2e−D′M2Tε2

T

for some fixed constant D′ > 0. Taking M > 0 large enough, the right-hand side can be
made less than 1

3e
−KTε2

T , concluding the proof.
(ii). Turning to p-exponential priors, define the set

B′
T =

{
B = B′

1 +B′
2 +B′

3 : B′
i ∈ VJ ∩ L̇2, ∥B′

1∥∞ ≤ εT ,

∥B′
2∥Hα+1+d/2−d/p ≤ M

p
2 (Tε2

T )
1
2 − 1

p , ∥B′
3∥Bα+1

pp
≤ M

}
.

We lower bound the prior probability of B′
T using the generalization of Borell’s inequality

to p-exponential measures. The space of admissible shifts (cfr. Proposition 2.7 in [5]) of
the scaled p-exponential random element B = W/(Tε2

T )
1
p is Q = VJ ∩ L̇2, with norm

∥h∥Q = (Tε2
T )

1
p

 J∑
l=0

∑
r

22l
(
α+1+ d

2 − d
p

)
|⟨h,Φlr⟩2|2

 1
2

=
(
Tε2

T

) 1
p ∥h∥Hα+1+d/2−d/p , h ∈ Q.

Then, recalling the Z-norm defined in (4.25), Proposition 2.15 in [5] implies

Π(B′
T ) = Π

(
B = B′

1 +B′
2 +B′

3 : ∥B′
1∥∞ ≤ εT , ∥B′

2∥Q ≤ (MpTε2
T ) 1

2 , ∥B′
3∥Z ≤ M(Tε2

T )
1
p

)
≥ 1 − 1

Π(∥B∥∞ ≤ εT
) exp

(
−(Mp/k)Tε2

T

)

for some k = k(p) > 0. By an analogous small ball computation as in the proof of
Proposition 6.3 in [5], it follows that as T → ∞

− log Π(∥B∥∞ ≤ εT ) = − log ΠW (∥W∥∞ ≤ εT (Tε2
T )

1
p )

≃ [εT (Tε2
T )

1
p ]

d
α+1−d/p = Tε2

T .

Thus, for some constant c1 = c1(α, p, d) > 0, we have Π(B′
T ) ≥ 1 − e−[(Mp/k)−c1]Tε2

T , so
that for any K > 0 we can choose M = M(K, c1, k) = M(K,α, p, d) > 0 large enough to
obtain Π(B′

T ) ≥ 1 − e−KTε2
T .
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We conclude the proof by showing that B′
T ⊂ BT . First, since B′

1 ∈ VJ we have
∥B′

1∥C1 ≤ 2J∥B′
1∥∞ ≲ T 1/(2α+d)εT = εT , and therefore both norm bounds on B1 = B′

1 in
(4.27) are satisfied. Also note that

∥B′
1∥C(d/2+κ)∨2 ≤ 2J(d/2+κ)∨2∥B′

1∥∞ ≲ T
(d/2+κ)∨2

2α+d εT = o(1) (4.30)

since by assumption α + 1 > (d/2 + κ) ∨ 2 + d/p. Next, since also B′
2 ∈ VJ , using the

continuous embedding Hα+1(Td) ⊆ Bα+1
pp (Td), p ≤ 2,

∥B′
2∥Bα+1

pp
≲ ∥B′

2∥Hα+1 ≤ 2Jd(
1
p

− 1
2)∥B′

2∥Hα+1+d/2−d/p

≤ 2Jd(
1
p

− 1
2)M

p
2 (Tε2

T )
1
2 − 1

p ≃ M
p
2 .

Thus, taking B2 = B′
2 +B′

3 implies ∥B2∥Bα+1
pp

≲Mp/2 +M ≲M for M ≥ 1 as required.
Finally, using (4.30) and the continuous embedding Bα+1

pp ⊂ C(d/2+κ)∨2, holding for all
α + 1 > (d/2 + κ) ∨ 2 + d/p,

∥B∥C(d/2+κ)∨2 ≤ ∥B′
1∥C(d/2+κ)∨2 + ∥B2∥Bα+1

pp
≲M,

concluding the proof.

Lemma 4.6. Let 1 ≤ p, q ≤ ∞ and t > d/p. If ∥B∥∞ ≤ m, then

∥eB∥Bt
pq

≤ C(1 + ∥B∥Bt
pq

+ ∥B∥tBt
pq

)

for some constant C = C(m, t, p, q) > 0.

Proof. Consider a function f ∈ C∞(R) such that f(x) = ex − 1 for |x| ≤ m and
∥f∥L∞(R) ≤ 2m. Since ∥B∥∞ ≤ m, we have f ◦ B(x) = eB(x) − 1 for all x ∈ Td. By
Theorem 11 of Bourdaud and Sickel [45],

∥eB − 1∥Bt
pq

≤ c∥f∥
C

⌊t⌋+1
b

(R)(∥B∥Bt
pq

+ ∥B∥tBt
pq

)

for some c > 0. Since ∥1∥Bt
pq
< ∞ for periodic Besov spaces, the result follows.

Lemma 4.7. For α,M, κ > 0 and p ∈ [1, 2], let BT be the set in (4.27), with εT , εT as in
Lemma 4.5. If 2J ≃ T 1/(2α+d), then there exists a finite constant C depending on α, d,m
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and the wavelet basis {Φlr} such that
{
µB = e2B∫

Td e2B(x)dx
: B ∈ BT

}
⊂ {µ : ∥µ− PJµ∥W 1,p ≤ CεT}.

Proof. Since ∥B∥∞ ≤ ∥B∥C2 ≤ M for every B ∈ BT , this implies e−2M ≤
∫
Td e2Bdx ≤

e2M and hence ∥µB − PJµB∥W 1,p ≤ e2M∥e2B − PJe
2B∥W 1,p , so it suffices to bound the

last quantity. For a function f on the torus Td, denote by f̄ its periodic extension to
Rd. Recall that the periodic projection satisfies PJf(x) =

∫
Rd KJ(x, y)f̄(y)dy for all

x ∈ (0, 1]d, where KJ(x, y) = 2Jd∑k∈Zd ϕ(2Jx− k)ϕ(2Jy− k) is the unperiodised wavelet
kernel and ϕ is the unperiodised father wavelet used in the construction of the periodised
wavelet basis (see (4.127) in [104]). Using that

∫
Rd KJ(x, y)dy = 1 for all x ∈ (0, 1]d and

writing B = B1 +B2 as in (4.27),

|∂xi
(e2B − PJe

2B)(x)| =
∣∣∣∣∂xi

∫
Rd
KJ(x, y)(e2B1(x)+2B2(x) − e2B̄1(y)+2B̄2(y))dy

∣∣∣∣
≤
∣∣∣∣∂xi

(
e2B1(x)

∫
Rd
KJ(x, y)(e2B2(x) − e2B̄2(y))dy

)∣∣∣∣
+
∣∣∣∣∂xi

( ∫
Rd
KJ(x, y)(e2B1(x) − e2B̄1(y))e2B̄2(y)dy

)∣∣∣∣
≤ e2B1(x)

∣∣∣∣2∂xi
B1(x)[e2B2(x) − PJe

2B2(x)] + ∂xi
[e2B2(x) − PJe

2B2(x)]
∣∣∣∣

+
∣∣∣∣ ∫

Rd
∂xi
KJ(x, y)(e2B1(x) − e2B̄1(y))e2B̄2(y)dy

∣∣∣∣
+ e2B1(x)

∣∣∣∣2∂xi
B1(x)

∫
Rd
KJ(x, y)e2B̄2(y)dy

∣∣∣∣.
Using that

∫
Rd ∂xi

KJ(x, y)dy ≲ 2J by the localization property of wavelets and that
|ex − 1| ≲ x for small |x|, the last display is bounded by a multiple of

e2∥B1∥∞∥B1∥C1

∣∣∣∣(e2B2 − PJe
2B2)(x)

∣∣∣∣+ e2∥B1∥∞

∣∣∣∣∂xi
(e2B2 − PJe

2B2)(x)
∣∣∣∣

+ 2Je2∥B2∥∞∥B1∥∞ + e2∥B1∥∞∥B1∥C1|PJe2B2(x)|.

Taking pth powers and integrating, and using the embedding B0
p1(Td) ⊂ Lp(Td) [104,

Section 4.3.2], then yields

∥∂xi
(e2B − PJe

2B)∥p ≲ e2∥B1∥∞∥B1∥C1∥e2B2 − PJe
2B2∥B0

p1
+ e2∥B1∥∞∥e2B2 − PJe

2B2∥B1
p1

+ 2Je2∥B2∥∞∥B1∥∞ + e2∥B1∥∞∥B1∥C1∥PJe2B2∥B0
p1
.
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By Lemma 4.6,

∥e2B2∥Bα+1
pp

≲ 1 + ∥B2∥Bα+1
pp

+ ∥B2∥α+1
Bα+1

pp
≤ c(m,α, p),

which implies

∥e2B2 − PJe
2B2∥B1

p1
=
∑
l>J

2l(1+d/2−d/p)
(∑

r

|⟨e2B2 ,Φlr⟩2|p
)1/p

=
∑
l>J

2−lα
(

2pl(α+1+d/2−d/p)∑
r

|⟨e2B2 ,Φlr⟩2|p
)1/p

≤ ∥e2B2∥Bα+1
pp

∑
l>J

2−lα

≲ 2−Jα.

By a similar computation, ∥e2B2 − PJe
2B2∥B0

p1
≲ 2−J(α+1), while by Hölder’s inequality

with exponents (p/(p− 1), p),

∥PJe2B2∥B0
p1

=
∑
l≤J

2l(d/2−d/p)
(∑

r

|⟨e2B2 ,Φlr⟩2|p
)1/p

≤
(∑
l≤J

[2−l(α+1)]
p

p−1

) p−1
p
(∑
l≤J

2pl(α+1+d/2−d/p)∑
r

|⟨e2B2 ,Φlr⟩2|p
)1/p

≲ ∥e2B2∥Bα+1
pp

≲ 1.

Combining the above bounds, using the definition of εT , εT in Lemma 4.5 and that
2J ≃ T 1/(2α+d), we thus obtain that for any B ∈ BT ,

∥∂xi
(e2B − PJe

2B)∥p ≲ e2εT εT2−J(α+1) + e2εT 2−Jα + 2Je2MεT + e2εT εT

≲ εT .

By a similar, in fact easier, computation, we also obtain

∥e2B − PJe
2B∥p ≲ e2ε̄T 2−J(α+1) + e2M ε̄T

= o(εT ).

The required bias bound then follows from the last two displays.
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Appendix 4.A Additional material and technical re-
sults

4.A.1 Some properties of Gaussian priors

Periodic Matérn processes

The Matérn process on Rd with smoothness parameter α+ 1 − d/2 > 0 is a stationary
Gaussian process with covariance kernel (Example 11.8 in [101])

C(x, y) ≡ C(x− y) =
∫
Rd
e−i(x−y).ξ(1 + ∥ξ∥2)−α−1dξ, x, y ∈ Rd. (4.31)

Using a standard approach to periodization [194], one can construct a corresponding
stationary periodic kernel via the Poisson summation formula:

Cper(x, y) ≡ Cper(x− y) =
∑
m∈Zd

C(x− y +m), x, y ∈ Rd.

Since the Poisson summation formula preserves the Fourier transform (Theorem 8.31 of
[95]), Cper has Fourier coefficients

∫
Td
e−2πik.uCper(u)du =

∫
Rd
e−2πik.uC(u)du = (2π)d

(1 + 4π2∥k∥2)α+1 , k ∈ Zd,

the last equality following from (4.31) and the Fourier inversion formula (e.g., Section
8.3 in [95]). Thus, using the Fourier series of Kper(u), the periodised Matérn kernel has
series representation

Cper(x, y) = (2π)d
∑
k∈Zd

1
(1 + 4π2∥k∥2)α+1 ek(x)ek(y),

where {ek, k ∈ Zd} is the Fourier basis of L2(Td), i.e. ek(x) = e2πik.x. Theorem I.21
in [101] then implies that the centred Gaussian process M = {M(x), x ∈ Td} with
covariance kernel Cper has RKHS

H =

h =
∑
k∈Zd

hkek : ∥h∥2
H = (2π)d

∑
k∈Zd

h2
k(1 + 4π2∥k∥2)α+1 < ∞

 .
By the Fourier series characterisation of Sobolev spaces, we thus have H = Hα+1(Td) and
∥ · ∥H is an equivalent norm to ∥ · ∥Hα+1 . The above computation also implies that the
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periodic Matérn process has Karhunen-Loève series expansion given by (4.10), equivalent
(up to constants) to the mean-zero Gaussian processes with inverse Laplacian covariance
appearing in [181, 187, 238, 237].

For the regularity of the sample paths, by Proposition I.4 in [101], which applies
also to the periodised kernel Cper, the periodic Matérn process has a version M whose
sample paths are in Cα+1− d

2 −η(Td) for any η > 0. By Lemma I.7 in [101], this version
then defines a Borel random element in Cr(Td) for all r < α + 1 − d/2. In particular,
Cr(Td) is a separable linear subspace of C(d/2+κ)∨2(Td) for some κ > 0 provided that
α+ 1 > d/2 + (d/2) ∨ 2 and r > (d/2 +κ) ∨ 2. In conclusion, the periodic Matérn process
satisfies Condition 4.1 for α + 1 > d/2 + (d/2) ∨ 2.

Gaussian conjugacy formulae and proof of Lemma 4.1

We first provide details for the derivation of the conjugate formula (4.12). For basis
functions (hk, k ∈ N) ⊂ C2 ∩ L̇2, and fixed K ∈ N, identifying a function B = ∑K

k=1 Bkhk

with its coefficient vector B = (B1, . . . , BK)T ∈ RK , we can write the log-likelihood (4.7)
in quadratic form as

ℓT (B) = −1
2

∫ T

0

d∑
j=1

∑
k,k′

BkBk′∂xj
hk(Xt)∂xj

hk′(Xt)dt+
d∑
j=1

∫ T

0

K∑
k=1

Bk∂xj
hk(Xt)dXj

t

= −1
2
∑
k,k′

BkBk′

[∫ T

0
∇hk(Xt).∇hk′(Xt)dt

]
+

K∑
k=1

Bk

[∫ T

0
∇hk(Xt).dXt

]

= −1
2BTΣB + BTH,

for Σ and H defined as after (4.12). Under the same identification, we may regard the
prior (4.11) as a multivariate normal distribution on RK with diagonal covariance matrix
Υ = diag(υ2

1, . . . , υ
2
K). Then, by Bayes’ formula, the posterior density is given by

dΠ(B|XT ) ∝ eℓT (B)e− 1
2 BT Υ−1B = e− 1

2 BT ΣB+BT H− 1
2 BT Υ−1B.

Completing the squares then gives

dΠ(B|XT ) ∝ e− 1
2 [B−(Σ+Υ−1)−1H]T (Σ+Υ−1)[B−(Σ+Υ−1)−1H],

which completes the derivation of (4.12).

Proof of Lemma 4.1. We follow ideas in [187]. For K ∈ N, let PK : L2 → L2 be the
projection onto the Fourier approximation space EK = span{ek, |k| ≤ K}, ek(x) = e2πik.x.
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Consider the approximate posterior

ΠK(A|XT ) =
∫
A e

ℓT (PKB)dΠ(B)∫
C2 eℓT (PKB′)dΠ(B′) , A ⊂ C2 ∩ L̇2 measurable.

Since ℓT (PKB) only depends on PKB, ΠK(·|XT ) can be decomposed as the product of
a Gaussian measure on EK (satisfying the conjugate formula (4.12)) and a Gaussian
measure obtained as the push-forward of Π under the projection operator onto the
orthogonal complement of EK in L2. It follows that ΠK(·|XT ) is Gaussian in L2. We
now show that, a.s. under the law of the data XT , ΠK(·|XT ) → Π(·|XT ) weakly in L2

as K → ∞, which in turn will conclude the proof since the class of Gaussian measures in
closed with respect to weak convergence.

For B ∈ C2, we have ∥B−PKB∥H2 → 0 as K → ∞. It follows that eℓT (PKB) → eℓT (B)

a.s., since, given the data XT , the function B 7→ ℓT (B) in (4.7) is continuous with respect
to the H2-norm. We next show that the limiting function eℓT (B), B ∈ C2, is dominated
by a Π-integrable function. Under P T

B0 , using Itô’s lemma (Theorem 39.3 of [19]),

ℓT (B) ≤
∫ T

0
∇B(Xt).dXt

= B(XT ) −B(X0) − 1
2

∫ T

0
∆B(Xt)dt

≤ 2∥B∥∞ + 1
2

d∑
j=1

∫ T

0

∣∣∣∣ ∂2

∂x2
j

B(Xt)
∣∣∣∣dt,

and using Young’s inequality with ε and p = q = 2, we obtain that for all η > 0,

ℓT (B) ≤ 2
η

+ η

2∥B∥2
∞ + 1

2

d∑
j=1

∫ T

0

[
1
2η + η

2

∣∣∣∣ ∂2

∂x2
j

B(Xt)
∣∣∣∣2
]
dt

≤ 2
η

+ η∥B∥2
∞

2 + dT

4η + dTη

4 ∥B∥2
C2 = dT + 8

4η + η(dT + 2)
4 ∥B∥2

C2 .

In conclusion, for all η > 0,

eℓT (B) ≤ e(dT+8)/(4η)eη(dT+2)∥B∥2
C2/4.

Taking η > 0 small enough, since Π can be regarded as a Gaussian measure on C2,
Fernique’s theorem [38, Theorem 2.8.5] implies that the right hand side in the last display
is Π-integrable. By the dominated convergence theorem, we then conclude that a.s. under
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the law of the data XT , as K → ∞,∫
C2
eℓT (PKB

′)dΠ(B′) →
∫
C2
eℓT (B′)dΠ(B′),

and likewise, for all measurable A ⊂ C2 ∩ L̇2, by boundedness of the indicator function
1A(·), ∫

A
eℓT (PKB)dΠ(B) =

∫
C2
eℓT (PKB)1A(B)dΠ(B) →

∫
A
eℓT (B)dΠ(B),

showing as required that ΠK(·|XT ) → Π(·|XT ) weakly in C2 (and also in L2).

4.A.2 Proof of Theorem 4.4

The proof follows by the standard arguments for test-based contraction rates, see, e.g.,
Theorem 2.1 of [99], with the only difference being how we control the denominator in
the Bayes formula. We now detail this argument, which is a modification of Lemma 4.2
of van der Meulen et al. [232] adapted to our setting. By (4.7), the log-likelihood ratio
equals (replacing ∇B with b), under P T

b0 ,

log dP
T
b

dP T
b0

(XT ) =
∫ T

0
[b(Xs) − b0(Xs)].dWs − 1

2

∫ T

0
∥b(Xs) − b0(Xs)∥2ds =: M b

T − 1
2 [M b]T .

Set Π = Π(· ∩ SBT )/Π(SBT ) to be the normalised prior restricted to the set SBT . Since
P T
b0(supb∈SBT

[M b]T ≤ Tε2
T ) → 1 by assumption, we henceforth work on this event. By

Jensen’s inequality,

log
∫ dP T

b

dP T
b0

(XT ) dΠ(b)
Π(SBT ) ≥

∫
SBT

log dP
T
b

dP T
b0

(XT )dΠ(b) =
∫

SBT

M b
T − 1

2 [M b]TdΠ(b).

For fixed T > 0, define

ZT
t =

∫
SBT

M b
t dΠ(b) =

d∑
i=1

∫ t

0

∫
SBT

bi(Xs) − b0,i(Xs)dΠ(b)dW i
s ,

where the last equality follows from stochastic Fubini’s theorem (Theorem 64 of Chapter
IV in [190]) since SBT is deterministic. The process (ZT

t : t ≥ 0) is a continuous local
martingale under P T

b0 with quadratic variation

[ZT ]t =
∫ t

0

d∑
i=1

(∫
SBT

bi(Xs) − b0,i(Xs)dΠ(b)
)2
ds.
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Using Jensen’s inequality, Fubini’s theorem and the definition of SBT ,

[ZT ]T ≤
∫ T

0

d∑
i=1

∫
SBT

(bi(Xs) − b0,i(Xs))2dΠ(b) ds

=
∫

SBT

∫ T

0
∥b(Xs) − b0(Xs)∥2ds dΠ(b) =

∫
SBT

[M b]TdΠ(b) ≤ Tε2
T .

By Bernstein’s inequality (4.19), for any x > 0,

P T
b0

(
|ZT

T | ≥ x
)

= P T
b0

(
|ZT

T | ≥ x, [ZT ]T ≤ Tε2
T

)
≤ 2 exp

(
− x2

2Tε2
T

)
.

Setting x = LTε2
T gives P T

b0(|Z
T
T | ≥ LTε2

T ) → 0 for any L > 0. On the event {|ZT
T | ≤

LTε2
T}, which has P T

b0-probability tending to one, and using the second to last display,
∫

SBT

M b
T − 1

2 [M b]TdΠ(b) = ZT
T − 1

2

∫
SBT

[M b]TdΠ(b) ≥ −(L+ 1/2)Tε2
T .

In conclusion, we have shown P T
b0(
∫
pTb /p

T
b0dΠ(b) ≥ e−(L+1/2)Tε2

T Π(SBT )) → 1 for any
L > 0. Substituting in Π(SBT ) ≥ e−CTε2

T gives P T
b0(
∫
pb/pb0dΠ(b) ≥ e−(C+L+1/2)Tε2

T ) → 1
for any L > 0.

4.A.3 A PDE estimate

In the proofs we used a stability estimate for solutions to the Poisson equation Lbu = f ,
where the generator Lb of the diffusion is the strongly elliptic second order partial
differential operator given in (4.5). For some basic facts about this elliptic PDE, see
Section 6 in [173], while for more general theory for periodic elliptic PDEs, see Chapter
II.3 in [24]. The following stability estimate is only proved for t ≥ 2 in Lemma 11 of
[173], but the proof can be extended to general t ∈ R.

Lemma 4.8. Let t ∈ R and assume b ∈ C |t−2|(Td). For any f ∈ L2
µb

(Td), there exists a
unique solution L−1

b [f ] ∈ L2(Td) of the equation

Lbu = f, f ∈ L2(Td),

satisfying LbL−1
b [f ] = f almost everywhere and

∫
Td L−1

b [f ](x)dx = 0. Moreover,

∥L−1
b [f ]∥Ht ≲ ∥f∥Ht−2 ,
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with constants depending on t, d and on an upper bound for ∥b∥
B

|t−2|
∞∞

.

Proof. Recall the multiplication inequality for Besov-Sobolev norms with t ≥ 0 ([229], p.
143),

∥fg∥Bt
pq

≤ c(t, p, q, d)∥f∥Bt
pq

∥g∥Bt
∞∞ ≤ c′(t, p, q, d)∥f∥Bt

pq
∥g∥Ct ,

which by duality implies that for t ≥ 0,

∥fg∥B−t
pq

= sup
∥φ∥

Bt
p′q′

≤1

∣∣∣∣∣∣
∫
Td
f

gφ

∥gφ∥Bt
p′q′

dx

∣∣∣∣∣∣ ∥gφ∥Bt
p′q′

≤ c(t, p, q, d)∥f∥B−t
pq

∥g∥Bt
∞∞ ,

where 1/p + 1/p′ = 1/q + 1/q′ = 1. Combining the last displays yields the multiplier
inequality

∥fg∥Bt
pq

≤ c(|t|, p, q, d)∥f∥Bt
pq

∥g∥
B

|t|
∞∞

, t ∈ R. (4.32)

The proof of the result then follows as in Lemma 11 of [173] upon using the multiplier
inequality (4.32) instead of (3) when establishing (69) in that paper. We omit the details
here.

4.A.4 The Gaussian correlation inequality

The Gaussian correlation inequality states that for any closed, convex and symmetric
around the origin sets K,L in Rd and any centred Gaussian measure µ in Rd, we have

µ(K ∩ L) ≥ µ(K)µ(L).

The inequality was proved by Royen [206]; see also [148] for a self-contained presentation
and proof. In the proof of Lemma 4.5 we have used the following extension to Gaussian
measures on separable Banach spaces, which was referred to, without full details, in
Remark 3 (i) in [148]. We include a proof for completeness.

Lemma 4.9. Let µ be a centred Borel Gaussian measure on a separable Banach space B.
Let K,L be closed (with respect to the topology induced by ∥ · ∥B), convex and symmetric
around the origin subsets of B. Then,

µ(K ∩ L) ≥ µ(K)µ(L).

Proof. For X ∼ µ, the Karhunen-Loève expansion ([104], Theorem 2.6.10) of X implies
that there exists a complete orthonormal system {xn, n ≥ 1} of the RKHS of X and
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i.i.d. standard normal random variables (ξn)n≥1, such that Xn = ∑n
i=1 ξixi converges

almost surely to X in the norm of B. We first show that for any closed, convex and
symmetric around the origin set K ⊆ B,

µ(K) = lim
n→∞

Pr (Xn ∈ K) . (4.33)

First, since K is closed and Xn → X almost surely, and hence also in law, the Portmanteau
lemma ([234], Lemma 2.2) implies

lim sup
n→∞

Pr(Xn ∈ K) ≤ Pr(X ∈ K).

On the other hand, since K is convex and symmetric around the origin, by independence
of the random variables (ξn)n≥1 and Anderson’s inequality [104, Theorem 2.4.5], denoting
by νn the law on B of the tail of the series ∑∞

i=n+1 ξixi,

Pr(X ∈ K) = Pr
Xn +

∞∑
i=n+1

ξixi ∈ K


=
∫
B

Pr (Xn + x ∈ K) νn(dx)

≤ Pr(Xn ∈ K).

The two above inequalities thus jointly establish (4.33). Now let K,L ⊆ B be arbitrary
closed, convex and symmetric around the origin sets and define

Kn =
{
z = (z1, . . . , zn) ∈ Rn :

n∑
i=1

zixi ∈ K

}
⊆ Rn

and analogously Ln. It is straightforward to check that Kn is a convex and symmetric
subset of Rn. Furthermore, if {z(k)}k≥1 ⊂ Kn converges to some z = (z1, . . . , zn) ∈ Rn,
then ∥∥∥∥∥

n∑
i=1

z
(k)
i xi −

n∑
i=1

zixi

∥∥∥∥∥
B

≤ max
i=1,...,n

∥xi∥B

n∑
i=1

|z(k)
i − zi| → 0, k → ∞,

so that, K being closed in B, ∑n
i=1 zixi ∈ K and z ∈ Kn. This shows that Kn is closed,

convex and symmetric around the origin in Rn. Denoting by γn = L(ξ1, . . . , ξn) the
standard Gaussian measure on Rn, (4.33) then implies µ(K) = limn→∞ γn(Kn). Note
that identical considerations apply to L and Ln and, since K ∩ L is also closed, convex
and symmetric around the origin in B, also to K ∩ L and Kn ∩ Ln.
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Applying this and the Gaussian correlation inequality for the finite-dimensional
Gaussian measure γn,

µ(K ∩ L) = lim
n→∞

γn(Kn ∩ Ln) ≥ lim inf
n→∞

γn(Kn)γn(Ln) = µ(K)µ(L).
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