
Theoretical Computer Science 973 (2023) 114082
Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

From semantics to types: The case of the imperative
λ-calculus ✩

Ugo de’Liguoro a, Riccardo Treglia b,∗
a Università di Torino, Turin, Italy
b Università di Bologna, Bologna, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2022
Received in revised form 17 May 2023
Accepted 16 July 2023
Available online 22 July 2023

Keywords:
State monad
Imperative lambda calculus
Type assignment systems
Filter models

We study the logical semantics of an untyped λ-calculus equipped with operators
representing read and write operations from and to a global store. Such a logic consists of
an intersection type assignment system, which we derive from the denotational semantics
of the calculus, based on the monadic approach to model computational λ-calculi.
The system is obtained by constructing a filter model in the category of ω-algebraic lattices,
such that the typing rules can be recovered out of the term interpretation. By construction,
the so-obtained type system satisfies the “type-semantics” property and completeness.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problem of integrating non-functional aspects into functional programming languages goes back to the early days of
functional programming; nowadays, even procedural and object-oriented languages embody more and more features from
declarative languages, renewing interest and motivations in the investigation of higher-order effectful computations.

Since Strachey and Scott’s work in the 60’s, λ-calculus and denotational semantics, together with logic and type theory,
have been recognized as the mathematical foundations of programming languages. Nonetheless, there are aspects of actual
programming languages that have shown to be quite hard to treat, at least with the same elegance as the theory of recursive
functions and of algebraic data structures; a prominent case is surely side-effects.

Side-effects and monads. Focusing on side-effects, the method used in the early studies to treat the store, e.g. [26,44,48]
and [42], is essentially additive: update and dereferentiation primitives are added to an (often typed) λ-calculus, possibly
with constructs to dynamically create and initialize new locations. Then, a posteriori, tools to reason about such calculi are
built either by extending the type discipline or by means of denotational and operational semantics, or both.

The introduction of notions of computation as monads and of the computational λ-calculus by Moggi in [34] greatly
improved the understanding of “impure”, namely non-functional features in the semantics of programming languages, by
providing a unified framework for treating computational effects: see [46,47], the introductory [13], and the large body of
bibliography thereafter; a gentle introduction and further references can be found e.g. in [27]. The key idea is to model
effectful computations as morphisms of the Kleisli category of a monad in [34], starting a very rich thread in the investi-

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
E-mail addresses: ugo.deliguoro@unito.it (U. de’Liguoro), riccardo.treglia@unibo.it (R. Treglia).
https://doi.org/10.1016/j.tcs.2023.114082
0304-3975/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2023.114082
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114082&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ugo.deliguoro@unito.it
mailto:riccardo.treglia@unibo.it
https://doi.org/10.1016/j.tcs.2023.114082
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
gation of programming language foundations based on categorical semantics, which is still flourishing. The methodological
advantage is that we have a uniform and abstract way of speaking of various kinds of effects, and the definition of equa-
tional logic to reason about them. At the same time computational effects, including side-effects, can be safely embodied
into purely functional languages without disrupting their declarative nature, as shown by Wadler’s [46,47] together with a
long series of papers by the same author and others.

Monads alone model how morphisms from values to computations compose but do not tell anything about how the
computational effects are produced. In the theory of algebraic effects [38,39,37], Plotkin and Power have shown under which
conditions effect operators live in the category of algebras of a computational monad, which is equivalent to the category
of models of certain equational specifications, namely varieties in the sense of universal algebra [30].

The calculus λimp and its intersection type system. Initiating with [22], we have approached the issue of modeling effects in
an untyped computational λ-calculus, studying its operational semantics by introducing a reduction relation and a syntac-
tical convergence predicate characterized by an intersection type assignment system. Here we shall refer to such a calculus
as the computational core, denoted λ©.

Intersection types are an extension of the Curry type assignment system which are a form of polymorphism in two
senses. First, terms and types are distinct entities and the same term can have (infinitely) many types (see e.g. [31],
Chap. 12); second intersection types embody a form of ad hoc polymorphism, where if M has both type σ and τ then
M : σ ∧ τ , and such a conjunction can be among semantically unrelated types.

The issue of using intersection types for λ© is motivated by the ad hoc polymorphic type’s ability to capture behavioral
properties of terms such as weak and strong normalization and, simultaneously, bridge denotational and operational seman-
tics via the concept of filter models. The fact that λ-models can be built by taking the set of filters of types generated by
suitable subtyping relations substantiates the claim that intersection types are the logical semantics of the λ-calculus, with
tremendous consequences in the study of the calculus itself and of its variants: see the recent survey [10]. Our aim is to
extend the theory of intersection types and filter models to λ© and to the computational λ-calculi in general.

The approach in [22] is limited to a pure calculus without constants, where the unit and bind operations are axiomatized
by the monadic laws from Wadler’s [47]. In [24] we add to the calculus syntax denumerably many operations get� and set� ,
indexed over an infinite set of locations, to access a global store. The resulting calculus, called λimp , is equipped with
operational semantics and an intersection type assignment system which is shown to enjoy the fundamental properties
of intersection types in the case of the ordinary λ-calculus; in particular, we show that the typings are invariant both by
reduction and by expansion of the subject, and we characterize convergent terms by their typings.

The price we pay in [24] for such results resides in the complexity of the type assignment system, which involves four
kinds of types and four subtyping relations defined by mutual induction. The main goal of the paper is to illustrate how a
type assignment system can be derived out of the denotational semantics of a calculus; this is especially challenging in the
case of λimp as well as for computational λ-calculi involving effects and algebraic operations.

From the denotational semantics to the type assignment system. Following Moggi [33], λimp can be modeled into a domain
D satisfying the equation D = D −→ T D , clearly reminiscent of Scott’s D = D −→ D reflexive object, where T is instantiated
to S, a variant of the state monad in [34], called the partiality and state monad in [21,27]. The object part of the functor
S is defined as SX = S −→ (X × S)⊥ , where S is a suitable domain of states which we define as the (partial) stores over a
domain D such that D ∼= D −→ SD in a suitable category of domains, for which we take ω-Alg, the category of ω-algebraic
lattices and Scott continuous maps.

The actual choice of the monad S which determines the domain D above, although relevant to obtain the results in [24],
is immaterial w.r.t. the subsequent steps in our construction, that can be easily adapted to other variants of the semantics
of λimp and of similar calculi. Indeed, the method we follow would apply to any extension of λ© and to variants of the
ordinary untyped λ-calculus as well, provided they have semantics in ω-Alg.

The method is based on a fundamental result, originating from Scott information systems, that we recall in Theorem 4.4,
namely the Representation Theorem, stating that any ω-algebraic lattice A is isomorphic to a domain of filters FA . Filters
are subsets of LA , a language of intersection types whose syntax depends on A, that are upward closed and closed under
finitary infs with respect to the pre-order ≤A . The quotient of (LA,≤A) is an inf-semilattice isomorphic to the set of
compact points K (A) of A, taken with the opposite of the ordering inherited from A. By algebraicity, such isomorphism
extends to the isomorphism FA ∼= A, so that we can describe A via the axiomatization of ≤A , called type theory in [11],
Chap. 13, which we denote ThA . A key fact we use in our construction is that the definition of ThA is functorial, as illustrated
in [49] and used in [2], where ThA is called the Lindenbaum algebra of A, namely its “logic”. This implies that, for example,
given B, C ∈ ω-Alg, if A = B −→ C then we have a canonical method to produce ThB−→C from ThB and ThC such that
FB−→C ∼=FB −→FC ∼= B −→ C .

At this point, the problem is to describe D ∼= D −→ SD in terms of the domains of filters FD and FSD , that is of
the respective type theories. Not surprisingly, the definition of the theories ThD and ThSD depend on each other as a
consequence of the fact that D is the model of a recursive type. One way to come out of the difficulty would be to
parallel the construction of these theories to that of the domains Dn+1 = Dn −→ SDn in the inverse limit construction of
D , along the lines of the description of D∞ models of the λ-calculus as filter models (see section 16.3 of [11]). We avoid
such a daunting task by the same way implicit in [9], which is essentially grounded on the solution of domain equations
2

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
in the category of information systems and approximable mappings in [49]. Indeed, intersection types equipped with the
subtyping relation can be seen as a particular kind of information system [16]. The construction consists of defining both LD
and ThD on the one hand, and LSD and ThSD on the other, simply by mutual induction, and then proving the isomorphism
FD ∼=FD −→FSD via the fact that FD coincides with FD−→SD .

Eventually, we come to the payoff of this long journey through the theory of intersection types and filter models. The
key result in [9] is that the interpretation of an ordinary λ-term [[M]] (where M is closed for simplicity) in the model
FD ∼= D coincides with the set of types σ such that
 M : σ is derivable in the system they were studying. This is called
the “type-semantics theorem” in [11], Theorem 16.2.7, which we establish here as Theorem 6.3 in the case of λimp . Among
the pleasant consequences of this theorem, we have the completeness of the type assignment system and, in general, the
warranty that relevant properties of the calculus can be formally established via a logical system.

Now, at the heart of such a result is the fact that there is a close correspondence between the interpretation of the oper-
ators involved in the definition of the semantics of terms into the filter model and the typing rules in the type assignment
system, and so we reverse the approach: instead of discovering such a correspondence a posteriori, we use the interpretation
of the operators, that are defined in general for any model of λimp , in the case of the filter model, getting the typing rules
from the semantics of the terms in this particular model. Thus, the type-semantics theorem as well as the completeness of
the type assignment system w.r.t. the interpretation of types as the set of filters to which they belong, come out for free.

Summary and results. In Section 2 we outline the syntax of the untyped imperative λ-calculus λimp . In Section 3 we deal
with solving the domain equation thoroughly. To do this we recall the concept of computational monad, then we consider
the state and partiality monad S. In the same section, we tackle the solution of the domain equation by breaking the
circularity that arises out of the definition of the monad S itself. We conclude the section by modeling algebraic operators
over the monad S and formalizing the model of λimp . In Section 4, which is the central part of the paper, we construct a
filter model of λimp .

Section 5 explains how to derive the type assignment system from the filter model construction. We conclude with
Section 6 establishing the type semantics and completeness theorems for our type system. Finally, Section 7 is devoted to
the discussion of our results and to related works.

We assume familiarity with λ-calculus, intersection types, and domain theory; comprehensive references are Barendregt’s
book [11], Part III and [3]. Notions from domain theory, computational monads, and algebraic effects, are shorty recalled in
the paper; for further references see e.g. [5], [3], [13], and [27] Chap. 3.

The present paper is a revised and extended version of [23].

2. An untyped imperative λ-calculus

Imperative extensions of the λ-calculus, both typed and type-free, are usually based on the call-by-value λ-calculus,
enriched with constructs for reading and writing to the store. Aiming at exploring the semantics of side effects in compu-
tational calculi, where “impure” functions are modeled by pure ones sending values to computations in the sense of Moggi
[34], we consider the computational core λ©, to which we add syntax denoting algebraic effect operations à la Plotkin and
Power [38,39,37] over a suitable state monad.

Let L= {�0, �1, . . .} be a denumerable set of abstract locations. Borrowing notation from [27], Chap. 3, we consider denu-
merably many operator symbols get� and set� , obtaining:

Definition 2.1 (Term syntax).

Val : V , W ::= x | λx.M
Com : M, N ::= [V] | M � V

| get�(λx.M) | set�(V , M) (� ∈ L)

As for λ©, terms are of either sorts Val or Com, representing values and computations, respectively. The new constructs are
get�(λx.M) and set�(V , M). The variable x is bound in λx.M and get�(λx.M); terms are identified up to renaming of bound
variables so that the capture avoiding substitution M[V /x] is always well defined; F V (M) denotes the set of free variables
in M . We call Val 0 the subset of closed V ∈ Val; similarly for Com0.

With respect to the syntax of the “imperative λ-calculus” in [27], we do not have the let construct, nor the application
V W among values. The justification is the same as for the computational core. These constructs are definable:

let x:=M in N ≡ M � (λx.N) V W ≡ [W] � V

where ≡ is syntactic identity. In general, application among computations can be encoded by MN ≡ M � (λz. N � z), where
z is fresh.

In a sugared notation from functional programming languages, we could have written:

let x:=!� in M ≡ get�(λx.M) � := V ;M ≡ set�(V , M)
3

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
representing location dereferentiation and assignment. Observe that we do not consider locations as values; consequently
they cannot be dynamically created like with the ref operator from ML, nor is it possible to model aliasing. On the other
hand, since the calculus is untyped, “strong updates” are allowed. In fact, when evaluating set�(V , M), the value V to which
the location � is updated bears no relation to the previous value, say W , of � in the store: indeed, in our type assignment
system W and V may well have completely different types. This will be, of course, a major challenge when designing the
type assignment system in the next sections.

3. Denotational semantics

We illustrate the denotational semantics of the calculus λimp introduced in Section 2 in the category of domains. The
carrier of the model is a solution of the domain equation:

D = D −→ S −→ (D × S)⊥ (1)

where S is a suitable space of stores over D , while the interpretation depends on certain algebraic operations associated to
the monad S X = S −→ (X × S)⊥ which is a variant of the state monad in Moggi [34], called the partiality and state monad
in [21].

We now recall the definition of monad and algebraic operation over a monad, and fix notation.

The partiality and state monad. We recall Wadler’s type-theoretic definition of monads [46,47], which is the basis of their
successful implementation in Haskell language, a natural interpretation of the calculus is into a Cartesian closed category
(ccc), such that two families of combinators, or a pair of polymorphic operators called the “unit” and the “bind”, exist
satisfying the monad laws. In what follows, C will be a concrete ccc, namely a ccc that is a concrete category, such that
the full and faithful functor from C to Set is well-behaved with respect to products and exponents; this implies that it C is
well-pointed (such a category is called strictly concrete in [8], Definition 5.5.8, and when it has a reflexive object it is a model
of the untyped λ-calculus), and can be seen as a category of sets and functions. Examples that are relevant to us are the
category of Scott domains with continuous functions and its full subcategory ω-Alg of algebraic lattices with a countable
basis. It is known that ω-Alg is closed under lifting and that it is Cartesian closed (see e.g. [5], Cor. 4.1.6), which suffices
for the following definitions to make sense of it, and for Equation (2) to have a solution. More details about algebraicity are
recalled in the Section 4, where they are of use.

Definition 3.1. (Computational Monad [47] §3) Let C be a concrete ccc. A functional computational monad, henceforth just
monad over C is a triple (T ,unit , �) where T is a map over the objects of C , and unit and � are families of morphisms

unitA : A −→ T A �A,B : T A × (T B)A −→ T B

such that, writing �A,B as an infix operator and omitting subscripts:

Left unit : unit a � f = f a
Right unit : m � unit = m
Assoc : (m � f) � g = m � λλd.(f d � g)

where λλd.(f d � g) is the lambda notation for d �→ f d � g .

Remark 3.2. The T in Definition 3.1 is a strong monad over C . Indeed it is a Kleisli triple (T , η, _†) (see [34], Definition 1.2),
where

ηX = unitX f †(a)= a � f

The first equality, involving the η, called the unit of the triple, is just a notational variation of the coercion of values
into computations. The latter, instead, establishes the connection between the bind operator with the map _†, also called
extension operator: if f : X −→ T Y then f † : T X −→ T Y is the unique map such that f = f † ◦ ηX .

The map T turns out to be a functor whose morphism action for h : X −→ Y is T h= (unitY ◦h)†, where (unitY ◦h)†a= a �

λλx.unitY (h x), and indeed (T , η,μ) is a monad (see [34], Definition 1.5), with multiplication μ : T 2 −→ T having components
μX = id†

T X = λλz. z � idT X .
Finally the tensorial strength ([34], Definition 3.2) is a natural transformation with components t X,Y : X × T Y −→ T (X × Y)

defined by

t X,Y (x, z)= z � λλy.unitX×Y (x, y)

that are well-behaved w.r.t. the unit and the multiplication. Since C is a concrete ccc, it has enough points, hence the
tensorial strength t is unique ([34], Proposition 3.4).
4

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Now, let us look closer at how monads model effectful computations. Let X be a domain of values; then T X is the
domain, or the type, of computations with values in X . In general, T X has a richer structure than X , modeling partial
computations, exceptions, non-determinism, etcetera, and side effects. The mapping unitX : X −→ T X is interpreted as the
trivial computation unitX (x) just returning the value x, and it is an embedding if T satisfies the requirement that all the
unitX are monos. A function f : X −→ T Y models an “impure” program P with input in X and output in Y via a pure
function returning the computation f (x) ∈ T Y .

We now introduce the partiality and state monad which is a variant of Moggi’s state monad adapted to the case of partial
computations.

Given a domain X , let X⊥ be the lifting of X , namely the poset X ∪ {⊥} (with ⊥ /∈ X) where x�X⊥ x′ if either x=⊥ or
x�X x′ .

Definition 3.3. (Partiality and state monad) Given a domain S representing a notion of state, we define the partiality and
state monad (S,unit , �), as the mapping

S X = S −→ (X × S)⊥
where (X × S)⊥ is the lifting of the Cartesian product X × S , equipped with two (families of) operators unit and � defined
as follows:

unit x ::= λλς.(x, ς)

(c � f)ς = f †(c)(ς) ::=
{

f (x)(ς ′) if c(ς)= (x, ς ′) �= ⊥
⊥ if c(ς)=⊥

where we omit subscripts.

In the following, we shall abbreviate the definition of c � f by

(c � f)ς = let (x, ς ′):=c (ς) in f (x)(ς ′)

which is strict in c(ς). Then, if h : X −→ Y we compute (Sh)= (unitY ◦ h)† by

(Sh) c ς = let (x, ς ′):=c(ς) in (unitY ◦ h) xς ′

= let (x, ς ′):=c(ς) in (h(x),ς ′)

Remark 3.4. A function f : X −→ S Y has type X −→ S −→ (Y × S)⊥ , which is isomorphic to (X × S)−→ (Y × S)⊥; if f is the
interpretation of an “imperative program” P , and it is the currying of f ′ , then we expect that f xς = f ′(x, ς) = (y, ς ′)
if y and ς ′ are, respectively, the value and the final state obtained from the evaluation of P (x) starting in ς , if it ter-
minates; f xς = f ′(x, ς) = ⊥, otherwise. Clearly, f ′ is the familiar interpretation of the imperative program P as a state
transformation mapping.

To relate Equation (1) to the monad S we have to be more precise about the domain S of states.

Definition 3.5 (Partial stores and the monads SX). Given a domain X of values we define the domain of partial stores (shortly
stores) over X as F X =
L(X⊥), namely the denumerable product of X⊥ with itself indexed over L.

We define SX as the partiality and state monad S where the state domain S is F X , namely the domain of stores
over X .

The above definition is rather unusual in denotational semantics, where it is common to think of stores as partial maps
from locations to values. For this reason and by abusing notation, we shall write F X = (X⊥)L instead of
L(X⊥) and ς(�)

for π�(ς). Strictly speaking, the set (X⊥)L is exponentiation in Set, not in ω-Alg since L is a set and not a lattice; however,
by taking the pointwise ordering noted ς �(X⊥)L ς ′ , if ς(�)�X⊥ ς ′(�) for all � ∈ L, we have that (X⊥)L is a lattice that is
isomorphic to
L(X⊥), and it is algebraic if X is such. Finally, ς(�)=⊥ represents the fact that � /∈ dom(ς), which will be
important in our construction.

Both seeing F X as an infinite product or as a space of (partial) functions, the definition of F is functorial; in particular,
we may set F g = g⊥ ◦ _ : (X⊥)L −→ (Y⊥)L , where g : X −→ Y and g⊥(x)= g(x) if x ∈ X , and g⊥(⊥)=⊥, otherwise.

It turns out that F is locally continuous, following arguments in [41], the same is true of all the functors involved in
Equation (1). This implies that the inverse limit technique can be used to solve this equation.

A domain equation. Turning to Equation (1), it is tempting to set S = F X to solve the domain equation by means of standard
techniques. However, the domain F X = (X⊥)L depends on X itself; in contrast, for defining S X the domain S has to be
5

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
fixed, since otherwise, the definition of the bind operator does not make sense, and S is not even a functor. A solution
would be to take S = F D , where D ∼= D −→ S D , but this is clearly circular.

To break the circularity, we define the mixed-variant bi-functor G :ω-Algop ×ω-Alg−→ω-Alg by

G(X, Y)= F X −→ (Y × F Y)⊥
whose action on morphisms is illustrated by the diagram:

F X ′ F f � F X

(Y ′ × F Y ′)⊥

G(f , g)(α)

�
�

(g × F g)⊥
(Y × F Y)⊥

α

�

where f : X ′ −→ X , g : Y −→ Y ′ and α ∈ G(X, Y). Now it is routine to prove that G is locally continuous so that, by the inverse
limit technique, we can find in ω-Alg the initial solution to the domain equation (which is the same as Equation (1)):

D = D −→ G(D, D) (2)

Theorem 3.6. There exists a domain D such that the state monad SD with state domain S = (D⊥)L is a solution in ω-Alg to the
domain equation:

D = D −→ SD D

Moreover, it is initial among all solutions to such an equation.

Proof. Take D to be the (initial) solution to Equation (2); now if S = F D = (D⊥)L then SD D = G(D, D). �
Algebraic operations over S. Monads are about composition of morphisms of some special kind. However, thinking of
f : X −→ T X as the meaning of a program with effects does not tell anything about effects themselves, which in the case of
the state monad are produced by reading and writing values from and to stores in S .

To model effects associated to a monad, Plotkin and Power have proposed in [38,39,37] a theory of algebraic operations.
A gentle introduction to the theory can be found in [27], Chap. 3, from which we borrow the notation.

Suppose that T is a monad over a category C with terminal object 1 and all finite products; then an algebraic operation
op with arity n is a family of morphisms opX : (T X)n −→ T X , where (T X)n = T X × · · · × T X is the n-times product of T X
with itself, such that

opY ◦
n f † = f † ◦ opX (3)

where f : X −→ T Y and
n f † = f †×· · ·× f † : (T X)n −→ (T Y)n . In case of a concrete ccc, 1 is a singleton and products are sets
of tuples, ordered componentwise. Then opX is an operation of arity n of an algebra with carrier T X ; since f † : T X −→ T Y ,
we have that (
n f †)〈x1, . . . , xn〉 = 〈 f †(x1), . . . , f †(xn)〉, and Equation (3) reads as:

opY (f †(x1), . . . , f †(xn))= f †(opX (x1, . . . , xn))

namely the functions f † are homomorphisms w.r.t. op.

Algebraic operations opX : (T X)n −→ T X do suffice in case T is, say, the non-determinism or the output monad, but
cannot model side-effects operations in case of the store monad. This is because read and write operations implement a
bidirectional action of stores to programs and of programs to stores. What is needed instead is the generalized notion of
operation proposed in [39] (and further studied in [29]), which are certain natural transformations satisfying a coherence
condition. Below we instantiate such a construction, which is carried out in a suitable enriched category, in the case of
concrete ccc’s.

Definition 3.7 (Algebraic operation). An algebraic operation op over the computational monad T with parameter object P and
arity object A is a family of morphisms

opX : P × (T X)A −→ T X ∼= (T X)A −→ (T X)P

satisfying the coherence condition that, for all f : X −→ T Y the following diagram commutes:
6

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
P × (T X)A opX � T X X

P × (T Y)A

idP × (f † ◦ −)

�

opY

� T Y

f †

�
T Y

f

�

namely, the following equation holds:

opX (p,k) � f = f †(opX (p,k))= opY (p, f † ◦ k)= opY (p, λλx.(k x � f)) (4)

where p ∈ P and k : A −→ T X .

Proposition 3.8. Any algebraic operation op is a natural transformation.

Proof. We have to show that for every h : X −→ Y the following diagram commutes:

P × (T X)A opX � T X X

P × (T Y)A

idP × (T h)A

�

opY

� T Y

T h

�
Y

h

�

where (T h)A : (T X)A −→ (T Y)A is (T h)A u = T h ◦ u for u ∈ (T X)A (identifying (T X)A and (T Y)A with the respective hom-
sets). The commutativity of the above diagram is expressed by the equation

T h ◦ opX = opY ◦ (idP × (T h)A)= opY ◦ (idP × (Th ◦ −))

namely for p ∈ P :

(T h)(opX (p, u))= opY (p, T h ◦ u) (5)

Now Equation (4) implies Equation (5) since T h= (unitY ◦ h)† and (T h)A = T h ◦ −. �
Denotational semantics of terms. We begin by defining the interpretations of the constants get� and set� as algebraic
operations over SD , where the intended choice of D is the domain constructed in Theorem 3.6, but it is just a parameter
as far as the next definition is concerned.

Definition 3.9. Let D be a domain and SD the state monad with stores over D . Then we define the families of functions
get�,X and set�,X indexed over the objects X of ω-Alg by:

1. get�,X : 1× (SD X)D −→SD X ∼= (SD X)D −→ SD X and

get�,X (u)(ς) = letd :=ς(�) in u d ς

which is strict in ς(�).
2. set�,X : D × (SD X)1 −→ SD X ∼= D × (SD X)−→ SD X and

set�,X (d, c)(ς) = c (ς [� �→ d])
for all ς ∈ S = (D⊥)L , where c ∈ SD X = S −→ (D × S)⊥ and ς [� �→ d] is the store which sends � to d and it is equal to ς
otherwise.

The functions get�,X and set�,X correspond to lookupX and updateX in [39], respectively, up to an irrelevant permutation
of the arguments and the fact that we do not consider L as an object of ω-Alg; not surprisingly they are the components of
two algebraic operations over SD , where P = 1 and A = D in case of get�,X , and P = D and A = 1 in case of set�,X which
is established in the next lemma and its corollary.

Lemma 3.10. Let h : X −→ Y and f : X −→SD X, then:

1. get�,X (u) � f = get�,X (λλx. (u x � f))
7

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
2. set�,X (d, c) � f = set�,X (d, c � f)

Proof. In the following let ς ∈ S be arbitrary; then

Part (1):

(get�,X (u) � f)ς = let (x, ς ′):=get�,X (u)(ς) in f xς ′

= let (x, ς ′):=(let d :=ς(�) in u d ς) in f xς ′

= letd :=ς(�) in (let (x, ς ′):=u d ς in f xς ′) (∗)
= letd :=ς(�) in (u d � f)ς

= letd :=ς(�) in (λλx. (u x � f))d ς

= (get�,X (λλx. (u x � f)))ς

where (∗) follows by the associativity property of the let-expressions:

let x:=(let y :=e in e′) in e′′ = let y :=e in (let x:=e′ in e′′)
Indeed, if either ς(�) or u (ς(�))ς are undefined (namely equal to ⊥), then both let (x, ς ′):=(let d :=ς(�) in u d ς) in f xς ′
and let d := ς(�) in (let (x, ς ′) := u d ς in f xς ′) are undefined. Otherwise, these expressions are both equal to
f π1(u (ς(�))ς)π2(u (ς(�))ς).

Part (2):

(set�,X (d, c) � f)ς = let (x, ς ′):=set�,X (d, c)(ς) in f xς ′

= let (x, ς ′):=c (ς [� �→ d]) in f xς ′

= (c � f)(ς [� �→ d])
= set�,X (d, c � f)(ς) �

Corollary 3.11. For all � ∈ L the functions get�,X and set�,X are the components at X of two algebraic operations get� and set� over
SD .

Proof. Part (1) of Lemma 3.10 is an instance of Equation (4), where get�,X (u) � f is get�,X (∗, u) � f with ∗ as the unique
element of 1.

In part (2) of the lemma, c ∈SD X is identified with λλ_.c ∈ (SD X)1 , since A = 1 in case of set� and λλ_.c ∈ (SD X)1 is the
function picking c ∈SD X (a point of SD X in categorical terms). Hence, up to the isomorphism SD X ∼= (SD X)1 , we have e.g.

set�,X (d, λλ_.c) � f = set�,X (d, c) � f
= set�,X (d, c � f) by Lemma 3.10.2
= set�,X (d, λλ_.(c � f))
= set�,X (d, λλx.((λλ_.c)(x) � f))

which is an instance of Equation (4). �
We are now in place to define what is a model of λimp . Let EnvD = Var −→ D be the set of environments interpreting

term variables into D , then:

Definition 3.12. A λimp-model is a structure D = (D, [[·]]D , [[·]]SD) where D , [[·]]D : Val −→ EnvD −→ D and [[·]]SD : Com −→
EnvD −→ SD D are such that:

1. D is a domain s.t. D ∼= D −→SD D via (,�), where SD is the partiality and state monad of stores over D;
2. for all e ∈ EnvD , V ∈ Val and M ∈ Com:

[[x]]D e = e(x)

[[λx.M]]D e = �(λλz ∈ D. [[M]]SD e[x �→ z])
[[[V]]]SD e = unit ([[V]]D e)

[[M � V]]SD e = ([[M]]SD e) � ([[V]]D e)

[[get�(λx.M)]]SD e = get�,D(([[λx.M]]D e))

[[set (V , M)]]SD e = set ([[V]]D e, [[M]]SD e)
� �,D

8

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
By unraveling definitions and applying their left and right-hand sides to an arbitrary store ς ∈ S , the last two clauses
can be written:

[[get�(λx.M)]]SD e ς = [[M]]SD(e[x �→ ς(�)])ς
[[set�(V , M)]]SD e ς = [[M]]SD e (ς [� �→ [[V]]D e])

We say that the equation M = N is true in D, written D |= M = N , if [[M]]SDe = [[N]]SDe for all e ∈ EnvD .

Proposition 3.13. The following equations are true in D:

1. [V] � (λx.M)= M[V /x]
2. M � λx.[x] = M
3. (L � λx.M) � λy.N = L � λx.(M � λy.N)

4. get�(λx.M) � W = get�(λx.(M � W))

5. set�(V , M) � W = set�(V , M � W)

where x /∈ F V (λy.N) in (3) and x /∈ F V (W) in (4).

Proof. By Definition 3.12 and straightforward calculations. The only interesting cases are (4) and (5).
In case (4), let e′ = e[x �→ z] where z is intended to vary over D , then by omitting the apices and the isomorphism :

[[get�(λx.M) � W]]e = get�,D(λλz.[[M]]e′) � [[W]]e
= get�,D(λλz.([[M]]e′ � [[W]]e)) by Lemma 3.10.1

= get�,D(λλz.([[M]]e′ � [[W]]e′)) (*)

= get�,D(λλz.[[M � W]]e′)
= [[get�(λx.(M � W))]]

where in step (*) we use the fact that [[W]]e = [[W]]e′ because x /∈ F V (W), using Definition 3.12 in the remaining steps.
The case (5) is a direct consequence of Lemma 3.10.2. �

4. The filter model construction

This section is the central one in the paper, where we construct a filter model of λimp which is isomorphic to the domain
found in Theorem 3.6, but it is more informative since it provides a concrete description of such a model in terms of its
“logic”, in the sense of [2]. By instantiating the definition of term interpretation from Definition 3.12 in the case of the filter
model, we obtain a characterization of the types belonging to the interpretation of terms in Theorem 4.20, from which we
recover the rules of the type assignment system for λimp in the subsequent section.

We begin with some basic facts from domain theory. Recall that a non-empty subset X ⊆ D of a partial order (D,�D)

is directed if for all x, y ∈ X there exists z ∈ X with x �D z D� y. D is said to have all directed sups if the sup � X ∈ D
exists whenever X is directed. We often write �↑ X to stress that � X is a directed sup. A point e ∈ D is compact if for all
directed X , e �D �↑ X implies e �D x for some x ∈ X ; the set of compact points of D is denoted K (D).

The category ω-Alg is the full subcategory of the category of domains whose objects are complete lattices (D,�D) such
that K (D) is countable and D is algebraic, namely d =�↑{e ∈ K (D) | e �D d} is a directed sup for all d ∈ D . In case of
algebraic domains the upward cones ↑ d = {e | d � e} of compact points d form a basis for the Scott topology over D;
therefore abusing terminology the set K (D) is often referred to as a “basis” for such a topology.

As a complete lattice, D has arbitrary sups, but a morphism f : D −→ E ∈ω-Alg is just a Scott-continuous map preserving
directed sups, that is f (�↑ X)=�↑x∈X f (x); in general, a morphism of ω-Alg does not necessarily preserve the sup � Y
for arbitrary Y ⊆ D .

Definition 4.1. An intersection type theory, shortly itt, is a pair ThA = (LA,≤A) where LA , the language of ThA , is a countable
set of type expressions closed under ∧, and ωA ∈ LA is a special constant; ≤A is a pre-order over LA closed under the
following rules:

α ≤A ωA α ∧ β ≤A α α ∧ β ≤A β
γ ≤A α γ ≤A β

γ ≤A α ∧ β

In the literature, the operator ∧ is called intersection, and ωA the universal type. The theory ThA is called intersection type
theory with universe in [11] Definition 13.1.4, where ωA is written U. We write α =A β if α ≤A β ≤A α, which is a congruence
9

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
w.r.t. ≤A . By this the quotient LA/≤A is an inf-semilattice, with (the extension of) ∧ as inf and (the equivalence class of)
ωA as top element.

A natural model of ThA is the powerset of some set A. Any type α ∈ LA is interpreted as a subset [[α]] ⊆ A such that
α ≤A β if and only if [[α]] ⊆ [[β]]; hence [[α ∧ β]] = [[α]] ∩ [[β]] and [[ωA]] = A.

Informally, we identify ThA with the set of inequalities α ≤A β , so that, abusing terminology, we shall also say that ≤A
is a type theory. Also, we reason on types up to =A and treat ∧ as commutative, associative and idempotent; consequently
we use the notations

∧n
i=1 αi and

∧
i∈I αi for α1 ∧ · · · ∧ αn where I = {1, . . . ,n} and assume that all the αi are distinct; in

particular
∧

i∈∅ αi =ωA .

Definition 4.2. A non empty F ⊆LA is a filter of ThA if it is closed under ∧ and upward closed w.r.t. ≤A ; let FA be the set
of filters of ThA . The principal filter over α is the set {β ∈LA | α ≤A β}.

For any X ⊆LA we write ↑A X for the least filter in FA including X ; this can be equivalently defined as
⋂{F ∈FA | X ⊆

F } or as the set {β ∈ LA | ∃n,α1, . . . ,αn ∈ X .
∧n

i=1 αi ≤A β}; in particular the principal filter over α is ↑A {α}, also written
↑A α, coinciding with the upward closure of {α}. The mapping ↑· is evidently a closure operator; in the following we shall
write just ↑X and ↑α whenever A is understood.

In domain theory, the notion of a filter is just dual to that of an ideal, which is a downward closed and directed subset
of a poset. In the case of algebraic lattices, the set K (D) with the ordering inherited from D is a sup-semilattice, and it can
be shown that the set IK (D) of ideals over K (D) taken with the subset ordering is isomorphic to D . IK (D) is called the ideal
completion of K (D).

Dually the poset K op(D), which is K (D) with the opposite ordering, is an inf-semilattice, so that (FK op(D),⊆), called
the filter completion of K op(D), is again isomorphic to D , hence IK (D)

∼= D ∼=FK op(D) . In the following we write just FD for
FK op(D) .

Below we exploit that ThA is the axiomatization of an inf-semilattice to construct a domain FA by filter completion of
the inf-semilattice of types induced (after a quotient) by the preorder ≤A : see Theorem 4.4. This theorem is the fundamental
fact about intersection types and ω-algebraic lattices; before its proof, we recap some basic properties of the poset (FA,⊆)

in the following lemma.

Lemma 4.3. Consider the poset (FA,⊆) and let X ⊆FA be a family of filters:

1. the sets
⋂

X and ↑(
⋃

X) are the inf and the sup of X in FA , respectively;
2. if X is directed w.r.t. ⊆, then ↑(

⋃
X)=⋃

X .

Proof. Part (1) is immediate; in particular, that
⋂

X is a filter follows by the fact that any F ∈ X is such, and the inter-
section of filters must satisfy the same closure properties of all the elements of X . Note that the closure ↑· is necessary in
↑(

⋃
X): take X = {↑α,↑β}, with types α,β ∈LA unrelated w.r.t. ≤A , then α ∧ β /∈ ↑α∪ ↑β .

Part (2): any directed X is non empty, hence there is an F ∈ X such that ωA ∈ F ⊆⋃
X , hence

⋃
X is nonempty. If

α ∈⋃
X then there is an F such that α ∈ F ⊆⋃

X ; hence if α ≤A β then β ∈ F ⊆⋃
X as F is a filter.

Let α,β ∈⋃
X ; then there are F , F ′ ∈ X such that α ∈ F and β ∈ F ′ . By hypothesis there exists an F ′′ ∈ X such that

F ⊆ F ′′ ⊇ F ′ , hence α,β ∈ F ′′ and therefore α ∧ β ∈ F ′′ ⊆⋃
X . �

In view of Lemma 4.3, we write �Y = ↑(
⋃

Y) for the sup of an arbitrary family of filters Y , and �↑X =⋃
X for a

directed family X .

Theorem 4.4 (Representation theorem). The partial order (FA,⊆) of the filters of an intersection type theory ThA is an ω-algebraic
lattice, whose compact elements are the principal filters. Vice versa, any ω-algebraic lattice A is isomorphic the poset (FA,⊆) of filters
of some intersection type theory ThA .

Proof. To prove the first part note that, by Lemma 4.3.1, we know that (FA,⊆) is a complete lattice. Let X ⊆ FA be
directed; then ↑α ⊆⋃

X =�↑X and, since α ∈↑α, there exists F ∈ X such that α ∈ F ; it follows that ↑α ⊆ F , since F
is upward closed w.r.t. ≤A . This proves that ↑α ∈ K (FA); vice versa let F ∈ K (FA) and let X = {↑α | α ∈ F }, then X is
directed since if α,β ∈ F then α∧β ∈ F and ↑α ⊆↑α ∧ β ⊇↑β; moreover F =⋃

X =�↑X . By assumption F is compact,
hence for some α ∈ F we have F ⊆↑α, but also ↑α ⊆ F as F is a filter, hence F =↑α.

By the above we conclude that K (FA) = {↑α | α ∈ LA} which is countable as LA is such. Finally from the equality
F =�↑{↑α | α ∈ F } =⋃{↑α | α ∈ F } we conclude that (FA,⊆) is ω-algebraic.

To the second part, let LA = {αd | d ∈ K (A)} (where each αd is a new type constant) which is countable by hypothesis,
and take ThA = {αd ≤A αe | e � d}. By observing that αd∧A αe =A αd�e , where d�e ∈ K (A) if d, e ∈ K (A), and that ωA =A α⊥ ,
we have that ThA is an intersection type theory and that LA/≤A is isomorphic to K op(A) ordered by the opposite to the
ordering of A. From this, it follows that FA is isomorphic to the ideal completion of K (A), which in turn is isomorphic to
A by algebraicity. �
10

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Remark 4.5. Theorem 4.4 suggests a different interpretation of types as compact points in K op(A) ∼= K (FA), that is α is
interpreted as the principal filter ↑ α, where we observe that ↑α ⊆↑β holds if and only if β ≤A α, namely α ≤op

A β . To
reconcile the two interpretations, let us set [[α]]F = {F ∈FA | α ∈ F }; then

[[α]]F ⊆ [[β]]F ⇐⇒ α ∈ ↑β ⇐⇒↑β ⊆↑α ⇐⇒ α ≤A β

On the other hand

[[α ∧ β]]F = {F ∈FA | α ∧ β ∈ F } = {F ∈FA | α,β ∈ F } = [[α]]F ∩ [[β]]F
and [[ωA]]F = {F ∈FA |ωA ∈ F } =FA .

The above theorem substantiates the claim that intersection type theories are the logic of the domains in ω-Alg. In
particular, the second part of the proof is the most relevant to us: it provides a recipe to describe a domain via a formal
system, deriving inequalities among type expressions that encode “finite approximations” of points in a domain. Therefore,
to obtain a finer description of the model in Theorem 3.6, we seek theories ThD and ThS such that:

FD ∼=FD −→FS −→ (FD ×FS)⊥ (6)

The first step is to show how the functors involved in the equation above, namely the lifting, the product, and the
(continuous) function space can be put in correspondence with the construction of new theories out of the theories which
determine the domains combined by the functors. Building over [2], where the larger category of 2/3-SFP domains is
considered, we specialize the definition of the respective theories to the case of ω-Alg.

Definition 4.6. Suppose that the theories ThA and ThB are given, then for α ∈LA and β ∈LB define:

LA⊥ α⊥ ::= α | α⊥ ∧ α′⊥ |ωA⊥

LA×B π ::= α × β | π ∧π ′ |ωA×B

LA−→B φ ::= α −→ β | φ ∧ φ′ |ωA−→B

LAL σ ::= 〈� : α〉 | σ ∧ σ ′ |ωAL

Then, we define the following sets of axioms:

1. α ≤A α′ ⇒ α ≤A⊥ α′ .
2. ωA×B ≤A×B ωA ×ωB and all instances of

(α × β)∧ (α′ × β ′)≤A×B (α ∧ α′)× (β ∧ β ′)

3. ωA−→B ≤A−→B ωA −→ωB and all instances of

(α −→ β)∧ (α −→ β ′)≤A−→B α −→ (β ∧ β ′)

4. ωAL ≤AL 〈� :ωA〉 and all instances of

〈� : α〉 ∧ 〈� : α′〉 ≤AL 〈� : α ∧ α′〉
Finally, the theories ThA×B , ThA−→B and ThAL are closed under the rules:

α ≤A α′ β ≤B β ′

α × β ≤A×B α′ × β ′
α′ ≤A α β ≤B β ′

α→ β ≤A→B α′ → β ′
α ≤A α′

〈� : α〉 ≤AL 〈� : α′〉

In the semantics of λimp functional application and abstraction play a central role; below we define such operations in
the case of domains of filters, toward establishing some properties of them.

Definition 4.7. If X ∈FA−→B and Y ∈FA , we define:

X · Y = {ψ ∈ LB | ∃ϕ ∈ Y . ϕ −→ψ ∈ X}
We write ϕ =A ψ if ϕ ≤A ψ ≤A ϕ . For a map f :FA −→FB , define

�(f)=↑A−→B {ϕ −→ψ ∈ LA−→B |ψ ∈ f (↑A ϕ)}

11

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Lemma 4.8. If X ∈FA−→B and Y ∈FA then X · Y ∈FB . Moreover, the map _ · _ is continuous in both its arguments.

Proof. We have X �ωA−→B ≤ωA −→ωB and that ωA ∈ Y , hence ωB ∈ X · Y . Since −→ is monotonic in its second argument,
X · Y is upward closed. Finally, if ψ1,ψ2 ∈ X · Y then ϕi ∈ Y and ϕi −→ ψi ∈ X for i = 1,2 and some ϕ1,ϕ2; then, by
antimonotonicity of −→ w.r.t. its first argument, ϕi −→ ψi ≤ ϕ1 ∧ ϕ2 −→ ψi ∈ X being X upward closed, and ϕ1 ∧ ϕ2 −→
ψ1 ∧ψ2 = (ϕ1 ∧ ϕ2 −→ψ1)∧ (ϕ1 ∧ ϕ2 −→ψ2) ∈ X since X is closed under intersections.

Concerning continuity, we have to show that X · Y =�Z where Z = {↑ ϕ · ↑ψ | ϕ ∈ X & ψ ∈ Y }. Inclusion from left to
right follows by observing that if χ ∈ X · Y then ψ −→ χ ∈ X for some ψ ∈ Y , and of course χ ∈ ↑ (ψ −→ χ) · ↑ψ . Vice versa
if χ ∈�Z then for finitely many ψi,χi we have that

∧
i χi ≤ χ , ψi ∈ Y and ψi −→ χi ∈ X . It follows that χi ∈ X · Y for all

i, hence the thesis since X · Y is a filter by the above. �
Lemma 4.9. If f :FA −→FB is continuous then �(f) ∈FA−→B . �(·) is itself continuous and such that:

�(f) · X = f (X) �(λλY .(X · Y))= X

Proof. Easy by unfolding definitions and by Lemma 4.8. �
Now we can establish:

Proposition 4.10. The following are isomorphisms in ω-Alg:

FA⊥ ∼= (FA)⊥, FA×B ∼=FA ×FB ,

FA−→B ∼=FA −→FB , FAL ∼= (FA)L.

Proof. That FA⊥ ∼= (FA)⊥ is a consequence of the fact that ωA <A⊥ ωA⊥ is strict, hence ↑ωA⊥ is the new bottom added to
FA . FA×B ∼=FA ×FB is induced by the continuous extension of the map ↑ (α × β) �→ (↑ α,↑ β), that is clearly invertible.
That FA−→B ∼=FA −→FB is immediate by Lemma 4.9.

Finally, to see that FAL ∼= (FA)L let us define the maps F �→ ςF from FAL to (FA)L and ς �→ Fς from (FA)L to FAL by

ςF (�)=�{↑α | 〈� : α〉 ∈ F } = {α | 〈� : α〉 ∈ F }
and

Fς =�{↑〈� : α〉 | α ∈ ς(�)} = ↑{〈� : α〉 | α ∈ ς(�)}
Then it is routine to prove that these maps are morphisms of ω-Alg and inverse each other. �

The next step is to apply Proposition 4.10 to describe the compact elements of D ∼=FD and of S ∼=FS and the (inverse
of) their orderings. Alas, this cannot be done directly because of the recursive nature of the Equation (6), but it can be
obtained by mirroring the inverse limit construction, e.g. along the lines of [4,7]. Although possible in principle, such a
construction requires lots of machinery from the theory of the solution of domain equations; instead we follow the shorter
path to define the type theories below simply by mutual induction:

Definition 4.11. Recall that S = (D⊥)L and let us abbreviate C = (D × S)⊥ and SD D = S −→ C ; then define the following
type languages by mutual induction:

LD : δ ::= δ −→ τ | δ ∧ δ′ |ωD

LS : σ ::= 〈� : δ⊥〉 | σ ∧ σ ′ |ωS δ⊥ ∈ LD⊥

LC : κ ::= δ× σ | κ ∧ κ ′ |ωC

LSD : τ ::= σ −→ κ | τ ∧ τ ′ |ωSD

Then the respective itt’s ThD = (LD ,≤D), ThS = (LS ,≤S), ThC = (LC ,≤C) and ThSD = (LSD ,≤SD) are defined according
to Definition 4.6.

Since C = (D × S)⊥ , the language LD×S (not explicitly mentioned in Definition 4.11) is a proper subset of LC ; roughly
speaking the difference is arbitrary intersections of ωC that are all equated to each other in ThC and strictly greater than
any type in LD×S .

We assume that ∧ and × take precedence over −→ and that −→ associates to the right so that δ −→ τ ∧ τ ′ reads as
δ −→ (τ ∧ τ ′) and δ′ −→ σ ′ −→ δ′′ × σ ′′ reads as δ′ −→ (σ ′ −→ (δ′′ × σ ′′)).

The following definition will be essential in the technical development:
12

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Definition 4.12. For any σ ∈LS define dom(σ)⊆ L by:

dom(〈� : δ〉) =
{ {�} if δ �=D⊥ ωD⊥∅ otherwise

dom(σ ∧ σ ′) = dom(σ)∪ dom(σ ′)
dom(ωS) = ∅

The set dom(σ), which is finite, is computable because it is decidable whether δ �=D⊥ ωD⊥ .

Lemma 4.13. For any δ ∈LD⊥ it is decidable whether δ �=D⊥ ωD⊥ .

Proof. let θ :LD⊥ −→ 2, where 2= {0 � 1} is the two points lattice, be defined by:

θ(δ)= 0 if δ ∈ LD , θ(ωD⊥)= 1 and θ(δ ∧ δ′)= θ(δ) � θ(δ′)

where � is the meet w.r.t. �. Then θ is a total and computable function such that δ �=D⊥ ωD⊥ if and only if θ(δ)= 0. Indeed,
by induction over the definition of ≤D⊥ , we have that

δ ≤D⊥ δ′ ⇒ θ(δ)� θ(δ′) (∗)
Then

δ =D⊥ ωD⊥ =⇒ δ ∧ωD⊥ =D⊥ ωD⊥ since ωD⊥ is the top

=⇒ θ(δ ∧ωD⊥)= θ(ωD⊥)= 1 by (∗)
=⇒ θ(δ)= 1 since θ(δ ∧ωD⊥)= θ(δ) � 1

By contraposition it follows that if θ(δ)= 0 then δ �=D⊥ ωD⊥ .
Vice versa if δ �=D⊥ ωD⊥ then δ <D⊥ ωD⊥ ; then we show that θ(δ)= 0 by induction over δ. If δ ≡ωD or δ ≡ δ′ −→ τ then

δ ∈LD hence θ(δ)= 0. If δ ≡ δ1∧ δ2 then by hypothesis that δ1∧ δ2 <D⊥ ωD⊥ , hence there is i = 1,2 such that δi <D⊥ ωD⊥ ;
by induction θ(δi)= 0 so that θ(δ)= θ(δ1) � θ(δ2)= 0. �

The computability of the finite set dom(σ) implies that � /∈ dom(σ) is decidable, which will be the side condition of rule
(set) in Fig. 1, Section 5.

Remark 4.14. Observe that the only constants used in Definition 4.11 are the ω’s; also we have plenty of equivalences
ϕ = ψ , namely relations ϕ ≤ ψ ≤ ϕ , involving these constants, that are induced by the definition of the itt’s above. For
example δ −→ωSD =ωD is derivable since ωD ≤D δ −→ωSD ≤D ωD are axioms of ThD ; similarly, ωS −→ωC =ωSD .

However, none of the theories above is trivial, because of the strict inequalities:

(i) 〈� :ωD〉<S ωS , for any � ∈ L;
(ii) ωD ×ωS <S ωC ;

(iii) ωS −→ωD ×ωS <SD ωS −→ωC =SD ωSD .

Therefore, ↑ωS ⊂↑∧
i∈I 〈�i :ωD〉, for any non empty I , and ↑ωC ⊂ ↑(ωD × ωS), that is ↑ωC corresponds to the new

bottom element added to FD×S ∼=FD ×FS in FC =F(D×S)⊥ ∼= (FD ×FS)⊥ .

Theorem 4.15. The theories ThD and ThS induce the filter domains FD and FS which satisfy Equation (6).

Proof. By Proposition 4.10 we have

FD−→SD
∼=FD −→FSD

∼=FD −→FS −→ (FD ×FS)⊥

where FS =F(D⊥)L . Then the thesis follows since FD =FD−→SD by construction. �
As it should be clear now, the isomorphism FD−→SD

∼=FD −→FSD does not depend on the fact that FD is a recursive
domain, but only on the fact that ThD is natural and β-sound in the terminology of [7] (but this was known of the EATS -
see [3] Def. 3.3.1 - since [16]).
13

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Remark 4.16. The choice of not having atomic types in LD is minimalistic and parallels the analogous definition 5.2.1 of [6],
where the only constant in the domain logic of a lazy λ-model D ∼= (D −→ D)⊥ is t (true), corresponding to our ωD , and
having t � (t −→ t)⊥ in the theory.

As a more detailed description of FD would show, by relating its construction to the solution of Equation (2) in Theo-
rem 3.6, the reason why the ω’s suffice is that FD is (isomorphic to) the non-trivial initial solution to the domain equation.
Adding atomic types ξ to LD also leads to a filter model FD ′ of λimp , which is however not isomorphic to FD ′ −→ S(FD ′).
To restore the desired isomorphism it suffices to add axioms ξ =D ′ ωD ′ −→ωS −→ (ξ ×ωS) for all atomic ξ : these correspond
to the axioms ξ =ω−→ ξ in [9], which are responsible of obtaining a “natural equated” solution to the equation D = D −→ D
of Scott’s model: see [7].

The λimp filter model. According to Definition 3.12, to show that FD is a λimp-model it remains to see that FSD
∼=SDFD can

be endowed with the structure of a monad, which amounts to say that the maps unitF :FD −→FSD and �F :FSD× (FD −→
FSD)−→FSD are definable in such a way to satisfy the monadic laws. This follows by instantiating Definition 3.3 to filter
domains:

unitF X
def= �(λλY ∈FS .(X, Y))=↑{σ −→ δ× σ ∈ LSD | δ ∈ X} (7)

On the other hand, observing that FSD × (FD −→FSD)−→FSD
∼=FSD ×FD −→FSD , for all X ∈FSD , Y ∈FD and Z ∈FS

we expect that:

(X �F Y) · Z = let (U , V):=X · Z in (Y · U) · V

=
{

(Y · U) · V if X · Z = U × V �= ↑C ωC

↑C ωC otherwise

Hence we define X �F Y by

↑{σ −→ δ′′ × σ ′′ ∈ LSD | ∃δ′,σ ′. σ −→ δ′ × σ ′ ∈ X & δ′ −→ σ ′ −→ δ′′ × σ ′′ ∈ Y } (8)

Lemma 4.17. Both unitF X and X �F Y are continuous in X and in X and Y , respectively.

Proof. By definition, unitF (↑δ)= ↑{σ −→ δ′ × σ | σ ∈LS & δ′ ∈ ↑δ}; on the other hand if δ0 ≤D δ1 then ↑δ1 ⊆ ↑δ0, there-
fore

unitF (↑δ1) = ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ↑δ1}
⊆ ↑{σ −→ δ′′ × σ | σ ∈ LS & δ′′ ∈ ↑δ0}
= unitF (↑δ0)

Hence unitF (↑δ)⊆ unitF (↑(δ ∧ δ′))⊇ unitF (↑δ′) for all δ, δ′; this implies that the family {unitF (↑δ) | δ ∈ X} is directed for
any filter X . Now

unitF X = unitF (
⋃

δ∈X ↑δ) as X =�↑δ∈X ↑δ =⋃
δ∈X ↑δ

= ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈⋃
δ∈X ↑δ} by def. of unitF

= ⋃
δ∈X ↑{σ −→ δ′ × σ | σ ∈ LS & δ′ ∈ ↑δ} as {↑δ | δ ∈ X} is directed

= ⋃
δ∈X unitF (↑δ) by def. of unitF

= �↑δ∈X unitF (↑δ) by Lemma 4.3.2
and the above remark

The proof of the continuity of X �F Y is similar. �
The final step is to define the interpretations of get� : (FD −→FSD)−→FSD

∼=FD −→FSD and set� :FD ×FSD −→FSD ,
which also are derivable from their interpretation into a generic model D.

Definition 4.18. Let X ∈FS , � ∈ L:

X · {�} =↑{δ ∈ LD | 〈� : δ〉 ∈ X}

The above operation represents the application of the “store” X to the location �. Observe that if X =↑ωS then there is
no 〈� : δ〉 ∈ X , hence the closure ↑· is necessary.
14

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
According to Definition 3.12, for any X ∈FD and Y ∈FS we must have:

getF� (X) · Y = X · (Y · {�}) · Y

where we assume that _ · _ associates to the left. Now, let Z = {τ ∈LSD | ∃δ ∈ 〈� : δ〉 ∈ Y & δ −→ τ ∈ X} then

X · (Y · {�}) · Y = Z · Y

If τ = ωSD then δ −→ τ = ωD , which trivially belongs to any filter; if instead τ �= ωSD then τ =∧
I σi −→ κi and δ −→ τ =∧

i∈I δ −→ σi −→ κi ∈ X if and only if δ −→ σi −→ κi ∈ X for all i ∈ I . From this we conclude that

Z · Y = {κ ∈ LC | ∃σ ∈ Y | σ −→ κ ∈ Z}
= {κ ∈ LC | ∃〈� : δ〉 ∧ σ ∈ Y . δ −→ σ −→ κ ∈ X}

and therefore the appropriate definition of getF� (X) is

getF� (X)
def= ↑{(〈� : δ〉 ∧ σ)−→ κ ∈ LSD | δ −→ (σ −→ κ) ∈ X} (9)

Similarly, again by Definition 3.12, for any X ∈FD , Y ∈FSD and Z ∈FS we expect:

setF� (X, Y) · Z = Y · (Z [� �→ X])
where Z [� �→ X] is supposed to represent the update of Z by associating X to �, namely:

Z [� �→ X] =↑{〈� : δ〉 | δ ∈ X} ∪ {〈�′ : δ′〉 | 〈�′ : δ′〉 ∈ Z & �′ �= �}
Then

Y · (Z [� �→ X]) = ↑{κ | ∃σ −→ κ ∈ Z [� �→ X]. σ −→ κ ∈ Y }
= ↑{κ | ∃σ ′ ∈ Z , δ ∈ X . 〈� : δ〉 ∧ σ ′ −→ κ ∈ Y & � /∈ dom(σ ′)}

and therefore we define:

setF� (X, Y)
def= ↑{σ ′ −→ κ ∈ LSD | ∃δ ∈ X . 〈� : δ〉 ∧ σ ′ −→ κ ∈ Y & � /∈ dom(σ ′)} (10)

Lemma 4.19. Both getF� (X) and setF� (X, Y) are continuous in X and in X and Y , respectively.

Proof. We know that getF� (X) · Y = X · (Y · {�}) · Y , hence by Lemma 4.8 to prove that it is continuous in X it suffices to
show that Y · {�} is such in Y , as the composition of continuous functions is continuous. Now

Y · {�} = ↑{δ | 〈� : δ〉 ∈ Y }
= ↑{δ | 〈� : δ〉 ∈⋃

σ∈Y ↑σ }
= ⋃

σ∈Y ↑{δ | 〈� : δ〉 ∈ ↑σ }
= ⋃

σ∈Y (↑σ · {�})
= �↑σ∈Y (↑σ · {�})

by directness of {↑σ · {�} | σ ∈ Y } and Lemma 4.3.
The proof of continuity of setF� (X, Y) is similar, using setF� (X, Y) · Z = Y · (Z [� �→ X]), the continuity of application and

the fact that Z [� �→ X] =�δ∈X Z [� �→↑δ] that is easily seen. �
Eventually we have:

Theorem 4.20. The structure F = (FD ,S, [[·]]FD , [[·]]FSD) is a λimp-model where, for e ∈ EnvF = Var −→ FD the interpretations
[[V]]FD e ∈FD and [[M]]FSD e ∈FSD are such that:

[[x]]FD e = e(x)

[[λx.M]]FD e = ↑{δ −→ τ | τ ∈ [[M]]FSD e[x �→ ↑δ]}
[[[V]]]FSD e = ↑{σ −→ δ× σ ∈ LSD | δ ∈ [[V]]FD e}

[[M � V]]FSD e = ↑{σ −→ δ′′ × σ ′′ | ∃δ′,σ ′. σ −→ δ′ × σ ′ ∈ [[M]]FSD e

& δ′ −→ σ ′ −→ δ′′ × σ ′′ ∈ [[V]]FD e}
[[get�(λx.M)]]FSD e = ↑{(〈� : δ〉 ∧ σ)−→ κ ∈ LSD | σ −→ κ ∈ [[M]]FD e[x �→ ↑δ]}
[[set�(V , M)]]FSD e = ↑{σ ′ −→ κ | ∃δ ∈ [[V]]FD e. 〈� : δ〉 ∧ σ ′ −→ κ ∈ [[M]]FSD e

& � /∈ dom(σ ′)}

15

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Proof. By an easy induction over M , we can show that

[[M]]Fe[x �→ X] =�↑
δ∈X
[[M]]Fe[x �→↑δ]

It follows that the function λλX ∈ FD . [[M]]FSD e[x �→ X] is continuous. Therefore, applying the clauses of Definition 3.12 to
the model F , we get:

[[x]]FD e = e(x)

[[λx.M]]FD e = �(λλX ∈FD . [[M]]FSD e[x �→ X])
[[[V]]]FSD e = unitF ([[V]]FD e)

[[M � V]]FSD e = ([[M]]FSD e) �F ([[V]]FD e)

[[get�(λx.M)]]FSD e = getF� ([[λx.M]]FD e)

[[set�(V , M)]]FSD e = setF� ([[V]]FD e, [[M]]FSD e)

Then the thesis follows by Equations (7)-(10). �
5. Deriving the type assignment system

In [9] the filter model is a λ-model where validity of typing judgments and derivability in the type assignment system
coincide, which is the key for proving the completeness of the type assignment system. Here we revert the process: in
Section 4 we have obtained a filter model out of the denotational semantics of the calculus; by extending to λimp the
set theoretic interpretation of types for the ordinary λ-calculus, we get a notion of validity of typing judgments which,
when particularized to the model F , determines the assignment system as the axiomatization of the truth in that model.
Such axiomatization is implicit in Theorem 4.20 where the interpretation of terms is evidently inductive; as we show in
this section, this provides the guidance to derive the typing system in parallel to the inductive definition of the predicate
ϕ ∈ [[Q]]Fe in the theorem, where Q is either a value or a computation and ϕ is a type of the appropriate language.

Let D = (D, [[·]]D , [[·]]SD) be a λimp-model, and : D
∼−→ (D −→SD D) is the isomorphism in Definition 3.12. Recall that:

S = (D⊥)L C = (D × S)⊥ SD D = S −→ C

and that dom(ς)= {� ∈ L | ς(�) �= ⊥D⊥} for ς ∈ S . In the following A ranges over D,SD (short for SD D), S, C .

Definition 5.1 (Type Interpretation). Define the maps [[·]]A :LA −→ ℘(A) by

[[ωA]]A = A [[ϕ ∧ψ]]A = [[ϕ]]A ∩ [[ψ]]A
and

[[δ −→ τ]]D = {d ∈ D | ∀d′ ∈ [[δ]]D . (d)(d′) ∈ [[τ]]SD}
[[〈� :ωD⊥〉]]S = S

[[〈� : δ〉]]S = {ς ∈ S | � ∈ dom(ς) & ς(�) ∈ [[δ]]D} if δ ∈ LD

[[δ × σ]]D×S = [[δ]]D × [[σ]]S
[[σ −→ τ]]SD = {g ∈ SD D | ∀ς ∈ [[σ]]S . g(ς) ∈ [[τ]]C }

As a first consequence of this definition, we have a model of the subtyping relations ≤A as subset inclusion of type
interpretations.

Lemma 5.2. For ϕ,ψ ∈LA we have

ϕ ≤A ψ ⇒ [[ϕ]]A ⊆ [[ψ]]A

Proof. By induction over the definition of ≤A . �
Let us introduce the concept of typing context as follows.

Definition 5.3. A typing context � is a finite set {x1 : δ1, . . . , xn : δn} where n ≥ 0, the xi ’s are pairwise distinct, and δi ∈ LD

for all i. We set dom(�)= {x1, . . . , xn}.
16

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
We define the concepts of truth in a model and of validity of the typing Q : ϕ w.r.t. a context � as follows.

Definition 5.4. Let D be a λimp-model, e ∈ EnvD and � a context; then define

1. e |=D � if e(x) ∈ [[δ]]D for all x : δ ∈ �

2. � |=D Q : ϕ if [[Q]]De ∈ [[ϕ]]D for all e |=D �

3. � |= Q : ϕ if � |=D Q : ϕ for all D

When � |=D Q : ϕ we say that Q : ϕ is true in D w.r.t. the context �; when � |= Q : ϕ we say that Q : ϕ is valid w.r.t. �.

Next, we look for a type interpretation in the case of the model F which we take from [9] (see Remark 4.5):

Definition 5.5. For A = D, S, C , and SD , and ϕ ∈LA define:

[[ϕ]]F = {X ∈FA | ϕ ∈ X}

Such interpretation is a generalization of the natural interpretation of intersection types over an extended type structure
[16], which turns out to be a type interpretation in the sense of Definition 5.1.

Proposition 5.6. The family of mappings [[ϕ]]FA is a type interpretation. Moreover:

1. [[δ −→ τ]]F = {X ∈FD | ∀Y ∈ [[δ]]F . X · Y ∈ [[τ]]F }
2. [[〈� :ωD⊥〉]]F =FS

3. [[〈� : δ〉]]F = {X ∈FS | X · {�} ∈ [[δ]]F } if δ ∈LD

4. [[δ× σ]]F = {X ∈FD×S | π1(X) ∈ [[δ]]F & π2(X) ∈ [[σ]]F }
5. [[σ −→ κ]]F = {X ∈FSD | ∀Y ∈ [[σ]]F . X · Y ∈ [[κ]]F }

where, for X ∈FD×S ∼= (FD ×FS), π1(X)= {δ ∈LD | ∃σ ∈LS . δ× σ ∈ X} and similarly for π2(X).

Proof. The first part is immediate from the definition of type interpretation and of filters.
To see (1) observe that ↑ϕ ∈ [[ϕ]]F . Hence, if X ∈ [[δ −→ τ]]F then δ −→ τ ∈ X , which implies that X · ↑δ = ↑τ ∈ [[τ]]F .

Vice versa if X · Y ∈ [[τ]]F for all Y ∈ [[δ]]F then in particular X · ↑δ = ↑τ ∈ [[τ]]F , which implies that for some δ′ ∈ ↑δ,
δ′ −→ τ ∈ X ; but then δ ≤D δ′ so that δ′ −→ τ ≤D δ −→ τ and therefore δ −→ τ ∈ X as X is upward closed.

All the other cases are similar and easier. We just remark that in part (4) π1(X) is a filter: indeed it is nonempty and
upward closed because X is such. If δ1, δ2 ∈ π1(X) then δ1×σ1, δ2×σ2 ∈ X for some σ1 and σ2; then X � (δ1×σ1)∧ (δ2×
σ2)= (δ1 ∧ δ2)× (σ1 ∧ σ2), so that δ1 ∧ δ2 ∈ π1(X). The same holds of π2(X). �

As said at the beginning of this section, the type assignment system will be obtained as a complete axiomatization of
the truth of typing judgments in F ; more precisely we expect to obtain a set of axioms and rules such that

�
 Q : ϕ is derivable in the system ⇐⇒ � |=F Q : ϕ (11)

In the first place, we manage to eliminate the universal quantification over the e ∈ EnvF such that e |=F � which is
involved in the definition of � |=F Q : ϕ . To this aim, we endow the set EnvF with a partial order as follows.

Definition 5.7. Over EnvF we define the ordering:

e � e′ ⇔ ∀x ∈ Var. e(x)⊆ e′(x)

Proposition 5.8. The poset (EnvF ,�) is a cpo, with bottom e⊥ such that e⊥(x)= ↑ωD for all x ∈ Var, and for all directed E ⊆ EnvF
there exists the sup�↑E such that

∀x ∈ Var. (�↑E)(x) =
⋃
e∈E

e(x)

Proof. To prove the statement it suffices to check that �↑E is well defined. Now if E is directed then for any e, e′ ∈ E there
exists e′′ ∈ E such that e � e′′ � e′ , that is e(x)⊆ e′′(x)⊇ e′(x) for all x ∈ Var. It follows that {e(x) | e ∈ E} is a directed set of
filters for any x, whose sup is

⋃
e∈E e(x). �
17

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Proposition 5.8 can be restated by saying that (EnvF ,�) is the infinite product of FD with itself, indexed over Var. As
such it is an object of ω-Alg, in particular it is algebraic with compact points e ∈ K (EnvF) which are such that for all x ∈ Var,
e(x) is compact in FD , namely e(x)= ↑ϕ for some type ϕ . Among the compact environments, a special role is played by
those e f such that e f (x) �= ↑ωD only for finitely many x ∈ Var, that we call finite. As it is easily seen, any environment
e ∈ K (Env) is the directed sup of the set {e f ∈ K (EnvF) | e f is finite & e f � e}, which then holds for arbitrary e ∈ Env by
algebraicity. Now finite environments can be paired with contexts as follows.

Definition 5.9. Given �= {x1 : δ1, . . . , xn : δn} define e� ∈ EnvF by

e�(xi)=↑D δi and e�(y)=↑ωD if y /∈ dom(�)

Let us abbreviate �(x)= δ if x : δ ∈ � and �(x)=ωD , otherwise.

Lemma 5.10. For all e ∈ EnvF and context �, e |=F � if and only if e� � e.

Proof.

e |=F � ⇐⇒ ∀x ∈ Var. e(x) ∈ [[�(x)]]F by Definition 5.4

⇐⇒ ∀x ∈ Var. �(x) ∈ e(x) by Definition 5.5

⇐⇒ ∀x ∈ Var. e�(x)=↑�(x)⊆ e(x) since e(x) is a filter

⇐⇒ e� � e by Definition 5.7 �
For any contexts � and �′ we define the context

�∧ �′ def= {x : δ ∈ � | x /∈ dom(�′)}
∪ {x : δ′ ∈ �′ | x /∈ dom(�)}
∪ {x : δ ∧ δ′ | x : δ ∈ � & x : δ′ ∈ �′}

In particular (�∧ �′)(x)= �(x)∧ �′(x).

Lemma 5.11.

1. For all e ∈ EnvF the set E = {e� | e |=F �} is directed and e =�↑ E
2. For all Q ∈ Term and directed E , the family of filters {[[Q]]Fe | e ∈ E} is directed and

[[Q]]F (�↑E)=�↑
e∈E [[Q]]Fe

Proof. Part (1): suppose that e�, e�′ ∈ E ; then e |=F � and e |=F �′ . By Lemma 5.10 we deduce that e� � e � e�′ . On the
other hand

(e� � e�′)(x) = ↑�(x) � ↑�′(x)

= ↑(�(x)∧ �′(x))

= ↑(�∧ �′)(x)

hence e� � e�′ = e�∧�′ by the arbitrary choice of x ∈ Var. Again by Lemma 5.10 we conclude that e |=F �∧ �′ , namely
e�∧�′ ∈ E , which is therefore directed.
From the above it follows that �E � e; to see the inverse it suffices to observe that if δ ∈ e(x), then e{x:δ} ∈ E so that

δ ∈ e{x:δ}(x)⊆
⋃

e�∈E
e�(x)= (�↑E)(x)

for any x ∈ Var, and we conclude that e ��E .

Part (2): we reason by induction over Q ∈ Term.
Case Q ≡ x: then {[[Q]]Fe | e ∈ E} = {e(x) | e ∈ E}, which is directed by the hypothesis that E is such. Then

[[Q]]F (�E)= (�↑E)(x)=
⋃

e(x)=�↑
e∈E ([[Q]]Fe)
e∈E

18

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Case Q ≡ λx.M: let X = {[[λx.M]]Fe | e ∈ E}, and recall that [[λx.M]]Fe =↑{δ −→ τ | τ ∈ [[M]]Fe[x �→↑δ]}. Let F1, F2 ∈
X , namely Fi = [[λx.M]]Fei for some ei ∈ E and i = 1,2. By directness of E , there exists e3 ∈ E such that e1, e2 � e3;
then take F3 = [[λx.M]]Fe3 ∈X .
W.l.o.g. a non trivial element Fi for i = 1,2 has the shape δi =∧

j∈ J i
δ
(i)
j −→ τ

(i)
j where τ

(i)
j ∈ [[M]]Fei[x �→↑δ

(i)
j] for

all j ∈ J i . Now the set {e1, e2, e3} is directed with sup e3, so that by induction the set of filters {[[M]]Fei[x �→↑δ
(i)
j] |

i = 1,2,3} is directed with sup [[M]]Fe3[x �→↑δ
(i)
j], for all j ∈ J i . This implies that δ

(i)
j −→ τ

(i)
j ∈ [[λx.M]]Fe3 for all

j ∈ J i , and hence δi ∈ [[λx.M]]Fe3 as the latter is a filter. We conclude that F1, F2 ⊆ F3, so X is directed. Now

[[Q]]F (�↑ E) = ↑{δ −→ τ | τ ∈ [[M]]F (�↑ E)[x �→↑δ]}
= ↑{δ −→ τ | τ ∈⋃

e∈E [[M]]Fe[x �→↑δ]}
by induction and (�↑ E)[x �→↑δ] =�↑e∈E e[x �→↑δ]

= ⋃
e∈E ↑{δ −→ τ | τ ∈ [[M]]Fe[x �→↑δ]}

since E is directed

= ⋃
e∈E [[λx.M]]Fe

= �↑e∈E [[Q]]Fe

Case Q ≡ M � V : then {[[M � V]]Fe | e ∈ E} is directed since {[[M]]Fe | e ∈ E} and {[[V]]Fe | e ∈ E} are such by induction,
[[M � V]]Fe = ([[M]]Fe) �F ([[V]]Fe), and the operator �F is continuous by Lemma 4.17, and hence monotonic. Now

[[Q]]F (�E) = [[M]]F (�E) �F [[V]]F (�E)

= (�e∈E [[M]]Fe) �F (�e′∈E [[V]]Fe′) by induction

= �e,e′∈E ([[M]]Fe) �F [[V]]Fe′) by continuity of _ �F _

= �e′′∈E ([[M]]Fe′′) �F [[V]]Fe′′) by directness of E
= �e′′∈E [[Q]]Fe′′

The remaining cases of [V], get�(λx.M) and set�(V , M) are similar, using the continuity of unitF (_), getF� (_) and
setF� (_, _), respectively. �

The content of part (2) of Lemma 5.11 is that for any Q ∈ Term the mapping [[Q]]F : EnvF −→ FA , where A is either D
or SD according to the kind of Q , is continuous, hence monotonic. We use this fact in the proof of the next theorem.

Theorem 5.12. For any e ∈ EnvF , context �, Q ∈ Term and ϕ in the appropriate language, we have

� |=F Q : ϕ ⇐⇒ ϕ ∈ [[Q]]Fe�

Proof. (⇒) Trivially e� � e� so that e� |=F � by Lemma 5.10. By the hypothesis � |=F Q : ϕ we have [[Q]]Fe� ∈ [[ϕ]]F ,
and hence ϕ ∈ [[Q]]Fe� by Definition 5.5.
(⇐) Let e |=F �, then by Lemma 5.10 e� � e; by Lemma 5.11.2 [[Q]]F is monotonic, so that [[Q]]Fe� ⊆ [[Q]]F e. By this the
hypothesis ϕ ∈ [[Q]]Fe� implies ϕ ∈ [[Q]]Fe and hence [[Q]]Fe ∈ [[ϕ]]F by Definition 5.5 and we conclude � |=F Q : ϕ by
the arbitrary choice of e. �

In view of Theorem 5.12, we can obtain the formal system to derive the typing judgments �
 Q : ϕ , replacing � |=F

Q : ϕ by ϕ ∈ [[Q]]Fe� in (11), namely such that

�
 Q : ϕ is derivable in the system ⇐⇒ ϕ ∈ [[Q]]Fe�

The latter is inductively defined in Theorem 4.20 by clauses of the form

[[Q]]Fe� =↑{ψ | ϕ1 ∈ [[Q 1]]Fe�1 & · · · & ϕn ∈ [[Q n]]Fe�n }
which we rephrase into the form

ϕ1 ∈ [[Q 1]]Fe�1 & · · · & ϕn ∈ [[Q n]]Fe�n ⇒ψ ∈ [[Q]]Fe� (12)

and adding the clauses in the left column in Table 1 to take into account the closure operator ↑ X , which is the least filter
including the set X .
19

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Table 1
Logical rules.

ω ∈ [[Q]]Fe�
�
 Q :ω (ω)

ϕ,ψ ∈ [[Q]]Fe� ⇒ ϕ ∧ψ ∈ [[Q]]Fe�

�
 Q : ϕ �
 Q :ψ
�
 Q : ϕ ∧ψ

(∧)

ϕ ∈ [[Q]]Fe� & ϕ ≤ψ ⇒ψ ∈ [[Q]]Fe�

�
 Q : ϕ ϕ ≤ψ

�
 Q :ψ (≤)

Table 2
Syntax oriented rules.

δ ∈ ↑δ = e�,x:δ(x)
= [[x]]Fe�,x:δ �, x : δ
 x : δ (var)

τ ∈ [[M]]Fe�,x:δ
⇒ δ→ τ ∈ [[λx.M]]Fe�

�, x : δ
 M : τ
�
 λx.M : δ→ τ

(λ)

δ ∈ [[V]]Fe� & σ ∈LS

⇒ σ → δ× σ ∈ [[[V]]]Fe�

�
 V : δ
�
 [V] : σ → δ× σ

(unit)

σ → δ′ × σ ′ ∈ [[M]]Fe� &
δ′ → σ ′ → δ′′ × σ ′′ ∈ [[V]]Fe�

⇒ σ → δ′′ × σ ′′ ∈ [[M � V]]Fe�

�
 M : σ → δ′ × σ ′
�
 V : δ′ → σ ′ → δ′′ × σ ′′

�
 M � V : σ → δ′′ × σ ′′
(�)

σ → κ ∈ [[M]]FD e�,x:δ
⇒ (〈� : δ〉 ∧ σ)→ κ

∈ [[get�(λx.M)]]FSD e�

�, x : δ
 M : σ → κ

�
 get�(λx.M) : (〈� : δ〉 ∧ σ)→ κ
(get)

δ ∈ [[V]]FD e� &
〈� : δ〉 ∧ σ ′ → κ ∈ [[M]]FSD e� &
� /∈ dom(σ ′)

⇒ σ ′ → κ ∈ [[set�(V , M)]]FSD e�

�
 V : δ
�
 M : (〈� : δ〉 ∧ σ)→ κ
� /∈ dom(σ)

�
 set�(V , M) : σ → κ
(set)

Now the implications (12) are associated with the rules

�1
 Q 1 : ϕ1 · · · �n
 Q n : ϕn

�
 Q :ψ
in the right column of Table 1 and Table 2. Notice that in the second and fifth row of Table 2 we have e�,x:δ in place of
e[x �→ ↑δ] as in Theorem 4.20, however, they are the same environment.

6. Type-semantics and completeness

Collecting all the rules in the right column of Table 1 and Table 2, we get the type assignment system in Fig. 1.

Definition 6.1. (Intersection type assignment system for λimp) The type assignment system for λimp is defined by the rules
in Fig. 1, where in case of rules (ω), (∧) and (≤), the types ω,ϕ and ψ belong to the languages in accordance with the
kind of subject Q .

By construction, the type system enjoys the analogous property of the “Type-semantics theorem” for intersection types
and the ordinary λ-calculus (see [11], Thm. 16.2.7). We premise the following lemma, formally proving that the construction
in the previous section exactly matches the semantics of terms in the model F .

Lemma 6.2. Let Q ∈ T erm and � be any typing context, then

[[Q]]Fe� = {ϕ | �
 Q : ϕ}

20

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Fig. 1. Intersection type assignment system for λimp .

Proof. The proof is based on Theorem 4.20 that characterizes [[Q]]Fe�
in terms of operations over filters: it will be used

without explicit mention below.
The inclusion [[Q]]Fe�

⊆ {ϕ | �
 Q : ϕ} is shown by induction over Q .

Case Q ≡ x: then [[x]]Fe�
= e�(x). If x : δ ∈ � for some δ then e�(x)=↑δ and �
 x : δ′ for all δ′ ≥ δ by rules (var) and (≤).

Otherwise x /∈ dom(�) implies that e�(x)=↑ωD so that �
 x : δ for any δ =ωD by rules (ω) and (≤).
Case Q ≡ λx.M: then by Definition 4.7 we have

[[λx.M]]Fe� = �(λλX ∈FD . [[M]]FSD e�[x �→ X])
= ↑{δ −→ τ | τ ∈ [[M]]Fe�[x �→↑δ]}

By definition of the ↑_ operator, the filter above consists of intersections
∧

i∈I δi −→ τi such that τi ∈ [[M]]Fe�[x �→↑δi]
for all i ∈ I . Observing that e�[x �→↑δi] = e�,x:δi we have by induction that �, x : δi
 M : τi and therefore �
 λx.M :
δi −→ τi by rule (λ) for all i ∈ I . Hence �
 λx.M :∧i∈I δi −→ τi by repeated use of rule (∧).

Case Q ≡ [V]: then [[[V]]]F e� =↑{σ −→ δ × σ | δ ∈ [[V]]Fe�} by Equation (7). By induction we have �
 V : δ and the thesis
follows by rule (unit).

Case Q ≡ M � V : then, by Equation (8), [[M � V]]Fe� is the filter

↑{σ −→ δ′′ × σ ′′ | ∃δ′,σ ′. σ −→ δ′ × σ ′ ∈ [[M]]Fe� & δ′ −→ σ ′ −→ δ′′ × σ ′′ ∈ [[V]]Fe�}
As in the case of λ-abstraction, the types in such a filter have the shape

∧
i∈I σi −→ δ′′i ×σ ′′i and σi −→ δ′i ×σ ′i ∈ [[M]]Fe�

and δ′i −→ σ ′i −→ δ′′i × σ ′′i ∈ [[V]]Fe� for all i ∈ I . Therefore by rule (�) we have �
 M � V : σi −→ δ′′i × σ ′′i for all i ∈ I and
we conclude by repeated use of rule (∧).

Case Q ≡ get�(λx.M): then by Equation (9) we have that [[get�(λx.M)]]F e� is the filter

↑{(〈� : δ〉 ∧ σ)−→ κ | δ −→ (σ −→ κ) ∈ [[λx.M]]Fe�}
Reasoning as above we know that δ −→ (σ −→ κ) ∈ [[λx.M]]Fe� implies that σ −→ κ ∈ [[M]]Fe�,x:δ ; hence by induction
�, x : δ
 M : σ −→ κ , from which the thesis follows by rule (get).

Case Q ≡ set�(V , M): then by Equation (10) we know that [[set�(V , M)]]F e� is the filter

↑{σ ′ −→ κ | ∃δ ∈ [[V]]Fe�. 〈� : δ〉 ∧ σ ′ −→ κ ∈ [[M]]Fe� & � /∈ dom(σ ′)}
By induction �
 V : δ and �
 M : 〈� : δ〉 ∧ σ ′ −→ κ ; now condition � /∈ dom(σ ′) allows to apply rule (set), and we are
done.

The inclusion [[Q]]Fe�
⊇ {ϕ | �
 Q : ϕ} is proved by induction over the derivation of �
 Q : ϕ . The cases of rules (ω),

(∧) and (≤) are immediate by the induction hypothesis and the fact that [[Q]]Fe�
is a filter.

Case (var): then Q ≡ x, ϕ ≡ δ and x : δ ∈ �; hence

[[x]]Fe� = e�(x)=↑δ � δ

Case (λ): then Q ≡ λx.M , ϕ ≡ δ −→ τ and the premise is �, x : δ
 M : τ . By induction τ ∈ [[M]]Fe�,x:δ ; on the other hand,
as observed above, [[λx.M]]Fe� =↑{δ −→ τ | τ ∈ [[M]]Fe�[x �→↑δ]}, and e�[x �→↑ δ] = e�,x:δ , hence we conclude that
δ −→ τ ∈ [[λx.M]]Fe� .
21

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
Case (unit): then Q ≡ [V], ϕ ≡ σ −→ δ × σ and the premise is �
 V : δ. By induction δ ∈ [[V]]Fe� hence σ −→ δ × σ ∈
unitF [[V]]Fe� = [[[V]]]Fe� by Equation (7).

Case (�): then Q ≡ M � V , ϕ ≡ σ −→ δ′′ ×σ ′′ which is derived from the premises �
 M : σ −→ δ′ ×σ ′ and �
 V : δ′ −→ σ ′ −→
δ′′ × σ ′′ . By induction σ −→ δ′ × σ ′ ∈ [[M]]Fe� and δ′ −→ σ ′ −→ δ′′ × σ ′′ ∈ [[V]]Fe� so that σ −→ δ′′ × σ ′′ ∈ [[M]]Fe� �F

[[V]]Fe� = [[M � V]]Fe� by Equation (8).
Case (get): then Q ≡ get�(λx.M), ϕ ≡ (〈� : δ〉 ∧ σ) −→ κ and the premise is �, x : δ
 M : σ −→ κ . By induction σ −→ κ ∈

[[M]]Fe�, x:δ so that, by reasoning as in case (λ), we have that δ −→ σ −→ κ ∈ [[λx.M]]Fe� , from which we conclude
(〈� : δ〉 ∧ σ)−→ κ ∈ getF� ([[λx.M]]Fe�)= [[get�(λx.M)]]F e� by Equation (9).

Case (set): then Q ≡ set�(V , M), ϕ ≡ σ −→ κ and the premises are �
 V : δ and �
 M : (〈� : δ〉 ∧ σ) −→ κ ; also we know
that � /∈ dom(σ). By induction δ ∈ [[V]]Fe� and (〈� : δ〉 ∧ σ) −→ κ ∈ [[M]]Fe� . Then we conclude that ϕ ≡ σ −→ κ ∈
setF� ([[V]]FD e�, [[M]]FSD e�)= [[set�(V , M)]]FSD e� by Equation (10). �

We are now in place to state the main theorem of this section.

Theorem 6.3 (Type semantics). For all V ∈ Val and M ∈ Com:

1. [[V]]FD e = {δ ∈LD | ∃�. e |=F � & �
 V : δ}
2. [[M]]FSD e = {τ ∈LSD | ∃�. e |=F � & �
 M : τ }

Proof. Recall that e |=F � if and only if e� � e:

[[V]]FD e = [[V]]FD (�{e� | e |=F �}) by Lemma 5.11.1

= �e��e [[V]]FD e� by Lemma 5.11.2

= ⋃
e��e [[V]]FD e� by Lemma 5.11.2

as {[[V]]FD e� | e� � e} is directed

= ⋃
e��e{δ | �
 V : δ} by Lemma 6.2

= {δ | ∃�.�
 V : δ & e |=F �}
The proof in case of [[M]]FSD e is similar. �
In spite of the complexity of the construction we have been going through in the last sections, the payoff of our work

is a system with one typing rule for each syntactical construct in the grammar of the calculus, plus the “logical” rules from
Table 1 which are standard in intersection type systems with subtyping since [9].

The immediate consequence of the type-semantics property in [9] is the completeness of the type assignment system.
This easily extends to λimp and to the type assignment system introduced so far. We conclude this section by the complete-
ness theorem for our system.

Theorem 6.4 (Completeness).

�
 Q : ϕ⇔ � |= Q : ϕ

Proof. Part ⇒ is shown by induction over �
 Q : ϕ . For the ⇐ part:

� |= Q : ϕ ⇒ � |=F Q : ϕ by Definition 5.4 and Theorem 4.20

⇒ [[Q]]Fe� ∈ [[ϕ]]F since e� |=F �

⇒ ϕ ∈ [[Q]]Fe� by Definition 5.5

⇒ �
 Q : ϕ by Theorem 6.3 �
7. Discussion and related works

The present paper extends and revises [23], providing a full description of the denotational semantics of λimp , a detailed
construction of the filter model and of the process deriving the type system from the semantics, along with the proofs of
the type-semantics and of the completeness theorems.

We have also profited from the present extended version to fix an error in [24,23]. In the former presentation of the
theory ThS we had no distinction among ωD and ωD⊥ (as the latter was not included in the type syntax) so that the
equation ωS = 〈� : ωD〉 was derivable. Unfortunately, this falsifies the main theorem of [24], namely the characterization
22

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
of convergence. The mismatch arises because there we represent stores by certain store terms that are necessarily finite,
hence denoting partial stores; also we consider divergent a term of the form get�(λx.M) when evaluated with a store that
is undefined w.r.t. �; this is rather subtle because in a context like set�(V , get�(λx.M)) the term will converge as soon as
M[V /x] does. To catch this in the model we have to distinguish among the bottom value ⊥D , and the new bottom ⊥D⊥ ,
represented by the type ωD⊥ , so that we can discriminate the case ς(�) = ⊥D⊥ modeling the fact that ς is undefined at
�, from the case ς(�)=⊥D where ς is defined and holds a value. Here we achieve such a distinction by taking S = (D⊥)L

instead of DL as we did in [23].

The calculus and its monadic semantics. But for the operators get� and set� , the calculus syntax is the same as in [22],
where we considered a pure untyped computational λ-calculus, namely without operations nor constants. Therefore, the
monad T and the respective unit and bind were generic, so that types cannot convey any specific information about the
domain T D , nor about effects represented by the monad.

The algebraic operators get� and set� come from Plotkin and Power [38,39,37]. Their definition is essentially the same
as in [39], where the store monad in Moggi [34] is generated by the update and lookup operations. In [38] it is proved
that the behavior of such operators can be axiomatized by equations such that the monad is determined by the operators
themselves under the hypothesis that the set of locations is finite. In our case the locations are infinite so that the monad
induced by the algebraic theory in [38] is a proper submonad of ours.

We have borrowed the notation for get� and set� from the “imperative λ-calculus” in Chapter 3 of [27], where also a
definition of the convergence predicate of a configuration to a result is considered. Such a definition is a particular case of
the analogous notion in Dal Lago et al. [21,20] for generic algebraic effects. It is stated in semantic terms, while we preferred
the syntactical treatment in the algebra of store terms in [24].

Intersection types and computational effects. Intersection types are an extension of Curry simple types, whose intended
meaning is that of predicates of untyped terms. In particular, intersection types embody a form of ad hoc-polymorphism,
where one may consider the conjunction of semantically unrelated types. As an instance of Leibnitz’s law of identity of
indiscernibles, terms can be identified with the set of their properties, namely types. As a consequence, updating the value
associated to a location may radically change the types of the store itself.

Our store types are not reference types, and indeed we do not consider the locations among the values, nor we have a
construct for dynamic allocation. This makes difficult the comparison to Davis and Pfenning’s [25] and to the subsequent
Dezani and Ronchi’s [18]. In Pfenning’s and others work, intersection types are added to the Hindley-Milner type system for
ML to enhance type expressivity and to strengthen polymorphism. However, the resulting system is unsound, which forces
the restriction of intersection types to values and the loss of subtyping properties. The issue is due to reference types in ML,
where the type of a location is its “intrinsic” type in the sense of Reynolds [40]. In contrast, our store types are predicates
over the stores, namely “extrinsic” types, telling what are the meanings of the values associated to the locations in the store.

Type and effect systems. A further line of research is to use our type system to investigate a semantic understanding of type
and effect systems, introduced in [28] and pursued in [43]. In the insightful paper by Wadler [50] a type and effect judgment
�
 e : A, ε is translated into the ordinary typing �
 e : T ε A, where T is a monad. This has fostered the application of type
systems with monadic types to static analysis for code transformation in Benton et al. [15,14], raising the question of the
semantics of the types T ε A, that has been answered by [32]. See also [36] providing a type interpretation based on indexed
(strong) co-monads.

In the papers by Benton and others, the semantics of monadic types with effect decorations is given in terms of PERs
that are preserved by read and write operations. Such semantics validates equations that do hold under assumptions about
the effects of the equated programs; e.g. only pure terms, neither depending on the store nor causing any mutation, can
be evaluated in arbitrary order, or repeated occurrences of the same pure code can be replaced by a reference where the
value of the code is stored after computing it just once. Such properties are nicely reflected in our types: if λx.M has type
δ −→ σ −→ δ′ × σ , and dom(σ) includes all the � occurring in M , then we know that the function represented by λx.M is
pure; similarly if M : σ −→ δ × σ and N : σ −→ δ′ × σ then for any P : σ −→ κ both M;N; P and N;M; P will have the same
types, and hence the same behavior. In general, this suggests how to encode regions with store types in our system.

Filter model construction. Since [9] we know that a λ-model can be constructed by taking the filters of types in an
intersection type system with subtyping. The relation among the filter model and Scott’s D∞ construction has been subject
to extensive study, starting with [16] and continuing with [19,4,1,7]. In the meantime, Abramsky’s theory of domain logic
in [2] provided a generalization of the same ideas to algebraic domains in the category of 2/3 SFP, of which ω-Alg is a (full)
subcategory, based on Stone duality.

A further research direction is to move from ω-Alg to other categories such as the category of relations. The latter is
deeply related to non-idempotent intersection types [17,12] that have been shown to catch intensional aspects of λ-calculi
involving quantitative reasoning about computational resources. If the present approach can be rephrased in the category of
relations, then our method could produce non-idempotent intersection type systems for effectful λ-calculi.

Refinement, essential, and non idempotent intersection types. Another view of intersection types is as refined types of
ordinary types (see [2]), so that conjunction makes sense only among subtypes of the same type. This seems in contrast with
23

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
the main example in the literature which is the type (σ ∧ (σ −→ τ))−→ τ of the term λx.xx. However, both σ and σ −→ τ
are subtypes of ω = ω −→ ω in [9], which is the counterpart of Scott’s domain equation D = D −→ D . Here we have the
equations ωD = ωD −→ ωSD and ωSD = ωS −→ ωC , representing the solution of the domain equation D = D −→ T D , where
T is (a variant of) the state monad in [34]. The study of type interpretation in the category of models of computational
λ-calculi deserves further investigation.

As said before, our type system is inspired by [9], where the intersection types are related by the subtyping relation. It
is known that subtyping can be avoided e.g. in the “essential” system in [45], which has syntax directed rules. Compared to
the system in [9], the essential intersection type system is equally powerful w.r.t. the characterization of strongly normal-
izable λ-terms and other similar properties, but it is unrelated to the Scott D∞ model of the λ-calculus, which is instead
isomorphic to the filter model in [9]. In general, the correspondence exploited in [2] among type theories and domains gets
lost in case of essential types, describing webbed-models like Engeler’s.

Another family of intersection type systems have been introduced by De Carvalho in [17]. Moving from Engeler’s model,
De Carvalho obtains a system where intersection is not idempotent, that is σ is not a subtype of σ ∧ σ . This provides an
intensional type system that is sensible to the temporal complexity of the reduction of terms to normal form. It is a natural
development of our work to design a non-idempotent system for the side-effects with higher-order stores.

Towards a categorical perspective. Development of the present work would be a method for synthesizing intersection type
systems for a computational λ-calculus with algebraic operators for generic effects in the sense of [39]. Such a process
should be described in categorical terms; indeed, while it is well known how to present the denotational semantics of
the calculus as a functor into a suitable category of meanings, it has been shown in [35] that a system like ours is itself a
particular functor. A natural question is whether the latter functor can be uniformly obtained from the categorical semantics
of the calculus.

8. Conclusion

In this paper we presented a type assignment system to study the semantics of an imperative computational λ-calculus
equipped with global store and algebraic operators. The system defines the semantics of the untyped calculus.

Deriving the type system from semantics as in Section 5 is the main contribution of our paper. In the present work, we
exploit denotational semantics of type systems, in general, but reverse the process from semantics to types. Usually, one
starts with a calculus and a type system, looking for semantics and studying its properties. On the contrary, we move from
a domain equation and the definition of the denotational semantics of the calculus of interest and synthesize a filter model
and an intersection type system. This synthetic use of domain logic is, in our view, prototypical w.r.t. the construction of
logics catching properties of any computational λ-calculus with operators. We expect that the study of such type systems
will be of help in understanding the operational semantics of such calculi, a topic that has been addressed in [21,20], but
with different mathematical tools. Indeed, by addressing the investigation in such a way, we smoothly obtain soundness
and, possibly, completeness.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] F. Alessi, F. Barbanera, M. Dezani-Ciancaglini, Intersection types and lambda models, Theor. Comput. Sci. 355 (2) (2006) 108–126.
[2] S. Abramsky, Domain theory in logical form, Ann. Pure Appl. Log. 51 (1–2) (1991) 1–77.
[3] R. Amadio, P.-L. Curien, Domains and Lambda-Calculi, Cambridge University Press, 1998.
[4] F. Alessi, M. Dezani-Ciancaglini, F. Honsell, Inverse limit models as filter models, in: Delia Kesner, Femke van Raamsdonk, Joe Wells (Eds.), HOR’04,

RWTH Aachen, Aachen, 2004, pp. 3–25.
[5] S. Abramsky, A. Jung, Domain theory, in: Samson Abramsky, Dov M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science (Vol. 3):

Semantic Structures, Oxford University Press, Inc., 1994, pp. 1–168.
[6] S. Abramsky, C.-H.L. Ong, Full abstraction in the lazy lambda calculus, Inf. Comput. 105 (2) (1993) 159–267.
[7] F. Alessi, P. Severi, Recursive domain equations of filter models, in: V. Geffert, J. Karhumäki, A. Bertoni, B. Preneel, Pavol Návrat, M. Bieliková (Eds.),

SOFSEM 2008: Theory and Practice of Computer Science, 34th Conference on Current Trends in Theory and Practice of Computer Science, Proceedings,
Nový Smokovec, Slovakia, January 19-25, 2008, in: Lecture Notes in Computer Science, vol. 4910, Springer, 2008, pp. 124–135.

[8] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, revised edition, Studies in Logic and the Foundations of Mathematics, vol. 103,
North-Holland, 1985.

[9] H.P. Barendregt, M. Coppo, M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, J. Symb. Log. 48 (4) (1983) 931–940.
[10] V. Bono, M. Dezani-Ciancaglini, A tale of intersection types, in: Holger Hermanns, Lijun Zhang, Naoki Kobayashi, Dale Miller (Eds.), LICS ’20: 35th

Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8–11, 2020, ACM, 2020, pp. 7–20.
24

http://refhub.elsevier.com/S0304-3975(23)00395-X/bib7414078FD1CCE3C7C06FF8C6EFA02558s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib8EF867D1FE86A3A6F67DDBC0DF753245s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibFE2B56AD75588DF2B1F6D17D727B29C3s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE22B790855FFC185711823C8378951DAs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE22B790855FFC185711823C8378951DAs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib1E576172229C01256CDDDFD096511D74s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib1E576172229C01256CDDDFD096511D74s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib7A0E0DF8ACE2DE72B9F2C64758EC5CBAs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib746034AFE3735C91156639331C9BB426s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib746034AFE3735C91156639331C9BB426s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib746034AFE3735C91156639331C9BB426s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib62018CF8D0AC85291B856A8520FE75D4s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib62018CF8D0AC85291B856A8520FE75D4s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib1AFFFE52E5AF17E6A8D58033497066CCs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD90CF663DACE94F9EFA80215D58AD8BBs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD90CF663DACE94F9EFA80215D58AD8BBs1

U. de’Liguoro and R. Treglia Theoretical Computer Science 973 (2023) 114082
[11] H.P. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with Types, Perspectives in Logic, Cambridge University Press, 2013.
[12] A. Bucciarelli, T. Ehrhard, G. Manzonetto, Not enough points is enough, in: J. Duparc, T.A. Henzinger (Eds.), Computer Science Logic, 21st International

Workshop, CSL 2007, 16th Annual Conference of the EACSL, in: Lecture Notes in Computer Science, vol. 4646, Springer, 2007, pp. 298–312.
[13] N. Benton, J. Hughes, E. Moggi, Monads and effects, in: Applied Semantics, International Summer School, APPSEM 2000, in: Lecture Notes in Computer

Science, vol. 2395, Springer, 2002, pp. 42–122.
[14] N. Benton, A. Kennedy, L. Beringer, M. Hofmann, Relational semantics for effect-based program transformations: higher-order store, in: A. Porto, F.J.

López-Fraguas (Eds.), Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, Coimbra,
Portugal, September 7–9, 2009, ACM, 2009, pp. 301–312.

[15] N. Benton, A. Kennedy, M. Hofmann, L. Beringer, Reading, writing and relations, in: Programming Languages and Systems, 4th Asian Symposium, APLAS
2006, Proceedings, Sydney, Australia, November 8–10, 2006, in: Lecture Notes in Computer Science, vol. 4279, Springer, 2006, pp. 114–130.

[16] M. Coppo, M. Dezani-Ciancaglini, F. Honsell, G. Longo, Extended type structures and filter lambda models, in: G. Lolli, G. Longo, A. Marcja (Eds.), Logic
Colloquium 82, North-Holland, Amsterdam, the Netherlands, 1984, pp. 241–262.

[17] D. de Carvalho, Execution time of λ-terms via denotational semantics and intersection types, Math. Struct. Comput. Sci. 28 (7) (2018) 1169–1203.
[18] M. Dezani-Ciancaglini, S. Ronchi Della Rocca, Intersection and reference types, in: Reflections on Type Theory, Lambda Calculus, and the Mind, Radboud

University, Nijmegen, 2007, pp. 77–86.
[19] M. Dezani-Ciancaglini, F. Honsell, F. Alessi, A complete characterization of complete intersection-type preorders, ACM Trans. Comput. Log. 4 (1) (2003)

120–147.
[20] U. Dal Lago, F. Gavazzo, Effectful normal form bisimulation, in: Luís Caires (Ed.), Programming Languages and Systems - 28th European Symposium on

Programming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Proceedings, Prague, Czech
Republic, April 6-11, 2019, in: Lecture Notes in Computer Science, vol. 11423, Springer, 2019, pp. 263–292.

[21] U. Dal Lago, F. Gavazzo, P.B. Levy, Effectful applicative bisimilarity: monads, relators, and Howe’s method, in: 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, IEEE Computer Society, 2017, pp. 1–12.

[22] U. de’Liguoro, R. Treglia, The untyped computational λ-calculus and its intersection type discipline, Theor. Comput. Sci. 846 (2020) 141–159.
[23] U. de’Liguoro, R. Treglia, From semantics to types: the case of the imperative lambda-calculus, in: Ana Sokolova (Ed.), Proceedings of the 37th Confer-

ence on Mathematical Foundations of Programming Semantics, Hybrid: Salzburg, Austria and Online, 30th August - 2nd September, 2021, in: Electronic
Proceedings in Theoretical Computer Science, vol. 351, Open Publishing Association, 2021, pp. 168–183.

[24] U. de’Liguoro, R. Treglia, Intersection types for a λ-calculus with global store, in: N. Veltri, N. Benton, S. Ghilezan (Eds.), PPDP 2021: 23rd International
Symposium on Principles and Practice of Declarative Programming, Tallinn, Estonia, September 6–8, 2021, ACM, 2021, pp. 5:1–5:11.

[25] R. Davies, F. Pfenning, Intersection types and computational effects, in: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), ACM, 2000, pp. 198–208.

[26] M. Felleisen, D.P. Friedman, A syntactic theory of sequential state, Theor. Comput. Sci. 69 (3) (1989) 243–287.
[27] F. Gavazzo, Coinductive Equivalences and Metrics for Higher-Order Languages with Algebraic Effects, PhD thesis, University of Bologna, Italy, April 2019.
[28] D.K. Gifford, J.M. Lucassen, Integrating functional and imperative programming, in: Proceedings of the 1986 ACM Conference on LISP and Functional

Programming, LFP 1986, August 4-6, 1986, Cambridge, Massachusetts, USA, ACM, 1986, pp. 28–38.
[29] M. Hyland, J. Power, Discrete Lawvere theories and computational effects, Theor. Comput. Sci. 366 (1–2) (2006) 144–162.
[30] M. Hyland, J. Power, The category theoretic understanding of universal algebra: Lawvere theories and monads, Electron. Notes Theor. Comput. Sci. 172

(2007) 437–458.
[31] J. Roger Hindley, J.P. Seldin, Lambda-Calculus and Combinators: An Introduction, 2nd edition, Cambridge University Press, 2008.
[32] S. Katsumata, Parametric effect monads and semantics of effect systems, in: Suresh Jagannathan, Peter Sewell (Eds.), The 41st Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, ACM, 2014, pp. 633–646.
[33] E. Moggi, Computational Lambda-Calculus and Monads, Report ECS-LFCS-88-66, University of Edinburgh, Edinburgh, Scotland, 1988.
[34] E. Moggi, Notions of computation and monads, Inf. Comput. 93 (1) (1991) 55–92.
[35] P.-A. Melliès, N. Zeilberger, Functors are type refinement systems, in: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, ACM, 2015, pp. 3–16.
[36] D.A. Orchard, T. Petricek, A. Mycroft, The semantic marriage of monads and effects, CoRR, arXiv:1401.5391, 2014.
[37] J. Power, Generic models for computational effects, Theor. Comput. Sci. 364 (2) (2006) 254–269.
[38] G.D. Plotkin, J. Power, Notions of computation determine monads, in: FOSSACS 2002, in: Lecture Notes in Computer Science, vol. 2303, Springer, 2002,

pp. 342–356.
[39] G.D. Plotkin, J. Power, Algebraic operations and generic effects, Appl. Categ. Struct. 11 (1) (2003) 69–94.
[40] J.C. Reynolds, An intrinsic semantics of intersection types, in: Electronic Proceedings of 3rd International Workshop Intersection Types and Related

Systems (ITRS’04), Turku, Finland, 2000, pp. 269–270.
[41] M.B. Smyth, G.D. Plotkin, The category-theoretic solution of recursive domain equations, SIAM J. Comput. 11 (4) (1982) 761–783.
[42] V. Swarup, U.S. Reddy, E. Ireland, Assignments for applicative languages, in: J. Hughes (Ed.), Functional Programming Languages and Computer Archi-

tecture, 5th ACM Conference, Proceedings, Cambridge, MA, USA, August 26-30, 1991, in: Lecture Notes in Computer Science, vol. 523, Springer, 1991,
pp. 192–214.

[43] J.-P. Talpin, P. Jouvelot, The type and effect discipline, Inf. Comput. 111 (2) (1994) 245–296.
[44] M. Tofte, Type inference for polymorphic references, Inf. Comput. 89 (1) (1990) 1–34.
[45] S. van Bakel, Intersection type assignment systems, Theor. Comput. Sci. 151 (2) (1995) 385–435.
[46] P. Wadler, The essence of functional programming, in: Conference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 1992, ACM Press, 1992, pp. 1–14.
[47] P. Wadler, Monads for functional programming, in: Advanced Functional Programming, First International Spring School on Advanced Functional Pro-

gramming Techniques, in: Lecture Notes in Computer Science, vol. 925, Springer, 1995, pp. 24–52.
[48] A.K. Wright, M. Felleisen, A syntactic approach to type soundness, Inf. Comput. 115 (1) (1994) 38–94.
[49] G. Winskel, K.G. Larsen, Using information systems to solve recursive domain equations effectively, in: G. Kahn, D.B. MacQueen, G.D. Plotkin (Eds.),

Semantics of Data Types, International Symposium, Proceedings, Sophia-Antipolis, France, June 27-29, 1984, in: Lecture Notes in Computer Science,
vol. 173, Springer, 1984, pp. 109–129.

[50] P. Wadler, P. Thiemann, The marriage of effects and monads, ACM Trans. Comput. Log. 4 (1) (2003) 1–32.
25

http://refhub.elsevier.com/S0304-3975(23)00395-X/bib54FE2302FFCDBD4F69B7035DF307C0F6s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib99083E695AE7450D2C6E11B7327FA9A1s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib99083E695AE7450D2C6E11B7327FA9A1s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE9D214A840F6CF2154F8EA338A617B5Cs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE9D214A840F6CF2154F8EA338A617B5Cs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib5160BFDC8F59503715A965EFB09D61BEs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib5160BFDC8F59503715A965EFB09D61BEs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib5160BFDC8F59503715A965EFB09D61BEs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib11DC0FEFE105A91F0482B9BE2F83A8DEs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib11DC0FEFE105A91F0482B9BE2F83A8DEs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib48406894609A2883DDABF8664220E516s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib48406894609A2883DDABF8664220E516s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib7E7A525EB837B33EFED47AC76E263324s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibACF5CFBBF2AD755FFC15DA9C7811ED19s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibACF5CFBBF2AD755FFC15DA9C7811ED19s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib50DC72636A44C737567DDC59F993D9F3s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib50DC72636A44C737567DDC59F993D9F3s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD673053F2F008540594B43D1621E223Ds1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD673053F2F008540594B43D1621E223Ds1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD673053F2F008540594B43D1621E223Ds1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib2C993A6D1EF3604171FBC3F4CBC45DD3s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib2C993A6D1EF3604171FBC3F4CBC45DD3s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD4215D29CC441812D040315E75A53125s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib6AD94DA9BDBAC588F3766ADE99F23778s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib6AD94DA9BDBAC588F3766ADE99F23778s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib6AD94DA9BDBAC588F3766ADE99F23778s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC33D1C9E857A0885F91A350757379646s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC33D1C9E857A0885F91A350757379646s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib6F87AEC2086F57A03CCDA94FAE1DFC8Cs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib6F87AEC2086F57A03CCDA94FAE1DFC8Cs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib52E3EBE49C20C777B17BF3A66D7AE555s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibA22C827FBB42243BF4DBFDD3A1EEF592s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib987BE6A8355E8AABE0FF995328848AC7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib987BE6A8355E8AABE0FF995328848AC7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE8E6F9400FE0815F3C2ABDC7A7F1F639s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibBB4249DF819E79DC384AAC23C751EA80s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibBB4249DF819E79DC384AAC23C751EA80s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibF8969C8573E1977CA14F9190DF4F7444s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib18BCBFB2DD555E6D9DCBBDBEEB3E1CB5s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib18BCBFB2DD555E6D9DCBBDBEEB3E1CB5s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib8A9F585A9089C491866BED62D104BB18s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib2C623C546F22D988297DB192B4D3B091s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib8241099102C322F063AFEB1B2FE02E3Bs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib8241099102C322F063AFEB1B2FE02E3Bs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib0B586691AC3A9086E228985190B367C4s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib75359EBF5427D22F520DDBCCF53187ADs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib0EBD71BF96B1D2AFE69A0BA7EEC059B5s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib0EBD71BF96B1D2AFE69A0BA7EEC059B5s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib26C25147048706D0E393994084BB8D76s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib514400EE6AC15D8BB419054B3712DC56s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib514400EE6AC15D8BB419054B3712DC56s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib4F96A9CAF7C8EEBDD278D70C1BE766D7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib93EC8C566E99FA112C959E969581F1C1s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib93EC8C566E99FA112C959E969581F1C1s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib93EC8C566E99FA112C959E969581F1C1s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD9CF137621812AFA4A517B75222FC86Bs1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib226DA2E86365F2E8778F9C1BE279A920s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib0080DBF202C5B76FE8A268D44B908F1Ds1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC46BAF82353FD25C5A389FD9612C3807s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC46BAF82353FD25C5A389FD9612C3807s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC300620449AFC3B04453AE4944CD5A45s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibC300620449AFC3B04453AE4944CD5A45s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bib034FC97E524198A52DC3AFAAAA00E15As1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE920E6208B790856AA68FA7581A460D7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE920E6208B790856AA68FA7581A460D7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibE920E6208B790856AA68FA7581A460D7s1
http://refhub.elsevier.com/S0304-3975(23)00395-X/bibD064E0B5B27587CEA5026C1A5FF41D41s1

	From semantics to types: The case of the imperative λ-calculus
	1 Introduction
	2 An untyped imperative λ-calculus
	3 Denotational semantics
	4 The filter model construction
	5 Deriving the type assignment system
	6 Type-semantics and completeness
	7 Discussion and related works
	8 Conclusion
	Declaration of competing interest
	Data availability
	References

