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Summary

Machine learning (ML) is a rapidly growing field that has made significant
strides in many research fields, including medical research and, especially
in cardiology. The most prominent developments include improving diag-
nostic accuracy, risk stratification, and treatment optimization in various
cardiovascular diseases. Specifically, ML is becoming a central tool for pre-
dicting the likelihood of adverse cardiovascular events identifying the risks
of heart failure, and arrhythmia detection. These tasks are challenging due
to the nature of data, which is collected in large amounts and from hetero-
geneous data sources, including electronic health records (EHRs), imaging
studies, and wearable devices. While the data is plentiful, it is usually scat-
tered between multiple entities that are legally bound to protect patient
privacy. This poses a significant challenge for ML researchers, as the data
available at a single site is usually not sufficient to train a robust model,
but the aforementioned privacy concerns prevent the sharing of data across
sites. This challenge can be addressed by federated learning, a promising
approach that allows multiple actors to collaborate in building a shared
model without compromising patient privacy. In federated learning, data
remains stored locally at each site, and ML models are trained using shared
model parameters from all sites rather than sharing the underlying data
itself.

This thesis explores different tools for federated learning and their specific
applications in medical domains. We conducted a comprehensive literature
review on recent techniques used in federated learning and commonly used
machine learning techniques for cardiology risk score assessment. We discuss
these tools, analyzing the usage of novel tools as well as those frequently
used in the cardiology field. From the literature analysis, we learn that
simple tools based on ensemble methods (specifically Random Forests) and
Logistic Regression are the most commonly employed techniques. Indeed,
while neural networks are currently at the forefront of machine learning

2



advancements, they are rarely used in this field. The reason is likely multi-
faceted, but we argue that this may be potentially due to interpretation
and training challenges. We suggest that adopting large, federated datasets
and semi-supervised techniques could significantly improve the current per-
formance of predictions based on machine learning techniques and pave the
way for more sophisticated approaches.

Another contribution of this thesis is the development of the PRAISE
score calculator. The PRAISE score calculator is an application used in
the field of cardiology. It is a tool specifically designed to assess the risk of
adverse cardiovascular events in patients who undergo percutaneous coro-
nary intervention (PCI), which is a common procedure to treat coronary
artery disease. The PRAISE score considers various clinical factors, such
as age, sex, comorbidities, and procedural characteristics, to provide an es-
timation of the patient’s risk profile. It assists healthcare professionals in
making informed decisions regarding the management and treatment of pa-
tients undergoing PCI. It is risk analysis tool based on the PRAISE dataset
having AdaBoost and Random Forest machine learning techniques. We
finely tuned the parameters of the algorithm, and we were able to achieve
good predictive results. We were then able to build a web-based tool (the
PRAISE score calculator), which is freely available online for anyone to use.
Finally, we also analyzed the possibility of developing similar tools on the
PRAISE dataset using federated learning techniques. We compared the
performance of two methods FedAvg and AdaBoost.F, from the point of
view of prediction performances, computation requirements, and communi-
cation costs. We achieved F1 and F2 scores consistently comparable to the
PRAISE score study using a 16-parties federation but within an order of
magnitude less time and ensuring that the privacy of the involved patients
was not compromised.
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Chapter 1

Introduction

Machine learning is a rapidly growing field of computer science focused
on developing algorithms and techniques that allow machines to learn from
data and make predictions or decisions without being explicitly programmed.
ML is a subfield of artificial intelligence(AI) that focuses on developing al-
gorithms and statistical models that enable machines to learn from data
without being explicitly programmed. ML is a powerful technology that is
being applied across a wide range of industries to solve complex problems,
automate processes, and make data-driven decisions[1]. As more data be-
comes available and ML algorithms continue to improve, the possibilities for
this technology are endless. With the increasing amount of data available,
ML has become a powerful tool for solving many real-world problems[2, 3].
This technology is increasingly used in various applications such as health-
care, finance, transportation, e-commerce, speech recognition, security, and
natural language processing.

Another area where ML is gaining popularity is in natural language pro-
cessing (NLP)[4].With the help of ML algorithms, machines can understand
and generate human language, enabling them to perform tasks such as sen-
timent analysis, language translation, and chatbot development[5, 6].ML
algorithms train the NLP models, allowing them to analyze text, identify
patterns, and extract meaning from written or spoken language[7].This tech-
nology is used in customer service, marketing, and education industries. ML
is also being used to improve the efficiency of manufacturing processes[8].
With the help of predictive analytics, machines can learn to predict equip-
ment failures and optimize production schedules, leading to significant cost
savings. ML is used in finance for fraud detection[9], investment manage-
ment, risk management[10]. By analyzing large amounts of data, machines
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can identify fraudulent activity patterns, predict market trends, and identify
investment opportunities. ML is also being used to improve transportation
systems[11]. ML is also used to optimize city traffic flow, which can help
reduce congestion and improve air quality. Self-driving cars rely on ML
algorithms to analyze data from sensors and cameras to decide how to nav-
igate roads and avoid obstacles[12]. In e-commerce, ML analyzes customer
data to make personalized product recommendations and enhance the shop-
ping experience[13]. Machine learning algorithms can analyze a customer’s
past purchases and browsing history.

ML has a wide range of applications in the field of medicine. It can diag-
nose diseases, predict patient outcomes, and identify treatment plans. One
of the challenges in using machine learning for medical applications is the
need to work with large amounts of sensitive patient data, which can create
privacy and security concerns[14, 15]. Federated learning is a technique that
addresses these concerns by allowing machine learning models to be trained
on decentralized data sources without the need to transfer sensitive data to
a central location[16, 17]. In federated learning, the machine learning model
is trained locally on each data source, and then the updates to the model
are aggregated to create a global model. This approach can help to en-
sure patient privacy while allowing for effective machine learning in medical
applications. The FL healthcare project illustrates the implementation of
federated learning in medicine to create a platform for tabular and medical
image analysis using federated learning techniques[15]. The initiative inves-
tigates the potential of federated learning to evaluate medical information,
including forecasting stroke and diabetes risk and examining CT scans and
X-rays for detecting illnesses such as COVID-19 and lung cancer[18–20].
Using federated learning, the platform would enable medical organizations
to partner and exchange data to train a ML model without compromising
patient privacy. Personalized medicine is another instance where ML is uti-
lized in the field of medicine. FL can analyze large amounts of patient data
to identify patterns and predict individual patient outcomes. This approach
can help doctors to tailor treatment plans for individual patients based on
their specific needs and risk factors. Additionally, FL has the potential to
transform field of medicine, enabling new insights and personalized treat-
ment plans while preserving patient privacy and security.

The contribution of this dissertation is threefold. First, we studied dif-
ferent federated learning techniques in the literature and tools to better
understand the federated learning methodology. Second, we investigated

12



1 – Introduction

the cardiology literature for machine learning. We also applied the ma-
chine learning techniques to the PRAISE dataset to predict a risk score and
achieved excellent results. We are able to develop a tool called PRAISE
Score. At last, we used the PRAISE dataset the federated learning using
FedAvg and AdaBoost.F and We achieved F1 and F2 scores which are con-
sistently comparable to the PRAISE score study of a 16-parties federation
but within an order of magnitude less time. A comprehensive summary of
these contributions can be found in Section 1.1.

This dissertation is the final result of a three-year Ph.D. program, and
the author produced 6 research publications in journals and conferences,
which form the foundation of this dissertation. The articles cover a variety
of subjects, primarily federated learning, machine learning, deep learning
(DL), and cardiology. Some of the articles are directly related to the thesis
topic. The author’s main contribution is detailed in Section 1.1, and a
comprehensive list of the author’s publications is provided in Section 1.2.

1.1 Main contributions

The first focus of our thesis was to explore the various tools for federated
learning. Through our investigation, we discovered that these tools are
designed to serve a specific purpose. Furthermore, we conducted a review
of recent literature regarding techniques used in federated learning, which
enhanced our understanding of the most up-to-date approaches in this field.

Second, we reviewed the traditional machine learning approaches for
medicine more. Specifically, we focused on the cardiology risk score as-
sessment. This work found different widely used machine learning and sta-
tistical techniques. In our observation, we have discovered that ensemble
methods, particularly Random Forests and logistic regression, are the most
frequently utilized machine learning tools in recent cardiovascular research
studies. Despite being at the forefront of machine learning advancements,
neural networks are not as prevalent in this field as expected. We specu-
late that this may be due, in part, to the challenges in interpreting them
and their difficulty in training, requiring larger datasets if not appropriately
tuned. Large (federated) datasets and unsupervised techniques are still not
used much. Adopting them would significantly improve the current perfor-
mances of predictions based on ML techniques and pave the way to broader
adoption of more sophisticated ML techniques.

Third, we used a cardiology dataset called PRAISE datasets for machine
13



learning techniques AdaBoost and Random Forest. We achieved good re-
sults after tuning the hyperparameter. We built a web-based tool called the
PRAISE score calculator, which is online and accessible to everybody. At
last, we used the same PRAISE dataset for federated learning in which we
compared the two methods AdaBoost.F and FedAvg. We study the perfor-
mance of test accuracy of AdaBoost.F (accuracy, F1, F2, precision, recall)
and scalability in two different execution environments: a cluster of Virtual
Machines on an OpenStack cloud and an HPC cluster. We achieved F1 and
F2 scores which are consistently comparable to the PRAISE score study of
a 16-parties federation but within an order of magnitude less time.

1.2 List of publications

This section lists all the author’s publications in reverse chronological order.
Research work organised in Section 1.2.1 categorises it based on the venue.
Among them, J1, J3, C1 and a PRAISE tool T1 are direct results of this
dissertation, but all cover topics and use-cases that served as inspirations
for the main contributions.

1.2.1 Publications organised by venue

Journal papers

J1 Y. Arfat, G. Mittone, R. Esposito, B. Cantalupo, G. M. de Ferrari, and
M. Aldinucci, “Machine learning for cardiology,” Minerva Cardiology
and Angiology 2022 February; 70 (1): 75-91.

J2 G. Agosta, M. Aldinucci, C. Alvarez, R. Ammendola, Y. Arfat, O.
Beaumont, M. Bernaschi, A. Biagioni, T. Boccali, B. Bramas, C. Bran-
dolese, B. Cantalupo, M. Carrozzo, D. Cattaneo, A. Celestini, M.
Celino, I. Colonnelli, P. Cretaro, P. D’Ambra, M. Danelutto, R. Es-
posito, L. Eyraud-Dubois, A. Filgueras, W. Fornaciari, O. Frezza, A.
Galimberti, F. Giacomini, B. Goglin, D. Gregori, A. Guermouche, F.
Iannone, M. Kulczewski, F. Lo Cicero, A. Lonardo, A. R. Martinelli,
M. Martinelli, X. Martorell, G. Massari, S. Montangero, G. Mittone,
R. Namyst, A. Oleksiak, P. Palazzari, F. Reghenzani, C. Rossi, S.
Saponara, F. Simula, F. Terraneo, S. Thibault, M. Turisini, P. Vicini,
M. Vidal, D. Zoni, and G. Zummo, “Towards extreme scale technolo-
gies and accelerators for eurohpc hw/sw supercomputing applications
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1 – Introduction

for exascale: the textarossa approach,” Microprocessors and microsys-
tems, vol. 95, p. 104679, 2022. doi:10.1016/j.micpro.2022.104679

J3 F. D’Ascenzo, O. De Filippo, G. Gallone, G. Mittone, M. A. Deriu,
M. Iannaccone,A. Ariza-Solé, C. Liebetrau, S. Manzano-Fernández, G.
Quadri, T.Kinnaird, G. Campo, J. P. Simao Henriques, J. M. Hughes,
A. Dominguez-Rodriguez, M. Aldinucci, U. Morbiducci, G. Patti, S.
Raposeiras-Roubin, E.Abu-Assi, G. M. De Ferrari, F. Piroli, A. Sagli-
etto, F. Conrotto, P. Omedé,A. Montefusco, M. Pennone, F. Bruno,
P. P. Bocchino, G. Boccuzzi, E. Cerrato,F. Varbella, M. Sperti, S. B.
Wilton, L. Velicki, I. Xanthopoulou, A. Cequier,A. Iniguez-Romo, I.
Munoz Pousa, M. Cespon Fernandez, B. Caneiro Queija, R.Cobas-Paz,
A. Lopez-Cuenca, A. Garay, P. F. Blanco, A. Rognoni, G. Biondi-
Zoccai, S. Biscaglia, I. Nunez-Gil, T. Fujii, A. Durante, X. Song, T.
Kawaji, D.Alexopoulos, Z. Huczek, J. R. Gonzalez Juanatey, S.-P. Nie,
M.-a. Kawashiri,I. Colonnelli, B. Cantalupo, R. Esposito, S. Leonardi,
W. Grosso Marra, A.Chieffo, U. Michelucci, D. Piga, M. Malavolta,
S. Gili, M. Mennuni, C. Montalto,L. Oltrona Visconti, and Y. Arfat,
«Machine learning-based prediction ofadverse events following an acute
coronary syndrome (PRAISE): a modellingstudy of pooled datasets»,
The Lancet, vol. 397, no. 10270, pp. 199–207, 2021,issn: 0140-6736.
doi: 10.1016/S0140-6736(20)32519-8

Conference papers

C1 Y. Arfat, G. Mittone, I. Colonnelli, F. D’Ascenzo, R. Esposito, and
M. Aldinucci, “Pooling critical datasets with federated learning,” in
Proc. of 31st euromicro intl. conference on parallel distributed and
network-based processing (pdp), Napoli, Italy, 2023.

C2 I. Colonnelli, B. Casella, G. Mittone, Y. Arfat, B. Cantalupo, R.
Esposito, A. R. Martinelli, D. Medić, and M. Aldinucci, “Federated
learning meets HPC and cloud,” in Astrophysics and space science pro-
ceedings, Catania, Italy, 2022.

C3 G. Agosta, W. Fornaciari, A. Galimberti, G. Massari, F. Reghenzani, F.
Terraneo, D. Zoni, C. Brandolese, M. Celino, F. Iannone, P. Palazzari,
G. Zummo, M. Bernaschi, P. D’Ambra, S. Saponara, M. Danelutto,
M. Torquati, M. Aldinucci, Y. Arfat, B. Cantalupo, I. Colonnelli, R.
Esposito, A. R. Martinelli, G. Mittone, O. Beaumont, B. Bramas, L.
Eyraud-Dubois, B. Goglin, A. Guermouche, R. Namyst, S. Thibault,
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A. Filgueras, M. Vidal, C. Alvarez, X. Martorell, A. Oleksiak, M. Kul-
czewski, A. Lonardo, P. Vicini, F. L. Cicero, F. Simula, A. Biagioni, P.
Cretaro, O. Frezza, P. S. Paolucci, M. Turisini, F. Giacomini, T. Boc-
cali, S. Montangero, and R. Ammendola, “TEXTAROSSA: towards
extreme scale technologies and accelerators for eurohpc hw/sw super-
computing applications for exascale,” in Proc. of the 24th euromi-
cro conference on digital system design (DSD), Palermo, Italy, 2021.
doi:10.1109/DSD53832.2021.00051

1.2.2 Developed Tools

The PRAISE score calculator is an application used in the field of cardiol-
ogy. It is a tool specifically designed to assess the risk of adverse cardiovas-
cular events in patients who undergo percutaneous coronary intervention
(PCI), which is a common procedure to treat coronary artery disease. The
PRAISE score considers various clinical factors, such as age, sex, comorbidi-
ties, and procedural characteristics, to provide an estimation of the patient’s
risk profile. It assists healthcare professionals in making informed decisions
regarding the management and treatment of patients undergoing PCI.

T1 Praise Score: https://praise.hpc4ai.it/
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Chapter 2

Background on Federated
Learning

The most well-known federated learning tools will be covered in this chap-
ter, along with the most recent federated learning methodology research.
However, in our thesis, we will leverage OpenFL [21] as the base framework
for FL, but over the past few years, there have been numerous attempts
to apply federated learning (FL) technology to healthcare and other indus-
tries. These efforts, which range from open-source projects like TensorFlow
Federated [22] and PySyft [23] to commercial offerings like IBM® Federated
Learning [24] and HP Swarm Learning [25], have aimed to address the needs
of researchers and practitioners in a variety of settings.

However, some of these efforts have focused on simulated environments
for research purposes, while others have been designed specifically for pro-
duction use cases. Other notable FL projects in the healthcare and other
industries include FedML [26], FATE [27], Flower [28], Fed-BioMed [29],
FederatedScope [30], FLUTE [31], and FLARE [32]. Each tool has unique
qualities depending on how it will be used. The section 2.1 covers these
tools in more detail.

2.1 Federated Learning

Google introduced the phrase "Federated Learning" in 2016 to describe a
machine learning environment in which numerous entities known as clients
(such as mobile devices or entire enterprises) work together to jointly train a
model while maintaining different machines for training data. Each client’s
raw data is kept locally rather than being transmitted or transported to
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fulfill the learning aim; instead, focused updates designed for quick aggrega-
tion are employed. Introducing an imbalanced and non-IID (identically and
independently distributed) data partitioning over a sizable number of unre-
liable devices with constrained connection bandwidth served as the defining
set of challenges. The machine learning process is distributed to the edge
using federated learning.

While the training data is kept on the device, it enables clients to learn
a shared model collectively. It distinguishes between the requirements for
machine learning and cloud data storage. A client downloads the common
model in a federated learning computing system. The model is then trained
locally, and it is subsequently improved by using locally stored data for
learning. The changes are then briefly updated, often with the model pa-
rameters and associated weights. Since the term "federated learning" was
first used to describe applications for mobile and edge devices, interest in
adapting FL to other applications, including ones that may only involve a
limited number of consistently dependable clients, such as numerous busi-
nesses cooperating to train a model, has significantly expanded. Figure 2.1
shows a typically federated learning process, for example, if a user’s phone
personalizes the model locally based on her usage (A). Many users’ updates
are then aggregated (B). The global update is shared with the clients (C).

2.2 Distribution types of Federated Learning

In the first section 2.1, we established a precise definition of federated learn-
ing and examined its connection to the current challenges in the field of
learning. Distinctions between data center distributed learning, cross-silo
federated learning, and cross-device federated learning were presented with
regard to network topology and entities. Each type of federated learning
entails a unique approach and set of conditions that influence task coordi-
nation. Moving forward, we will delve into the specifics of each federated
learning category.

2.2.1 Datacenter distributed learning

Datacenter distributed learning is a promising approach for training ma-
chine learning models in distributed environments. It can be applied to
various use cases, such as healthcare, finance, and IoT. In this approach,
the training of machine learning models using data from multiple sources,
often located in different locations or even different organizations. In this
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2 – Background on Federated Learning

Figure 2.1: A lifecycle of Federated Learning

technique, each data source (or "node") trains its model using its data and
then shares its model updates with other nodes. These updates are then
combined to create a global model that is more accurate and robust than
any single node’s model.

This approach has several advantages over traditional centralized learning
methods, where all data is collected and processed in a single location. For
example, datacenter distributed learning can:

• Improve privacy and security, as data never needs to leave the control
of its original owner

• Handle large and diverse data sets, as each node can have its own data
and model

• Reduce communication and storage costs, as only model updates need
to be shared, not the entire dataset

However, datacenter distributed learning also poses some challenges, such
as:

• Handling data heterogeneity and bias across nodes

• Ensuring data security and privacy during model updates
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• Managing the coordination and communication between nodes

2.2.2 Cross-silo federated learning

A model is trained using siloed data in a cross-silo federated learning en-
vironment. Clients can be various businesses (such as financial or medical
institutions) or geographically dispersed data centers. Locally generated
data is still decentralized. Each client keeps its own data in storage; other
clients’ data cannot be read. Data is not delivered uniformly or indepen-
dently. The training is organized by a central server or service that never
sees the raw data. Hub-and-spoke structure, with the spokes connecting to
the clients and the hub indicating a coordinating service provider (usually
without data). From 2 to 100 clients, all are almost always accessible. Com-
munication or computation could be a bottleneck. Every client has a name
or identity that the system can access. Since clients carry state from round
to round and are stateful, they can participate in each compute round with
minimal failures. The data division has been rectified. This approach is
beneficial for the following reasons:

• Improved data privacy: Federated learning allows for training mod-
els on decentralized data, reducing the need for data to be centralized
and shared among multiple organizations.

• Increased data diversity: The resulting models can be more robust
and better generalized to diverse populations by training models on
data from multiple organizations.

• Reduced data labeling costs: Federated learning allows for the shar-
ing of labeled data among organizations, reducing the need for each
organization to label its data individually.

There are many situations when this approach is not useful as:
• Complex coordination: Coordinating the training of models across

multiple organizations can be complex and time-consuming.

• Data distribution differences: The data distribution across different
organizations may not be the same, leading to potential bias in the
resulting models.

• Limited scalability: Federated learning may not be practical for
large-scale datasets or organizations with limited computational re-
sources.
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2.2.3 Cross-device federated learning

Many mobile or IoT devices have clients for cross-device federated learn-
ing. Locally generated data is still decentralized. Each client stores its own
data; other clients’ data cannot be read. Data is not delivered uniformly or
independently. The training is organized by a central server or service that
never sees the raw data. A hub-and-spoke structure, where the spokes link
to clients and the hub represents a coordinating service provider (usually
without data). At any given time, only a small portion of clients are acces-
sible, frequently with daily or other fluctuations. Depending on the task,
communication is typically the main bottleneck.

Cross-device federated computations typically employ slower connections
or wi-fi. Direct client indexing is impossible (i.e., no use of client identi-
fiers). Because clients are stateless and are expected to participate in a job
just once, it is commonly assumed that each round of computation will use
a new sample of clients who have never been seen before. This approach is
extremely unreliable; it is estimated that 5 percent or more of the clients
taking part in a computing round may fail or drop out (e.g., because the
device becomes ineligible when the battery, network, or idleness require-
ments are violated). The data partition cannot be changed and can only be
partitioned as an example (horizontal). This technique is beneficial:

• Better model performance: By combining data from multiple de-
vices, cross-device federated learning can improve the performance of
machine learning models by providing a more extensive and diverse
dataset to train on.

• Cost savings: Cross-device federated learning eliminates the need for
centralized data storage, which can save costs associated with server
infrastructure and data storage.

• Improved data security: By not sharing personal data, cross-device
federated learning reduces the risk of data breaches and other security
threats.

• Real-time updates: With cross-device federated learning, models can
be updated in real-time, allowing for more accurate predictions and
better decision-making.

• Improved user engagement: By allowing users to contribute their
data to the training process, cross-device federated learning can increase
user engagement and participation.
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However, cross-device federated learning also poses some challenges. As
these challenges are:

• Device compatibility issues: Not all devices may be compatible with
the federated learning system, which can limit the number of devices
that can participate in the learning process.

• Network connectivity issues: Cross-device federated learning re-
quires a stable and fast internet connection, which can be problematic
in areas with the poor network coverage.

• Complex implementation: Implementing a cross-device federated
learning system requires significant technical expertise and resources.

• Limited scalability: Cross-device federated learning may not be able
to scale to large numbers of devices, making it less suitable for specific
use cases.

• Limited control over data: Cross-device federated learning relies on
data from other devices, making it difficult to control the quality and
accuracy of the data used in the learning process.

• Security risks: Cross-device federated learning can pose security risks,
as sensitive data may be shared between devices, which hackers or other
malicious actors could compromise.

2.3 Categorization of federated learning

We can classify the federated learning techniques into different categories
based on the data partitioning features. We categorize federated learning
as horizontal federated learning, vertical federated learning, and federated
transfer learning depending on how data is dispersed across multiple parties
in the feature and sample ID space. The features and sample space of the
data parties may not be identical.

2.3.1 Horizontal federated learning

In situations where datasets have the same feature space but vary in sam-
ples, horizontal federated learning (also called sample-based federated learn-
ing) is employed. This approach is illustrated in Figure 2.2 and was first
introduced by [14]. An example scenario could involve two regional banks
with different user groups from their respective regions but with comparable
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2 – Background on Federated Learning

Figure 2.2: A horizontal federated learning system

business operations and feature spaces. In this system, a group of k partici-
pants with identical data structures collaboratively learn a machine learning
model utilizing the aid of a parameter or cloud server. It is generally as-
sumed that the participants are trustworthy, while the server is honest but
inquisitive, which means that no data leakage from any participants to the
server is permissible.

2.3.2 Vertical federated learning

Vertical federated learning, referred to as feature-based federated learning,
is a technique used when datasets share the same sample ID space but
differ in feature space. As illustrated in Figure 2.3 and described by [14],
this approach can be applied to scenarios such as two different companies
in the same city, one being a bank and the other an e-commerce company.
Their user bases are likely to include most of the residents of the area,
resulting in a large intersection of their user space. However, since the
bank records the user’s revenue, expenditure behavior, and credit rating,
while the e-commerce company retains the user’s browsing and purchasing
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history, their feature spaces are considerably different.

Figure 2.3: A vertical federated learning system

2.3.3 Federated transfer learning

Federated transfer learning is applicable when datasets differ not only in
their samples but also in their feature spaces. Figure 2.4 depicts an example
of federated transfer learning [14]. Suppose there are two institutions: a
bank in China and an e-commerce company in the United States. The user
groups of the two institutions have limited intersections due to geographical
restrictions. Additionally, only a small fraction of the feature space overlaps
because of their distinct businesses.

2.4 Federated Learning Tools

In this section, we will enumerate and examine all the tools for federated
learning.

2.4.1 The intel OpenFL® framework

OpenFL® [21] is an open-source tool for cross-silo FL based on Python 3,
designed to be flexible, extensible, community-driven, and easy to learn
for data scientists. The potential of OpenFL has already been showcased
in [33], where the tool was used to build the world’s largest federation to
date. Figure 2.5 shows an overview of the OpenFL architecture. Note
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Figure 2.4: A federated transfer learning

Figure 2.5: The intel OpenFL software stack.

that the vanilla OpenFL only supports neural networks, as most of the FL
frameworks in the market. Our re-engineering effort to support AdaBoost.F
targeted specifically the software component coloured in blue and marginally
the orange ones. This way, the user interaction with the framework is
only marginally affected. A detailed description of the re-engineering effort,
including design choices and implementation details is provided in [136].
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There are two key actors in a federation. Each collaborator accesses its
own data to train a replica of the ML model. A central aggregator collects
and merges the updates produced by each collaborator. While collaborators
live at the edges of the federation, the aggregator usually runs on a data
centre or in the cloud. This is necessary due to its high network usage and
its reachability and reliability requirements.

2.4.2 TensorFlow Federated

TensorFlow Federated (TFF)[22] is an open-source framework developed
by Google that enables implementing of federated learning algorithms. It
provides tools and APIs for writing distributed machine learning programs
that can run on various devices, such as smartphones, IoT devices, and
other edge devices. TFF includes a set of libraries and tools for defining
and training federated models and evaluating their performance. It allows
developers to build and deploy federated learning models using TensorFlow,
a popular machine learning library. TFF also enables customized federated
learning algorithms and offers an execution platform for simulating and
deploying federated learning systems. It also supports secure aggregation,
differential privacy, and other advanced techniques for federated learning.

2.4.3 PySyft

PySyft[23] is a Python library for secure, privacy-preserving ML. It is an
open-source framework built on top of PyTorch, a popular deep learning
framework. PySyft provides tools and abstractions for building and train-
ing ML models using distributed computing while maintaining privacy and
security. The main goal of PySyft is to enable machine learning researchers
and practitioners to collaborate on private and sensitive data while ensur-
ing that data remains secure and confidential. PySyft supports privacy-
preserving techniques such as federated learning, homomorphic encryption,
and differential privacy.

PySyft is a powerful tool for building privacy-preserving ML applica-
tions in various domains, including healthcare, finance, and government. It
is an active research area, and the community continuously develops new
techniques and applications for secure ML. PySyft features the Paillier cryp-
tosystem for partially homomorphic encryption and noise addition tools to
achieve differential privacy. Its user-friendly design includes a simple API,
similar to PyTorch, and a variety of tutorials and examples to facilitate the
use of federated learning, homomorphic encryption, and differential privacy.
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2.4.4 IBM® federated Learning

IBM® Federated Learning[24] is a framework developed by IBM that al-
lows multiple parties to collaborate on a machine learning project without
sharing their data, using a central server to coordinate the training process.
In contrast, each party keeps its data on their own systems. The server
sends updates to each party, which they use to update their models. The
models are then combined to create a final model for all parties. The IBM
Federated Learning framework provides a secure and privacy-preserving ap-
proach to training machine learning models by keeping the data local and
using encryption and other security measures to protect the privacy of the
data. The framework provides the following features:

• Privacy-preserving data aggregation In federated learning, the
model updates from each device are aggregated to create a final, cen-
tralized model. The IBM Federated Learning framework uses advanced
cryptography techniques, such as differential privacy and secure multi-
party computation, to ensure that the aggregated model updates do
not reveal sensitive information about each device’s local data.

• Distributed model training The IBM Federated Learning frame-
work enables organizations to train machine learning models on data
distributed across multiple devices or locations. This reduces the need
for data transfer and enables organizations to take advantage of the
benefits of distributed data while also ensuring that sensitive data is
not exposed.

• Client-side model deployment Once the model has been trained,
the IBM Federated Learning framework enables organizations to deploy
the model directly to the client devices. This reduces the need for data
transfer and enables organizations to take advantage of the benefits of
distributed data while also ensuring that sensitive data is not exposed.

• Customizable model training The IBM Federated Learning frame-
work enables organizations to customize the training process by speci-
fying the type of model to be trained, the data to be used for training,
and the hyperparameters of the model.

The IBM Federated Learning framework consists of several components,
including a federated learning server, client SDKs for different platforms,
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and tools for managing and monitoring the training process. The server co-
ordinates the training process and aggregates the model updates from the
client devices. In contrast, the client SDKs provide the necessary libraries
and APIs for integrating the framework into various applications. IBM
Federated Learning framework offers a powerful solution for organizations
that need to train machine learning models on distributed data while main-
taining data privacy and security. By enabling organizations to keep their
data local and secure, the framework makes it possible to take advantage
of the benefits of distributed data without compromising data privacy and
security.

2.4.5 HPE Swarm Learning

HPE Swarm Learning[25] is a decentralized, privacy-preserving framework
for performing machine learning model training at the data source. It allows
multiple devices to collaborate and learn from each other to improve the
accuracy of predictions and enhance the overall efficiency of the learning
process. Swarm Learning distributes the learning process across multiple
devices, such as edge devices or IoT devices, where each device has its own
data set. The devices collaborate by sharing model updates and communi-
cating with each other to improve the accuracy of predictions. One of the
critical advantages of Swarm Learning is that it enables privacy-preserving
machine learning. Instead of collecting and transferring large amounts of
data to a centralized location, the learning algorithm is executed locally on
the devices. This approach protects the privacy of the data and reduces the
risk of data breaches.

HPE Swarm Learning uses a combination of federated learning, differen-
tial privacy, and blockchain technology to ensure the security and privacy of
the learning process. Federated learning allows devices to collaborate with-
out sharing data directly, differential privacy provides a way to add noise to
data to prevent the reconstruction of sensitive information, and blockchain
technology is used to ensure the integrity of the model updates and prevent
unauthorized modifications. HPE Swarm Learning presents a compelling
method for decentralized machine learning that can improve the accuracy
of predictions while preserving privacy and security.

2.4.6 FATE

Federated AI Technology Enabler(FATE)[27] Framework is an open-source
platform that enables the development, deployment, and management of
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federated learning (FL) models. It provides a set of libraries, tools, and ser-
vices that allow data scientists and engineers to build FL models securely
and efficiently. The FATE Framework consists of several components, in-
cluding:

• Data Management: This component allows for data management,
storage, and privacy. It supports various data sources like databases,
files, and streams.

• Federated Learning: This component provides a set of libraries and
tools to implement FL algorithms, such as federated averaging and
federated optimization.

• Model Management: This component allows for model management,
including model training, deployment, and versioning.

• Security and Privacy: This component provides data and model
encryption, secure communication, and data privacy.

• Monitoring and Auditing: This component allows for monitoring
and auditing of FL models, including data quality and model perfor-
mance.
In summary, the FATE Framework simplifies the process of building FL
models and allows for secure and efficient deployment and management
of these models.

2.4.7 FedML

Federated Machine Learning Framework(FedML)[26] is an open-source ma-
chine learning framework designed to support federated learning. It pro-
vides a unified interface for federated learning on various data types and
architectures. In FedML, the data is kept on the individual parties’ systems
and is not shared with others. Instead, the parties use a central server to
coordinate the training process, sending updates to each other and combin-
ing their models to create a final model that all parties can use. FedML
has the potential to enable companies to work together on machine learning
projects without compromising the privacy of their data. FedML provides
the following features:

• A flexible data pipeline: FedML allows users to define their own
data pipeline, which enables using various data types, such as images,
text, and structured data.
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• Support for various models: FedML supports many models, includ-
ing deep learning models, linear models, and decision trees.

• Support for various federated learning protocols: FedML sup-
ports a wide range of federated learning protocols, such as federated
averaging and federated stochastic gradient descent.

• Easy integration: FedML is designed to be easily integrated with
other machine learning frameworks, such as TensorFlow and PyTorch.

• Scalability: FedML is designed to scale to large numbers of devices,
which allows for large-scale federated learning experiments.

• Security: FedML provides security features, such as secure aggregation
and differential privacy, to protect user privacy.

2.4.8 Flower

The Flower [34] framework is an open-source platform for federated learning
that enables the training of machine learning models on decentralized data.
It provides a high-level programming interface and a set of tools to simplify
the process of building and deploying federated learning models. One of the
key features of Flower is its ability to support a variety of FL architectures,
including both homogeneous and heterogeneous FL. Homogeneous FL in-
volves training the same model across multiple devices with similar data
distributions, while heterogeneous FL involves training different models on
different devices with varying data distributions.

Flower also supports various optimization algorithms, including stochas-
tic gradient descent (SGD), a popular optimization algorithm used in ma-
chine learning. Another feature of Flower is its ability to provide a decen-
tralized approach to training models. Rather than relying on a centralized
server for training, Flower allows for the distributed training of models
across multiple devices. This approach helps to preserve data privacy by
keeping it on the device where it was generated. Flower also offers security
features to protect the privacy and confidentiality of data. For example, it
uses encryption and authentication techniques to ensure data is transmitted
securely and only authorized parties can access it. The Flower framework
provides a user-friendly and secure platform for federated learning that de-
velopers can use to quickly build decentralized machine learning models.
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2.4.9 Fed-BioMed

Federated Biomedical Learning(Fed-BioMed)[35] refers to the use of fed-
erated learning techniques in the field of biomedical research. Federated
learning involves the collaboration of multiple parties, each with their own
data, to train a shared model without sharing the data itself. It can be
helpful in the biomedical field, where data privacy is a significant concern
and data sharing is often limited due to ethical, legal, and regulatory consid-
erations. Fed-BioMed can enable researchers to work together on machine
learning projects and analyze large datasets without compromising their
data privacy. It has the potential to improve the accuracy and efficiency
of biomedical research and enable the development of new treatments and
therapies.

2.4.10 FederatedScope

FederatedScope[30] is a tool for federated learning developed by the Data
Science team at WeBank, the digital banking arm of Tencent. It is an open-
source platform that allows multiple parties to collaborate on a machine
learning project without sharing their data. FederatedScope allows parties
to train a shared model using their own data and send updates to a central
server, which combines the updates to create a final model. It is designed
to be easy to use, with a simple API and a web-based GUI for monitoring
and managing the federated learning process. FederatedScope can be used
for a variety of machine learning tasks, including classification, regression,
and recommendation systems. It is designed to work with both PyTorch,
TensorFlow and supports various algorithms and architectures.

2.4.11 FLUTE

Federated Learning Under Threat of Eviction(FLUTE )[31] is a federated
learning framework developed by researchers at Carnegie Mellon University.
It is designed to resist the attacks that attempt to manipulate the model or
prevent certain parties from participating in the federated learning process.
FLUTE achieves this by using an optimization algorithm that maximizes
the model’s performance while ensuring that all parties can contribute to
the training process. It also includes a "threat of eviction" mechanism that
prevents malicious parties from disrupting the training process by threaten-
ing to remove them from the federated learning network. FLUTE effectively
improves the resilience of federated learning systems to attacks and improves
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the final model’s performance.

2.4.12 FLARE

Federated Learning with Adaptive and Resilient Execution(FLARE )[32] is
a federated learning framework developed by researchers at Carnegie Mellon
University. It is designed to be resilient to attacks that attempt to manipu-
late the model or prevent certain parties from participating in the federated
learning process. FLARE achieves this by using an adaptive optimization
algorithm that adjusts the training process in response to network changes
and malicious parties’ presence. It also includes a mechanism for detecting
and mitigating attacks and a "threat of eviction" mechanism that prevents
malicious parties from disrupting the training process by threatening to
remove them from the federated learning network. FLARE is effective at
improving the resilience and performance of federated learning systems.

2.5 Literature on Federated Learning

Federated Learning (FL) has been proposed by McMahan et al. [16] as a
way to develop better AI systems without compromising the privacy of final
users and the legitimate interests of private companies. Initially deployed by
Google for predicting text input on mobile devices, FL has been adopted by
many other industries, such as mechanical engineering and health care [36].
Since then, FL has seen a growing interest from the research community,
which has identified a few different and interesting settings.

In cross-device FL, the parties can be edge devices (e.g., smart devices
and laptops); they can be numerous (order of thousands or even millions).
Parties are considered not reliable and with limited computational power.
To name a few examples, cross-device FL setting has been adopted in [37]
for training a language model for next-word prediction in a virtual keyboard
for smartphones; in [38] it has been used to predict emojis (again on a mobile
keyboard), or combined with [39] for learning models to be used with IoT
devices.

In the cross-silo FL setting, the involved parties are instead organizations;
the number of parties is limited, usually in the range [2, 100]. Given the
nature of the parties, it can also be assumed that communication and com-
putation are no real bottlenecks. Cross-silo FL settings have been adopted
for [40] investigating brain structural relationships across diseases and clini-
cal cohorts; it has also been used for optimizing production through soybean
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yield prediction [41] or, combined with differential privacy and secure multi-
party computation, for attacking important financial tasks such as optimal
trade execution, credit origination, or fraud detection [42].

Another important distinction in FL is the way data are distributed be-
tween clients. Based on this assumption, it is customary to distinguish
between horizontal and vertical FL. The most used assumption is the hori-
zontal data distribution. In this setting, the data is partitioned horizontally,
i.e., each client owns a subset of the rows of the total dataset. In contrast, in
vertical FL [43], one assumes that the rows are shared between the parties,
but each client has a different view of the data (i.e., a different set of fea-
tures for describing the rows). Vertical FL is very appealing in cases where
the objects in the datasets overlap a lot, but their descriptions have little
overlap. It has been applied to several interesting tasks ranging from 5G
communications [44] and proposed as a way to improve small and medium
enterprises’ credit ratings [43].

The Artificial neural network(ANNs) and Deep neural network(DNNs)
are rarely used for prediction tasks involving health care represented in
tabular form, and in the few cases where they are applied, they do not
show performances that are better than traditional ML approaches [45,
46]. Even though they have the potential to perform as well if not better
than other approaches, they are hard to tune, and this makes it difficult
for their usage by healthcare institutions. An alternative to ANN/DNN-
based FL has been recently proposed in [47]. This alternative, based on
the Extreme Gradient Boosting (XGB) ensemble algorithm, is still based
on gradient descent, but it allows one to train decision tree models locally.
Interestingly, XGB has been used several times in the medical literature
on tabular health care datasets [48–51] showing promising results. While
XGB-based techniques address some of the problems outlined above, they
require the clients to adopt specific learning algorithms (usually decision
trees) and are thus inflexible. The work presented in [52] introduces three
FL adaptations of the AdaBoost ensemble algorithm that work without
exchanging gradients between the aggregator and the clients. The approach
allows parties to train any kind of model locally (in principle, even different
models on each site), thus overcoming the main inflexibility of the XGB
approach.

33



2.5.1 Strong scalability in federated learning

Strong scaling[53] also known as speedup scaling(Amdahl’s law), is a mea-
sure of the improvement in execution time when the problem size is fixed,
and the number of processing units (such as CPUs or GPUs) is increased. In
strong scaling, the goal is to determine how much faster a parallel algorithm
or system can solve a fixed-size problem as more processors are added.

Strong scaling in federated learning refers to the scenario where the num-
ber of client devices or participants in the federated learning system in-
creases while keeping the total amount of data fixed. The goal of strong
scaling in federated learning is to reduce the training time or increase the
model’s accuracy while maintaining the same amount of data per client[54][16].
With strong scaling in federated learning, the challenge lies in effectively
coordinating and aggregating the local model updates from the increased
number of client devices. Communication overhead and network band-
width limitations can become significant factors affecting strong scaling
performance[16]. The system should efficiently handle the increased volume
of updates, synchronize the models, and ensure convergence while maintain-
ing data privacy and security[54][22].

2.5.2 Weak scalability in federated learning

In weak scaling[53] both the problem size and the number of processing units
are increased in proportion. Gustafson’s law governs weak scaling and states
that as the problem size grows, the relative time spent on parallelizable
portions of the computation increases, leading to higher overall performance
with more processors.

Weak scaling in federated learning involves increasing both the number of
client devices and the total amount of data, while maintaining a fixed data
distribution per client. In this scenario, the federated learning system aims
to handle larger-scale datasets while preserving the same per-client data
distribution and ensuring comparable training quality[54]. In weak scaling,
the federated learning system needs to handle increased data volumes and
computational requirements. It should scale horizontally to accommodate
more client devices, distribute the computational workload effectively, and
maintain the same data distribution across clients. Handling the increased
data volume without overwhelming the network bandwidth and computa-
tional resources becomes crucial in weak scaling[54].
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Chapter 3

Machine learning for
Cardiology

This chapter reviews recent cardiology literature and reports how Artifi-
cial Intelligence (AI) Tools (specifically, Machine Learning techniques) are
being used by physicians in the field. Each technique is introduced with
enough details to allow the understanding of how it works and its intent,
but without delving into details that do not add immediate benefits and re-
quire expertise in the field. We specifically focus on the principal Machine
Learning based risk scores used in cardiovascular research. After introduc-
ing them and summarizing their assumptions and biases, we discuss their
merits and shortcomings. Based on our expertise in Machine Learning, we
report on how frequently they are adopted in the field and suggest why
this is the case. We complete the analysis by reviewing how corresponding
statistical approaches compare with them.

Finally, we discuss the main open issues in applying Machine Learn-
ing tools to cardiology tasks, also drafting possible future directions. De-
spite the growing interest in these tools, we argue that there are many still
underutilized techniques: while Neural Networks are slowly being incor-
porated into cardiovascular research, other important techniques, such as
Semi-Supervised Learning and Federated Learning are still underutilized.
The former would allow practitioners to harness the information contained
in large datasets that are only partially labeled, while the latter would fos-
ter collaboration between institutions allowing building larger and better
models.

Figure 3.1 gives an overview of the chapter structure, describing in par-
ticular Sections 3.2 and 3.3, summarising the usual process followed by
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ML practitioners: the data are first preprocessed to improve their quality
(removing missing values, performing feature selection, . . . ), then the ML
algorithm is trained on them. The model obtained as output is iteratively
refined by searching for optimal (hyper) parameters by performing experi-
ments on the training or the validation data. Finally, the model is evaluated
on the test data and deployed for usage. After that, Section 3.4 deals with
statistical methods, and Section 3.5 discusses our findings.

3.1 Machine Learning: A background and importance

Recent years have witnessed a Cambrian explosion of tools and techniques
able to tackle problems that were only solvable by humans up to a few years
ago; collectively, we refer to these computer science methods as AI. AI is ac-
cumulating astounding successes at a breakneck pace in both research and
applications: from helping in recovering photos by their descriptions[55]
on devices used by billions of people to providing tools for investigating
the depths of the visible universe[56], AI has never been as capable and
popular as today. AI encompasses a vast variety of different techniques: in-
telligent agents[57], symbolic and subsymbolic reasonings[58], planning[59],
case-based reasoning[60], fuzzy systems[61], and expert systems[62] are just
a few of them. Despite this diversity, one sub-field in AI single-handedly pro-
vided the tools that allowed most of the mentioned successes to be achieved:
Machine Learning (ML).

In this chapter, we review some of the recent cardiology literature and re-
port on how ML tools are being used by medical doctors and scientists in the
complex tasks of understanding and predicting patients’ clinical situations.
AI, specifically ML, can provide clinicians with powerful tools supporting
and helping everyday crucial clinical decisions[63–65]. For this, the exploita-
tion of AI in medicine is a research direction actively endorsed by national
and European funding bodies. The 15M€ EU IA “DeepHealth”[66] (Deep-
Learning and HPC to Boost Biomedical Applications for Health, 2019-22)
and 6M€ EU RIA “Brainteaser” (BRinging Artificial INTelligencE home
for a better cAre of amyotrophic lateral sclerosis and multiple SclERosis,
2021-24) projects are just two recent examples of multi-disciplinary projects
directly addressing the development of novel ML tools for AI-assisted diag-
nosis through medical imaging. With such a great deal of investments and
with the renewed interest in the field, there are good chances that AI tech-
niques could become crucial tools to assist clinicians in accurately assessing
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Figure 3.1: A machine learning process

all the relevant factors leading to a diagnosis and the actions that follow. In
this context, physicians will remain central to all decisions but supported
by tools tailored to ease some of the burdens they face when dealing with
the complexity of their work.

ML encompasses all AI approaches specifically oriented towards building
models that improve their performances on a given task with experience,
that is, data; it is a vast research field able to tackle many tasks and includes
many techniques. One broad way to categorize such techniques is by looking
at the kind of supervision the learning algorithm receives with the learning
examples. The main distinction here is between supervised learning (where
all examples are associated with a label), unsupervised learning (where none
of the examples is associated with a label), and semi-supervised learning
(where only a few of the examples are labeled).

The topic is addressed from a technical perspective, introducing criteria
to compare the different techniques, explaining them, and critically review-
ing their pros and cons. We describe and review the most crucial risk scores
based on ML techniques, giving the reader a comprehensive perspective on
the AI applications currently available in the cardiovascular (CV) field. We
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also briefly analyze the main statistical approaches, comparing them with
ML methods.

In this chapter, our primary goals are to address the current knowledge
in the field of AI-based cardiological risk scores and offer new perspectives
on their development. The latest papers were collected reporting reviews
and comparisons of current methodologies from Google Scholar, covering
a wide range of works in computer science and cardiology communities.
From there, we proceeded backward, exploring the main literature strands
focusing specifically on supervised learning. As the reader shall see, only
supervised techniques are reviewed. While we initially set out to include
unsupervised and semi-supervised methods in our review, we realized that
researchers in the CV field are not currently exploiting these techniques.
We comment on this aspect in the final discussion (see section 3.5).

3.2 Data handling

In the supervised learning scenario, data comes from a labeled dataset
X=(xi,yi ) where examples (a.k.a. samples) xi are associated with labels
yi and are assumed to be i.i.d. (independent and identically distributed).
This section discusses widespread data preprocessing techniques to over-
come common issues like outliers, missing values, noisy readings, and many
others that often affect learning performance.

3.2.1 Features types

In the medical scenario, the samples xi usually describe patients’ data and
are structured into several fields known as features in the ML community.
Features can take many forms, but as far as most learning algorithms are
concerned, they can be subdivided into three different categories[67]:

• Quantitative: those with a meaningful numerical scale;

• Ordinal: ordered features without a scale;

• Categorical: those without an ordering or scale.

The feature type is crucial to ML algorithms since not all algorithms can
deal with all kinds of features, and even when they can, they usually han-
dle them differently. Some feature types are more informative than others:
quantitative features contain more details than ordinal ones, and the same
relationship holds between ordinal and categorical features. The empirical

38



3 – Machine learning for Cardiology

impact of this statement is present in many of the papers included in this
review: risk scores obtained by reducing the number of used features of-
ten end up using more quantitative and ordinal features than categorical
ones[68–78].

3.2.2 Missing values

An aspect that is important to discuss further is the handling of missing
values. Many different approaches exist to deal with this problem, relying
on and exploiting different assumptions on the meaning of a missing value.
In the medical field, the absence of a value can have a significant clinical
meaning; if some values are not collected, there could be some specific
reason[79] (e.g., the medical treatment prevents data from being collected,
or some values are derived from others). In those cases, expert intervention
is needed to understand how to handle the issue correctly. For some models,
like Decision Trees, a correct approach to address this issue can be creating
a specific value for missing data, signifying that data could not be collected,
and giving more information to the model than the simple missing value.
If data is not missing for a specific reason, imputation can be exploited to
guess its value; this is a powerful technique capable of enhancing the richness
of information in a dataset, but it should be carefully handled since it can
drastically reduce the data variance. Imputation is frequently exploited in
the field[68–70] [75],[80–82], especially employing Monte Carlo or regression
methods. Some works explicitly targeting the imputation of medical data
are also available[83, 84].

3.2.3 Feature selection

While it is intuitive that the more features are available, the more precise
the prediction will be, this is not always the case. On the one hand, by
adding more features to the training process, the ones related to the target
will more likely be available to the ML algorithm. On the other hand, the
risk of capturing random regularities grows exponentially with the number
of added features. A high number of features makes the predictive process
also less interpretable.

In addition, from a medical perspective, it is not useful to introduce
multiple features referring to the same medical parameter: these will be
highly correlated and will not add any relevant information to the process.
Feature selection can overcome these problems and can be achieved in var-
ious ways. The most frequently used approach for feature selection that
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we found in the reviewed literature is the forward selection/backward elim-
ination process (as, for instance, in papers: [68–71],[85–88], in which the
model is trained multiple times using different sets of features. Features are
added/eliminated at each iteration according to a greedy strategy. Other
strategies are available[89], each of them addressing specific situations.

3.2.4 Class imbalances

A common issue in medical datasets is the balance between the investigated
classes of patients[90]. Since ML models try to optimize some misclassifica-
tion loss, when the classes are very imbalanced, the algorithm may decide
that it is better to disregard (or to focus less of its efforts on) the minority
class since errors on that class do not contribute too much to the classifica-
tion error anyway.

This is a problem, and it should be taken into account when working
with imbalanced datasets (this also holds for other ML tasks like regression
and clustering). In this scenario, it is appropriate to counter the problem
to ensure that the algorithm reaches its full potential in terms of gener-
alization capabilities[71],[74],[78],[91]. There are two standard techniques
for achieving this: oversampling (duplicate samples from minority class)
or undersampling (removal of samples from the majority class). At the
same time, the first approach can lead to some bias if data duplication is
not correctly applied, and the second approach inevitably leads to loss of
information.

3.2.5 Feature normalization

One more technique that can be exploited to obtain better performance with
some models like K-Nearest Neighbors, Support Vector Machines (SVMs),
Naive Bayes, and Neural Networks (see section 3.3 for an introduction
to these models) is feature normalization. It consists of rescaling all the
numerical features to have them on the same scale, thus allowing the ML
algorithms that exploit numerical methods (e.g., gradient descent, distance-
based algorithm) to work better way[72, 73],[81],[48, 51, 92].

We can apply feature normalization in several ways. In cases where the
feature values are all positive, one can scale them to the [0,1] range by
dividing each value by their maximum; otherwise, it is common to scale
so that the values have zero mean and unit variance by subtracting the
mean and dividing the result by the standard deviation of the feature being
normalized.
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3.2.6 Dataset splitting

After data have been pre-processed to enhance their quality, they should be
prepared for the learning process. The whole dataset is typically divided
into two or three smaller sets. The ML names for these sets are:

• Training set: data used to train the models;

• Validation set: data used to tune the hyperparameters of the model;

• Test set: data used to assess the generalization capability of the model.

In medical literature, these terms are sometimes different:

• Derivation cohort/set corresponds to the training set;

• No specific cohort/set is identified explicitly for hyperparameters tun-
ing;

• Validation cohort/set corresponds to the test set.

Following the three splits schema allows us to correctly train, tune and eval-
uate the ML model without compromising the rigorousness of the results.
Many of the reviewed paper authors do not use a validation set[75],[81],[82],[50,
92–97] tuning the hyperparameters of their models on the training set or
the test set. It is worth emphasizing that using only two splits is not con-
sidered a best practice because one is likely to overfit either the training set
or (worse) the test set.

3.2.7 Dataset size

The majority of the datasets used in the current studies span from few
thousands[68–73] [49, 98, 99] to hundreds of thousands of patients[74], [81],
[50], [97] while it is unusual to find smaller ones[78], [87], [92], [94]. The
general trend is to use ever larger and larger datasets over time: this is
positive since the dataset size requirements grow with the "complexity" of
the concepts to be learned. Conducting an ML study only on a few hun-
dred patients would severely limit the scope of possible applications. In
this regard, it is worth mentioning that, in particular cases, useful knowl-
edge can be extracted from a limited amount of data by exploiting a deep
understanding of the specific phenomena to be analyzed[73],[74],[77],[95].
The data sources can be either a local trial[85] or a shared resource like a
national or international registry[68–70],[86].
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3.2.8 Follow-up time

A fixed follow-up time for the investigations makes the learning process more
effective, resulting in less data variance and more interpretable results. It is
also possible to incorporate time in the predictive process, but this type of
analysis is more complex and delicate. Some works exploit this technique
to obtain survival time predictions or time-to-event analysis; for this kind
of analysis, statistical methods are typically more effective than ML ones.
For instance, the SHFM risk score[86] is based on the Cox Proportional
Hazard Model, explored in section 3.4 and takes time into account for his
inference. The most well-known counterpart in ML is DeepHit[100], a Deep
Neural Network-based survival analysis tool; its first application to medical
data appears now in some preprints.

3.2.9 Privacy, security, and features

Typically medical datasets include a list of clinical features like age, sex,
type of diabetes, etc.; it is not unusual to include patients’ habits like smok-
ing or drinking. These are all sensitive information that shall be manipu-
lated according to privacy policies: many techniques allow handling sen-
sitive data without the need to share it or move it physically (e.g., edge
computing[101] and federated learning[14]). Still, we are unaware of any
study on exploiting such technologies in the CV field.

Table 3.1: Summary of research goals in different research papers.

Research papers Major objectives
[67–81] Predict all-cause mortality (ACM)
[69, 71, 74, 79, 82, 83] Predict heart failure (HF)
[84, 85] Improving clinical decision
[86, 87] Classify different disease
[88] Predict risk of stroke
[80, 89] Predict coronary artery disease

3.3 Machine Learning techniques
In this section, the most common supervised techniques are introduced. A
summary of them is shown in Figure 3.2, and references to relevant litera-
ture are provided in Table 3.1. Table 3.1 also provides a list of references
organized according to these study objectives. We shall explain the dif-
ferences between different techniques and contextualize their usage in the
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current literature. To do that, we need a few tools to make high-level but
grounded claims about the techniques themselves. Specifically, we need to
discuss two essential ML concepts: the “bias/variance decomposition of the
error” and the “learning bias” of learning algorithms. Since the term “bias”
is used with slightly different meanings in these two topics, we shall use the
“bias” or “bias component of the error” to denote the former sense (the one
used in the bias/variance decomposition) and always use the term “learning
bias” for the latter.

Figure 3.2: Machine learning techniques discussed in this chapter

Let us start from the bias/variance decomposition of the error[102, 103].
In a nutshell: the error made, on average, by a learning algorithm can
always be decomposed into three components: bias, variance, and noise
(see Figure 3.3). The bias component of the error measures how much
the average decision surface differs from the true concept. This difference
usually correlates with the concept space size searched by the algorithm: if
the algorithm searches between all linear concepts and the true concept is a
cubic polynomial, then the bias component of the error will be significant.
The variance part of the error measures how much, on average, a concept
learned by the algorithm differs from the average concept.

The variance component of the error usually correlates inversely with
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(a) (b)

(c) (d)

Figure 3.3: Examples of (a) bias, (b) variance, (c) noise decomposition, and (d) aggregated
bias, variance, and noise. The red curved line is the true concept to be approximated, the
blue line is the average regressor, the gray lines are individual regressors, and the black dots
are noisy observations. As can be seen, these three error components have a massive effect on
approximation performance.

the size of the concept space searched by the algorithm: in our previous
example, a learning algorithm exploring the space of all cubic polynomial
will have a larger error variance than that of an algorithm searching a linear
concept space (having more degree of freedom, it will more easily adapt to
variations in the dataset, thus producing more diversified results). Noise is
just the error component due to errors in acquiring the example’s features or
labels. Bias and variance are usually competing forces, and decreasing one
often causes the other to increase. Knowing if an algorithm has high/low
bias/variance allows one to understand which are the best possible actions
to improve results and enable to compare algorithms based on how brittle
they are (how much the variance component of their error is high) and how
well they would work when combined with other methods (e.g., ensemble
techniques).

The learning bias of an algorithm refers to the heuristic that the learning
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algorithm adopts to choose between different concepts. This broad defini-
tion encompasses many algorithm details, such as the space it searches and
how it selects between equally good concepts on the training set. Under-
standing the algorithm’s learning bias is important because it is the key
to knowing how it suits the problem at hand. Indeed the no-free-lunch
theorem[104] implies that, without further assumptions, all learning algo-
rithms are created equal and perform equally (bad/well) on a random prob-
lem. In other terms, there is no better/best algorithm in absolute terms: an
algorithm is only as good as the fitness of its learning bias on the problem
at hand.

3.3.1 Logistic Regression

Logistic Regression (LR) is a supervised algorithm that can induce models
for classification tasks1. The primary assumption made by the algorithm
(i.e., its learning bias) is that the logarithm of the odds log

(
P (y=1)
P (y=0)

)
is a

linear function of the input x. The implication, which gives the name to
the technique, is that the probability of the positive class has the form of
the logistic function f(x) = ex

1+ex as explained in Figure 3.4 Formally:

log
(
P (y = 1)
P (y = 0)

)
= w · x

⇒ log
(

P (y = 1)
1− P (y = 1)

)
= w · x

⇒ P (y = 1)
1− P (y = 1) = ew·x

⇒P (y = 1) = ew·x − P (y = 1)ew·x

⇒P (y = 1) = ew·x

1 + ew·x

(3.1)

The main benefits of logistic regression are that being a linear model, it
tends to have low variance and requires small sample sizes to perform well.
For the same reasons, it does not usually work well when the relationships
to be modeled are not linear (in that case, the higher bias component of the
error tends to be not compensated enough by the low variance).

1Please note that the “regression” part in the name of the technique can be misleading. The name is
due to the fact that the main idea is to predict the probability of the classes (which is a numeric value
that justifies the regression name), but it is then almost always used to solve classification problems
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Figure 3.4: The logistic function.

Among the technologies we found in the papers we reviewed, LR ranks
very high in popularity and performance. HAS-BLED[105] aims to pro-
vide a simple score for major bleeding risk in patients with atrial fibrilla-
tion. In this case, LR has been combined with univariate statistical analysis
to iteratively select a subset of features highly correlated with the risk of
major bleeding. EuroSCORE II[106] was built exploiting univariate LR,
likelihood ratios, and Akaike’s Information Criterion to select a subset of
features highly correlated with the investigated endpoint (cardiac surgical
mortality). These features are then inserted in a logistic equation that gives
the final predicted mortality. This study is an update of the original 1999
EuroSCORE[107] and exploits a broad international database of patients.

More advanced techniques are used in [108] where LR is exploited in
univariate and multivariate fashion and in a hierarchical way to study data
heterogeneity across different medical centers. In SPRM[109], a multino-
mial LR is used on a selected set of features (obtained by univariate LR,
variance, χ2 analysis, and backward elimination) to directly compare the
proportion of mortality attributable to two distinct causes: information
that other models can hardly provide. ScREEN[93] exploits LR for feature

46



3 – Machine learning for Cardiology

selection and the Youden index to establish cut-offs for quantitative vari-
ables. Each selected feature was assigned a single risk point, and the total
risk of collateral events after Cardiac Resynchronization Therapy is the sum
of these points. Many other papers exploring this topic exist[81, 96], but
they apply the above LR techniques to other pathologies to the best of our
knowledge.

3.3.2 K-Nearest Neighbors

Despite its age and simplicity, K-Nearest Neighbors (KNN) is still used in
some of the works we reviewed. The main idea of the KNN algorithm is to
store the dataset in memory and then compute the predictions for a new
example x by recovering the K examples nearest to x and averaging the
results (for regression) or deciding the class by a majority vote (for classifi-
cation). Here the learning bias is in the assumption that similar examples
(as estimated by the distance measure adopted) should have similar labels.
From the bias/variance decomposition point of view, this algorithm has
some flexibility since the K parameter controls the trade-off (the lower the
K parameter, the lower the bias component, and the higher the variance
component). In [92], KNN has been used to detect the early risk of coronary
artery diseases.

3.3.3 Decision Trees

Decision Trees(DTs)[110] are tried and tested ML tools that can be easily
applied to a wide variety of problems and provide very interpretable results.
DTs’ flexibility derives from their capability to do both classification and
regression and their ability to work well with a wide variety of feature kinds
(numerical, categorical, ordinal, . . . ). DTs are very interpretable models
since they can be interpreted as a list of nested if-then-else clauses. They
are very brittle models, meaning that they are low bias, high variance mod-
els. They also tend to overfit data unless countermeasures are taken; for
these reasons, DTs are usually pruned (making the trees smaller, lowering
their variance at the expense of a higher bias) and averaged using some
form of ensemble algorithm. Pruning introduces an additional learning bias
preferring shorter trees over taller ones.

While DTs are still very popular when used as pieces of an ensemble
model (e.g., as components of Random Forests (3.3.4) or used as weak
learners in Boosting procedures (3.3.5)), they are not very popular as stan-
dalone models. In [94], long-time prediction for atrial fibrillation has been
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performed using DTs: the researchers produced a risk stratification system
using a classification and regression tree, categorizing the patients in low,
medium, and high risk.

3.3.4 Random Forest

Random Forest (RF) is an ensemble learning supervised machine learning
algorithm. Its flexibility, performance, and ease of use make it a popular
choice for regression and classification tasks in many application contexts.
Ensemble learning encompasses different techniques, combining many mod-
els to build a more robust one; in RF, this technique is Bagging[111]. This
algorithm creates many copies of a model, each one of them being trained
on a different subset of the available data, and combines them through a
simple majority vote or averaging the predictions. Bagging’s main strength
is the ability to reduce the variance of the combined models, i.e., it works
best with low-bias, high-variance algorithms[112, 113]. RF builds on these
strengths by bagging models obtained by a slightly updated version of the
DTs learning algorithm that exacerbates these traits of DT models.

Our literature review found that RF appeared second-highest in the pa-
pers we reviewed, ranging from classification tasks[80, 87, 97] to regression
tasks. Many authors use RFs to predict all-cause mortality, and others ap-
ply RF to particular cardiovascular diseases[49, 91] or for risk assessment
of heart failure[87] and venous thromboembolism[76]. In some studies, au-
thors claim that the inferred RF models are helpful for clinical decisions,
allowing to estimate whether a patient is suffering from heart failure with
preserved ejection fraction or not[87] and that their risk score assessment
performs better than the state of the art ones[76, 80, 97].

3.3.5 Boosting

Boosting algorithms are particular kinds of ensemble algorithms. Boosting
algorithms encompass those ensemble techniques that guarantee a decrease
in the training error (usually by descending the gradient of some loss suffered
by the ensemble). These models are very popular since they are typically
easy to use, have very few parameters, can be applied to both classification
and regression tasks, and tend not to overfit the data. Several boosting
algorithms have proved to be particularly popular in our literature review:
AdaBoost, LogitBoost, Gradient Boosting, Light Gradient Boosting, and
eXtreme Gradient Boosting.
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Adaboost[114] is the original boosting algorithm, and it can be shown to
implicitly optimize the exponential loss suffered by the ensemble. LogitBoost[115]
is a variant of AdaBoost derived by casting AdaBoost as a generalized
additive model and substituting the cost function with the logistic loss∑
i log(1+eyif(xi)) (where i sums over all examples (xi, yi)). Gradient Boost-

ing is a variant of boosting where the loss function is explicitly optimized
via gradient descent, and eXtreme Gradient Boosting is a refined version of
the Gradient Boosting approach[116].

Recently, AdaBoost has been used to predict all-cause mortality[49, 72]
and report accuracies on par or better than the state-of-the-art based on
LR[93] and provide clues useful for the clinical decision-making process.
LogitBoost has been instrumental in developing cardiovascular risk predictions[71,
98], outperforming established risk scores such as the Framingham Risk
Score and the Segment Stenosis Score.

eXtreme Gradient Boosting has been applied in predicting mortality[50,
51] and predicting the risk of cardiovascular disease Coronary Artery Cal-
cium Score[99]. [50]introduced a risk assessment tool based on this latter
technique that provides early prediction of older people’s mortality using
Electronic Health Records. In [117], authors also used eXtreme Gradient
Boosting to enhance the risk stratification to maximize coronary CTA usage
derived from plaque information. In all these works, the authors reported
that using eXtreme Gradient Boosting improved their overall accuracy with
respect to the competing approaches.

In [88], they applied Light Gradient Boosting to Intensive Care Unit
patients on data collected from three hospitals. The authors claim their
approach helps make better clinical decisions, and the model performs well
for predictions.

Gradient Boosting of DTs has succeeded in several interesting works try-
ing to predict mortality[78] and heart failures[48]. The latter work also
provides additional information for medical staff to understand complica-
tions after heart failure.

3.3.6 Neural Networks

Neural Networks (NNs) are connectionist models with roots in cybernetics
and the attempt to model the human brain[118]; since then, the models
evolved into practical tools with only a faint resemblance to the first ones
developed. After an exciting start in the ’60s and a resurgence in the ’80s,
NNs did not progress for almost two decades. Many tasks required too
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much data and computational power, and the research focused on simpler
models that were easier to train. Thanks to a breakthrough in the training
algorithms, progresses in CPUs and GPUs, the creation of big computa-
tional farms[119], and the advent of internet tools allowing the collection of
huge labeled datasets, NNs have seen new interest from the research com-
munity and are nowadays at the forefront of the research in many critical
applicative fields.

NNs are built from basic units called neurons, which can be easily ar-
ranged in layers. Layers are easy to connect, and the whole network can
be trained end-to-end using the Stochastic Gradient Descent algorithm[120].
While a single-layer network can approximate any function to arbitrary pre-
cision (as implied by the Universal Approximation Theorem[121]), the real
power of these models is in the automatic abstractions provided by stacking
multiple layers into a Deep Neural Network (DNN). Each layer abstracts
its inputs providing the following layer with a data representation that is
easier to work within the context of the task being solved. State-of-the-art
NNs models are DNNs models and have been shown to provide super-human
performances[122, 123] on many tasks involving hard-to-abstract data, such
as those involved with image and audio processing.

Shallow NNs have been used to predict mortality due to heart failure[74,
77], showing performances outperforming other learning methods despite
being trained on unbalanced datasets in recent literature. DNNs have been
exploited for predicting the risk of mortality[73, 124] or heart failure and
acute heart failure[95]. The authors of these two works compared DNNs
with other ML techniques showing performance improvements.

Another interesting recent application of NNs in this field is to exploit
their ability to work with data correlated very complicatedly. This is the
case of the Deep Cox Mixtures[125], in which a NN assists a Cox Regression
Model ( section 3.4.1) to fit the hazard ratios of the regression. This work
is based on a sound statistical and ML background, is comprehensively ex-
posed, and offers state-of-the-art performance when working with different
groups of individuals.

3.4 Statistical approaches

Alongside the ML approaches discussed in section 3.3, it is worth briefly
describing the main statistical techniques currently used in the prediction of
cardiovascular events since they still cover an essential role in the field[126,
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127]. As in the previous section, every major technique implied in the field
will be reviewed and explained, together with a brief comment on the top
risk scores that exploit them.

3.4.1 The Cox Proportional Hazards Model

Survival Analysis is a broad branch of statistics that studies how much time
it takes for an event to occur or, in the specific case of medical applications,
how much time would likely pass before an event affects a given individual.
Given this brief description of survival analysis, it is clear that its tools are
well-fit for predicting medical events. In this scenario, the Cox Proportional
Hazards (PH) Model[128] takes a predominant place as being, by far, the
most used statistical technique for the prediction of cardiovascular events[68,
69, 75, 82, 85, 86, 129]. The typical analysis of the relation between a single
risk factor and an event is carried on by evaluating the Instantaneous Hazard
Rate λ(t). This measure is defined as the rate at which events occur, given
the total number of individuals at risk. Formally:

λ(t) = lim
δt→0

Ev(t, t+ δt)/N(t)
δt

(3.2)

where Ev(t, t + δt) is the number of events occurred between times t and
t+ δt and N(t) is the number of individuals at risk at time t.

Typically, in medical studies, one is interested in comparing different
populations, each with different characteristics, like the assumption (or the
lack thereof) of a drug. Then, one tries to model each group’s survival
possibilities to assess the effects of the given drug on the population. In
these cases, it is convenient to model the variations in risk hazards of the
different populations by mean of the Hazard Ratio (HR), which is the ratio
of the two different Instantaneous Hazard Rates:

HR = λ1(t)
λ0(t)

(3.3)

where λ1(t) and λ1(t) are the Instantaneous Hazar Rate for the populations
1 and 2 at time t. With an HR ratio above 1, the events are more likely to
occur in population 1 and vice-versa, with the magnitude of HR indicating
the difference’s strength.

The kind of analysis shown before, although useful, can be applied only
to investigate the impact of a single risk factor on the survival possibilities
of a population. In order to assess the simultaneous impact of multiple risk
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factors, more complex tools are needed. In this context, the Cox PH model
finds its bases, allowing to assess of the impact of multiple risk factors on
the survival time of a population under three assumptions [130]:

• the survival capability of an individual is independent of the other
individuals in the population;

• the risk factors and the hazard are multiplicatively related (i.e., incre-
menting one of the risks multiplies the hazard);

• the hazard ratio over time is constant;

these assumptions make the Cox PH model semi-parametric since it makes
assumptions on the relationship between risk factors and hazard but not
on the hazard function itself. This approach is justified by a conditional
argument by Cox that here will not be presented. In general, a Cox PH
model can be written as:

λ(t|Xi) = λ0(t) exp (Xiβ) (3.4)

whereXi is the vector of the risk factor values for the i-th individual (usually
called covariates in this context), β is the vector of regression coefficients,
and λ0(t) is the baseline hazard when all the risk factors are zero. The values
of β assess every risk factor’s impact on the population’s survival; positive
values of β will proportionally increase the hazard risk and vice-versa. Of
course, it is possible to calculate the HR of two hazard rates calculated with
a Cox PH model; thus, it is possible to investigate the survival capabilities
of different populations based on multiple risk factors.

3.4.2 Heart Failure Survival Score

One of the most well-known risk scores exploiting a Cox PH model is the
Heart Failure Survival Score (HFSS)[85]. The first step for the derivation
of this score has been the clinical features selection by mean of univariate
statistical analysis methods like Kaplan-Meier method[131] and log-rank
tests[132]; in this way, the researchers successfully reduced the analysis on
a set of forty features, against the eighty available. The Cox PH model has
been applied to these features, but with two additional strategies: a stepwise
forward-entry/backward-elimination selection based on the p-value, and the
best-subset discovery, based on a χ2 test. In this way, a subset of only eleven
features has been selected as the best trade-off between feature number and
predictive power.
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The HFSS is then defined as the absolute value of the sum of the products
of the Cox PH model coefficients and the respective risk factor value (|β0x0+
β1x1 + ... + βnxn| where x1, x2, ..., xn are the actual variable values and
β1, β2, ..., βn are the computed coefficient). This risk score achieved good
results for its time, but it lacked generalization capabilities: performance
was limited when applied to other datasets than the one on which has
been derived due to the low number of patients involved in the study and
the specific requirements that they had to match. A positive aspect of
this work, though, is that not only one model has been developed: two of
them have been derived, one exploiting an invasive medical feature (mean
PCWP) and the other one not; despite that the two models reached similar
performance, thus raising attention on the real necessity of doing or not
invasive procedures.

3.4.3 Seattle Heart Failure Model

Another risk score exploiting the Cox PH model is the Seattle Heart Failure
Model (SHFM)[86]. In this case, the feature selection has been made by
means only of the Cox PH model, with a stepwise forward-entry/backward-
elimination, partially from the derivation dataset, partially from large pub-
lished trials (for the features not exhaustively described by the derivation
cohort). Once the model has been derived, the SHFM score is defined as the
sum of the products of the β-coefficients with the value of the corresponding
parameter (SHFM score = |β0x0 +β1x1 + ...+βnxn|). The survival value at
time t for a patient is then defined as survival(t) = e(−λt)e(SHFM Score), where
e(−λt) is the baseline survival (survival at time t when all risk factors are
zero) and λ the slope/year derived from the dataset. For how it is con-
structed, this risk score allows a per-patient analysis, and his reliability is
well-documented since it has been tested on five different datasets; it is also
an example of a score in which some risk factors (like age and sex), have
been forced into the model, thus merging the statistical approach and the
medical knowledge.

3.4.4 ORBIT

In ORBIT[68], the Cox PH model is used, together with a feature selection
step based on the backward selection process, to create the best performing
model based on a pool of medically relevant risk factors for major bleeding.
The derivation dataset is large, counting more than ten thousand patients,
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and the missing data were imputed only once through Markov Chain Monte
Carlo or regression methods. From the full final model, only five risk factors
have been retained, the ones with the highest χ2 statistic, and to each one of
them, an integer score is assigned based on the strength of their correlation
with major bleeding.

The result is a simple risk score, easily computable in a real-world situa-
tion. This risk score is another example of how a limited group of risk factors
can be exploited for good performance. To assess the technique’s perfor-
mance, the paper reports an evaluation on an external dataset where ORBIT
is compared against HAS-BLED[133] and ATRIA[134]. The GISSI[129] risk
score exploits a similar approach, but in this case, there are no predefined
integer points assigned to each final feature, but a nomogram is provided
for bedside application; in this way, it is possible also to take into account
the value of the risk predictors.

3.4.5 PARIS

PARIS[69] is another risk score based on the Cox PH model: differently
from the other approaches presented above, it exploits data imputation in
the derivation process. Employing a multivariate normal regression, specific
missing values of decisive risk factors have been imputed multiple times and,
for each set of imputed data, a Cox PH model with backward selection has
been fitted to the data. These different models are used to obtain a fully
calibrated final Cox PH model. From that model, the β-coefficient is used to
obtain integer values for the risk factors. This approach has been repeated
two times, one for the derivation of the major bleeding model and the other
for the coronary thrombotic event one, allowing physicians to evaluate the
risk of these two events through two integer risk scores.

3.4.6 PRECISE-DAPT

The PRECISE-DAPT[70] score exploits the Cox PH model in two univariate
and multivariate flavors, with backward elimination, to assess the potential
predictors of major and minor TIMI bleeding. The result is an integer risk
score computed on five clinical variables, and each variable is associated
with an integer score based on its value and β-coefficient. The paper also
offers a nomogram for bedside single-patient evaluation. This score was
derived from a broad dataset and validated on two external cohorts. It
has also been compared to the PARIS score during the evaluation to assess
these two approaches’ differences.
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Figure 3.5: Number of appearances of Machine Learning techniques in the reviewed literature

3.5 Discussion

Figure 3.5 reports the histogram of the frequencies with which ML tech-
niques have been used in the papers we reviewed. While the figure shows
quite a number of different approaches, we observe that most of the exper-
imentation happens with ensemble techniques. In fact, 9 techniques (RF,
AdaBoost, Gradient Boosting, eXtreme Gradient Boosting, Light Gradient
Boosting, LogitBoost, Gradient Boosting of DTs, Explainable Boosting Ma-
chines, and CatBoost) out of 16 are ensemble algorithms. It also happens
that while Random Forests is the most popular ensemble approach, most of
the others are some variants of Gradient Boosting.

The preference for ensemble learning, in general, and Boosting, in par-
ticular, is highly understandable since Boosting usually gets very accurate
models without requiring much tuning of the parameters. Also, Boosting
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naturally counterbalances overfitting[135] by increasing the “margin” of the
classification even when the training error stops decreasing. If we remove
ensemble learning from the picture, we see that Logistic Regression is used
almost as much as all the remaining approaches cumulatively (14 times ver-
sus 17). Again, this technique is straightforward to apply and very robust
to overfitting, so it can be easily applied to smaller datasets.

Figure 3.6: Number of times each Machine Learning technique ranked first in the reviewed
literature. Papers where only a single technique was presented are not included.

The remaining models (in order of popularity) are SVMs, Naive Bayes,
and KNN. SVMs, despite being very popular in our sample of papers, never
achieve the highest ranking, often being outperformed by Logistic Regres-
sion. In theory, SVMs should be able to match or outperform logistic regres-
sion when properly configured and trained. Unfortunately, there is often no
information[76, 95] or very little information[48, 73, 76, 87] in the papers we
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reviewed about how SVMs are configured (which kernels are used in the ex-
periments and how other hyperparameters have been chosen), so it is hard
to tell how much effort was devoted to tuning these tools to the problem at
hand. Naive Bayes and KNN are seldom used and do not seem to perform
well anyway; KNN ranks first in one case[92], but in that case, the study
has only 60 patients and compares it only with one other approach(Random
Forest).

Figure 3.6 reports, for each technique, the number of times it ranked
first in the papers where it competed. In that figure, we omit to count an
algorithm as ranking first if the paper did not compare it with other meth-
ods (explaining why some of the methods appear with a count of 0 and the
sum of the counting is shorter than the list of papers we reviewed). Despite
not being a very popular method, they perform best in the three occasions
where NNs are used. This is not a surprising result: NNs are notoriously
hard to train and bring the necessity of selecting many hyperparameters,
which explains why they are not the preferred choice in many works. How-
ever, when they are properly configured and when data is abundant, they
usually perform very well.

Key Messages
• Ensemble Methods (especially Random Forests) and Logistic Regres-

sion are the ML tools most used in recent CV studies;

• Neural Networks, despite being at the forefront of recent ML develop-
ments, are under-represented in this field. We speculate that this is in
part because of the difficulty in interpreting them and in part because
Neural Networks are harder to train and require larger datasets (if not
tuned appropriately).

• Large (federated) datasets and unsupervised techniques are still not
much used. Adopting them would significantly improve the current
performances of predictions based on ML techniques and pave the way
to broader adoption of more sophisticated ML techniques.
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Chapter 4

Traditional Machine Learning
and Federated Learning on
critical Datasets

In this chapter, our objective was to investigate the ML techniques for
the PRAISE dataset and the development of the PRAISE tool. Initially,
we focused on traditional ML methods, as discussed in section 4.1 . We
thoroughly examined various ML techniques applied to the PRAISE dataset
and discussed their implications and outcomes. We aimed to gain insights
into the dataset and create the PRAISE tool, which would be a valuable
resource for further analysis.

Subsequently, we expanded our exploration to include federated learning
(FL) techniques on the same PRAISE dataset. Section 4.2 of this chapter
focuses explicitly on FL techniques, where we applied them and analyzed
their impact. We conducted a rigorous assessment of the FL techniques us-
ing diverse evaluation metrics. Through this comparative analysis, we aimed
to develop a comprehensive understanding of the strengths and weaknesses
of FL techniques in the context of the PRAISE dataset. By devoting sep-
arate sections to traditional ML methods (section 4.1 ) and FL techniques
(section 4.2), we provided an extensive exploration of their applications
and performances on the PRAISE dataset. This chapter is a comprehensive
guide, offering valuable insights into the ML and FL approaches employed
and highlighting their respective contributions to the field.
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4.1 Traditional Machine Learning

This section will comprehensively discuss the machine learning techniques
applied to the highly critical PRAISE dataset. Specifically, we will explore
AdaBoost, and Random Forest algorithms in this dataset, as well as their
respective accuracies and areas under the curve(AUC) achieved through
hyperparameter optimization. Furthermore, we will address the tool that
was developed utilizing these models.

4.1.1 PRAISE Score: A main motivation towards the Federated
Learning

This work compares various machine learning algorithms, including Ad-
aBoost and Random Forest, for predicting risk scores using target variables
such as All-cause death, BARCMB, and RENAMI. In particular, my con-
tribution to this work involved conducting hyperparameter tuning for ML
techniques, including AdaBoost, Random Forest, Decision Trees, and Sup-
port Vector Machines. I worked alongside the other authors to improve
the performance of these ML techniques, and we ultimately found that
only AdaBoost and Random Forest performed well after parameter tuning.
Therefore, these two algorithms were selected for the PRAISE score study.

(a) AdaBoost

(b) RF

Figure 4.1: Calibration plots of AdaBoost (a) and RF (b)
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The PRAISE score for 1-year all-cause death showed an AUC of 0.93 (95
% CI 0.91-0.94) and 0.94 (95%CI 0.92-0.96) in the training and the vali-
dation cohort, respectively. The PRAISE score for major bleeding showed
an AUC of 0.90 (95%CI 0.89-0.91) in the training cohort and 0.87 (95%CI
0.83-0.94) in the validation cohort. The PRAISE score for MI showed an
AUC of 0.89 (95%CI 0.88-0.90) and 0.90 (95%CI 0.85-0.94) in the train-
ing and the validation cohort, respectively. In Figure 4.1, we have shown
AdaBoost and RF calibration plots with observed and predicted events.

The major contribution from my side to this work was a web-based tool
called the PRAISE Score, which is accessible online1 and shown its interface
in the Figure 4.2. To create this tool, we utilized the previously trained
models from our research paper[72], namely All-cause death, BARCMB,
and RENAMI. The PRAISE calculator comprises three key components: a
front-end, back-end, and Rest API for facilitating communication between
the two. The front-end is designed using simple HTML, CSS, and PHP and
allows users to input data for a single patient or upload a file containing
multiple patient data. The back end employs our death, BARCMB, and
RENAMI models. To establish communication between the front-end and
back-end, we utilized an H2O REST API2, which enabled us to perform
create, read, and delete operations.

Moreover, in today’s healthcare systems, an enormous amount of data
can be leveraged to create statistical models based on machine learning
using medical data. However, access to medical data is restricted due to
privacy concerns, leading to underutilizing of existing data in the health
sector. Federated learning is one of the viable solutions in this scenario.
The key motivation behind federated learning is privacy and avoiding data
sharing. In our experience of working in machine learning for medicine, we
have observed that not all medical datasets are publicly accessible. There-
fore, federated learning presents the best option when dealing with sensitive
medical data.

As mentioned earlier in this chapter 3, it would be beneficial to apply FL
techniques in the field of cardiology, as this area remains largely unexplored
and requires attention. We have previously noted that traditional machine
learning has yielded fruitful results. However, given the sensitive nature of

1Available at: https://praise.hpc4ai.it/
2An open source API of H2O framework available at: http://docs.h2o.ai/h2o/lateststable/

h2o-docs/rest-api-reference.html
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Figure 4.2: Praise Score

the data in this domain, it is imperative to identify the best approach for
sharing and accessing the data, and in this regard, FL is the only solution.

4.2 Federated Learning on critical Datasets

We started from lancet work as discussed in the section 4.1 that is successful
because we succeeded in putting together a very large data set (pooled), and
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we found an ML method that works quite well. We imagined FL as a way to
work on a large dataset without putting the data together (moving models
instead of data). Therefore we applied this technique to the original lancet
dataset split into parts, comparing the loss due to collaboration (as opposite
to put together data).

4.2.1 Why Federated Learning on critical Datasets

Recent years have been characterized by crucial advances in AI systems.
The ubiquitous availability of data sets and processing elements supported
these advances. The consequent deployment of ML methods throughout
many industries has been a welcome innovation, albeit one that generated
newfound concerns across multiple dimensions, such as performance, energy
efficiency, privacy, criticality, and security. Concerns about data access
and movement are particularly felt by industrial sectors such as healthcare,
defense, finance, et cetera.

This work will mainly focus on healthcare and Federated Learning (FL),
a learning paradigm where multiple parties (clients) collaborate in solving a
learning task using their private data. Importantly, each client’s local data
is not exchanged or transferred to any participant since, in its most com-
mon configuration, clients collaborate by exchanging local models instead
of moving the data. The aggregator collects the local models and aggregates
them to produce a global model. The global model is then sent back to the
clients, who use it to update their local models. Then, using their private
data, they further update the local model. This process is repeated until
the global model converges to a satisfactory solution or a maximum number
of rounds is reached.

Thanks to its capability to transform inherently distributed and segre-
gated data into shared knowledge, FL is becoming popular in healthcare; As
we already surveyed, the main related work in the Sec. 2.5. Until recently,
the usage of FL was restricted to a specific paradigm of ML, namely Ar-
tificial Neural Networks (ANN), often in the Deep Neural Network (DNN)
variant, in which models can be easily aggregated using simple associative
operators, such as the average of the weights of the DNN[16, 136]. Unfortu-
nately, ANN/DNN is not always the best tool to analyze healthcare data,
which is most often given in the form of tabular data. A tabular dataset
is a type of data structure that organizes information into a table format
with rows and columns. Each row represents a single data point or record,
and each column represents a specific attribute or variable. The data in
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a tabular dataset is usually numerical or categorical in nature and can be
easily analyzed and visualized using tools such as spreadsheets, databases,
or data visualization software. Examples of tabular datasets include finan-
cial data and demographic data. Several factors may undermine the use of
ANN/DNN for (some) healthcare tasks:

• ANN/DNN usually require very large data sets, which are often not
easy to collect under the strict privacy laws that regulate health insti-
tutions;

• ANN/DNN is hardly explainable, and this is often not acceptable in
this field;

• while ANN/DNN performance superiority is undisputed for several
tasks, such as image classification, voice recognition, and natural lan-
guage models, they are not particularly suited to tabular data[137];

• representation learning, which is one of the main driving forces under-
lying the success of DNN, is much less useful for tabular data since
very often the features have been already engineered with great care
and carefully tuned;

Recently Polato et al.[52] proposed several novel Federated Learning algo-
rithms not relying on ANN/DNN; they instead extend distributed AdaBoost
techniques to the FL case. Among other algorithms, the work introduces
AdaBoost.F, a federated variant of the Samme algorithm3 [138], which can
be coupled with a weak learner to build a global model on the federated
dataset. A weak learner is a learning algorithm, such as decision trees or
a logistic regression, which is not required to return very good models (in-
stead, they are required to return models that are better than the random
guess). It is worth noting that the very weak assumption on the kind of
models built by the clients of the federation allows using the ML model
that is best suited for the tabular healthcare data at hand. The mentioned
work analyzes the performance of AdaBoost.F on several standard datasets
in a simulated distributed environment. To our knowledge, the proposed
methodology has neither been tested on a real-world dataset in the health-
care domain nor in a distributed execution environment.

As a real-world example, we replicated a notable ML-based risk stratifi-
cation model in cardiology that recently appeared in the Lancet [139]. The

3A multi-class variant of AdaBoost.

64



4 – Traditional Machine Learning and Federated Learning on critical Datasets

study proposed PRAISE4 an ML-based score to predict all-cause death, re-
current acute myocardial infarction, and major bleeding after Acute Coro-
nary Syndrome (ACS). Several (non-ANN) ML models have been trained in
a cohort of 19826 adult patients with ACS, including patients across several
hospitals. The cohort has been split into a training cohort (80%) and an
internal validation cohort (20%). The PRAISE score is the best-performing
model tested in an external validation cohort of 3444 patients with ACS
pooled from a randomized controlled trial. The PRAISE score showed a
performance across all possible classification thresholds (Area Under the
ROC Curve or AUC) far better than the previously known scores for the
same classification task: 0.82 in the internal validation cohort and 0.92 in
the external validation cohort for 1-year all-cause death; an AUC of 0.74 in
the internal validation cohort and 0.81 in the external validation cohort for
1-year myocardial infarction; and an AUC of 0.70 in the internal validation
cohort and 0.86 in the external validation cohort for 1-year major bleeding.

The PRAISE score authors concur in claiming that one of the ingredients
making it possible to define a high-quality ML-based score has been gath-
ering one of the most extensive data sets on ACS ever built. The cohort of
19826 adult patients has been manually collected from different hospitals in
different countries (see [139]). Despite being made on anonymized patients,
the gathering itself is reported as a very complex process for the privacy
and secrecy concerns related to managing critical data from different hos-
pitals in different countries. The current paper attempts to use the dataset
of the PRAISE score to be analyzed through federated learning techniques
expecting it will provide better results, evidenced by the discussion in Sec-
tion 4.2.5. Following are the contributions made by the authors:

• This work aims to simplify future studies, enabling running ML pro-
cesses on a virtually pooled dataset using a privacy-preserving FL ap-
proach.

• Specifically, we aim to demonstrate that FL AdaBoost.F can build an
almost equally good ML-based model for the PRAISE score while main-
taining the data from different sites distributed and mutually secret to
the parties running the FL process.

• We also show that the non-ANN models still have a performance edge

4PRAISE: PRedicting with AI riSk aftEr acute coronary syndrome. Available as Software-as-a-
Service at https://praise.hpc4ai.it
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over more popular ANN/DNN federated models on this specific data
set (and, we argue, on many tabular data sets).

• We study the performance of test accuracy of AdaBoost.F (accuracy,
F1, F2, precision, recall) and scalability in two different execution en-
vironments: a cluster of Virtual Machines on an OpenStack cloud and
an HPC cluster.

4.2.2 Methods

This section describes the methods and the tools used for the experiments
we report in Section 4.2.5. As mentioned, FL has been traditionally based
on some variation of the gradient descent algorithm, whereas the PRAISE
score model has been built on AdaBoost derived models, i.e., a non-gradient
descent algorithm 5. We frame both gradient descent and other approaches
in the FL paradigm; then, we describe a recent extension of the OpenFL
framework supporting both approaches. Eventually, we argue on the poten-
tiality of the FL as a general privacy-preserving paradigm to extract shared
knowledge from datasets from different organizations, i.e. to define a novel
methodology to manage data distributed at the edge.

4.2.3 FL with gradient descent

FedAvg is an iterative algorithm where a central node (the aggregator) col-
laborates with the other parties (which are termed collaborators or clients)
to develop a shared model. The aggregator starts the process by sharing a
randomly initialized neural network with the collaborators. At each round,
all collaborators perform one or more training epochs on the given network
using their local datasets. The updated model is then shared with the aggre-
gator. The aggregator averages then the contributions using the weighted
average:

wt+1 =
C∑
c=1

nc
n

wt+1
c (4.1)

where w is a vector containing the weights of the neural networks, t denotes
the current round, nc is the size of the local dataset of client c, and n =

5Technically AdaBoost can be explained as an additive algorithm performing a coordinate-wise
gradient descent of an exponential loss. The gradient descent is, however implicit and does not require
gradients to be exchanged nor calculated.
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∑
c nc. The w vector is then redistributed to all clients, and a new round

can start.
One of the difficulties in FL is dealing with clients having examples from

different distributions (i.e., they cannot be assumed to be independent and
identically distributed (IID)). While we are not addressing this issue in this
paper, it is worth mentioning that a few algorithms have been proposed
to better cope with these cases. Among them, we can cite FedCurv [140],
FedProx‘[141], FedNova [142], and SCAFFOLD [143], which substantially
increase the complexity of the federation protocol, but fall short in equally
increasing the prediction performance of the resulting models. We refer to
the literature for further details and comparative studies [144].

Another difficulty in FL is handling a large number of parties in the
federation, which can be in the hundreds or even more. These cases can be
handled by including in a round a random selection of clients.

4.2.4 FL without gradient descent

In this chapter, we experiment with the AdaBoost.F algorithm, first intro-
duced in [145]. We report the pseudo-code of the algorithms using the same
notation as in the original paper in Algorithms 1 and 2. These notations
are: to identify a message that carries x from a client to the aggregator,
we will use the function sendx(aggregator, x) (client-side). The function
broadcastx(x), which transmits x to all clients, is used on the aggregator
side. There is a receivex(s) in the receiver for every sendx(aggregator, x)
or broadcastx(x) from a sender, where s denotes the sender. Other no-
tations represent weighted error (εt), weight of the weak hypothesis (αt),
distribution d and ht? represents “global” weak classifier.

The training phase of AdaBoost.F is similar to the one of AdaBoost, but
it happens in a distributed manner. At each iteration, a new weak hypoth-
esis is learned from each client and sent to the aggregator. The aggregator
collects the weak hypotheses and broadcasts them all to all clients. The
clients evaluate the received hypotheses on the local dataset and send the
weighted errors ε to the aggregator, which is then able to aggregate these
values into a matrix Et. Values in Et are then used to find the best hy-
pothesis for the current round ct∗ and to compute the current αt term. By
propagating these pieces of information to the clients, they are then able to
update their local copy of the ensemble and to update the local examples’
weights d. Overall, the algorithm has strong resemblances with the original
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Algorithm 1: AdaBoost.F (aggregator)
Input: C: number of clients

T : dimension of the ensamble
K: number of classes

Output: ens(x) , vote([ht?]Tt=1, [αt]Tt=1,x)
1 for t ∈ {1 . . . T} do
2 Z ← ‖ [receiveZ(c)]Cc=1 ‖1

3 ht ← [receiveh(c)]Cc=1
4 broadcasth(ht)
5 Et ← 1

Z [receiveε(c)]Cc=1 . C × C errors matrix

6 ct? ← arg minc
∑C
c′=1 Et

cc′

7 εt? ←
∑C
c=1 Et

cct?

8 αt ← log
(

1−εt?

εt?

)
+ log(K − 1)

9 broadcastα(αt)
10 broadcastc(ct?)
11 broadcaststop(stop)

Algorithm 2: AdaBoost.F (client)
Input: A: weak learner

X ∈ Rn×m: training data
y ∈ {1, . . . , K}n: training labels

1 d← 1
2 while not stop do
3 sendZ(aggregator, ‖d‖1)
4 h← A

(
X,y, d

‖d‖1

)
5 sendh(aggregator, h)
6 h← receiveh(aggregator)
7 ε←

[
d>Jy /= hc(X)K

]|h|
c=1

8 sendε(aggregator, ε)
9 α? ← receiveα(aggregator)

10 c? ← receivec(aggregator)
11 d← [di exp(−α?Jhc?(xi) /= yiK)]ni=1

AdaBoost algorithm; one interesting difference is the fact that d is kept un-
normalized in the client. This is important to make it possible to compute
a global normalization factor in the aggregator.
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4.2.5 Experiments

This section compares boosting algorithms and neural network models on
a real-world binary classification problem, assessing their prediction accu-
racy and training time performance. We also compare federated algorithms
against their non-federated counterpart, which serves as a baseline for the
prediction performance.

In particular, we trained a simple Feed-forward Neural Network (FNN)
model, and an AdaBoost ensemble on the PRAISE dataset [139], containing
19826 adult patients suffering from Acute Coronary Syndrome (ACS) with
one year of follow-up. This dataset is the union of two previously existing
registries, BleeMACS (NCT02466854) and RENAMI [147] and contains 25
features categorical and ordinal, and three categorical outcomes: all-cause
death, recurrent acute myocardial infarction, and major bleeding one year
after discharge. We only trained the models for this study to predict the
all-cause death outcome.

As a first step, we pre-processed the dataset to mitigate the high imbal-
ance in the outcomes (using SMOTE [148]) and to handle missing data in
the features (using the median value along each column). Then we split the
dataset to use 80% of the rows for training, leaving the remaining ones for
validation. The FNN model is a two-layer perceptron with 35 inputs, 35
hidden units, a single output, and a binary cross-entropy loss. We trained
it for 100 rounds of one epoch each, using Adam [149] (lr = 10−3, β1 = 0.9,
β2 = 0.999, ε = 10−7) as the optimizer and FedAvg [16] as the aggregation
strategy. The federated AdaBoost ensemble is built by running 100 rounds
of the AdaBoost.F algorithm [52], using a decision tree with at most 10
leaves as the weak learner.

All FL runs have been orchestrated using the intel OpenFL framework
[21] with a single aggregator and up to 16 collaborators. We tested two
different configurations to assess both the strong and weak scaling of the
training processes. strong scaling, where we increase the collaborators while
keeping the same problem size by spitting the dataset samples in uniform
chunks across collaborators; and weak scaling, where we scale the problem
size with the number collaborators by assigning each collaborator the entire
dataset. Moreover, to test the strong scaling, we divided the entire dataset
into n i.i.d. subsets without replacement and assigned a subset to each of
the n collaborators involved in the federation. This configuration keeps the
same amount of total rows for each experimental configuration. Conversely,
to test the weak scaling, we sampled 16 subsets of the complete datasets
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Table 4.1: Summary of statistics used to evaluate prediction performances.

Measure Definition Description
Accuracy TP+TN

TOT Fraction of the examples correctly classified.
Precision TP

TP+FP Fraction of examples predicted as positive
that are actually positive.

Recall TP
POS Fraction of positive examples that are cor-

rectly predicted as positive.
F1 score 2 precision·recall

precision+recall Harmonic mean of precision and recall.

F2 score 5 precision·recall
4precision+recall Weighted harmonic mean of precision and re-

call (giving precision twice the importance of
recall).

and assigned one of them to each collaborator. In this setting, the size of
the problem increases linearly with the number of collaborators involved in
the federation.

We took both learning performances and training times for each setting.
Learning performances have been measured on a virtualized environment
on top of the OpenStack-based HPC4AI cloud infrastructure [150], with the
aggregator running into a VM with 4 cores and 8GB RAM and up to 16
collaborators hosted in VMs with 8 cores and 8GB RAM each. Conversely,
times have been measured on the C3S HPC facility [151], allocating an entire
bare metal node with 2 intel Xeon E5-2697 sockets (18 cores, 2.30GHz) and
128GB RAM to each component of the OpenFL deployment.

4.2.6 Results

We analyze the performance of the algorithms in terms of prediction quality
and computational/communication times. To assess the prediction perfor-
mances, we used the five metrics reported in Table 4.1: accuracy, F1 score,
F2 score, precision, and recall. Despite being the most known and used
metric, accuracy is a very bad indicator of a model’s performance when the
dataset is not balanced, as in this case. The accuracy of a constant model
always predicting false would score 97% on the PRAISE dataset. F1 and F2
scores are better candidates in these cases since, by averaging precision and
recall, they require the classifier to recover most of the positive cases (to
score a high recall) and to be correct on them (to score a high precision).
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Table 4.2: Prediction performance of the FNN with FedAvg. Values reported are the average ±
stdev of 5 runs. The first run in the strong scaling setting is equivalent to the non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

Strong scaling setting
1 .39 ± .47 .14 ± .08 .22 ± .04 .17 ± .09 .72 ± .39

2 .56 ± .47 .19 ± .09 .26 ± .06 .15 ± .09 .61 ± .36

4 .88 ± .01 .23 ± .01 .30 ± .01 .17 ± .01 .39 ± .02

8 .72 ± .38 .20 ± .06 .27 ± .04 .16 ± .06 .48 ± .29

16 .90 ± .01 .24 ± .01 .29 ± .01 .12 ± .01 .35 ± .02

Weak scaling setting
1 .56 ± .47 .16 ± .07 .22 ± .03 .12 ± .07 .56 ± .40

2 .69 ± .37 .17 ± .05 .25 ± .04 .12 ± .06 .49 ± .30

4 .72 ± .38 .20 ± .07 .27 ± .05 .15 ± .06 .49 ± .29

8 .90 ± .04 .18 ± .10 .24 ± .13 .13 ± .08 .30 ± .17

16 .55 ± .46 .17 ± .08 .26 ± .06 .11 ± .06 .63 ± .34

The main difference between these two metrics is about the relative impor-
tance of precision and recall: F1 gives them the same importance, while F2
is better for cases where precision is to be considered twice as important as
recall. Table 4.2 reports the results obtained with the federated FNN with
FedAvg model, while Table 4.3 refers to the AdaBoost.F ensemble.

We start by noticing that, from the point of view of accuracy, AdaBoost.F
dominates by reaching 95% accuracy in most experiments6. As mentioned,
however, accuracy is a bad metric in this particular case, and the high
accuracy values suggest that the ensemble model probably categorises most
of the examples as negatives. The rest of the metrics confirm this intuition:
recall values are much lower in the case of AdaBoost.F than in the case
of the FNN with FedAvg model. Accuracies, in the case of the FNN with
FedAvg model, are much more erratic, showing both a higher variance as
the number of collaborators grows and a higher variance in the 5 experiment
repetitions. However, the important metrics (F1 and F2) show much better

6In Table 4.3 the accuracy column shows the average ± stdev values zero due to too low values as
we rounded the values to up two digits
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Table 4.3: Prediction performance of AdaBoost.F. Values reported are the average ± stdev of 5
runs. The first run in the strong scaling setting is equivalent to the non-federated case.

Clients Accuracy F1 Score F2 Score Precision Recall

Strong scaling setting
1 .95 ± .00 .19 ± .07 .15 ± .06 .35 ± .10 .13 ± .05

2 .95 ± .00 .23 ± .03 .19 ± .03 .36 ± .04 .17 ± .03

4 .94 ± .00 .19 ± .02 .16 ± .02 .26 ± .04 .15 ± .02

8 .94 ± .00 .20 ± .04 .17 ± .03 .28 ± .06 .16 ± .03

16 .94 ± .00 .19 ± .03 .17 ± .03 .25 ± .04 .16 ± .03

Weak scaling setting
1 .95 ± .00 .09 ± .02 .06 ± .01 .33 ± .05 .05 ± .01

2 .95 ± .00 .10 ± .02 .07 ± .01 .45 ± .05 .05 ± .01

4 .95 ± .00 .15 ± .04 .12 ± .04 .32 ± .06 .10 ± .10

8 .95 ± .00 .17 ± .02 .14 ± .01 .28 ± .04 .13 ± .01

16 .94 ± .00 .20 ± .03 .18 ± .02 .27 ± .04 .16 ± .02

performances of the FNN with FedAvg models w.r.t. the ensemble model.
Indeed, as far as we can tell, results reported in table 4.2 are even better
than those shown in the state-of-the-art technique [139] (the paper that
introduced the dataset and the PRAISE score).

While these are indeed good news, we refrain from calling these models
better because the models in [139] have been thoroughly evaluated under a
multitude of aspects, not just F1 and F2. Nonetheless, we plan to investigate
these models in the future further. Another interesting facet of the reported
FNN with FedAvg results is that the F metrics do not follow a growing
pattern as the number of collaborators grows. They show an inverted v
shape, which is difficult to explain. In fact, at least in the weak scaling
setting, we would have expected the performances to continue to grow since
adding more collaborators amount, in this latter case, to increasing the
dataset size. A possible explanation might be that the FL procedure finds
it difficult to leverage all the available data when the number of involved
parties grows (to the point of making adding new parties to the federation
no longer worthwhile).

In summary, from the point of view of prediction quality, quite unexpect-
edly, the FNN with FedAvg model appears to be better than the ensemble
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of trees acquired by AdaBoost.F. Whether they are overall better models
is, however, to be decided since, for the specific case of health institutions,
other factors (above all, the interpretability of the results) might prevail in
evaluating the possible solutions.

As stated earlier, this dataset is highly imbalanced, so it is tough to get
good F1 and F2. However, it was an unexpected observation that the best F1
scores are for models acquired in the federated case, even in the strong scal-
ing setting. Contrary to our expectations, the classical case (corresponding
to the first line of the strong scaling experiments) was not the best. From
the point of view of training the model, this is the easiest configuration,
where all data are located in a single point, and there are no privacy issues.
This is a further point to be further investigated, but a possible explanation
could be that the FL process acts as a regularization factor preventing the
model from overfitting the training set.
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Figure 4.3: AdaBoost.F and FedAvg training time for 100 rounds executed on the C3S machines
in the strong scaling setting.

 0.1

 1

 10

 100

1 2 4 8 16

Ti
m

e
 (

s)

Envoys

AdaBoost.F
FedAvg

(a) Computation time (for a single envoy)

 0.1

 1

 10

 100

 1000

1 2 4 8 16

Ti
m

e
 (

s)

Envoys

AdaBoost.F
FedAvg

(b) Total time

Figure 4.4: AdaBoost.F and FedAvg training time for 100 rounds executed on the C3S machines
in the weak scaling setting.

Fig. 4.3 and 4.4 report the execution times of 100 training rounds for the
FNN model and the AdaBoost.F ensemble in the strong and weak scaling
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settings, respectively. In the strong scaling setting, the size of the pooled
dataset is constant; data is equally partitioned among envoys, whereas in
the weak scaling setting, the size of data associated with each envoy is
constant; the more envoy, the more data. The baseline is the strong scaling
setting with a single envoy, which is identical to a non-federated process.

The most relevant thing to notice is that training an FNN with FedAvg
is between 5 and 30 times longer than training an ensemble of decision trees
with AdaBoost.F in both settings. However, this gap is much more evi-
dent when considering only the actual computation time, as the overhead
introduced by serialization and communication is much more evident with
AdaBoost.F. Plus, the communication time appears to be the actual bot-
tleneck in the overall execution, as the total training time increases with
the number of federation members. This finding suggests that the benefit
of using AdaBoost.F will be much more evident with a more efficient FL
framework, whose development is already in our future research plan.

Analyzing the two algorithms’ strong and weak scaling behaviour, it is
worth noting that the FNN with FedAvg model follows a common trend
in both settings. Indeed, the total time to solution decreases with more
collaborators in the strong scaling setting, while it remains almost constant
in the weak scaling one. Conversely, with AdaBoost.F the time to solution
decreases only up to 8 collaborators in the strong scaling setting, and it
linearly grows up in the weak scaling setting. This behaviour is justified by
the fact that the second phase of the algorithm requires each collaborator
to evaluate n decision trees on the local data to determine the best one,
where n is the number of collaborators in the federation. We are planning
a more efficient version of the algorithm in the future, aiming to reduce the
computation overhead to select the best model at each round.
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Chapter 5

Conclusion

AI is a growing force in everyday life, and its usage is slowly but consistently
percolating in medical professions. In most cases, ML is the main force
driving the adoption of AI. On the other hand, FL is an essential tool for
building machine learning models across parties that must maintain their
local datasets’ privacy. In this thesis, we first provided a comprehensive
review of the different types and categories of FL. We also explored the
various FL tools that have been utilized and presented an overview of the
recent literature in the field of FL.

Second, we presented the main applications of ML in recent cardiology
literature. We provided an introduction of the techniques used most often,
reviewed competing statistical methods, and critically reviewed these tools’
usage in recent applications and research. We found that in most cases, the
usage of ML is limited to tools that have been firmly understood for many
years. In our opinion, newer and more data-hungry approaches are currently
under-represented. Indeed, one of the problems we outline is the paucity of
very large datasets. In fact, the efforts to build such datasets are hampered
by difficulties in labeling vast amounts of data and privacy concerns that do
not allow merging datasets acquired by different institutions. We suggested
exploiting semi-supervised techniques to tackle the labeling problem and
combine Federated Learning and Differential Privacy to overcome privacy
issues. Medical data is challenging to collect, usually noisy, and the involved
tasks are hard to solve. ML can be very useful to ease the burden on
physicians, and, in part, it is already helping in that area. We hope that,
with the improvements in data collection and their sharing, better models
will be learned; physicians will be able to work faster and more accurately,
and, ultimately, many lives will be saved.
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Third, we also applied ML techniques to the cardiology dateset for the
prediction of mortality. We achieved good results, and we were also able to
develop a web-based PRAISE score tool for predicting Death, BARCMB,
and RENAMI. It was pretty successful, and we imagine applying FL to the
same datasets will be useful as it was not explored. Then finally, we applied
FL techniques to the PRAISE dataset. We also found that the most widely
used FL algorithms are based on some variation of the gradient descent
algorithm and are used to train neural networks. However, neural net-
works are not always desirable models and are often harder to train when
tabular data is involved. We investigated how the FedAvg algorithm and
AdaBoost.F compare for the task of predicting all-cause mortality. This ex-
ploratory study constitutes a proof-of-concept of a more general paradigm,
the federated pooling, which allows to compose of complex “virtual” pooled
datasets while leaving the actual data undisclosed at the edge.

Edge computing is a distributed computing paradigm that brings com-
putation and data storage closer to the data source[146]. Edge computing
developed with the expectation of keeping part of the computation close
to the data sources reducing latency and bandwidth requirements in pro-
cessing inherently distributed data streams (as opposite to BigData batch
processing typical of cloud computing). FL addresses the same conceptual
architecture, where data is mainly processed near the data sources, where
the two presented FL settings (cross-device and cross-site) define their fea-
tures in terms of scalability, computing power, energy efficiency, security,
and reliability. In this work, we mainly focus on cross-site scenarios, which
fit a consortium of trusted data owners (e.g., hospitals) connected with a
secure and reliable network that do not wish to share their private data. In
this respect, FL might be considered an example of edge computing that
extends original motivations beyond execution performance.

The PRAISE score offers a prediction performance far better than similar
scores [139]. Notice that the pooled dataset used to train the PRAISE score
model is orders of magnitude larger than those driving similar studies, typi-
cally gathered within a single organization. A basic assumption underneath
all FL algorithms is that they can approximate a traditional model trained
on a pooled dataset, making it possible to train models on an increasingly
larger dataset from different organizations.

There are two assumptions subject to empirical verification. First, a
consortium of organizations, each of them owning private data, can train
a model virtually pooling all datasets via FL, and this model exhibits a
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comparable prediction performance of the best-known model that can be
built from the union of all datasets stored in a single data lake. Second, the
kind of models that can be trained is not limited to ANN but encompasses
explainable ML models, such as decision trees. Formally proving these
assumptions goes far beyond the scope of the present work. Nevertheless,
the empirical validation makes it possible to envision entirely novel data
operation for edge systems enabling data analysis: federated pooling.

Generally speaking, the two basic operations on data are read and write.
Concurrent systems (e.g., parallel, distributed) require an additional atomic-
read-write primary operation to enforce data integrity on shared data, which
is needed to support data sharing primitives among concurrent activities
(e.g., transactions). A further step in distributed systems is reaching a
consensus among parties, i.e., agreeing on some data value needed during
computation. A distributed consensus protocol makes it possible to imple-
ment a distributed ledger to distinguish a digital object from its copy.

Federated pooling can make a further step in distributed data manage-
ment since it can virtually pool many datasets for a specific data analytic
task. Federated pooling does not subsume data operations (read, write,
compare-and-swap); it is stateless because it does not permanently affect
data. For this, it can be re-executed many times and with different organi-
zations, thus finely controlled and billed. We envision federated pooling as
the basic API of a new kind of service for edge computing: FL-as-a-Service
(FLaaS).

Finaly, we compared the performance of these two methods from the
point of view of prediction performances as well as from the point of view of
computation and communication time. While we expected AdaBoost.F to
be a better solution for this specific use case, we found mixed results: the
decision trees trained by AdaBoost.F are faster to train, but the resulting
ensemble does not perform as well as the FedAvg model prediction-wise.
Computationally AdaBoost.F seems to require less resources, but it does
not scale well as the number of involved parties grow (a less demanding
algorithm is being developed by the original authors, but we couldn’t test
it as it has not been released yet).
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Chapter 6

Future work and directions

In this thesis, we explored the PRAISE dataset for the experiment in fed-
erated and none federated settings. For future work, in addition to further
investigate the unexpected good performances of the FNN model, we would
also like to explore this dataset’s two other target variables, such as RE-
NAMI and BARCMB. We would also like to better understand the power
consumption of these two techniques. In addition, as previously discussed
in chapter 2, numerous tools are currently available. We will perform ex-
periments on various federated learning tools using the PRAISE datasets.

Due to its ability to analyze and interpret vast amounts of patient data,
natural language processing (NLP) technology is becoming increasingly
prevalent in the healthcare industry. By utilizing advanced algorithms and
machine learning, NLP can uncover valuable insights from clinical notes
that were previously inaccessible, thereby aiding healthcare providers in
comprehending quality, refining methodologies, and achieving better out-
comes for patients. As physicians devote considerable time to inputting
data into electronic health record systems, NLP can accurately extract un-
structured data for further analysis. Ultimately, NLP has the potential to
enhance patient care by providing valuable insights into healthcare data.
The sensitivity of healthcare data requires that it be handled in a manner
that ensures its privacy. While NLP has not been widely used in Federated
Learning (FL), there is potential for further exploration in this area, making
it an interesting prospect.

Federated learning technique that allows multiple parties to collabora-
tively train a model without sharing their data with each other. Blockchain,
on the other hand, is a distributed ledger technology that allows multiple
parties to communicate and update a ledger in a secure and decentralized
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manner. Combining federated learning with blockchain technology has the
potential to enhance data privacy and security in machine learning appli-
cations. By storing the federated learning model on the blockchain, all
participants can access and verify the model’s integrity without exposing
their data to each other. Additionally, smart contracts can be used to gov-
ern the federated learning process and ensure that all participants follow the
agreed-upon rules. Finally, we will work on developing a Federated Learning
as a Service (FLaaS) infrastructure for federated pooling in the continuum,
which will serve as a framework to experiment with novel ML/DNN models
and datasets coming from a diverse set of use cases.
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