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IgA1 Glycosylation Is Heritable in Healthy Twins
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ABSTRACT

IgA nephropathy (IgAN) is the most common form of primary GN and an important
cause of kidney failure. Characteristically, patients with IgAN have increased serum
levels of undergalactosylated IgA1 (gd-IgA1). To assess the degree to which serum
gd-IgA1 levels are genetically determined in healthy individuals, we determined
serum IgA and gd-IgA1 levels by ELISA in a sample of 148 healthy female twins,
including 27 monozygotic and 47 dizygotic pairs. Using the classic twin model, we
found the heritability of serum gd-IgA1 and IgA levels to be 80% (95% confidence
interval, 66% to 89%) and 46% (95% confidence interval, 15% to 69%), respectively.
These data indicate that serum gd-IgA1 levels are highly heritable. Elucidating the
genetic basis of this heritability will be important in understanding the pathogenesis

of IgAN.
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IgA nephropathy (IgAN) is the most
frequently diagnosed type of GN in the
world.! The course of disease is complex
and not yet fully understood; the prog-
nosis is variable. Some patients have
a very mild form of the disease that re-
quires little to no treatment. However,
others have progressive disease with up
to 50% of patients developing ESRD
within 20 years of diagnosis. IgAN recurs
in approximately 50%-60% of trans-
planted patients, indicating an impor-
tant contribution of extrarenal factors
to pathogenesis.—> A great deal of evi-
dence exists to support a significant
genetic contribution to IgAN.> The in-
cidence of IgAN varies geographically,
being most prevalent in East Asian pop-
ulations and less prevalent in European
and African populations.'®!! Six genome-
wide association studies have collectively
identified 20 distinct loci associated with
IgAN. Interestingly, most of these loci
are shared with other immune-related
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diseases.!?=17 One associated single-
nucleotide polymorphism has been
located within the ST6GALI gene.l®
ST6GALI encodes ST6 B-galactosamide
a-2,6-sialyltranferase 1, a glycosyltransfer-
ase. However, none of the loci are specif-
ically associated with genes involved in
IgA1 glycosylation. One of the hallmarks
of IgAN is the presence of increased
amounts of circulating undergalactosyla-
ted IgA1 antibodies. Usually, glycans on
the hinge region of IgA1 terminate with
galactose. In IgAN patients an increased
proportion of IgA1 glycans terminate in
N-acetylgalactosamine or sialylated N-
acetylgalactosamine.>!8 This type of
IgA1l is termed galactose-deficient IgA1l
(gd-IgAl). gd-IgAl has an established
role in the development of IgAN. In
the proposed four-hit hypothesis of
IgAN pathogenesis, an increase in gd-
IgAl triggers the production of antigly-
can autoantibodies.®1%-20 This leads to
the formation of immune complexes

that, under this hypothesis, may deposit
in the kidney and cause kidney in-
jury.21-22 Levels of gd-IgAl are elevated
in IgAN patients, regardless of ethnicity
or age.23:24.25

Studies of familial IgAN have pro-
vided heritability estimates for gd-IgAl
between 54% and 76%.25-27 One diffi-
culty of these studies is that at-risk rela-
tives tend to show increased gd-IgAl
levels, biasing the heritability estimates
which have been suggested to strongly
depend on the gd-IgA1 levels of the in-
dex IgAN case.?® In order to understand
the genetic contribution to gd-IgAl
levels in IgAN patients, it is first necessary
to understand the genetic contribution
to gd-IgAl levels in healthy individuals.
The classic twin model allows the estima-
tion of the environmental and genetic
contribution to phenotypic variation.
We assessed the heritability of serum
gd-IgA1 and IgA levels in a randomly as-
certained sample of 148 healthy female
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twins from the TwinsUK cohort consist-
ing of 47 dizygotic and 27 monozygotic
pairs. All individuals were white females.
The mean age was 56.9 years (range,
27.1-84.8; SD=13). Phenotypic charac-
teristics are summarized in Table 1.

We measured IgA and gd-IgAl levels
in serum by ELISA. To demonstrate
consistency among multiple measure-
ments of both IgA and gd-IgAl we
designed a fully crossed experiment,
where 58 randomly selected control
samples were assessed on 3 testing days.
We assessed the intrarater reliability
of each experiment by calculating
the intraclass correlation coefficient
(ICC).28 The ICC for the IgA assay was
0.74 (95% confidence interval [95% CI],
0.63t0 0.83) and the ICC for the gd-IgAl
assay was 0.89 (95% CI, 0.73 to 0.95),
showing a good-to-excellent reproduc-
ibility.?° We next assessed serum IgA
and gd-IgA1 levels in our twin cohort.
The mean serum IgA level was 3.16 mg/ml
(range, 0.91-5.41; SD=0.73). The mean
serum gd-IgAl level was 0.54 absor-
bance units (AU) (range, 0.21-0.89;
S§D=0.15). For both parameters the
data were normally distributed
(P>0.05, Shapiro—Wilk normality test).
To control for potential batch effects
analyses were carried out using the
plate-adjusted residuals for both traits
and age at assessment was included in
all models. To determine longitudinal
stability of gd-IgAl, we analyzed gd-
IgAl levels in two samples from each
individual (n=40 individuals). The sam-
ples were collected 5 years apart. There
was no difference in Helix aspersa aggluti-
nin (HAA) binding of the paired samples
over time (Figure 1, r=0.92, P<0.001). This

data demonstrated longitudinal stability
of gd-IgA1l in the twins and is consistent
with previous studies.3°

We fitted three different nested ge-
netic models to the data using OpenMX:
(1) the E model, which assumes that the
phenotypic variability in the population
is determined only by the environment;
(2) the AE model, which assumes that
both additive genetic effects and the en-
vironment play a role; and (3) the ACE
model that includes an additional com-
ponent for the common shared familial
environment. The AE model was the
best-fitting model for the estimation of
both gd-IgAl and IgA level heritabil-
ity (Akaike information criterion
[AIC]ACE:_4856, AICAE:_4875 and
AICAcg=11.0 AIC5E=9.0, respectively).
Additive genetic effects accounted for
80.4% (95% CI, 65.6% to 88.7%)
of the variance of gd-IgAl levels and
individual-specific environmental effects
explained the remaining 19.6% (95% CI,
11.3% to 34.4%) of the variance. Addi-
tive genetic effects accounted for 46.3%
(95% CI, 15.2% to 68.6%) of the vari-
ance of IgA levels, and individual-
specific environmental effects explained
the remaining 53.7% (95% CI, 31.4%
to 84.8%) of the variance. These data
show that, unlike serum IgA, serum
gd-IgA1l is highly heritable. This is con-
firmed by the fact that, in contrast to
serum IgA levels, the correlation of gd-
IgAl between monozygotic twins
(r=0.84) was much higher than the cor-
relation between dizygotic twins
(r=0.46; Figure 2). Our analyses suggest
that the variability of gd-IgAl levels in
the healthy general population is
strongly determined by genes with

Table 1. Phenotypic details of the 148 white female individuals in the study

sample
Mean sD First Quantile Third Quantile

Monozygotic (n=54)

Age, yr 52.73 12.16 45.14 62.86

IgA, mg/ml 3.22 0.65 2.81 3.54

gd-lgA1, AU 0.54 0.16 0.42 0.66
Dizygotic (n=94)

Age, yr 59.28 12.98 48.91 69.76

IgA, mg/ml 3.13 0.77 2.62 3.67

gd-lgA1, AU 0.53 0.15 0.43 0.63
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additive effects on the trait, whereas
the individual environment (lifestyle,
exposure) plays a much smaller role.
Analogously, no effects due to common
environmental or lifestyle factors that
are shared within each family were iden-
tified in our sample. Overall, our data
show that circulating gd-IgA1l is highly
heritable (80.4%) in a healthy popula-
tion, indicating that serum gd-IgAl
levels are under strong genetic control.
Heritability of gd-IgAl has previously
been demonstrated in studies based on
families ascertained through the pres-
ence of IgA nephropathy or Henoch—
Schonlein Purpura, although estimates
were sometimes dependent on the gd-
IgA1 levels of the index case.?>~27 An
increased level of gd-IgAl is associated
with IgAN and is considered to be the
‘first hit’ in the proposed disease path-
ogenesis model.®2% Notably, asymp-
tomatic first-degree relatives of IgAN
patients have high gd-IgAl levels, sug-
gesting that additional factors (‘hits’)
are required for IgAN to develop. Con-
sistent with previous studies, serum
IgA levels showed low heritability
(46.3%) in our cohort.?1:32 In conclu-
sion, our study found gd-IgAl levels to
be a highly heritable trait in the general
population, with a heritability estimate
of about 80%. Disentangling the ge-
netic component underlying gd-IgAl
variability may help the identifica-
tion of genetic risk factors for IgAN
susceptibility.

CONCISE METHODS

Sample Cohort
The TwinsUK adult twin registry includes

about 12,000 subjects, predominately white
females, unselected for any specific disease,
recruited from all over the United Kingdom
from 1992. Individuals from the TwinsUK
cohort have been shown to have similar
disease and lifestyle characteristics to the
general population.®® St. Thomas” Hospital
Research Ethics Committee approved this
study, and all twins provided informed writ-
ten consent. The sample used for this study
was randomly ascertained among healthy
twin pairs. All of the data are available upon
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Figure 1. Stability of gd-IgA1 levels over time. Unpaired (A) and paired (B) scatterplots
show gd-IgA1 levels determined at two time points, T1 and T2 (5 years apart), for individual
samples (n=40 individuals with paired samples from each; bars represent group median).
There was no difference in gd-IgA1 levels in the paired samples over time (paired t-test,
P=NS), with a good correlation between T1 and T2 (C) (r=0.92, P<0.001 [Pearson corre-
lation]). AU, absorbance units; CV, coefficient of variation.

Measurement of Serum IgA
Serum IgA levels were measured by ELISA.23

request from the Twin Research Unit website
(www.twinsuk.ac.uk/data-access/submission-

procedure). MaxiSorb immunoplates (Nunc; Life
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Figure 2. Twin-by-twin scatterplots. Serum gd-IgA1 levels in monozygotic (MZ) (A) and
dizygotic (DZ) (B) twins and of serum IgA levels in MZ (C) and DZ (D) twins. The levels of gd-
IgA1 were more correlated in MZ twins than in DZ twins; intrapair correlations were 0.84
(P<0.001) and 0.46 (P=0.001), respectively. These data suggest gd-IgA1 level is highly heri-
table. Conversely, intrapair correlations of IgA level were 0.48 (P=0.01) and 0.30 (P=0.04),
indicative of IgA level being less heritable than gd-IgA1 level. AU, absorbance units.
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Technologies, Carlsbad, CA) were coated
overnight at 4°C with 3 ug/ml F(ab’),
fragment goat antihuman IgA (Jackson
ImmunoResearch Laboratories, West Grove,
PA) in coating buffer (0.05 M carbonate-
bicarbonate buffer, pH 9.6). Between each
incubation step, plates were washed three
times with washing buffer (PBS and 0.1%
Tween 20). Plates were blocked for 1 hour
at room temperature with carbofree (Vector
Labs). Samples were diluted 1:80,000 in
carbofree and incubated at room tempera-
ture for 2 hours. Detection was carried out
for 1 hour at room temperature using F(ab’),
fragment biotinylated goat anti-human IgA1l
(Jackson ImmunoResearch Laboratories),
followed by Extravidin-HRP. ELISAs were
developed using TMB substrate (BD Biosci-
ences, San Jose, CA) and absorbance was
measured at 450 nm. A standard curve was
produced on each plate using serial dilutions
of purified IgAl (Abcam, Inc., Cambridge,
MA) from 100 ng/ml to 1.56 ng/ml.

Measurement of gd-IgA1

Levels of serum gd-IgA1 were measured using a
lectin-based ELISA.>* MaxiSorb immunoplates
were coated overnight at 4°C with polyclonal
rabbit antihuman IgA (Dako) diluted 1:1000 in
coating buffer (0.05 M carbonate-bicarbonate
buffer, pH 9.6). Between each incubation
step, plates were washed four times with
washing buffer (PBS and 0.1% Tween 20,
0.355 M sodium chloride). Plates were
blocked for 1 hour at room temperature with
carbofree (Vector Laboratories, Burlingame,
CA) and samples were diluted 1:100 in PBS
(to ensure saturation of IgA) and incubated
overnight at 4°C. Helix aspersa agglutinin-
biotin (Sigma-Aldrich, St. Louis, MO) diluted
1:1000 in PBS was added to each well for
90 min at room temperature, followed by
poly-streptavidin HRP (Pierce, Rockford,
IL) diluted 1:10,000, also for 90 min at
room temperature. ELISAs were developed
using TMB substrate (BD Biosciences) and
absorbance was measured at 450 nm. Three
control samples were run on each plate (“low,”
“medium,” and “high”) to test for inter- and
intra-assay variation.

Heritability Estimation
We used OpenMX (http://openmx.psyc.

virginia.edu, version 2.2.4) to estimate the
contribution of additive genetic, shared, and
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individual-specific environmental effects on
serum IgA and gd-IgA1l level variation (ACE
model).3> We also compared the ACE model
with the most parsimonious AE model,
which does not include the effect of common
environmental influences, assuming that all
familial aggregation results from additive ge-
netic effects, and against the E model that
assumes all variability to be determined by
the environment. The models were compared
using AIC in order to determine which model
attained the best goodness-of-fit in the most
parsimonious way. In the analyses the age at se-
rum level collection was included as a covariate.
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