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Abstract
We consider an 𝑛-dimensional parabolic-type PDE with a diffusion given by a
fractional Laplace operator and with a quadratic nonlinearity of the “gradient”
of the solution, convoluted with a term 𝔟 which can be singular. Our first result
is the well-posedness for this problem: We show existence and uniqueness of a
(local in time) mild solution. The main result is about blow-up of said solution,
and in particular we find sufficient conditions on the initial datum and on the
term 𝔟 to ensure blow-up of the solution in finite time.
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1 INTRODUCTION

In this article we consider the following general partial differential equation

𝜕𝑡𝔲 = −(−Δ)𝛼∕2𝔲 +
(
(−Δ)1∕2𝔲

)2
∗ 𝔟,

𝔲(0, 𝑥) = 𝔲0(𝑥), 𝑥 ∈ ℝ𝑛,

(1.1)

where𝔲0 ∶ ℝ𝑛 ⟶ 𝑅 is a given initial function, the unknown𝔲 ∶ [0, +∞[×ℝ𝑛 ⟶ ℝ is a real-valued function, the term 𝔟

is a real-valued (generalised) function on [0, +∞[×ℝ𝑛 (in particular it can be singular in the space variable𝑥 ∈ ℝ𝑛 because
it belongs to a fractional Sobolev space of low or even negative order), and (−Δ)𝛼∕2 with 0 < 𝛼 ≤ 2 is the fractional Laplace
operator (see Section 2 below for a precise definition of all these objects). Our main objective is to study well posedness
and blow-up times for solutions to Equation (1.1) for any dimension 𝑛 ≥ 1.
Blow-up questions for evolution equations have been studied in the past for many different models. For example, in

order to study the possible blow-up for the Navier–Stokes equations, Montgomery-Smith in [13] proposed a simplified
scalar equation, called the Cheap Navier–Stokes equation, which reads

𝜕𝑡𝑢 = Δ𝑢 + (−Δ)1∕2
(
𝑢2
)
, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ ℝ3, (1.2)
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where 𝑢 ∶ [0, +∞[×ℝ3 ⟶ ℝ. Notice that in dimension 𝑛 = 2, 3 a more general version of (1.2) was considered in [1]
where the nonlinearity (−Δ)1∕2

(
𝑢2
)
above was replaced by a bilinear form 𝑄(𝑢, 𝑢) satisfying some sign-preserving prop-

erties in the Fourier level. In the aforementioned articles [1, 13], the main argument to show blow-up in finite time relies
on the preservation of the positivity in the Fourier variable of the solution 𝑢, which is guaranteed by the inner structure
of these equations. In the present paper we will follow closely some of the Fourier-based ideas displayed in the article
[13] to show explicit blow-up for Equation (1.1), even though the latter equation is different in many aspects from (1.2).
Putting aside the term 𝔟, the non linearity

(
(−Δ)1∕2𝔲

)2
appearing in (1.1) is quite different from the quantity (−Δ)1∕2

(
𝑢2
)

of (1.2): this can be easily observed in the Fourier level as we have
((

(−Δ)1∕2𝔲
)2)∧

=
(|𝜉|𝔲̂) ∗ (|𝜉|𝔲̂) whereas we have(

(−Δ)1∕2
(
𝑢2
))∧

= |𝜉|(𝑢 ∗ 𝑢
)
.

Another example of blow-up for evolution equation was given in [8] where the authors studied the Burgers
equation with fractional dissipation:

𝜕𝑡𝑢 = 𝑢𝜕𝑥𝑢 − (−Δ)𝛼∕2𝑢, 𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ 𝕊1, 0 < 𝛼 ≤ 2. (1.3)

In [8] the authors show an interesting competition between global existence/blow-up scenarios and the fractional power
𝛼 of the Laplacian. From a smooth periodic initial data 𝑢0, if we have 0 < 𝛼 < 1 it is possible to exhibit blow-up in finite
time in the Sobolev space 𝒞([0, +∞[,𝐻𝑠(ℝ)) for 𝑠 > 3∕2 − 𝛼, whereas if 1 ≤ 𝛼 ≤ 2 then global existence is obtained in
the space𝒞([0, +∞[,𝐻𝑠(ℝ))with 𝑠 > 3∕2 − 𝛼. One can thus interpret the value 𝛼 = 1 as a threshold between global well
posedness and blow-up in finite time for Equation (1.3). Of course Equation (1.3) is also quite different from (1.1) but, just
as in [8], we can identify some regions depending on the value 𝛼 and on some properties of the term 𝔟, for which we can
explicitly construct a blow-up in finite time (the regions are identified by conditions (2.10) and (2.11) in Remark 2.5 below,
more details on this at the end of this introduction).
In recent years we also started to see a growing interest in the study of PDEs with singular coefficients (like 𝔟 in our

case), see, e.g., [3–6] tomention only a fewworks. In all these papers, the coefficient 𝔟 ismultiplied rather than convoluted,
and it is interpreted as one realisation of some random noise (hence viewing the whole equation as one realisation of a
stochastic PDE). For example, in [6] the author studied a non-linear equation of the form

𝜕𝑡𝑢 = Δ𝑢 + (∇𝑢 ⋅ ∇𝑢)𝔟,

𝑢(0, 𝑥) = 𝑢0(𝑥),
(1.4)

on [0, 𝑇] × ℝ𝑛, where the term 𝔟 is assumed to be singular in the space variable, in particular 𝔟 ∈ 𝐿∞([0, 𝑇], 𝒞−𝛾(ℝ𝑛))

with 0 < 𝛾 < 1∕2 (here the space𝒞−𝛾 is a Besov space of negative order, hence it includes distributions). One of the main
results of [6] is the construction of local in time mild solutions for the system (1.4) using fixed point arguments, but the
issue of global existence and/or blow-up of solutions for (1.4) is left as an open question by the author in [6].
The main problem (1.1) studied in the present paper was initially motivated by the above mentioned open question for

(1.4), but the equation we study here is not directly related to it. From a global perspective both the gradient operator ∇
and the square root of the Laplacian (−Δ)1∕2 represent “one order of differentiation”, but they are quite different opera-
tors, especially at the Fourier level. Furthermore, the pointwise multiplication has a completely different effect than the
convolution process. Our results for Equation (1.1) cannot be applied to Equation (1.4) nor can the proof be easily modified
to fit that framework.
Nevertheless, we believe that (1.1) is an academically interesting toy model, which can bring new insight into the study

of smoothing of nonlinearities combined with blow-up questions. In fact, the presence of the convolution term 𝔟 in
Equation (1.1) induces a smoothing effect in the nonlinearity (even though the term 𝔟 can be a distribution) and in this
sense we have here two smoothing terms: the operator (−Δ)𝛼∕2 and the convolution with the term 𝔟.
This smoothing effect allows us to find a local solution (see Theorem 2.3), but if the effect is not strong enough then

the equation can exhibit a blow-up in finite time upon choosing the initial condition large enough (see Theorem 2.4). The
precise conditions underwhich this happens depend on the value of the parameter𝛼 of the fractional Laplacian and on the
value of the parameters (𝜌, 𝛾)which describe the term 𝔟 (the parameter 𝛾 describes the order of the fractional Sobolev space
where 𝔟 lives, while the parameter 𝜌 appearing in condition (2.8) restricts the Fourier transform of 𝔟 from below). In the
spirit of [8], we identify a region in the space of parameters (𝛼, 𝜌, 𝛾) in which blow-up occurs, see Remark 2.5. In particular,
the blow-up regions are identified by Equations (2.10) and (2.11). Let us notice that blow-up for Equation (1.1) is driven by
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the energy produced by the nonlinearity, and in particular by its high frequencies: condition (2.8) guarantees a preservation
of high frequency information, which in turn leads to the blow-up of the solution. On the other hand, some regularity is
needed in order for the solution to exist at least locally, and this is enforced by the bound on 𝛾 (which depends on 𝛼).
The plan of the article is the following: In Section 2, after recalling some notation and useful facts, we state our main

results of well posedness of Equation (1.1) in Theorem 2.3, and of its blow-up in Theorem 2.4. Then we present the proof of
well-posedness in Section 3, and of blow-up in Section 4.We conclude with a short Appendix containing a technical proof.

2 NOTATION ANDMAIN RESULTS

2.1 Preliminaries

We give here a precise definition of all the terms of Equation (1.1) and we start with the diffusion operator (−Δ)𝛼∕2 with
0 < 𝛼 ≤ 2. In the particular case when 𝛼 = 2, it is the usual Laplacian operator −Δ. If 0 < 𝛼 < 2, the operator (−Δ)𝛼∕2 is
defined at the Fourier level by the expression (

(−Δ)𝛼∕2𝜑
)∧
(𝜉) = |𝜉|𝛼𝜑(𝜉), (2.1)

for all functions 𝜑 in the Schwartz class 𝒮(ℝ𝑛) and where ⋅̂ (or ⋅∧) denotes the Fourier transform. In particular we have(
− (Δ)1∕2𝜑

)∧
(𝜉) = |𝜉|𝜑(𝜉), with 𝜑 ∈ 𝒮(ℝ𝑛).

For 𝑠 > 0 real, we define the operator (Id − Δ)𝑠∕2 by the symbol
(
1 + |𝜉|2)𝑠∕2, i.e.,

(
(Id − Δ)𝑠∕2𝜑

)∧
(𝜉) =

(
1 + |𝜉|2)𝑠∕2𝜑(𝜉), (2.2)

where 𝜑 ∈ 𝒮(ℝ𝑛). See [2, Section 6.1 & Section 6.2.1] for further details on these two operators.
For 0 < 𝛼 < 2, the semigroup associated to the operator −(−Δ)𝛼∕2 will be denoted by 𝑒−𝑡(−Δ)

𝛼∕2 and its action over
functions in the Schwartz class 𝒮(ℝ𝑛) is given in the Fourier level by(

𝑒−𝑡(−Δ)
𝛼∕2

𝜑
)∧

(𝜉) = 𝑒−𝑡|𝜉|𝛼𝜑(𝜉) = 𝔭𝛼𝑡 (𝜉) × 𝜑(𝜉), (2.3)

which implies that we have a convolution kernel 𝔭𝛼𝑡 ∈ 𝐿1(ℝ𝑛):

𝑒−𝑡(−Δ)
𝛼∕2

(𝜑) = 𝔭𝛼𝑡 ∗ 𝜑. (2.4)

By duality, the action of these objects can be generalized to the space 𝒮′(ℝ𝑛). See the survey paper [11] for more details
on the definition of the fractional Laplacian and its corresponding semigroup 𝑒−𝑡(−Δ)𝛼∕2 . See also [7, Sections 3.6–3.9]. We
gather in the lemma below some useful results associated to the kernel 𝔭𝛼𝑡 .

Lemma 2.1. For 0 < 𝛼 < 2 consider the kernel 𝔭𝛼𝑡 associated to the operator −(−Δ)
𝛼∕2. We have the following properties:

(i) for all 𝑡 > 0 we have ‖‖𝔭𝛼𝑡 ‖‖𝐿1 = 1,
(ii) for all 𝑡 > 0 and 𝑠 > 0 we have

‖‖(Id − Δ)𝑠∕2𝔭𝛼𝑡
‖‖𝐿1 ≤ 𝐶max

{
1, 𝑡−𝑠∕𝛼

}
,

for some constant 𝐶 > 0.

Recall that when 𝛼 = 2, then the semigroup 𝑒𝑡Δ is the standard heat semigroup, for which all previous results are also true.
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The first point of this lemma follows from the fact that 𝔭𝛼𝑡 is given in [10, formula (7.2), Chapter 7], which is a probability
density. The second point can also be deduced from the general properties of symmetric 𝛼-stable semigroups given in the
books [7] and [10], but for the sake of completeness, a sketch of the proof of this inequality is given in the Appendix.
Next we introduce Sobolev spaces, for more details see the book [2, Chapter 6]. We define nonhomogeneous Sobolev

spaces 𝐻𝑠(ℝ𝑛) with 𝑠 ∈ ℝ (see in particular [2, Definition 6.2.2.]) as the set of distributions 𝜑 ∈ 𝒮′(ℝ𝑛) such that the
quantity

‖𝜑‖𝐻𝑠 ∶= ‖‖(Id − Δ)𝑠∕2𝜑‖‖𝐿2 , (2.5)

is finite, see [2, Section 6.2.1] for more details about Sobolev spaces. The expression in (2.5) defines a norm and the space
𝐻𝑠(ℝ𝑛) endowed with this norm is a Hilbert space. If 𝑠 ≥ 0 then the norm ‖𝑓‖𝐻𝑠 is equivalent to ‖𝑓‖𝐿2 + ‖‖(−Δ)𝑠∕2𝑓‖‖𝐿2
(see [2, Theorem 6.2.6.]). Note that in this case (i.e., when 𝑠 ≥ 0) we always have the inequality ‖‖(−Δ)𝑠∕2𝑓‖‖𝐿2 ≤‖𝑓‖𝐻𝑠 . The latter quantity is actually the (semi-)norm in the homogeneous Sobolev space 𝐻̇𝑠(ℝ𝑛) and it is denoted by‖𝑓‖𝐻̇𝑠 ∶= ‖‖(−Δ)𝑠∕2𝑓‖‖𝐿2 (see [2, Definition 6.2.5]). Note also that we have the space identification 𝐻0(ℝ𝑛) = 𝐿2(ℝ𝑛) and
that, for any 𝑠0, 𝑠1 > 0, we have the space inclusions

𝐻𝑠0 ⊂ 𝐿2 ⊂ 𝐻−𝑠1 .

Note that negative regularity Sobolev spaces𝐻−𝑠(ℝ𝑛) can contain objects that are not necessarily functions, in particular
if 𝑠 > 𝑛∕2 then the Dirac mass 𝛿0 belongs to𝐻−𝑠(ℝ𝑛), see [2, Example 6.2.3].

Notation. For a fixed 𝑇0 > 0, we will sometimes denote the function space 𝐿∞
(
[0, 𝑇0], 𝐻

1(ℝ𝑛)
)
by 𝐿∞𝑡 𝐻1

𝑥

(
and

similarly 𝐿∞𝑡 𝐻̇1
𝑥 in place of 𝐿∞

(
[0, 𝑇0], 𝐻̇

1(ℝ𝑛)
))

and we will say that a function 𝑓 ∶ [0, +∞[×ℝ𝑛 ⟶ ℝ belongs to
𝐿∞
(
[0, 𝑇0], 𝐻

1(ℝ𝑛)
)
if

‖𝑓‖𝐿∞𝑡 𝐻1
𝑥
∶= ess sup

0≤𝑡≤𝑇0
‖𝑓(𝑡, ⋅)‖𝐻1 < +∞.

2.2 Existence and uniqueness

In this paper we are mainly interested inmild solutions of the problem (1.1), which we introduce below.

Definition 2.2. Let 𝑇0 > 0. For 𝔲0 ∈ 𝐻1(ℝ𝑛), we say that 𝔲 ∈ 𝐿∞
(
[0, 𝑇0], 𝐻

1(ℝ𝑛)
)
is a mild solution of (1.1) if it is a

solution of the following integral equation

𝔲(𝑡, ⋅) = 𝑒−𝑡(−Δ)
𝛼∕2

𝔲0(⋅) + ∫
𝑡

0

𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2
((

(−Δ)1∕2𝔲
)2

∗ 𝔟
)
(𝑠, ⋅) 𝑑𝑠, (2.6)

where the identity is intended in the sense of the space 𝐿∞
(
[0, 𝑇0], 𝐻

1(ℝ𝑛)
)
. Notice that (2.6) is in fact the classical

Duhamel formulation of Equation (1.1).

Our first main result deals with the existence and uniqueness of such mild solutions.

Theorem 2.3 (Existence and uniqueness). Let (−Δ)𝛼∕2 be the fractional Laplacian operator with 0 < 𝛼 ≤ 2, and let 𝔲0 be
a given initial data that belongs to the Sobolev space 𝐻1(ℝ𝑛). Furthermore, let us assume that we are in one of the following
cases:

Case 1) Let 1 < 𝛼 ≤ 2 and let 𝔟 ∈ 𝐿∞
(
[0, +∞[,𝐻−𝛾(ℝ𝑛)

)
with 0 ≤ 𝛾 < 𝛼 − 1.

Case 2) Let 0 < 𝛼 ≤ 1 and let 𝔟 ∈ 𝐿∞
(
[0, +∞[,𝐻𝛾(ℝ𝑛)

)
with 1 − 𝛼 < 𝛾 < 1.

Then there exists a time 𝑇0 > 0 such that Equation (1.1) admits a unique mild solution of the form (2.6) in the space
𝐿∞
(
[0, 𝑇0], 𝐻

1(ℝ𝑛)
)
.
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The proof of Theorem 2.3 is postponed to Section 3. Before moving on, some remarks on the assumptions on 𝔟 in this
theorem are in order.
Let us note that the singularity (or regularity) of the term 𝔟(𝑡, ⋅) (in the space variable) is driven by the parameter 𝛾, for

which we impose a condition related to the smoothness degree 𝛼 of the fractional Laplacian operator.

Case 1) Here we have 1 < 𝛼 ≤ 2 and 0 ≤ 𝛾 < 𝛼 − 1. In this case 𝔟(𝑡, ⋅) can be quite singular, in particular since the expo-
nent −𝛾 is negative, 𝔟 can be a distribution. This fact is encoded in the condition 𝔟 ∈ 𝐿∞

(
[0, +∞[,𝐻−𝛾(ℝ𝑛)

)
which can be equivalently expressed in the Fourier variable as

(
1 + |𝜉|2)−𝛾∕2 𝔟̂(𝑡, 𝜉) ∈ 𝐿2(ℝ𝑛), uniformly in the time variable.

Case 2) Here we have 0 < 𝛼 ≤ 1 and 1 − 𝛼 < 𝛾 < 1. In this case 𝔟(𝑡, ⋅) is not allowed to be a singular distribution and in
fact it needs to be Sobolev regular of order 𝛾 (for some small but positive 𝛾) to ensure the existence of a mild
solution. This is encoded in the condition 𝔟 ∈ 𝐿∞

(
[0, +∞[,𝐻𝛾(ℝ𝑛)

)
which can be equivalently expressed in the

Fourier variable as (
1 + |𝜉|2)𝛾∕2 𝔟̂(𝑡, 𝜉) ∈ 𝐿2(ℝ𝑛), uniformly in the time variable.

In some sense the parameter 𝛾 must compensate for the weaker smoothing property of the kernel 𝔭𝛼𝑡 when
0 < 𝛼 ≤ 1.

We can see that if the function 𝔟(𝑡, ⋅) is more singular than what assumed in Theorem 2.3, that is, if −𝛾 < −(𝛼 − 1) in
Case 1) and if 𝛾 < 1 − 𝛼 in Case 2), then the existence of such mild solutions is not granted by this result. We believe this
is a hard threshold that cannot be overcome by using different techniques, unless one enhances the term 𝔟 with extra
information and uses (stochastic) tools like regularity structures or paracontrolled distributions.
In terms of function spaces, we do not claim here any kind of optimality. For example, it should be possible to obtain

this existence theorem in a more general framework, by considering Triebel–Lizorkin spaces 𝐹𝑠
𝑝,𝑞 or Besov spaces 𝐵𝑠

𝑝,𝑞 for
the space variable. Nevertheless, for the purpose of this article the space 𝐿∞𝑡 𝐻1

𝑥 is enough.

2.3 Blow-up

Here we will see that under suitable assumptions it is possible to exhibit a blow-up phenomenon in finite time for the
mild solution 𝔲 of Equation (1.1).
In order to find explicitly the blow-up time, we will work with a special initial data 𝔲0 of the form 𝔲0 = 𝐴𝜔0, where

𝐴 is a (large enough) positive constant that will be specified later and where 𝜔0 ∶ ℝ𝑛 ⟶ ℝ is a function defined in the
following way: Let 𝜉0 ∈ ℝ𝑛 be given by 𝜉0,1 = 𝜉0,2 = ⋯ = 𝜉0,𝑛 = 3∕2. Then we define the function 𝜔0 in the Fourier level
by the condition:

𝜔0(𝜉) = 𝟙{|𝜉−𝜉0|<1∕2}. (2.7)

We remark that since 𝔲0 is bounded and compactly supported in the Fourier variable by construction, then it belongs to
all Sobolev spaces𝐻𝑠 for 0 ≤ 𝑠 < +∞ as it can be easily seen from the Plancherel formula and expressions (2.2) and (2.5).
In Theorem 2.4 below we show that, even though the initial data 𝔲0 is a smooth function, the unique solution found

in Theorem 2.3 blows up in finite time, provided that the initial condition has norm large enough. As before, we will
decompose our study following the values of the smoothness degree 𝛼 and the corresponding assumptions on 𝔟.

Theorem 2.4 (Blow-up). Over the space ℝ𝑛, let us consider the fractional Laplace operator (−Δ)𝛼∕2 with 0 < 𝛼 ≤ 2. Let the
term 𝔟 be such that we have, uniformly in 𝑡, the behavior

𝑐
(
1 + |𝜉|2)−𝜌∕2 ≤ 𝔟̂(𝑡, 𝜉), (2.8)
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for some constant 𝑐 > 0 and for some finite nonnegative parameter 𝜌 ≥ 0. Let the initial condition 𝔲0 be of the form

𝔲0 = 𝐴𝜔0, (2.9)

where 𝜔0 is given by (2.7) and 𝐴 is a positive constant which is specified in expression (4.4) below and which depends on the
dimension 𝑛, the parameters 𝛼, 𝜌 and on the constant 𝑐 above. Furthermore, let us assume that we are in one of the following
cases:

Case 1) Let 1 < 𝛼 ≤ 2 and let 𝔟 ∈ 𝐿∞
(
[0, +∞[,𝐻−𝛾(ℝ𝑛)

)
with 0 ≤ 𝛾 < 𝛼 − 1.

Case 2) Let 0 < 𝛼 ≤ 1 and let 𝔟 ∈ 𝐿∞
(
[0, +∞[,𝐻𝛾(ℝ𝑛)

)
with 1 − 𝛼 < 𝛾 < 1.

Then the mild solution 𝔲 of (1.1) obtained in Theorem 2.3 blows up at (or before) time 𝑡∗ ∶= ln(2), in particular

lim
𝑡→𝑡−∗

‖𝔲(𝑡∗, ⋅)‖𝐻1
𝑥
= +∞.

The proof of this theorem is postponed to Section 4.
It is very important to observe now that, hidden in the assumptions we make, there is a relationship between the

dimension 𝑛 and the parameters 𝛼, 𝛾 and 𝜌, as pointed out in the remark below.

Remark 2.5. If we combine assumption (2.8) together with the fact that 𝔟(𝑡, ⋅) must belong to a given fractional Sobolev
space (corresponding to Case 1) or Case 2) above), then we get a link between the parameters 𝛼, 𝛾, 𝜌 and the dimension 𝑛,
which identifies a region in the (𝛼, 𝛾, 𝜌) spacewhere a local solution exists but blow-up occurs in finite time. In particular:

Case 1) By using (2.8) we have

‖𝔟(𝑡, ⋅)‖𝐻−𝛾 =
‖‖‖(𝐼𝑑 − Δ)−𝛾∕2𝔟(𝑡, ⋅)

‖‖‖𝐿2 = ‖‖‖‖(1 + | ⋅ |2)−𝛾∕2 𝔟̂(𝑡, ⋅)‖‖‖‖𝐿2
≥ 𝑐
‖‖‖‖(1 + | ⋅ |2)−𝛾∕2(1 + | ⋅ |2)−𝜌∕2‖‖‖‖𝐿2

= 𝑐
⎛⎜⎜⎝∫ℝ𝑛

1(
1 + |𝜉|2)𝛾+𝜌 𝑑𝜉

⎞⎟⎟⎠
1∕2

.

Since we require ‖𝔟(𝑡, ⋅)‖𝐻−𝛾 < +∞ we must necessarily have ∫
ℝ𝑛

1

(1+|𝜉|2)𝛾+𝜌 𝑑𝜉 < +∞ which is satisfied only if
2(𝛾 + 𝜌) > 𝑛 ≥ 1. We thus obtain the following set of conditions to ensure blow-up:

1 < 𝛼 ≤ 2, 0 ≤ 𝛾 < 𝛼 − 1,
𝑛

2
− 𝛾 < 𝜌. (2.10)

Case 2) In this case one deduces analogously the condition 2(𝜌 − 𝛾) > 𝑛 ≥ 1, and we have

0 < 𝛼 ≤ 1, 1 − 𝛼 ≤ 𝛾 < 1,
𝑛

2
+ 𝛾 < 𝜌. (2.11)

We note that in both cases we can freely choose 𝜌 large enough to reach any desired dimension 𝑛.

We make a few comments on the meaning of the extra assumptions in Theorem 2.4, in particular on the choice of 𝔲0

and on the restriction on 𝔟. An example of admissible 𝔟 is given in Example 2.7 below.

Remark 2.6.

∙ The assumptions of Theorem 2.3 are clearly satisfied in Theorem 2.4, so we know that a (local) solution exists. Here we
furthermore pick a special 𝔲0 and impose an extra condition on the behaviour of 𝔟̂ at infinity.
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∙ The initial condition 𝔲0 = 𝐴𝜔0 is actually a smooth function because it belongs to all Sobolev spaces. The key point is
that we choose it so that its norm is large enough (because we impose 𝐴 larger than some given constant). Note that
the constant 𝐴 is not optimal.

∙ The extra condition on 𝔟 is expressed in terms of a lower bound on its Fourier transform. The decay at infinity of
the Fourier transform of a function/distribution is intimately related to its regularity and thus condition (2.8) in fact
prohibits toomuch regularity for the function 𝔟. This is required to show blow-up, and it amounts to ensure that we are
taking an element in𝐻−𝛾(ℝ𝑛) or𝐻𝛾(ℝ𝑛)which is actually “singular”, and does not in fact belong to a (much) smoother
space.

∙ One could also add an upper bound of the form

𝔟̂(𝑡, 𝜉) ≤ 𝑐′
(
1 + |𝜉|2)−𝜌∕2,

with 𝑐′ > 𝑐. The upper bound on 𝔟̂ prevents growth at infinity (in particular the exponent −𝜌∕2 is required to be nega-
tive) hence restricting the “irregularity” of 𝔟. This is a sufficient condition, together with 2(𝛾 + 𝜌) > 𝑛 ≥ 1 for Case 1)
or 2(𝛾 − 𝜌) > 𝑛 ≥ 1 for Case 2), to ensure that the element 𝔟 does belong to the correct fractional Sobolev space.
Notice that this condition is not necessary and could be violated pointwise, but the global behaviour of 𝔟̂(𝑡, 𝜉)will be of
this form if we are to ensure that 𝔟 belongs to the given Sobolev space. See also the second bullet point in Example 2.7
below for more details.

We conclude this section by giving two examples of admissible 𝔟 that satisfy the hypothesis of Theorem 2.3 and
Theorem 2.4.

Example 2.7. Below we give two examples that are time-homogeneous, 𝔟(𝑡, ⋅) ≡ 𝔟(⋅). If one wants a function of time too,
it is enough to multiply them by some 𝑓(𝑡) > 0 which is bounded and with 𝐿∞-norm smaller than or equal to 1.

∙ In dimension 𝑛 = 1 and if 3∕2 < 𝛼 ≤ 2, we can consider 𝔟 to be the Dirac mass 𝛿0. Indeed 𝛿0 ∈ 𝐻−𝛾(ℝ𝑛) if and only if
𝛾 > 𝑛∕2. This corresponds to choosing 𝜌 = 0.

∙ In dimension 𝑛 ≥ 1, let us fix 𝜌 > 𝑛∕2 + 1 (so that conditions (2.10) and (2.11) are satisfied for all possible choices in
Case 1) and Case 2) of the parameters 𝛼 and 𝛾). Then we define 𝔟 via its Fourier transform by

𝔟̂(𝜉) =
(
1 + |𝜉|2)−𝜌∕2,

which formally gives 𝔟 =
((

1 + | ⋅ |2)−𝜌∕2)∨. It is easy to check that 𝑏 ∈ 𝐻−𝛾 (and thus also 𝑏 ∈ 𝐻𝛾). It is often not
possible to calculate the explicit expression of 𝔟, but we know some of its properties. In particular we know that 𝔟 is
a smooth function on ℝ𝑛 ⧵ {0} and the (exploding) behaviour at 0 is determined by the relationship between 𝜌 and 𝑛,
see [2, Proposition 6.1.5]. Note that these examples are smoother than the Dirac delta, and nevertheless we still obtain
blow-up of the solution.

3 EXISTENCE AND UNIQUENESS

In this section we present the proof of existence and uniqueness of a solution (Theorem 2.3).

Proof of Theorem 2.3. The main idea is to apply a Banach contraction principle for quadratic equations in Banach spaces
(see the book [12, Theorem 5.1]). We will work in the Banach space 𝐿∞𝑡 𝐻1

𝑥. To this aim, let us rewrite Equation (2.6) in
the form

𝒰 = 𝒰0 +ℬ(𝒰,𝒰),
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where 𝒰 is 𝔲(𝑡, 𝑥), the first term on the RHS is given by 𝒰0 ∶= 𝑒−𝑡(−Δ)
𝛼∕2

𝔲0(𝑥) and the second term is a bilinear
application on 𝐿∞𝑡 𝐻1

𝑥 given by:

ℬ(𝒰,𝒱) ∶= ∫
𝑡

0

𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2(

(−Δ)1∕2𝒰
)(
(−Δ)1∕2𝒱

)
∗ 𝔟 𝑑𝑠.

We will prove the following estimates for the two terms

‖𝒰0‖𝐿∞𝑡 𝐻1
𝑥
≤ 𝛿, (3.1)

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥
≤ 𝐶ℬ‖𝒰‖𝐿∞𝑡 𝐻1

𝑥
‖𝒱‖𝐿∞𝑡 𝐻1

𝑥
, (3.2)

for some positive constants 𝛿, 𝐶ℬ. As we shall see in the formulas (3.5) and (3.6) below, the constant 𝐶ℬ depends on the
time 𝑇0. Once estimates (3.1) and (3.2) are in place, we only need to show that

𝛿 <
1

4𝐶ℬ
, (3.3)

to conclude that there exists a unique mild solution of (1.1) in the space 𝐿∞𝑡 𝐻1
𝑥 (following [12, Theorem 5.1]). Due to the

dependence on 𝑇0 of 𝐶ℬ, we will prove the relationship (3.3) only for small times 𝑇0.
The bounds on the term𝒰0(𝑡, ⋅) to get inequality (3.1) are independent of the parameter 𝛼, so will hold for Case 1) and

Case 2) of the theorem. By the definition of the semigroup 𝑒−𝑡(−Δ)𝛼∕2 in (2.4) and the properties of its associated kernel 𝔭𝛼𝑡
listed in Lemma 2.1 we have

‖‖𝒰0(𝑡, ⋅)‖‖𝐻1 =
‖‖‖𝑒−𝑡(−Δ)𝛼∕2𝔲0

‖‖‖𝐻1

≤ ‖‖‖𝔭𝛼𝑡 ∗ (Id − Δ)1∕2𝔲0
‖‖‖𝐿2

≤ ‖‖𝔭𝛼𝑡 ‖‖𝐿1‖‖(Id − Δ)1∕2𝔲0
‖‖𝐿2

≤ ‖‖𝔲0
‖‖𝐻1,

from which we deduce the inequality

ess sup
0<𝑡≤𝑇0

‖𝒰0(𝑡, ⋅)‖𝐻1
𝑥
≤ ‖𝔲0‖𝐻1, (3.4)

and thus the control (3.1) is granted with 𝛿 ∶= ‖𝔲0‖𝐻1 .
We now turn our attention to the estimate (3.2), for which a separate proof for each case is required.
Case 1) Let 1 < 𝛼 ≤ 2. In this case we write (using the definition of Sobolev spaces𝐻1)

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥

= ess sup
0<𝑡≤𝑇0

‖‖‖‖‖∫
𝑡

0

𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2(

(−Δ)1∕2𝒰(𝑠, ⋅)
)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ 𝔟(𝑠, ⋅) 𝑑𝑠

‖‖‖‖‖𝐻1

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖‖𝑒−(𝑡−𝑠)(−Δ)𝛼∕2((−Δ)1∕2𝒰(𝑠, ⋅)
)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ 𝔟(𝑠, ⋅)

‖‖‖𝐻1
𝑑𝑠

= ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖‖(Id − Δ)1∕2𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2(

(−Δ)1∕2𝒰(𝑠, ⋅)
)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ 𝔟(𝑠, ⋅)

‖‖‖𝐿2 𝑑𝑠
and then by Definition (2.4) for the semigroup, by properties of the Bessel potential and by using the Young inequalities
for convolutions, we have
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‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖(Id − Δ)(1+𝛾)∕2𝔭𝛼𝑡−𝑠 ∗
(
(−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ (Id − Δ)−𝛾∕2𝔟(𝑠, ⋅)‖‖𝐿2 𝑑𝑠

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖(Id − Δ)(1+𝛾)∕2𝔭𝛼𝑡−𝑠
‖‖𝐿1‖‖((−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)‖‖𝐿1‖‖(Id − Δ)−𝛾∕2𝔟(𝑠, ⋅)‖‖𝐿2 𝑑𝑠.
Now by the properties of the kernel 𝔭𝛼𝑡 stated in Lemma 2.1 and recalling that 𝔟 ∈ 𝐿∞𝑡 𝐻

−𝛾
𝑥 we can write

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥
≤ 𝐶 ess sup

0<𝑡≤𝑇0 ∫
𝑡

0

max
{
1, (𝑡 − 𝑠)

−(1+𝛾)∕𝛼
}‖‖‖((−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)‖‖‖𝐿1‖𝔟(𝑠, ⋅)‖𝐻−𝛾 𝑑𝑠

≤ 𝐶‖𝔟‖𝐿∞𝑡 𝐻
−𝛾
𝑥

ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

max
{
1, (𝑡 − 𝑠)

−(1+𝛾)∕𝛼
}‖‖(−Δ)1∕2𝒰(𝑠, ⋅)‖‖𝐿2‖‖(−Δ)1∕2𝒱(𝑠, ⋅)‖‖𝐿2 𝑑𝑠

≤ 𝐶‖𝔟‖𝐿∞𝑡 𝐻
−𝛾
𝑥
‖𝒰‖𝐿∞𝑡 𝐻1

𝑥
‖𝒱‖𝐿∞𝑡 𝐻1

𝑥
ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

max
{
1, (𝑡 − 𝑠)

−(1+𝛾)∕𝛼
}
𝑑𝑠,

where the term (𝑡 − 𝑠)
−(1+𝛾)∕𝛼 is integrable since 0 ≤ 𝛾 < 𝛼 − 1 and 1 < 𝛼 ≤ 2, so we finally obtain

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥
≤ 𝐶 𝑇

1−(1+𝛾)∕𝛼
0 ‖𝔟‖𝐿∞𝑡 𝐻

−𝛾
𝑥
‖𝒰‖𝐿∞𝑡 𝐻1

𝑥
‖𝒱‖𝐿∞𝑡 𝐻1

𝑥

which is (3.2) with

𝐶ℬ = 𝐶 𝑇
1−(1+𝛾)∕𝛼
0 ‖𝔟‖𝐿∞𝑡 𝐻

−𝛾
𝑥
. (3.5)

Case 2) Let 0 < 𝛼 ≤ 1. To start with, we proceed similarly as for Case 1) and we write

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖‖(Id − Δ)1∕2𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2(

(−Δ)1∕2𝒰(𝑠, ⋅)
)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ 𝔟(𝑠, ⋅)

‖‖‖𝐿2 𝑑𝑠
= ess sup

0<𝑡≤𝑇0 ∫
𝑡

0

‖‖(Id − Δ)1∕2𝔭𝛼𝑡−𝑠 ∗
(
(−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ 𝔟(𝑠, ⋅)‖‖𝐿2 𝑑𝑠.

Note that, in this case, the regularity of the kernel 𝔭𝛼𝑡−𝑠 is critical in the space we are working with, since‖‖(Id − Δ)1∕2𝔭𝛼𝑡−𝑠
‖‖𝐿1 ≤ 𝐶max

{
1, (𝑡 − 𝑠)−1∕𝛼

}
.

This is the reason why we have to consider 𝔟(𝑠, ⋅) ∈ 𝐻𝛾 for some positive 𝛾, in particular for 1 − 𝛼 < 𝛾 < 1. Indeed the
idea is similar as Case 1), but here we multiply by (Id − Δ)𝛾∕2 the term 𝔟(𝑠, ⋅) (which makes it belong to a more singular
space) and so we can multiply by (Id − Δ)−𝛾∕2 the kernel 𝔭𝛼𝑡 , effectively giving it some more regularity (and integrability).
We get

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖(Id − Δ)(1−𝛾)2𝔭𝛼𝑡−𝑠 ∗
(
(−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)
∗ (Id − Δ)𝛾∕2𝔟(𝑠, ⋅)‖‖𝐿2 𝑑𝑠

≤ ess sup
0<𝑡≤𝑇0 ∫

𝑡

0

‖‖(Id − Δ)(1−𝛾)∕2𝔭𝛼𝑡−𝑠
‖‖𝐿1‖‖((−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)‖‖𝐿1‖‖(Id − Δ)𝛾∕2𝔟(𝑠, ⋅)‖‖𝐿2 𝑑𝑠
≤ 𝐶 ess sup

0<𝑡≤𝑇0 ∫
𝑡

0

max
{
1, (𝑡 − 𝑠)

−((1−𝛾)∕𝛼
}‖‖((−Δ)1∕2𝒰(𝑠, ⋅)

)(
(−Δ)1∕2𝒱(𝑠, ⋅)

)‖‖𝐿1‖𝔟(𝑠, ⋅)‖𝐻𝛾 𝑑𝑠,
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having used again Lemma2.1. Now since 1 − 𝛼 < 𝛾 < 1 by assumption, the term (𝑡 − 𝑠)−(1−𝛾)∕𝛼 is integrable andwe obtain

‖ℬ(𝒰,𝒱)‖𝐿∞𝑡 𝐻1
𝑥
≤ 𝐶 𝑇

1−((1−𝛾))∕𝛼
0 ‖𝔟‖𝐿∞𝑡 𝐻

𝛾
𝑥
‖𝒰‖𝐿∞𝑡 𝐻̇1

𝑥
‖𝒱‖𝐿∞𝑡 𝐻̇1

𝑥
,

which is (3.2) with

𝐶ℬ = 𝐶 𝑇
1−(1−𝛾)∕𝛼
0 ‖𝔟‖𝐿∞𝑡 𝐻

𝛾
𝑥
. (3.6)

The proof is completed by choosing 𝑇0 in (3.5) and (3.6) small enough to ensure (3.3). □

Remark 3.1. We observe that the existence (and uniqueness) of the solution is only local in time. Indeed combining the
constraint on 𝛿 ∶= ‖𝔲0‖𝐻1 given by 𝛿 < 1∕

(
4𝐶ℬ

)
(see (3.3)) with the expressions for 𝐶ℬ in the two cases (3.5) and (3.6),

we have that the initial condition must be small enough depending on 𝑇0 and on the term 𝔟, in particular

‖𝔲0‖𝐻1 <
1

4𝐶

⎧⎪⎨⎪⎩
𝑇
−(1−(1+𝛾)∕𝛼)
0 ‖𝔟‖−1

𝐿∞𝑡 𝐻
−𝛾
𝑥

if 1 < 𝛼 ≤ 2,

𝑇
−(1−(1−𝛾)∕𝛼)
0 ‖𝔟‖−1

𝐿∞𝑡 𝐻
𝛾
𝑥

if 0 < 𝛼 ≤ 1.

Alternatively, one can choose arbitrarily the initial condition, but the time 𝑇0 must then be small enough, depending on
the size of the initial data 𝔲0 and on the size of the term 𝔟:

0 < 𝑇0 <

⎧⎪⎨⎪⎩
(
4𝐶‖𝔲0‖𝐻1‖𝔟‖𝐿∞𝑡 𝐻

−𝛾
𝑥

)1−(1+𝛾)∕𝛼
if 1 < 𝛼 ≤ 2,(

4𝐶‖𝔲0‖𝐻1‖𝔟‖𝐿∞𝑡 𝐻
−𝛾
𝑥

)1−(1−𝛾)∕𝛼
if 0 < 𝛼 ≤ 1.

4 BLOW-UP

In this section we investigate the time of explosion for the solution 𝔲, that is, we prove Theorem 2.4. To this aim we first
state and prove some auxiliary results about certain properties of the solution 𝔲.
Let 𝔲 be the unique mild solution to Equation (1.1) according to Theorem 2.3. The solution exists on the time interval

[0, 𝑇0], where the size of 𝑇0 is related to the size the initial data 𝔲0, see Remark 3.1. We denote by 𝑇max the maximal time
of existence of the solution, which may be infinite. Clearly 𝑇0 ≤ 𝑇max . The first interesting property of the solution of
Equation (1.1) is related to its positivity in the Fourier variable.

Proposition 4.1 (Positivity). Let the hypotheses of Theorem 2.3 hold. Moreover let us assume that 𝔲̂0(𝜉) ≥ 0 and 𝔟̂(𝑡, 𝜉) ≥ 0.
Then the unique mild solution 𝔲 of Equation (1.1) satisfies 𝔲̂(𝑡, 𝜉) ≥ 0 for all 𝑡 ≤ 𝑇max .

We observe that the assumptions in Theorem 2.4 imply the assumptions in Proposition 4.1.

Proof. Using the Picard iteration scheme, we know that the unique mild solution 𝔲 found in Theorem 2.3 is the limit in
𝐿∞𝑡 𝐻1

𝑥 as 𝑗 → +∞ of 𝔲𝑗 , where

𝔲𝑗(𝑡, 𝑥) ∶= 𝑒−𝑡(−Δ)
𝛼∕2

𝔲0(𝑥) + ∫
𝑡

0

𝑒−(𝑡−𝑠)(−Δ)
𝛼∕2
((

(−Δ)1∕2𝔲𝑗−1

)2
∗ 𝔟
)
(𝑠, 𝑥) 𝑑𝑠, for 𝑗 ≥ 1.

If we take the Fourier transform in the space variable of 𝔲𝑗 and use the identity (2.3) we have

𝔲̂𝑗(𝑡, 𝜉) = 𝑒−𝑡|𝜉|𝛼 𝔲̂0(𝜉) + ∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼((|𝜉|𝔲̂𝑗−1(𝑠, 𝜉) ∗ |𝜉|𝔲̂𝑗−1(𝑠, 𝜉)
)̂
𝔟(𝑠, 𝜉)

)
𝑑𝑠.

Since by hypothesis we have 𝔲̂0(𝜉) ≥ 0 and 𝔟̂(𝑡, 𝜉) ≥ 0, then the positivity of the right-hand side above carries on in the
Picard iteration and the limit 𝔲 satisfies 𝔲̂(𝑡, 𝜉) ≥ 0. □
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We can see from Theorem 2.4 that, to show blow-up, we need a specially chosen initial condition 𝔲0 = 𝐴𝜔0, where 𝜔0

is defined in (2.7). The proof of the blow-up will be done iteratively, and for this argument we need the following functions
𝜔𝑘 ∶ ℝ𝑛 ⟶ ℝ defined iteratively from 𝜔0 by the condition on the Fourier transform:

𝜔𝑘(𝜉) ∶= 𝜔𝑘−1(𝜉) ∗ 𝜔𝑘−1(𝜉). (4.1)

These functions 𝜔𝑘 have some useful properties which are collected in the following lemma.

Lemma 4.2. For all 𝑘 ≥ 0 we have that

(i) the support of the Fourier transform 𝜔𝑘 is contained in the corona{
𝜉 ∈ ℝ𝑛 ∶

√
𝑛2𝑘 < |𝜉| <√𝑛2𝑘+1

}
,

where 𝑛 is the dimension of the Euclidean space;
(ii) the 𝐿1-norm of 𝜔𝑘 is given by ‖𝜔𝑘‖𝐿1 = (𝑣𝑛∕2

𝑛)
2𝑘 , where 𝑣𝑛 =

𝜋𝑛∕2

Γ(𝑛∕2+1)
is the volume of the 𝑛-dimensional unit ball.

Proof. Both properties can be seen by induction.

(i) We will show by induction a slightly different support property (which implies the support property stated in the
lemma, as explained below). In particular, we show that the support of 𝜔𝑘 is contained in the hypercube{

𝜉 ∈ ℝ𝑛 ∶ 2𝑘 < 𝜉𝑖 < 2𝑘+1, ∀𝑖 = 1, … , 𝑛
}
,

to which we refer below as “hypercube support property”. It is clear that if the support of 𝜔𝑘 is contained in the
hypercube above, it is also contained in the corona

{
𝜉 ∈ ℝ𝑛 ∶

√
𝑛2𝑘 < |𝜉| <√𝑛2𝑘+1

}
, because the smallest Euclidean

norm for 𝜉 in the hypercube is given by

|𝜉| =
√√√√ 𝑛∑

𝑖=1

𝜉2
𝑖
>

√√√√ 𝑛∑
𝑖=1

22𝑘 =
√
𝑛2𝑘,

and similarly for the largest we have |𝜉| <√𝑛2𝑘+1. Next we prove the hypercube support property.

Initial step. The hypercube support property is clearly true for 𝑘 = 0 from the definition of 𝜔0 given in (2.7) with the
specific choice of 𝜉0. In particular we have that if 𝜉 ∈ supp(𝜔0) =

{|𝜉 − 𝜉0| < 1∕2
}
then each component of 𝜉 is such that

20 < 𝜉𝑖 < 21.
Induction step.Wewill work with 𝑛 = 1 in the induction step, because the proof for 𝑛 > 1 can be done component-wise

(this is why we prove the hypercube support property rather than the support in the corona, as stated in the statement).
Let 𝑘 ≥ 1 and let us assume that the hypercube support property holds for 𝑘 − 1, that is, for 𝜉 ∈ supp

(
𝜔𝑘−1

)
(here

𝜉 ∈ ℝ) then 2𝑘−1 < 𝜉 < 2𝑘. Let us calculate the support of 𝜔𝑘. By definition we have

𝜔𝑘(𝜉) = ∫
ℝ

𝜔𝑘−1(𝜂)𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜂

= ∫
ℝ

𝟙{2𝑘−1<𝜂<2𝑘}𝟙{2𝑘−1<𝜉−𝜂<2𝑘}𝜔𝑘−1(𝜂)𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜂. (4.2)

It is easy to check that {
2𝑘−1 < 𝜂 < 2𝑘

}
∩
{
2𝑘−1 < 𝜉 − 𝜂 < 2𝑘

}
⊆
{
2𝑘 < 𝜉 < 2𝑘+1

}
,

because from the second set we have 2𝑘−1 + 𝜂 < 𝜉 < 2𝑘 + 𝜂 and combining it with the first set we get

2𝑘−1 + 2𝑘−1 < 𝜉 < 2𝑘 + 2𝑘.
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Therefore Equation (4.2) can be multiplied by 𝟙{2𝑘<𝜉<2𝑘+1} without changing its value. Thus clearly

supp
(
𝜔𝑘

)
⊆
{
2𝑘 < 𝜉 < 2𝑘+1

}
as wanted.

(ii) Here we calculate the 𝐿1-norm of 𝜔𝑘.

Initial step.We set 𝑘 = 0 and we easily get

‖𝜔0‖𝐿1 = ∫
{|𝜉−𝜉0|<1∕2} 𝑑𝜉 = |𝐵(0, 1∕2)| = 𝑣𝑛∕2

𝑛.

Induction step.By the hypothesis of inductionwe assume that ‖𝜔𝑘−1‖𝐿1 = ( 𝑣𝑛

2𝑛

)2𝑘−1
, for some 𝑘 ≥ 1. Note that all functions

𝜔𝑘 are positive. Then using the hypercube support property from part (i) and the definition of 𝜔𝑘 we have

‖𝜔𝑘‖𝐿1 = ∫
ℝ𝑛

|𝜔𝑘(𝜉)|𝑑𝜉
= ∫

ℝ𝑛

𝜔𝑘(𝜉) 𝑑𝜉

= ∫
{2𝑘<𝜉𝑖<2𝑘+1, ∀𝑖}

∫
ℝ𝑛

𝜔𝑘−1(𝜂)𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜂 𝑑𝜉

= ∫
{2𝑘<𝜉𝑖<2𝑘+1, ∀𝑖}

∫
{2𝑘−1<𝜂𝑖<2𝑘, ∀𝑖}

𝜔𝑘−1(𝜂)𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜂 𝑑𝜉

= ∫
{2𝑘−1<𝜂𝑖<2𝑘, ∀𝑖}

𝜔𝑘−1(𝜂)∫
{2𝑘<𝜉𝑖<2𝑘+1, ∀𝑖}

𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜉 𝑑𝜂

= ∫
{2𝑘−1<𝜂𝑖<2𝑘, ∀𝑖}

𝜔𝑘−1(𝜂)∫
ℝ𝑛

𝜔𝑘−1(𝜉 − 𝜂) 𝑑𝜉 𝑑𝜂,

having used the fact that given 𝜂𝑖 ∈
(
2𝑘−1, 2𝑘

)
and 𝜉𝑖 − 𝜂𝑖 ∈

(
2𝑘−1, 2𝑘

)
, then we automatically have 𝜉𝑖 ∈

(
2𝑘, 2𝑘+1

)
for all

𝑖. Thus the inner integral is the 𝐿1-norm of 𝜔𝑘−1 and we get

‖𝜔𝑘‖𝐿1 = ∫
{2𝑘−1<𝜂𝑖<2𝑘, ∀𝑖}

𝜔𝑘−1(𝜂)‖𝜔𝑘−1‖𝐿1 𝑑𝜂
= ‖𝜔𝑘−1‖𝐿1 ∫

ℝ𝑛

𝜔𝑘−1(𝜂) 𝑑𝜂

= ‖𝜔𝑘−1‖2𝐿1 .
Then we obtain ‖𝜔𝑘‖𝐿1 = (𝑣𝑛∕2

𝑛)
2𝑘−12

= (𝑣𝑛∕2
𝑛)

2𝑘 as wanted. □

To continue we need to fix some technical notation. First we remark that since the parameter 𝜌 ≥ 0 in the formula (2.8)
is finite, without loss of generality we can pick 𝜎 ≥ 1 large enough such that

0 ≤ 𝜌 + 𝛼 ≤ 𝜎𝑛 + 2. (4.3)

Using this 𝜎, we define explicitly the constant 𝐴 appearing in (2.9) by setting

𝐴 = 𝔅ℭ, (4.4)
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where for the constant𝔅 we impose

𝔅 ≥ 𝑒ln(2)2
𝛼
25+𝑛

𝑣𝑛
, (4.5)

here 𝑛 is the dimension of the space and 𝑣𝑛 is the volume of the 𝑛-dimensional unit ball, and for the constant ℭ we set

ℭ ∶=
𝑛(𝜌+𝛼)∕2 max

{
1, 2𝜌∕2−1

}
𝑐

22𝜎𝑛+𝜌+𝛼−1, (4.6)

with 𝑐 > 0 the same as in formula (2.8).
The next result is a key lower bound for the Fourier transform of the solution 𝔲 of Equation (1.1) associated to initial

data 𝔲0. This lower bound makes use of the functions 𝜔𝑘 defined above and of another family of functions, Φ𝑘, given by

Φ𝑘(𝑡) ∶= 𝑒−𝑡2
𝑘+𝛼

2−5(2
𝑘−1)2𝜎𝑛𝑘, (4.7)

where 𝜎 has been chosen according to (4.3).

Proposition 4.3 (Lower bound). Let the assumptions from Theorem 2.4 hold (in particular 𝔲0 = 𝐴𝜔0 with 𝐴 = 𝔅ℭ given
in (4.4)), and let 𝜔𝑘 be defined by (4.1), starting from 𝜔0. Let 𝑡∗ = ln(2). Then the unique mild solution 𝔲 of Equation (1.1)
verifies the following lower bound for all 𝑘 ≥ 0

𝔲̂(𝑡, 𝜉) ≥ 𝔅2𝑘ℭΦ𝑘(𝑡) 𝜔𝑘(𝜉), (4.8)

for any 𝑡 ≥ 𝑡∗.

Proof. In order to prove the inequality (4.8) we will first derive a general lower bound which will be used later on. Using
the mild formulation (2.6) and recalling the fact that 𝔭𝛼𝑡 (𝜉) = 𝑒−𝑡|𝜉|𝛼 by the identity (2.3), and the fact that

ˆ(−Δ)1∕2𝔲(𝑡, 𝜉) = |𝜉|𝔲̂(𝑡, 𝜉),
we have for all 𝑡 ≥ 0, and in particular for all 𝑡 ≥ 𝑡∗, that

𝔲̂(𝑡, 𝜉) = 𝔭𝛼𝑡 (𝜉)𝔲̂0(𝜉) + ∫
𝑡

0

𝔭𝛼𝑡−𝑠(𝜉)
(|𝜉|𝔲̂(𝑠, 𝜉) ∗ |𝜉|𝔲̂(𝑠, 𝜉))̂𝔟(𝑠, 𝜉) 𝑑𝑠

= 𝑒−𝑡|𝜉|𝛼 𝔲̂0(𝜉) + ∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼(|𝜉|𝔲̂(𝑠, 𝜉) ∗ |𝜉|𝔲̂(𝑠, 𝜉))̂𝔟(𝑠, 𝜉) 𝑑𝑠. (4.9)

We now proceed to show (4.8) by induction.
Initial Step. We set 𝑘 = 0. Note that by assumption we have 𝔟̂(𝑡, ⋅) ≥ 0 and since we have 𝔲̂0(𝜉) = 𝐴𝜔0(𝜉) ≥ 0, so by

the positivity property stated in Proposition 4.1, we have 𝔲̂(𝑡, 𝜉) ≥ 0 for all 𝑡 ≥ 0 and thus all terms inside the integral on
the right-hand side of (4.9) are positive. Thus we can write 𝔲̂(𝑡, 𝜉) ≥ 𝑒−𝑡|𝜉|𝛼 𝔲̂0(𝜉). Now we use the definition of Φ0 given
in (4.7), of 𝜔0 given in (2.7), the identity 𝔲̂0 = 𝐴𝜔0 with the definition of the constant 𝐴 given in (4.4), and the fact that
supp

(
𝜔0

)
⊂ {1 < |𝜉| < 2} to get

𝔲̂(𝑡, 𝜉) ≥ 𝑒−𝑡|𝜉|𝛼 𝔲̂0(𝜉) = 𝑒−𝑡|𝜉|𝛼𝐴𝜔0(𝜉)

≥ 𝐴𝑒−𝑡2
𝛼
𝜔0(𝜉) = 𝔅ℭΦ0(𝑡) 𝜔0(𝜉),

which is (4.8) for 𝑘 = 0.
Induction step. Let 𝑘 ≥ 1. Consider 𝑡 ≥ 𝑡∗ and assume that the inequality (4.8) holds for 𝑘 − 1, that is

𝔲̂(𝑡, 𝜉) ≥ 𝔅2𝑘−1ℭΦ𝑘−1(𝑡)𝜔𝑘−1(𝜉).
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Since we have 𝔲̂0(𝜉) ≥ 0, by the lower bound (4.9) we get

𝔲̂(𝑡, 𝜉) ≥ ∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼(|𝜉|𝔲̂(𝑠, 𝜉) ∗ |𝜉|𝔲̂(𝑠, 𝜉))̂𝔟(𝑠, 𝜉) 𝑑𝑠
≥ ∫

𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼(|𝜉|𝔅2𝑘−1ℭΦ𝑘−1(𝑠) 𝜔𝑘−1(𝜉) ∗ |𝜉|𝔅2𝑘−1ℭΦ𝑘−1(𝑠) 𝜔𝑘−1(𝜉)
)
𝔟̂(𝑠, 𝜉) 𝑑𝑠

≥ 𝔅2𝑘ℭ2∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼Φ2
𝑘−1

(𝑠)
(|𝜉|𝜔𝑘−1(𝜉) ∗ |𝜉|𝜔𝑘−1(𝜉)

)̂
𝔟(𝑠, 𝜉) 𝑑𝑠

≥ 𝑐 𝔅2𝑘ℭ2∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼Φ2
𝑘−1

(𝑠)
(|𝜉|𝜔𝑘−1(𝜉) ∗ |𝜉|𝜔𝑘−1(𝜉)

)(
1 + |𝜉|2)−𝜌∕2 𝑑𝑠. (4.10)

Having used in the last inequality the lower bound 𝑐
(
1 + |𝜉|2)−𝜌∕2 ≤ 𝔟̂(𝑡, 𝜉) assumed in (2.8). Recall now that the sup-

port of the function 𝜔𝑘−1(𝜉) is contained in
{√

𝑛2𝑘−1 < |𝜉| <√𝑛2𝑘
}
by Lemma 4.2 part (i), and in particular one has

2𝑘−1 < |𝜉| if 𝜉 ∈ supp
(
𝜔𝑘−1

)
. Using this bound and the expression 𝜔𝑘 = 𝜔𝑘−1 ∗ 𝜔𝑘−1 we have

|𝜉|𝜔𝑘−1(𝜉) ∗ |𝜉|𝜔𝑘−1(𝜉) = ∫
ℝ𝑛

|𝜉 − 𝜂|𝜔𝑘−1(𝜉 − 𝜂)|𝜂|𝜔𝑘−1(𝜂) 𝑑𝜂

> ∫
ℝ𝑛

2𝑘−1𝜔𝑘−1(𝜉 − 𝜂)2𝑘−1𝜔𝑘−1(𝜂) 𝑑𝜂

= 22(𝑘−1)𝜔𝑘(𝜉),

and thus from (4.10) we obtain

𝔲̂(𝑡, 𝜉) ≥ 𝑐 𝔅2𝑘ℭ2∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼Φ2
𝑘−1

(𝑠)22(𝑘−1)𝜔𝑘(𝜉)
(
1 + |𝜉|2)−𝜌∕2 𝑑𝑠. (4.11)

Thanks to the support property from Lemma 4.2, for 𝜉 ∈ supp
(
𝜔𝑘

)
we have |𝜉| <√𝑛2𝑘+1. Since by assumption 𝜌 ≥ 0,

for 𝜉 ∈ supp
(
𝜔𝑘

)
we get

(
1 + |𝜉|2)𝜌∕2 ≤ max

{
1, 2𝜌∕2−1

}(
1 + |𝜉|𝜌)

≤ max
{
1, 2𝜌∕2−1

}(
1 + 𝑛𝜌∕22(𝑘+1)𝜌

)
≤ max

{
1, 2𝜌∕2−1

}
𝑛𝜌∕22(𝑘+1)𝜌+1.

Thus we can write

𝜔𝑘(𝜉)
(
1 + |𝜉|2)−𝜌∕2 ≥ 𝜔𝑘(𝜉)

𝑛−𝜌∕22−(𝑘+1)𝜌−1

max{1, 2𝜌∕2−1}
, (4.12)

and plugging this lower bound into (4.11) together with the explicit expression for Φ𝑘 given in (4.7), we obtain

𝔲̂(𝑡, 𝜉) ≥ 𝑐 𝔅2𝑘ℭ2∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼Φ2
𝑘−1

(𝑠)22(𝑘−1)𝜔𝑘(𝜉)
𝑛−𝜌∕22−(𝑘+1)𝜌−1

max{1, 2𝜌∕2−1}
𝑑𝑠

≥ 𝑐 𝑛−𝜌∕2

max
{
1, 2𝜌∕2−1

}2−122(𝑘−1)−𝜌(𝑘+1)𝔅2𝑘ℭ2∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼𝜔𝑘(𝜉)Φ
2
𝑘−1

(𝑠) 𝑑𝑠

≥ 𝑐 𝑛−𝜌∕2

max
{
1, 2𝜌∕2−1

}2−122(𝑘−1)−𝜌(𝑘+1)𝔅2𝑘ℭ2
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× ∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼𝜔𝑘(𝜉)
(
𝑒−𝑠2

𝑘−1+𝛼
2−5(2

𝑘−1−1)2𝜎𝑛(𝑘−1)
)2

𝑑𝑠

≥ 𝑐 𝑛−𝜌∕2

max
{
1, 2𝜌∕2−1

}2−122(𝑘−1)−𝜌(𝑘+1)𝔅2𝑘ℭ2 𝑒−2𝑡2
𝑘−1+𝛼

2−10(2
𝑘−1−1)22𝜎𝑛(𝑘−1) ∫

𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼𝜔𝑘(𝜉) 𝑑𝑠. (4.13)

We now use again the support property for 𝜔𝑘, so that in the integral above we have |𝜉| <√𝑛2𝑘+1 and the integral can be
bounded from below by

∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼𝜔𝑘(𝜉) 𝑑𝑠 ≥ ∫
𝑡

0

𝑒−(𝑡−𝑠)𝑛
𝛼∕22𝛼(𝑘+1)𝜔𝑘(𝜉) 𝑑𝑠

= 𝜔𝑘(𝜉)𝑛
−𝛼∕22−𝛼(𝑘+1)

(
1 − 𝑒−𝑡𝑛

𝛼∕22𝛼(𝑘+1)
)
.

At this point we observe that, thanks to the choice of 𝑡∗ = ln 2 and since 𝛼 > 0 we have(
1 − 𝑒−𝑡𝑛

𝛼∕22𝛼(𝑘+1)
) ≥ (1 − 𝑒−𝑡𝑛

𝛼∕2
) ≥ (1 − 𝑒−𝑡

) ≥ (1 − 𝑒−𝑡∗
)
=

1

2
,

for all 𝑡 ≥ 𝑡∗ and for all 𝑘 ≥ 0, so that the integral above satisfies

∫
𝑡

0

𝑒−(𝑡−𝑠)|𝜉|𝛼𝜔𝑘(𝜉) 𝑑𝑠 ≥ 𝜔𝑘(𝜉)𝑛
−𝛼∕22−𝛼(𝑘+1)2−1.

Plugging this into (4.13) and doing some algebra we get for all 𝑡 ≥ 𝑡∗

𝔲̂(𝑡, 𝜉) ≥ 𝑐 𝑛−𝜌∕2

max{1, 2𝜌∕2−1}
2−122(𝑘−1)−𝜌(𝑘+1)𝔅2𝑘ℭ2

× 𝑒−2𝑡2
𝑘−1+𝛼

2−10(2
𝑘−1−1)22𝜎𝑛(𝑘−1)𝜔𝑘(𝜉)𝑛

−𝛼∕22−𝛼(𝑘+1)2−1

=
𝑐 𝑛−(𝜌+𝛼)∕2

max{1, 2𝜌∕2−1}
2−12(𝑘+1)(2−𝜌−𝛼)22𝜎𝑛(𝑘−1)𝔅2𝑘ℭ2𝑒−𝑡2

𝑘+𝛼
2−5(2

𝑘−1)𝜔𝑘(𝜉)

=
𝑐 𝑛−(𝜌+𝛼)∕2

max{1, 2𝜌∕2−1}
2−1−2𝜎𝑛+2−𝜌−𝛼𝔅2𝑘ℭ2𝑒−𝑡2

𝑘+𝛼
2−5(2

𝑘−1)2𝑘(2𝜎𝑛+2−𝜌−𝛼)𝜔𝑘(𝜉).

We recall that we have picked 𝜎 in (4.3) such that 𝜌 + 𝛼 ≤ 𝜎𝑛 + 2 thus we have 2𝜎𝑛 + 2 − 𝜌 − 𝛼 ≥ 𝜎𝑛 and we obtain then
for the last term above:

𝔲̂(𝑡, 𝜉) ≥ 𝑐 𝑛−(𝜌+𝛼)∕2

max{1, 2𝜌∕2−1}
21−2𝜎𝑛−𝜌−𝛼𝔅2𝑘ℭ2

(
𝑒−𝑡2

𝑘+𝛼
2−5(2

𝑘−1)2𝜎𝑛𝑘
)
𝜔𝑘(𝜉)

=

(
𝑐 𝑛−(𝜌+𝛼)∕2

max{1, 2𝜌∕2−1}
21−2𝜎𝑛−𝜌−𝛼ℭ

)
𝔅2𝑘ℭΦ𝑘(𝑡)𝜔𝑘(𝜉),

where in the last line we used the definition of the functionΦ𝑘(𝑡) given in (4.7). To conclude we observe that, by definition
of the constant ℭ given in (4.6), we have(

𝑐𝑛−(𝜌+𝛼)∕2max
{
1, 2𝜌∕2−1

}
21−2𝜎𝑛−𝜌−𝛼ℭ

)
= 1,

and we obtain

𝔲̂(𝑡, 𝜉) ≥ 𝔅2𝑘ℭΦ𝑘(𝑡) 𝜔𝑘(𝜉),

which is the desired estimate. □

Using the tools and results above, we can now prove blow-up, that is we can prove Theorem 2.4.
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Proof of Theorem 2.4. We prove Case 1) and Case 2) together because the specific values of the parameters 𝛼 and 𝛾 do not
play a role here.
Let 𝑡 = 𝑡∗. First notice that ‖‖𝔲(𝑡∗, ⋅)‖‖𝐻1

𝑥
≥ ‖‖𝔲(𝑡∗, ⋅)‖‖𝐻̇1

𝑥
. Therefore it is enough to show that the 𝐻̇1

𝑥-norm explodes at 𝑡∗.
Using the definition of the 𝐻̇1

𝑥-norm and the Plancherel theorem we have

‖‖𝔲(𝑡∗, ⋅)‖‖2𝐻̇1
𝑥
= ‖‖(−Δ)1∕2𝔲(𝑡∗, ⋅)‖‖2𝐿2
= ∫

ℝ𝑛

|𝜉|2||𝔲̂(𝑡∗, 𝜉)||2 𝑑𝜉
≥

+∞∑
𝑘=0

∫{√
𝑛2𝑘<|𝜉|<√𝑛2𝑘+1

} |𝜉|2||𝔲̂(𝑡∗, 𝜉)||2 𝑑𝜉
and by Proposition 4.3 and the definition of the functions Φ𝑘 given in (4.7) we have

‖‖𝔲(𝑡∗, ⋅)‖‖2𝐻̇1
𝑥
≥

+∞∑
𝑘=0

∫{√
𝑛2𝑘<|𝜉|<√𝑛2𝑘+1

} |𝜉|2(𝔅2𝑘ℭ
)2
Φ2
𝑘
(𝑡∗)𝜔

2
𝑘
(𝜉) 𝑑𝜉

≥
+∞∑
𝑘=0

∫{√
𝑛2𝑘<|𝜉|<√𝑛2𝑘+1

} |𝜉|2𝔅2𝑘+1ℭ2
(
𝑒−𝑡∗2

𝑘+𝛼+1
2−10(2

𝑘−1)22𝜎𝑛𝑘
)
𝜔2
𝑘
(𝜉) 𝑑𝜉

≥
+∞∑
𝑘=0

𝑛22𝑘𝔅2𝑘+1ℭ2𝑒−𝑡∗2
𝑘+𝛼+1

2−10(2
𝑘−1)22𝜎𝑛𝑘 ∫{√

𝑛2𝑘<|𝜉|<√𝑛2𝑘+1
} 𝜔2

𝑘
(𝜉) 𝑑𝜉. (4.14)

Next we look at the integral part only. We see that since supp
(
𝜔𝑘

)
⊂
{√

𝑛2𝑘 < |𝜉| <√𝑛2𝑘+1
}
and since 𝜔𝑘 ≥ 0we have

∫{√
𝑛2𝑘<|𝜉|<√𝑛2𝑘+1

} 𝜔2
𝑘
(𝜉) 𝑑𝜉 = ‖‖𝜔𝑘

‖‖2𝐿2 .
To find a lower bound for ‖𝜔𝑘‖2𝐿2 , let us denote by 𝒞

(√
𝑛2𝑘,

√
𝑛2𝑘+1

)
the dyadic corona given by the set{√

𝑛2𝑘 < |𝜉|<√𝑛2𝑘+1
}
. Then the volume of the corona is given by

|||𝒞(√𝑛2𝑘,
√
𝑛2𝑘+1

)||| = 𝑣𝑛

((√
𝑛2𝑘+1

)𝑛
−
(√

𝑛2𝑘
)𝑛)

= 𝑣𝑛𝑛
𝑛∕2(2𝑛 − 1)2𝑛𝑘 = 𝐶(𝑛)2𝑛𝑘,

where the constant 𝐶(𝑛) ∶= 𝑣𝑛𝑛
𝑛∕2(2𝑛 − 1) is independent of 𝑘 and where we recall that 𝑣𝑛 is the volume of the

𝑛-dimensional unit ball. Now by Hölder’s inequality we obtain

‖𝜔𝑘‖𝐿1 ≤ |||𝒞(√𝑛2𝑘,
√
𝑛2𝑘+1

)|||1∕2‖𝜔𝑘‖𝐿2
≤ 𝐶(𝑛)1∕22𝑛𝑘∕2‖𝜔𝑘‖𝐿2 ,

and recalling that we have the identity ‖𝜔𝑘‖𝐿1 = ( 𝑣𝑛

2𝑛

)2𝑘
, stated in Lemma 4.2, then we can write

‖𝜔𝑘‖2𝐿2 ≥ 𝐶(𝑛)−12−𝑛𝑘‖𝜔𝑘‖2𝐿1
= 𝐶(𝑛)−12−𝑛𝑘

(𝑣𝑛
2𝑛

)2𝑘+1
= 𝐶(𝑛)−12−𝑛𝑘𝑣2

𝑘+1

𝑛 2−𝑛2
𝑘+1

.

Plugging this into (4.14) we obtain
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‖‖𝔲(𝑡∗, ⋅)‖‖2𝐻̇1
𝑥
≥

+∞∑
𝑘=0

𝑛22𝑘𝔅2𝑘+1ℭ2𝑒−𝑡∗2
𝑘+𝛼+1

2−10(2
𝑘−1)22𝜎𝑛𝑘𝐶(𝑛)−12−𝑛𝑘𝑣2

𝑘+1

𝑛 2−𝑛2
𝑘+1

= 𝑛210𝐶(𝑛)−1ℭ2
+∞∑
𝑘=0

𝔅2𝑘+1𝑒−𝑡∗2
𝑘+𝛼+1

2−10⋅2
𝑘
2−𝑛2

𝑘+1
𝑣2

𝑘+1

𝑛 2(2𝜎𝑛+2)𝑘2−𝑛𝑘

= 𝑛210𝐶(𝑛)−1ℭ2
+∞∑
𝑘=0

(
𝔅2𝑣2𝑛

𝑒𝑡∗2𝛼+1210+2𝑛

)2𝑘
2𝑘((2𝜎−1)𝑛+2). (4.15)

Since by (4.3) we assumed 𝜎 ≥ 1, thus we have 2𝑘((2𝜎−1)𝑛+2) ≥ 1 and we can write

‖‖𝔲(𝑡∗, ⋅)‖‖2𝐻̇1
𝑥
≥ 𝑛210𝐶(𝑛)−1ℭ2

+∞∑
𝑘=0

(
𝔅2𝑣2𝑛

𝑒𝑡∗2𝛼+1210+2𝑛

)2𝑘
.

A sufficient condition for the latter series to diverge is 𝔅2𝑣2𝑛

𝑒𝑡∗2𝛼+1210+2𝑛
≥ 1. Choosing 𝔅 =

𝑒ln(2)2
𝛼
25+𝑛

𝑣𝑛
(recall condition (4.5))

and substituting 𝑡∗ = ln(2) one has

𝔅2𝑣2𝑛

𝑒𝑡∗2𝛼+1210+2𝑛
=

(
𝑒ln(2)2

𝛼
25+𝑛
)2

𝑣2𝑛
𝑣2𝑛

𝑒ln(2)2𝛼+1210+2𝑛

= 1,

so any value 𝐵 ≥ 𝑒ln(2)2
𝛼
25+𝑛∕𝑣𝑛 will make the series diverge (and this is exactly condition (4.5)). Hence the norm‖𝔲(𝑡∗, ⋅)‖𝐻1

𝑥
will explode too, more precisely, lim𝑡→𝑡∗ ‖𝔲(𝑡, ⋅)‖𝐻1

𝑥
= ∞. □
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APPENDIX A

We sketch here a proof for the second point of Lemma 2.1 (see also [9] for general 𝛼-stable laws) and for simplicity we only
study the estimate ‖‖(−Δ)𝑠∕2𝔭𝛼𝑡 ‖‖𝐿1 ≤ 𝐶𝑡−𝑠∕𝛼. (A.1)

Indeed, by definition we have
(
(−Δ)𝑠∕2𝔭𝛼𝑡

)∧
(𝜉) = |𝜉|𝑠𝑒−𝑡|𝜉|𝛼 = 𝑡−𝑠∕𝛼

(||𝑡1∕𝛼𝜉||𝑠𝑒−|𝑡1∕𝛼𝜉|𝛼), since this quantity is a function
that belongs to 𝐿1 in the 𝜉 variable, we can apply the inverse Fourier transform to obtain

(−Δ)𝑠∕2𝔭𝛼𝑡 (𝑥) = 𝑡−𝑠∕𝛼
1

(2𝜋)𝑛 ∫ℝ𝑛

(||𝑡1∕𝛼𝜉||𝑠𝑒−|𝑡1∕𝛼𝜉|𝛼)𝑒𝑖𝑥𝜉 𝑑𝜉
= 𝑡−𝑠∕𝛼𝑡−𝑛∕𝛼

1

(2𝜋)𝑛 ∫ℝ𝑛

(|𝑢|𝑠𝑒−|𝑢|𝛼)𝑒𝑖(𝑡−1∕𝛼𝑥)𝑢 𝑑𝑢
= 𝑡−𝑠∕𝛼𝑡−𝑛∕𝛼

(
(−Δ)𝑠∕2𝔭𝛼1

)(
𝑡−1∕𝛼𝑥

)
,

thus, taking the 𝐿1-normwe have the homogeneity identity ‖‖(−Δ)𝑠∕2𝔭𝛼𝑡 ‖‖𝐿1 = 𝑡−𝑠∕𝛼‖‖(−Δ)𝑠∕2𝔭𝛼1‖‖𝐿1 , and thus we only need
to prove that ‖‖(−Δ)𝑠∕2𝔭𝛼1‖‖𝐿1 < +∞.
For this we recall the Riemann–Liouville representation of the operator (−Δ)𝑠∕2 (which can be seen by passing to the

Fourier level):

(−Δ)𝑠∕2
(
𝔭𝛼1
)
=

1

Γ(𝑘 − 𝑠∕2) ∫
+∞

0

𝜏𝑘−𝑠∕2−1(−Δ)𝑘
(
ℎ𝜏 ∗ 𝔭𝛼1

)
𝑑𝜏,

where ℎ𝜏 is the standard heat kernel, Γ is the usual Gamma function and 𝑘 is any integer such that 𝑘 > 𝑠∕2. Then, taking
the 𝐿1-norm and since ‖ℎ𝜏‖𝐿1 = ‖‖𝔭𝛼1‖‖𝐿1 = 1, we have:

‖‖‖(−Δ)𝑠∕2(𝔭𝛼1)‖‖‖𝐿1 ≤ 1

Γ(𝑘 − 𝑠∕2)

(
∫

1

0

𝜏𝑘−𝑠∕2−1‖ℎ𝜏‖𝐿1‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 𝑑𝜏 + ∫
+∞

1

𝜏𝑘−𝑠∕2−1‖‖(−Δ)𝑘ℎ𝜏‖‖𝐿1‖‖𝔭𝛼1‖‖𝐿1 𝑑𝜏
)

≤ 1

Γ(𝑘 − 𝑠∕2)

(
∫

1

0

𝜏𝑘−𝑠∕2−1‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 𝑑𝜏 + ∫
+∞

1

𝜏𝑘−𝑠∕2−1‖‖(−Δ)𝑘ℎ𝜏‖‖𝐿1 𝑑𝜏
)

≤ 𝐶‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 + 𝐶′ ∫
+∞

1

𝜏𝑘−𝑠∕2−1𝜏−𝑘 𝑑𝜏

≤ 𝐶‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 + 𝐶′′.

It only remains to prove that ‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 < +∞, where 𝑘 is an integer. For this we use the estimates given in Theorem
7.3.2, p. 320, of the book [10]: |||| 𝜕𝑚𝜕𝑥𝑚

𝔭𝛼1 (𝑥)
|||| ≤ 𝐶min

{
1, |𝑥|−𝑚}𝔭𝛼1 (𝑥), for 𝑚 = 1, 2, …

From this pointwise estimate we easily deduce that ‖‖(−Δ)𝑘𝔭𝛼1‖‖𝐿1 < +∞ and the proof of (A.1) is now complete. The same
ideas apply to the case 𝛼 = 2 which is easier to handle as it corresponds with the usual heat kernel.
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