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ABSTRACT
Computational sprinting speeds up query execution by increasing
power usage for short bursts. Sprinting policy decides when and how
long to sprint. Poor policies inflate response time significantly. We
propose a model-driven approach that chooses between sprinting
policies based on their expected response time. However, sprint-
ing alters query executions at runtime, creating a complex depen-
dency between queuing and processing time. Our performance mod-
eling approach employs offline profiling, machine learning, and
first-principles simulation. Collectively, these modeling techniques
capture the effects of sprinting on response time. We validated our
modeling approach with 3 sprinting mechanisms across 9 work-
loads. Our performance modeling approach predicted response time
with median error below 4% in most tests and median error of
11% in the worst case. We demonstrated model-driven sprinting for
cloud providers seeking to colocate multiple workloads on AWS
Burstable Instances while meeting service level objectives. Model-
driven sprinting uncovered policies that achieved response time
goals, allowing more workloads to colocate on a node. Compared to
AWS Burstable policies, our approach increased revenue per node
by 1.6X.
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1 INTRODUCTION
Modern processors are constrained by increasingly tight power
caps [32]. Computational sprinting is a resource management ap-
proach that speeds up workload execution by using power reserves
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to boost processing rates above sustained rates for short bursts [31].
Sprinting helps workloads meet response time requirements speci-
fied by SLOs [19, 35] and interactive applications [31]. DVFS [19,
44], core scaling [18], and CPU throttling [43] are commonly used
to implement sprinting.

This paper examines sprinting for workloads comprising inde-
pendent query executions (e.g., cloud servers) where all executions
share the power budget reserved for sprinting. In this context, sprint-
ing should target queries that most improve whole-system response
time [19]. Consider two Spark query executions that compute K-
means clustering. The first query arrives when no other queries are
in the system. The second arrives during a busy period. On an Intel
Xeon 2660, DVFS sprinting can speed up Spark K-means queries by
97%. But what if the sprinting budget afforded only one of the query
executions? In this case, the second query execution should sprint;
speeding up its own execution and reducing time other queries spend
queuing. Generalizing from this example, cloud servers can use
sprinting to improve response time by speeding up individual query
executions and by reducing queuing delays.

Sprinting policies govern which queries to speed up by setting (1)
timer interrupts that trigger sprinting for a query execution, called
timeouts [18, 26, 37], (2) processing speed during sprinting, called
sprint rate and (3) sprinting budget for a given sprinting mechanism.
Sprinting policies have complicated effects on response time. Fig-
ure 1 depicts query execution under a sprinting policy where the
timeout is 1 minute. In this example, timeouts trigger sprinting for
queries 1 and 2, draining the budget. The remaining queries must
execute at the sustained processing rate. Here, sprinting is applied
too aggressively to early arrivals which causes queuing delays for
queries 4, 5 and 6. However, increasing the timeout has mixed ef-
fects. A 3-minute timeout counterintuitively degrades response time,
because it is too conservative and does not exhaust the sprinting
budget. Under a 2-minute timeout, response time improves by 25%.
This example shows that subtle changes in sprinting policies can
significantly affect response time.

Model-driven computational sprinting uses performance models
to set sprinting policies. Performance models map policies and work-
load conditions to response time. Precisely, sprinting policies include
sustained processing rate, sprint rate, timeout, budget, etc. Workload
conditions include query semantics, arrival rate, etc. Model-driven
sprinting can compare policies under runtime conditions without
changing actual policies. System managers can explore a large space
and settle on policies that yield low response time. Further, model-
driven sprinting can explore what-if questions for past and future
workloads. For example, what would response time have been if
sprinting budget doubled during last week’s spike? Or, how much
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Fig. 1: Query executions under a tight sprinting budget. The
first two queries drain the budget. Remaining queries can not
sprint despite slow response time.

can be saved by purchasing hardware with the latest sprinting mech-
anisms?

Computational sprinting makes processing rate and queuing de-
lays interdependent; Long queues trigger sprinting and sprinting
reduces queues. Machine learning models can characterize interde-
pendence. A direct approach maps policy and workload inputs to
expected response time. While conceptually sufficient, this approach
learns complicated semantics of sprinting. As a result, the model is
slow to train. We propose a hybrid model that marries machine learn-
ing with models based on first principles. Our approach maps inputs
to effective sprint rate. Effective sprint rate is the amortized speedup
observed at runtime across sprinted executions (i.e., interdependence
per sprint). Compared to response time, effective sprint rate is less
sensitive to subtle policy changes, making machine learning more
efficient. Finally, our hybrid model simulates query arrivals and de-
partures using effective sprint rate. We study whether our hybrid
model can produce accurate predictions that can be trained quickly
enough for cloud workloads.

We compared modeling approaches using cloud server bench-
marks. Our proposed hybrid approach used a random forest to get
effective sprint rate and a first-principles queuing simulator to get
response time. We compared our approach to an artificial neural
network (ANN) that directly mapped inputs to response time. We
studied prediction error across a range of (1) sprinting policies, (2)
sprinting mechanisms (DVFS, core scaling, and CPU throttling), (3)
query semantics (numerical computation, scientific kernels, memory-
bound streaming, machine learning, search and mixed workloads)
and (4) arrival and service rate distributions. Our hybrid approach
achieved median error below 4.5% in most tests. On Spark work-
loads, its median error was only 3.2%. In contrast, direct-mapping
approaches yielded 30% error in most tests and 5% error on Spark
workloads. Of course, direct-mapping approaches improved when
the training set grew. However, these approaches required 6X–54X
larger training set to achieve accuracy comparable to the hybrid
approach. We also compared our first-principles simulator without a
machine learning model. Median error was 40%.

Our performance models make 900 predictions per minute (through-
put scales with processor cores). This enables model-driven sprint-
ing to compare thousands of timeout and budget policies for cloud
servers. We used simulated annealing to explore the space. The

best policies outperformed the worst policies by 1.65X. Our model-
driven policies outperformed policies proposed in Adrenaline [19]
and Few-to-Many [18].

Model-driven sprinting also supports service level objectives
(SLOs) with response time clauses. In this case, model-driven sprint-
ing can uncover sprint rates and budgets that (1) allow multiple
workloads to share a cloud server and (2) respect SLO for hosted
workloads. This use-case is inspired by AWS Burstable Instances
which use CPU throttling to constrain sustained processing speed,
set a fixed 5X sprint rate and budget 720 sprint-seconds per hour [4].
We studied homogeneous and heterogeneous workloads. Excluding
model training, model-driven sprinting reduces tail latency by 3.16X
and improves profit by up to 1.7X. However, our machine learning
models require hundreds of examples for training. Further, the typi-
cal virtualized cloud server has a lifetime of 552 hours [9]. When
we account for opportunity cost while collecting training data, net
profit from model-driven sprinting is 1.6X greater than default AWS
settings.

The remainder of this paper is as follows. Section 2 outlines our
design for model-driven computational sprinting. Section 3 evalu-
ates our modeling approach across cloud benchmarks and sprinting
hardware. Section 4 studies speedup and cost savings from improved
sprinting policies. Section 5 frames open challenges to widely de-
ploy and extend model-driven sprinting. Section 6 overviews related
work in the area of computational sprinting and modeling for highly
dynamic systems. Section 7 draws conclusions.

2 DESIGN
Figure 2 depicts software, inputs and outputs in our modeling ap-
proach. A representative workload includes binaries and query mix.
Our profiling software includes a query generator on the front-end
and a back-end queue manager. The front-end replays the query mix
and the queue manager dispatches queries to server system binaries.
Our profiler runs on a server that supports the sprinting mechanism
considered. We replay the mix many times, changing query arrival
patterns and sprinting policies. The profiler captures response time,
service time and queuing delay for each query execution. The profiler
outputs the following:

1. Service rate: This is the inverse of mean processing time
for query executions that do not trigger sprinting. In classic
queuing literature, this is µ .

2. Marginal sprint rate: This reflects mean processing time
when timeouts trigger before the queue manager dispatches
queries, i.e., the whole execution is sprinted. We represent
this using µm.

3. Observed response times: Each time the workload is re-
played, we observe response times under the tested conditions
and policies.

After the profiler finishes, characterizations of the workload and
sprinting policy are passed into a random decision forest classi-
fier. The classifier outputs effective sprint rate (µe), i.e., amortized
speedup of sprinted queries caused by runtime dynamics. This met-
ric captures the effects of having interdependent processing time and
queuing delay.
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Fig. 2: Our approach combines workload profiling, queue simulation and machine learning (shown in red dotted squares). Black
squares show inputs provided by users.
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Fig. 3: Key instrumentation points for workload profiling in our
approach.

To predict response time, we input sprinting policies, workload
characterizations and effective sprint rate into a discrete event queue
simulator. The simulator steps through system execution, detecting
timeouts and modeling the impact of effective sprint rate. Our sim-
ulator can consider a wide range of queuing parameters including
exponential, Pareto, and deterministic distributions of arrival, ser-
vice, and sprint rates. It also executes quickly parallelizing execution
across multiple cores and servers easily. This section details each
stage in our design.

2.1 Workload Profiling
As shown in Figure 3, our query generator controls (1) the rate at
which queries are sent to the queue manager, (2) timeout settings
that trigger sprinting, (3) the budget for sprinting (in seconds), and
(4) the rate at which the budget is refilled. To be clear, our workload
generator is constrained by hard budgets and refill rates. In this paper,
we explore soft budgets that provide flexibility. The generator can
also switch between workload binaries and different mixes of query
types.

The queue manager receives query requests (HTTP) from the
query generator. The queue manager timestamps queries upon ar-
rival, adding them to a FIFO queue. Queries wait in the queue man-
ager until queries that arrived earlier complete. The queue manager
forwards queries at the head of the queue to the execution engine
when a slot opens. The queue manager also timestamps queries
when they are sent to the execution engine. Timestamps allow us to
compute processing time, queuing delay and response time.

The queue manager detects timeouts and triggers sprinting. For
each query, the manager adds the timeout to arrival time and sched-
ules an interrupt with a callback function. If the function executes
before the query is dispatched, the queue manager initiates sprinting
when the query reaches the head of the queue and a slot opens. If the

callback executes after the query is dispatched, the queue manager
initiates sprinting right away— provided the sprinting budget is not
empty. After each query completes, the queue manager subtracts any
time spent sprinting from the budget. In our current implementation,
communication between generator, manager, and execution engine
is through HTTP.

Our profiling setup covers a wide range of conditions. For exam-
ple, our profiler can set arrival rates between 0.1%–100% of service
rate at step sizes of 0.1%, covering over 1,000 arrival rates. This
allows us to test small changes in system utilization. The parameters
of sprinting timeouts and budgets also cover a wide range of settings.
We use cluster sampling to obtain good coverage for a smaller range
of conditions. Specifically, for each workload, we sample 5 settings
for arrival rate, 8 timeout settings, and 9 power budgets respectively.

Cluster sampling ensures that random sampling covers key natural
clusters within our supported conditions. However, cluster sampling
can yield biased and high sampling error. In Section 3, we evaluate
our ability to linearly interpolate between clusters to predict response
time.

2.2 Timeout-Aware Simulator
Algorithm 1 outlines data structures and pseudo code for the simula-
tor. Here, Vector means a expandable array of query objects. Each
query object has the following properties: (1) arrival time, (2) pro-
cessing time, (3) departure time, (4) time at which processing started,
and (5) booleans that signal if queries were sprinted.

Given arrival patterns, we set the time when each query to be pro-
cessed will arrive. We randomly sample service time data collected
during profiling to set µ̄ . These properties are set before simulation
begins.

Our simulator steps through server execution. We normally set
step size to one millionth of a second. To focus on handling timeouts,
Algorithm 1 shows a simple setup that does not allow concurrent
query executions. Our full simulator is open source and supports
concurrent executions [33]. The queue vector holds queries waiting
to be processed. When queries arrive, they are appended to the queue
vector. If the execution engine has a slot, query processing begins
immediately. If not, the query waits until it reaches the head of the
queue.

As shown in Equation 1, we model sprinting, i.e., the query depart
time, as a linear speedup on the query’s remaining execution time,
using the quotient of service and effective sprint rate as the coeffi-
cient. We denote τ as a fraction of completed work, which is defined
by the difference of current clock time and its start time divided
by the average processing time. To be clear, all variables in this
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// Key data structures
GLOBAL Vector queries   // queries to be processed
GLOBAL Vector queue     // capture queueing effects
GLOBAL Vector clock = 0 // fine resolution clock
GLOBAL int    slots = 1 // slots in execution engine

void function qs ( μ, μ
e
, timeout, budget ) {

 while (queries.empty() == false) {

   // Add new arrivals to the queue
   arriving_query = queries.elementAt(0)
   if (clock == next_query.arrival) {
     queue.append(arriving_query)
     queries.removeElement(0)
   }

  // Dispatch from queue to execution engine
  if (slots == 1) {
     queue.elementAt(0).start = clock
     queue.elementAt(0).depart = start + μ
     slots = 0
  }

  // Check for timeouts
  head_query = queue.elementAt(0)
  if (clock == head_query.arrival + timeout) {
     head_query.TimedOut = true
     if (budget > 0)
       head_query.depart = clock + f(start, μ, μ

e
)

  }
  else if (clock == head_query.depart) {
  // Check for query completion
     queue.removeElement(0)
     slots = 1
  }
  clock++
 }
}

Alg. 1: G/G/1 timeout-aware queuing simulator.

equation align with Algorithm 1 and clock is captured immediately
after timeout.

depart = clock+1− τ · µ̄ · µe

µ
, where (1)

τ = clock− start µ̄

2.3 Effective Sprint Rate
Workload profiling provides observed response time under tested
workload conditions. Furthermore, our queue simulator eschews run-
time factors in its model of computational sprinting, see Equation 1.
We use workload profiling and queue simulation together to model
effective sprint rate. Specifically, our machine classifier targets unac-
counted runtime factors, such as: (1) the points in query execution
where sprinting begins, (2) queuing delay caused by toggling the
sprinting mechanism and (3) queue length when sprinting begins.
Our classifier maps workload conditions and sprinting policies to a
linear regression that quantifies unaccounted factors. To be precise,
we define effective sprint rate as the nearest sprint rate that aligns
simulator and observed response time. Equation 2 formalizes our
model. RTwp is the response time function for workload profiling.
The input is tested workload conditions F and marginal sprint rate
µm. RTqs is the response time function for the queue simulator. The
effective sprint rate makes the smallest absolute change to marginal
sprint rate while achieving tolerable error on response time.

µe = µm +min |x|, where (2)

|x| ∈ {RTwpF ,µm = t ∗RTqsF ,µm + x,∃t < T}

We find the expected sprint rate through exhaustive search. We
increment and decrement the marginal rate by 1 unit to get candidates
for effective sprint rate. We use these candidates as input to the queue
simulator and compare observed and simulator response time. If the
difference exceeds our tolerance threshold, we repeat.

2.4 Random Decision Forest
Random Decision Forest (RDF) is a combination of decision tree
predictors [5]. Each decision tree depends on the values of a random
feature vector sampled independently. We use RDFs to infer effective
sprint rate. First, we randomly divide profiling runs into training and
testing data. We then create random subsamples from the training
data. For each subsample, we select a random subset of workload
conditions and sprinting policies to build decision trees. Figure 5
depicts the subsampling process. Columns represent workload con-
ditions and sprinting policies (F) used as predictive features for the
effective sprinting rate. Offline profiling produces each row, i.e., we
observe response time and align simulator results to get effective
sprint rate.

For each subsampled training set, we use the ID3 algorithm to
build a deep decision tree [30]. A decision tree is an acyclic graph
where internal nodes are predictive features, edges are feature set-
tings, and leaf nodes provide regression results for training data
that matches feature settings specified in the path from the root. We
create binary trees. At each node, we compute variance V S for data
that matches feature settings in the path from root (all data for the
root node). Then for each feature, we compute variance for data
in (1) a proper subsets of the feature settings (V SFi=k and (2) the
complement (V SFi,k). As shown in Equation 3, the subset and com-
plement that most reduce variance provide edges to the next node.
When all feature settings are exhausted, we create a leaf node by
using linear regression on the remaining samples.

max
F

gaini =V S−
V SFi=k +V SFi,k

2
(3)

As shown in Figure 5, each subsample from the training set
produces a decision tree. We average the regression parameters from
each tree to derive final prediction patterns.
Why Random Decision Forests? Cluster sampling systematically
explores a subset of policies but also introduces bias, i.e., it misses
policy settings that differ from cluster centroids. Bias causes model-
ing error for unseen conditions. Random decision forests minimize
bias caused by cluster sampling without increasing profiling costs.
Without additional data, the key is to understand which data points
(i.e., tested runtime conditions) are most similar to unseen con-
ditions. Our key observation is that sprinting policies (1) exhibit
low-variance in effective sprinting rate under specific conditions and
policy settings and (2) subtle changes on most settings have only
small effects on sprint rate. A key insight is that these observations
can be applied to effective sprinting rate, but not necessarily to
response time. Random decision forests minimize bias by creating
deep decision trees. We eschew pruning approaches, because shorter
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Fig. 5: Creating and using random decision trees to classify effective sprint rate.

trees ignore the complex effects of some workload conditions sprint-
ing policy parameters. However, by creating multiple trees that each
use different predictive settings, we can group data points that are
likely related on key parameters.

3 PERFORMANCE MODELING RESULTS
In this section, we evaluate our performance modeling approach.
Unless otherwise stated, our experiments use the following proce-
dure. For each workload and platform tested, we observe response
time for all workload conditions and sprinting policies at cluster
sampling centroids. We randomly select a subsample to train our
model. The remaining 20% of tested conditions, as well as condi-
tions outside of cluster sampling centroids, are used to compare
observed to predicted response time.

We compare performance modeling approaches shown in Ta-
ble 1(A). ANN directly predicts response time from input policies
and workload conditions. Recall, response time is sensitive to subtle
policy changes. This approach requires machine learning that can
characterize discontinuous functions. We used an artificial neural
network (ANN), a powerful approach that uses error residuals to
find non-linear splits in discontinuous functions. In comparison, bias
in the ID3 algorithm limits the effectiveness of random forests on
discontinuous functions. No-ML uses our timeout-aware simula-
tor with marginal sprint rate. It eschews machine learning. Hybrid
implements our approach.

Table 1(B) describes sprinting hardware in our tests. DVFS and
CoreScale use a Xeon 2660 processor. DVFS uses Pupil [44], state-
of-the-art power capping software. Pupil maximizes throughput
under a power cap by learning the relationship between DVFS setting
and power usage. We sprint by temporarily increasing the power

budget, allowing Pupil to adjust the processor to the best DVFS
setting for the workload. CoreScale increases the number of active
cores used during query execution from 8 to 16, using the Linux
taskset utility [15, 25]. EC2DVFS used an EC2 Extra Large C-class
instance (circa 2017). Here, we sprint by changing P-States, i.e., we
set DVFS directly.

Table 1(C) compares query execution semantics (workloads) on
DVFS hardware. We set up 2 Spark cloud services, running data
streaming and K-means benchmarks. These workloads are compute
intensive. Their performance scales with Pupil power cap. We also
set up 5 HPC kernels that stress specific aspects of the processor ar-
chitecture. HPC kernels run under MPI 2.1 with 16 software threads.
Jacobi and KNN are both computational intensive workloads with
good cache locality; sprinting improves throughput significantly
(1.2X and 1.7X respectively). Memory bandwidth constrains BFS
and Mem, making DVFS sprinting less effective (1.3X speedup).
Finally, Leukocyte is limited by synchronization. Sprinting provides
speed up of only 1.16X on this workload.

The following list specifies cluster sampling centroids.

Query Arrival Rate: 30%, 50%, 75%, 95%

Workload Mix: Uniform, Weighted

Arrival Distribution: Exponential, Pareto

Timeout: 50, 60, 70, 80, 120, 130, 160 (seconds)

Refill Time: 50, 200, 500, 800, 1000 (seconds)

Sprint Budget: 14%, 16%, 18%, 20%, 40%, 60%, 80%

Query arrivals are shown as percentages of service rate (i.e., system
utilization in queuing literature). We have studied mixes of uniform
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(c) Cloud Server Workloads

Wrkld ID Description Sustained/Burst
Tput (on DVFS)

Spark
Stream

continuously process data 
from source

87 qph / 224 qph

Spark
Kmeans

cluster analysis in data 
mining 

73 qph / 144 qph

Jacobi solve Helmholtz equation 51 qph / 74 qph

KNN k-nearest neighbors 40 qph / 71 qph

BFS breadth-first-search 28 qph / 41 qph

Mem stress memory bandwidth 28 qph /  37 qph

Leuk track leukocytes in medical 
images

25 qph / 29qph

(B) Sprinting Hardware

Mechanism ID Processor Specs

DVFS 16 Cores, 62 GB RAM, 20 M Cache
1.2 –- 2.40 GHz processing speed
Sustained power cap: 44--70 watts
Burst power cap: 90--190 watts

CoreScale 16 Cores, 62 GB RAM, 20 M Cache
2.1 GHz (active  cores) 
Sustained speed: 8 active cores
Burst speed: 16 active cores

EC2DVFS 36 virtual CPU, 60 GB RAM
Sustained speed: 1.4 Ghz
Burst speed: 2.0 Ghz

(A) Performance Modeling Approaches

Approach ID Description

ANN Multi-layer (10 layers and 100 neurons) artificial 
network maps policies and workload conditions 
directly to response time

No-ML timeout-aware queue simulation uses marginal 
sprint rate (no machine learning)

Hybrid our hybrid approach → random forest (10 trees) 
+ timeout-aware simulation

Tab. 1: Identifiers (IDs) for models, hardware and workload in
our experiments.

query workloads with exponential and heavy-tail arrival distribu-
tions. The queue manager enforces a global timeout on each query
execution. After refill time elapses without sprinting, the budget for
computational sprinting reaches full capacity. We set the sprinting
budget as the percentage of maximum query throughput during the
refill time. To be clear, both sprinting budget and query arrivals
depend on service rate— this is why we normalize.
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Fig. 7: Absolute relative error produced by competing perfor-
mance modeling approaches.

3.1 Impact of Modeling Approach
Figure 7 shows error rate as system utilization increases. The hard-
ware is DVFS. We report averages across all tested workloads. Hy-
brid and ANN approaches were trained for 7.2 hours (80% of sam-
pling centroids). We also show results where ANN was trained for
8.6 hours.

Our hybrid approach achieves median error of 4%. It outperforms
ANN and No-ML approaches by 4X-6X. ANN performs better
with more training data. Median error drops to 15% after enlarging
training data by 20%. We adjusted training data for Hybrid and ANN
until they performed similarly. ANN required 6X–54X more training
data to match our Hybrid approach depending on the workload.

Interdependent processing rate and queueing delay hurts No-ML
under high system utilization. At low arrival rates, No-ML performs
nearly as well as our hybrid approach, but under heavy arrivals, it
performs worse than all others. No-ML uses only our timeout-aware
simulator. We validated our simulator using classic MMK workloads,
where it achieved median error of 5%.

3.2 Impact of Query Execution Semantics
Figures 8(A) and 8(B) evaluate Hybrid and ANN models for each
workload. Both models were trained with 80% of cluster sampling
centroids. These tests use DVFS.

Hybrid achieves lower median error than ANN for all workloads.
Its median error is below 5% for Spark K-means, Spark Stream,
Jacobi and Leuk. Median error is below 10% for all workloads.

Hybrid errors by more than 35% for 20% of Leuk and 17% of
Jacobi tests. In contrast, ANN achieves median error below 10%
for Jacobi and Leuk. These workloads have low variance in service
time distribution which reduces the learning burden for ANN. Hy-
brid struggled to capture late timeouts for Leuk, a workload with
strong execution phases. Late timeouts trigger while execution is
in flight. Our random forest did not detect discontinuous shifts in
response time where long timeouts trigger sprinting after sprinting-
friendly phases passed. Nonetheless, the hybrid approach translates
between marginal and effective sprint rate well. Its predictions align
with observed response time across a wide range of workloads and
policies.
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Fig. 8: CDFs of prediction error across workloads with hybrid approach.

3.3 Impact of Sprinting Hardware
Figure 8(C) plots error for Hybrid across sprinting hardware. This
plot shows only Jacobi. Median error with DVFS and EC2DVFS
was below 4%. On these platforms, our approach yielded error below
10% on over 80% of the tested sprinting policies. With core scaling
as the sprinting mechanism, median error was 8%, and over 60% of
tested policies yielded error below 10%.

Core scaling is limited by Amdahl’s Law; as execution progresses
there are fewer active software threads and the potential speedup
from increased parallelism diminishes. In Jacobi, marginal sprint
rate with core scaling is 1.87X faster than service rate, i.e., with sus-
tainable processing mode, the execution time was 202 seconds but, if
the whole kernel was sprinted, the execution time was 108 seconds.
However, if only the last 22 seconds are sprinted, the speedup drops
to 1.5X. Bias caused by cluster sampling and ID3 algorithm makes
it hard to model such phase behavior. Adding data can reduce bias.
In particular, the following techniques dropped median error below
5%:

· Cluster sampling at 60% and 85% query arrival rates,

· Using 90%–10% training-to-test data split.

3.4 Impact of Query Mix
We also studied our approach under a mix of workloads. In queuing
theory, a query mix alters the probability distribution governing
processing time. Prior studies have shown that query mix is best
modeled with M/G/K models, where G stands for general processing
time distribution. We tested two query mixes. In the first mix, 50%
of query executions ran Jacobi and 50% ran Stream. The second
mix evenly split query executions between Jacobi, Stream, NN, and
BFS. We also changed arrival distribution to Pareto (α = 0.5). In
classic queuing models, this setup is called G/G/K. There is not a
closed-form analytic model for this setup. However, our approach,
which uses simulation, can predict expected response time even with
computational sprinting enabled.

We ran tests on DVFS. Our workload profiler measured sustained
service rates of 35 and 30 for query Mix I and II, respectively.
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Fig. 9: The cumulative distributions of prediction error for two
distinct mixed workloads.

Note, sustained service rate for each mix fell below the average of
the kernels in isolation due to interference between the workloads.
Figure 9 plots the CDF of error for Mix I and Mix II. The median
error was 7% for Mix I and 10% for Mix II. 75% of the predictions
for Mix I achieved error below 15%. For Mix II, 60% achieved error
below 15%.

3.5 Impact of Other Design Factors
In our approach, service rate, arrival rate, timeout setting, and sprint
budget are first-class parameters. We studied the impact of these
parameters on prediction accuracy. Here, we used experiments from
all platforms and workloads and grouped them according to their
setting on these parameters. We used binary groups (hi & low). For
service rate, we split at 40 qph. For arrival rate (utilization), we split
at 60%. For timeout setting, we split at 100 seconds. And for sprint
budget, we split at 40%.

Figure 10 shows average prediction error for each grouping. 75th

and 25th percentiles are shown as bars. The largest error across all
groups was 4%. Our approach predicts response time well regardless
of throughput of target workload, system utilization, and sprinting
policy setting.
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Fig. 11: Throughput and variance for response time predictions
using our timeout-aware simulator.

Cluster sampling reduces profiling time, but also makes training
data less representative (i.e., more biased). We studied the accuracy
of our model for response time prediction under conditions not in
cluster sampling centroids. We studied linear interpolation in arrival
rate and timeouts by removing cluster centroids from training data.
Specifically, we remove arrival rate of 75% and timeouts of 60, 70
and 120 seconds. We used observations under these settings as test
conditions and evaluated the accuracy of our predictions. To traverse
the decision tree, we snap parameter settings to the nearest centroid.
Figure 10 shows median error when these centroids are in the training
data and out of the training data. As expected, our predictions yield
2.5X greater error when test conditions are not cluster sampling
centroids. Median error was 10% and workload variance was larger
than other design factors. Still, 10% error is sufficient to help system
managers choose between competing sprinting policies.

3.6 Predictions Per Minute (Overhead)
Figure 11 plots the number of predictions our approach can produce
per minute. These tests were run on an Intel Xeon 12-core processor
at 2.6 GHz. Figure 11 shows that our approach achieves speedup of
11.4X when scaled from 1 to 12 cores. Throughput also depends on
the number of queries simulated. Fewer queries increase throughput,
but lead to less accurate predictions. We observed a knee-point in
the variance of our predictions at 100K queries simulated. At that
point, we can compute roughly 100 predictions per minute.

4 MODEL-DRIVEN COMPUTATIONAL
SPRINTING

Model-driven sprinting helps cloud workloads achieve low response
time and cloud providers share hardware among workloads. This
section studies the impact of model-driven sprinting in both contexts.
First, we describe computational sprinting for this context.

4.1 Computational Sprinting
Computational sprinting uses a resource budget to speedup a work-
load. Traditional sprinting overclocks hardware for short burst fol-
lowed by a cooldown period. The additional heat generated from
overclocking restricts the duration. A resource budget assigned on a
CPU-cycle granularity allows policies to precisely control sprinting.
This finer control prevents thermal runaway when overclocking hard-
ware. A coarser granularity is sufficient when speedups are gained
through allocating more hardware or increasing utilization. For ex-
ample, cloud providers throttle-down the CPU to conserve power
during low traffic periods. High traffic periods trigger the CPU to
throttle-up. This dynamic scaling maintains the quality of service
regardless of load variation. The use-case in the following section
defines the budget in seconds and uses CPU throttling for sprinting.
CPU throttling operates within normal thermal limits. Therefore,
defining the budget in CPU-cycles is unnecessary.

4.2 Timeout Policy Exploration
Our exploration algorithm iteratively selects policies from a multi-
dimensional space. It computes the response time of each policy and
finds the one with the lowest result. This technique is probabilistic.
It randomly makes large leaps to other policies of the search space.
This helps it avoid stopping at local minima or maxima.

Our objective is to find a timeout policy which leads to the mini-
mum response time. That is, we iteratively adjust the timeout setting
to our model-driven approach for a maximum number of iterations.
Then, we choose the setting associated with the lowest expected
response time. Equation 4 formalizes the problem.

MINRT : ∃t ≥ 0,RT = PMSF,t , t (4)
RT is expected response time produced by our model-driven ap-
proach PM . SF,t is a subset of workload conditions and sprinting
policies— excluding timeout. This algorithm finds timeout t as fol-
lows:

(1) Generate a random timeout to and predict RTo.
(2) Generate a neighboring timeout tn and predict RTn.
(3) If RTn < RTo move to the new solution; Else, move to the

new solution based on the acceptance probability.
(4) Repeat steps 2-3 until maximum number of iterations is

reached.
Neighbor timeouts tn are drawn randomly from a narrow range

of timeouts. Specifically, we use to −100, to +100. Step 3 compares
RTo and RTn and makes a decision to accept the tuple < RTo, to >
or < RTn, tn >. This algorithm avoids local minimums by using
an acceptance probability a when RTn performs worse than RTo.
Acceptance probability is defined in Equation 5.

a =

{
1 if RTo −RTn > 0

e
RTo−RTn

Z otherwise
(5)



Model-Driven Computational Sprinting EuroSys ’18, April 23–26, 2018, Porto, Portugal

Z starts at 1 and decreases by 10% per 100 timeout settings ex-
plored. This reduces the probability of searching new gradients as
the algorithm progresses.

4.3 Model-Driven Sprinting for Cloud Workloads
Model-driven sprinting helps workloads decide (1) when to sprint by
finding good timeout policies and (2) how much budget to request.
We answered these questions for Jacobi. The sprinting mechanism
studied was CPU throttling. In CPU throttling, resource managers
enforce a sustained processing rate by limiting access to CPU. Dur-
ing a sprint, managers remove limitations until a workload exhausts
its budget. Jacobi’s throughput was throttled to 20% of its sprint
throughput on DVFS. Sustained processing rate was 14.8 queries
per hour (qph). Sprint rate was 74 qph. Budget allowed 5 query exe-
cutions to sprint fully. Queries arrived at 11.8 qph (80% utilization).

Our service level objective (SLO) was to throttle CPU but keep
response time nearly the same. To be precise, our SLO allows re-
sponse time to increase by 15% relative to throttling turned off. We
compared these approaches:

+ big-burst: Timeout is 0. Each arriving query sprints until budget
is drained.

+ small-burst: Timeout is 0. Each arrival sprints but with lower
sprint rate (44 qph) and larger budget to 10 queries.

+ few-to-many: Adapts Few-to-Many to our context [18]. Profiles
marginal sprint rate for query executions offline. Then, finds the
largest timeout setting that exhausts budget (speeding up the slowest
queries). Throughput improved 1.9X.

+ adrenaline: Adapts a key policy in Adrenaline to our context [19].
Sets timeout to the 85th% percentile of non-sprinting response time.

Results: Figure 12(A) shows the response time across a range of
timeout settings. Poor performing settings exceed SLO response
time by 1.4X. In contrast, timeouts set well meet SLO and approach
no-throttling performance.

When sprint rate improved throughput by 5X (big-burst), model-
driven sprinting found settings that improved response time by 1.44X
compared to Adrenaline and by 1.3X for Few-to-Many. Our ap-
proach explores all timeout policies, including policies that target
short executions. For Jacobi with fast sprinting, fast timeouts kept
queue length small which improved response time. In contrast, under
3X sprint rate (small-burst), Few-to-Many matched our approach.
With larger sprint budget, Few-to-Many’s approach sprinted for
enough fast queries to perform well.

Figure 12(B) compares timeout settings on Mix I (Jacobi and
Mem). Small-burst never meets SLO, because this CPU throttling of-
fers low speedup for Mem. Few-to-Many finds good timeout settings
for both small-burst and big-burst setups. Model-driven policies
still outperform Adrenaline by 1.17X and 1.24X in small-burst and
big-burst respectively.

For the tests in Figure 12(C), we fixed timeout setting and ex-
plored the impact of sprinting budget. The best timeout setting de-
pended on sprinting budget. Under tight budgets, loose timeouts that
target very slow queries led to lowest response time. Under loose bud-
gets, strict timeouts that aggressively sprint led to lowest response

time. This finding parallels a key intuition in Few-to-Many [18]: Un-
der low utilization, all query executions should sprint aggressively
but, under heavy utilization, resource managers must sprint for the
most needy queries.

4.4 Model-Driven Sprinting for Cloud Providers
Amazon EC2 T-class Burstable Instances allow multiple workloads
to share a server with CPU throttling. Burstable instances can com-
pute at a sustained rate and sprint at a faster rate. On EC2, burstable
instances of the same class have the same sprinting policy, regardless
of workload. For example, T2.small Instances use 20% of a single
core, sprint 5X faster and have a budget of 720 sprint-seconds per
hour [4]. In this case, the budget specifies how long a workload has
access to 100% of the CPU before returning to baseline performance.
Amazon sells T2.small Instances at $0.026 per hour per workload.
However, the number of workloads that can share a server is limited
by SLO. Workloads that incur SLO violations will not use T2.small
Instances.

In this section, we use our model-driven approach to colocate
workloads on burstable instances. We compute expected response
time under a policy’s sustained processing rate, sprint rate and budget.
If the policy meets SLO (i.e., 1.15X of response time under no
throttling), then workload is permitted to colocate. We add workloads
until we have committed 100% of CPU resources (i.e., the sum of
sustained rate and sprinting). Colocation is not allowed to over
subscribe.

Figure 13 compares revenue per node of the following approaches
to set sprinting policy.

+ AWS: Sets a fixed sprint rate and budet for each workload. To be
precise, each workload receives 20% of a single core and sprints 5X
faster for 12 minutes per hour.

+ Model-Driven Budgeting: Enlarges sprint rate by shrinking bud-
get. Searches for combination that meets SLO.

+ Model-Driven Sprinting: After setting budget, this approach
also explores timeout settings. Workloads allow cloud providers to
change their timeouts.

Results: Figure 13 shows revenue per node across competing sprint-
ing policies, i.e., $0.03 × n where n is number of colocated work-
loads. We studied three workload combinations. The first workload
combo has 4 copies of a Jacobi service running at 70% utilization.
Our model-driven approach finds good sprinting policies for this
workload. The budget approach can host 2 workloads under SLO.
Budget+timeout can host 3 workloads. AWS policy hosts 1 work-
load per server, essentially making the server a dedicated host. The
second combo hosts 2 Jacobi (70% util) and 2 Stream (80% util).
Again, adjusting budget and timeout allows workloads to meet SLO
without overbooking. The third combo hosts diverse workloads with
utilization ranging from 50% to 80%. We find unique budgets and
timeouts for each. In this case, we can host all workloads under SLO.

We also examined 99th percentile tail latency for Jacobi (i.e.,
response time >335 seconds). Compared to our model-driven policy,
the AWS policy produced 3.16X more query executions in the tail.
Model-driven policy reduced 99.9th percentile (i.e., >521 sec.) by
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Fig. 12: Our model-driven approach was used for space exploration on DVFS. The vertical axes are the expected response times for a
workload. Exploring timeout policies with (A) Jacobi kernel and (B) Mix I (Jacobi & Stream). (C) Response time as sprinting budget
and timeout vary. We report budget as percent of sustained processing rate.
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Fig. 13: Dollars earned for a burstable instances which opti-
mizes the sprinting policy based on budget and timeout.

3.76X. By its nature, sprinting shrinks the tail [19]. Model-driven
policies amplify gains.

Does model-driven sprinting save cloud providers more than
it costs? Our model-driven approaches require offline workload
profiling. The previous section shows that our sprinting policies can
improve revenue per server but does not consider revenue lost during
profiling. Figure 14 explores the following approach. When a user
starts a burstable instance, the server owner runs it on a dedicated
node and starts workload profiling on another node. During profiling,
the server owner (Amazon) does not profit. After profiling, however,
the server owner benefits from increased revenue per server. Our
approach needs roughly 7.2 hours per workload (e.g., on the DVFS
platform) for profiling. For the four workloads in Combo III, total
profiling time would be 28.8 hours. After 2.5 days, model-driven
sprinting with our hybrid model is cost effective. Recall, the ANN
model trains longer, but this approach is eventually cost effective too.
Over the lifetime of a virtualized server [9]. Model-driven sprinting
with our hybrid model increases revenue by 1.6X.
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Fig. 14: The number of hours required to offset the profiling
cost using our model.

5 DISCUSSION
Model-driven sprinting requires that sprints target specific query
executions. This prohibits sprinting mechanisms that affect all con-
current queries. Fortunately, most container platforms already track
and manage resources usage of query executions. Early research
prototypes aimed to provide such first-class support to query ex-
ecutions [2, 3]. Intellectual descendants of these systems include
Omega [42], Apache Hadoop, Apache Spark, and C-groups Docker.

Cloud services can also use model-driven sprinting by managing
sprint resources directly. With careful thread management, OS tools
can be used to isolate sprinting to query executions. For example,
taskset can pin a query’s threads to specific cores, enabling core
scaling. Similarly, P-states can be used to control per-core DVFS for
each query execution. Such explicit application control can actually
enable improved performance [7].

Model-driven sprinting provides greater speedup and cost sav-
ings by setting timeout policies. However, applications normally
implement, set and manage timeouts without involving platforms.
Few platforms manage timeout policies directly. Recent research
platforms have shown that it is possible to provide rich timeout
support [16, 22, 23]. AWS Lambda is a commercial platform that
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supports application timeouts. Its adoption promises exciting use
cases for model-driven sprinting.

In this work, we evaluated and tested our performance models
under known runtime conditions (e.g., arrival rate). A key open
challenge is to estimate runtime conditions online and apply our
model on noisy predictions. Sliding window approaches can be used
to estimate runtime conditions. Building upon these approaches in
the context of sprinting is critical. A related challenge is updating
machine-learned models when runtime conditions shift. This can be
especially challenging when there are multiple sprinting mechanisms
available.

The generality of model-driven sprinting depends on the data
used for training and the simulator’s parameters. Data representative
of the policy-space enables accurate predictions for unseen sprinting
policies. However, this approach cannot extrapolate its predictions
for more sprint rates than allowed by the simulator. This is also
true for different timeouts assigned across workloads. Only small
modifications to the simulator are needed to support multiple sprint
rates and timeouts.

Finally, cloud applications are widespread and have significant
economic impact. Results like our 3.16X improvement to tail re-
sponse time could save a large services millions annually. But model-
driven sprinting has applications beyond cloud servers. Mobile soft-
ware, IoT/edge systems and even client-side browsers increasingly
struggle under tight (often battery limited) energy budgets. Sprinting
mechanisms under these contexts will also benefit from model-driven
space exploration.

6 RELATED WORK
Systems limited by dark silicon [10, 40] cannot sustain peak process-
ing rates. Sprinting mechanisms enable peak processing in bursts
and have been implemented across the whole system stack from tran-
sistors [12] to processors [36] to racks [32] to data centers [19, 45]
and cooling systems [17]. Sprinting policies [11, 31] address the
management challenge: Can short bursts in processing rate boost
response time for the whole system? If so, how large of a budget is
needed? And which runtime factors matter? Our contribution is a
model-driven approach to explore these problems for cloud systems.
The remainder of this section divides prior work by the workload
types, i.e., single v.s., multiple jobs, and model-driven approaches.

6.1 Sprinting policies for a single job
The dominant heuristic for computational sprinting within a single
long-running job is to use the sprinting budget on different workload
phases so as to minimize the execution time. Profiling the workload
phases is the very first step to develop phase-specific sprinting poli-
cies. PUPIL [44] runs a wide range of offline experiments to build a
model of phases’ execution to performance improvement. Coz [8]
uses static program analysis to identify phases and reduce training
time to characterize per-phase benefits. Bailey et. al [1, 18] also
consider parallelism between phases and interactions when their
executions overlap. While the aforementioned studies achieve signif-
icant speedups for a given job compared to phase-agnostic policies,
they neglect the effects on a stream of arriving jobs, especially on
queuing delay.

The sprinting game [11] expands beyond a greedy policy by ex-
ploring the impact of a sprint on the executing code and the future
possibilities to sprint. A key observation is that greedy approaches
largely under-explore the capabilities of sprinting mechanisms, high-
lighting the need to better consider the workload patterns and con-
figure the sprinting policies. Indeed, the sprinting game and our
model-driven approaches explore the whole-space of policies. The
sprinting game presumes cost models per sprint. Our approach en-
ables such models based on response time.

6.2 Sprinting policies for server systems
When queries arrive independently, sprinting policies decide which
jobs to accelerate to meet service level objectives. Prior works
have explored which jobs to accelerate. Jeon et. al [20, 21] use a
model-driven approach to detect which web search queries will have
long response times. Queries expected to have slow response time
are allowed to execute on more cores, i.e., core scaling. We extend
this work with robust models that can characterize response time
(1) in advance for planning, (2) under unseen conditions and (3) for
a range of sprinting mechanisms. The key intellectual difference
is that our modeling techniques do not use runtime data on queue
length. However, as noted in [42], our dependence on testing and
varying runtime conditions can make our approach hard to scale for
warehouse workloads. In future work, we hope to explore passive
approaches to calibrate our model [34].

Verma et al. [41] compare techniques to evaluate workload pack-
ing in the presence of bursts that presumably cause SLO violations.
They found packing techniques that explore resource lean envi-
ronments, e.g., by reducing sustained and sprint rate or sprinting
budget, avoid over valuing high utilization and reduce the num-
ber of resources stranded by not fitting into fixed hardware. Our
model-driven approach provides first steps toward realizing such
resource compaction techniques in the presence of computational
sprinting. Currently, our approaches are likely too heavyweight for
cluster-scale sprinting. We target computational sprinting on sin-
gle machines. We also do not consider heterogeneous memory or
processor cache speeds yet, but plan to do so in future work.

Wang et. al [43] use CPU throttling to sprint virtual machines
from different tenants, factoring in their sensitiveness to the price
performance ratio. They showed that using effective VM capacity
modulation as a control knob in a leader-follower game can ful-
fill the performance requirement of tenants and increase the profit
of cloud providers. Such CPU throttling is widely used by cloud
providers. Section 4 uses our model-driven approach to explore
sprinting policies in this scenario.

6.3 Model-driven approach
Queuing models can predict response time for server systems [24,
35]. However, these models assume queuing delay and service time
are independent. Interdependent queuing and service times lead to
complicated models [27]. Recent research have created models for
specific conditions and sprinting mechanisms, e.g., query replica-
tion [14, 29], admission control and dynamic voltage scaling [6].
Determining the optimal service rate for servers [28] is a long stand-
ing difficult problem even for simple queuing systems because of the
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interdependency between service rate and waiting time. Markov de-
cision processes offer an efficient mean to compute the optimal rules
for systems whose arrival and service processes have Markovian
properties. Chen et. al [6] model the dynamic voltage scaling prob-
lem of a single server as a discrete time Markov decision process by
leveraging fluid approximation. Gardner et. al [14] develop models
to answer how to sprint a certain set of jobs by replicating them
and giving them more opportunities to access resources. While their
focus is on the average latency, Qiu et. al [29] use matrix analytics
methods to model the entire distribution of latency under different
degrees of replication factors.

The immediate challenges to apply existing queuing models are
twofold. First, how do we map abstract queuing models to complex
systems? Second, how do we parameterize the model inputs? Mo-
tivated by the difficulty of using queuing models to predict actual
systems performance, IRONModel [38] argues the effectiveness of
combining first-order queuing models with statistical learning to cap-
ture the dynamics of non-fidelity regions where the queuing models’
assumptions are violated.

Fisher et. al [13] present a solution to reduce peak CPU tem-
perature for real-time systems. They model peak temperature for
a set CPU frequency based on schedulability conditions. Thiele et.
al [39] automate the calibration of these models to reduce simulation
time. In some cases, their model explores policies that exceed the
budget. Our approach never explores policies that exceed the budget.
Both [13] and [39] capture the system behavior for fixed frequencies.
Our model-driven approach models a system with dynamic or static
frequencies.

Our modeling techniques can predict the job response times for
actual systems that host complex workloads while being subject to
given sprinting budgets. Combining the merits of queuing simulator
and random forest, we are able to accurately explore the large space
of system and workload configurations and identify near-optimal
sprinting policies.

7 CONCLUSION
Computational sprinting problems use short, targeted bursts in pro-
cessing speed to reduce whole system response time. Sprinting
policies control (1) which query executions sprint, (2) how long they
sprint, and (3) how much speedup they receive. However, subtle
changes to sprinting policies have complex, unexpected effects. This
paper showed that subtle changes in timeout settings (in either direc-
tion) can increase response time significantly. This paper proposes
a model-driven approach, where sprinting policies are compared
based on their expected response time. We show that model-driven
approaches are plausible by creating an accurate performance model
for computational sprinting policies. The key aspects to our model
are (1) profiling workload characteristics, (2) accounting for dynamic
runtime factors via machine learning, and (3) using effective sprint
rate instead of marginal sprint rate as input into first-principles queu-
ing simulation. We validated our model across multiple sprinting
hardware, query semantics, and workload conditions. Our model-
driven approach outperforms state-of-the-art results and widely used
ad-hoc approaches.
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