This is the author's manuscript ## AperTO - Archivio Istituzionale Open Access dell'Università di Torino ## UVC-induced degradation of cilastatin in natural water and treated wastewater | Original Citation: | | |---|--| | | | | Availability: | | | This version is available http://hdl.handle.net/2318/1789036 | since 2021-07-26T10:40:21Z | | | | | Published version: | | | DOI:10.1016/j.chemosphere.2021.130668 | | | Terms of use: | | | Open Access | | | Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the tof all other works requires consent of the right holder (author or protection by the applicable law. | erms and conditions of said license. Use | (Article begins on next page) ## **APPENDIX** UVC-induced direct photolysis as an efficient process for the degradation of cilastatin in natural and waste water Nicoleta Solomou¹, Marco Minella², Davide Vione^{2,*}, Elefteria Psillakis^{1,*} ¹ Laboratory of Aquatic Chemistry, School of Environmental Engineering, Technical University of Crete, GR-73100, Chania, Crete, Greece ² Department of Chemistry, University of Torino, Via P. Giuria 5, 10125 Torino, Italy. **Table A.1.** Composition of the water samples used in this work. | | River water | Tap water | ww | |---|-------------|-----------|--------| | Cl ⁻ (mg L ⁻¹) | 13 | 150 | 13 | | N-NO ₃ - (mg L-1) | 0.54 | 5.97 | 0.53 | | SO ₄ -2 (mg L ⁻¹) | 12.4 | 105.3 | 1.1 | | P-PO ₄ -3 (mg L-1) | 0.02 | 1.68 | 0.02 | | HCO ₃ - (mg L-1) | 103.4 | 144.6 | 103.8 | | N-NH₃(mg L ⁻¹) | 0.10 | 0.24 | 0.06 | | N-NO ₂ - (mg L ⁻¹) | 0.004 | 0.320 | <0,002 | | F- (mg L-1) | 0.24 | 0.53 | 0.12 | | CaCO ₃ (mg L ⁻¹) | 84.4 | 118.1 | 84.7 | | IC (mg ^C L ⁻¹) | 22.5 | 33.1 | 21.4 | | TN (mg ^N L ⁻¹) | 0.98 | 11.50 | 0.64 | | EC (µS cm ⁻¹) | 274.00 | 932.00 | 253.00 | | рН | 7.32 | 7.14 | 7.68 | **Table A.2.** k and R_0 values for the different UV-irradiated aqueous solutions of cilastatin (CIL). The error values correspond to the standard deviation of replicate experiments rounded to significant digits. | Description of the UV-irradiated water solution | <i>k,</i> (min ⁻¹) | Ro, (× 10 ⁻⁷ mol L ⁻¹ s ⁻¹) | |--|--------------------------------|---| | Effect of concentration | | | | 2.5 mg L ⁻¹ CIL H ₂ O solution | 0.20 ± 0.02 | 0.22 ± 0.02 | | 25 mg L ⁻¹ CIL H ₂ O solution | 0.11 ± 0.01 | 1.18 ± 0.10 | | 50 mg L ⁻¹ CIL H ₂ O solution | 0.09 ± 0.00 | 1.89 ± 0.05 | | 100 mg L ⁻¹ CIL H₂O solution | 0.06 ± 0.00 | 2.43 ± 0.06 | | Effect of pH | | | | pH=3; 100 mg L ⁻¹ CIL H ₂ O solution | 0.16 ± 0.00 | 6.79 ± 0.12 | | pH=5; 100 mg L^{-1} CIL H_2 O solution, | 0.07 ± 0.01 | 3.09 ± 0.40 | | pH=7; 100 mg L^{-1} CIL H_2 O solution | 0.05 ± 0.01 | 2.29 ± 0.27 | | pH=9; 100 mg L^{-1} CIL H_2 O solution | 0.04 ± 0.00 | 1.71 ± 0.20 | | Effect of additives | | | | t-butanol; 100 mg L ⁻¹ CIL H₂O solution | 0.05 ± 0.00 | 1.97 ± 0.10 | | $2.5~mg~L^{-1}~HA;2.5~mg~L^{-1}~CIL~H_2O$ solution | 0.10 ± 0.01 | 0.11 ± 0.01 | | Natural and treated water samples | | | | Tap water spiked at 2.5 mg L ⁻¹ with CIL | 0.19 ± 0.04 | 0.22 ± 0.04 | | WW effluent spiked at 2.5 mg L^{-1} with CIL | 0.07 ± 0.00 | 0.07 ± 0.00 | | River water spiked at 2.5 mg L ⁻¹ with CIL | 0.11 ± 0.01 | 0.12 ± 0.01 | **Table A.3.** Analytical characteristics of CIL and of the identified degradation product eluting during the photolysis of CIL. | Product | Retention time (min) | Identification
Ions (m/z) | Tentative identification | |---------|----------------------|------------------------------|-----------------------------------| | CIL | 4.491 | 359 | | | P374 | 1.648 | 375/359/315 | CIL oxidized to a sulfoxide group | **Table A.4.** Molar absorption coefficients at 254 nm (ε_x) and direct photolysis quantum yields for 254-nm irradiation (Φ_x) of the different CIL species. Note that $x = H_3A^+$, H_2A , HA^- or A^{2-} . | Species x | εx, L mol ⁻¹ cm ⁻¹ | Φ_x , mol E ⁻¹ | |-------------------------------|--|--------------------------------| | H ₃ A ⁺ | 2243±30 | 0.59±0.03 | | H_2A | 2692±25 | (9.3±0.4)×10 ⁻² | | $HA^{\scriptscriptstyle{-}}$ | 1646±17 | (4.6±0.2)×10 ⁻² | | A ²⁻ | 1268±62 | (1.3±0.1)×10 ⁻² | **Fig. A.1.** Relative abundances of the different CIL species, as a function of pH. The species fractions were derived from **Eqs. (1-4)**, using $[H^+] = 10^{-pH}$. Fig. A.2. Tentative mechanism for the oxidation of the sulfide moiety of CIL to a sulfoxide group. **Fig. A.3.** Time trends of 100 mg L⁻¹ CIL upon 254-nm irradiation at near-neutral pH, alone and upon addition of 100 mg L⁻¹ t-butanol. Data points are linked with dashed lines to visualize trends. **Inset:** respective pseudo-first order photodegradation rate constants, together with their sigma-level error bounds. Some error bars are too small to be visible.