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Abstract: Insect vectors transmit viruses and bacteria that can cause severe diseases in plants and
economic losses due to a decrease in crop production. Insect vectors, like all other organisms, are
colonized by a community of various microorganisms, which can influence their physiology, ecology,
evolution, and also their competence as vectors. The important ecological meaning of bacteriophages
in various ecosystems and their role in microbial communities has emerged in the past decade.
However, only a few phages have been described so far in insect microbiomes. The leafhopper
Euscelidius variegatus is a laboratory vector of the phytoplasma causing Flavescence dorée, a severe
grapevine disease that threatens viticulture in Europe. Here, the presence of a temperate bacterio-
phage in E. variegatus (named Euscelidius variegatus phage 1, EVP-1) was revealed through both
insect transcriptome analyses and electron microscopic observations. The bacterial host was isolated
in axenic culture and identified as the bacterial endosymbiont of E. variegatus (BEV), recently assigned
to the genus Candidatus Symbiopectobacterium. BEV harbors multiple prophages that become active
in culture, suggesting that different environments can trigger different mechanisms, finely regulating
the interactions among phages. Understanding the complex relationships within insect vector mi-
crobiomes may help in revealing possible microbe influences on pathogen transmission, and it is a
crucial step toward innovative sustainable strategies for disease management in agriculture.

Keywords: microbiome; bacteriophages; insect vectors; Euscelidius variegatus; phytoplasma; Flaves-
cence doreé; transcriptome; electron microscopy

1. Introduction

Like all other organisms, insects harbor a rich, dynamic, and interactive commu-
nity of microorganisms, collectively known as the microbiome, which comprises not
only living members (microbiota), but also elements considered as not living organisms
(viruses, plasmids, prions, viroids, and free DNA) and a whole spectrum of molecules
produced by the microorganisms [1]. Both microbiome composition and its modification in-
fluence insect ecology, physiology, evolution, and behavior through genetic and metabolic
interactions. In many cases, an insect’s survival depends on its microbiome composi-
tion [2]. For these reasons, both pest control and insect protection may take advantage
by deciphering the relationships between insects and their microbiome as well as among
microbiome components [3].

In the past decade, many studies have been devoted to characterizing the microbiome
of insects, essentially through next-generation sequencing approaches. Even though bacte-
ria, fungi, protozoa, and viruses may be associated with their insect host permanently or
transiently, the vast majority of these works have focused on bacterial communities [2,4].
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However, more recently, the study of insect virome (inclusive of viruses that infect eukary-
otic cells, bacteriophages that infect bacteria, viruses that infect archaea, and virus-derived
genetic elements within host chromosomes) is gaining more attention [5–11].

Bacteriophages are the most abundant organisms in the biosphere [12]. Interest in
studying phages has recently increased in medicine because of their ability to shape the
composition and diversity of the human gut microbiome [13,14], in pathogen control and
their possible use as an alternative to antibiotics (phage therapy) [15,16], and in ecology
because of the important role they play in different ecosystems [17,18]. Nevertheless, only
a minimal part of phage biodiversity has been described [18,19].

In the case of insect microbiomes, few phages have been identified, and their impact
on insect biology is still poorly understood. The arthropod endosymbionts Spiroplasma spp.,
Candidatus Hamiltonella defensa, and Wolbachia spp. are known to host bacteriophages [20–22].
The best characterized insect-bacteria-phage association is the tripartite interaction among
the pea aphid Acyrthosiphon pisum, the insect endosymbiont Hamiltonella defensa, and its
bacteriophage named APSE-1 [21]. Aphids carrying APSE-1 are more resistant against par-
asitoid attacks compared to aphids without this phage, thanks to eukaryote-targeted toxins
encoded by the phage genome [23,24]. The symbiosis system comprising eukaryotic hosts,
bacterium Wolbachia, and bacteriophages WO is widely spread through nearly half of the
known arthropod species [25]. WO has received heightened interest because of its ability to
mediate horizontal transfer of Wolbachia bacterial genes [26] and its possible involvement
in the cytoplasmic incompatibility in insect hosts induced by Wolbachia [27,28]. Since their
discovery and despite their ecological relevance, these cases remain the only characterized
bacteriophage-endosymbiont interactions described in insects.

Here, we report the identification of bacteriophages in the phytoplasma insect vector
Euscelidius variegatus Kirschbaum. Phytoplasmas are plant pathogenic bacteria transmitted
by insects that can cause severe loss in agriculture. The leafhopper E. variegatus (Cicadelli-
dae: Deltocephalinae) is a multivoltine and polyphagous species, widespread in Europe
and North America. E. variegatus is a natural vector of ‘Candidatus Phytoplasma asteris’
(chrysanthemum yellows strain) and a laboratory vector of the Flavescence dorée phyto-
plasma (reviewed in [29]), and it is used as a model system to study phytoplasma-vector
interactions because of the difficulties in rearing the monovoltine natural vector Scaphoideus
titanus. Insecticide treatments are the main control strategy to contain disease spread by
insect vectors [30]. Recent findings proved that the microbiome can interfere with the vector
ability to acquire and transmit pathogens directly or indirectly [4,31–33]. Gong et al. [34]
showed that the artificial association of the insect vector Nilaparvata lugens with a Wolbachia
bacterial strain from another leafhopper species makes the insect unable to transmit a se-
vere viral disease of rice. This work demonstrates that manipulating insect microbiome is a
viable strategy for changing insect traits and that a better knowledge of insect microbiome
is the basis for new plant pest control strategies.

In this work, the presence of a temperate bacteriophage in E. variegatus (named Eusce-
lidius variegatus phage 1, EVP-1) was revealed through both insect transcriptome analyses
and microscopic observations. The bacterial host was isolated in pure culture and identified
as the bacterial endosymbiont of E. variegatus (BEV), which has been recently assigned to the
genus Candidatus Symbiopectobacterium [35]. Actually, BEV harbors multiple prophages
that become active in culture, suggesting that different environments can trigger different
mechanisms that finely regulate the within-host interactions among phages. Moreover, our
results demonstrate that identifying expressed phage sequences in transcriptomic data can
be a new and valuable approach to detect and study bacteriophages.

2. Results
2.1. Bacteriophage-Like Particles in Euscelidius variegatus

During the electron microscope observation of a partial viral purification obtained
from a Euscelidius variegatus Torino (EvaTO) population [36], aimed at revealing insect
virus particles, bacteriophage-like particles were serendipitously observed. Those phages
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had head-and-tail morphology typical of the viral order Caudovirales and in particular of
the Siphoviridae family; they had a prolate (elongated) oval head 132 nm long (SE = 0.7 nm;
n = 48) and 59 nm wide (SE = 0.3 nm; n = 48) and a flexuous thin non contractile tail 179 nm
long (SE = 4.4 nm; n = 16) (Figure 1a). Frequently, heads and tails appeared detached
(not shown).
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Table 1. ViPTree Gene ORF Prediction and Blastx Analysis of the 12 Selected Phage Sequences. 

Figure 1. (a) TEM micrograph of siphovirus-like particles observed in negatively stained partial
viral purification from Euscelidius variegatus Torino population; bar = 100 nm. (b) PCR on the DNA
extracted from viral particles (Lanes 1–4) and E. variegatus whole insect (Lanes 6–9). Lanes 1,6:
PCR with BEV3/4 primers; Lanes 2,7: PCR with EvaTO_phage1 primers; Lanes 3,8: PCR with
EvaTO_phage2 primers; Lanes 4,9: PCR with EvaTO_phage3 primers. Lane 5: 1 Kb Plus DNA
Ladder (Invitrogen).

2.2. Selection of Expressed Bacteriophage Sequences

In an effort to identify the siphovirus-like phage observed by TEM, RNA extracted
from EvaTO adults was used to construct two cDNA libraries. The two datasets were then
merged and depleted of reads matching to the insect transcriptome in order to generate a
de novo metatranscriptome assembly of E. variegatus microbiome. A blastx analysis of the
assembled sequences revealed the presence of 12 expressed sequences that were identified
as hallmark bacteriophage structural genes, i.e., major capsid, minor capsid, baseplate,
major tail, minor tail, portal, tail fiber, tail sheath, collar, and head-tail joining proteins.
After a further annotation with the ViPTree server [37], 5 out of 12 sequences appeared to
be polycistronic mRNAs (Table 1), i.e., they encoded at least two putative proteins.
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Table 1. ViPTree Gene ORF Prediction and Blastx Analysis of the 12 Selected Phage Sequences.

Transcripts IDs and
Predicted ORFs

Length
(bp) Range RPK Hit Description [Organism] % Identities E-Value % Query

Coverage
MW965290 5544 111.7

ORF1 398 1–398 WP_195316289.1 phage tail tape measure
protein [Serratia marcescens] 70 2 × 10−51 97

ORF2 # 357 398–754 WP_039351538.1 phage tail protein
[Pectobacterium fontis] 90 1 × 10−75 97

ORF3 # 753 804–1556
MBG6243408.1 phage minor tail protein L

[Candidatus Symbiopectobacterium sp.
Dall1.0]

96 0.0 100

ORF4 # 576 1713–2288 MBG6243407.1 peptidase P60 [Candidatus
Symbiopectobacterium sp. Dall1.0] 95 8 × 10−165 94

ORF5 # 606 2272–2877 WP_104212022.1 tail assembly protein
[Pectobacterium brasiliense] 81 2 × 10−85 100

ORF6 2611 2934–5544 WP_104212026.1 phage tail protein
[Pectobacterium brasiliense] 91 2 × 10−70 100

MW965281 2188 112

ORF1 318 255–572 WP_021179416 fimbrial protein TcfA
[Serratia fonticola] 62 4 × 10−29 90

ORF2 # 252 557–808
WP_146751463.1 ANR family

transcriptional regulator [Enterobacter
cloacae complex]

56 5 × 10−7 60

ORF3 # 1089 859–1947 WP_187497555.1 phage tail protein [Pantoea
Psp39-30] 43 2 × 10−82 98

MW965289 1777 128.3

ORF1 99 1–99 EFC4054519.1 HK97 family phage prohead
protease [Escherichia coli] 81 2 × 10−9 100

ORF2 # 1227 109–1335
MBG6243159.1 phage major capsid protein

[Candidatus Symbiopectobacterium sp.
Dall1.0]

85 0.0 99

ORF3 # 300 1426–1725
WP_044208854.1Phage gp6-like head-tail
connector family protein [Pectobacterium

odoriferum]
87 3 × 10−57 100

MW965291 6115 213.4

ORF1 580 1–580 WP_108703399 Terminase small subunit
[Enterobacter hormaechei] 96 2 × 10−86 96

ORF2 # 1659 583–2241 WP_108703400 terminase large subunit
[Citrobacter europaeus] 98 0.0 100

ORF3 # 1935 2324–4258 WP_135684645.1 phage major capsid
protein [Klebsiella pneumoniae] 95 0.0 99

ORF4 # 168 4297–4464 WP_181941880.1 hypothetical protein
[Klebsiella pneumoniae] 89 8 × 10−28 100

ORF5 # 1359 4464–5822 NIC64170.1 phage portal protein
[Klebsiella pneumoniae] 94 0.0 100

ORF6 297 5819–6115
RTO54147.1 phage gp6-like head-tail

connector protein, partial [Enterobacter
hormaechei]

80 8 × 10−47 100

MW965287 1419 71.2

ORF1 482 1–482 MBD2797976.1 HK97 family phage prohead
protease [Xenorhabdus sp. 18] 72 6 × 10−74 96

ORF2 953 467–1419 QBY47020.1 phage portal protein
[Arsenophonus nasoniae] 92 0.0 100

MW965282 770 61.0 WP_187497555.1 putative phage tail protein
[Plautia stali symbiont] 99 1 × 10−158 84

MW965283 3268 114.1 WP_113869621.1 phage tail tape measure
protein [Brenneria salicis] 82 0.0 82

MW965286 * 251 47.8 SPW64604.1 putative head-tail adaptor
[Escherichia coli] 98 1 × 10−20 73

MW965288 768 50.8 MBJ9599707.1 phage portal protein
[Citrobacter werkmanii] 99 4 × 10−179 94

MW965292 # 1852 123.1 WP_164114194.1 phage major capsid
protein [Serratia marcescens] 63 0.0 77

MW965285 299 23.4 WP_010281992.1 portal protein
[Pectobacterium brasiliense] 95 8 × 10−55 92

MW965284 * 345 46.4 SUH06759.1 portal protein
[Salmonella enterica subsp. enterica] 87 1 × 10−27 66

RPK: read counts divided by the length of each transcript in kilobases. * putative pseudogene (presence of frameshifts). # Complete CDS.
Grey shaded cells represent different transcript IDs.



Pathogens 2021, 10, 612 5 of 16

The selected transcripts included three different complete major capsid/head proteins,
suggesting that the selected expressed sequences belonged to at least three different phages,
thereafter referred to as EVP-1 (Euscelidius variegatus phage 1, associated with MW965291
ORF3), EVP-2 (associated with MW965292) and EVP-3 (associated with MW965289 ORF2).

2.3. Phylogenetic Analysis of the Identified Major Capsid Proteins

The deduced amino acid sequences of the three major capsid proteins were aligned to
the first hit retrieved by blastx against the NCBI nr database and the first ten hits identified
by blastp against the NCBI RefSeq protein limited to the taxon “Viruses (taxid:10239)”. We
considered for the analysis only complete major capsid proteins from phages assigned to
one of the nine Caudovirales families recognized by the International Committee on Taxon-
omy of Viruses (ICTV). The phylogenetic analysis (Figure 2) showed that EVP-1 was part
of a completely separate cluster from the one that included the other two identified major
capsid proteins. Such a cluster was formed only by major capsid proteins from members of
the family Siphoviridae. The other cluster was far more heterogeneous, including members
of both the families Siphoviridae and Myoviridae. EVP-2 and a protein identified in Serra-
tia marcescens (best blastx hit) formed a separate branch that diverged from a clade including
both siphoviruses and myoviruses. Finally, EVP-3 formed a strongly supported clade (100%
bootstrap value) with major capsid proteins from Candidatus Symbiopectobacterium sp.
Dall1.0 and from a member of the family Myoviridae.

2.4. Detection and Prevalence of the Three Phages

Specific primers designed on the three genes (Table 2), coding for the identified major
capsid proteins, were used on DNA extracted from insect whole bodies and a partial
viral purification. All the three primer pairs produced amplicons of the expected size
and sequence from 20 individuals randomly selected from the EvaTO population (data
not shown). By contrast, only primers designed on EVP-1 major capsid protein gave an
amplification product from the DNA extracted from viral particles (Figure 1b). Therefore,
we could reasonably associate the phage observed by TEM to EVP-1.

2.5. Isolation of EVP-1 Bacterial Host

In an attempt to identify the EVP-1 bacterial host, EvaTO hemolymph was cultivated
on chocolate agar and purple agar plates, yielding several colonies (Figure S1). Few colonies
appeared after one/three days of incubation and showed a fast growth. After 7-10 days,
many other whitish small colonies (almost forming a layer) appeared; they looked all
similar and grew slowly (Figure S1a,b). The fast growing (1C-3C, 5C-7C, 1P, 2P) and
some of the slow growing (4C, 8-15C, 3-5P) colonies were isolated and sub-cultivated on
both chocolate and purple agar, irrespective of their original selection medium. Ten out
of the 20 isolated colonies were positive to the PCR amplification with EVP-1 primers
(Figure S1b). All the fast-growing colonies were negative; almost all the slow growing
colonies (except 10C and 11C) were positive and they were considered as EVP-1 bacterial
hosts. The growth of EVP-1 positive colonies on chocolate and purple agar was scanty, with
low viability. Attempts at subculturing these colonies on Tryptic soy agar (TSA) resulted
in faster growth, with similar viability (about two weeks). Three colonies were selected
and maintained on TSA for further investigations: 4C, 12C, and 14C. At each subculture
step, the presence of EVP-1 was checked by PCR with EvaTOphage1 primers (not shown).
The 16S ribosomal sequences of the three colonies were 100% identical to each other and
99% identical (95% query coverage) to the one isolated from the “Bacterial parasite of
Euscelidius variegatus” (BEV, GenBank accession number: Z14096 [38]) (Figure S2), which
has been recently renamed Candidatus Symbiopectobacterium [35]. Based on this result,
primers BEV3/BEV4 [39], specifically designed on the BEV 16S ribosomal sequence, were
used hereinafter. In particular, they were used to exclude the presence of bacterial host
DNA after DNA extractions from viral particles (Figure 1b).
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ST64B; YP_008766869.1, Shigella phage SfIV; YP_009147453.1, Enterobacteria phage SfI; YP_008318484.1, Shigella phage
SfII; NP_543092.1, Enterobacteria phage phiP27; YP_355412.1, Burkholderia phage Bcep176; YP_001686874.1, Azospirillum
phage Cd; YP_009304034.1, Brucella phage BiPBO1; YP_009010476.1, Geobacillus phage GBK2; NP_599037.1, Enterobacteria
phage SfV; YP_003090181.1, Burkholderia phage KS9; YP_764476.1, Geobacillus phage GBSV1; MBG6243159.1, Candidatus
Symbiopectobacterium sp. Dall1.0.

Previous literature has reported that BEV can colonize multiple insect host organs,
including the midgut [40,41]. PCR and RT-PCR experiments on E. variegatus dissected
guts not only confirmed the presence of EVP-1 but also revealed that the phage was tran-
scriptionally active in this tissue (Figure 3a). In addition, TEM observations of negatively
stained crude extract from guts demonstrated the presence of siphovirus-like phage parti-
cles similar to those observed in the viral purification from the whole insect (Figure 3b).

2.6. Multiple Phages in EVP-1 Host

According to a preliminary survey of BEV genome size and content [42], there was
evidence for an extrachromosomal element that could represent a prophage and 65 partial
coding sequences that could be ascribed to phages. A blastn analysis against all the BEV
sequences submitted to the GenBank Trace Archive revealed that 11 out of the 12 putative
phage transcripts identified in this work found a hit with percentages of identity >88%,
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but with low percentages of query coverage (average coverage < 41%) (Table S1). Such
result could be explained by the fact that some deposited sequences are shorter than the
identified transcripts and all of them contain ambiguous nucleotides (Ns), which in the
case of gnl|ti|2292005461 represented more than 50% of its length. Nevertheless, those
results suggested that most of the identified sequences could be assigned to phages that
have BEV as their bacterial host. A colony PCR confirmed that EVP-2 and EVP-3 were also
likely to be associated with BEV (Figure 4e).
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Figure 3. (a) PCR and RT-PCR experiments on E. variegatus dissected guts with EvaTO_phage1 primers. Lanes 1–3: RT-PCR
on RNA extracted from three pools (five samples each) of E. variegatus guts. Lanes 6–8: PCR on the same RNA sample as in
lanes 1–3 without the retrotranscription step. Lane 4: PCR on DNA extracted from a pool of five E. variegatus guts. Lane 5:
negative control (no DNA) (b) TEM micrograph of siphovirus-like particles observed in negatively stained crude extract
from dissected gut of E. variegatus Torino; bar = 100 nm.
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Figure 4. TEM micrographs of the negatively stained 4C colony showing bacterial cells (a), myovirus-like particles (b),
siphovirus-like particle (c), and podovirus-like particles (d). Scale bars correspond to 1 µm (a) or 100 nm (b–d). (e) PCR on
DNA extracted after the enrichment of viral particles from bacterial colony 4C (Lanes 1,4) and PCR on the bacterial colony
4C (Lanes 6–9). Lanes 1,6: PCR with BEV3/BEV4 primers; Lanes 2,7: PCR with EvaTO_phage1 primers; Lanes 3,8: PCR
with EvaTO_phage2 primers; Lanes 4,9: PCR with EvaTO_phage3 primers. Lane 5: 1 Kb Plus DNA Ladder (Invitrogen).
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Electron microscopy observation of negative-stained bacteria from TSA cultures re-
vealed rods from 2.1 to 5.3 µm long (with a mean value of 3.1 µm, n = 60), from 0.60 to 0.79
µm wide (with a mean value of 0.68 µm, n = 60), without flagella and sometimes curved
(Figure 4a). In the proximity of bacterial cells, some bacteriophage particles were noted;
some were siphovirus-like and similar to those observed in the insect extract (Figure 4c).
Moreover and unexpectedly, myovirus-like (Figure 4b) and podovirus-like (Figure 4d)
particles were also present. In particular, the number of podovirus-like particles were
approximately 100-times higher than the number of siphovirus- and myovirus-like ones
(Figure 5).
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The bacterial colony was subjected to an enrichment of viral particles and a DNase
treatment prior to DNA extraction to ensure the purification of encapsidated DNA only.
Given the different phage morphologies observed by TEM, the three phage primer pairs
were used in PCR. Amplicons of the expected size were obtained with specific primers
for EVP-1 and EVP-3, whereas a faint band was observed with EVP-2 primers (Figure 4e).
BEV primers failed to amplify bacterial DNA, so we could exclude the presence of contami-
nating phage DNA integrated into the host chromosome. PCR results confirmed that the
siphovirus-like phage observed by TEM was EVP-1 and suggested that the myovirus-like
particles could be associated with EVP-3.

3. Discussion

Phage “omics” studies are represented mostly by metagenomic shotgun analyses
applied to a wide range of environments and locations, from uncultured marine sam-
ples [43–45] to human gut microbiome [44,46–49]. Differential filtrations and density-
dependent gradient centrifugations are the usual enrichment steps taken to concentrate
viral DNA and limit bacterial constituents and other contaminants before sequencing.

While metagenomics is the most rapid and efficient approach used to describe the over-
whelming diversity of phages, transcriptomics has been generally used to investigate the
transcriptional response of bacteria isolated in pure cultures upon phage infection [50–52].
Only a few untargeted metatranscriptomic studies, which explored mainly soil microbial
communities, reported the discovery of novel RNA phages [53,54] and phage-related
mRNA sequences [55,56].

Metatranscriptomics has here been integrated with classical microbiological and
microscopy techniques to identify a DNA tailed-phage and its bacterial host within the
microbiome of a phytoplasma insect vector. To this end, we re-analyzed two RNA-seq
libraries that were originally constructed without any prior phage enrichment step to
explore E. variegatus transcriptome [57]. De novo identification of phage sequences can be
an extremely challenging task, especially from a background of genes expressed by the
insect host and all the active microorganisms that constitute its microbiome. Nevertheless,
the stringent selection of phage-hallmark genes resulted in a reliable identification of the
observed phage. Such a bioinformatic approach was clearly a non-exhaustive way to
retrieve all the expressed phage sequences in the libraries. Some were probably overlooked
due to the lack of similarity with known phage sequences (the so-called “dark matter”)
and/or the wrongful identification as bacterial genes in public databases. The absence of
a biomarker gene among DNA phages and the polyphyletic origin of most viral lineages
pose a hindrance for identifying all the putative phages. In any case, the characterization
of the whole E. variegatus phageome was beyond the scope of this work, and the chosen
approach proved effective in the detection of the transcribed phage genes associated with
the observed phage particles.

Although RNA-seq data provided information about the active fraction of phages
within the insect microbiome, they were not sufficient to apply the new computational
approaches developed to predict phage-host relationships [58,59]. Therefore, classical
microbiological techniques were applied for the unambiguous phage-host identification.
All the bacterial hosts of the phages identified by the BLAST analyses belonged to the order
Endobacterales, so it was reasonable to hypothesize that bacteria of the same order could be
part of the E. variegatus microbiome and hosted the identified phages. Only two cultivable
bacterial endosymbionts, BEV (Endobacterales [40]) and Asaia sp. (Rhodospirillales [33,60]),
are known to be facultatively associated with E. variegatus. Because comprehensive studies
of the bacterial fraction of its microbiome had never been undertaken, we did not have
any a priori knowledge about either the possibility of isolation in axenic culture of the
other endosymbionts or the most suitable media for their cultivation. The chosen growth
media, usually adopted to identify enteric bacteria or to isolate fastidious bacteria, were
effective in isolating the EVP-1 host. Interestingly, the EVP-1 host was shown to be the
already known E. variegatus endosymbiont BEV, i.e., Candidatus Symbiopectobacterium.
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Moreover, colony-PCR proved that BEV was also the host of the other two identified major
capsid protein-coding genes. Interestingly, the best blastx hits of the EVP-3 major capsid
protein was the one identified in Candidatus Symbiopectobacterium sp. Dall1.0 during
a metagenomic study of Diachasma alloeum, a parasitoid of the apple maggot Rhagoletis
pomonella [61]. Such result further supported the proposal made by Martinson et al. [35]
that the genus “Candidatus Symbiopectobacterium” represents a monophyletic group
of invertebrate host-associated microbes. With the huge production of whole genome
sequencing data, it is known that most bacterial genomes carry multiple prophages, a
phenomenon called polylysogeny [62]; however, inferred prophage sequences do not
always correspond to active temperate phages [63]. The association of multiple active
phages to BEV was confirmed by electron microscope observations and PCR reactions
on the bacterial colonies. The intense phage lytic activity observed in vitro may explain
the low viability of the bacterium in culture. It is likely that, after a few days in pure
culture, most bacterial cells undergo phage lysis as a result of the massive production of
podovirus-like particles. By contrast, neither viral particles nor transcripts that could be
associated with podoviruses were identified in the insect microbiome. This may indicate
that these are in the prophage status in the insect environment, while they switch to the
lytic phase in plate culture condition. A transcript coding for a myovirus-like major capsid
protein was retrieved during the RNA-seq analysis, even if myovirus-like particles were
not observed in the viral partial purification obtained from the whole insect. Hence, we
can suppose either that the phage is present at very low concentration in the insect body
(below the detection limit) or that the particles were, for some reason, destroyed during the
purification process. Nevertheless, on the one hand, some regulation mechanisms should
operate in the insect to prevent the podovirus-like phage from producing the same massive
release of viral particles observed in pure culture, which could potentially cause the lysis
of the whole bacterial population. On the other hand, the growth of the BEV population
within the insect could be kept under control by the action of EVP-1 and, maybe, EVP-3.

It is known that temperate phages have an important role in shaping microbial di-
versity and community structure; in fact, not only do they alter the biology of their hosts
(i.e., regulating gene expression, introducing novel functions), but they also influence the
surrounding hosts and non-host bacterial cells (i.e., entering the lytic cycle and killing
susceptible bacteria, liberating intracellular contents used as nutrients by neighboring
cells) [64,65]. Moreover, bacteriophage–bacteria interactions are considered by Refardt [66]
as an ideal system for studying the competitive interactions within hosts. In particular, he
considered the competition among phages in the same host, which is still an unexplored
area in phage ecological research, and showed that multiple infection in Escherichia coli
often resulted in a decreased lytic productivity.

At present, we do not know whether BEV active phages can influence the lysogenic
status of the other prophages or whether they can infect other insect bacterial endosym-
bionts. These two phenomena deserve to be elucidated in view of using this system as a
model both for among-hosts competition studies and for developing microbiome-based
new plant pest control strategies. In fact, unravelling the microbiome of insect vectors
and understanding the complex relationships within its components may help to reveal
possible microbe influences on pathogen transmission, and it is a crucial step toward an
innovative sustainable strategies for disease management in agriculture.

4. Materials and Methods
4.1. Insect Population

Euscelidius variegatus of the Torino (Italy) phytoplasma-free laboratory colonies (EvaTO)
were originally collected in Piedmont (Italy) and reared on oat, Avena sativa (L.), inside
plastic and nylon cages in growth chambers at 20–25 ◦C with a L16:D8 photoperiod.
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4.2. DNA and RNA Extraction

DNA and total RNA were extracted from either whole bodies or dissected organs of
emerged EvaTO adults, as described by Marzachì et al. [67] and Ottati et al. [68], respectively.

In order to distinguish the encapsidated phage DNA (lytic infection) from the phage
DNA integrated into the host chromosome (lysogenic infection), we proceeded as follows.
Bacterial colonies were resuspended in sterile water and filter-sterilized with a 0.22 µm
filter. Such step should eliminate bacterial hosts and enrich the aqueous phase with phage
particles. The suspension was then treated with TURBO™ DNase (Thermo Fisher Scientific,
Waltham, MA, USA) for 1 h at 37 ◦C to digest any residual free DNA and subjected to DNA
extraction with one volume of phenol:chloroform:isoamyl alcohol (25:24:1 v/v) followed
by a wash step with one volume of chloroform:isoamyl alcohol (24:1 v/v) to remove any
trace of phenol. Finally, DNA was precipitated with sodium acetate/ethanol, washed with
70% ethanol, and resuspended in 10 mM Tris-HCl pH 8.2. The same DNase treatment and
DNA extraction protocol were also used on semipurified viral particles.

4.3. RNA-Seq and Bioinformatic Analysis

Six micrograms of total RNA were sent to Macrogen (Seoul, Korea) for cDNA library
construction and sequencing, as detailed in [36]. At least 100 million 100-nt paired-end
reads were obtained for each dataset. The two datasets were merged and the pre-assembly
steps were performed using BBTools suite v38.70, as previously described [11]. BBMap, in
particular, was used to remove reads mapping to the Euscelidius variegatus transcriptome
shotgun assembly (TSA Accession number: GFTU00000000.1) before the assembling step
with Trinity v2.9.1 [69]. The resulting sequences were further assembled by CAP3 v3
(overlap length cutoff = 60; overlap percent identity cutoff n = 90) [70]. As a result, around
120,000 assembled sequences were obtained and queried against the NCBI non redundant
“nr” protein database (Last access February 2021) with DIAMOND v0.9.24.125 [71] using
an E-value cut-off of 0.0001. Bowtie2 [72] was used to map reads against the putative phage
transcripts with default parameters. Reads mapping onto the selected transcripts were
expressed as RPK (Reads Per Kilobase of transcript).

ViPTree [37] was used to automatically generate the annotation of the selected tran-
scripts. Given that the tool used the RefSeq release 93, the predicted coding sequences
and the corresponding deduced proteins were analyzed using NCBI RefSeq Release 205
(February 2021).

4.4. Accession Numbers

Reads were deposited into the NCBI’s Sequence Read Archive (SRA) database with
BioSample accessions SAMN18744878 and SAMN18744879 as part of BioProject PRJNA393620.
The partial 16S ribosomal RNA sequence of Candidatus Symbiopectobacterium strain EvaTO
and the 12 phage transcripts were submitted to NCBI GenBank with accessions MW936016
(16S rRNA) and MW965281 MW965292 (phage sequences).

4.5. Phylogenetic Analysis

Phylogenetic relationships were inferred on the basis of the amino acid sequences of
phage major capsid proteins. The three newly identified major capsid proteins were aligned
with MUSCLE [73] to their best blastx hits and the first ten hits identified by blastp analysis
against the NCBI RefSeq protein limited to the taxon “Viruses (taxid:10239)”. Phylogenetic
trees were then generated using the maximum likelihood (ML) approach, implemented
in IQ-TREE [74] with default parameters through the CIPRES Science Gateway V. 3.3 [75].
Bootstrap analyses involving 1000 replicates were used with the Dayhoff substitution
matrix to estimate the pairwise distances.

4.6. PCR and RT-PCR Amplifications

PCR was used to verify the presence of the three genes, encoding the major capsid
proteins in EvaTO insects, phage DNA, and bacterial colonies. Universal 16S rRNA bacterial
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primers were first used, and then BEV3/BEV4 primers were used to identify the bacterial
host harboring EVP-1 phage by colony PCR. BEV primers were also used to exclude the
presence of residual bacterial host DNA whenever it was necessary to distinguish the
encapsidated phage DNA from the phage DNA integrated into the bacterial chromosome.

For each sample, cDNA was synthesized from total RNA (500 ng) with EvaTO_phage1r
primer using the RevertAid Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA,
USA). The absence of contaminating genomic DNA was verified including, in the PCR
step, samples without the reverse transcription step.

All primer sequences and amplification conditions used in this work are listed in
Table 2. The resulting amplicons were validated by Sanger sequencing at BMR Genomics
(Padua, Italy).

Table 2. List of Primers Used in this Work.

Primer Name Sequence Target Product Size (bp) Annealing T (◦C) Citation

EvaTO_phage1f CCGGTGGGTTCACTTTCC
MW965291 697 64 This work

EvaTO_phage1r CGTCCGCAGACCATTATCGG

EvaTO_phage2f CTTCTCTGGCTGGCCTACCC
MW965292 725 64 This work

EvaTO_phage2r GAGTATCGCCGGTCATCACG

EvaTO_phage3f AGGGTACTAGCCAGGACGAC
MW965289 524 64 This work

EvaTO_phage3r TGTGCCGCCATTTCGATAAG

BEV3 TTATGAGGTCCGCTTGCTCT BEV 16S ribosomal
DNA sequence 1009 64 [39]

BEV4 CGATCCCTAGCTGGTCTGAG

27F AGAGTTTGATCMTGGCTCAG 16S ribosomal
DNA sequence 1507 58 [76]

1494R CTACGGCTACCTTGTTACGA

4.7. Bacterial Isolation

CO2-anesthetized leafhoppers were surface-sterilized by submerging them first in
95% ethanol for 1 to 2 min, then in 1.2 to 1.5% sodium hypochlorite solutions for 2 min and,
eventually, rinsing them 2 or 3 times in sterile water [40]. Under a dissecting microscope,
the hemolymph was aspirated with a fine, flame-drawn needle inserted into the insect body,
between the thorax and the abdomen. The fluid was transferred to a tube containing 1X
PBS. The hemolymph of five individuals was combined, then split in two and plated onto
chocolate (Blood Agar Base—Sigma Aldrich—added with 7% horse defibrinated blood)
and purple agar (Bromocresol Purple Broth—Sigma Aldrich—added with 1.5% agar) solid
medium. The hemolymph of a total of 40 individuals was obtained. Plates were kept at
26 ◦C in the dark for up to 14 days. Colonies were numbered (using C when isolated from
chocolate agar and P when isolated from purple agar plates) and transferred onto new
chocolate and purple plates. For subcultures and maintenance, a Tryptic Soy Agar (TSA)
medium (Sigma Aldrich) was eventually used.

4.8. Transmission Electron Microscopy

Viral particles were partially purified following the protocol previously described
by [36]. Insect guts were collected under a dissecting microscope and crushed in 0.1 M
phosphate buffer pH 7, added with 2% PVP, to obtain a crude extract. A portion of the
bacterial colonies was collected with a toothpick from cultures on solid medium plates
and suspended in 20 µL of liquid growth medium. A drop of the viral partial purification,
the gut crude extract, or the bacterial suspension was deposited on carbon and formvar
coated copper-palladium grids and left to stand for about 3 min. Grids were washed
with water and negatively stained with 0.5% aqueous uranyl acetate. Observations and
image acquisition were done using a CM 10 electron microscope (Philips, Eindhoven,
The Netherlands) operating at 80kV. Micrograph films were developed and then digitally
acquired at high resolution with a D800 Nikon camera. Images were trimmed and adjusted
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for brightness and contrast using GIMP 2 software. Particle measurements were done
using Fiji software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10050612/s1, Figure S1: (a) Examples of chocolate agar plates with colonies
grown after plating hemolymph extracted from Euscelidius variegatus Torino population. (b) List and
characteristics of all the isolated colonies from chocolate (C) and purple (P) agar plates; positivity
to EVP-1 was determined by PCR with EVP-1 primers. Figure S2: Alignment of the 16S ribosomal
sequence of the three colonies with the one from the “Bacterial parasite of Euscelidius variegatus”
(BEV) GenBank accession number: Z14096; (Campbell and Purcell, 1993). Table S1: Blastn analysis of
the 12 selected phage sequences against the BEV sequences submitted to the GenBank Trace Archive.
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