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Summary

The following thesis concerns theoretical and practical aspects of Topological
Data Analysis (TDA). This is a branch of Mathematics emerged in the last 30
years, devoted to the analysis of data using concepts of Geometry and Algebraic
Topology.

After a brief introduction to the theoretical aspects of Persistent Homology, the
thesis is divided in three main chapters, each of them focusing on a different aspect
of TDA.

In the first one, we study the concept of weak similarity between semi-metric
spaces. A weak similarity is a bijection between two semi-metric spaces such that
the ordering given by the distance between pair of points is preserved. It can be
used to compare spaces from a point of view looser than isometry. We study this
concept and analyse some invariants that can be used to determine whether two
spaces are weakly similar or not. We introduce a dissimilarity measure between
semi-metric spaces, based on the Gromov-Hausdorff distance, to measure how far
they are from being weakly similar. We see how persistent homology can be used to
study weak similarity. We introduce a dissimilarity between persistence diagrams
from the point of view of weak similarity and prove a stability theorem between
the introduced dissimilarities.

In the second one, we focus on the problem of skeletonization based on homo-
logical features. Our aim is to improve the concept of homological scaffold, giving a
more solid theoretical foundation. The idea is to consider minimal length generators
of the first homology group of the simplicial complexes in a filtration. This process
yields a weighted graph, called homological scaffold, where the weight of each edge
is given by the number of times the edge appears in one of the selected genera-
tors. We study the computational aspects and theoretical limits of this approach,
then we make a comparison of the new homological scaffold with its predecessor on
synthetic and real data sets.

In the last chapter, we study a new perspective on data sets based on persistent
homology. We see that each data set can be seen as a collection of measurements on
a finite set. These measurements will induce different metrics and filtering function
on the original space, and these can be analysed with persistent homology. We see
set equivariant operators as a natural tool to compare data sets and we investigate
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how persistent homology and set equivariant operators are related.
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Chapter 1

Introduction

Topological Data Analysis (TDA) is a branch of mathematics devoted to gather-
ing topological and geometric information from data sets [19]. It has been developed
in the last 30 years, starting from the seminal works of Patrizio Frosini [45, 31],
Herbert Edelsbrunner [43, 33], and Vanessa Robins [88]. The core idea of TDA is
that data, gathered from measurements of a phenomenon, can be endowed with a
notion of “shape” and that the shape of data can be used to characterize the phe-
nomenon that has to be described. Data coming from similar experiments will yield
similar shapes, whereas if the measurements are gathered from different phenom-
ena, the shapes will be affected by these differences. Therefore, the experimenter
can examine if the measurements come from the same phenomenon checking the
similarity of the shapes of data.
With the informal word shape, we mean something related to manifolds. We can
think of an experiment as an act of sampling of points from a manifold that im-
plicitly describes the relations that the variables of the experiment have to satisfy.
Different events are associated with different manifolds, and one goal of TDA is to
identify this diversity.
In order to endow data sets with a shape, computational topology seems to be the
most natural tool to use [41]. There are several ways to obtain a topological space
from a set of measurements. The discrete nature of real world experiments makes
simplicial complexes an efficient way to obtain a topological space from data. In
order to compare different topological spaces, we need computable topological in-
variants to give us a description of the object under study. The easiest and most
remarkable example is homology. Once a simplicial complex is gathered from data,
homology groups give a description of the “holes” or “cavities” present in the topo-
logical space. The computation of homology groups boils down to the reduction of
certain boundary matrices, it is therefore easily implementable.

The simplicial complexes we can obtain from data are dependent on a set of
hyper-parameters, for which often there is not an a priori right choice. Instead of a
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single simplicial complex it becomes more convient to consider a filtration, that is
a sequence of nested simplicial complexes. Each simplicial complex of the filtration
is obtained with different values of the hyper-parameters. Therefore, the methods
of TDA try to take into account the differences between the simplicial complexes in
a filtration. The main character in TDA is Persistent Homology. Its purpose is to
relate the homology groups of different simplicial complexes, associated by inclusion
relations. In its simpler version, it keeps track of the births and deaths of simplcial
homology classes along the different steps of an increasing filtration of simplicial
complexes. It produces an object called persistence diagram that identifies the
number of homological classes that appear at a certain step of a filtration and that
disappear a another.
These diagrams are well suited for data analysis since thanks to a stability theorem
it is proved that small changes in data induce small changes in the persistence
diagram.

The purpose of this thesis is threefold: to analyse certain aspects of applications
of topological data analysis to finite metric structures, to study how to bring back
the information given by TDA on the original object under study and to introduce a
framework suitable to study data set from the point of view of persistent homology.

The second chapter is devoted to introduce all the tools of algebraic topology
and persistent homology that will be used in the thesis. There will be a brief
reminder of category theory, that will be used to formulate some of the results.

The third chapter analyses the problem of weak similarity of finite semi-metric
spaces. In the classical TDA pipeline, the input is often a finite semi-metric space,
or a space with a dissimilarity defined on it. The obtained filtration of simplicial
complexes, and the associated persistent homology, depends on the values attained
by the distance function. We notice, thanks to the stability theorem, that the
persistent homologies of two isometric spaces will be equivalent. Informally, we
can say that persistent homology doesn’t distinguish congruent shapes. On the
other hand, we may be interested in comparing shapes from a point of view weaker
than congruence. For example, when classifying polygons on the plane, we may
be more interested in considering equivalent two polygons that are just similar,
instead of congruent. In its current formulation, persistent homology doesn’t do
that, since similar polygons will be associated to different persistence diagrams.
This chapter aims at studying metric spaces from this perspective. Weak similarity
is an extension of the concept of isometry. We will say that two finite spaces are
weakly similar when we can find a strictly increasing function that rescales one
of the metric spaces into the other. The aim of the chapter is to study certain
invariants to determine if two spaces are coarsely isometric. We will introduce
a dissimilarity between semi-metric spaces for this purpose, and a dissimilarity
between persistence diagrams, to compare the persistent homology of two spaces
from the point of view of weak similarity.
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The fourth chapter focuses on the problem of skeletonization of simplicial com-
plexes from the point of view of persistent homology. It revolves around the concept
of homological scaffold, introduced as a tool to bring back the information of per-
sistent homology on the starting data, [85]. The idea is to consider the persistent
homology classes that appear across the filtration. For each of them, a represen-
tative cycle is taken and then it is assigned a weight to each simplex of the last
simplicial complex of the filtration, that depends on how many times the simplex
occurs in one of the selected representative cycles. The main issue with this defini-
tion is that the choice of the representative cycles is not bound to any additional
properties of the cycle. Technically, any of the elements in the equivalence class
given by homology can be taken as a representative cycle, therefore different scaf-
folds could be obtained from the same data, leading to different interpretations of
the results. To solve this problem, we impose an additional condition on the mini-
mality of cycles, to obtain a more rigorous definition. Given a length function that
assigns to each 1-cycle of C1(K) a positive real number, a minimal homology basis
is a set of 1-cycles such that their associated homology class are a basis of H1(K)
and the sum of their lengths is minimal. We implement the recent algorithm by
Dey et al. [35] to obtain a minimal homology basis. From the minimal homology
bases associated to each simplicial complex of the filtration, we realize the so called
minimal homological scaffold. Even if defined in a more rigorous way, the minimal
scaffold still suffers the problem of the arbitrary choice of the representative cy-
cles of an homology class: it is possible that in the same homology class there are
several cycles with the same minimal length and it may be possible that there are
more than one single minimal homology basis. We show how to define the minimal
scaffold in case of several representatives of minimal length. We also propose a
probabilistic result that ensures that under mild conditions the minimal scaffold is
unique. In the end, we compare the new scaffold with the old one using real an
synthetic data. We see that they exhibit similar characteristics, and that the old
scaffold can be used as a fast approximation of the minimal scaffold.

The fifth and last chapter is dedicated to studying data sets a collections of
functions on a common finite set. Each element of a data set can be seen as
a measurement on a domain. Different measurements endow the domain with
different structures, and the aim of the chapter is to introduce a framework suitable
to study these structures. We show that a data set induces a pseudo-distance on the
domain, then, through the use of multiparameter persistent homology, a persistence
module is assigned to each measurement in the data set. Interestingly, this module
does not depend only on the measurement, but on the whole data set. Persistent
homology can then be used to compare the same function in different data sets. In
certain application problems, data sets come also with additional structure on them.
For example, in images classification problems the results should be invariant under
translation or rotation up to a certain degree of the images. We define incarnations
of data sets to take this structure into account. An incarnation is given by a data
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set and a set of endomorphisms of its domain. These maps induce an action on
the data sets, so that two measurements are related if there is a function that
transforms one into the other. In order to link different incarnations we need
functions that preserve the structure given by the set of endomorphisms of the
incarnation. To do so we make use of set equivariant operators. These morphisms,
together with incarnations form a category, and we show some examples in which
persistent homology becomes or not a functor of this category. In the end we
introduce Grothendieck graphs as a data structure to encode the objects that we
defined.

The main contribution of this thesis are the following:

• Weak similarity of finite semi-metric spaces

– we study the notion of weak similarity for finite semi-metric spaces and
we show how curvature sets can be used as incomplete invariants for
weak similarity;

– we define a weak Gromov-Hausdorff dissimilarity to compare semi-metric
space from the point of view of weak similarity;

– we see how the Vietoris-Rips filtration and persistent homology can be
used to study the problem of weak similarity;

– we define a weak bottleneck dissimilarity and we prove a stability theorem
for the dissimilarities introduced.

• Minimal homological scaffold

– we define a minimal homological scaffold and provide an implemented
algorithm to compute it;

– we analyse the uniqueness issues related with the homological scaffold;
– we see an application of the minimal scaffold on a real dataset coming

from a neuroscience experiment;
– we compare the minimal scaffold with its predecessor on synthetic datasets

and we see which properties they have in common.

• Landscapes of data sets

– we define a category where data sets are seen as measurements on a
finite set;

– we see how to compute the persistent homology of a measurement in a
data set and we study when it is possible to compare different data sets
with persistent homology;

4



Introduction

– we introduce the concept of incarnation to study the action of a set
of transformations on the data set and we analyse the properties of
incarnations;

– we investigate how set equivariant operators can be used to compare
incarnations and introduce some examples of set equivariant operators;

– we give a description of our results in terms of Grothendieck graphs.
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Chapter 2

Background on Topological Data
Analysis

2.1 Basic concepts of Category Theory
The aim of this Section is to give a quick introduction to Category Theory,

especially to declare the notation that we will use in the rest of the thesis.
The following Definitions are taken from Spivak [92].

Definition 1 (category). A category C consists of a collection Ob(C), whose ele-
ments are called objects, such that:

• for every x, y ∈ Ob(C) there is a (possibly empty) set HomC(x, y), whose
elements are called morphisms from x to y;

• for every object x ∈ Ob(C) there is a morphism idx ∈ HomC(x, x), called
the identity morphism on x;

• for every three objects x, y, z ∈ Ob(C) there exists a function

◦ : Hom(y, z)C ×Hom(x, y)C → Hom(x, z)C

called composition.

For the sake of simplicity, given f ∈ HomC(x, y) and g ∈ HomC(y, z), we will
denote by g ◦ f the element ◦(g, f) ∈ HomC(x, z). The morphisms have to satisfy
the following requirements:

1. for every x, y ∈ Ob(C) and every morphism f ∈ HomC(x, y) it has to be

f ◦ idx = f and idy ◦f = f ; (2.1)

7



Background on Topological Data Analysis

2. for any w, x, y, z ∈ Ob(C) and any f ∈ HomC(w, x), g ∈ HomC(x, y), h ∈
HomC(y, z) it holds

(h ◦ g) ◦ f = h ◦ (g ◦ f). (2.2)

We notice that in this definition Ob(C) is a collection, and not only a set, in
order to avoid problems like the Russel paradox. Some examples of categories are
the following.

Example 1. The category Set whose objects are sets and for every x, y ∈ Ob(Set),
Hom(x, y)Set is the set of functions from x to y.

Example 2. Consider a field F. The category VectF is the category whose objects
are F-vector spaces, and whose morphisms are linear maps between them.

Example 3. Given a partially ordered set (P,≤P ), we can define a category, de-
noted again by (P,≤P ). Its objects are the elements of P and the morphisms are
given by the relation a ≤P b for a, b ∈ P . In particular, we will focus our attention
on the category (R,≤).

Example 4. The category Top of topological spaces, whose objects are topological
spaces, and the morphisms are continuous maps. In the same way is defined Top∗,
the category of pointed topological spaces, with point preserving continuous maps
as morphisms.

Example 5. The category Grp of groups, whose objects are groups and the mor-
phisms are given by homomorphisms.

We introduce functors in order to link comparable categories. We can think of
functors as functions between categories. They will map the objects of one category
into the other, and will do the same with the morphisms, while satisfying certain
conditions about the composition of morphisms.

Definition 2 (functor). Given two categories C and D, a (covariant) functor F
from C to D, denoted by F : C → D is constituted by

• a function that assigns to every object x ∈ Ob(C) an object F (x) ∈ Ob(D);

• for every x, y ∈ Ob(C), a function that assigns to every morphism f ∈
HomC(x, y) a morphism F (f) ∈ HomD(F (x), F (y)),

such that the following requirements hold:

1. for any x ∈ Ob(C) it holds F (idx) = idF (x);

2. for any objects x, y, z ∈ Ob(C) and any f ∈ HomC(x, y), g ∈ HomC(y, z), it
is

F (g ◦ f) = F (g) ◦ F (f).

8
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We also say that a covariant functor F : A → B is a diagram of type A in the
category B. We denote the collection of diagrams of type A in B by BA.

Functors allow us to map a category to another. They have also some important
properties, like preserving isomorphisms and commutative diagrams.

Example 6. Consider a category C.Fixed an object a of C, it is defined the hom
functor Hom(a,−) from the category C to Set in the following way. The image of
an object x of C through the functor is the set Hom(a, x)C. Every map f : x → y
is sent to the map Hom(a, f) : Hom(a, x) → Hom(a, y) that assigns to every
function g ∈ Hom(a, x) the composition f ◦ g ∈ Hom(a, y).

In order to compare different functors we need the concept of natural transfor-
mation.

Definition 3 (natural transformation). Consider two categories C and D and two
functors F : C → D and G : C → D. A natural tranformation η from C to D, is
given by a family of morphisms {ηx}

ηx : F (x) → G(x), for any x ∈ Ob(C)

such that for any x, y ∈ Ob(C) and any f ∈ HomC(x, y), the following diagram
commutes

F (x) F (y)

G(x) G(y).

F (f)

ηx ηy

G(f)

(2.3)

The transformation is a natural isomorphism if for any object x ∈ Ob C the map
ηx : F (x) → G(x) is an isomorphism in D.

Natural transformations are useful to transform one functor into another while
preserving its structure.

2.2 Metric structures on finite sets
In several applications, the starting object is a point cloud, coming from certain

experimental measurements. The foundational idea of Topological Data Analysis is
that the relations among the points that come from a measurement carry valuable
information of the investigated phenomenon. To explicit these relations between
points, we will use certain measures of dissimilarity. Their purpose is to evaluate
how different, or how similar, two objects are. We will denote by R+ the set of
non-negative real numbers.

9
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2.2.1 Dissimilarity measures
The most primitive kind of dissimilarity that we will use are dissimilarity mea-

sures.

Definition 4 (dissimilarity measure). A dissimilarity measure d over a set S is a
function d : S × S −→ R+ such that:

1. 0 ≤ d(s1, s2), for all s1, s2 ∈ S, and d(s, s) = d0, for all s ∈ S,

2. d(s1, s2) = d(s2, s1), for all s1, s2 ∈ S.

We are essentially requiring the function d to be at least symmetric and bounded
from below. We notice that the concept of dissimilarity is related to that of undi-
rected complete weighted graph.

Definition 5 (weighted graph). An undirected weighted graph is given by a triplet
(V,E,w), where V is a set of vertices, E is the set of edges, that is a subset of
{(x, y) ∈ V (2) | x /= y} and w : E → R+ is the weight function.

Essentially, in a weighted graph we assign a real number, or weight, to each edge
of the graph. Then, to each dissimilarity we can associate a weighted complete
graph such that for all x, y ∈ V with x /= y, the edge (x, y) belongs to E and the
weight of the edge is equal to the value of the dissimilarity.

2.2.2 Metric spaces
We can impose further restriction on a dissimilarity measure in order to have a

stronger structure on the point cloud.

Definition 6. Given a set S and a function d : S × S → R+, if the following
conditions hold

1. d(x, x) = 0 ∀x ∈ S;

2. d(x, y) = d(y, x) ∀x, y ∈ S;

3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ S,

then the function d is called pseudo-metric. Furthermore, if it holds

• d(x, y) = 0 if and only if x = y, ∀x, y ∈ S,

then the function d is called metric or distance.

10
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Whenever a set S is finite and d is a distance on S, we say that (S, d) is a finite
metric space.

In order to be able to compare finite metric spaces, we recall the definition of
Gromov-Hausdorff distance.

Given two metric spaces (X, dX) and (Y, dY ), a correspondence between them
is a set C ⊆ X × Y such that πX(C) = X and πY (C) = Y , where πX and πY are
the canonical projections of the product space. We denote by C(X, Y ) the set of all
correspondences between X and Y . We define the distortion of a correspondence
C, with respect to the metrics dX and dY as

dis(C, dX , dY ) = sup
(x,y),(x′,y′)∈C

|dX(x, x′) − dY (y, y′)| . (2.4)

Definition 7 (Gromov-Hausdorff distance). The Gromov-Hausdorff distance be-
tween (X, dX) and (Y, dY ) is

dGH((X, dX), (Y, dY )) = 1
2 inf
C∈C(X,Y )

dis(C, dX , dY ). (2.5)

When (X, dX) and (Y, dY ) are finite metric spaces, the supremum in Eq. (2.4)
is actually a maximum, and the infimum in Eq. (2.5) is a minimum.
Remark 1. This definition of the Gromov-Hausdorff distance coincides with the
correspondence distortion distance introduced in [97], that can be extended to
spaces that are not metric. A broader family of spaces, that includes finite metric
spaces, is the collection of networks. A network is given by a pair (X,ωX), where X
is a first countable topological space, and ωX : X×X → R is a continuous function.
The collection of networks includes all finite metric spaces, but also spaces for
which the distance function does not satisfy symmetry or the triangular inequality.
Chowdhury and Mémoli proved in [26, Theorem 12], that the Gromov-Husdorff
distance, defined using the distortion of a correspondence, is a pseudo-metric on
the collection of all networks. Moreover, if we restrict to dissimilarity networks, i.e.
networks such that ωX(x1, x2) = 0 if and only if x1 = x2, then the pseudo-distance
dGH between two networks is zero if and only if there is a bijection between the
two networks that preserve the distance functions, see [18, Theorem 11].

2.3 Simplicial Complexes
Simplicial complexes will be our building blocks to construct topological spaces

from data. For a quick reference look at [42]. Let us recall some notions of affine
geometry. Consider k+1 points u0, . . . , uk of a the vector space Rd. An affine com-
bination of these points is a linear combination x = ∑︁k

i=0 λiui such that ∑︁k
i=0 λi = 1.

We say that the points u0, . . . , uk are affinely independent if and only if for every

11



Background on Topological Data Analysis

affine combinations x = ∑︁k
i=0 λiui, y = ∑︁k

i=0 µiui it holds

x = y ⇐⇒ λi = µi ∀i = 0, . . . , k. (2.6)

This is equivalent to checking whether or not the vectors u1 − u0, . . . , uk − u0 are
linearly independent. The convex hull of the points u0, . . . , uk is defined as the set:{︄

k∑︂
i=0

λiui |
n∑︂
i=0

λi = 1, λi ≥ 0 ∀i = 0, . . . , k
}︄
.

Definition 8 (simplex). A k-simplex is the convex hull of k+1 affinely independent
points. The number k is called the dimension of the simplex. We will write σ =
[u0, . . . , uk] to denote the convex hull of the points u0, . . . , uk .

In the general terminology 0-simplices are called vertices, 1-simplices edges,
2-simplices triangles and so on. It is possible to notice that given k + 1 affinely
independent points u0, . . . , uk, for every 0 ≤ m ≤ k, any subset with m+1 points is
affinely independent. Given σ = [u0, . . . , uk] every simplex τ = [ui0 , . . . , uim ], with
{i0, . . . , im} ⊆ {0, . . . , k} is called face of the simplex σ. We will use simplices to
describe topological spaces. As with Lego blocks, we want simplices to be arranged
in a proper way in order to be able to obtain well defined topological spaces.

In this thesis we will consider only finite simplicial complexes, since in the
application problems we consider we will have a finite number of points to build
the simplices.

Definition 9 (simplicial complex). A finite simplicial complex is a set K of sim-
plices such that

1. if σ ∈ K and τ is a face of σ then τ ∈ K;

2. if σ1, σ2 ∈ K then either σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 is a face of both σ1 and σ2.

The first condition ensures us that every face of a simplex is contained in the
simplicial complex, the second one that simplices can intersect only on their faces.

With the definition given so far, we are able to build simplices from samples
of points in an euclidean space. In general topological data analysis problems we
may not have an embedding of the objects we are studying in an Euclidean space,
but rather a distance or dissimilarity between objects. Nevertheless, we want to be
able to build simplicial complexes also in these cases. To do so, we use the concept
of abstract simplicial complex.

Definition 10 (abstract simplicial complex). An abstract simplicial complex over
a set V of vertices is a collection K of subsets of V , such that for every α ∈ K and
every set β with β ⊆ α then β ∈ K.

12
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The simplices in this case are just sets of points, called vertices. We define the
dimension of a simplex σ as its cardinality minus 1. Every subset β of a simplex
α is called face of α. We can notice that in the definition of abstract simplicial
complex we only required that every face of a simplex is included in the complex,
like in the first point of Definition 9. It is not needed to require anything about the
intersection of simplices, since given two simplices α, β their intersection is always
a face of both simplices, therefore it always belongs to K.

2.3.1 Simplicial complexes from data
We will now see some of the most used techniques to construct a simplicial

complex from data. The starting object will be either a set of points, or a dissim-
ilarity space, or simply a weighted graph. Consider a metric space (X, d), given
a point x ∈ X and a non-negative real r, we denote by Br(x) the closed ball
{y ∈ X | d(x, y) ≤ r}.

Definition 11 (Čech complex). Given a set P of points in a metric space (X, d)
and a positive real number r, the Čech complex Čr(P ) is the set

Čr(P ) =
⎧⎨⎩σ = [x0, . . . , xk] |

⋂︂
i={0,...,k}

Br(xi) /= ∅

⎫⎬⎭ . (2.7)

Computing the Čech complex of a set of points is computationally expensive.
A simpler alternative is given by the Vietoris-Rips complex

Definition 12 (Vietoris-Rips complex). Given a set of points P in a metric space
(X, d) and a positive real number r the Vietoris-Rips complex of P of radius r is
the set

V Rr(P ) = {σ = [x0, . . . , xk] | max
i,j

d(xi, xj) ≤ 2r} (2.8)

Notice that in the definition of Čech and Vietoris-Rips complex we did not
exploit the triangle inequality of the distance, hence a dissimilarity is sufficient to
define the two kind of complexes. If the points P are included an euclidean space
(Rk, d), the following relation holds between the two types of complexes.

Theorem 1 (Vietoris-Rips lemma). For any r > 0 and any P ⊂ (Rk, d) it holds

Čr(P ) ⊆ V Rr(P ) ⊆ Č√
2r(P ). (2.9)

Notice also that the computational burden to obtain a Vietoris-Rips complex
is much lower than that of computing the Čech counterpart. Another example of
simplicial complexes that we will use comes from graph theory. We recall that a
clique is a graph G = (V,E) such that for every two vertices x, y ∈ V the edge
(x, y) belongs to E, i.e. it is fully connected.
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Definition 13 (flag complex). Given a graph G = (V,E), its associated flag (or
clique) complex is a simplicial complex K whose simplices are given by the cliques
of G. That is, the k-simplex [u0, . . . , uk] belongs to K if the subgraph of G induced
by the points u0, . . . , uk is a clique.

2.4 Simplicial Homology
Simplicial homology is a topological invariant, that is it doesn’t change under

homeomorphisms. It constitutes the main building block of Topological Data Anal-
ysis, since it is easy to build and to compute. We will introduce the main elements
of homology theory that we will use. See [78] for a reference. For the purpose of
applications, homology groups are often defined using coefficients in a field. We
will do the same, with particular emphasis for the field Z2.
Consider a simplex σ given by a set of points u0, . . . , up. We say that two orderings
of the points are equivalent if there is an even permutation that brings one into
the other. This is an equivalence relation that partition the set of permutations in
two equivalence classes. These two are nothing but the quotient of the symmetric
group Sp+1 with the alternating group Ap+1. We call orientations of σ these two
equivalence classes. An oriented simplex is a simplex σ together with an orienta-
tion of σ. In other words, when we write σ = [u0, . . . , up] we are considering the
simplex spanned by the points u0, . . . , up, with the equivalence class of the ordering
(u0, . . . , up). Therefore, every oriented simplex σ can be seen as an equivalence
class σ = {[uα(0), . . . , uα(p)] | α ∈ Ap+1}.

Definition 14 (p-chain). Given a simplicial complex K and a field F, we denote
by Cp(K) the free vector space over the set of oriented simplices of dimension p,
quotiented by the relations σ + σ′ = 0 if σ = [u0, . . . , up] = [uα(0), . . . , uα(p)] = σ′

with α ∈ Sp+1 \ Ap+1. In other words, Cp(K) is the vector space given by finite
formal sums of oriented simplices of K

c =
∑︂
i

λiσi,

where the λi are elements of F and the σi are oriented p-simplices of K, such that
if σ and σ′ are opposite orientations of the same simplex, then σ + σ′ = 0. The set
Cp(K) is usually called the group of oriented p-chains, and its elements are called
p-chains.

To obtain a basis of Cp(K) it is sufficient to assign an orientation to each simplex
σ of K, then the set of elementary formal sums {σ |σ ∈ K} is a basis.

Definition 15 (boundary operator). Consider a simplicial complex K and for a
given p the two groups Cp(K) and Cp−1(K). We define the boundary operator as

∂p : Cp(K) −→ Cp−1(K), (2.10)
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such that for every σ = [u0, . . . , up]

∂p(σ) =
p∑︂
i=0

(−1)p[u0, . . . , ûi, . . . , up], (2.11)

where with [u0, . . . , ûi, . . . , up] we mean the oriented simplex obtained removing ui
from the ordered tuple u0, . . . , up. Once defined in this way on a basis of Cp(K),
then it is extendend linearly on all the p-chains.

Notice that for p < 0 the groups Cp(K) are the trivial vector space {0F},
therefore the homomorphisms ∂p are the null homomorphism for each p ≤ 0.

Theorem 2 (Fundamental Lemma of Homology). For every p it holds

∂p−1 ◦ ∂p = 0

.

Proof. We will show that for any elementary chain σ ∈ Cp(K) it holds ∂p−1(∂p(σ)) =
0. Then, the result follows from the linearity of the boundary operators. Let σ be
equal to [u0, . . . , up], then

∂p−1(∂p(σ)) = ∂p−1

(︄ p∑︂
i=0

(−1)i[u0, . . . , ûi, . . . , up]
)︄

=

=
p∑︂
j=0
j /=i

p∑︂
i=0

(−1)i(h(i, j)(−1)j + h(j, i)(−1)j−1)[u0, . . . , ûi, . . . , ûj, . . . , up],
(2.12)

where h(x, y) is equal to 1 if x > y and 0 otherwise. Therefore each simplex in
the formal sum Eq. (2.12) appears two times, one with coefficient −1 and one with
coefficient +1, therefore the sum is 0.

We say that a p-chain in Cp(K) is a cycle if ∂p(c) = 0, and that it is a boundary
if there exists a (p+ 1)-chain b such that ∂p+1(b) = c. In other words, we define the
group of p-cycles as

Zp(K) = ker ∂p (2.13)
and the group of p-boundaries as

Bp(K) = im ∂p+1. (2.14)

Because of the Fundamental Lemma of Homology we always have that Bp(K) ⊆
Zp(K). They are both subgroups of Cp(K) and their quotient space is well defined.
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Definition 16 (homology groups). We say that the p-th homology group is the
quotient vector space

Hp(K) = Zp(K)
Bp(K) . (2.15)

Its dimension is called the p-th Betti number of K.

From a very informal point of view, the homology groups represent a way to
describe the p-dimensional holes of a shape, and the Betti numbers represent the
numbers of such holes. Homology groups are topological invariants, if two simi-
plicial complexes are homeomorphic to the same topological space, there is an
isomorphism between their homology groups. They are easy to compute and they
will be our primary tool to extract topological features from a data set.

2.4.1 Functoriality of homology
So far we have seen that homology assigns to each simplicial complex a vector

space. We will see that homology induces also maps between the homology groups,
given by maps between the simplicial complexes. We will exploit this functorility
to build persistent homology in the next Section.

Definition 17 (simplicial map). A simplicial map between simplicial complexes is
a function f : K → L such that:

• for every vertex [u] ∈ K, f([u]) is a vertex of L

• if a simplex σ is spanned by the vertices u0, . . . , up the image f(σ) is the
simplex of L spanned by the vertices f([u0]), . . . , f([up]).

We can define a category using the collection of simplicial complexes, using
simplicial maps as morphisms.

Definition 18 (category of simplicial complexes). We define the category Simp
of simplicial complexes whose objects are simplicial complexes and the morphisms
are simplicial maps between them.

We can see that each simplicial map f : K → L induces for every p a homo-
morphisms f#

p between the chain groups Cp(K) and Cp(L). We can define it on a
basis of Cp(K) given by the elementary chains {σ|σ ∈ K, dim(σ) = p}. The image
of σ through f# is the elementary chain f(σ) of Cp(L) if f(σ) has dimension p and
0 otherwise.

Proposition 1. For every f : K → L and every p ∈ Z it holds

f#
p−1 ◦ ∂Kp = ∂Lp ◦ f#

p , (2.16)

where ∂Kp is the boundary operator Cp(K) → Cp−1(K) and ∂Lp :p (L) → Cp−1(L).
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Proof. It is sufficient to show that for every p-simplex σ = [u0, . . . , up] it holds
(f#
p−1 ◦ ∂Kp )(σ) = (∂Lp ◦ f#

p )(σ). In fact,

(∂Lp ◦ f#
p )(σ) = ∂Lp ([f(u0), . . . , f(up)]ξ(f(u0), . . . , f(up))) =

=
p∑︂
i=0

(−1)i[f(u0), . . . , ûi, . . . , f(up)]ξ(f(u0), . . . , ûi, . . . , f(up))
(2.17)

where ξ(f(u0), . . . , ûi, . . . , f(up) is equal to 1 if the points {f(uj)}j /=i are all differ-
ent, and 0 otherwise. On the other hand, it holds

(f#
p−1 ◦ ∂Kp )(σ) = f#

p−1

(︄ p∑︂
i=0

(−1)i[u0, . . . , ûi, . . . , up]
)︄

=

=
(︄ p∑︂
i=0

(−1)i[f(u0), . . . , ûi, . . . , f(up)]
)︄
ξ(f(u0), . . . , f(up)).

(2.18)

If ξ(f(u0), . . . , f(up)) = 1, then for any i = 0, . . . , p it is also ξ(f(u0), . . . , ûi, . . . , f(up)) =
1, and the equality holds. On the other hand, if ξ(f(u0), . . . , f(up)) = 0 there are
two cases: either three or more points of f(u0), . . . , f(up) are the same, or only
two, namely f(uh) and f(uk) are the same. In the first case, all the numbers
ξ(f(u0), . . . , ûi, . . . , f(up) are 0, for any i = 0, . . . , p. In the second case, all the pre-
vious numbers are 0, except for ξ(f(u0), . . . , ûh, . . . , f(up) = ξ(f(u0), . . . , ûk, . . . , f(up) =
1. Then we must check that

(−1)h[f(u0), . . . , ûh, . . . , f(up)] + (−1)k[f(u0), . . . , ûk, . . . , f(up)] = 0. (2.19)

But this is true, since we can notice that, assuming without loss of generality that
k > h,

[f(u0), . . . , ûh, . . . , f(up)] = (−1)k−h+1[f(u0), . . . , ûk, . . . , f(up)]. (2.20)

In view of the last Proposition, for every c ∈ Zp(K) its image under f#
p is an

element of Zp(L), and in the same way for every boundary b ∈ Bp(K) it holds
f#
p (b) ∈ Bp(L). Therefore, every simplicial map f induces a well-defined homomor-

phism
f ∗
p : Hp(K) −→ Hp(L)

[c]K −→ [f#
p (c)]L.

(2.21)

Because of this last observation, it is possible to see that for any p ∈ Z we can
define the homology functor Hp as the covariant functor from Simp → VectF, that
assigns to each simplicial complex K its p-th homology group Hp(K), and to each
simplicial map f : K → L the homomorphism Hp(f) = f ∗

p , where f ∗
p : Hp(K) →

Hp(L) is the map induced by f as in Eq. (2.21).
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2.5 Persistent Homology
At the moment we are able to assign to each metric space a simplicial complex,

and therefore the associated homology groups. The main drawback is that we do
not have a unique choice for the simplicial complex. For example, if we consider
the Vietoris-Rips complex of a metric space, the resulting complex depends on the
parameter r, that determines the maximal diameter of simplices in the complex.
There is no a priori rule, to determine the correct value for this parameter. The idea
behind persistent homology is to consider all the possible values for the parameter,
and to exploit the functoriality of homology, to keep track of how simplicial homol-
ogy changes as we let the parameter r change. At first, we will need the concept
of filtration to take all the different complexes into account.
Definition 19 (filtration of simplicial complexes). A filtration of simplicial com-
plexes if a family F = {Fi}i∈R of simplicial complexes, indexed by a poset (R,≤)
such that whenever i ≤ j we have Fi ⊆ Fj.

Filtrations can be obtained in several ways, depending on how we build a sim-
plicial complex from data. For example, given a finite metric space (X, d), we can
check that the family {V Rr(X, d)}r∈R+ , is a set of nested simplicial complexes,
since whenever we consider two real numbers r ≤ r′, then

V Rr(X, d) ⊆ V Rr′(X, d).

Another way to obtain a filtration is considering a simplicial complex and a real
valued function defined on it.
Definition 20 (filtering function). Given a simplicial complex K, we say that a
function f : K → R is a filtering function if for every simplices τ, σ ∈ K it holds

τ ⊆ σ ⇒ f(τ) ≤ f(σ). (2.22)

A filtering function induces a filtration on its domain, in fact, if we define Ku

as the set {σ ∈ K | f(σ) ≤ u}, then the set {Ku}u∈R is a filtration of simpli-
cial complexes. Clearly, we can see a filtration as a diagram F of type (R,≤) in
the category Simp of simplicial complexes, such that for every i ≤ j the map
F (i ≤ j) = ιi,j : Fi → Fj is the inclusion of Fi into Fj. Further details on the
categorification of persistent homology can be seen in [15]. We are now ready to
define the persistent homology groups.
Definition 21 (persistent homology groups). Given a filtration K and u ≤ v the
p-th persistent homology group calculated at u, v is the vector space

PHp(u, v) = im ι∗u,v ⊆ Hp(Kv). (2.23)

Then the p-th persistent Betti number at u, v is its dimension,

βp(u, v) = dim(PHp(u, v)). (2.24)
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Persistent homology gives us information regarding how homology classes of a
certain step of the filtration are preserved across the filtration. To take into account
the persistent homology groups all together we will use the concept of persistence
module.

Definition 22 (persistence module). The p-th persistence module associated with
a filtration F is the composition of the filtration with homology functor

PHp(F ) = HpF = {HpF (i), HpF (i ≤ j)}i,j∈R. (2.25)

It is a diagram in VectF indexed in (R,≤).

In the following Section we will see some of the properties of the diagrams
Vect(R,≤)

F that will be extremely useful from the practical point of view.

2.5.1 Reminders of Algebra
We recall some of the notions of Algebra we will use to study persistence modules

[62]. A graded ring is a ring (R,+, ·) equipped with a direct sum decomposition
R = ⨁︁

iRi, where for every i ∈ Z, Ri is an Abelian group of homogeneous elements
of degree i, and such that the multiplication is defined so that the product between
an element of degree i and one of degree j is an element of degree i + j. As an
example, the ring of polynomials F[t] is a graded ring. We will make use of the
concept of graded module. A graded module M over a graded ring R, is a module,
equipped with a direct sum decomposition M ≃ ⨁︁

iMi, such that the action of R
on M is defined by bilinear pairings Ri

⨂︁
Mj → Mi+j. Notice that a graded ring R

can be seen as a graded module over itself. Then, it makes sense to consider ΣαR,
the upward α-shift of the module R, defined as

ΣαR = ⊕iRi−α. (2.26)

Theorem 3 (structure theorem graded modules). A graded module M over a
graded principal ideal domain (PID) R decomposes uniquely into the form

(︄
n⨁︂
i=1

ΣαiR

)︄⨁︂⎛⎝ m⨁︂
j=1

ΣaiR/(dj)
⎞⎠ (2.27)

where dj ∈ R are homogeneous elements so that dj divides dj+1, αi, bi ∈ Z.

We will use this theorem to obtain a unique decomposition of persistence mod-
ules. Here we will focus our attention on tame persistence modules, i.e. persistent
modules for which only a finite number of changes in homology can occur.
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Definition 23. Consider a diagram F ∈ Vect(R,≤)
F . We say that F is constant on

an interval I ⊆ R if for all intervals [a, b] ⊆ I the map F (a ≤ b) is an isomorphism.
We say that a is a regular value for F if there is an open interval I, containing a,
such that F is constant on I. We say that a is a critical value if it doesn’t exist
any such interval. The diagram F is tame if it has only a finite number of critical
values.

We will compare the notion of tame diagram with that of finite type diagram.
Definition 24. Consider an interval I ⊆ R. We define a diagram χI ∈ Vect(R,≤)

F
as

χ(a) =
⎧⎨⎩F if a ∈ I,

0 otherwise,
χ(a ≤ b) =

{︂
IdF ifa, b ∈ I, 0 otherwise. (2.28)

The diagram F has finite type if there exist N diagrams χI1 , . . . , χIN
such that

F ≃ ⨁︁N
j=1 χIj

.
In the case of diagrams indexed in (R,≤) the two notions are equivalent.

Theorem 4 ([15]). A diagram in Vect(R,≤)
F is of finite type if and only if it is tame.

It is possible to see that a finite type diagram F ≃ ⨁︁N
j=0 χIj

in Vect(R,≤)
F ,

can be seen as a sequence of vector spaces and linear maps. Suppose that the
intervals I0, . . . , IN have endpoints a0, b0, . . . , aN , bN . Here the endpoints can be
taken from the extended line R̄. If Ij = (−∞, x] we set aj = −∞, bj = x and
if Ij = [x,+∞) we set aj = x, bj = +∞. We can reorder all these points into a
sequence without repetition c0, . . . , cL. Then we can define the vector space Mi =
F (ci) for every i = 0, . . . , L, and the linear maps ϕi : Mi → Mi+1 as ϕi = F (ci ≤
ci+1). Then the functor F is completely identified by the sequence {Mi, ϕi}Li=0. As
pointed out in [99], we can define a correspondence between persistence modules ad
graded modules over F[t]. Suppose to have a persistence module M = {Mi, ϕi}Li=0.
Consider F[t] with the standard grading and define the graded module over F[t]

α(M) =
L⨁︂
i=0

Mi (2.29)

where the F-module structure is given by the direct sum on the homogeneous
components (the elements of each Mi have degree i), and the action of t is given by

t · (m0,m1, . . . ,mL) = (0, ϕ0(m0), ϕ1(m1), . . . , ϕL−1(mL−1)). (2.30)
There is an equivalence of categories between the category of persistence mod-

ules of finite type over F and the category of finitely generated non-negatively
graded modules over F[t]. For these modules it holds the structure theorem previ-
ously stated, and the following Krull-Schmidt theorem is satisfied:
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Theorem 5. If F ≃ ⨁︁N
j=1 χIj

and F ≃ ⨁︁M
j=1 χI′

j
, then M = N and the intervals

I1, . . . , IN and I ′
1, . . . , I

′
M are the same up to reordering.

Because of this theorem we can identify each tame persistence modules with
the multiset of intervals {Ij}nj=1 given by its unique decomposition. This multiset
is called barcode of F . An equivalent notion to the barcode is that of persistence
diagram, and it can be obtained directly from the persistent Betti numbers.

Definition 25 (persistence diagram). Consider the extended plane R̄2. For a given
ε > 0 define the quantity

M ε
u,v = [(βp(u+ ε, v − ε) − βp(u+ ε, v + ε)) − (βp(u− ε, v − ε) − βp(u− ε, v + ε))] .

Then, the multiplicity of a point (u, v) with u ≤ v < ∞ is

µp(u, v) = lim
ε→0+

M ε
u,v (2.31)

For a point of type (u,∞), its multiplicity is defined as

µp(u, v) = lim
ε→0+

[βp(u+ ε,1/ε) − βp(u− ε,1/ε)] . (2.32)

The persistence diagram is the multiset of points of the extended plane with mul-
tiplicity greater than 0, each of them counted with its multiplicity.

2.5.2 Metrics between persistence diagrams and the Sta-
bility Theorem

We will devote this Section to introduce metrics between persistence diagrams,
to make comparison between them. In this section we will focus our attention only
on (R,≤)-indexed diagrams. Given a positive real number ε, it is possible to define
a translation functor Tε : (R,≤) −→ (R,≤), with Tε(x) = x + ε and a natural
transformation νε : Id(R,≤) =⇒ Tε, with νε(x) : x −→ x+ ε defined as x ≤ x+ ε.

Definition 26 (ε-interleaving). Two (R,≤) indexed functors F,G are said to be
ε-interleaved if there exist two natural transformation ηF : F =⇒ GTε and ηG :
G =⇒ FTε such that

(ηGTε)ηF = Fν2ε and (ηFTε)ηG = Gν2ε. (2.33)

The existence of the natural transformations ηF , ηG implies the commutativity
of the following diagrams

F (a) F (b) F (a+ ε) F (b+ ε)

G(a+ ε) G(b+ ε) G(a) G(b)

ηF (a) ηF (b) ηG(a) ηG(b)
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and Eq. (2.33) can be summarised with the diagrams

F (a) F (a+ 2ε) F (a+ ε)

G(a+ ε) G(a) G(a+ 2ε)
ηF

ηF

ηG

ηG

Definition 27 (interleaving distance). The interleaving distance dI between two
(R,≤)-indexed diagrams F and G is defined as

dI(F,G) = inf {ε ≥ 0 | F and G are ε-interleaved} . (2.34)

If there is no ε-interleaving for any ε ≥ 0 we set dI(F,G) = ∞.

Notice that dI(F,G) = 0 doesn’t always mean that F and G are 0-interleaved.
Therefore, it can happen that dI(F,G) = 0 even if F /= G. It is possible to prove
that dI is an extended pseudo-metric on the collection of (R,≤)-indexed diagrams
in D. Let us denote this space by DR,≤. We can define on it an equivalence relation:
we say that F is equivalent to G (F ∼ G) if and only if d(F,G) = 0. We can see
that dI is an extended metric on the quotient D(R,≤)/ ∼.

It is possible to see that the interleaving distance between persistence modules
is in fact equivalent to the bottleneck distance between finite persistence diagrams.
Let us call ∆∗ = {(x, y) ∈ R̄2 | x ≤ y}. We recall that a finite persistent diagram
is a finite multiset of points {(ai, bi)}i∈I , with ai < bi ≤ ∞ augmented with the
diagonal {(x, y) ∈ R2|x = y}, counted with infinite multiplicity. Therefore, every
persistent diagram is a multiset of elements of ∆∗. We start defining an extended
pseudo-distance on this set. Given two points (x, y) and (x′, y′) in ∆∗, we define:

d∞((x, y), (x′, y′)) = min
(︄

max(|x− x′|, |y − y′|),max
(︄
y − x

2 ,
y′ − x′

2

)︄)︄
. (2.35)

When computing the subtractions we use the convention that ∞ − ∞ = 0 and
∞ − r = ∞, for every r ∈ R.

Definition 28 (bottleneck (or matching) distance). Given two finite persistent
diagram D1 and D2, the bottleneck distance between them is

dB(D1, D2) = inf
γ

sup
(x,y)∈D1

d∞((x, y), γ(x, y)) (2.36)

where γ ranges over all the bijections between D1 and D2.

This distance was first used (under the name of matching distance) with reduced
size functions, equivalent to 0-th persistent Betti numbers, in [31] and than extended
to general persistence diagrams in [28].
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Theorem 6 ([15]). Let B be the collection of finite barcodes and dB the bottleneck
distance between them. There is an isometric embedding of metric spaces:

(B, dB) ↪→ (Vect(R,≤)
F , dI). (2.37)

From the computational point of view, it is easier to consider the definition of
bottleneck distance. On the other hand, once it is proved that on finite persistent
diagrams the bottleneck distance and the interleaving distance coincide, it is useful
to focus our attention on the interleaving distance in order to easily prove the so
called Stability Theorem.

Theorem 7 ([15]). Let F,G ∈ D()R,≤ and consider a functor J : D → E. If F and
G are ε-interleaved, also JF and JG are ε-interleaved:

dI(JF, JG) ≤ dI(F,G). (2.38)

This theorem allows us to prove easily a stability theorem to the foundations of
Topological Data Analysis.

Theorem 8 (stability theorem - filtering functions). Given two filtering functions
f, g : X → R, for any k ∈ Z it holds

dI(Hkf,Hkg) ≤ ∥f − g∥∞. (2.39)

Theorem 9 (stability theorem - metric structure). Given two metric spaces (X, dX)
and (Y, dY ), for any k ∈ Z, it holds

dI(HkV R(X), HkV R(Y )) ≤ dGH((X, dX), (Y, dY )). (2.40)

The stability theorem ensures us that small changes in the data induce small
changes in the associated perssitence diagrams, making persistent homology a reli-
able tool in presence of noise.
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Chapter 3

A persistent point of view on
weak similarity of finite
semi-metric spaces

3.1 Introduction
This chapter is an extended version of a joint work with Ulderico Fugacci,

Facundo Mémoli and Francesco Vaccarino, which resulted in the article [52] As we
have seen in the previous Chapter one way to endow a data set with a notion of
shape is by defining a metric structure on it. We have seen that some of the useful
construction in topological data analysis can be obtained with points embedded
in an euclidean space, like with the Čech filtration. Some other construction can
arise with more general metric spaces, or even with spaces that do not satisfy the
triangular inequality. In many application problems in fact the data is encoded
in just an undirected weighted network. The methodologies introduced so far rely
heavily on the actual values attained by the distance function, even though we
can see that what really matters is the order in which the simplices appear in the
filtration. This is why we would like to introduce an approach based on Topological
Data Analysis that is invariant under “non-linear rescalings” of the metric space.
In many problems, in fact, we may want results that are not changed by the scale
at which we measure the objects of study.

Suppose that the object of study are physical quantities, then we may be inter-
ested in obtaining results that are not changed by different choices of the system
used for measurements. It also frequent to transform data to have a better visualiza-
tion, like with the log-scale transformation, but the phenomena under investigation
is still the same.

Sometimes, it can happen that the observations undergo transformations that
are not linear, but that preserve the structure given by the ordering of distance
between pairs of points. For example, in [49], Giusti er al. such an approach is
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utilized in order to study data from neural activity and connectivity, where the
actual magnitude of the measurements conducted may drive to misleading results,
since these quantities depend profoundly on physiological features that can be very
different across the individuals in a study.

Moreover, in recent years, the analysis of ordinal data has emerged as a new field
of data science. As pointed out by Kleindessner et al. [66], in certain applications
the actual value of a dissimilarity between two objects is not reliable or actually
informative for the problem. This is the case when the values of dissimilarity are
for example estimated by humans or the measurements of the dissimilarities are
just a proxy for the unknown phenomenon under study (e.g [49]).

In the last chapter of this thesis, regarding set equivariant operators [22], an
interesting family of operators is that of the so called change of units, that are
nothing but functions that transform a data set via a rescaling of the observations.

Moreover, this kind of ideas are relevant also from the point of view of persistent
homology. For example in [21] the authors propose the so called shift-invariant
bottleneck distance in order to measure the difference between persistence diagrams
that are rescaled under a logarithmic function.

In this chapter, we study a definition of weak similarity already present in
literature in [38, 65], that allows us to consider equivalent two finite metric spaces
if it is possible to obtain one of the distance functions as a composition of the other
distance with a strictly increasing real valued function.

This kind of problem is not new to the literature. In the beginning of the
90s, Ganyushkin and Tsvirkunov [46], investigated the problem of classifying finite
metric spaces under a certain notion of isomorphism that takes into account only the
ordering between pairs of points given by the distance function. In this Chapter, we
use some of the concepts introduced by them in order to define the canonicalization
of a finite metric space: a procedure which associates to each equivalence class of
weak similarity a unique representative. We will show that two spaces are weakly
similar if and only if their canonicalization are isometric, in the classical sense.

Even with such a simplification, the problem of determining the classical isom-
etry between two spaces it is still computationally expensive. In order to simplify
the problem of ascertaining whether two spaces are weakly similar, we introduce
several complete and incomplete computable invariants for weak similarity.

We will focus our attention at first on curvature sets introduced by Gromov [53],
that can be seen as sets of matrices obtained by considering only the subspaces of
a given metric space of fixed cardinality. We will prove that, in the finite case, the
only curvature sets that carry valuable information are the ones of order at most
equal to the number of points of the space.

We focus on this construction since it is intuitive to see that it is related to the
simplices of the Vietoris-Rips filtration associated with a metric space. We identify
a certain categorification of the notion of weak similarity, and we see how it can be
used as an invariant for weak similarity. Thanks to this property it will be possible
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to use persistent homology as an incomplete invariant for weak similarity.
Furthermore, we introduce a weak Gromov-Hausdorff dissimilarity function

(whose construction is based on the concept of Gromov-Hausdorff distance) which
measures how much two spaces have to be modified in order to be weakly similar.
We prove that this dissimilarity vanishes if and only if there is a weak similarity
of finite semi-metric spaces. In the same fashion of the weak Gromov-Hausdorff
dissimilarity, we define a dissimilarity between persistence modules from the point
of view of weak similarity. As a main result, we prove that these two dissimilarities
satisfy a stability theorem equivalent to the one between the interleaving distance
of persistence modules and the Gromov-Hausdorff distance [24]. The latter dissim-
ilarity is based on the bottleneck distance between persistence diagrams. This has
the advantage of being easier to compute than the Gromov-Hausdorff distance and
we propose a way to approximate this dissimilarity using the framework introduced
in [72] to differentiate barcode-valued functions.

3.2 Weakly similar finite semi-metric spaces
We recall that the symbol R+ denotes for us the set {x ∈ R | x ≥ 0}.

Definition 29 (semi-metric and metric spaces). A semi-metric space is a pair
(X, dX), where X is a set and dX : X ×X → R+ is a function such that

• dX(x, y) = 0 ⇐⇒ x = y;

• dX(x, y) = dX(y, x).

(X, dX) is called a finite semi-metric space if the set X is a finite. We will denote
by FSS the collection of finite semi-metric spaces. If a semi-metric space (X, dX)
satisfies the condition

• dX(x, y) ≤ dX(x, z) + dX(z, y) ∀x, y, z ∈ X,

it is called a metric space. The collection of finite metric spaces will be denoted
with FMS.

Along this chapter except otherwise stated the semi-metric spaces are supposed
to be finite. For the sake of simplicity, we will drop the word finite, calling them
semi-metric spaces. Furthermore, when there is no confusion on the semi-metric
dX defined on a space X, we will simply denote the semi-metric space as X. The
main concept investigated in this chapter is that of weak similarity, defined in [38].

Definition 30 (weak similarity). Let us consider two semi-metric spaces (X, dX)
and (Y, dY ). A bijection φ : X −→ Y is a weak similarity if there exists a strictly
increasing function ψ : R+ −→ R+ such that, for all x1, x2 ∈ X,

ψ(dX(x1, x2)) = dY (φ(x1), φ(x2)). (3.1)
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If there is a weak similarity between (X, dX) and (Y, dY ), we say that the spaces
are weakly similar and we will write

(X, dX) ∼=w (Y, dY ).

Theorem 10. The relation of weak similarity is an equivalence relation.

Proof. We check the three properties of equivalence relations.

• Reflexivity: using the identity, X ∼=w X for all finite semi-metric spaces X.

• Symmetry: if X ∼=w Y we have a bijection φ : X −→ Y and a strictly
increasing function ψ : R+ −→ R+ with ψ(dX(x1, x2)) = dY (φ(x1), φ(x2)) for
all x1, x2 ∈ X. We have that ψ is an invertible function since it is strictly
monotone. For each y1, y2 ∈ Y consider x1, x2 ∈ X with yi = φ(xi), where
i = 1,2. Then,

dX(φ−1(y1), φ−1(y2)) = ψ−1(dY (y1, y2)).

and so, by definition, Y ∼=w X.

• Transitivity: if X ∼=w Y and Y ∼=w Z consider the functions φ1, φ2, ψ1, ψ2
such that

ψ1(dX(x1, x2)) = dY (φ1(x1), φ1(x2)) ∀x1, x2 ∈ X,

ψ2(dY (y1, y2)) = dZ(φ2(y1), φ2(y2)) ∀y1, y2 ∈ Y.

Then,

ψ1(dX(x1, x2)) = dY (φ1(x1), φ1(x2)) = ψ−1
2 (dZ(φ2(φ1(x1)), φ2(φ1(x2))))

hence, considering the functions φ2 ◦ φ1 and ψ2 ◦ ψ1, we have X ∼=w Z.

Ganyushkin and Tsvirkunov [46] introduced a notion of isomorphism for finite
semi-metric spaces which we will compare to weak similarity below.

Definition 31 (isomorphism - [46]). We say that two semi-metric spaces (X, dX)
and (Y, dY ) are isomorphic if there is a bijection φ : X −→ Y such that for all
x1, x2, x

′
1, x

′
2 ∈ X we have

dX(x1, x2) = dX(x′
1, x

′
2) ⇒ dY (φ(x1), φ(x2)) = dY (φ(x′

1), φ(x′
2)) (3.2)

dX(x1, x2) < dX(x′
1, x

′
2) ⇒ dY (φ(x1), φ(x2)) < dY (φ(x′

1), φ(x′
2)). (3.3)

If (X, dX) and (Y, dY ) are isomorphic we will write (X, dX) ≃ (Y, dY ).
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It turns out than the notions of weak similarity and isomorphism of semi-metric
spaces are related.

Theorem 11. Two finite semi-metric spaces (X, dX) and (Y, dY ) are weakly similar
if and only if they are isomorphic.

Proof. Assume that X ∼=w Y . Then, we have two functions φ : X → Y and
ψ : R+ → R+ such that, for all x1, x2, x

′
1, x

′
2 ∈ X,

ψ(dX(x1, x2)) = dY (φ(x1), φ(x2)), (3.4)
ψ(dX(x′

1, x
′
2)) = dY (φ(x′

1), φ(x′
2)). (3.5)

Then, if dX(x1, x2) = dX(x′
1, x

′
2), we have

dY (φ(x1), φ(x2)) = ψ(dX(x1, x2)) = ψ(dX(x′
1, x

′
2)) = dY (φ(x′

1), φ(x′
2)). (3.6)

If dX(x1, x2) < dX(x′
1, x

′
2), since ψ is a strictly increasing function,

dY (φ(x1), φ(x2)) = ψ(dX(x1, x2)) < ψ(dX(x′
1, x

′
2)) = dY (φ(x′

1), φ(x′
2)). (3.7)

Therefore, X ∼=w Y ⇒ X ≃ Y .
On the other hand, assume X ≃ Y and consider the bijection φ given by Defini-
tion 31. It is possible to order all the pairs (xi, xj) ∈ X ×X so that

dX(xi1 , xj1) ≤ dX(xi2 , xj2) ≤ · · · ≤ dX(xin2 , xjn2 ), (3.8)

where n is the number of points of X and Y . Because of implications (3.2) and
(3.3), we have that

dY (φ(xi1), φ(xj1)) ≤ dY (φ(xi2), φ(xj2)) ≤ · · · ≤ dY (φ(xik), φ(xjk)), (3.9)

hence, we can define an increasing function ψ : R+ −→ R+ with

ψ(dX(xir , xjr)) = dY (φ(xir), φ(xjr)) ∀(xir , xjr) ∈ X ×X (3.10)

and then X ≃ Y ⇒ X ∼=w Y .

We have seen that the two concepts are the same, but weak similarity explicitly
shows the non-linear rescaling that has to be performed to obtain one space from
the other.

Another similar concept is that of ordinal spaces, introduced by Keller and
Petrov [65] as a mean to study ordinal data. Consider the set of relations {‘ <
’, ‘ = ’, ‘ > ’} on the real numbers. We denote by −‘ < ’ the opposite of the relation
‘ < ’ and we consider equivalent the relations −‘ < ’ and ‘ > ’. In the same way we
write −‘ > ’ = ‘ < ’ and −‘ = ’ = ‘ = ’.
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Definition 32. An ordinal space (X, δX) is composed by a nonempty set X and a
map δX : X×X×X×X → {‘ < ’, ‘ = ’, ‘ > ’} such that for any x, y, u, v, z, w ∈ X
the following conditions are satisfied:

1. δX(x, y, x, y) = ‘ = ’;

2. δX(x, y, z, w) = δX(y, x, z, w) = δX(x, y, w, z);

3. δX(x, y, z, w) = −δX(z, w, x, y);

4. δX(x, y, u, v) = δX(u, v, z, w) = ‘ = ’ ⇒ δX(x, y, z, w) = ‘ = ’;

5. δX(x, y, u, v) = ‘ < ’ and δX(u, v, z, w) ∈ {‘ < ’, ‘ = ’} ⇒ δX(x, y, z, w) = ‘ <
’;

6. δX(x, y, u, v) ∈ {‘ < ’, ‘ = ’} and δX(u, v, z, w) = ‘ < ’ ⇒
δX(x, y, z, w) = ‘ < ’;

7. δX(x, x, z, w) = ‘ < ’ if z /= w and δX(x, x, z, w) = ‘ = ’ if z = w.

Definition 33. Two ordinal spaces (X, δX) and (Y, δY ) are said to be isomorphic
if there exists a bijection ϕ : X → Y such that

δX(x, y, w, z) = δY (ϕ(x), ϕ(y), ϕ(w), ϕ(z)), (3.11)

for all x, y, w, z ∈ X.

One can associate an ordinal space to each semi-metric space.

Example 7 ([65]). Given a semi-metric space (X, dX), it can be seen as an ordinal
space (X, δX). Define δX for all x, y, w, z ∈ X as

δX(x, y, w, z) =

⎧⎪⎪⎨⎪⎪⎩
‘ < ’ if dX(x, y) < dX(w, z),
‘ = ’ if dX(x, y) = dX(w, z),
‘ > ’ if dX(x, y) > dX(w, z).

(3.12)

This ordinal space will be called the ordinal type of (X, dX)

Ordinal spaces and their isomorphisms are related to semi-metric spaces and
weak similarity thanks to the following proposition:

Proposition 2 ([65]). Let (X, dX) and (Y, dY ) be semi-metric spaces. The ordinal
types (X, δX) and (Y, δY ) are isomorphic if and only if (X, dX) and (Y, dY ) are
weakly similar.

To simplify the study of weak similarities, we want to associate to each equiva-
lence class of weak similarity a good representative.
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Definition 34 (distance set). Given a semi-metric space (X, dX), we define its
distance set D(X, dX) as the set of all pairwise distances between points of X.

D(X, dX) := {dX(x1, x2) | x1, x2 ∈ X} . (3.13)

When there is no ambiguity for the metric dX defined on the space X, we will
simply write D(X).

Lemma 1. Two weakly similar semi-metric spaces have distance sets of the same
cardinality.

Proof. If X ∼=w Y , there is a strictly increasing function ψ such that

ψ(D(X)) := {ψ(l) | l ∈ D(X)} = D(Y ). (3.14)

So, since ψ|D(X) is injective by definition and surjective on D(Y ), then |D(X)| =
|D(Y )|, where |A| denotes the cardinality of the space A.

Remark 2. The reciprocal statement does not hold. Two spaces can have the same
distance set but not be weakly similar. For example, Boutin and Kemper in [13]
study the problem of recontruction of a semi-metric space given the distribution of
distances between points.

Example 8. The two semi-metric spaces in Fig. 3.1, X = {a, b, c} with dX(a, c) =
dX(b, c) = 6, dX(a, b) = 5 and Y = {d, e, f} with dY (d, f) = dX(e, f) = 5,
dY (d, e) = 6 have the same distance set, but they are not weakly similar.

6

5

6

a b

c

d e

f

6

5 5

Figure 3.1: Semi-metric spaces that are not weakly similar.
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Definition 35 (natural-valued semi-metric space). We say that the metric d de-
fined on the space X is natural-valued if D(X) ⊂ N.

Definition 36 (dense distance set). Given a semi-metric space (X, dX) with natural-
valued metric dX we say that its distance set is dense if, a part from zero, it is a
list of consecutive natural numbers,

D(X) = {0, a+ 1, a+ 2, . . . , a+ | D(X)|} . (3.15)

Definition 37 (canonical, [46]). A semi-metric space of cardinality n is called
k-canonical if it has a natural valued and dense distance set of the form

Dn,k :=
{︄

2
(︄
n

2

)︄
, 2
(︄
n

2

)︄
− 1, . . . , 2

(︄
n

2

)︄
− k + 1, 0

}︄
. (3.16)

It is said to be canonical if it is k-canonical for some k. We will say that a semi-
metric space C is canonical for the semi-metric space X if they are weakly similar
and C is canonical.

Remark 3. Every canonical space is metric. In fact, given a canonical space (X, dX),
for every x, y, z ∈ X it holds

dX(x, y) ≤ max
u,v∈X

dX(u, v) = 2
(︄
n

2

)︄
≤ dX(x, z) + dX(z, y),

since for every w, z ∈ X it must be dX(w, z) ≥
(︂
n
2

)︂
by definition of canonical space.

Canonical semi-metric spaces are interesting because for them the notion of
weak similarity is equivalent to that of isometry, as we show in the next lemma.

Lemma 2. Let C1 and C2 be canonical semi-metric spaces. Then, C1 is weakly
similar to C2 if and only if C1 is isometric to C2.

Proof. If C1 is isometric to C2, then C1 is weakly similar to C2. On the other hand
assume C1 ∼=w C2. By Lemma 1, we know that the two spaces have distance sets of
the same cardinality. On the other hand, the distance set of a canonical space is
defined by its cardinality, so

D(C1) =
{︄

2
(︄
n

2

)︄
, 2
(︄
n

2

)︄
− 1, . . . , 2

(︄
n

2

)︄
− | D(C1)| + 1, 0

}︄
=

=
{︄

2
(︄
n

2

)︄
, 2
(︄
n

2

)︄
− 1, . . . , 2

(︄
n

2

)︄
− | D(C2)| + 1, 0

}︄
= D(C2),

(3.17)

where n is the cardinality of the spaces C1 and C2. By hypothesis, we have a
bijection φ : C1 −→ C2 and a strictly increasing function ψ : R+ −→ R+ such that

32



3.2 – Weakly similar finite semi-metric spaces

ψ(D(C1)) = D(C2). Since the two distance sets are equal, such a function can only
be the identity and, therefore,

ψ(dC1(x1, x2)) = dC1(x1, x2) = dC2(φ(x1), φ(x2)) (3.18)

and the two spaces are isometric.

In Proposition 2 of [46], the authors proved the following useful result.

Theorem 12. Each semi-metric space is isomorphic to a canonical semi-metric
space.

We can now define a map called canonicalization which assigns to each finite
semi-metric space X a canonical semi-metric space CX .

Definition 38 (canonicalization). Let X be a semi-metric space of cardinality n
and distance set D(X) = {0, a1, a2, . . . , ak |ai < aj if i < j}. Define ψ : R+ −→ N
as

ψ(ai) = 2
(︄
n

2

)︄
− k + i. (3.19)

The canonicalization of X is the space (CX , dCX
) with:

• CX = X

• dCX
(x1, x2) =

⎧⎨⎩ψ(dX(x1, x2)) if x1 /= x2

0 if x1 = x2.

Canonical semi-metric spaces are important because, as we will see with the
following corollary, they allow us to associate a unique representative to each weak
similarity equivalence class.

Corollary 1 (uniqueness of canonical representations). Let X be a semi-metric
space with C and C ′ canonical for X. Then, C and C ′ are isometric, that is, there
is a unique semi-metric space canonical for X up to isometry.

Proof. By the transitivity of weak similarity, we have that C ≃ X ≃ C ′ and, by
Lemma 2, they are isometric.

For a given semi-metric space X, Corollary 1 allows us to identify a canonical
representative of a X in the form of its canonicalization, as introduced in Defini-
tion 38.

In this way, we can now reformulate the problem of weak similarity to that of
classical isometry between canonical spaces.

Theorem 13 (weak similarity is equivalent to isometry of the canonicalizations).
Two semi-metric spaces are weakly similar if and only if their canonicalizations are
isometric.
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A persistent point of view on weak similarity of finite semi-metric spaces

Proof. If C is canonical for X and Y , then X ∼=w C ∼=w Y and, hence, X and Y are
weakly similar. On the other hand, assume that X is weakly similar to Y . By the
transitivity of weak similarity, we have

CX ∼=w X ∼=w Y ∼=w CY ,
therefore, CX and CY are weakly similar. By Lemma 2, we have that they have to
be isometric.

Remark 4. Note that in order for the construction of the canonicalization to be
possible we do not require the finiteness of the semi-metric space, but rather the
finiteness of its distance set. It is therefore possible to extend the concepts in-
troduced so far to non-finite semi-metric spaces whenever the distance function
assumes only a finite number of values.

3.3 Curvature sets of finite metric spaces
Establishing whether two spaces are isometric or not is in general a compu-

tationally intensive problem. Hence, we would like to have a set of complete or
incomplete invariants to study this problem. We will focus our attention firstly on
the concept of curvature set introduced by Gromov in [53]. They have already been
used by Mémoli in [77], to obtain a lower bound for the Modified Gromov-Hausdorff
distance between two metric spaces.
Definition 39 (curvature set - [53]). Given a, non-necessarily finite, metric space
(X, dX) we can consider the function

Ψm
X : Xm −→ Rm×m

(x1, . . . , xm) −→ M s.t. Mi,j = dX(xi, xj).
(3.20)

We call m-th curvature set of (X, dX) the set
Km(X) := imΨm

X . (3.21)
Let us see an example of some curvature sets for a finite metric space.

Example 9. Consider the set X = {x1, x2, x3} and endow it with the metric d
such that d(x1, x2) = 3, d(x1, x3) = 5, d(x2, x3) = 4. Then, K2(X) and K3(x) are

K2(X) =
{︄[︄

0 3
3 0

]︄
,

[︄
0 4
4 0

]︄
,

[︄
0 5
5 0

]︄
,

[︄
0 0
0 0

]︄}︄
.

K3(X) =
⎧⎨⎩P T

⎡⎢⎣0 3 5
3 0 4
5 4 0

⎤⎥⎦P, P T

⎡⎢⎣0 0 3
0 0 3
3 3 0

⎤⎥⎦P, P T

⎡⎢⎣0 0 4
0 0 4
4 4 0

⎤⎥⎦P,

P T

⎡⎢⎣0 0 5
0 0 5
5 5 0

⎤⎥⎦P,
⎡⎢⎣0 0 0
0 0 0
0 0 0

⎤⎥⎦
⃓⃓⃓⃓
⃓⃓ P runs in 3 × 3 permutation matrices

⎫⎬⎭.
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3.3 – Curvature sets of finite metric spaces

Curvature sets encode information about finite metric subspaces of a given met-
ric space. A similar, but coarser, invariant is the isometric sequence of a space,
introduced by Hirasaka and Shinohara [56]. Curvature sets are important in virtue
of the next theorem.

Theorem 14 (isometry of compact metric spaces - [53]). Two compact metric
spaces X and Y are isometric if and only if Km(X) = Km(Y ) for all m ∈ N.

Remark 5. Notice that every finite metric space is compact and then satisfies the
hypothesis of the above theorem.

Therefore, checking the equality of curvature sets is a way to find out whether
two metric spaces are isometric or not. In the general case, in which a metric
space is not finite, we have to prove the equality of all curvature sets to ensure the
isometry between metric spaces, but for the finite case the problem becomes easier.
We can see that the r-th curvature set carries all the information included in all
the l-th curvature sets for l < r.

Lemma 3. For any two, possibly infinite, metric spaces (X, dX), (Y, dY ), if Kr(X) =
Kr(Y ) for a certain r ∈ N then Kl(X) = Kl(Y ) for all l ≤ r.

Proof. Each matrix of Kl(X) can be obtained from a matrix of Kr(X) removing
r − l rows and columns. Given a set of indices I := {i1, . . . , ik} ⊆ {1, . . . , n} and
a matrix M ∈ Rn×n we can define MI as the matrix obtained by M removing the
columns and the rows whose indices are in I. Then

Kl(X) = {MI | M ∈ Kr(X), I ⊆ {1, . . . , n}, |I| = r − l} =
= {MI | M ∈ Kr(Y ), I ⊆ {1, . . . , n}, |I| = r − l} = Kl(Y ).

(3.22)

For finite metric spaces we can further improve this result. In the following
corollary, we show that given a finite metric space X of cardinality n, all the
curvature sets are determined by Kn(X).

Corollary 2. Let (X, dX) and (Y, dY ) be two finite metric space of cardinality n.
Then

Km(X) = Km(Y ) ∀m ∈ N ⇐⇒ Kn(X) = Kn(Y ). (3.23)

Proof. The forward implication is given by the hypothesis. We have to prove the
other direction ⇐. We already know, by Lemma 3, that Km(X) = Km(Y ) for
all m ≤ n. We have only to prove the case in which m > n. For every matrix
M ∈ Km(X), we can find m points x1, . . . , xm of X such that Ψm

X(x1, . . . , xm) = M .
Of these m points at most k ≤ n of them can be different, let them be xi1 , . . . , xik .
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A persistent point of view on weak similarity of finite semi-metric spaces

Then, the matrix Ψk
X(xi1 , . . . , xik) is in Kk(X) = Kk(Y ) by Lemma 3. Then, we

have y1, . . . , yk ∈ Y such that Ψk
X(xi1 , . . . , xik) = Ψk

Y (y1, . . . , yk), and it means that

dX(xia , xib) = dY (ya, yb). (3.24)

Consider the bijection ϕ : {xi1 , . . . , xik} −→ {y1, . . . , yk} with ϕ(xij ) = yj, j =
1, . . . , k. Thanks to Eq. (3.24) we have that

Ψm
X(x1, . . . , xm) = Ψm

Y (ϕ(x1), . . . , ϕ(xm)) ∈ Km(Y ).

Therefore, Km(X) ⊆ Km(Y ). Analogously, we can see that Km(Y ) ⊆ Km(X),
hence they must be equal.

We have seen in Example 9 that when we compute the m-th curvature set of
a metric spaces we take m-tuples of points of X with repetitions. This means
computing nm matrices. We would like to reduce such a computational cost, and
we try to do so introducing the concept of reduced curvature set.

Definition 40 (reduced curvature set). Consider a metric space (X, dX) and the
associated function Ψm

X : Xm −→ Rm×m defined in Eq. (3.20). We call m-th reduced
curvature set of (X, dX) the set

K̃m(X) = {Ψm
X(x1, . . . , xm) | x1, . . . , xm ∈ X and xi /= xj if i /= j} . (3.25)

As we can see from the definition, to obtain the m-th reduced curvature set
we need to compute n!

(n−m)! matrices. We want to show that we do not lose any
information with this reduction.

Lemma 4. For any two metric spaces (X, dX), (Y, dY ), if K̃r(X) = K̃r(Y ) for a
certain r ∈ N, then K̃l(X) = K̃l(Y ) for all l ≤ r.

Proof. The proof is analogous to that of Lemma 3.

Corollary 3. Let (X, dX) and (Y, dY ) be two finite metric spaces of cardinality n.
For any m ≤ n, we have

Km(X) = Km(Y ) ⇐⇒ K̃m(X) = K̃m(Y ). (3.26)

Proof. Assume Km(X) = Km(Y ). Then a matrix M ∈ Km(X) is also an element
of K̃m(X) if and only if (Mi,j = 0 ⇐⇒ i = j). The same argument holds also
for Km(Y ), therefore, given M ∈ K̃m(X), we have M ∈ Km(X) = Km(Y ) and
M ∈ Km(Y ). Since M has null entries only in its diagonal, M ∈ K̃m(Y ). In
this way, we can see that K̃m(X) ⊆ K̃m(Y ) and K̃m(Y ) ⊆ K̃m(X), hence they
are equal. Assume now that K̃m(X) = K̃m(Y ). We want to prove that, for any
M ∈ Km(X) \ K̃m(X), we have M ∈ Km(Y ). We know there are x1, . . . , xm ∈ X
such that M = Ψm

X(x1, . . . , xm), where at most k < m of the points are different.
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3.4 – A dissimilarity measure for weak similarity

Suppose these points are xi1 , . . . , xik . For Lemma 4, we have that K̃m−k(X) =
K̃m−k(Y ), then we have y1, . . . .yk points of Y such that

Ψm−k
X (xi1 , . . . , xik) = Ψm−k

Y (y1, . . . , yk).

Hence, given the bijection ϕ : {xi1 , . . . , xik} −→ {y1, . . . , yk} with ϕ(xij ) = yj,
j = 1, . . . , k, we have

M = Ψm
X(x1, . . . , xm) = Ψm

Y (ϕ(x1), . . . , ϕ(xm)) ∈ Km(Y ). (3.27)

Then, Km(X) ⊆ Km(Y ) and reasoning in the same way we have Km(Y ) ⊆ Km(X),
therefore they are equal.

Thanks to the last corollary, we can see that reduced curvature sets carry the
same information given by the non reduced version. Notice that for finite metric
spaces we do not have m-th reduced curvature sets, with m greater than the number
of points of the space. In the following corollary, we observe that isometry of finite
metric spaces is characterised by the n-th reduced curvature set.

Corollary 4. Two finite metric spaces (X, dX) and (Y, dY ) of cardinality n are
isometric if and only if K̃n(X) = K̃n(Y ).

Proof. We need to prove the “⇐” implication only. Since X and Y are finite they
are compact and by Theorem 14 we know that they are isometric if and only if
Km(X) = Km(Y ) for all m ∈ N. By Corollary 2, since X and Y are finite, we know
that this is true if and only if Kn(X) = Kn(Y ) and for Corollary 3 this holds if and
only if K̃n(X) = K̃n(Y ).

We recall that, thanks to Theorem 13, two spaces are weakly similar if and only
if their canonicalizations are isometric, and this condition can now be checked using
the above theorem. Hence, we have the following corollary.

Corollary 5. Two semi-metric spaces (X, dX), (Y, dY ) of cardinality n with re-
spective canonicalizations (CX , dCX

), (CY , dCY
) are weakly similar if and only if

K̃n(CX) = K̃n(CY ).

3.4 A dissimilarity measure for weak similarity
We want to consider some of the possible distances between semi-metric spaces

to compare them from the point of view of weak similarity. The purpose of these
distances is twofold:

• having a criterion to determine whether or not two spaces are weakly similar;

• measuring how far two spaces are from being weakly similar.
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A persistent point of view on weak similarity of finite semi-metric spaces

Depending on the purpose of the distance, different properties are desirable. In
general, the distances we want to define must discriminate spaces that are not
weakly similar, therefore they must attain the value 0 if and only if two spaces are
weakly similar. This will immediately address the first desideratum we specified
above. In general, to obtain a distance that satisfies this property, it is sufficient
to define a distance between metric spaces that is 0 if and only if two spaces are
isometric, and then to consider its pullback via the canonicalization. Let us call
C : FSS → FMS the map that assigns to each semi-metric space its canonicalization.
Consider a distance d between metric spaces, such that d(X, Y ) = 0 if and only if
two spaces are isometric. Then,

d̂(X, Y ) = d(C(X), C(Y )) (3.28)

is a pseudo-distance between finite semi-metric spaces that is 0 if and only if two
spaces are weakly similar. We recall that a pseudo-distance on a set X is a function
d that satisfies all the conditions of a metric, except for the fact that if d(x, y) = 0
for x, y ∈ X does not imply x = y.

Example 10. Consider the Gromov-Hausdorff distance dGH . The function

d̂GH(X, Y ) = dGH(C(X), C(Y )) (3.29)

is a pseudo-distance between semimetric spaces, that is zero if and only if two
spaces are weakly similar. This function is well defined even on spaces of different
cardinality.

Example 11. Consider the distance d∞ on the sub-collection of FMS of spaces
with fixed cardinality equal to n. Given A,B ∈ FMS, with |A| = |B| = n, the
distance d∞ between them is defined as

d∞(A,B) = inf
ϕ∈Φ

max
a1,a2∈A

|dA(a1, a2) − dB(ϕ(a1), ϕ(a2))|, (3.30)

where Φ is the set of all bijections between A and B. Then, d∞(A,B) = 0 if and
only if A and B are isometric. Therefore, given two semi-metric spaces (X, dX) and
(Y, dY ), with |X| = |Y |, the function

d̂∞(X, Y ) = d∞(C(X), C(Y )) (3.31)

is zero if and only if two spaces are weakly similar. This function is well defined
only on spaces of the same cardinality.

The main drawback of the functions defined so far is that they rely on the
concept of canonicalization of a semi-metric space. The canonicalization is an
arbitrary concept, there may be infinite equivalent ways to define a canonical space.
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3.4 – A dissimilarity measure for weak similarity

In [49], for example, the authors obtain canonical spaces ordering the distances
with natural numbers. In the approach described in [46] the distances are rescaled
so that the maximum value attained by the distance function is always equal to
2
(︂
n
2

)︂
, and the other distances are descending natural numbers starting from that

value. Different choices of canonicalizations will lead to different distances. If the
purpose of the distance is to decide whether two spaces are weakly similar or not,
this is not a problem, since it suffices to ascertain whether or not the distance is
zero. On the other hand, if we want to make a quantitative comparison between
spaces, it is desirable to have a distance which does not depend on the notion of
canonicalization. In literature, there are already distances that can be used to
detect weak similarity and that do not depend on the choice of canonicalization. In
[65] the authors propose a distance between ordinal spaces of the same cardinality.

Definition 41. Consider two finite ordinal spaces (X, δX) and (Y, δY ), with |X| =
|Y |. Given a bijection f : X → Y , we denote by ∆f (X, Y ) the set{︂

(x, y, w, z) ∈ X4 | δX(x, y, w, z) /= δY (f(x), f(y), f(w), f(z))
}︂
. (3.32)

The ordinal distance between (X, δX) and (Y, δY ) is

dord(X, Y ) = min
f∈Φ(X,Y )

1
8 |∆f (X, Y )| , (3.33)

where Φ(X, Y ) is the set of all bijections between X and Y .

This function is a distance between ordinal spaces and which arises from count-
ing the number of relations between pairs of points that are not preserved under
bijections between the two spaces.

Theorem 15 ([65]). dord is a distance on the set of isomorphic types of finite
ordinal spaces with a fixed number of points.

Each semi-metric space (X, dX) has an associated ordinal space τ((X, dX)) =
(X, δX), as in Example 7. Then we can define a pseudo-distance between semi-
metric spaces as the pullback of dord via τ . Explicitly, the function

d̂ord((X, dX), (Y, dY )) = dord(τ(X), τ(Y )) (3.34)

is a pseudo-metric between semi-metric spaces, that is zero if and only if two spaces
are weakly similar. The pseudo-distance induced by dord can be directly defined
on semi-metric spaces in the following way. Consider the functions sign(x) : R →
{−1,0,1} and σ : {−1,0,1} × {−1,0,1} → {0,1}, where

sign(x) =

⎧⎪⎪⎨⎪⎪⎩
−1 if x < 0,
0 if x = 0,
1 if x > 0,

(3.35)
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and

σ(i, j) =
⎧⎨⎩0 if i = j,

1 if i /= j.
(3.36)

Consider two semi-metric spaces (X, dX), (Y, dY ). Given a bijection ϕ : X → Y
and four points x, y, w, z ∈ X, let qϕ(x, y, w, z) be the number

σ (sign (dX(x, y) − dX(w, z)) , sign (dY (ϕ(x), ϕ(y)) − dY (ϕ(w), ϕ(z)))) . (3.37)

The pseudo-distance d̂ord between (X, dX) and (Y, dY ) is equivalent to

d̂ord(X, Y ) = 1
8 min
ϕ∈Φ

∑︂
x,y,w,z∈X4

qϕ(x, y, w, z), (3.38)

where Φ is the set of all bijections between X and Y .
Given two semi-metric spaces it would be reasonable to ask how much it would

cost to transform the two spaces so that they are weakly similar. The distance d̂ord
counts only the number of relations that would have to be modified to reach this
goal, but does not take into account the actual values of the distance functions.
Moreover, it is defined only between spaces of the same cardinality and it cannot
be used to compare spaces with different number of points. Two spaces of different
cardinality clearly cannot be weakly similar, but we may wonder how much they
have to be changed to become weakly similar.

Example 12. Consider the two spaces in the following figure:

x1 x2

x3

3

54

y1 y2

y3

3

54

ε y4

Figure 3.2: Compare different spaces from the point of view of weak similarity.

The two spaces are clearly not weakly similar since they have different cardi-
nalities. On the other hand, if the point y4 collapsed on y3, then the two spaces
would be isometric. Therefore, with a small change the two spaces become weakly
similar.
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3.4.1 Dissimilarity for comparing spaces
To formalise the idea in the example above, we introduce a dissimilarity measure

for assessing how far the spaces are from being weakly similar. We first recall the
notion of dissimilarity [37].

From now on, we will denote by I the set of strictly increasing functions
ψ : R+ −→ R+, with ψ(0) = 0.

Definition 42. Given two semi-metric spaces (X, dX) and (Y, dY ), the weak Gromov-
Hausdorff dissimilarity dwGH is defined as

dwGH((X, dX), (Y, dY )) = inf
ψ1∈I

dGH((X,ψ1 ◦ dX), (Y, dY ))+

+ inf
ψ2∈I

dGH((X, dX), (Y, ψ2 ◦ dY )).
(3.39)

This is only a dissimilarity on the collection of finite semi-metric spaces since
the triangle inequality is not satisfied and different spaces can have dissimilarity
values equal to 0 (as we will prove in proposition 3 ...).
Remark 6. Because of Remark 1, the function dwGH is well-defined, even if one of
the functions ψ ◦ dX or ψ ◦ dY does not satisfy the triangle inequality, since the
Gromov-Hausdorff distance, defined using the distortion of a correspondence, is a
pseudo-distance on the collection of networks. Notice that for any ψ in I the space
(X,ψ ◦ dX) is a dissimilarity space, since ψ ◦ dX(x1, x2) = 0 if and only if x1 = x2.
Then, if dGH((X,ψ ◦ dX), (Y, dY )) = 0, it holds (X,ψ ◦ dX) ∼=w (Y, dY ).

We have the following result

Proposition 3. The map dwGH is a dissimilarity on the collection of finite semi-
metric spaces.

Proof. Since dGH is a distance, for all (X, dX) and (Y, dY ) it holds that

0 ≤ inf
ψ∈I

dGH((X,ψ ◦ dX), (Y, dY )) < ∞

and
0 ≤ inf

ψ∈I
dGH((X, dX), (Y, ψ ◦ dY )) < ∞.

Therefore, 0 ≤ dwGH(X, dX), (Y, dY )) < ∞ for all (X, dX) and (Y, dY ). It is clear
that dwGH is symmetric by its very definition. Hence, dwGH is a dissimilarity.

Now, we show that that dissimilarity dwGH discriminates spaces that are not
weakly similar, i.e., it is 0 if and only if two spaces are weakly similar.
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Proposition 4. Given two semi-metric spaces (X, dX), (Y, dY ), we have

dwGH((X, dX), (Y, dY )) = 0 ⇐⇒ (X, dX) ∼=w (Y, dY ).

Proof. If (X, dX) ∼=w (Y, dY ), there exists a strictly increasing function ψ such that
(X,ψ ◦ dX) is isometric to (Y, dY ) and (Y, ψ−1 ◦ dY ) is isometric to (X, dX). Since
the Gromov-Hausdorff distance between two metric spaces is zero if and only if
they are isometric, both the infima on the right hand side of Eq. (3.39) are 0, hence
dwGH((X, dX), (Y, dY )) = 0.
On the other hand, suppose that dwGH((X, dX), (Y, dY )) = 0, so that

inf
ψ∈I

dGH((X,ψ ◦ dX), (Y, dY )) = 0 and inf
ψ∈I

dGH((X, dX), (Y, ψ ◦ dY )) = 0.

Therefore, by the definition of infimum, there exist two sequences (ψn)n∈N ⊆ I
and (ψ̃n)n∈N ⊆ I such that

lim
n→∞

dGH((X,ψn ◦ dX), (Y, dY )) = 0

lim
n→∞

dGH((X, dX), (Y, ψ̃n ◦ dY )) = 0.
(3.40)

Let us focus our attention on the first sequence, (ψn)n∈N ⊆ I . By the finiteness
of C(X, Y ), for every n in N there exists a, possibly non-unique, correspondence
Rn in C(X, Y ) such that dis(Rn, ψn ◦ dX , dY ) = dGH((X,ψn ◦ dX), (Y, dY )). By the
axiom of choice, it is possible to construct a sequence (ψn, Rn)n∈N ⊆ I × C(X, Y )
such that

lim
n→∞

dis(Rn, ψn ◦ dX , dY ) = 0.

The set C(X, Y ) is finite, henceforth we can find a subsequence (ψ̂n, R̂n)n∈N of
(ψn, Rn)n∈N such that there exists a R1 in C(X, Y ) and a n̄ in N with R̂n = R1, for
all n ≥ n̄.

For this correspondence R1, it holds

lim
n→∞

|ψ̂n(dX(x, x′)) − dY (y, y′)| = 0 ∀(x, y), (x′, y′) ∈ R1. (3.41)

Hence, the restriction of the sequence (ψ̂n) on the distance set D(X) converges to
a function ψX : D(X) −→ D(Y ), such that dGH((X,ψX ◦ dX), (Y, dY )) = 0. In the
same way, we can prove the existence of a function ψY : D(Y ) −→ D(X) such that
dGH((X, dX), (Y, ψY ◦ dY )) = 0.

We observe that

dGH((X,ψY ◦ ψX ◦ dX), (X, dX)) ≤ dGH((X,ψY ◦ ψX ◦ dX), (Y, ψY ◦ dY ))+
+dGH((Y, ψY ◦ dY ), (X, dX)).

(3.42)

We already know that the second summand on the right hand side of the inequality
is 0. For the first one it is easy to see that since dGH((X,ψX ◦ dX), (Y, dY )) = 0,
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3.4 – A dissimilarity measure for weak similarity

then also dGH((X,ψY ◦ ψX ◦ dX), (Y, ψY ◦ dY )) = 0. Therefore, dGH((X,ψY ◦ ψX ◦
dX), (X, dX)) = 0, and (X,ψY ◦ ψX ◦ dX) and (X, dX) are isometric. Since ψX and
ψY are both non decreasing functions, also their composition is non decreasing.
Moreover, ψY ◦ψX has to be a bijective function from D(X) to itself, otherwise the
two spaces fail to be isometric. Then, it has to be ψY ◦ψX = id |D(X), therefore ψX
and ψY are invertible. It is possible to extend, by linear interpolation, the domain
and codomain of ψX to R+, thus we have a strictly increasing function ψX such
that dGH((X,ψX ◦ dX), (Y, dY )) = 0 and this is equivalent to saying that (X, dX)
and (Y, dY ) are weakly similar.

Example 13. In this example, we exemplify the computation of dwGH between
three finite metric spaces. Let us consider the spaces (X, dX), (Y, dY ) and (Z, dZ)
depicted in Fig. 3.3. We can see that infψ∈I dGH((X,ψ ◦ dX), (Y, dY )) = 0. In fact,
if we take a sequence (ψn)n∈N such that

ψn(3) = 3, ψn(4) = 4, ψn(5) = 4 + 1
n
,

clearly limn→∞ dGH((X,ψn ◦ dX), (Y, dY )) = 0. On the other hand, for ψ̂ with

ψ̂(3) = 3, ψ̂(4) = 4.5,

it holds infψ∈I dGH((X, dX), (Y, ψ ◦ dY )) = dGH((X, dX), (Y, ψ̂ ◦ dY )) = 0.5. There-
fore, dwGH((X, dX), (Y, dY )) = 0.5. Reasoning in a similar way it is possible to show
that dwGH((Z, dZ), (Y, dY )) = 1. We also know by Proposition 4 that since X and
Z are weakly similar it has to be dwGH((X, dX), (Z, dZ)) = 0. Hence,

dwGH((Y, dY ), (Z, dZ)) = 1 > 0.5 = dwGH((Y, dY ), (X, dX))+dwGH((X, dX), (Z, dZ))

and the triangle inequality does not hold.

x1 x2

x3

3

54

y1 y2

y3

3

4 4

z1 z2

z3

3

4 6

Figure 3.3: Examples for the computation of dwGH .
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3.5 Vietoris-Rips filtration and Persistent Homol-
ogy applied to weak similarities.

We will provide a categorification of the concept of weak similarity of semi-
metric spaces, following the ideas for finite metric spaces introduced in [46].

Definition 43 (monotone map between semi-metric spaces). Given two semi-
metric spaces (X, dX) and (Y, dY ), we say the a map f : X −→ Y is monotone
if, for all x1, x2, x

′
1, x

′
2 ∈ X, we have:

dX(x1, x2) ≤ dX(x′
1, x

′
2) ⇒ dY (f(x1), f(x2)) ≤ dY (f(x′

1), f(x′
2)). (3.43)

Remark 7 (Proposition 3 - [46]). If f : X −→ Y is a monotone map, then

dX(x1, x2) = dX(x′
1, x

′
2) ⇒ dY (f(x1), f(x2)) = dY (f(x′

1), f(x′
2)). (3.44)

The converse is not true.

Lemma 5. A monotone map f : X −→ Y between two semi-metric spaces (X, dX)
and (Y, dY ) induces a non-decreasing function between the distance sets f̃ : D(X) −→
D(Y ) given by

f̃(a) = dY (f(xi), f(xj)) where dX(xi, xj) = a. (3.45)

Proof. Thanks to Remark 7, we have that the function f̃ is well defined. In fact,
for any a ∈ D(X), we have that, if dX(xi, xj) = dX(x′

i, x
′
j) = a, we can write

f̃(a) = dY (f(xi), f(xj)) = dY (f(x′
i), f(x′

j)). The function is non-decreasing because
if a = dX(x1, x2) ≤ b = dX(x3, x4), by Definition 43, f̃(a) = dY (f(x1), f(x2)) ≤
dY (f(x3), f(x4)) = f̃(b).

Lemma 6. A monotone map f : X −→ Y between two semi-metric spaces (X, dX)
and (Y, dY ) induces a non-decreasing function f̂ : R+ −→ R+ whose restriction is
f̃ as in Lemma 5.

Proof. Thanks to Lemma 5, we have that f induces a non-decreasing function
f̃ : D(X) −→ D(Y ). Such a function can be extended to a non decreasing function
f̂ : R+ −→ R+ in the following way. If D(X) = {0, a1, . . . , ak | ai < aj if i < j}, we
define f̂ as

f̂(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f̃(a1)
a1

x if x ∈ [0, a1]

f̃(ai+1) − f̃(ai)
ai+1 − ai

(x− ai) + f̃(ai) if x ∈ [ai, ai+1]

(x− ak) + f̃(ak) if x ∈ (ak,∞).

(3.46)

By definition, it follows that f̂
⃓⃓⃓
D(X)

= f̃ .
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Definition 44 (category of FSS - [46]). We can define a category FSS of finite
semi-metric space whose objects are finite semi-metric spaces and whose morphisms
are monotone maps.

Remark 8. It is possible to observe that two semi-metric spaces are isomorphic in
the category FSS if and only if they are weakly similar.

We recall the definition of Vietoris-Rips filtration.

Definition 45 (Vietoris-Rips filtration). Given a metric space (X, dX), we can
consider the functor VR•(X) : (R+,≤) −→ Simp that assigns to each a ∈ R+

the Vietoris-Rips complex VRa(X) and to each morphism a ≤ b the inclusion
ιXa≤b : VRa(X) ↪→ VRb(X).

Definition 46 (rescaling). Given a non-decreasing function ψ : R+ −→ R+ we call
ψ-rescaling the functor Rψ : (R+,≤) −→ (R+,≤) with

Rψ(a) = ψ(a)
Rψ(a ≤ b) = ψ(a) ≤ ψ(b).

(3.47)

Lemma 7. A morphism f : X −→ Y in FSS induces a rescaling Rf̂ and a natural
transformation ηf : VR•(X) =⇒ VR•(Y )Rf̂ .

Proof. Thanks to Lemma 6, we have a non-decreasing function f̂ that induces a
rescaling Rf̂ . We want to see that, for any a ∈ R+, we have a simplicial map
ηfa : VRa(X) −→ VR•(Y )Rf̂ (a) = VRf̂(a)(Y ) such that, for all a, b ∈ R+ with
a ≤ b, we have a commutative diagram

VRa(X) VRb(X)

VRf̂(a)(Y ) VRf̂(b)(Y ).

ιX

ηf
a ηf

b

ιY

(3.48)

We define ηfa as
ηfa ({xi0 , . . . , xik}) = {f(xi0), . . . , f(xik)}. (3.49)

By the very definition of Vietoris-Rips complex and f̂ , we have that, for every
simplex σ of VRa(X), ηfa (σ) is a simplex of VRf̂(a)(Y ) and ηfa is a well-defined
simplicial map. We only need to prove that ιY ◦ ηfa = ηfb ◦ ιX . Indeed, for any
σ ∈ VRa(X) with σ = {xi0 , . . . , xik} we have

ιY ◦ ηfa (σ) = ιY ({f(xi0), . . . , f(xik)}) = {f(xi0), . . . , f(xik)}
ηfb ◦ ιX(σ) = ηfb ({xi0 , . . . , xik}) = {f(xi0), . . . , f(xik)}.

(3.50)

Hence ηf is a natural transformation.
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A persistent point of view on weak similarity of finite semi-metric spaces

Now, we want to show that the Vietoris-Rips filtration can be used as a tool to
study weak similarity.

Theorem 16. Given two semi-metric spaces (X, dX) and (Y, dY ), the following
statements are equivalent:

1. (X, dX) and (Y, dY ) are isomorphic in FSS.

2. There exist a rescaling Rψ and a natural isomorphism

η : VR•(X) =⇒ VR•(Y )Rψ.

Proof. Suppose that (X, dX) and (Y, dY ) are isomorphic in FSS. Then we have a
monotone map f : X −→ Y that it is a bijection. Thanks to Lemma 7, we have a
rescaling Rf̂ and a natural transformation ηf : VR•(X) =⇒ VR•(Y )Rf̂ . We want
to see that for all a ∈ R+, ηfa is an isomorphism of simplicial complexes. Since
f is a bijection, we know that ηfa is injective. In fact, given σ = {xi1 , . . . , xik}
and τ = {xj1 , . . . , xjl} with σ /= τ , we can assume without loss of generality that
there is a xj ∈ τ with xj /∈ σ. Then if ηfa (σ) = ηfa (τ), there is a xi ∈ σ with
f(xj) = f(xi) and this is absurd for the injecivity of f . On the other hand ηfa is
also surjective. Suppose that there is a ρ ∈ VRf̂(a)(Y ) with ρ = {yi1 , . . . , yik} that
it is not in the image of ηfa . We can consider the points f−1(yi1), . . . , f−1(yik) of
X and see that they form a simplex of VRa(X). In fact, since ρ ∈ VRf̂(a)(Y ), for
all u, v ∈ ρ, we have dY (u, v) ≤ f̂(a). It can be seen that, for all x1, x2 ∈ X, we
have f̂(dX(x1, x2)) = dY (f(x1), f(x2)). Therefore, for all u, v ∈ ρ, since f̂−1 is also
a strictly increasing function

dX(f−1(u), f−1(v)) = f̂
−1(dY (u, v)) ≤ f̂

−1(f̂(a)) = a. (3.51)

Then points f−1(yi1), . . . , f−1(yik) span a simplex of VRa(X) whose image under
ηfa is ρ. Therefore ηfa is also bijective and is an isomorphism of simplicial complexes.
Hence, η is a natural isomorphism.
Now, suppose that we have a rescalingRψ and a natural isomorphism η : VR•(X) ⇒
VR•(Y )Rψ. For each a ∈ R+, the restriction of the isomorphism ηa to the vertices of
VRa(X) yields a bijection fa : X −→ Y . Moreover, these bijections are all the same
because of the commutativity of diagrams that define the natural isomorphism.
Hence we have a unique bijection f : X −→ Y associated with η. We claim that
this bijection is an isomorphism of finite metric spaces. In fact, for each pair of
points x1, x2 ∈ X, call ā = dX(x1, x2). Since η is a natural isomorphism, we have
that σ = {x1, x2} ∈ VRā(X) and that ηā(σ) = {f(x1), f(x2)} is a simplex of
VRψ(ā)(Y ), that it is not present in any VRb(Y ), for b ≤ ψ(ā). This means that
dY (f(x1), f(x2)) = ψ(ā) = ψ(dX(x1, x2)), for all x1, x2 ∈ X, and therefore (X, dX)
and (Y, dY ) are weakly similar and also isomorphic in FSS.
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By using an argument analogous to the one just described, the following Theo-
rem can be proved.
Theorem 17. Given two metric spaces (X, dX) and (Y, dY ), the following state-
ments are equivalent:

1. (X, dX) and (Y, dY ) are isometric.

2. There exists a natural isomorphism

η : VR•(X) =⇒ VR•(Y ).

The Vietoris-Rips filtration is a complete invariant for isometry. Therefore,
it can be used in conjunction with the canonicalization to produce a complete
invariant for weak similarity.
Corollary 6. Two spaces (X, dX) and (Y, dY ) are weakly similar if an only if there
is a natural isomorphism between VR•(CX) and VR•(CY ).
Remark 9. Given two Vietoris-Rips filtrations VR•(X) and VR•(Y ), the existence
of an isomorphism between each VRa(X) and VRa(Y ) is not enough to ensure that
X and Y are isometric. Indeed, all these isomorphism have to commute with the
inclusions given by the filtrations. For example, consider the two metric spaces,
depicted in Fig. 3.4, given by the distance matrices

dX = (dX(xi, xj)) =

⎛⎜⎜⎜⎝
0 7 9 10
7 0 8 11
9 8 0 12
10 11 12 0

⎞⎟⎟⎟⎠ ,

dY = (dY (yi, yj)) =

⎛⎜⎜⎜⎝
0 7 9 10
7 0 8 12
9 8 0 11
10 12 11 0

⎞⎟⎟⎟⎠ .
(3.52)

They are not isometric, but, for each a ∈ R+, we can find an isomorphism
between VRa(X) and VRa(Y ). Notice that, on the other hand, if there exists an a
in R+ such that there is no isomorphism between VRa(X) and VRa(Y ), then the
two spaces are for sure not isometric.

3.5.1 Persistent homology as an incomplete invariant for
weak similarity

As we have seen in the background chapter, it is possible to apply the homology
functor to filtration in order to obtain a persistence module. Then, the following
corollary holds.
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x1 = y1
x2 = y2

x3 = y3

x4y4

Figure 3.4: Embedding of the spaces of Remark 9 in R3.

Corollary 7. The persistent homology of the Vietoris-Rips filtration is an incom-
plete invariant for isometry.
Proof. The two spaces in Remark 9 have persistence modules with interleaving
distance 0, yet they are not isometric.

Persistent homology can be used to discriminate non-weakly similar spaces.
Given two spaces (X, dX), (Y, dY ), the Vietoris-Rips filtration of their canonicaliza-
tion is computed. Applying the homology functor yields two persistent modules
that can be compared with a distance. If such a distance is greater then 0, the
two spaces cannot be weakly similar. The most common used distances are the
bottleneck distance (equivalent to the interleaving distance) and the Wasserstein
distance. This is the approach examined in [49]. Otherwise, the persistence mod-
ules can be further processed into a vectorized version, like persistence images [2]
or persistence landscapes [14], for which a richer family of metrics is available.

3.5.2 A dissimilarity measure for persistence modules
In a spirit similar to Section 3.4, we can define a dissimilarity between persis-

tence modules. Its aim is to compare persistence modules from the point of view
of weak similarity. Comparing rescaling of persistence diagram is not new in liter-
ature. In [59] the authors consider and compare log-scaled persistence diagrams.
The shift-invariant bottleneck distance [21] has been introduced to compare this
kind of persistence diagrams, so that diagrams that are equivalent up to a multi-
plicative constant can be identified. Recall that we defined I as the set of strictly
increasing functions ψ : R+ −→ R+, with ψ(0) = 0.
Definition 47. Given two persistence modules HkF1 and HkF2, the weak inter-
leaving dissimilarity dwI between them is

dwI(HkF1, HkF2) = inf
ψ1∈I

dI(HkF1Rψ1 , HkF2) + inf
ψ2∈I

dI(HkF1, HkF2Rψ2), (3.53)
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where dI is the interleaving distance between persistence modules.

One of the key properties desired for distances between persistence modules is
that they satisfy a form of stability theorem, that is, there must be a distance
between the original semi-metric spaces, that bounds from above the distance be-
tween the obtained persistence modules. We have a stability theorem of this kind
for the Vietoris-Rips filtration and the interleaving distance [24], in fact

dI(HkVR•(X, dX), HkVR•(Y, dY )) ≤ 2dGH((X, dX), (Y, dY )).

We will provide a similar stability theorem also for the dissimilarities introduced in
this chapter.

Theorem 18 (stability theorem for weak similarity - (page 50)). Let (X, dX),
(Y, dY ) be two finite semi-metric spaces. We denote by HkVR•(X, dX) and HkVR•(Y, dY )
the k-th persistence modules obtained from the Vietoris-Rips filtration associated
with the two spaces. Then for all k ∈ N,

dwI(HkVR•(X, dX), HkVR•(Y, dY )) ≤ 2dwGH((X, dX), (Y, dY )). (3.54)

We can see that thanks to this theorem and Proposition 4, if the persistence
modules obtained by two Vietoris-Rips filtration have distance dwI greater than 0,
then the corresponding finite metric spaces cannot be weakly similar.

Example 14. Consider the finite semi-metric spaces (X, dX) and (Y, dY ) in Fig. 3.5
with

dX = (dX(xi, xj)) =

⎛⎜⎜⎜⎝
0 7 12 8
7 0 10 11
12 10 0 9
8 11 9 0

⎞⎟⎟⎟⎠ ,

dY = (dY (yi, yj)) =

⎛⎜⎜⎜⎝
0 7 12 8
7 0 10 9
12 10 0 11
8 9 11 0

⎞⎟⎟⎟⎠ .
(3.55)

We will use Z2 as the field of coefficients with which we will compute homology.
We can see that the persistence module H1VR•(X, dX) is the functor

H1VRε(X, dX) =
⎧⎨⎩Z2 if 10 ≤ ε ≤ 11

0 otherwise,
H1VR•(X, dX)(a ≤ b) =

=
⎧⎨⎩id : Z2 → Z2 if 10 ≤ a ≤ b ≤ 11

0 : H1VRa(X, dX) → H1VRb(X, dX) otherwise.
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x1 = y1

x2 = y2

x3 = y3

x4
y4

Figure 3.5: Embedding of the spaces of Example 14 in R3. It holds dX(xi, xj) =
dY (yi, yj) for all i, j = 1, . . . ,4, except for dX(x1, x4) = dY (y2, y4) and dX(x2, x4) =
dY (y1, y4). This asymmetry will make the spaces non-weakly isometric.

The persistence module H1VR•(Y, dY ) is

H1VRε(Y, dY ) = 0 ∀ε ≥ 0
H1VR•(Y, dY )(a ≤ b) = 0 : H1VRa(Y, dY ) → H1VRb(Y, dY ) ∀a ≤ b.

Let us consider the sequence (ψn)n∈N with

ψn(x) =

⎧⎪⎪⎨⎪⎪⎩
x if 0 ≤ x ≤ 10
n(x− 10) + 10 if 10 < x ≤ 10 + 1

n

x+ 1 − 1
n

if 10 + 1
n
< x.

It is easy to see that

lim
n→∞

dI(H1VR•(Y, dY ), H1VR•(X, dX)Rψn) = 0.

On the other hand, for all strictly increasing functions ψ : R+ → R+ it holds

dI(H1VR•(X, dX), H1VR•(Y, dY )Rψ) = 1
2 .

Therefore, dwI(H1VR•(X, dX), H1VR•(Y, dY )) = 1
2 > 0, and the two spaces are not

weakly similar.

Proof of Theorem 18. We have that, for every ψ ∈ I ,

HkVR•(X,ψ ◦ dX))Rψ = HkVR•(X, dX).

This is true because (X,ψ ◦dX) and (X, dX) are weakly similar and, as in the proof
of Theorem 16, there are a natural isomorphism η and a rescaling Rψ such that
η : VR•(X, dX) =⇒ VR•(X,ψ ◦ dX)Rψ. In this case, the natural isomorphism is
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simply the identity between every VRa(X, dX) and VRψ(a)(X,ψ ◦ dX). Therefore,
the two functors VR•(X, dX) and VR•(X,ψ ◦ dX)Rψ are equal.
Now, let us take a sequence (ψn)n∈N in I with

lim
n→∞

dGH((X,ψn ◦ dX), (Y, dY )) = inf
ψ∈I

dGH((X,ψ ◦ dX), (Y, dY ))

and a sequence (ψ̄n)n∈N with

lim
n→∞

dGH((X, dX), (Y, ψ̄n ◦ dY )) = inf
ψ∈I

dGH((X, dX), (Y, ψ ◦ dY )).

By the classical stability theorem [24], for all n in N, we have

dI(HkVR•(X,ψn ◦ dX), HkVR•(Y, dY )) ≤ 2dGH((X,ψn ◦ dX), (Y, dY )),
dI(HkVR•(X, dX), HkVR•(Y, ψ̄n ◦ dY )) ≤ 2dGH((X, dX), (Y, ψ̄n ◦ dY )).

(3.56)

Notice that the inequalities in Eq. (3.56) hold even if the functions ψn ◦ dX and
ψ̄n ◦ dY do not satisfy the triangular inequality. Recall that, for all n in N by the
definition of infimum

inf
ψ∈I

dI(HkVR•(X,ψ ◦ dX), HkVR•(Y, dY )) ≤

≤ dI(HkVR•(X,ψn ◦ dX), HkVR•(Y, dY )),
and

inf
ψ∈I

dI(HkVR•(X, dX), HkVR•(Y, ψ ◦ dY )) ≤

≤ dI(HkVR•(X, dX), HkVR•(Y, ψ̄n ◦ dY )).

(3.57)

By the definition of dwI and because of the previous inequalities it holds

dwI(HkVR•(X, dX), HkVR•(Y, dY )) ≤
lim
n→∞

(dI(HkVR•(X,ψn ◦ dX), HkVR•(Y, dY ))+

+dI(HkVR•(X, dX), HkVR•(Y, ψ̄n ◦ dY )).
(3.58)

Because of the inequalities in Eq. (3.56) and the definition of dwGH , the following
is true

lim
n→∞

(dI(HkVR•(X,ψn ◦ dX), HkVR•(Y, dY ))+

+dI(HkVR•(X, dX), HkVR•(Y, ψ̄n ◦ dY )) ≤
≤ lim

n→∞
(2dGH((X,ψn ◦ dX), (Y, dY )) + 2dGH((X, dX), (Y, ψ̄n ◦ dY )) =

= 2dwGH((X, dX), (Y, dY )).

(3.59)

Therefore,

dwI(HkVR•(X, dX), HkVR•(Y, dY )) ≤ 2dwGH((X, dX), (Y, dY )). (3.60)
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From the computational point of view it is more appealing to consider the
bottleneck distance between persistence diagrams rather then the interleaving dis-
tance. For one-parameter finite type persistence modules, the two distances attain
the same value, but the bottleneck distance can be computed with polynomial time
algorithms [44].

Definition 48 ([72]). Two filtering function f, g : K → R are said to be ordering
equivalent if f and g induce the same pre-order on the simplices of K.

Notice that composing a filtering function f with a strictly increasing function
ψ yields a filtering function ψ ◦ f that is ordering equivalent to f .

Given a persistence module HpF , we denote by PD(HpF ) its associated persis-
tence diagram. For any function ψ : R → R and persistence diagram PD we define
the multiset ψ(PD) as

ψ(PD) = {(ψ(a), ψ(b)) |(a, b) ∈ PD}.

Proposition 5. Given a filtering function f : K → R on a simplicial complex K
and a strictly increasing function ψ : R → R, for any p ∈ N it holds

ψ(PD(Hp(f))) = PD(Hp(ψ ◦ f)).

Proof. The functions f and ψ◦f are ordering equivalent functions since ψ is strictly
increasing. Call F the filtration functor induced by f and ψF the filtration functor
induced by ψ ◦ f . For any u, v ∈ R, with u ≤ v, it holds F (u) = ψF (ψ(u)) and the
following diagram commutes

F (u) F (v)

ψF (ψ(u)) ψF (ψ(v)).

F (u≤v)

= =

ψF (ψ(u)≤ψ(v))

(3.61)

Therefore, if HpF is decomposable as ⨁︁N
j=1 χ[bi,di] then a decomposition of HpψF

is given by ⨁︁N
j=1 χ[ψ(bi),ψ(di)].

Remark 10. From the previous Proposition if follows that given a filtration F and
a strictly increasing function ψ, the persistence diagram of HkFRψ is equal to
ψ−1(PD(HkF )).

In the same way of the weak interleaving dissimilarity we define a dissimilarity
based on the bottleneck distance.

Definition 49 (weak bottleneck dissimilarity). Given two persistence diagrams
PD1, PD2, the weak bottleneck dissimilarity between them is defined as

dwB(PD1, PD2) = inf
ψ1∈I

dB(ψ1(PD1), PD2) + inf
ψ2∈I

dB(PD1, ψ2(PD2)) (3.62)
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To compute such a dissimilarity it would be necessary to consider an infinite
number of strictly increasing functions. An upper bound to this dissimilarity can
be found using the framework introduced by Legonye et al. [72].

Let D be a persistence diagram with finite number of points that are not on the
diagonal ∆∞. The space of diagrams {ψ(D) | ψ ∈ I} can be parametrised in the
following way. Consider a filtering function f on a finite simplicial complex K, such
that PD(Hpf) = D, for a certain p ∈ N. Now, consider the image of the function f .
This is a finite set im f = {a0, a1, . . . , ak | ai < aj if i < j}. Define Θ(f) ⊂ Rk+1 to
be the set of vectors θ = (θ0, . . . , θk) such the the following inequalities are satisfied:

a0 + θ0 < a1 + θ1,

a1 + θ1 < a2 + θ2,

. . .

ak−1 + θk−1 < ak + θk.

(3.63)

Any such θ induces a strictly increasing function ψθ : im f → R, such that ψθ(ai) =
ai + θi

Proposition 6. Let D be a persistence diagram, realised by a filtering function
f : K → R on a simplicial complex K and a homology functor Hp. For any
ψ : R → R strictly increasing function, there exists a θ ∈ Θ(f) such that

ψ(D) = Hp(ψθ ◦ f). (3.64)

Proof. Let im f be the set {a0, a1, . . . , ak}. Then, it is sufficient to take θ ∈ Rk+1

such that θi = ψ(ai) − ai. The statement follows because of Proposition 5. In
fact, PD(Hp(ψθ ◦ f)) = ψθ(D) and for any (bi, di) ∈ D it holds (ψ(bi), ψ(di)) =
(ψθ(bi), ψθ(di)) by the definition of ψθ.

The following Theorem will be useful to approximate dwB.

Theorem 19. Consider a finite persistence diagram D0, and a finite persistence
diagram D, such that D = PD(Hpf), for a filtering function f . The function
J : Θ(f) → R, J(θ) = dB(ψθ(D), D0) = dB(PD(Hpψθ ◦ f), D0) is smooth almost
everywhere.

Proof. J is the composition of two functions, Bp : Θ(f) → Bar and T : Bar → R,
where Bar is the collection of persistence diagrams, Bp(θ) = PD(Hpψθ ◦ f) and
T (D) = dB(D,D0). For all θ ∈ Θ(f) the functions ψθ ◦ f are ordering equivalent,
therefore [72, Theorem 4.9] holds, and Bp is a C∞ function. Because of [72, Propo-
sition B.1], the function T is generically smooth. The set of barcodes on which T
is not smooth is the image of a zero-measure set of Θ(f). Therefore, J is smooth
almost everywhere.
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Given the differentiability of J(θ) and the fact that Θ is a convex set, a gradient
descend algorithm can be used to find a local minimum of the function J . This will
not be in general a global minimum of the function, since J is not convex.

Example 15 (J is not convex). ConsiderD0 = {(2,3)}∪∆∞ andD = {(1,2), (3,4)}∪
∆∞. There are a finite simplicial complex K and a filtering function f such
that D = Hpf and im f = {1,2,3,4}. Given an arbitrary small ε, consider θ1 =
(0,−1 + ε,−1,−1) and θ2 = (1,1,0,−1 + ε). It holds J(θ1) = J(θ2) = ε/2. On the
other hand, consider the point θ3 = 1

2θ1 + 1
2θ2 = (1/2, ε/2,−1/2,−1 + ε/2). Then,

for a small enough ε, J(θ3) = 1/2 > ε/2 = 1
2J(θ1) + 1

2J(θ2), hence J is not convex.

Nevertheless, this optimization problem makes it possible to compute an upper
bound for the dissimilarity dwB. Being able to approximate dwB makes it pos-
sible to have a proxy for dwGH . From the computational point of view, this is
appealing, since computing the Gromov-Hausdorff distance boils down to solving
an NP-problem [77], whereas the bottleneck distance has a polynomial-time formu-
lation.

3.6 Conclusions and future work
We have constructed suitable representative elements for the equivalence classes

of the relation of weak similarity for finite semi-metric spaces. Thanks to these
representatives we can check in a simple way whether two spaces are weakly similar
or not, through approaches based on curvature sets or distances. We studied how
to define pseudo-distances between semi-metric spaces to understand if two spaces
are weakly similar or not. We introduced the weak Gromov-Hausdorff dissimilarity
to measure how much two spaces have to be modified in order for them to be weakly
similar. We have shown that Vietoris-Rips filtrations can help us in characterizing
the classes of weak similarity. We have seen that we can use persistent homology
to try to discriminate non-weakly similar finite metric spaces, and we have defined
a weak interleaving dissimilarity between persistence modules and shown that it
satisfies a stability theorem for weak similarity. This dissimilarity has the advantage
of being based on the bottleneck distance between persistence diagrams, for which
polynomial time algorithm are available. We have shown how to approximate it
using the framework introduced by Leygonie et al. [72]. In the future, we would
like to try to find other and simpler invariants for weak similarity and make a
comparison between them. We have also seen the usefulness of persistent homology,
and in future work we would like to study the problem of finding distances between
persistence modules that are meaningful from the point of view of weak similarity.
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Chapter 4

Homological scaffold via minimal
homology basis

4.1 Introduction
This chapter is an elaboration of a joint work with Ulderico Fugacci, Marco

Guerra, Giovanni Petri and Francesco Vaccarino and it resulted in the paper [55].
Network science has long represented the cornerstone theory in dealing with com-
plex, heterogeneous multi-agent systems. Network descriptions have found wide
applications and had a significant impact on a wide range of fields ([80, 7]), in-
cluding social networks ([51, 98]), epidemiology ([83, 29]), biology ([48, 4]), and
neuroscience ([8, 16, 9]). In recent years, new approaches to the analysis of net-
works and, more generally, complex interacting systems have emerged which lever-
age topological techniques ([57, 84, 70, 87]). The theory of (or around) persistence
has recently been proposed as a framework for the topological skeletonization of
spaces, particularly weighted graphs and networks ([68, 63, 47, 23]).
In [85], the generators of persistent homology are used to build one instance of
network skeletonization called homological scaffold. However, the method has a
serious drawback, consisting in the large degree of arbitrariness in the choice of
one representative cycle from the many equivalent generating cycles of the same
homology class. This is unfortunately a direct consequence of the homology classes
being equivalence classes and affects all attempts to localize cycles ([90, 73]). In
this work, we set out to address this issue by searching for a form of canonicity in
the choice of generators, namely by computing minimal representatives of homol-
ogy bases.
Minimal homology bases have long been investigated ([81, 36]), with a breakthrough
only coming thanks to the introduction of a first efficient algorithm for the com-
putation of bases in dimension one ([35]). Here, we leverage said minimal bases
to propose a new approach to network skeletonization, the minimal scaffold, which
overcomes the limitation of the previous one. While the minimal scaffold is not
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unique in the most general case possible, we provide strong guarantees and caveats
on when and to what degree it is well-defined. We then show a few applications of
the novel method, concluding the chapter with a comparison between our and the
previous construction.

4.2 Homological Scaffold
The homological scaffold originated from the intuition that traditional, graph-

theoretical tools in network analysis were naturally able to capture significant prop-
erties ([6]), but proved not as effective in detecting multi-agent and large-scale
interactions. Interest in searching for alternative descriptors of network relations
arose, and soon works were published which leveraged invariants offered by com-
putational topology ([74, 70, 84]).
In proposing the scaffold ([85]), the authors pointed out that homology might be
able to summarize well network mesoscale structures, i.e., features living between
the purely local connections and the global statistics, to which previous methodolo-
gies were blind. Furthermore, this structure could be analyzed over the continuous,
full range of interaction intensities, without the need for ad-hoc domain-specific
thresholds.
Homological cycles intuitively describe obstruction patterns. The presence of non-
trivial homology within a given region of a network highlights its structure as
non-contractible, binding signals to flow over constrained channels, which in turn
play the role of bridges.
To test the method, the homological scaffold was computed from resting-state fMRI
data for 15 healthy volunteers who were either infused with placebo or psilocybin:
the scaffold discriminated the two groups, as well as providing meaningful insight
as to the impact of the psychoactive substance onto the pattern of information flow
in the brain [85].

Consider a non-negatively weighted finite graph W = (V,E,w), where w :
E → R+. We can construct a filtration of simplicial complexes F = {Kε}ε∈R+ in
the following way. First, we take for each ε ∈ R+ the subgraph (Vε, Eε), where
Vε = V and Eε = {e ∈ E | w(e) ≤ ε}. Then, we define Kε as the flag complex of
(Vε, Eε). Notice that, given a non-negatively weighted finite graph W = (V,E,w),
we can define an extended dissimilarity w̄ : V × V → R+, such that w̄(x, y) =
w(x, y) if (x, y) ∈ E and w(x, y) = +∞ if (x, y) /∈ E. Then, the filtration of flag
complexes associated with W is equivalent to the Vietoris-Rips filtration of (V, w̄)
Once this filtration is obtained, we can compute its persistent homology. As in most
applications, to have an easier interpretability of the results, we use the fields Z2 as
the coefficient group for the homology functor. Let {bi} be a set of 1-dimensional
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generator cycles of the persistent homology, i.e. representatives of each persistent
homology class. Since we are over Z2, each of the bi’s is completely identified by
its support, which is a set of edges of E. In particular, we can depict set {bi} as a
matrix whose rows are indexed by E and having the bi’s as columns. The row sums,
as natural numbers, form a new weighting function on the edges of W , the new
weights counting precisely in how many persistent cycles an edge appears along the
filtration.

Definition 50. SupposeW and F as above, and consider a set {bi} of 1-dimensional
generator cycles of the persistent homology. Consider the function hW : E → R+

hW :=
∑︂
i

1e∈bi
(4.1)

where by 1e∈bi
we denote the indicator function E → R+ such that 1e∈bi

(e′) = 1 if
e′ appears in bi, and 0 otherwise.

Then the homological scaffold of W is the weighted graph H(W ) such that

- its vertex set coincides with the vertex set of W

- its edge set EH is a subset of the edge set of W , consisting of edges with
nonzero value for hW

- its weight function is the restriction of hW to EH.

In accordance with the above definition, building the homological scaffold of a
weighted network W is a method of network compression or skeletonization. The
definition also implies that edge weights are assigned by the number of basis cycles
the edge belongs to.

We provide an example, referring to Fig. 4.1. In panel (a), a filtration of sim-
plicial complexes arising from a point cloud is depicted. At each step, highlighted
in purple is a representative of a persistent cycle (i.e. of a bar in the barcode), each
at the scale at which it is born.
In panel (b), the corresponding homological scaffold is represented: it amounts to
taking the union of the cycles of panel (a), i.e. stacking generators of PH1, each
contributing unitary weight.

In the following, we shall sometimes refer to the homological scaffold as the
loose, or original scaffold, to contrast it with the new definition of scaffold to follow.

As anticipated in the introduction, it is apparent that there is a substantial
source of arbitrariness in this definition.
Several different representative cycles exist which form a basis of the persistent
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ε

0 0.25 0.32 0.5

(a)

(b)

Figure 4.1: (a) A point cloud in [0,1]2 and the generators of PH1, plotted on the
filtration step they appear at (scale reported on the axis below). (b) The resulting
homological scaffold. Edges in blue have weight 1, each belonging to only one
generator. The edge in green has weight 2, as it belongs to two generators.

homology (as a consequence of several different cycles belonging to the same ho-
mology class), and hence one must make a choice. For example, Fig. 4.2(a) depicts
one specific cycle whose homology class generates (part of) the persistent homology
group of the point cloud. At the same time, any other choice of edges forming a
cycle around the hole is homologically equivalent and, in principle, legitimate.
In the original paper, the authors resorted to using the cycles as output by the
JavaPlex implementation ([94]) of the persistent homology algorithm (based on
the original implementation of [34]), and a posteriori checked the selected cycles
for consistency. However, in principle, this means that the same simplicial complex
written with two different orderings of the simplices could lead to different choices
of generators, and therefore, to different scaffolds.
As such, we must be careful in the choice of nodes and edges output by the algo-
rithm; while the presence of a generator denotes undeniably that an obstruction
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pattern exists, we cannot be as confident about its precise location in the network
or the constituents that provide bridges around it. The homological scaffold defined
in this way introduces noise in the localization of mesoscale patterns onto individual
nodes and edges, a process which, if accurate, could provide valuable insight as to
the functional role of single players in a network.
In this work, we try to work around the problem of cycle choice and give a stricter
definition, by requiring that, among all possible representatives, those of minimal
total length are chosen (e.g., Fig. 4.2(b)).
The original algorithm reported a computational complexity of the order O(n3) to
obtain representatives of basis cycles.

(a) (b)

Figure 4.2: A simplicial complex K with dimH1(K) = 1. Its homological scaffold
(on a subset of the filtration steps, for clarity) is reported in panel (a): the chosen
generator meanders around the hole. Furthermore, a different ordering of the list
of simplices fed to the algorithm could return a different cycle. In panel (b), the
shortest representative cycle is chosen: this choice is stable with respect to any
ordering of the input, while at the same time endowing the generator with some
metric and geometric meaning.

4.3 Minimal Bases
The search for minimality in the computation of the scaffold was made feasible

by the introduction of efficient algorithms to compute the minimal representatives
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of a homology basis in dimension one.
It is known that in dimension higher than one, minimal representatives of a homol-
ogy basis will remain elusive. Indeed, Chen and Freedman ([25]) proved that the
problem of obtaining these minimal representatives is computationally intractable,
being at least as hard as the notoriously NP-Hard Nearest Codeword Problem. Fur-
thermore, it is even NP-Hard to approximate within any constant factor, meaning
that no polynomial-time algorithm exists to obtain an approximate minimal basis
that differs from the exact one by at most a multiplicative constant. In the light
of this, we must necessarily restrict our attention to the 1-dimensional case, i.e.,
computing minimal representatives of a basis of H1.

4.3.1 Minimal Bases and Dey’s Algorithm
Given a simplicial complex K, let us consider C1 the vector space generated by

the 1-simplices of K and Z1 the vector space of 1-cycles, i.e., Z1 = ker ∂1.

Definition 51. Given a 1-cycle b ∈ Z1, let µ(b) be its length, i.e., the sum of
the weights of the 1-simplices that form it, and denote by [b] the homology class
b belongs to. Let β1 := dimH1(K). A minimal homology basis is a set of 1-cycles
∈ Z1, of cardinality β1, such that

{b1, ..., bβ1} = argmin
Span{[bi]}=H1

∑︂
i

µ (bi) . (4.2)

The name minimal homology basis, comes with a slight abuse of terminology,
as it would be more appropriate to call it a minimally-represented homology basis.
In 2018, Dey et al. ([35]) introduced a polynomial-time algorithm to obtain said
representatives. Building on the work of Horton ([58]), de Pina ([86]), and Mehlhorn
et al. ([64]), the algorithm sets off to compute a basis of the space of cycles. Then,
it applies a cohomological technique called simplex annotation ([17]) to lift a basis
of cycles to a basis of the homology group H1, while at the same time enforcing the
minimal length constraint. A sketch of the algorithm follows.
Algorithm: MinBasis(K)

• A basis of the cycles group Z1 is found via a spanning tree. Each edge in the
complement of the spanning tree identifies a candidate cycle ([58]).

• An annotation of the edges is computed via matrix reduction ([17]). This
yields the dimension β1 of H1, as well as an efficient tool to determine if two
cycles b1 and b2 are linearly dependent in H1 ( [b1] = [b2]).

• A set of support vectors is generated which maintains a basis of the orthogonal
complement in H1 of the minimal basis cycles.
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• Iteratively for each dimension of H1, the candidate set of cycles is parsed
in search of cycles b’s that are linearly independent in homology from the
previous ones (exploiting the support vectors). Among these, the µ-shortest
one is added to the minimal basis.

• The set of support vectors is updated for the remaining dimensions to enforce
it remain a basis of the orthogonal complement of the basis.

• The last two steps above are repeated until completion of the minimal basis.

Call B = {bi} the output of MinBasis on input K.
Theorem (3.1, [35]) Cycles in B form a minimal homology basis of H1(K).

Notice that the minimal homology basis is guaranteed to exist, as we only work
with finite simplicial complexes, which implies the existence of a finite number of
bases. However, it needs not, in general, be unique. Several different cycles of the
same minimal length may all belong to the same homology class of a basis cycle.
Heuristically, this is especially true in case the input complex is unweighted (equiv-
alently, has equal weights for every edge), in which case the length of a cycle is the
number of edges that form it. Furthermore, there exist cases when different sets
of cycles of minimal length generate the same homology space, and are not even
pairwise homologous. We will treat the problem of the uniqueness of the minimal
basis in more detail in the following, and account for it explicitly in the construction
of the minimal scaffold.

The computational complexity of the above procedure is evaluated ([35]) to
O(n2β1 +nω) where n is the number of simplices in K and ω is the fast matrix mul-
tiplication exponent, which as of 2014 is bounded by 2.37 ([35, 30, 69]). This yields
a worst-case complexity of O(n3) in the number of simplices for general complexes,
which we recall is itself of order 3 in the number of points in the worst case.

4.4 Minimal Scaffold
In this section, we introduce an alternative definition for the homological scaf-

fold, which we call minimal, based on the minimal representatives obtained above,
and aims at overcoming the arbitrariness in the cycle choice of the previous defini-
tion. After addressing the simplest case, we analyze its uniqueness properties and
introduce a second, more refined, definition.

Let F be the filtration of simplicial complexes induced by a non-negatively
weighted finite graph W . For all filtration steps ε, define, as per (Eq. (4.2)),
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Bε := {bεi} the minimal homology basis of H1(Kε). Take the disjoint union of
minimal bases for ε varying on all filtration steps

B∗ :=
∐︂
ε

Bε

Definition 52. Suppose W , F and B∗ as above. Similarly to the loose case, define
the function hW,min : E → R+ as

hW,min :=
∑︂
b∈B∗

1e∈b (4.3)

Then, we define the minimal scaffold of W as the weighted graph Hmin(W )
whose:

- vertex set coincides with the vertex set of W

- edge set Em is a subset of the edge set of W , consisting of edges with nonzero
value for hW,min

- weight function is the restriction of hW,min to Em.

The minimal scaffold amounts, again, to the stacking of generator cycles across
a filtration. However, two differences are to be noted with respect to the loose
definition. First, we require the representative cycles to be minimal. Second, we
point out that while the loose scaffold is built by aggregating the generator cycles
of PH1(F), the minimal scaffold is built by independently computing a minimal
basis for each H1(Kε), for all ε. Notice that, since cycles are modified throughout
a filtration, it would be meaningless to talk about a minimal representative over
a certain persistence interval. This also means that its computation can be effec-
tively parallelized by assigning different filtration steps to different jobs, and later
recombining the outputs.
An interesting phenomenon that descends directly from the above peculiarity is
that the minimal scaffold of random point clouds tends to display a more pro-
nounced triangular structure (clustering) around cycles. Indeed, as longer (or, in
non-metrical filtrations, later) edges are introduced, a cycle can be shortened (by
the triangular inequality) by a longer edge which cuts a corner. Since at each step
the algorithm records the minimal representative, upon aggregating the minimal
scaffold one finds each cycle in its progressively shorter version, and the history of
the shortening is visible as a padding of triangles around it.

Considering the example of Fig. 4.3, in panel (a) we observe an example of a
filtration of simplicial complexes. At each step, highlighted in purple we may see
the minimal representative of a homology class, together with its evolution his-
tory. At filtration value 0.26, we observe a pentagon being reduced to a shorter,
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quadrilateral cycle by the addition of a longer edge. This is an example of the
phenomenon explained above. Fig. 4.2 gives a visual description of the difference
between a minimal and generic cycle.
The union of these progressively shorter cycles for all steps (weighted according to
Eq. (4.3)) is the minimal scaffold, as seen in Fig. 4.3 panel (b).

We remark that, if there is no ambiguity in the construction of a filtration of
simplicial complexes from a point cloud, or from a weighted graph, we will indiffer-
ently speak of the scaffold as a function of either of them (Hmin(C), or Hmin(W ),
or Hmin(F)).

ε

0 0.26 0.32 0.51

(a)

(b)

Figure 4.3: (a) The same point cloud of Fig. 4.1. Along the filtration we show the
evolution of minimal generators, which can get progressively shorter as new edges
are introduced. For example, at ε = 0.26, the pentagonal cycle gets cut to a shorter
quadrilateral, albeit with an individual longer edge. This evolution is accounted
for in the minimal scaffold, which displays the triangle-rich structure mentioned
above. (b) The resulting minimal scaffold (weights not reported).
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We have mentioned that the scaffold amounts to a change in weighting in the
input graph

hW,min : E → R+

altering the original weights of the edges. Additionally, considering node strength
(i.e. the sum of the weights of the edges incident to a given node), it can equally
be considered as a function

Hmin : V → R+

assigning weights to nodes. Considering the reliability of the choice of edges in
the procedure, this explains why the minimal scaffold can be utilized to associate
mesoscopic features with single nodes and links.

Computational Complexity
For large input sizes, the cost of assembling the minimal basis cycles into the

scaffold is negligible with respect to the cost of computing such minimal basis. We
know that each run of Dey’s algorithm costs O(|K|3) in the worst case ([35]), and
in the worst case |K| is itself O(n3) where n is the number of points.
The number of filtration steps has an upper bound of O(n2) (i.e., the number of
edges) in the worst case, as in general every edge may carry a different weight.
Hence Dey’s algorithm has to be run once for each edge in the worst case.
This yields a theoretical worst-case complexity of order O(n9n2) = O(n11). There-
fore, while the minimal scaffold is undeniably a polynomial-time algorithm, its
practical computation is often hindered by its dire lack of scalability, especially if
compared against the loose version, which has a far more favourable complexity.
A comparison of running times is carried out in Fig. 4.4, which clearly shows that
computing the minimal scaffold on an ordinary machine can quickly become trou-
blesome.

Implementation
We have written a Python implementation of Dey’s algorithm, together with

a library for the computation of the minimal scaffold. The code is available on
GitHub at [54], with some usage examples. It allows for shared-memory multi-
threaded parallelism across filtration steps to improve computation times, while
still being suitable for ordinary desktop workstations.

4.5 Uniqueness of the minimal scaffold
The uniqueness of the minimal scaffold depends on the uniqueness of the min-

imal basis. Indeed, if there exists only one possible set B∗ of cycles forming a
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Figure 4.4: The running times of computing the minimal and loose scaffolds for
Watts-Strogatz weighted random graphs. For all instances, number of nodes N
is indicated on the x-axis. Number of stubs k is N/2, and rewiring probability is
p = 0.025.

minimal basis, then the scaffold is uniquely determined. Two issues affect the
uniqueness of set B∗.

Draws
The first one arises when two or more different and homologous basis cycles

are of the same minimal length. This case is relatively simple to work around: we
modify the definition of minimal scaffold to keep track of all variants of minimal
basis cycles, dividing the weight equally among them.
Specifically, to account for this issue we have slightly modified Dey’s algorithm. In
its last step described above, one is concerned with finding all cycles whose anno-
tation is not orthogonal to the given support vector: among these, the one with
minimal length is chosen as a basis cycle. Instead, we keep track of all such cycles
with the same minimal length. This does not alter the complexity, as one needs to
check all possible cycles anyway. We call this case a draw. Therefore, we modify
set B to become a set of sets of cycles.
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Definition 53. Given complex K, we define a minimal basis with draws

B̃ :=
β1(K)⋃︂
i=1

{bi,1, ..., bi,ni
}

where for all i = 1, ..., β1(K), the cycles bi,j with j = 1, ..., ni are homologous and
have the same minimal length. Furthermore, for every choice of ji ∈ {1, ..., ni},
Spani{bi,ji} = H1(K). Call Vi := {bi,1, ..., bi,ni

} each set of draws, i.e., variants of
the ith minimal basis cycle, ∀i = 1, ..., β1(K).

In the example of Fig. 4.5(a) and (b), we have set B̃ = { {b1,1, b1,2} }, whereas
set B might have indifferently been equal to {b1,1} or to {b1,2}, whichever happened
to come first in the search. The minimal scaffold is modified accordingly.

Definition 54. Given the usual filtration F , let B̃ε be the minimal basis with
draws of H1(Kε). Again, we aggregate all variants of minimal basis cycles along
the filtration

B̃
∗ :=

∐︂
ε

B̃
ε

Then, we define the weighting function with draws h̃W,min : E → R+

h̃W,min :=
∑︂
V⊂B̃∗

1
|V |

∑︂
b∈V

1e∈b (4.4)

and the resulting minimal scaffold with draws H̃min(W ) is built from h̃W,min as
in Eq. (4.3).

The meaning of the above definition is that all variants of all minimal basis cy-
cles are taken into account when building the scaffold, and the weights are assigned
dividing each variant’s contribution by its cardinality, for each filtration step. In
the example of Fig. 4.5(c), the two cycles forming the variant of the only generator
are multiplied by a factor of 1

2 and then summed: therefore, common edges out-
side the diamond are assigned weight 1, consistently with the minimal scaffold in
(Eq. (4.3)), whereas the four edges forming the perimeter of the diamond each get
assigned weight 1

2 .

With the introduction of draws, we settle the case when ambiguity arises among
individual cycles, without interactions. As an example, we can state the following
result.
Proposition If F is such that, for all ε in the filtration, each basis cycle belongs
to a different connected component of Kε, then the minimal scaffold with draws
H̃min(F) is unique.
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Pathological cases
The other issue arises when there exist sets of minimal cycles that are repre-

sentatives for homology classes that are not linearly independent. Suppose that
three different cycles generate a homology group of dimension two, i.e., when three
minimal cycles are pairwise independent in homology, but threewise dependent. In
this case, two generators are sufficient to span H1 and, if their lengths are arranged
pathologically, there is no principled way to choose two out of the three.
Suppose for example that three cycles b1, b2 and b3 are such that

µ(b1) < µ(b2) = µ(b3) and [b1] = [b2] + [b3]

In this case, both bases {b1, b2} and {b1, b3} span the same homology space, and
are of equal minimal length. The minimality criterion fails in this case.
One could believe that such a configuration can only happen in the most general
spaces, and that by imposing some mild hypotheses on the input data one could
rule the pathology out. In fact the opposite is true, this degeneracy being possible
even after enforcing very strong conditions on the data.

Counterexample Even if W is planar and an isometric embedding W ↪→ R2

exists (i.e., the input planar weighted graph can be accurately drawn onto the
plane), the minimal scaffold H̃min(W ) needs not be unique.
In fact, consider complex K arising from the geometric, planar graph in Fig. 4.5(d).
Its homology H1(K) is generated by two cycles; possible generators are depicted
in Fig. 4.5(e). Since the outer cycle b1 is the shortest, and the two inner ones b2
and b3 are of equal length, the minimality criterion can not solve between {b1, b2}
and {b1, b3}, as both are acceptable minimal bases. The minimal scaffold (with or
without draws) is not unique in this case.

Clearly, the same could happen with more than three cycles, with a larger num-
ber of possibly ambiguous configuration. Therefore, if we allow for a high degree of
symmetry in the input, this pathology could arise even in the rather tame context
of planar graphs on R2. A similar pathology may arise when the weights of the
graph are integer numbers and there are several cycles of the same length. This
issue is rather delicate, in the sense that not only the algorithm is unable to make
a principled choice; it is not even capable of detecting when such a configuration
takes place. In fact, this is more of a feature of homology than a flaw in the skele-
tonization framework: what our eyes see as different cycles are in fact homologically
equivalent, and it is impossible to use homology to tell them apart.

We however remark that, for complexes arising from real-world data, this type
of configuration is actually pathological. Indeed, the following generality result
holds
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Proposition Assume a point cloud C = {Xi} such that the Xis are drawn
independently from a uniform distribution over [0,1]d. Then, almost surely, the
minimal scaffold Hmin(W ) (with or without draws) is unique.

If the input point cloud is sampled uniformly at random in some Rd, then
edge lengths are distributed according to an absolutely continuous probability law.
Therefore, given two edges e1 and e2, P[µ(e1) = µ(e2)] = 0. The same holds for
any two non-identical cycles, and any two homology bases (being but finite sets of
edges): the probability of them sharing the exact same length is zero. By finite-
ness of the input, at least one minimal homology basis exists and, by the above
reasoning, almost surely this basis is unique for each filtration step. Then, with
probability 1 the minimal scaffold is unique.

This result is actually quite general: whenever we can assume our input data
to be subject to noise, then we are in principle allowed to rule out pathological
same-length cycles. In these cases, the minimal scaffold is unique.

We remark that this uniqueness result is compatible with the phenomenon of
the concentration of measure: while for a very high-dimensional space or a very
large number of points we know from theory that the distribution of length of edges
concentrates towards its mean value, the probability of two edges (and hence two
cycles) having the same length is still zero. One needs to be careful, however, that
the probability of two cycles differing in length by less than some ϵ > 0 could grow
very rapidly with ϵ.

In summary, the minimal scaffold with draws H̃min is well-defined up to some
pathological circumstances, where it may depend on the ordering of the input.

4.6 Applications
As illustrative examples, we show here a few applications of the minimal scaf-

fold. Through it, we obtain meaningful subsets of known networks in neuroscience,
and rank their constituents by their “topological importance".

The C. Elegans dataset is a correlation network of neural activations of the ne-
matode worm Caenorhabditis Elegans. C. Elegans has become a model organism
due to the unique characteristic of each individual sharing the exact same nervous
system structure.
The input consists of a symmetric weighted adjacency matrix over 297 nodes, each
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Figure 4.5: Top panel: (a) A simplicial complex K. (b) Two homologous and
equally minimal generators of H1(K). (c) The minimal scaffold with draws
H̃min(K). The weight is equally divided among the variants of the minimal rep-
resentative. Bottom panel: (d) A simplicial complex K on the represented point
cloud. H1(K) has dimension 2. (e) µ(b1) < µ(b2) = µ(b3). A minimal basis can
either be composed of {b1, b2} or {b1, b3}, hence it is not unique.

representing a neuron. Edge weights represent (quantized) time correlations be-
tween the firing of neurons, ranging from 1 to 70.
The minimal homological scaffold of its brain map highlights the geometry of the
obstruction patterns, i.e., the precise areas where nervous stimuli are less likely to
flow. We stress the improvement obtained by the minimal scaffold over the loose
one, in that it is not only able to identify the presence of a “grey area" in the
network, but it can as well provide a reliable boundary for it, and identify which
neurons and inter-neuron links are responsible for information flowing around the
obstruction.
As an interesting example, we see in Fig. 4.6 the top 25 neurons ranked in descend-
ing order of relative node strength (sum of weights of incident edges) with respect
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to the average node strength. We can identify four nodes, labeled 81, 260, 36, and
37, which hold a significantly higher relative strength than the rest. This implies
their presence in many minimal cycles across several scales, hence suggesting that
they play a crucial role in the fabric of information flow within the nematode’s brain.

Figure 4.6: The top 25 neurons by relative node strength in the minimal scaffold
over average strength in C. Elegans (mean 36.41). Four neurons show a significantly
higher relative strength than the others.

The same type of analysis was repeated on the correlation network of brain
activities in an 88-parcel atlas of the human brain, obtained through fMRI imaging
at resting state. The data is courtesy of the Human Connectome Project ([75]).
Again, the minimal scaffold identifies which regions and links in the human brain
are key bridges for the flow of information. Two parcels stand out (Fig. 4.7(a)) as
particularly relevant for network topology.
For a relatively small network such as this, we can visualize the scaffold as a proper
subnetwork by a chord diagram (Fig. 4.7(b)), with edge weight represented by color
intensity and node strength by the size and color of the vertex. We stress that,
starting from a virtually complete graph over 88 nodes, we reduce the size from
3828 edges to just 191, while preserving the topological structure.
We can, as well, leverage libraries in computational neuroscience ([1]) to embed the
scaffold in the actual human brain, with regions correctly located, projected on the
three coordinated planes. In Fig. 4.7(c), for visualization purposes color intensities

70



4.7 – Comparison of Scaffolds

represent log-weight in the scaffold.
To better highlight the value of the scaffold in signalling brain network function,
we constructed a suitable null model of the functional network, as was done in [76].
The technique consists in reshuffling the correlation matrix subject to the constraint
of keeping a fixed spectrum, i.e. applying a random rotation, which guarantees the
matrix remains positive semidefinite and hence a proper correlation matrix. An
implementation of such a procedure can be found in [32].
The resulting randomized adjacency matrix is characterized by a vastly larger num-
ber of homological cycles than the original; so much so in fact that the computation
of its minimal scaffold becomes cumbersome. However, even without computing
them explicitly, we know for sure that the scaffolds of the original and randomized
networks are totally different, specifically because they are built by aggregating two
completely different persistence structures, i.e. the minimal scaffold does indeed
highlight the functional information in the original dataset.

The possible applications in which the minimal scaffold could provide novel
insight into the structure of brain data are many: any relatively small correlation
matrix could be either compressed or its patterns analyzed, as is often the case in
EEG [67, 61, 93, 60] or neuronal [50] studies, and in fMRI ones when using rather
coarse atlases (e.g. [95, 5]).

4.7 Comparison of Scaffolds
As the last contribution for this work, we consider a comparison between the

minimal and loose scaffolds.
We have already pointed out that the minimal scaffold in general offers superior
guarantees as a tool, both for network analysis and network skeletonization. On
the other hand, the loose scaffold clearly has an advantage in terms of compu-
tational complexity: while it is in principle viable for most of the applications
where persistent homology has been employed, the minimal scaffold, even adopt-
ing filtration-wise parallelization, requires a vastly larger amount of computational
power, which effectively limits its range of application, unless run on dedicated,
high-performance infrastructures.
A reasonable question to ask is the following. If one is interested not in the ex-
act structure of the scaffold, but only in its statistical behaviour, could the loose
scaffold provide a sufficient approximation of the minimal one? In a more concrete
example, if instead of wondering exactly which nodes in a network are the most
topologically important one is interested in the distribution of the degree sequence
of the minimal scaffold, could the loose one come to one’s help?
To answer this question, we have performed comparisons of several graph metrics
in the two scaffolds of C. Elegans. Further, to gain insight into the general case, we
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(a)

(c)

(b)

Figure 4.7: (a) The top 25 brain regions in the human brain by relative node
strength in the minimal scaffold over average strength (mean 546.7). Two neurons
show significantly higher importance. (b) The chord diagram of the minimal scaf-
fold. Node size represents node strength, edge color intensity represents weight
in the scaffold. (c) The minimal scaffold embedded in the human brain, with re-
gions accurately located, projected on the three coordinated planes. Edge color
represents log-weight in the minimal scaffold (Log-scale for visualization purposes).

have sampled two families of random graphs at different parameter values, one for
geometric graphs (Random Geometric Graph), and one for non-geometric graphs
(Weigthed Watts-Strogatz).

C. Elegans
For the C. Elegans dataset, we have compared the following graph metrics of

the minimal and loose scaffolds:

1. Degree Sequence
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2. Node Strength

3. Betweeness Centrality

4. Closeness Centrality

5. Eigenvector Centrality

6. Clustering Coefficients

7. Edge weights

Results (reported in the Table of Fig. 4.8(c)) indicate that, for metrics 1 to 5,
the two scaffolds are very well correlated. So for example the cheap, loose scaffold
is a reliable proxy of the distribution of the “true" degree sequence (scatterplot in
Fig. 4.8(d)).
We instead observe poor correlation of edge weights and clustering coefficients.
The first one is not unexpected, since the edge weighting procedure is conceptually
different in the two scaffolds: while in the minimal one we consider a different
basis for each filtration step, the loose scaffold considers bases of the persistent
homology space, drastically reducing the number of cycles considered. To make it
clearer, in general set B∗ has cardinality much larger than the dimension of PH1.
It is therefore explicable that the distributions of edge weights do not generally
agree.
Clustering coefficients, on the other hand, are a measure of how “triangular” a
graph is around a given node. As remarked in Section 4.4, another consequence of
assembling the scaffold from the minimal bases of the H1’s is that a large number
of artificial triangles appear around cycles. In this case too, therefore, the poor
correlation is easily explained.

Random Graphs
Drawing inspiration from [91], we repeat the analysis on random graph samples.

[91] divides random networks into two categories: those created from edge weight-
ing schemes and those created from points in the Euclidean space. We have chosen
to analyze the weighted Watts-Strogatz (WS) model as representative of the first
class, and the geometric random model as representative of the second. We remark
that weighting needs to be introduced in order to compute persistence; while for
geometric graphs this simply requires computing the Euclidean distance, for the
Watts-Strogatz model it requires an ad-hoc procedure that is described in detail in
the supplemental material of [91].
We briefly recall that a WS graph is parametrized by the number of nodes, by the
number of stubs to rewire, and by the rewiring probability. A random geometric
graph is instead parametrized by the number of points to sample (uniformly) in
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[0,1]d, and by a cutoff value that acts as distance threshold, beyond which no edge
is introduced.
In both cases, we observe good agreement on key statistics, as reported in Fig. 4.8(a)
and (b). Each bar is obtained by computing the correlation of the reported statis-
tic on a sample of 30 random graphs of the reported model, with parameters as
indicated on the x-axis.
For comparison, two null models are built for each instance of the minimal and
loose scaffolds in the sample, by constructing an Erdős-Rényi random graph on
the same vertex set, one with the same number of edges as the minimal scaffold,
and one with the same number as the loose one. The correlation is computed of
each statistic between the minimal scaffold and the loose null model and between
the loose scaffold and the minimal null model. The average of these correlations
is reported on the boxplots to act as a baseline value, highlighting that the two
scaffolding procedures agree with each other by more than just statistical noise.
For a finer analysis, we have performed a two-sample Kolmogorov-Smirnov test
comparing the distribution of the given metrics in the minimal and loose scaffolds,
for all parameter values of the two random models. We consider the Kolmogorov-
Smirnov test to be inconclusive if its p value exceeds a threshold of 0.05, in which
case one cannot confidently reject the null hypothesis that the samples are drawn
from the same distribution. In Fig. 4.8 panels (a) and (b), the darker boxes report
for each parameter choice and metric the fraction of samples for which the test was
inconclusive: in all cases except one, the KS test could not distinguish between
the distribution of the graph statistic between the minimal and loose scaffolds,
strengthening the indication of a good agreement between the two.

nPSO Random Graph Model
A modern random graph model, which has recently gained traction in network

science for its ability to concurrently tune several parameters of interest in mod-
eling real networks, is the Nonuniform Popularity-Similarity model. Introduced in
[79], it builds upon a sequence of increasingly refined generative models to pro-
vide all the key structural properties of real-world graphs, such as scale-freeness,
small-worldness and community structure. We therefore set out to employ it as
benchmark in our comparison of the minimal and loose scaffolds.
In general, networks which display hyperbolic geometries tend to have a rather
tree-like structure, with a certain scarcity of cycles. It is straightforward that, in
the absence of a significant structure of persistent homology, the loose and minimal
scaffolds will agree to high degree for at least two reasons: the low number of cycles
forces the loose scaffold to localize onto the few available holes, hence resembling
the minimal, and secondly the scarcity of homology makes for a comparison be-
tween two mostly empty sets.
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Following the lead of [3], we tuned the nPSO model parameters in order to em-
pirically maximize the persistent homology structure, so as to make the compari-
son the most significant possible. As reported in Fig. 4.9, we observe again good
ability of the scaffolds to proxy each other across the metrics analyzed, signifi-
cantly higher than with respect to a null model, for a sample with parameters
N = 50,m = 2, T = 5, γ = 3 and uniform distribution. A Kolmogorov-Smirnov
test was also performed, as in the previous section, where a p-value higher that
0.05 indicates that the distribution of degrees and betweeness centralities in the
minimal and loose scaffold cannot be confidently distinguished. This was the case
for all the samples we tested.

4.8 Conclusions
We provided a new method of network analysis and skeletonization, based on the

computation of minimal homology bases. This new construction fills a significant
gap in previous literature, in that it yields, in all but some pathological cases, a well-
defined and unique subgraph, acting as a reasonable ground truth for comparison
with the previous construction. It can be employed in a range of applications,
both to identify crucial and weak links in a network, and to obtain compressed
and topologically sound representations of the input. It also allows to evaluate
the reliability of other scaffolding procedures with respect to said ground truth:
we have observed that, for some applications, the loose scaffold can be deemed a
sufficiently accurate tool, while not incurring in as cumbersome a computational
load.
We foresee that the subject of homological skeletonization is not yet concluded.
Other approaches to finding canonical generators of homology are possible (for
example in [68] and [12]), and we plan to investigate them further in subsequent
works.
A question which remains open and could be worthy of further work is the following:
could one construct a sensible "entropy" functional on the space of cycles, so as to
obtain a strictly unique, minimally-represented basis that is in the most likely?
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Metric Corr p-val Corr p-val
Node Degree 0.953148 3.1842e-155 0.975559 3.4463e-196
Node Strength 0.772330 4.3712e-60 0.700653 3.7250e-45
Betw. Centrality 0.952098 7.7348e-154 0.986412 1.8813e-233
Closeness Centrality 0.921274 5.1143e-123 0.960413 8.7695e-166
Eigenvector Centrality 0.880711 9.5943e-98 0.858564 1.3911e-87
Clustering Coe�cients 0.412889 1.1778e-13 0.358577 1.9337e-10
Edge Weights 0.226321 1.3586e-09 0.086226 0.0224
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Figure 4.8: Correlations between the minimal and loose scaffold. (a) Comparison
in the weighted Watts-Strogatz model. Degree sequence and betweenness central-
ity in the two scaffolds are compared, using Pearson and Spearman correlation
coefficients. Each box is computed over a sample of 30 weighted Watts-Strogatz
random graphs, with parameters as reported on the x-axis: the pair (N, k) indicates
a WS model on N nodes, with k stubs to rewire. The rewiring probability is 0.025.
The cyan crosses and the green diamonds represent the average correlation value
against the loose and minimal null models, respectively. (b) Comparison in the
random geometric model. Each box is computed over a sample of 30 random geo-
metric graphs, with parameters as reported on the x-axis: the pair (N, t) indicates
a graph on N nodes sampled uniformly at random in the [0,1]2 square. t is the con-
nectivity distance threshold. The cyan x’s and the green diamonds represent the
average correlation value against the loose and minimal null models, respectively.
The darker boxes in panels (a) and (b) report, for their respective model and for
each metric and parameter values, the fraction of the sampled instances for which
the Kolmogorov-Smirnov test was inconclusive (p value > 0.05). (c) Correlation
tests for several network metrics on the C.Elegans network. (d) Scatterplot of the
degree sequence of neurons of C. Elegans in the minimal scaffold versus in the loose
one.
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KS Degree BC

Fraction 30/30 30/30

nPSO Model Comparison

(a) (b)

(c)

Figure 4.9: Comparison of the minimal and loose scaffold for nPSO random model.
(a) Degree sequence and betweenness centrality in the two scaffolds are compared
using Pearson and Spearman correlation coefficients. Each box is computed over
a sample of 30 nPSO instances, with the following parameters: 50 nodes, average
degree 10 (m = 5), 0 temperature, power-law exponent γ = 3, and uniform distri-
bution of angular coordinates. The cyan crosses and green diamonds represent the
average correlations against the loose and minimal null models respectively, as in
Fig. 4.8. In panel (b), the table reports, for the degree and betweenness centrality
distributions, the fraction of Kolmogorov-Smirnov test that could not reject the
hypothesis of the two samples coming from the same distribution. This has always
been the case for each sampled instance and both metrics. (c) A graphical depiction
of an instance of the nPSO model with parameters N = 150,m = 2, T = 5, γ = 3
and uniform distribution on the left. On the right, the corresponding minimal
scaffold.
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Chapter 5

Landscapes of data sets and
functoriality of persistent
homology

5.1 Introduction
This chapter comes from a joint work with Wojciech Chachólski, Nicola Quer-

cioli and Francesca Tombari which resulted in the paper [22]. The purpose of this
Chapter is to investigate a new way to look at data sets, in order to enlighten some
of the characteristics given by the symmetries of a problem. We will consider data
sets as finite sets of real valued functions on a finite set X, which will be called
domain of the data set. Each datum can be seen as a measurement performed
on the domain. Even at this very basic level, we can see that a data set enriches
us with knowledge about its domain. Since the data set can be seen as a vector
valued function Φ : X → Rn, where n is the number of functions in the data set,
the pullback of a metric on Rn through Φ endows X with a pseudo-metric that
will make it possible to extract non-trivial homological information in form of per-
sistent homology. A single measurement does not contain any higher non-trivial
homological information. Sets of measurements however do. Thus it is essential
that measurements, on a given set X, are grouped together to form various data
sets. In this case persistent homology becomes a non-expansive (1-Lipschitz) func-
tion PHΦ

d : Φ → Tame
(︂
Vect[0,∞)×R

)︂
, assigning to each measurement in the data

set Φ a tame persistence module parametrized by [0,∞) × R. It is important to
notice that the choice of a set of measurements on X affects the pseudo-metric
defined on it. One can use this fact to change the metric on X in order to extract
more meaningful information from persistent homology. Fore example, consider
the domain X = {(cos(2πt

4n ), sin(2πt
4n )) |t = 0, . . . , 4n− 1} and the data set Φ = {ϕ},

where ϕ : X → R is defined as ϕ(x, y) = x. The persistent homology of ϕ in degree
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greater than 0 is always trivial, since all the homology groups are the trivial vector
space. Let us consider g : X → X, the rotation by 90 degrees, g(x, y) = (−y, x).
If we add the measurement ϕ ◦ g to Φ, the pseudo-distance dΦ changes, and there
are values of ε > 0 such that H1VRε(X, dΦ) is non-trivial. Therefore, under the
addition of ϕ ◦ g to Φ, the persistent homology of ϕ is non-trivial in degree 1. This
illustrates how our knowledge of an object is affected by the number and the type
of measurements done on it. We remark that in this example we did not add a
“brand new” measurement. The data set is enlarged using its elements and their
composition with an endomorphism of X. If we consider the action of such endo-
morphisms on the data set, it is possibile to inject geometrical features of our choice
on the data set. For exhibiting and extracting interesting homological features of
data sets, such actions are therefore important.

A data set Φ is naturally equipped with an action of the monoid of its operations
EndΦ(X), which are endomorphisms of X preserving Φ. This action gives the set
Φ a structure of Grothendieck construction, that we will summarise with what we
call a Grothendieck graph. Persistent homology turns out to be a functor indexed
by this graph, rather than simply a function. Thus, not only persistent homology
can be assigned to individual measurements in a data set, but operations can be
used to compare persistent homologies of different measurements. That is what we
call local functorial properties of persistent homology.

Persistent homology also has certain global functorial properties. There are
various ways of representing data in the form of sets of measurements, we might
choose different units or different parametrizations of a domain of measurements,
or we might need to focus only on certain sets of transformations that act on the
dataset, such as rotations. Furthermore, the same measurements might be part
of different data sets. These are some of the reasons why it is essential to be
able to compare data sets equipped with different structures. For that purpose we
introduce the notion of incarnations of data sets to encode different actions, and
SEOs to compare incarnations. An incarnation of a data set Φ is an action of a
subset M ⊂ EndΦ(X). A SEO (set equivariant operator) between two incarnations
(Φ,M) and (Ψ, N) is a pair consisting of a map T : M → N and an equivariant
(with respect to T ) function α : Φ → Ψ. The use of this kind of operators for
the comparison of incarnations of data sets has been inspired by [10, 11] , where
GENEOs (group equivariant non-expansive operators) are introduced and used for
applications to neural networks. We will see how different kind of SEOs make it
possible or not to obtain a comparison between the persistent homologies of two
incarnations. When such a comparison is not possible, the information given by
the SEO and the one given by persistent homology are somehow complementary.

Consider a SEO obtained by composing measurements in a data set by a given
real valued function defined on the real numbers. Multiplication by −1 is an exam-
ple of such a SEO. It has the effect of turning the sub-level sets persistent homology
of a measurement into its super-level sets persistent homology, leading in general to
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a completely different information about the data set. The outcome consists of two
different points of view on the same object, that are not functorially comparable,
but together may enhance the accuracy of the analysis of the object of interest.

5.2 Data sets
For us a data set, which we regard as a point in the data landscape, is given by

a finite set of real valued functions on some finite set X also called measurements.

Definition 55. Given a finite set X, a data set Φ is a finite set of functions, called
measurements,

Φ = {ϕi : X → R | i = 1, · · · ,m}.
We define dom(Φ), the domain of data set Φ, to be the set X which is the domain
of the functions in Φ.

The most fundamental aspect of a data set Φ is that it is a set.

Definition 56. We denote by Data the category whose objects are data sets, with
functions between data sets as morphisms.

This is the most primitive landscape of data sets. The nature of our data sets
however can be used to impose more intricate structures and more meaningful
landscapes. This is reminiscent of the case of groups. The most fundamental
aspect of a group is that it is a set. However the category whose morphisms are
group homomorphism is a much more meaningful landscape in which to study
relationships between groups. To understand relationships between topological
groups, the category with continuous group homomorphisms provides an even more
meaningful landscape.

In this most primitive landscape however we can already perform products and
coproducts.

Definition 57. Let ϕ : X → R and ψ : Y → R be functions. Define ϕ+ψ : X ∐︁
Y →

R to be the function that maps x in X to ϕ(x) and y in Y to ψ(y). The coproduct
of two data sets Φ and Ψ, denoted by Φ∐︁Ψ, is defined to be the data set given
by the measurements {ϕ + 0 | ϕ ∈ Φ} ∪ {0 + ψ | ψ ∈ Ψ} on X

∐︁
Y . Their prod-

uct, denoted by Φ × Ψ, is defined to be the data set given by the measurements
{ϕ+ ψ | ϕ ∈ Φ and ψ ∈ Ψ} on X

∐︁
Y .

The functions:
Φ

Φ × Ψ Φ∐︁Ψ

Ψ

inΦ

ϕ→ϕ+0
prΦ

ϕ+ψ→ϕ

prΨ
ϕ+ψ→ψ

inΨ

ψ→0+ψ
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satisfy the following universal properties, which justify the names coproduct and
product:

• for any data set Π, and any two functions α : Φ → Π and β : Ψ → Π, there is
a unique function µ : Φ∐︁Ψ → Π for which µ inΦ = α and µ inΨ = β;

• for any data set Π, and any two functions α : Π → Φ and β : Π → Ψ, there is
a unique function µ : Π → Φ × Ψ for which prΦµ = α and prΨµ = β.

In the rest of the Chapter we will consider some examples of transformations
between data sets.

Definition 58. Let f : R → R be a function. By composing with f , a data set Φ
is transformed into a new data set fΦ := {fϕ | ϕ ∈ Φ}. This operation is called
change of units along f . The symbol f− : Φ → fΦ denotes the function mapping
ϕ to fϕ.

For example let s : R → R be the map

s(x) =
⎧⎨⎩1 if x ≥ 0

−1 if x < 0.

Consider X = {x1, x2} and two data sets Φ = {ϕ1, ϕ2} and Ψ = {ψ1, ψ2} given by
the constant functions

ϕ1(x1) = ϕ1(x2) = 1
ϕ2(x1) = ϕ2(x2) = 2
ψ1(x1) = ψ1(x2) = −1
ψ2(x1) = ψ2(x2) = 1.

Consider also the function α : Φ → Ψ such that α(ϕ1) = ψ1 and α(ϕ2) = ψ2. Then
sΦ = {ϕ1} and s− : Ψ → sΨ is the identity. Thus, there is no function sΦ → sΨ
making the following diagram commutative:

Φ sΦ = {1}

Ψ sΨ = Ψ

s−

α

s−=id

Consequently, for that s there is no functor S assigning to a data set Φ its change
of units sΦ along s, for which s− : Φ → sΦ is a natural transformation between
S and the identity functor. If the function f of a change of units is invertible,
then f− : Φ → fΦ is a bijection whose inverse is given by f−1−. The association
(α : Φ → Ψ) → ((f−)α(f−1−) : fΦ → fΨ) is a functor for which f− : Φ → fΦ is
a natural transformation between this functor and the identity functor. Changing
the units along any function preserves products and coproducts i.e., f(Φ∐︁Ψ) is
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isomorphic to f(Φ)∐︁ f(Ψ), and f(Φ × Ψ) is isomorphic to f(Φ) × f(Ψ). As we
have seen in the second Chapter of the thesis, it is often interesting to consider
transformations of a data set given by a rescaling of the measurements, and this is
exactly the idea behind change of units.

Another simple way to transform a data set is precomposing every measurement
of the data set with a function with codomain equal to the domain of the data set.

Definition 59. Let Φ be a data set with the domain X. By composing a function
f : Y → X with the measurements in Φ, we obtain a new data set Φf := {ϕf | ϕ ∈
Φ} with the domain Y . This operation is called domain change along f . The
symbol −f : Φ → Φf denotes the function that maps ϕ to ϕf .

Let f1 : Z1 → X and f2 : Z2 → Y be functions and f1
∐︁
f2 : Z1

∐︁
Z2 → X

∐︁
Y

be their coproduct. For any datasets Φ and Ψ with dom(Φ) = X and dom(Ψ) = Y ,
the following equalities hold:

(Φ
∐︂

Ψ)(f1
∐︂
f2) = Φf1

∐︂
Ψf2, (Φ × Ψ)(f1

∐︂
f2) = Φf1 × Ψf2.

5.3 Metrics and persistent homology
We can think about a data set Φ as a subset Φ ⊂ R|X|. Via this inclusion Φ

inherits a metric induced by the infinity norm ∥v∥∞ = max{|vi|} on R|X|. We use
the symbol ∥ϕ−ψ∥∞ to denote the distance between ϕ and ψ in Φ. The considered
data sets are not just sets anymore but metric spaces. Therefore, non-expansive
(i.e. 1-Lipschitz) functions between data sets play a special role. For example, let
f : R → R be a function. If f is non-expansive, then so is the change of units
along f , f− : Φ → fΦ, that maps ϕ to fϕ. The domain change −h : Φ → Φh
is non-expansive along any h. Non-expansiveness is an important assumption to
prove some stability results in [10] and it is also reasonable in applications, since
it is important that these functions between data sets do not alter the information
too much.

By taking all the measurements of Φ together, we can form a function φ :
[ϕ1 · · ·ϕm] : X → Rm. Via this function, X inherits a pseudo-metric dΦ defined
as the pullback of a distance on Rm. Given a metric δ on Rm, we can define a
pesudo-distance dφ−1δ as

dφ−1δ(x, y) = δ(φ(x), φ(y)). (5.1)

Here, we will focus on the pseudo-metric induced by the Chebyshev metric on Rm.
Explicitly, this pseudo-distance is dΦ(x, y) := max1≤i≤m|ϕi(x) − ϕi(y)|.

Proposition 7. Given a finite metric space (X, dX) with n points, there is a data
set Φ with n measurements such that the metric dΦ coincides with dX .
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Proof. For each point xi ∈ X consider the function ϕi : X → R, defined as

ϕi(xj) = dX(xi, xj).

Take Φ = {ϕi}i=1,...,n. For any xi, xj ∈ X, it holds dΦ(xi, xj) = dX(xi, xj). In fact,

dΦ(xi, xj) = max
1≤k≤n

|ϕk(xi) − ϕk(xj)| = max
1≤k≤n

|dX(xk, xi) − dX(xk, xj)|.

Then, because of the triangular inequality, for any k = 1, . . . , n it holds

|dX(xk, xi) − dX(xk, xj)| ≤ dX(xj, xi) = |ϕj(xi) − ϕj(xj)|

and the claim follows.

This metric plays a fundamental role as it permits us to extract persistent ho-
mologies (see [20, 40]) for each measurement in the dataset. To obtain a meaningful
filtration, of which we will compute the persistent homology, we will need to con-
sider more than one parameter. If we try to use only the sublevel sets of each
measurement, we obtain only a filtration of vertices, since there are no other sim-
plices defined on X. If, on the other hand, we use only the metric structure given
by dΦ, we loose the information encoded by the considered measurement. We will
combine the two approaches to obtain a useful filtration. For each ϕ ∈ Φ and
(r, s) ∈ [0,∞) × R we will consider the simplicial complex Kr,s = V Rr(ϕ ≤ s, dΦ),
where ϕ ≤ s is the subset of points of X where ϕ assumes values less or equal of
s. Therefore, V Rr(ϕ ≤ s, dΦ) is the simplicial complex whose simplices are the
subsets of ϕ ≤ s with diameter less or equal to r. We will apply to this filtration
the homology functor in degree d, Hd, to obtain the persistent homology:

PHΦ
d (ϕ)r,s := Hd (Kr,s) . (5.2)

Such a persistence module is indexed in the category ([0,∞) × R,≤), where
(r, s) ≤ (r′, s′) if and only if r ≤ r′ and s ≤ s′. The persistence module is well
defined, since if s ≤ s′ and r ≤ r′, then (ϕ ≤ s) ⊂ (ϕ ≤ s′) and therefore VRr(ϕ ≤
s) ⊂ VRr′(ϕ ≤ s′). The linear function induced on homology by this inclusion is
denoted by:

PHΦ
d (ϕ)(r,s)≤(r′,s′) : PHΦ

d (ϕ)r,s → PHΦ
d (ϕ)r′,s′ .

These functions form a functor PHΦ
d (ϕ) indexed by the poset [0,∞)×R with values

in the category of vector spaces. Since X is finite, PHΦ
d (ϕ) is tame (see [89]).

This means that values of PHΦ
d (ϕ) are finite dimensional, and there are two finite

sequences 0 = r0 < r1 < · · · < rm in [0,∞) and s0 < s1 < · · · < sl = ∞ in R such
that PHΦ

d (ϕ), restricted to subposets of the form [ri, ri+1) × (∞, s0) ⊂ [0,∞) × R
and [ri, ri+1) × [sj, sj+1) ⊂ [0,∞) × R, is constant. The category of such functors
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is denoted by Tame
(︂
Vect[0,∞)×R

)︂
.Thus a data set Φ leads to a function assigning

to each measurement ϕ its persistent homology in a given degree:

PHΦ
d : Φ → Tame

(︂
Vect[0,∞)×R

)︂
.

To compare different persistence modules we cannot use the interleaving distance as
it was defined in the first Chapter. We will recall here another notion of interleaving,
in order to define an interleaving distance on Tame

(︂
Vect[0,∞)×R

)︂
(see [71]).

Definition 60. Let P and Q be in Tame
(︂
Vect[0,∞)×R

)︂
.

• P and Q are ϵ-interleaved if, for all (r, s) in [0,∞) × R, there are linear
functions fs,r : Pr,s → Qr,s+ϵ and gs,r : Qr,s → Pr,s+ϵ making the following
diagram commutative:

Pr,s Pr,s+2ϵ

Qr,s−ϵ Qr,s+ϵ Qr,s+3ϵ

fs,r

P(r,s)<(r,s+2ϵ)

fr,s+2ϵgr,s−ϵ

Q(r,s−ϵ)<(r,s+ϵ) Q(r,s+ϵ)<(r,s+3ϵ)

gr,s+ϵ

• d▷◁(P,Q) := inf{ϵ ∈ [0,∞) | P and Q are ϵ-interleaved}.

The function P,Q → d▷◁(P,Q) is an extended (∞ is allowed) metric on the set
Tame

(︂
Vect[0,∞)×R

)︂
called interleaving metric in the direction of the vector (0,1).

Proposition 8. The function PHΦ
d : Φ → Tame

(︂
Vect[0,∞)×R

)︂
is non-expansive if

the set Φ is equipped with ∞-norm metric ∥ϕ−ψ∥∞ and the set Tame
(︂
Vect[0,∞)×R

)︂
is equipped with the interleaving metric in the direction of the vector (0,1).

Proof. Let ϕ, ψ : X → R be measurements in Φ and ϵ = ∥ϕ− ψ∥∞. For every s in
R, the sublevel set ϕ ≤ s is a subset of ψ ≤ s+ ϵ, and ψ ≤ s is a subset of ϕ ≤ s+ ϵ.
This translates into inclusions:

VRr(ϕ ≤ s, dΦ) ⊂ VRr(ψ ≤ s+ ϵ, dΦ) VRr(ψ ≤ s, dΦ) ⊂ VRr(ϕ ≤ s+ ϵ, dΦ)

leading to functions:

fs,r : PHΦ
d (ϕ)r,s → PHΦ

d (ψ)r,s+ϵ gs,r : PHΦ
d (ψ)r,s → PHΦ

d (ϕ)r,s+ϵ.

These functions provide ϵ interleaving between PHΦ
d (ϕ) and PHΦ

d (ψ), giving ∥ϕ−
ψ∥∞ ≥ d▷◁(PHΦ

d (ϕ), PHΦ
d (ψ)).
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A measurement ϕ : X → R can be part of many data sets and its persistent
homology depends on what data set this function is part of. For example, let
X = {x1, x2, x3, x4} and ϕ, ψ : X → R be measurements defined as follows:

ϕ(x1) = −1 ϕ(x2) = ϕ(x3) = 0 ϕ(x4) = 1
ψ(x3) = −1 ψ(x1) = ψ(x4) = 0 ψ(x2) = 1

The measurement ϕ is part of two data sets Φ = {ϕ} and Ψ = {ϕ, ψ}. The induced
pseudometrics dΦ and dΨ on X can be depicted by the following diagrams where
the continuous, dashed, and dotted lines indicate distance 0, 1 and 2 respectively:

dΦ

x1 x2

x3 x4

dΨ

x1 x2

x3 x4

In this case PHΦ
1 (ϕ)r,s = 0 for all r and s, however:

dimPHΨ
1 (ϕ)r,s =

⎧⎨⎩1 if 1 ≤ s and 1 ≤ r < 2
0 otherwise

To understand persistent homology, it is therefore paramount to understand
how it changes when data sets change and here functoriality plays an essential role.
This is not always achieved, but we can see that under particular conditions this is
the case.

Definition 61. Let Φ and Ψ be data sets consisting of measurements on X and
Y respectively. A function α : Φ → Ψ is called geometric if there is a function
f : Y → X, called a realization of α, making the following diagram commutative
for every ϕ in Φ:

Y

R
X

f

α(ϕ)

ϕ

For example −f : Φ → Φf is geometric, as it is realized by f .
The commutativity of the triangle above has two consequences. First, f is non-

expansive with respect to the pseudometrics dΦ on X and dΨ on Y . Second, for s
in R and ϕ in Φ, the subset (α(ϕ) ≤ s) ⊂ Y is mapped via f into (ϕ ≤ s) ⊂ X,
i.e., the following diagram commutes:

α(ϕ) ≤ s Y

R

ϕ ≤ s X

f f

α(ϕ)

ϕ
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Therefore, the realization f induces a map of Vietoris-Rips complexes and their
homologies:

fs,r : VRr(α(ϕ) ≤ s, dΨ) → VRr(ϕ ≤ s, dΦ);

PHΨ
d (α(ϕ))r,s PHΦ

d (ϕ)r,s

Hd (VRr(α(ϕ) ≤ s, dΨ)) Hd (VRr(ϕ ≤ s, dΦ)) .Hd(fr,s)

If f, f ′ : Y → X are two realizations of α, then for y in Y , dΦ(f(y), f ′(y)) = 0,
hence they are points of the same simplex in the Vietoris-Rips complex, implying
that fr,s and f ′

r,s are homotopic for all r and s. Consequently, Hd(fr,s) = Hd(f ′
r,s).

The linear function Hd(fr,s) depends therefore only on α and it is independent on
the choice of its realization f . We denote this function by:

PHα
d (ϕ)r,s : PHΨ

d (α(ϕ))r,s → PHΦ
d (ϕ)r,s.

These functions are natural in r and s and induce a morphism in the category
Tame

(︂
Vect[0,∞)×R

)︂
between persistent homologies:

PHα
d (ϕ) : PHΨ

d (α(ϕ)) → PHΦ
d (ϕ).

If α : Φ → Ψ and β : Ψ → Ξ are geometric functions realized by f : Y → X
and g : Z → Y , then the composition βα : Φ → Ξ is also geometric, and realized
by the composition fg : Z → X. Consequently, for every measurement ϕ in Φ,
PHβα

d (ϕ) = PHα
d (ϕ)PHβ

d (α(ϕ)), that assures the commutativity of the diagram:

PHΞ
d (βα(ϕ)) PHΨ

d (α(ϕ)) PHΦ
d (ϕ)

PHβ
d

(α(ϕ))

PHβα
d

(ϕ)

PHα
d (ϕ)

For any α : Φ → Ψ, taking persistent homology leads to two functions on Φ:

Tame
(︂
Vect[0,∞)×R

)︂
Φ

Ψ Tame
(︂
Vect[0,∞)×R

)︂
PHΦ

d

α PHΨ
d

These functions rarely coincide. However, when α is geometric, we can use the
morphisms PHα

d (ϕ) : PHΨ
d (α(ϕ)) → PHΦ

d (ϕ) to compare the values of these two
functions on Φ. For non-geometric α, we are not equipped with such comparison
morphisms and there is no reason for such a comparison to even exist. For example,
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consider the change of unit along the function f : R → R, f(x) := −x. Then
f− : Φ → fΦ is an isomorphism. In this case

PHΦ
d (ϕ)r,s := Hd (VRr(ϕ ≤ s, dΦ)) (f−)PHfΦ

d (ϕ) = Hd (VRr(ϕ ≥ −s, dΦ)) .

Thus PHΦ
d encodes information about sub-level sets of the measurements in Φ

and (f−)PHfΦ
d encodes information about super-level sets of the measurements.

These persistent homologies encode therefore the same information as the so called
extended persistence (see [27, 82]).

5.4 Actions
To describe symmetries of a data set Φ with domain X, we consider operations

on X that convert measurements into measurements. By definition a Φ-operation
is a function g : X → X such that, for every measurement ϕ in Φ, the composition
ϕg also belongs to Φ. If g : X → X is such an operation, then, for all ϕ and ψ in Φ:

∥ϕ− ψ∥∞ = maxx∈X |ϕ(x) − ψ(x)| ≥ maxx∈im(g)|ϕ(x) − ψ(x)| = ∥ϕg − ψg∥∞.

Thus the function −g : Φ → Φ that maps ϕ to ϕg is non-expansive.
The composition of Φ-operations is again a Φ-operation, and the identity func-

tion idX is also a Φ-operation. In this way the set of Φ-operations with the compo-
sition becomes a unitary monoid, called the structure monoid of Φ, and denoted
by:

EndΦ(X) = {g : X → X | ϕg ∈ Φ for every ϕ ∈ Φ} ⊂ End(X).
A Φ-operation g is invertible if there is a Φ-operation h such that gh = hg = idX .
Since Φ is finite, a Φ-operation is invertible if and only if it is a bijection. Their
collection is denoted by:

AutΦ(X) = {g : X → X | g is a bijection, and ϕg ∈ Φ for every ϕ ∈ Φ}.

With the composition operation, AutΦ(X) becomes a group for which the inclusion
AutΦ(X) ⊂ EndΦ(X) is a monoid homomorphism.

A data set Φ is equipped with an associative right action:

Φ × EndΦ(X) → Φ, (ϕ, g) → ϕg.

Thus Φ is not just a set, but a set with an action of the monoid EndΦ(X). To
encode the symmetries of Φ induced by this action, we consider its incarnations.

Definition 62. An incarnation of Φ is a choice of a subset M ⊂ EndΦ(X) (in
general, not necessarily a submonoid). An incarnation is denoted by a pair (Φ,M).
We think about M as an additional structure on Φ. An incarnation of the form
(Φ,M) is called an M -incarnation.
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We also refer to an M -incarnation as an M -action. The choice of an M -action
on Φ encodes certain symmetries of Φ. Different choices of M can encode different
symmetries. This flexibility is important in applications. For example in data sets
that represent images, we might want to focus on rotational symmetries, so we may
use an appropriate action on the data set to inject the corresponding geometry. The
incarnation (Φ,EndΦ(X)) is an example of a incarnation called universal.

An incarnation (Φ,M) is called a monoid incarnation if M ⊂ EndΦ is a
submonoid, and our convention here is that all such submonoids contain the iden-
tity element. If (Φ,M) is an incarnation, we use the symbol (Φ, ⟨M⟩) to denote
the monoid incarnation induced by M , where ⟨M⟩ ⊂ EndΦ(X) is the submonid
generated by M .

If a submonoid M ⊂ EndΦ(X) is a group, then (Φ,M) is called a group
incarnation. The incarnation (Φ,AutΦ(X)) is an example of a group incarnation
called universal.

Let (Φ,M) be an incarnation for which any element g in M is a bijection.
Such incarnations are called group-like. For group like incarnations (Φ,M) the
finiteness implies that the monoid ⟨M⟩ is in fact a subgroup of AutΦ(X). Thus any
group-like incarnation (Φ,M) leads to a group incarnation (Φ, ⟨M⟩).

Let (Φ,M) be an incarnation. For a subset Ω ⊂ Φ, the symbol ΩM denotes
the set of all the measurements in Φ which either belong to Ω or are of the form
ωg1 · · · gk, for some ω in Ω and some sequence of elements g1, . . . gk in M . If ΩM =
Φ, then Ω is said to generate the incarnation (Φ,M). In the case (Φ,M) is a
monoid incarnation, then any element in ΩM is of the form ωg for some ω in Ω
and g in M . Note that ΩM = Ω⟨M⟩ for every incarnation (Φ,M).

If ψ belongs to ϕM := {ϕ}M , then ψ is said to be a deformation of ϕ. If (Φ,M)
is a group incarnation, then the relation of being a deformation is an equivalence
relation. For a general incarnation however being a deformation can fail to be even
a symmetric relation. Two measurements in Φ are said to be connected if they are
related by the equivalence relation generated by the relation of being a deformation,
that is the smallest equivalence relation that contains the relation of deformation.
The symbol Φ/M denotes the partition of Φ induced by this equivalence relation.
We refer to Φ/M as the quotient of the incarnation (Φ,M). The partitions Φ/M
and Φ/⟨M⟩ coincide. If (Φ,M) is a group incarnation, then Φ/M coincide with the
orbit partition of the usual group action of M on Φ.

Let (Φ,M) be an incarnation. For a measurement ψ in Φ, the symbol [ψ]
denotes the block in Φ/M containing ψ. Explicitly, [ψ] is the subset of Φ consisting
of all the measurements connected to ψ. Note that, for all g in M , if ϕ is connected
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to ψ, then ϕg is also connected to ψ. We thus have the following inclusions:

M EndΦ(X)

End[ψ](X) End(X)

The M incarnation ([ψ],M) of the block [ψ], given by the above inclusions M ⊂
End[ψ], is called a block incarnation of (Φ,M). In this way we can think about
[ψ] and ([ψ],M) as a new data set.

An incarnation (Φ,M) is called transitive if all the elements in Φ are connected
to each other. For example, let M be a finite submonoid of End(X). For a given
function ϕ : X → R, define a data set ϕM := {ϕg | g ∈ M} to consist of all functions
of the form x → ϕ(g(x)) for all g in M . Then every g : X → X in M is a ϕM -
operation. The obtained incarnation (ϕM,M) is transitive. Any transitive group
incarnation is of such form. For all measurements ϕ in any incarnation (Φ,M), the
block incarnation ([ϕ],M) is transitive. Any transitive incarnation is of this form.

Definition 63. Let (Φ,M) be an incarnation. A subset Ω ⊂ Φ is called inde-
pendent if no element in Ω is a deformation of any other element in Ω, explicitly:
ω /∈ ω′M for all ω /= ω′ in Ω.

A basis of (Φ,M) is an independent subset Ω ⊂ Φ such that ΩM = Φ (Ω
generates (Φ,M)).

Two measurements ψ and ϕ are called indistinguishable if ψ is a deformation
of ϕ and ϕ is a deformation of ψ. If (Φ,M) is a group incarnation, then ψ and ϕ are
indistinguishable if and only if ψ = ϕg for some g in M , i.e., if ψ is a deformation
of ϕ.

Proposition 9. 1. Every incarnation has a basis.

2. Let Ω,Ω′ ⊂ Φ be two bases of an incarnation (Φ,M). Then there is a bijection
σ : Ω → Ω′ such that ω and σ(ω) are indistinguishable for every ω in Ω.

Proof. (1): Let (Φ,M) be an incarnation. Choose Ω ⊂ Φ to be an independent
subset for which ΩM is maximal. Existence of Ω is guaranteed by finiteness of Φ.
We claim that ΩM = Φ and hence Ω is a basis. If this is not the case, let ψ be in
Φ\ΩM . Define Ω′ = {ψ}∪{ω ∈ Ω | ω /∈ {ψ}M}. Then Ω′M contains Ω and hence
ΩM . It also contains ψ. Since Ω′ is independent, we would obtain a contradiction
to the maximality assumption about ΩM , and thus the claim holds.
(2): Let ω be in Ω. Since ΩM = Φ = Ω′M , there is ω′ in Ω′ such that ω ∈ ω′M .
Let ω1 in Ω be such that ω′ ∈ ω1M . Then ω ∈ ω′M ⊂ ω1M , and hence ω = ω1 by
the independence of Ω. The desired bijection is then given by ω → ω′.
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According to Proposition 9, any two bases of an incarnation have the same
number of elements. We define the dimension of an incarnation to be the car-
dinality of its bases. For example a transitive group incarnation has dimension 1.
In fact for a transitive group incarnation any single measurement forms a basis.
More generally, the dimension of a group incarnation (Φ,M) equals the cardinality
of Φ/M . In this case Ω ⊂ Φ is a basis if and only if, for every block Ψ in Φ/M ,
the intersection Ω ∩ Ψ has only one element. Since being a basis depends only on
the monoid ⟨M⟩, the dimension of a group-like incarnation (Φ,M) equals also the
cardinality of Φ/M , and similarly a subset Ω ⊂ Φ is a basis if and only if, for every
block Ψ in the partition Φ/M , the intersection Ω ∩ Ψ has only one element.

The dimension of a transitive monoid incarnation can be bigger than 1. For
example, let X = {x1, x2, x3} and consider functions ϕ1, ϕ2, ϕ3 : X → R and
g1, g2, g3 : X → X defined as follows:

ϕ1(x1) = 2 ϕ2(x1) = 2 ϕ3(x1) = 1 g1(x1) = x2 g2(x1) = x2 g3(x1) = x1
ϕ1(x2) = 2 ϕ2(x2) = 2 ϕ3(x2) = 2 g1(x2) = x2 g2(x2) = x2 g3(x2) = x2
ϕ1(x3) = 3 ϕ2(x3) = 2 ϕ3(x3) = 2 g1(x3) = x3 g2(x3) = x2 g3(x3) = x2

The compositions gigj and ϕigj are described by the following tables:

g1 g2 g3
g1 g1 g2 g2
g2 g2 g2 g2
g3 g2 g2 g3

g1 g2 g3
ϕ1 ϕ1 ϕ2 ϕ2
ϕ2 ϕ2 ϕ2 ϕ2
ϕ3 ϕ2 ϕ2 ϕ3

Thus the functions g1, g2, and g3 are Φ := {ϕ1, ϕ2, ϕ3}-operations. Furthermore the
subset M := {id, g1, g2, g3} ⊂ EndΦ(X) is a submonoid. The incarnation (Φ,M) is
a transitive monoid incarnation. Since the set {ϕ1, ϕ3} is independent and generates
(Φ,M), it is a basis. Thus (Φ,M) is an example of a transitive monoid incarnation
of dimension 2.

5.5 Nirvana
To compare incarnations of various data sets we are going to use maps that

preserve the incarnation structure.

Definition 64. A set equivariant operator (SEO) from an incarnation (Φ,M) to
an incarnation (Ψ, N), denoted by (α, T ) : (Φ,M) → (Ψ, N), is a pair of functions
(α : Φ → Ψ, T : M → N) for which the following diagram commutes:

Φ ×M Φ × EndΦ(X) Φ

Ψ ×N Ψ × EndΨ(Y ) Ψ

α×T

action

α

action
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Explicitly, for ϕ in Φ and g in M , it holds α(ϕg) = α(ϕ)T (g).

This implies that for ϕ in Φ and every sequence of elements g1, . . . , gk in M , it
holds:

α(ϕg1 · · · gk) = α(ϕ)T (g1) · · ·T (gk).
Be however aware that in general there may not be a homomorphism T : ⟨M⟩ →

⟨N⟩ of monoids which extends T : M → N and makes the following diagram com-
mutative:

Φ ×M Φ × ⟨M⟩ Φ × EndΦ(X) Φ

Ψ ×N Ψ × ⟨N⟩ Ψ × EndΨ(Y ) Ψ

α×T α×T

action

α

action

A SEO between monoid incarnations (α, T ) : (Φ,M) → (Ψ, N) is called a MEO
(monoid equivariant operators) if T : M → N is a monoid homomorphism. A MEO
between group incarnations is also called a GEO (group equivariant operators).

Let (α0, T0) : (Φ0,M0) → (Φ1,M1) and (α1, T1) : (Φ1,M1) → (Φ2,M2) be SEOs.
Then the compositions (α1α0, T1T0) form a SEO. Furthermore the pair (idΦ, idM) : (Φ,M) →
(Φ,M) is also a SEO. The composition of SEOs is an associative operation and de-
fines a category structure on the collection of data set incarnations with SEOs as
morphisms. This category is called Nirvana.

A SEO (α, T ) : (Φ,M) → (Ψ, N) is an isomorphism if and only if both of the
functions α and T are bijections. Isomorphisms preserve independence and being
a basis:

Proposition 10. If (α, T ) : (Φ,M) → (Ψ, N) is an isomorphism, then a subset
Ω ⊂ Φ is independent or a basis if and only if its image α(Ω) ⊂ Ψ is independent
or a basis.

Proof. Assume α and T are bijections. This assumption imply that ϕ1 belongs to
ϕ2M if and only if α(ϕ1) belongs to α(ϕ2)N . It follows that two elements in Φ
are (in)dependent if and only if their images via α are (in)dependent in Ψ. By the
same argument, ΩM = Φ if and only α(Ω)T (M) = α(Φ).

According to Proposition 10 two isomorphic incarnations have the same dimen-
sion.

The universal incarnations (Φ,EndΦ(X)) and (Φ,AutΦ(X)) are special in the
category Nirvana. For any (Φ,M), the pair (id, i : M ↪→ EndΦ(X)) defines a SEO
(Φ,M) → (Φ,EndΦ(X)) called canonical. If (Φ,M) is a group incarnation, then
the pair (id, i : M ↪→ Autϕ(X)) defines a GEO (Φ,M) → (Φ,Autϕ(X)) also called
canonical.

The rest of this section is devoted to present three ways of constructing SEOs.
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5.5.1 Change of units
Consider a function f : R → R. For any incarnation (Φ,M), consider the data

set fΦ (see Section 5.2). If g is a Φ-operation, then it is also a fΦ-operation.
Thus, there is an inclusion EndΦ(X) ⊂ EndfΦ(X), which is an equality if f is
invertible, therefore we have an incarnation (fΦ,M). If (Φ,M) is a monoid or a
group incarnation, then so is (fΦ,M). The pair (f−, idM) : (Φ,M) → (fΦ,M) is
a SEO called the change of units along f .

Assume f is invertible. If (α, T ) : (Φ,M) → (Ψ, N) is a SEO, then the pair
of functions ((f−)α(f−1−), T ) forms a SEO between (fΦ,M) and (fΨ, N). The
assignment (α, T ) → ((f−)α(f−1−), T ) is a self functor C(f) of Nirvana also called
the change of units along f . It is an equivalence of categories. Indeed,

C(f)C(f−1)((Φ,M)) = C(f)(f−1Φ,M) = (Φ,M)
C(f)C(f−1)((α, T )) = C(f)((f−1−)α(f−), T ))

= ((f−)(f−1−)α(f−)(f−1−), T ) = (α, T ).

The same holds for C(f−1)C(f), hence C(f) is an equivalence of categories. The
SEOs (f−, idM) : (Φ,M) → (fΦ,M), for all incarnations (Φ,M), form a natural
transformation between the identity functor on Nirvana and the change of units
along f functor.

5.5.2 Domain change
Let (Φ,M) and (Ψ, N) be incarnations of data sets consisting of measurements

on X and Y respectively. A SEO (α, T ) : (Φ,M) → (Ψ, N) is called geometric if
there is a function f : Y → X, called a realization of (α, T ), making the following
diagram commutative for every ϕ in Φ and g in M :

Y Y

R

X X

T (g)

f

α(ϕ)

f

g
ϕ

For example, let (Φ,M) be an incarnation of a data set consisting of measurements
on X. Then the SEO (idΦ, idM) : (Φ,M) → (Φ,M) is geometric. The identity
function idX : X → X is one of its realizations.

Let Y ⊂ X be M -invariant: g(y) belongs to Y for all y in Y and g in M .
Consider the data set Φ|Y given by the domain change along the inclusion Y ⊂ X.
The restriction of g to Y is a Φ|Y -operation for every g in M . We use the symbol
TY : M → EndΦ|Y (Y ) to denote the function that maps g in M to the restriction of
g to Y . The incarnation (Φ|Y , TY (M)) is called the restriction of (Φ,M) to the
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invariant subset Y . The pair (Φ ↠ Φ|Y , TY ) forms a geometric SEO. The inclusion
iY : Y ↪→ X is one of its realizations.

Let f : Y → X be a bijection. Consider the data set Φf . For any g in M , the
function f−1gf : Y → Y is a Φf -operation. Define T : M → EndΦf (Y ) to map g in
M to f−1gf . The incarnation (Φf, T (M)) is called the domain change of (Φ,M)
along f . The pair (−f : Φ → Φf, T ) forms a geometric SEO and f : Y → X is one
of its realizations.

5.5.3 Extending from a basis
SEOs can be effectively constructed using bases.

Proposition 11. Let (Φ,M) and (Ψ, N) be incarnations and Ω be a basis of
(Φ,M). Then two SEOs (α, T ), (α′, T ′) : (Φ,M) → (Ψ, N) are equal if and only
if T = T ′ and α(ω) = α′(ω) for any ω in Ω.

Proof. The only non trivial thing to prove in the statement of the proposition is that
α = α′ when their restrictions to Ω are equal. Assume T = T ′ and α(ω) = α′(ω) for
any ω in Ω. Since Ω generates (Φ,M), any element in Φ is of the form ϕ = ωg1 · · · gk
for some ω in Ω and a sequence of elements g1, . . . , gk in M . The assumption and
the fact that (α, T ) and (α′, T ) are SEOs, imply:

α(ϕ) = α(ωg1 · · · gk) = α(ω)T (g1) · · ·T (gk) =

= α′(ω)T (g1) · · ·T (gk) = α′(ωg1 · · · gk) = α′(ϕ).
Consequently α = α′.

According to Proposition 11, a SEO is determined by what it does on a basis
of the domain. This is analogous to a linear map between vector spaces being
determined by its values on a basis. However unlike for linear maps, we cannot
freely map elements of a basis of an incarnation to obtain a SEO. To obtain a
SEO certain relations have to be preserved. Let (Φ,M) be an incarnation. A
relation between measurements ϕ and ψ in Φ is by definition a pair of sequences
((g1, . . . , gk), (h1, . . . , hl)) of elements in M for which the following equality holds:
ϕg1 · · · gk = ψh1 · · ·hl.

Proposition 12. Let (Φ,M) and (Ψ, N) be incarnations, Ω be a basis of (Φ,M),
and ᾱ : Ω → Ψ and T : M → N be functions.

1. Assume that for every relation ((g1, . . . , gk), (h1, . . . , hl)) between any two ele-
ments ω, ω′ in Ω, the pair ((T (g1), . . . , T (gk)), (T (h1), . . . , T (hl))) is a relation
between α(ω) and α(ω′) in Ψ. Under this assumption, there is a unique SEO
(α, T ) : (Φ,M) → (Ψ, N) for which the restriction of α : Φ → Ψ to Ω is ᾱ.
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2. Assume (Φ,M) and (Ψ, N), are monoid incarnations, T is a monoid ho-
momorphism, and if ωg = ω′h for some ω, ω′ in Ω and g, h in M , then
α(ω)T (g) = α(ω′)T (h). Under these assumptions, there is a unique MEO
(α, T ) : (Φ,M) → (Ψ, N) for which the restriction of α : Φ → Ψ to Ω is ᾱ.

3. Assume (Φ,M) and (Ψ, N) are group incarnations, T is a group homomor-
phism, and if ω = ωg, for some ω in Ω and g in M , then α(ω) = α(ω)T (g).
Under these assumptions, there is a unique GEO (α, T ) : (Φ,M) → (Ψ, N)
for which the restriction of α : Φ → Ψ to Ω is ᾱ.

Proof. Since the proofs are analogous, we illustrate only how to show statement
(2). For every ϕ in Φ, there exist (not necessarily unique) ω in Ω and g in M such
that ϕ = ωg. The assumption implies that the expression α(ω)T (g) depends on ϕ
and not on the choices of ω and g for which ϕ = ωg. Thus by mapping ϕ in Φ to
α(ω)T (g) in Ψ, we obtain a well defined function also denoted by α : Φ → Ψ. The
pair (α, T ) is the desired MEO. The uniqueness is a consequence of Proposition 11.

For example assume (Φ,M) is a transitive group incarnation and (Ψ, N) is a
group incarnation. Choose an element ω in Φ. Recall that any such element is
a basis of (Φ,M). Fix a group homomorphism T : M → N . Then any GEO
(α, T ) : (Φ,M) → (Ψ, N) is uniquely determined by the element α(ω) in Ψ. Thus
by choosing a basis element ω in Φ, we can identify the collection of GEOs of the
form (α, T ) : (Φ,M) → (Ψ, N) with a subset of Ψ. To describe this subset explicitly,
we apply Proposition 12.2. It states that there is a GEO (α, T ) : (Φ,M) → (Ψ, N)
(necessarily unique) such that α(ω) = ψ if and only if the following implication
holds: if ω = ωg, then ψ = ψT (g). The collection Mω := {g ∈ M | ω = ωg} is the
isotropy subgroup of ω consisting of all the elements in M that fix ω. Thus GEOs
of the form (α, T ) : (Φ,M) → (Ψ, N) can be identified with the subset of all the
elements in Ψ whose isotropy group contains T (Mω).

5.6 Decomposition
We want to see that in order to study an incarnation, we have to focus only on

the blocks given by the action of the set of transformations on the data set. Let
(Φ,M) be an incarnation of a data set Φ. Consider its quotient Φ/M , which is a
partition of Φ, and the block incarnations (Ψ,M) for every block Ψ in Φ/M (see
Section 5.4). Let X be the domain of Φ. Recall that the domain of the data set∐︁

Ψ∈Φ/M Ψ is given by the disjoint union ∐︁Ψ∈Φ/M X, and that this data set consists
of functions ∐︁Ψ∈Φ/M X → R whose restrictions to all but one summands X in∐︁

Ψ∈Φ/M X is the 0 function and the restriction to the remaining summand belongs
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to the corresponding block of the partition Φ/M . Define:

M ′ =
⎧⎨⎩ ∐︂

Ψ∈Φ/M
g :

∐︂
Ψ∈Φ/M

X →
∐︂

Ψ∈Φ/M
X | g ∈ M

⎫⎬⎭ .
Then M ′ ⊂ End∐︁

Ψ∈Φ/M
Ψ(∐︁Ψ∈Φ/M X). We call (∐︁Ψ∈Φ/M Ψ,M ′) the diagonal incar-

nation. Define T : M → M ′ to map g : X → X in M to ∐︁Ψ∈Φ/M g in M ′. Define
α : Φ → ∐︁

Ψ∈Φ/M Ψ to map ϕ to the function ∐︁Ψ∈Φ/M X → R whose restriction to
the summand X corresponding to the block [ϕ] is ϕ and that maps all other sum-
mands to 0. Note that both of the functions α and T are bijections. Furthermore
they form a SEO between (Φ,M) and (∐︁Ψ∈Φ/M Ψ,M ′).

Proposition 13. The SEO (α, T ) : (Φ,M) → (∐︁Ψ∈Φ/M Ψ,M ′) is an isomorphism.

5.7 Grothendieck graphs
In this section we explain a convenient data structure to encode incarnations of

data sets.

Definition 65. A Grothendieck graph is a triple (V,M,E) consisting of a finite
set V whose elements are called vertices, a finite set M whose elements are called
colors or operations, and a subset E ⊂ V ×M ×V whose elements are called edges,
such that, for every vertex v in V , the following composition is a bijection:

({v} ×M × V ) ∩ E E V ×M × V M.
prM

This last condition assures that, for every v in V and g in M , there is a unique
element in V , denoted by vg, such that (v, g, vg) is an edge in E. For example let
(Φ,M) be an incarnation of a data set Φ. Define:

EΦ,M := {(ϕ, g, ψ) ∈ Φ ×M × Φ | ϕg = ψ}.

Then the triple (Φ,M,EΦ,M) is a Grothendieck graph. We think about this graph
as a convenient data structure representing the incarnation (Φ,M).

Grothendieck graphs are also convenient to represent SEOs.

Definition 66. Define a morphism between Grothendieck graphs (V,M,E)
and (W,N,F ) to be a pair of functions α : V → W and T : M → N such that, if
(v, g, w) belongs to E, then (α(v), T (g), α(w)) belongs to F . Such a morphism is
denoted by (α, T ) : (V,M,E) → (W,N,F ).

Componentwise composition defines a category structure on the collection of
Grothendieck graphs and we use the symbol GGraph to denote this category. If
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(α, T ) : (Φ,M) → (Ψ, N) is a SEO, then (α, T ) : (Φ,M,EΦ,M) → (Ψ, N,EΨ,N) is
a morphism between the associated Grothendieck graphs. By assigning to a SEO
(α, T ) the graph morphism given by the same pair (α, T ), we obtain a fully faithful
functor from the category Nirvana to GGraph.

Grothendieck graphs can also be used to encode pseudometric information on
incarnations. A pseudometric on a Grothendieck graph (V,M,E) is a pseudometric
d on V such that d(v, w) ≥ d(vg, wg) for all v and w in V , and g in M . For example,
the pseudometric ∥ϕ− ψ∥∞ on Φ is a pseudometric on the graph (Φ,M,EΦ,M).

A Grothendieck graph (V,M,E) is said to be compatible with a monoid struc-
ture on M if (v,1, v) is in E, and whenever (v0, g0, v1) and (v1, g1, v2) belong to E,
then so does (v0, g1g0, v2). In this case the composition operation given by the asso-
ciation (v0, g0, v1)(v1, g1, v2) → (v0, g1g0, v2) defines a category structure, denoted by
GrMV , with V as the set of objects and E as the set of morphisms. This category
is a familiar Grothendieck construction [39, 96]. For example, the Grothendieck
graph associated with a monoid incarnation (Φ,M) is compatible with the monoid
structure on M . We think about GrMΦ as an additional structure on the data set
Φ: objects are the measurements in Φ, morphisms are triples (ϕ, g, ϕg), where ϕ
is in Φ, g is in M , and the composition of (ϕ, g, ϕg) and (ϕg, h, ϕgh) is given by
(ϕ, gh, ϕgh).

Definition 67. A contravariant functor indexed by a Grothendieck graph (V,M,E)
with values in a category C, denoted by P : (V,M,E) → C, is by definition a se-
quence of objects {P (v) | v ∈ V } and a sequence of morphisms {P (v0, g, v1) : P (v1) →
P (v0) | (v0, g, v1) ∈ E} in C subject to: if (v0, g0, v1), (v1, g1, v2), and (v0, h, v2) are
edges in E, then P (v2, h, v0) = P (v2, g1, v1)P (v1, g0, v0).

If (V,M,E) is compatible with a monoid structure on M , then a contravari-
ant functor indexed by (V,M,E) is simply a contravariant functor indexed by the
category GrMV .

Let (Φ,M) be an incarnation of a data set Φ consisting of measurements on
X, and (Φ,M,EΦ,M) be the associated Grothendieck graph. For every g in M , the
function −g : Φ → Φ, mapping ϕ to ϕg, is geometric and realized by g : X → X
(see Section 5.3). Persistent homology leads therefore to the following collections
of objects and morphisms in Tame

(︂
Vect[0,∞)×R

)︂
as explained in Section 5.3:

{︂
PHΦ

d (ϕ) | ϕ ∈ Φ
}︂
,

{︂
PH−g

d (ϕ) : PHΦ
d (ϕg) → PHΦ

d (ϕ) | (ϕ, g, ϕg) ∈ EΦ,M
}︂
.

These sequences form a functor PHΦ
d : (Φ,M,EΦ,M) → Tame

(︂
Vect[0,∞)×R

)︂
also

referred to as the persistent homology functor of the incarnation (Φ,M).
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Let (α, T ) : (W,N,F ) → (V,M,E) be a morphism and P : (V,M,E) → C be a
functor. The following sequences of objects and morphisms in C form a contravari-
ant functor denoted by P (α, T ) : (W,N,F ) → C and called the composition of
(α, T ) with P :

{P (α(v)) | v ∈ V } ,

{P (w0, g, w1) : P (α(w1)) → P (α(w0)) | (w0, g, w1) ∈ F} .

For example, let (idΦ, i) : (Φ,M) → (Φ,EndΦ(X)) be the canonical SEO (see Sec-
tion 5.5). Consider the induced morphism of the associated Grothendieck graphs:

(idΦ, iM) : (Φ,M,EΦ,M) → (Φ,EndΦ(X), EΦ,EndΦ(X)).

Consider also the persistent homology of the universal incarnation:

PHΦ
d : (Φ,EndΦ(X), EΦ,EndΦ(X)) → Tame

(︂
Vect[0,∞)×R

)︂
.

The composition of these two functors coincides with the persistent homology of
the incarnation (Φ,M):

PHΦ
d : (Φ,M,EΦ,M) → Tame

(︂
Vect[0,∞)×R

)︂
.

In this way we obtain a commutative diagram:

(Φ,EndΦ(X), EΦ,EndΦ(X))

(Φ,M,EΦ,M) Tame
(︂
Vect[0,∞)×R

)︂
PHΦ

d(idΦ,iM )

PHΦ
d

Such a commutativity does not hold for arbitrary SEOs. Consider a SEO
(α, T ) : (Φ,M) → (Ψ, N). We can form two functors indexed by the graph (Φ,M,EΦ,M):

Tame
(︂
Vect[0,∞)×R

)︂
(Φ,M,EΦ,M)

(Ψ, N,EΨ,N) Tame
(︂
Vect[0,∞)×R

)︂

PHΦ
d

α PHΨ
d

These functors rarely coincide. However, in the case (α, T ) is geometric, the mor-
phisms PHα

d (ϕ) : PHΨ
d (α(ϕ)) → PHΦ

d (ϕ) (see Section 5.3), for all ϕ in Φ, form a
natural transformation.
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5.8 Conclusions
We defined datasets as set of measurements on a finite space X. We have seen

how multiparameter persistent homology can be used to study the functions in
a dataset. We enriched datasets with the action of a set of the endomorphisms
of X on the set of functions defined on X. We defined the incarnations to take
this structure into account and introduced the category Nirvana, along with set
equivariant operators, to have the proper setting to compare different incarnations
of datasets. We have given three examples of SEOs, change of units, domain change
and extension from a basis. Lastly, we introduced the structure of Grothendieck
graphs to relate data sets’ incarnations and set equivariant operators between them.
Persistent homology becomes a controvariant functor indexed by a Grothedieck
graph. We see that given a SEO between Grothendieck graphs, it is not always
possible to compare the associated persistent homologies, therefore set equivariant
operators and persistent homology yield different information.
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