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Abstract 
 
The Gaia Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) Parallel Solver 
aims to find the positions and the proper motions for ~108 stars in our galaxy, besides the attitude and 
the instrumental settings of the Gaia satellite, and the global parameter 𝛾 of the post Newtonian 
formalism. To find these parameters, the code solves a system of linear equations, 𝐀	 × 	𝒙 = 𝒃, where 
the coefficient matrix 𝐀  is large, containing ~1011x108 elements, and sparse. The system of equations 
is solved with a customized implementation of the iterative preconditioned (PC)-LSQR algorithm 
and is parallelized on the CPU with MPI+OpenMP, where the computation related to different 
horizontal portions of the coefficient matrix is assigned to different MPI processes and it is further 
parallelized on the OpenMP threads. To improve the code performance, we explored the feasibility 
of a porting of this application on a GPU environment, by replacing the OpenMP directives with the 
OpenACC correspondent ones. In this preliminary porting, the ~95% of the data is copied from the 
host (CPU) to the device (GPU) before the entire cycle of iterations, making the code compute bound 
rather than data-transfers bound. The OpenACC code accelerates of a factor of ~1.5 compared to the 
OpenMP code. The OpenACC application runs on multiple GPUs and it was tested on the CINECA 
SuperComputer Marconi100, with 4 V100 GPUs per node having 16 GB of memory each. A 
following porting, where the OpenACC language is replaced with CUDA, was performed, optimizing 
the preliminary porting with OpenACC. The CUDA code has just been put into production on 
Marconi100 and we plan to run it on the future pre-exascale platform Leonardo of CINECA, with 4 
next-generation A100 GPUs per node. 
  



 3 

Sommario 

1. Introduction ........................................................................................................................ 4 

2. Structure of the entire AVU-GSR application and of the coefficient matrix ......................... 5 

3. The OpenACC porting of the Gaia AVU-GSR parallel solver ............................................... 7 

3.1 Multi-GPU computation ......................................................................................................... 7 

3.2 Data transfers .......................................................................................................................... 8 

3.3 Parallelization with OpenACC directives ............................................................................... 9 

4. Performance comparison with the MPI+OpenMP code ..................................................... 10 

4.1 Detailed analysis of the speedup of the OpenACC code over the OpenMP code .................. 11 

5. GPU utilization .................................................................................................................. 13 

6. Conclusions and future perspectives .................................................................................. 13 

References and websites ............................................................................................................ 15 
 
 

 

  



 4 

1. Introduction 
 
The European Space Agency (ESA)’s Gaia mission [1] has provided, since its launch occurred on 
19th December 2013, a catalogue of astrometric parameters (parallaxes, sky positions, and proper 
motions) of ~109 stars in the Milky Way, ~1% of its total content, with an accuracy at the micro-
arcsecond level [1,2,3]. The third data release of Gaia (DR3) has just been published on 13th June 
2022 [3].  
 
In this report, we present the Gaia Astrometric Verification Unit-Global Sphere Reconstruction 
(AVU-GSR) Parallel Solver, an application developed under the Data Processing and Analysis 
Consortium (DPAC) that aims to find these astrometric parameters for the primary stars of the global 
astrometric sphere of the Gaia mission, i.e. for ~108 stars. Besides the astrometric parameters, this 
solver will constrain the attitude and the instrumental specifications of the Gaia spacecraft and the 
parameter 𝛾 of the Parametrized Post-Newtonian (PPN) formalism of relativistic gravity theories to 
model space-time and to test general relativity against alternative theories of gravity [4]. 
 
The code finds these parameters by solving a linearized system of equations, of the form: 
 

𝐀	 × 	𝒙 = 𝒃, 
 

where 𝐀 is the coefficient matrix, 𝒙 the array of the unknowns to solve, and 𝒃 the array of the known 
terms. The matrix 𝐀 is large, including ~1011x108 elements, and sparse, obeying to a peculiar sparsity 
scheme. The rows of the matrix represent the observations of the stellar parameters, where each of 
the ~108 stars is observed ~103 times on average, whereas the number of columns of 𝐀 is the number 
of unknowns to solve. To reduce the computation time, only the elements of 𝐀 different from zero 
are considered during calculations, passing from a sparse to a dense matrix, 𝐀𝐝. The dense matrix 𝐀𝐝 
contains ~1011x101 elements. This system of equations is overdetermined, being the number of 
equations larger than the numbers of unknowns. For this reason, it is solved in the least-square sense, 
adopting a customized version of the iterative LSQR algorithm [5,6], whose iterations stop when 
either a convergence condition or a maximum number of iterations set at runtime is reached. 
 
The version of the AVU-GSR code in production on the CINECA SuperComputer Marconi100 [7] 
since 2014 is written in C and C++ and it is parallelized on the CPU with a hybrid MPI+OpenMP 
approach [8]. This application was developed for the ESA Gaia mission, under an agreement between 
Istituto Nazionale di Astrofisica (INAF) and CINECA and with the support of Agenzia Spaziale 
Italiana (ASI) and it is currently employed by the Coordination Unit 3 (CU3) of the Data Processing 
and Analysis Consortium (DPAC). The complete AVU-GSR process is managed by the Data 
Processing Center of Turin (DPCT), which is supervised by the Aerospace Logistics Technology 
Engineering Company (ALTEC) and by the Astrophysics Observatory of Turin of INAF (INAF-
OATO). 
 
To accelerate of the AVU-GSR code, we ported it on a GPU environment. This report presents a 
preliminary porting of this application, where the OpenMP high-level directives are replaced by their 
OpenACC counterparts, finalized to understand the performance improvements due to the 
parallelization on GPU devices in perspective of a more optimized CUDA porting on pre-exascale 
systems [9,10,11,12]. With this first porting, we achieve a speedup of ~1.5 over the OpenMP code, 
result obtained by comparing the performances of the OpenMP and of the OpenACC codes on the 
CINECA infrastructure Marconi100. 
 
The OpenACC code is put in a GitLab repository, under a license held by INAF, that explicitly states 
that the re-use and the copy of the code is strictly prohibited by third parties unless expressly 

(1) 
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authorized by the authors of the code. The code is proprietary and confidential and it is reserved for 
the Gaia International Collaboration. 
 

2. Structure of the entire AVU-GSR application and of the coefficient 
matrix 

 
As said in Section 1, to solve the system of equations the code employs a customized implementation 
of preconditioned (PC)-LSQR algorithm, an iterative conjugate-gradient type algorithm that can 
solve an overdetermined system (number of equations > number of unknowns) of linear equations in 
the least-square sense. To find a unique solution, an additional number of constraints equations is set 
at the end of the system. For preconditioning technique it is intended a proper normalization of the 
coefficient matrix to accelerate the convergence speed of the LSQR. The main part of the LSQR 
procedure is the calling, at each iteration, of the aprod function, either in mode 1 or in mode 2. The 
aprod 1 computes the operation 𝐀	 ×	𝑥" and the aprod 2 computes the operation 𝐀# × 𝑦", where 𝑥" 
is the i-th iterative estimate of the unknowns array and 𝑦" is proportional to the array of residuals 
𝑦′" = 𝒃 − 𝐀 × 𝑥". The convergence is accomplished when 𝑦′" goes below a pre-defined tolerance 
𝑡𝑜𝑙, set to the machine precision. 
 
Figure 1 summarizes the entire structure of the AVU-GSR application and details how the aprod 1 
and 2 operations are actually implemented in the LSQR algorithm. The aprod 2 function is also 
employed to calculate the initial solution for the LSQR procedure. 

 
 

Figure 1: Structure of the entire Gaia AVU-GSR application with details of the aprod 1 and 2 operations. 
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Instead, Figure 2 illustrates the MPI+OpenMP parallelization scheme of the system of equations. In 
particular, it shows a system parallelized on four MPI processes allocated on one node of a computer 
cluster, where each MPI process is represented with a different colour. Each horizontal portion of the 
coefficient matrix, representing a subset of the total number of observations, is assigned to a different 
MPI process and it is further parallelized over the OpenMP threads. The number of observations 
assigned to each MPI process is stored in a 1D array, 𝑵, whose index goes from 0 to the number of 
MPI processes set at runtime minus 1. The for loop iterating on the observations related to each MPI 
process is parallelized with OpenMP with the #pragma omp for directive, placed within the #pragma 
omp parallel directive that defines a parallel region of the code on the CPU. 
 
 

 
Figure 2: Parallelization scheme of the system of equations (Eq. (1)) on 4 MPI processes in one node of a computer cluster. The MPI 

processes are represented with four different colours. 

 
Each row of the coefficient matrix, i.e. each observation equation, contains four sections, the 
astrometric, the attitude, the instrumental, and the global ones, divided by vertical lines in Figure 2. 
The 90% of the coefficients are contained in the astrometric section and we have 5 astrometric 
coefficients per star, where the number of stars is typically in the range of [106-108]. The astrometric 
coefficients follow a regular pattern and they are organized in a block-diagonal structure (see the blue 
blocks in the Astrometric part of the coefficient matrix shown in Figure 2). Given this regular pattern, 
the computation related to the astrometric part of the solution array is easily distributed among the 
MPI processes, whereas the computation related to the other three parts is replicated on the MPI 
processes, which does not imply a substantial slowdown of the code since the other three parts only 
represent the 10% of the total. The replicated parts of the solution array on the different MPI processes 
are reduced in a single value at the end of each iteration. 
 
Each row of the coefficient matrix contains 5, 12, 6, and 1 astrometric, attitude, instrumental, and 
global parameters different from zero, respectively. As said in Section 1, to perform the computation 
in reasonable timescales, only the non-zero parameters are considered in the coefficient matrix during 
calculations. An appropriate map containing the indexes that these parameters had in the complete 
coefficient matrix is defined in two 1D arrays, one for the astrometric and the attitude portions and 
one for the instrumental portion. The global portion always occupies the last column of the coefficient 
matrix. 
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3. The OpenACC porting of the Gaia AVU-GSR parallel solver 
 
We ported the AVU-GSR solver on a GPU environment, by replacing the OpenMP part with 
OpenACC (see [13] for the description of a semi-automatic methodology to parallelize scientific 
applications with the OpenACC parallelization language). 
 

3.1 Multi-GPU computation 
 
The MPI+OpenACC code runs on multiple GPUs according to the number of MPI processes set at 
runtime, as specified by the instruction at line 3 of Figure 3, which represents the AVU-GSR code 
parallelized in OpenACC. 
 

 
Figure 3: Structure of the entire MPI+OpenACC Gaia AVU–GSR application. 

The MPI processes in each node of a computer cluster are assigned to the GPUs of the node in a 
round-robin fashion, as also illustrated in Figure 4, that represents the coefficient matrix of the system 
of equations parallelized on 4 nodes of a computer cluster, with 4 MPI processes allocated per node 
and 4 GPUs per node.  
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Figure 4: Parallelization scheme of the coefficient matrix of the system of equations on 4 nodes of a computer clusters with 4 MPI 

processes allocated per node and 4 GPUs per node. 

Making another example, if a system is parallelized on 8 MPI processes per node on a platform with 
4 GPUs per node, the processes with rank 0 and 4 are assigned to GPU 0, the processes with rank 1 
and 5 to GPU 1, the processes with rank 2 and 6 to GPU 2, and the processes with rank 3 and 7 to 
GPU 3. 
 

3.2 Data transfers 
 
The management of the data transfers between the host (CPU) and the device (GPU) has to be taken 
with particular care in GPU programming. Indeed, the potential performance gain due to a 
parallelization on a device with a number of cores ~102 larger than on the CPU might be cancelled 
by a bad management of these data movements. Properly managing the data copies is especially 
important in iterative algorithms, where it is essential to transfer as much data as possible before 
and/or after the entire iteration cycle, and to reduce the transfers at every step of the algorithm. 
 
These data copies are defined through specific directives placed in strategical points of the code, 
highlighted in red in Figure 3. The data-copy regions are also highlighted in green (host-to-device – 
H2D transfers) and purple (device-to-host – D2H transfers) in Figure 5, that represents the output of 
the NVIDIA Nsight Systems profiler [14] for a run with 4 iterations of the LSQR algorithm 
parallelized on 4 MPI processes, and consequently on 4 GPUs, in one node of the CINECA 
SuperComputer Marconi100. Further details of this figure are provided in Section 4.1. 
 
In this porting, the ~95% of the data are moved H2D before the LSQR algorithm (see line 4 of Figure 
3 and the large green region in the left part of Figure 5). Instead, only the solution and the known 
terms arrays, which represent the ~5% of the memory occupied by the system, are moved at each 
iteration of the LSQR algorithm. Specifically, at each LSQR step, these two arrays are moved both 
H2D and D2H, in correspondence of both the aprod 1 and 2 functions, as highlighted at lines 10, 12, 
14, and 16 of Figure 3 and in Figure 5. 
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Figure 5: Output of the NVIDIA Nsight Systems profiler [14] for a run of the MPI+OpenACC code with 4 iterations of the LSQR 

algorithm. The code is parallelized on 4 MPI processes on one node of Marconi100, and thus on 4 GPUs, and the system occupies a 
memory of 10 GB. This output shows the portion of the OpenACC code from line 4 to line 17 of Figure 3. 

 
3.3 Parallelization with OpenACC directives 

 
We ported with OpenACC both the aprod 1 and the aprod 2 functions. In Section 2, we said that the 
for loop iterating on the number of observations assigned to each MPI process was parallelized with 
the #pragma omp for directive, placed within a #pragma omp parallel directive, that defines a 
parallel region of the code on the CPU. We substantially replaced these two directives with the 
#pragma acc parallel directive, which starts a parallel execution on the GPU, and with the 
#pragma acc for directive. To be effective, the #pragma acc parallel directive requires an 
analysis by the programmer to ensure safe parallelism of the region of the code that is enclosed within 
the directive scope. For the aprod 1, we defined four distinct parallel regions, called also GPU kernels, 
for the astrometric, the attitude, the instrumental, and the global sections of the system, whereas we 
defined the aprod 2 in a single parallel region. In the aprod 2 region, we also employed the #pragma 
acc atomic directive, to prevent different GPU threads to concurrently write the same elements of 
the unknowns array 𝒙. Figures 6 and 7 compare the OpenMP and the OpenACC pseudocodes related 
to the astrometric part of the aprod 1 and 2 functions, where the OpenMP directives are highlighted 
in blue and the OpenACC directives are highlighted in red. In the figure, “NAstro=5” is the number of 
non-zero astrometric coefficients per observation equation. The other three sections, attitude, 
instrumental, and global, follow a similar structure. For more details concerning the parallelization 
structure of the MPI+OpenMP and MPI+OpenACC versions of the AVU-GSR parallel solver consult 
[9,10]. 
 

 
Figure 6: Pseudocode of the astrometric part of the aprod 1 function parallelized with OpenMP (left panel) and OpenACC (right 

panel). The OpenMP directives are highlighted in blue and the OpenACC directives are highlighted in red. 
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Figure 7: Pseudocode of the astrometric part of the aprod 2 function parallelized with OpenMP (left panel) and OpenACC (right 

panel). The OpenMP directives are highlighted in blue and the OpenACC directives are highlighted in red. 

 

4. Performance comparison with the MPI+OpenMP code 
 
We compared the performance of the MPI+OpenMP and of the MPI+OpenACC versions of the Gaia 
AVU-GSR application by running the two codes on the CINECA SuperComputer Marconi100. Each 
node of this cluster has: 

1) 32 physical cores, distributed between 2 sockets that host 16 cores each. Each physical core 
corresponds to 4 virtual cores with a total of 128 (32 x 4) virtual cores per node; 

2) 4 NVIDIA Volta V100 GPUs, with 16 GB of memory each; 
3) 256 GB of RAM. 

 
Specifically, we performed three performance tests: 

1) On one node, maintaining the memory of the system fixed to 10 GB, on an increasing number 
of MPI processes (top-left panel of Figure 8); 

2) On an increasing number of nodes, with 4 MPI processes per node, maintaining the memory 
of the system fixed to 40 GB (top-right panel of Figure 8); 

3) On an increasing number of nodes, with 4 MPI processes per node, setting the memory of the 
system proportional to the number of nodes, with 40 GB per node (40 GB on one node, 80 on 
two nodes, 160 on four nodes, etc.) (bottom panel of Figure 8). 

 
In the top-left panel of Figure 8, we plot the average time of one LSQR iteration as a function of the 
number of MPI processes, set to 1, 2, 4, 8, 16, and 32. For the OpenMP code, the number of OpenMP 
threads per MPI process, represented on the top axis, are set such that the product between the number 
of MPI processes and the number of OpenMP threads is equal to 32, namely the number of physical 
cores per node. 
 
In the top-right panel of Figure 8, we plot the average time of one LSQR iteration as a function of the 
number of nodes. We ran on a number of nodes equal to 1, 2, 4, 8, and 16. Since we ran on 4 MPI 
processes per node, the two codes were parallelized on 4, 8, 16, 32, and 64 MPI processes. The 
OpenMP code is parallelized on 8 threads per MPI processes (4 MPI processes per node x 8 OpenMP 
threads per MPI process = 32 = number of physical cores per node). In the bottom panel of Figure 8 
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the quantities represented on the axes and the number of resources employed are as in the top-right 
panel. 
 
Except for the case where the OpenACC code is parallelized on 1 and 2 MPI processes (first two 
points in the top-left panel of Figure 8), when the performances of the OpenACC code are worse 
since it is parallelized only on 1 and 2 GPUs, respectively, the time ratio between the OpenMP and 
the OpenACC codes remains nearly constant. Indeed, in all the other cases the OpenACC code is 
parallelized on 4 GPUs per node (the maximum number of GPUs per node). The optimal 
configuration for the OpenACC code is to run on 4 MPI processes per node, since we obtain the best 
performance employing the smaller number of resources. Instead, as we can see from the top-left 
panel of Figure 8, the optimal configuration for the OpenMP code is to run on 16 MPI processes per 
node and 2 OpenMP threads per MPI process. The best performance gain obtained by the OpenACC 
code over the OpenMP code is of 𝜂 ~ 1.5. 
 

 
Figure 8: Performance tests for the MPI+OpenMP (blue lines and error bars) and the MPI+OpenACC (red lines and error bars) 

versions of the Gaia AVU-GSR application. Top-left panel: intra-node fixed memory performance test. Top-right panel: inter-nodes 
fixed memory performance test. Bottom panel: inter-nodes proportional memory performance test. 

 
4.1 Detailed analysis of the speedup of the OpenACC code over the OpenMP code 

 
We now investigate the origin of the speedup of the OpenACC code over the OpenMP code by 
comparing the execution times of different regions of the two applications. To perform this study, we 
compare an execution of the OpenACC and of the OpenMP codes, both run in their optimal 
configurations on one node of Marconi100 (4 MPI processes for the OpenACC code and 16 MPI 
processes + 2 OpenMP threads for the OpenMP code, as explained in Section 4). The system occupies 
10 GB of memory, as in the top-left panel of Figure 8. 
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As anticipated in Section 3.2, Figure 5 illustrates the output of the NVIDIA Nsight Systems profiler 
tool for the run considered in this section. The top panel of Figure 9, shows a zoom-in of one iteration 
of the run illustrated in Figure 5, where the iteration time equal to 𝑡$%&',)** = 314.730 ms ~ 0.31 s is 
superimposed to the figure. The output of the NVIDIA Nsight Systems profiler shows the 
computation regions due to the GPU kernels (blue), the H2D and the D2D copies (green and purple, 
respectively), and the regions still running on the CPU (white), and it is particularly useful to analyze 
the regions of code that might be further optimized (see [11]). 
 

 
Figure 9: Zoom-in of one iteration of the LSQR algorithm for the run illustrated in Figure 5. In the top, bottom-left, and bottom-right 

panels the times of one complete iteration of the LSQR cycle, of the only aprod 1 region, and of the only aprod 2 region are 
highlighted, respectively.  

The regions that we ported on the GPU are the aprod 1 and 2 functions, represented by the blue areas 
labelled as “b_plus...” (aprod 1) and “x_plus...” (aprod 2) in Figure 9. The bottom-left and the bottom-
right panels of Figure 9 are equal to the top panel of the same figure with highlighted the times of the 
aprod 1 (148.003 ms) and 2 (64.098 ms) regions. Whereas the execution times of the aprod 1 and 2 
regions in the OpenACC code are equal to 𝑡+,,)** ~ 0.15 s and 𝑡+-,)** ~ 0.064 s, the correspondent 
times in the OpenMP code are of 𝑡+,,./0 ~ 0.12 s and of 𝑡+-,./0 ~ 0.23 s, respectively. This means 
that, while aprod 1 region actually decelerates in the OpenACC code compared to the OpenMP code 
of a factor of ~0.8, the aprod 2 region accelerates to a factor of ~3.6. From this result we can conclude 
that the speedup of the OpenACC code over the OpenMP code is due to the aprod 2 region. 
 
To calculate the global speedup, also the memory transfers regions and the CPU regions have to be 
taken into account. Given that the time due to data copies in the OpenACC code is equal to 𝑡/&1 ~ 
0.04 s and that the time of the CPU regions on both codes is equal to 𝑡*02 ~ 0.064 s, the speedup 
results equal to: 
 

𝜂3 =
𝑡+,,./0 + 𝑡+-,./0 + 𝑡*02

𝑡+,,)** + 𝑡+-,)** + 𝑡/&1 + 𝑡*02
	~	1.3, 

 
which is consistent with the value 𝜂	~	1.5 found in Section 4. 
 
The GPU kernels computation, due to the aprod 1 and 2 functions, represents the 4!",$%%54!&,$%%

4'()*,$%%
×

100	~	69.0% of the iteration time, whereas the data movements only represent the 4+),
4'()*,$%%

×

100	~	12.9% of the iteration time. As we can see from the left panel in Figure 5, the data movements 

(2) 
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only represent the 11% of the entire execution time. This result indicates that the code is compute 
bound and not data-transfers bound. 
 

5. GPU utilization 

At compile time of the MPI+OpenACC code, we set a number of GPU registers equal to 32. This is 
a logical choice for a NVIDIA V100 GPU, since its architecture is organized such that groups of 32 
registers see the same cache memory and are subject to the same operation in a Single Instruction 
Multiple Data (SIMD)-like fashion. On the software side, this is encoded in the size of a warp, a 
logical block of 32 threads that always perform the same operations concurrently. Each warp is 
directly mapped on each block of 32 registers.		

To verify if 32 registers correspond to the optimal choice, we exploited the NVDIA Nsight Compute 
profiler tool [15], which shows the percentage of occupancy (SM %) of the GPU compared to the 
maximum occupancy. Figure 10 shows this percentage for a 32-registers compilation of the 
OpenACC code (green), compared to three other configurations, compiled with 64 (light blue), 128 
(purple), and 42 (orange) registers. The figure clearly shows that the GPU occupancy is better 
exploited in the 32-registers case (~78%) compared to the three other cases (~46%). The code 
compiled with 32 registers provides the smaller iteration time of the LSQR algorithm. 

 
Figure 10: Percentage of utilization of the compute (SM) and of the memory resources of the GPU compared to the theoretical 

maximum (Speed Of Light metric) when the OpenACC code is run on 32 (green bar), 64 (light blue bar), 128 (purple bar), and 42 
(orange bar) GPU registers, as set during compilation. The plot is performed with the NVIDIA Nsight Compute profiler tool. 

 

6. Conclusions and future perspectives 
 

 
In this report, we present a preliminary porting of the Gaia AVU-GSR code on a GPU environment 
with the OpenACC parallelization language. This analysis is propaedeutic to a more optimized 
porting with the CUDA parallelization model, that aims to exploit at most the GPU architecture, 
which is object of a paper in preparation [12] and of a submitted INAF technical report [11]. 
 
The MPI+OpenACC code is compute bound, that is the execution time is dominated by GPU kernel 
computation and not by memory transfers between the host and the device. Indeed, we managed to 
transfer H2D the ~95% of the data before the entire LSQR cycle. 
 
We compared the performances of the OpenMP and of the OpenACC codes by running the two 
applications on the CINECA SuperComputer Marconi100, that has 32 physical cores per node, 
equally distribuited between two sockets, 256 GB of RAM and 4 NVIDIA Volta V100 GPUs per 
node of 16 GB of memory each. To perform these tests, we ran the two codes (I) on an increasing 
number of MPI processes in a single node of the cluster, considering a system with a fixed amount 
of memory, (II) on an increasing number of nodes of the cluster, considering a system with a fixed 
amount of memory, and (III) on an increasing number of nodes of the cluster, considering a system 
with a memory proportional to the number of nodes. 
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The performance tests demonstrate that if parallelized on 4 MPI processes per node, equal to the 
number of GPUs per node, the OpenACC code runs in its optimal configuration and it accelerates 
with respect to the OpenMP code of a factor of ~1.5. This speedup is mainly due to the porting of the 
aprod 2 function. To obtain the best performance of the OpenACC code and to obtain an optimal 
exploitation of the GPU occupancy, the OpenACC code has to be compiled on 32 GPU registers. 
 
Even if with this OpenACC porting we obtained a moderate gain in performance compared to the 
CPU parallel code, further optimizations are possible. Despite the application is not data-transfers 
bound, we can see from Figure 9 that the code regions due to data copies are not negligible and they 
can be further reduced. Moreover, a not negligible section of the code is still running on the CPU and 
it can be ported on the GPU. However, a substantial gain in performance can be obtained by a change 
of parallelization model, from OpenACC, which provides a high-level parallelization approach, with 
directives, that does not change the structure of the original code, to CUDA, which provides a low-
level parallelization approach that requires the rearranging of some parts of the code to manually 
define the GPU threads hierarchy to properly match the GPU architecture and the topology of the 
system to solve. The CUDA code is already in production on the Marconi100 infrastructure and it 
provides a speedup of ~14 over the OpenMP code but a further speedup is expected when the CUDA 
code will be rearranged to match the architecture of the next-generation A100 GPUs that will be 
present on the future pre-exascale infrastructure of CINECA Leonardo, which will be operational by 
the end of this year. 
 
However, this simple porting has already provided essential information about the potential 
performance behaviour of the Gaia AVU-GSR code in perspective of (pre-)Exascale systems. This 
behaviour can be extended to other codes that obey to its same structure, namely that are based on 
the LSQR algorithm, currently employed in several contexts (e.g., geophysics, medicine, 
tomography, industry, and astronomy). 
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