
03 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Gaia AVU-GSR parallel solver: Preliminary studies of a LSQR-based application in perspective
of exascale systems

Published version:

DOI:10.1016/j.ascom.2022.100660

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1890597 since 2023-02-06T09:57:06Z

163Number

2022Publication Year

2022-07-05T14:55:01ZAcceptance in
OA@INAF

The Gaia AVU-GSR parallel solver: preliminary porting with
OpenACC parallelization language of a LSQR-based application
in perspective of exascale systems

Title

CESARE, VALENTINA; BECCIANI, Ugo; VECCHIATO, Alberto;
PITARI, FABIO; RACITI, MARIO; TUDISCO, GIUSEPPE;
Aldinucci, Marco

Authors

O.A. CataniaAffiliation of first
author

http://hdl.handle.net/20.500.12386/32451;
https://doi.org/10.20371/INAF/TechRep/163

Handle

 1

Technical Report

The Gaia AVU-GSR parallel solver: preliminary porting with

OpenACC parallelization language of a LSQR-based
application in perspective of exascale systems

Cesare Valentina
Becciani Ugo

Vecchiato Alberto
Pitari Fabio

Raciti Mario
Tudisco Giusepe
Aldinucci Marco

 2

Abstract

The Gaia Astrometric Verification Unit-Global Sphere Reconstruction (AVU-GSR) Parallel Solver
aims to find the positions and the proper motions for ~108 stars in our galaxy, besides the attitude and
the instrumental settings of the Gaia satellite, and the global parameter 𝛾 of the post Newtonian
formalism. To find these parameters, the code solves a system of linear equations, 𝐀	 × 	𝒙 = 𝒃, where
the coefficient matrix 𝐀 is large, containing ~1011x108 elements, and sparse. The system of equations
is solved with a customized implementation of the iterative preconditioned (PC)-LSQR algorithm
and is parallelized on the CPU with MPI+OpenMP, where the computation related to different
horizontal portions of the coefficient matrix is assigned to different MPI processes and it is further
parallelized on the OpenMP threads. To improve the code performance, we explored the feasibility
of a porting of this application on a GPU environment, by replacing the OpenMP directives with the
OpenACC correspondent ones. In this preliminary porting, the ~95% of the data is copied from the
host (CPU) to the device (GPU) before the entire cycle of iterations, making the code compute bound
rather than data-transfers bound. The OpenACC code accelerates of a factor of ~1.5 compared to the
OpenMP code. The OpenACC application runs on multiple GPUs and it was tested on the CINECA
SuperComputer Marconi100, with 4 V100 GPUs per node having 16 GB of memory each. A
following porting, where the OpenACC language is replaced with CUDA, was performed, optimizing
the preliminary porting with OpenACC. The CUDA code has just been put into production on
Marconi100 and we plan to run it on the future pre-exascale platform Leonardo of CINECA, with 4
next-generation A100 GPUs per node.

 3

Sommario

1. Introduction .. 4

2. Structure of the entire AVU-GSR application and of the coefficient matrix 5

3. The OpenACC porting of the Gaia AVU-GSR parallel solver ... 7

3.1 Multi-GPU computation ... 7

3.2 Data transfers .. 8

3.3 Parallelization with OpenACC directives ... 9

4. Performance comparison with the MPI+OpenMP code ... 10

4.1 Detailed analysis of the speedup of the OpenACC code over the OpenMP code 11

5. GPU utilization .. 13

6. Conclusions and future perspectives .. 13

References and websites .. 15

 4

1. Introduction

The European Space Agency (ESA)’s Gaia mission [1] has provided, since its launch occurred on
19th December 2013, a catalogue of astrometric parameters (parallaxes, sky positions, and proper
motions) of ~109 stars in the Milky Way, ~1% of its total content, with an accuracy at the micro-
arcsecond level [1,2,3]. The third data release of Gaia (DR3) has just been published on 13th June
2022 [3].

In this report, we present the Gaia Astrometric Verification Unit-Global Sphere Reconstruction
(AVU-GSR) Parallel Solver, an application developed under the Data Processing and Analysis
Consortium (DPAC) that aims to find these astrometric parameters for the primary stars of the global
astrometric sphere of the Gaia mission, i.e. for ~108 stars. Besides the astrometric parameters, this
solver will constrain the attitude and the instrumental specifications of the Gaia spacecraft and the
parameter 𝛾 of the Parametrized Post-Newtonian (PPN) formalism of relativistic gravity theories to
model space-time and to test general relativity against alternative theories of gravity [4].

The code finds these parameters by solving a linearized system of equations, of the form:

𝐀	 × 	𝒙 = 𝒃,

where 𝐀 is the coefficient matrix, 𝒙 the array of the unknowns to solve, and 𝒃 the array of the known
terms. The matrix 𝐀 is large, including ~1011x108 elements, and sparse, obeying to a peculiar sparsity
scheme. The rows of the matrix represent the observations of the stellar parameters, where each of
the ~108 stars is observed ~103 times on average, whereas the number of columns of 𝐀 is the number
of unknowns to solve. To reduce the computation time, only the elements of 𝐀 different from zero
are considered during calculations, passing from a sparse to a dense matrix, 𝐀𝐝. The dense matrix 𝐀𝐝
contains ~1011x101 elements. This system of equations is overdetermined, being the number of
equations larger than the numbers of unknowns. For this reason, it is solved in the least-square sense,
adopting a customized version of the iterative LSQR algorithm [5,6], whose iterations stop when
either a convergence condition or a maximum number of iterations set at runtime is reached.

The version of the AVU-GSR code in production on the CINECA SuperComputer Marconi100 [7]
since 2014 is written in C and C++ and it is parallelized on the CPU with a hybrid MPI+OpenMP
approach [8]. This application was developed for the ESA Gaia mission, under an agreement between
Istituto Nazionale di Astrofisica (INAF) and CINECA and with the support of Agenzia Spaziale
Italiana (ASI) and it is currently employed by the Coordination Unit 3 (CU3) of the Data Processing
and Analysis Consortium (DPAC). The complete AVU-GSR process is managed by the Data
Processing Center of Turin (DPCT), which is supervised by the Aerospace Logistics Technology
Engineering Company (ALTEC) and by the Astrophysics Observatory of Turin of INAF (INAF-
OATO).

To accelerate of the AVU-GSR code, we ported it on a GPU environment. This report presents a
preliminary porting of this application, where the OpenMP high-level directives are replaced by their
OpenACC counterparts, finalized to understand the performance improvements due to the
parallelization on GPU devices in perspective of a more optimized CUDA porting on pre-exascale
systems [9,10,11,12]. With this first porting, we achieve a speedup of ~1.5 over the OpenMP code,
result obtained by comparing the performances of the OpenMP and of the OpenACC codes on the
CINECA infrastructure Marconi100.

The OpenACC code is put in a GitLab repository, under a license held by INAF, that explicitly states
that the re-use and the copy of the code is strictly prohibited by third parties unless expressly

(1)

 5

authorized by the authors of the code. The code is proprietary and confidential and it is reserved for
the Gaia International Collaboration.

2. Structure of the entire AVU-GSR application and of the coefficient
matrix

As said in Section 1, to solve the system of equations the code employs a customized implementation
of preconditioned (PC)-LSQR algorithm, an iterative conjugate-gradient type algorithm that can
solve an overdetermined system (number of equations > number of unknowns) of linear equations in
the least-square sense. To find a unique solution, an additional number of constraints equations is set
at the end of the system. For preconditioning technique it is intended a proper normalization of the
coefficient matrix to accelerate the convergence speed of the LSQR. The main part of the LSQR
procedure is the calling, at each iteration, of the aprod function, either in mode 1 or in mode 2. The
aprod 1 computes the operation 𝐀	 ×	𝑥" and the aprod 2 computes the operation 𝐀# × 𝑦", where 𝑥"
is the i-th iterative estimate of the unknowns array and 𝑦" is proportional to the array of residuals
𝑦′" = 𝒃 − 𝐀 × 𝑥". The convergence is accomplished when 𝑦′" goes below a pre-defined tolerance
𝑡𝑜𝑙, set to the machine precision.

Figure 1 summarizes the entire structure of the AVU-GSR application and details how the aprod 1
and 2 operations are actually implemented in the LSQR algorithm. The aprod 2 function is also
employed to calculate the initial solution for the LSQR procedure.

Figure 1: Structure of the entire Gaia AVU-GSR application with details of the aprod 1 and 2 operations.

 6

Instead, Figure 2 illustrates the MPI+OpenMP parallelization scheme of the system of equations. In
particular, it shows a system parallelized on four MPI processes allocated on one node of a computer
cluster, where each MPI process is represented with a different colour. Each horizontal portion of the
coefficient matrix, representing a subset of the total number of observations, is assigned to a different
MPI process and it is further parallelized over the OpenMP threads. The number of observations
assigned to each MPI process is stored in a 1D array, 𝑵, whose index goes from 0 to the number of
MPI processes set at runtime minus 1. The for loop iterating on the observations related to each MPI
process is parallelized with OpenMP with the #pragma omp for directive, placed within the #pragma
omp parallel directive that defines a parallel region of the code on the CPU.

Figure 2: Parallelization scheme of the system of equations (Eq. (1)) on 4 MPI processes in one node of a computer cluster. The MPI

processes are represented with four different colours.

Each row of the coefficient matrix, i.e. each observation equation, contains four sections, the
astrometric, the attitude, the instrumental, and the global ones, divided by vertical lines in Figure 2.
The 90% of the coefficients are contained in the astrometric section and we have 5 astrometric
coefficients per star, where the number of stars is typically in the range of [106-108]. The astrometric
coefficients follow a regular pattern and they are organized in a block-diagonal structure (see the blue
blocks in the Astrometric part of the coefficient matrix shown in Figure 2). Given this regular pattern,
the computation related to the astrometric part of the solution array is easily distributed among the
MPI processes, whereas the computation related to the other three parts is replicated on the MPI
processes, which does not imply a substantial slowdown of the code since the other three parts only
represent the 10% of the total. The replicated parts of the solution array on the different MPI processes
are reduced in a single value at the end of each iteration.

Each row of the coefficient matrix contains 5, 12, 6, and 1 astrometric, attitude, instrumental, and
global parameters different from zero, respectively. As said in Section 1, to perform the computation
in reasonable timescales, only the non-zero parameters are considered in the coefficient matrix during
calculations. An appropriate map containing the indexes that these parameters had in the complete
coefficient matrix is defined in two 1D arrays, one for the astrometric and the attitude portions and
one for the instrumental portion. The global portion always occupies the last column of the coefficient
matrix.

{
{
{
{

Att+Instr+Glob

Observations: MPI proc. 0

G
l
o
b
a
l

A x

Replica Portion

Astrometric Attitude Instrument

Observations: MPI proc. 1

Observations: MPI proc. 2

Observations: MPI proc. 3

Astrometric

b

Reduction at iteration i

 7

3. The OpenACC porting of the Gaia AVU-GSR parallel solver

We ported the AVU-GSR solver on a GPU environment, by replacing the OpenMP part with
OpenACC (see [13] for the description of a semi-automatic methodology to parallelize scientific
applications with the OpenACC parallelization language).

3.1 Multi-GPU computation

The MPI+OpenACC code runs on multiple GPUs according to the number of MPI processes set at
runtime, as specified by the instruction at line 3 of Figure 3, which represents the AVU-GSR code
parallelized in OpenACC.

Figure 3: Structure of the entire MPI+OpenACC Gaia AVU–GSR application.

The MPI processes in each node of a computer cluster are assigned to the GPUs of the node in a
round-robin fashion, as also illustrated in Figure 4, that represents the coefficient matrix of the system
of equations parallelized on 4 nodes of a computer cluster, with 4 MPI processes allocated per node
and 4 GPUs per node.

 8

Figure 4: Parallelization scheme of the coefficient matrix of the system of equations on 4 nodes of a computer clusters with 4 MPI

processes allocated per node and 4 GPUs per node.

Making another example, if a system is parallelized on 8 MPI processes per node on a platform with
4 GPUs per node, the processes with rank 0 and 4 are assigned to GPU 0, the processes with rank 1
and 5 to GPU 1, the processes with rank 2 and 6 to GPU 2, and the processes with rank 3 and 7 to
GPU 3.

3.2 Data transfers

The management of the data transfers between the host (CPU) and the device (GPU) has to be taken
with particular care in GPU programming. Indeed, the potential performance gain due to a
parallelization on a device with a number of cores ~102 larger than on the CPU might be cancelled
by a bad management of these data movements. Properly managing the data copies is especially
important in iterative algorithms, where it is essential to transfer as much data as possible before
and/or after the entire iteration cycle, and to reduce the transfers at every step of the algorithm.

These data copies are defined through specific directives placed in strategical points of the code,
highlighted in red in Figure 3. The data-copy regions are also highlighted in green (host-to-device –
H2D transfers) and purple (device-to-host – D2H transfers) in Figure 5, that represents the output of
the NVIDIA Nsight Systems profiler [14] for a run with 4 iterations of the LSQR algorithm
parallelized on 4 MPI processes, and consequently on 4 GPUs, in one node of the CINECA
SuperComputer Marconi100. Further details of this figure are provided in Section 4.1.

In this porting, the ~95% of the data are moved H2D before the LSQR algorithm (see line 4 of Figure
3 and the large green region in the left part of Figure 5). Instead, only the solution and the known
terms arrays, which represent the ~5% of the memory occupied by the system, are moved at each
iteration of the LSQR algorithm. Specifically, at each LSQR step, these two arrays are moved both
H2D and D2H, in correspondence of both the aprod 1 and 2 functions, as highlighted at lines 10, 12,
14, and 16 of Figure 3 and in Figure 5.

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

Observations: node 1

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: node 2

Observations: node 3

Observations: node 4

GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3

 9

Figure 5: Output of the NVIDIA Nsight Systems profiler [14] for a run of the MPI+OpenACC code with 4 iterations of the LSQR

algorithm. The code is parallelized on 4 MPI processes on one node of Marconi100, and thus on 4 GPUs, and the system occupies a
memory of 10 GB. This output shows the portion of the OpenACC code from line 4 to line 17 of Figure 3.

3.3 Parallelization with OpenACC directives

We ported with OpenACC both the aprod 1 and the aprod 2 functions. In Section 2, we said that the
for loop iterating on the number of observations assigned to each MPI process was parallelized with
the #pragma omp for directive, placed within a #pragma omp parallel directive, that defines a
parallel region of the code on the CPU. We substantially replaced these two directives with the
#pragma acc parallel directive, which starts a parallel execution on the GPU, and with the
#pragma acc for directive. To be effective, the #pragma acc parallel directive requires an
analysis by the programmer to ensure safe parallelism of the region of the code that is enclosed within
the directive scope. For the aprod 1, we defined four distinct parallel regions, called also GPU kernels,
for the astrometric, the attitude, the instrumental, and the global sections of the system, whereas we
defined the aprod 2 in a single parallel region. In the aprod 2 region, we also employed the #pragma
acc atomic directive, to prevent different GPU threads to concurrently write the same elements of
the unknowns array 𝒙. Figures 6 and 7 compare the OpenMP and the OpenACC pseudocodes related
to the astrometric part of the aprod 1 and 2 functions, where the OpenMP directives are highlighted
in blue and the OpenACC directives are highlighted in red. In the figure, “NAstro=5” is the number of
non-zero astrometric coefficients per observation equation. The other three sections, attitude,
instrumental, and global, follow a similar structure. For more details concerning the parallelization
structure of the MPI+OpenMP and MPI+OpenACC versions of the AVU-GSR parallel solver consult
[9,10].

Figure 6: Pseudocode of the astrometric part of the aprod 1 function parallelized with OpenMP (left panel) and OpenACC (right

panel). The OpenMP directives are highlighted in blue and the OpenACC directives are highlighted in red.

 10

Figure 7: Pseudocode of the astrometric part of the aprod 2 function parallelized with OpenMP (left panel) and OpenACC (right

panel). The OpenMP directives are highlighted in blue and the OpenACC directives are highlighted in red.

4. Performance comparison with the MPI+OpenMP code

We compared the performance of the MPI+OpenMP and of the MPI+OpenACC versions of the Gaia
AVU-GSR application by running the two codes on the CINECA SuperComputer Marconi100. Each
node of this cluster has:

1) 32 physical cores, distributed between 2 sockets that host 16 cores each. Each physical core
corresponds to 4 virtual cores with a total of 128 (32 x 4) virtual cores per node;

2) 4 NVIDIA Volta V100 GPUs, with 16 GB of memory each;
3) 256 GB of RAM.

Specifically, we performed three performance tests:

1) On one node, maintaining the memory of the system fixed to 10 GB, on an increasing number
of MPI processes (top-left panel of Figure 8);

2) On an increasing number of nodes, with 4 MPI processes per node, maintaining the memory
of the system fixed to 40 GB (top-right panel of Figure 8);

3) On an increasing number of nodes, with 4 MPI processes per node, setting the memory of the
system proportional to the number of nodes, with 40 GB per node (40 GB on one node, 80 on
two nodes, 160 on four nodes, etc.) (bottom panel of Figure 8).

In the top-left panel of Figure 8, we plot the average time of one LSQR iteration as a function of the
number of MPI processes, set to 1, 2, 4, 8, 16, and 32. For the OpenMP code, the number of OpenMP
threads per MPI process, represented on the top axis, are set such that the product between the number
of MPI processes and the number of OpenMP threads is equal to 32, namely the number of physical
cores per node.

In the top-right panel of Figure 8, we plot the average time of one LSQR iteration as a function of the
number of nodes. We ran on a number of nodes equal to 1, 2, 4, 8, and 16. Since we ran on 4 MPI
processes per node, the two codes were parallelized on 4, 8, 16, 32, and 64 MPI processes. The
OpenMP code is parallelized on 8 threads per MPI processes (4 MPI processes per node x 8 OpenMP
threads per MPI process = 32 = number of physical cores per node). In the bottom panel of Figure 8

 11

the quantities represented on the axes and the number of resources employed are as in the top-right
panel.

Except for the case where the OpenACC code is parallelized on 1 and 2 MPI processes (first two
points in the top-left panel of Figure 8), when the performances of the OpenACC code are worse
since it is parallelized only on 1 and 2 GPUs, respectively, the time ratio between the OpenMP and
the OpenACC codes remains nearly constant. Indeed, in all the other cases the OpenACC code is
parallelized on 4 GPUs per node (the maximum number of GPUs per node). The optimal
configuration for the OpenACC code is to run on 4 MPI processes per node, since we obtain the best
performance employing the smaller number of resources. Instead, as we can see from the top-left
panel of Figure 8, the optimal configuration for the OpenMP code is to run on 16 MPI processes per
node and 2 OpenMP threads per MPI process. The best performance gain obtained by the OpenACC
code over the OpenMP code is of 𝜂 ~ 1.5.

Figure 8: Performance tests for the MPI+OpenMP (blue lines and error bars) and the MPI+OpenACC (red lines and error bars)

versions of the Gaia AVU-GSR application. Top-left panel: intra-node fixed memory performance test. Top-right panel: inter-nodes
fixed memory performance test. Bottom panel: inter-nodes proportional memory performance test.

4.1 Detailed analysis of the speedup of the OpenACC code over the OpenMP code

We now investigate the origin of the speedup of the OpenACC code over the OpenMP code by
comparing the execution times of different regions of the two applications. To perform this study, we
compare an execution of the OpenACC and of the OpenMP codes, both run in their optimal
configurations on one node of Marconi100 (4 MPI processes for the OpenACC code and 16 MPI
processes + 2 OpenMP threads for the OpenMP code, as explained in Section 4). The system occupies
10 GB of memory, as in the top-left panel of Figure 8.

●

●
● ●

●

●

●

●

● ● ● ●

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 8 4 2 1

Number of MPI processes

Ite
ra
tio
n
tim
e
[s
]

Number of OpenMP threads

●

●

●

●
●

●

●

●

●
●

0 5 10 15
0.0

0.5

1.0

1.5

Number of nodes

Ite
ra
tio
n
tim
e
[s
]

●
●

● ● ●

● ● ●

● ●

OpenMP

OpenACC

0 5 10 15
1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of nodes

Ite
ra
tio
n
tim
e
[s
]

 12

As anticipated in Section 3.2, Figure 5 illustrates the output of the NVIDIA Nsight Systems profiler
tool for the run considered in this section. The top panel of Figure 9, shows a zoom-in of one iteration
of the run illustrated in Figure 5, where the iteration time equal to 𝑡$%&',)** = 314.730 ms ~ 0.31 s is
superimposed to the figure. The output of the NVIDIA Nsight Systems profiler shows the
computation regions due to the GPU kernels (blue), the H2D and the D2D copies (green and purple,
respectively), and the regions still running on the CPU (white), and it is particularly useful to analyze
the regions of code that might be further optimized (see [11]).

Figure 9: Zoom-in of one iteration of the LSQR algorithm for the run illustrated in Figure 5. In the top, bottom-left, and bottom-right

panels the times of one complete iteration of the LSQR cycle, of the only aprod 1 region, and of the only aprod 2 region are
highlighted, respectively.

The regions that we ported on the GPU are the aprod 1 and 2 functions, represented by the blue areas
labelled as “b_plus...” (aprod 1) and “x_plus...” (aprod 2) in Figure 9. The bottom-left and the bottom-
right panels of Figure 9 are equal to the top panel of the same figure with highlighted the times of the
aprod 1 (148.003 ms) and 2 (64.098 ms) regions. Whereas the execution times of the aprod 1 and 2
regions in the OpenACC code are equal to 𝑡+,,)** ~ 0.15 s and 𝑡+-,)** ~ 0.064 s, the correspondent
times in the OpenMP code are of 𝑡+,,./0 ~ 0.12 s and of 𝑡+-,./0 ~ 0.23 s, respectively. This means
that, while aprod 1 region actually decelerates in the OpenACC code compared to the OpenMP code
of a factor of ~0.8, the aprod 2 region accelerates to a factor of ~3.6. From this result we can conclude
that the speedup of the OpenACC code over the OpenMP code is due to the aprod 2 region.

To calculate the global speedup, also the memory transfers regions and the CPU regions have to be
taken into account. Given that the time due to data copies in the OpenACC code is equal to 𝑡/&1 ~
0.04 s and that the time of the CPU regions on both codes is equal to 𝑡*02 ~ 0.064 s, the speedup
results equal to:

𝜂3 =
𝑡+,,./0 + 𝑡+-,./0 + 𝑡*02

𝑡+,,)** + 𝑡+-,)** + 𝑡/&1 + 𝑡*02
	~	1.3,

which is consistent with the value 𝜂	~	1.5 found in Section 4.

The GPU kernels computation, due to the aprod 1 and 2 functions, represents the 4!",$%%54!&,$%%

4'()*,$%%
×

100	~	69.0% of the iteration time, whereas the data movements only represent the 4+),
4'()*,$%%

×

100	~	12.9% of the iteration time. As we can see from the left panel in Figure 5, the data movements

(2)

 13

only represent the 11% of the entire execution time. This result indicates that the code is compute
bound and not data-transfers bound.

5. GPU utilization

At compile time of the MPI+OpenACC code, we set a number of GPU registers equal to 32. This is
a logical choice for a NVIDIA V100 GPU, since its architecture is organized such that groups of 32
registers see the same cache memory and are subject to the same operation in a Single Instruction
Multiple Data (SIMD)-like fashion. On the software side, this is encoded in the size of a warp, a
logical block of 32 threads that always perform the same operations concurrently. Each warp is
directly mapped on each block of 32 registers.		

To verify if 32 registers correspond to the optimal choice, we exploited the NVDIA Nsight Compute
profiler tool [15], which shows the percentage of occupancy (SM %) of the GPU compared to the
maximum occupancy. Figure 10 shows this percentage for a 32-registers compilation of the
OpenACC code (green), compared to three other configurations, compiled with 64 (light blue), 128
(purple), and 42 (orange) registers. The figure clearly shows that the GPU occupancy is better
exploited in the 32-registers case (~78%) compared to the three other cases (~46%). The code
compiled with 32 registers provides the smaller iteration time of the LSQR algorithm.

Figure 10: Percentage of utilization of the compute (SM) and of the memory resources of the GPU compared to the theoretical

maximum (Speed Of Light metric) when the OpenACC code is run on 32 (green bar), 64 (light blue bar), 128 (purple bar), and 42
(orange bar) GPU registers, as set during compilation. The plot is performed with the NVIDIA Nsight Compute profiler tool.

6. Conclusions and future perspectives

In this report, we present a preliminary porting of the Gaia AVU-GSR code on a GPU environment
with the OpenACC parallelization language. This analysis is propaedeutic to a more optimized
porting with the CUDA parallelization model, that aims to exploit at most the GPU architecture,
which is object of a paper in preparation [12] and of a submitted INAF technical report [11].

The MPI+OpenACC code is compute bound, that is the execution time is dominated by GPU kernel
computation and not by memory transfers between the host and the device. Indeed, we managed to
transfer H2D the ~95% of the data before the entire LSQR cycle.

We compared the performances of the OpenMP and of the OpenACC codes by running the two
applications on the CINECA SuperComputer Marconi100, that has 32 physical cores per node,
equally distribuited between two sockets, 256 GB of RAM and 4 NVIDIA Volta V100 GPUs per
node of 16 GB of memory each. To perform these tests, we ran the two codes (I) on an increasing
number of MPI processes in a single node of the cluster, considering a system with a fixed amount
of memory, (II) on an increasing number of nodes of the cluster, considering a system with a fixed
amount of memory, and (III) on an increasing number of nodes of the cluster, considering a system
with a memory proportional to the number of nodes.

 14

The performance tests demonstrate that if parallelized on 4 MPI processes per node, equal to the
number of GPUs per node, the OpenACC code runs in its optimal configuration and it accelerates
with respect to the OpenMP code of a factor of ~1.5. This speedup is mainly due to the porting of the
aprod 2 function. To obtain the best performance of the OpenACC code and to obtain an optimal
exploitation of the GPU occupancy, the OpenACC code has to be compiled on 32 GPU registers.

Even if with this OpenACC porting we obtained a moderate gain in performance compared to the
CPU parallel code, further optimizations are possible. Despite the application is not data-transfers
bound, we can see from Figure 9 that the code regions due to data copies are not negligible and they
can be further reduced. Moreover, a not negligible section of the code is still running on the CPU and
it can be ported on the GPU. However, a substantial gain in performance can be obtained by a change
of parallelization model, from OpenACC, which provides a high-level parallelization approach, with
directives, that does not change the structure of the original code, to CUDA, which provides a low-
level parallelization approach that requires the rearranging of some parts of the code to manually
define the GPU threads hierarchy to properly match the GPU architecture and the topology of the
system to solve. The CUDA code is already in production on the Marconi100 infrastructure and it
provides a speedup of ~14 over the OpenMP code but a further speedup is expected when the CUDA
code will be rearranged to match the architecture of the next-generation A100 GPUs that will be
present on the future pre-exascale infrastructure of CINECA Leonardo, which will be operational by
the end of this year.

However, this simple porting has already provided essential information about the potential
performance behaviour of the Gaia AVU-GSR code in perspective of (pre-)Exascale systems. This
behaviour can be extended to other codes that obey to its same structure, namely that are based on
the LSQR algorithm, currently employed in several contexts (e.g., geophysics, medicine,
tomography, industry, and astronomy).

 15

References and websites

[1] https://sci.esa.int/web/gaia
[2] Gaia Collaboration: Brown, A. G. A., Vallenari, A., Prusti, T., et al., 2021, A&A, 650, C3, DOI:

https://doi.org/10.1051/0004-6361/202039657e. 	
[3] Gaia Collaboration: Vallenari, A., Brown, A. G. A., Prusti, T., et al., in press, A&A, DOI:

https://doi.org/10.1051/0004-6361/202243940.
[4] Vecchiato, A., Lattanzi, M. G., Bucciarelli, B., Crosta, M., de Felice, F., Gai, M., 2003, A&A,

399, 337-342, DOI: https://doi.org/10.1051/0004-6361:20021785, arXiv:astro-ph/0301323.		
[5] Paige, C.C., and Saunders, M.A., 1982a, ACM Trans. Math. Softw. (TOMS) 8, 43-71.
[6] Paige, C.C., and Saunders, M.A., 1982b, ACM Trans. Math. Softw. (TOMS) 8, 195-209.
[7] https://www.hpc.cineca.it/hardware/marconi100
[8] Becciani, U., Sciacca, E., Bandieramonte, M., Vecchiato, A., Bucciarelli, B., and Lattanzi, M.

G., 2014, in: 2014 Int. Conference on HPCS, 104-111, DOI:
https://doi.org/10.1109/HPCSim.2014.6903675.

[9] Cesare, V., Becciani, U., Vecchiato, A., Lattanzi, M. G., Pitari, F., Raciti, M., Tudisco, G.,
Aldinucci, M., and Bucciarelli, B., in ADASS XXXI, in press.

[10] Cesare, V., Becciani, U., Vecchiato, A., Lattanzi, M. G., Pitari, F., Raciti, M., Tudisco, G.,
Aldinucci, M., and Bucciarelli, B., submitted to Astron. Comput.

[11] Cesare, V., Becciani, U., and Vecchiato, A., INAF Technical Report, submitted.
[12] Cesare, V., Becciani, U., Vecchiato, A., Lattanzi, M. G., Pitari, F., Raciti, M., Tudisco, G.,

Aldinucci, M., and Bucciarelli, B., in preparation.
[13] Aldinucci, M., Cesare, V., Colonnelli, I., Martinelli, A. R., Mittone, G., Cantalupo, B.,

Cavazzoni, C., and Drocco, M., 2021, JPDC, 157, 13-29,
 DOI: https://doi.org/10.1016/j.jpdc.2021.05.017.
[14] https://developer.nvidia.com/nsight-systems
[15] https://developer.nvidia.com/nsight-compute
	

