
Federated Time Series Classification with
ROCKET features

Bruno Casella1,†, Matthias Jakobs2,†, Marco Aldinucci1 and Sebastian Buschjäger2 ∗

1 - Alpha Research Group, Computer Science Department
University of Turin, C.so Svizzera 185, Turin - Italy

2 - Lamarr Institute for Machine Learning and Artificial Intelligence
TU Dortmund University, Dortmund, Germany

† Both authors contributed equally to this work.

Abstract. This paper proposes FROCKS, a federated time series
classification method using ROCKET features. Our approach dynami-
cally adapts the models’ features by selecting and exchanging the best-
performing ROCKET kernels from a federation of clients. Specifically,
the server gathers the best-performing kernels of the clients together with
the associated model parameters, and it performs a weighted average if a
kernel is best-performing for more than one client. We compare the pro-
posed method with state-of-the-art approaches on the UCR archive binary
classification datasets and show superior performance on most datasets.

1 Motivation

Time series classification (TSC) is a central challenge in diverse domains, includ-
ing healthcare, sensor analysis in the Internet of Things (IoT), and movement
recognition for human behavior analysis. While deep learning approaches have
demonstrated unprecedented performance in some areas, they come at substan-
tial computational costs. Moreover, in many cases, simpler algorithms such as
K-Nearest Neighbor with Dynamic Time Warping, Shapelets, or the relatively
recent ROCKET (Random Convolutional Kernel Transform) can outperform
deep learning methods with much lower computational costs[1, 2].

ROCKET [3] has emerged as a particularly effective method for TSC due to
its unique approach to feature transformation. It utilizes a set of randomly sam-
pled convolutional kernels to transform data, which is subsequently processed by
a highly regularized linear model to select significant features. This method not
only reduces the model size but, due to the random sampling, is also well-suited
for low-resource environments. However, ROCKET is a centralized algorithm
that requires data aggregation at a single node. This is particularly restrictive
in IoT contexts where continuous data transmission to a central repository is
impractical due to bandwidth and energy constraints.

∗This research has been partly funded by the Federal Ministry of Education and Research
of Germany and the state of North Rhine-Westphalia as part of the Lamarr Institute for
Machine Learning and Artificial Intelligence, and partly supported by the Spoke ”FutureHPC
& BigData” of the ICSC - Centro Nazionale di Ricerca in ”High Performance Computing, Big
Data and Quantum Computing”, funded by European Union - NextGenerationEU, and by the
Horizon2020 RIA EPI project (G.A. 826647).

87

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

To address these challenges, we introduce a novel algorithm called Feder-
ated ROCKet featureS (FROCKS). FROCKS combines the ROCKET feature
transformation with federated learning so that each client learns its own set of
random features for its local data distribution. Then, it periodically commu-
nicates the most important kernels to a central server, combining them into a
global model containing the most important features across all clients. Finally,
the global model is communicated back to each client. The difficulty of this novel
approach lies in the fact that we cannot use the standard FedAvg [4] method
to average the models because each client can potentially have a different set of
kernels, leading to different data preprocessing. Hence, FROCKS merges models
by extracting the most important kernels from each client (i.e., using the top-K)
instead of the conventional FedAvg approach.

Our contributions can be summarized as follows: (1) We propose a naive
adaptation of ROCKET to federated learning and demonstrate its limitations.
(2) We introduce FROCKS, which effectively combines the strengths of ROCKET
with federated learning. (3) We show the efficacy of FROCKS through exten-
sive experiments across all the binary classification datasets of the UCR archive,
showing that it surpasses traditional methods in terms of F1 score on most of
the datasets with minimal communication rounds.

2 Related Work and Methodology

ROCKET: In [3], the authors present a time series feature extraction method
using random convolutional kernels called ROCKET. Instead of learning the ker-
nel weights and hyperparameters to transform the time series, ROCKET opts for
sampling thousands of kernels randomly. Each kernel length is uniformly chosen
in {7, 9, 11} with normal distributed kernel values and bias values uniformly in
[−1, 1]. To account for different time scales, each kernel also samples a random
dilation value. During inference, after applying each random kernel to the time
series, the authors utilize two non-linear activation functions to aggregate each
transformed output into two real values. One value is the maximum value of
each kernel’s output, while the other is the percentage of positive values (PPV),
measuring the number of kernel outputs that exceed zero. We only utilize PPV
in our work since no statistically significant benefit has emerged by choosing
both the maximum and PPV over just using PPV alone.
Naive approach: As mentioned, our goal is to classify time series in a feder-
ated setting, i.e., we have given a set of C clients where each client has access
to local data, but we can only communicate models (and not the entire local
dataset) to a central server. The central server can combine the individual mod-
els and redistribute a global model to each client. In this setting, the arguably
most straightforward approach to use ROCKET for time series classification is
as follows: Before starting the federated training, the central server creates K
ROCKET kernels that are broadcast to all the clients, together with an initial
logistic regression model. The clients will transform their local data according
to the received ROCKET kernels and then fit their local model on the trans-

88

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

formed data. Then, each client communicates its model to the central server,
where FedAvg [4] is applied to average all models. Finally, the global model is
communicated back to the local models, where training continues on the trans-
formed features. Note that in this version, all models share the same feature
transformation, i.e., the same ROCKET kernels.
FROCKS: In FROCKS, we propose that every client receives its own set of
kernels, i.e., we apply different feature transformations at each client. To do so,
the server initializes every client with a different set of kernels that is used to train
a logistic regression. After training this model, each client collects the p =

⌊
K
C

⌋
best-performing kernels in terms of absolute weight and sends these kernels with
their corresponding weights to the central server. At the central server, we gather
all kernels to build a new set of kernels. If two clients send the same kernel, the
server averages the corresponding weights. Finally, at the beginning of the next
round, the central set of weights and kernels is again distributed to each client,
and the new data transformation is applied to the local data. We highlight some
advantages of this approach: First, there will never be more than K kernels in
total, limiting the overall communication costs. Second, we can identify each
kernel by its unique random seed used to generate it instead of sending the
actual kernel, further reducing communication costs. Third, we can detect the
convergence of FROCKS by checking if the set of weights and kernels changes
significantly from round to round at the central server. More specifically, if we
do not detect a change in the kernels and a change in the weights1 at the central
server in two consecutive rounds, then the overall approach is converged, and
we can stop training.

3 Experiments

The goal of our experiments is to study the predictive performance of FROCKS
and compare it against the naive baseline and a logistic regression trained on the
raw features in a federated setting. We use the following experimental protocol:
Testbed setup: The baseline experiments that do not use any rocket features
but train a logistic regression via FedAvg (we call this ’raw data’), as well as
the naive experiments that distribute rocket features and train a logistic regres-
sion via FedAvg (we call this ’naive’), have been executed in a real distributed
environment encompassing one server and four clients, each deployed on a ded-
icated server with an Intel®Xeon®processor (Skylake, IBRS, 8 sockets of one
core) and one Tesla T4 GPU. We adopted OpenFL [5] as the FL framework and
PyTorch to train the models. FROCKS ran a simulated federation made of one
server and four clients on a machine with the previously listed hardware specifi-
cation2. We used Scikit-learn as the library for training the logistic regression.

1We use |wr−1 − wr| ≤ 10−8 + 10−5 · |wr| to detect if there is a sufficient change between
round r and r − 1.

2Since we propose a novel averaging technique and we need to communicate kernels in-
stead of model weights, we were not able to implement FROCKS directly in OpenFL without
significant code refactoring of the framework. We are currently exploring options on how to
implement FROCKS in OpenFL.

89

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

Datasets and Models: For benchmarking, we focus on the binary time series
classification datasets of the UCR archive[6]. For comparability, we followed the
parameters of the original ROCKET paper [3]. The baseline experiments, i.e.,
the naive approach with raw data and with ROCKET features, train a logistic
regression model for 100 rounds, minimizing the cross-entropy loss. Adam was
used as an optimizer, with a learning rate of 10−3. The batch size was fixed
to {2, 4, 8} according to the sample size of the dataset. As we were mainly in-
terested in model performance, we found that the best solver for FROCKS was
the L-BFGS optimizer. We have run experiments with K ∈ {100, 1 000, 10 000}
ROCKET kernels. We randomly split the data into training and testing data
in each experiment and distributed it to each client, where it is used for local
model training and testing phases. The global model is finally tested on the test
data. Note that the data distribution adheres to the principle of independent and
identically distributed (IID), meaning that each client holds data representative
of the overall dataset. All experiments were repeated five times with different
random seeds, and we reported average results. Since some datasets are imbal-
anced, we will focus on the F1 score in our analysis. Due to space constraints, we
focus on the ‘Image’ and ‘Motion’ categories of the UCR Archive in this paper.
Additional results, encompassing more datasets and metrics, such as the top-1
accuracy, as well as the code required to replicate our experiments, are available
at https://github.com/MatthiasJakobs/FROCKS.

Dataset Raw Naive FROCKS
data 100 1000 10000 100 1000 10000

Yoga 0.68 0.68 0.69 0.70 0.62 0.67 0.80
WormsTwoClass 0.49 0.49 0.49 0.49 0.55 0.73 0.77
ToeSegmentation2 0.20 0.20 0.20 0.20 0.50 0.63 0.66
ToeSegmentation1 0.49 0.49 0.49 0.49 0.67 0.78 0.82
ProximalPhalanxOutlineCorrect 0.84 0.80 0.81 0.79 0.81 0.82 0.89
PhalangesOutlinesCorrect 0.76 0.74 0.76 0.74 0.77 0.77 0.79
MiddlePhalanxOutlineCorrect 0.71 0.72 0.74 0.77 0.74 0.78 0.81
Herring 0.63 0.56 0.57 0.55 0.00 0.40 0.52
HandOutlines 0.91 0.86 0.87 0.90 0.80 0.80 0.83
GunPointOldVersusYoung 0.56 0.50 0.52 0.52 0.87 0.95 0.97
GunPointMaleVersusFemale 0.44 0.43 0.44 0.44 0.89 0.98 0.99
GunPointAgeSpan 0.44 0.44 0.44 0.44 0.86 0.88 0.93
GunPoint 0.69 0.68 0.67 0.68 0.77 0.93 0.96
DistalPhalanxOutlineCorrect 0.74 0.75 0.77 0.79 0.76 0.80 0.81
BirdChicken 0.56 0.54 0.60 0.63 0.51 0.68 0.68
BeetleFly 0.83 0.68 0.80 0.78 0.63 0.64 0.74

Table 1: F1-scores of the aggregated model. Results (mean) are obtained with
five averaged runs.

90

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

https://github.com/MatthiasJakobs/FROCKS

1234567

FROCKS K = 10000
FROCKS K = 1000
FROCKS K = 100

Raw data
Naive K = 10000
Naive K = 1000
Naive K = 100

Critical Diagram F1-score

Fig. 1: Mean ranks for the naive approach and FROCKS for different K.

R
aw 10

0
10

00

10
00

0

0

25

50

75

100

N
o
.

ro
u

n
d

s
u

n
ti

l
co

n
v
er

g
en

ce

10
0

10
00

10
00

0

4

6

8

N
o
.

ro
u

n
d

s
u

n
ti

l
co

n
v
er

g
en

ce

10
0

10
00

10
00

0

0.4

0.5

0.6

N
o
.

K
er

n
el

s
re

m
a
in

in
g

[%
]

Fig. 2: Number of rounds until convergence (Fig. 2a and 2b), shown over all
datasets, and the percentage of remaining kernels (2c). The x-axis indicates the
number of kernels used to initialize.

Discussion: Table 1 shows the results of our experiments. FROCKS outper-
forms the naive approach and FedAvg on the raw data on most datasets. This
suggests that the process of feature extraction benefits from exchanging the best-
performing kernels and that averaging only the weights associated with kernels
that are important for more than one client results in a more promising approach
than naive parameter averaging. The critical difference diagram in Fig. 1 sum-
marizes these results by showing each method’s average rank (a lower rank more
to the right is better). One can see that adopting a large number of kernels leads
to better performance for both the naive federated approach and FROCKS, as
expected. FROCKS offers the statistically best method for K = 10 000, fol-
lowed by the second best choice of FROCKS with K = 1 000. Surprisingly,
the naive approach is even worse than using raw data. We hypothesize that
this is because, for each local client, a different set of feature transformations
might be important, and the clients cannot converge to a common set of fea-

91

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

tures. From Fig. 2, we can see that FROCKS requires just a fraction of rounds
to reach convergence compared to the naive approach. We hypothesize that this
is because, in FROCKS, the federation can quickly reach a consensus on what
feature transformations are relevant, whereas, in the naive approach, each client
commits to all features at once. Last, it can be seen that FROCKS will roughly
remove 50% of the initial features that are deemed unnecessary.

4 Conclusion and Future Work

This work presents FROCKS, a federated time series classification method based
ROCKET features transformation. In our proposed approach, the federated ag-
gregation is achieved by gathering the best-performing ROCKET kernels and
averaging their corresponding weights if that kernel is top-performing for more
than one client. We show the effectiveness of FROCKS through extensive exper-
iments on the binary classification datasets of the UCR archive. Results indicate
that our method outperforms the naive approach based on FedAvg and raw data.
Furthermore, FROCKS requires just a fraction of rounds to converge compared
to the naive approach. For future work, we aim to test FROCKS on multiclass
datasets, to study its performance under some of the most challenging non-IID
settings for FL, such as the label quantity skew, and to analyze the scalability
of our proposed method by varying the number of parties of the federation.

References

[1] Anthony J. Bagnall et al. The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances. Data
Min. Knowl. Discov., 31(3):606–660, 2017.

[2] Alejandro Pasos Ruiz et al. The great multivariate time series classifica-
tion bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Discov., 35(2):401–449, 2021.

[3] Angus Dempster, François Petitjean, and Geoffrey I. Webb. ROCKET: Ex-
ceptionally Fast and Accurate Time Series Classification using Random Con-
volutional Kernels. Data Min. Knowl. Discov., 34(5):1454–1495, 2020.

[4] Brendan McMahan et al. Communication-efficient learning of deep networks
from decentralized data. In AISTATS 2017. PMLR, 2017.

[5] Patrick Foley et al. Openfl: the open federated learning library. Physics in
Medicine & Biology, 2022.

[6] Dau, Hoang Anh and others. The ucr time series classification archive, Oc-
tober 2018.

92

ESANN 2024 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 9-11 October 2024, i6doc.com publ., ISBN 978-2-87587-090-2.
Available from http://www.i6doc.com/en/.

	PapersAndBack
	AllPapers
	Wednesday
	ES2024-61-3

