

This is the author's manuscript

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Convenience of the optical coherence tomography use for the diagnosis of oral lichen planus: an ex-vivo evaluation.

Original Citation:		
Availability:		
This version is available http://hdl.handle.net/2318/1954451	since 2024-02-02T14:24:28Z	
Terms of use:		
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.		

(Article begins on next page)

Convenience of the optical coherence tomography use for the diagnosis of oral lichen planus:

an ex-vivo evaluation.

El Haddad G.1*, Spampinato F.1, Martina E.1, Arduino P.G.1, Gambino A.1

¹Department of Surgical Sciences, Oral Medicine Section, CIR-Dental School, University of Turin, Turin, Italy

Background: The optical coherence tomography (OCT) is a non-invasive imaging technique used to obtain 2D or 3D pictures of biological structures. The aim of this study was to verify the correspondence between the thickness of the epithelium (EP) and the lamina propria (LP) by OCT scans and histopathological evaluation of oral lichen planus (OLP) specimens.

Material and Methods: From September to December 2021, 16 patients with oral clinical signs of OLP were selected for the purpose. Patients underwent an oral mucosal biopsy on a typical white OLP lesions; at the same time a healthy specimen nearby was also collected. Both biopsy samples were immediately scanned with a Thorlabs SD-OCT System Telesto 220. Later, a single examiner compared the histological images with those obtained with the OCT system.

Results: Most of the OCT measurements showed an increased thickness of the OLP layers compared to the healthy ones. (fig.1,2,3) Firstly, the average of the measurements of the healthy EP was 0.26 mm whereas the OLP EP appeared thicker (0.31 mm). Furthermore, the average of the width of the healthy LP was 0.43 mm while the OLP LP average was 0.49 mm. Thus, the difference in the comparison between the OCT measurements and the histological ones were statistically significant (p-value<.05). (Fig 4,5,6)

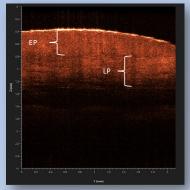


Fig.1 2D scan of healthy buccal mucosa

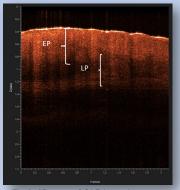


Fig.2 2D scan of OLP buccal mucosa

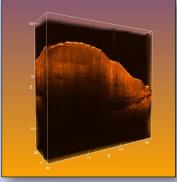


Fig.3 3D scan of OLP buccal mucosa

0] 0.2-	
0.4	NOTE THE RESERVE OF THE PERSON
0.6- 0.8-	◎ 0.0743 mm
1	③ 0.431 mm
2 1.2-	● 0.9573 mm
(usu) 2 1.4-	● 0.5511 mm
1.6	
1.8	
2-	
2.2- 2.4-	
,, 0	0.2 0.4 0.6 0.8 1 1.2 1.4 1.5 1.8 Y(mm)

Fig.4 Representative image of measurements via OCT. 1. Hyperkeratosis, 2. Epithelium, 3.Lamina Propria, 4. Total

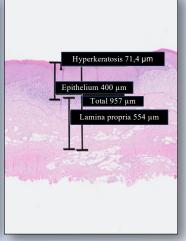


Fig.5 Representative image of histological measurements

	OCT (mm)	Histological (mm)
Healthy EP	0,26	0,24
OLP EP	0,31	0,29
Healthy LP	0,43	0,41
OLP LP	0,49	0,47

Fig.6 Comparison table between averages of EP and LP measurements with OCT and histology

Conclusions: The OCT allows us to describe the ultrastructural patterns of white OLP highlighting a sharp correspondence with traditional histopathology. However, further *ex-vivo* studies are needed to confirm the usefulness of the OCT.

^{*} corresponding e-mail: giorgia.eh@gmail.com