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INTRODUCTION 
The increased use of wearable devices (WDs) for monitoring daily-life activities has led to the 
development of different location-driven applications. The first fundamental distinction is between indoor 
and outdoor environments. The most intuitive approach is the analysis of GPS coordinates or Wi-Fi 
signals [1] but both solutions are power consuming. In this study, we proposed and tested the use of 
deep learning techniques for indoor/outdoor discrimination based on local magnetic field properties of 
the specific environment during free-living activities. 

METHODS 
Eight participants were recruited in four different centres (Turin, Italy; Sheffield, UK; Newcastle upon 
Tyne, UK; Tel Aviv, Israel) and were equipped with the INDIP system [2] (including four magneto-inertial 
units attached to each foot, lower back, and non-dominant wrist), a smartphone (running the Aeqora 
mobile application) and were monitored during 2.5-hours of daily free-living activities. Magnetometer 
data was used to train a deep learning model, while indoor/outdoor probability based on GPS 
coordinates was provided by the Aeqora app and used as a reference. For each WD, the following 
features were extracted: x, y, z components and norm of the magnetometer and the 10-sample moving 
average (0.1s window) of the latter features as a “contextual” rating. A bi-layer long short-term memory 
structure with a linear layer as a tail and with a gaussian error linear unit as activation unit has been 
implemented [3]. To achieve a lower-bias training and a more robust model, the network has been 
validated by exploiting a leave one subject out validation approach. In addition, the classification is 
based on two different observation timeframes: windows of length equal to the magnetometer data 
acquisition period (0.01s) and 1s windows. 

RESULTS 
The average accuracy of the model, across participants, in the classification of indoor/outdoor 
environments while using as input one WD at a time and all WDs together is reported in Table 1. 

Table 1. Summary of the model performance metrics in the indoor/outdoor 
classification. 

DISCUSSION 
Based on this 
preliminary analysis, 
the model seems 
suitable for discerning 
indoor from outdoor 
environments with an 
average accuracy 
score higher than 88.3% in participants spread through three countries (different morphology of the 
territory, culture, lifestyle, etc.). With this respect, considering a longer observation time (1s vs. 0.01s) 
has resulted in increasing of the accuracy for all conditions. Overall, the best performances were 
obtained by using the whole INDIP system, with a 94.1% score. However, very similar performances 
were obtained when only one WD is considered. The effect of the experimental setup (e.g., the number 
and position of the WDs) and the input of the model (e.g., the length of the time-observation window) 
on the performance metrics require further investigations. 
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Average Accuracy (%) 

0.01s window 1s window

Wearable 
device 

Wrist 88.3 89.3 

Lower back 91.7 92.2 

Left foot 90.8 92.1 

Right foot 90.0 91.5 

All 93.4 94.1 
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