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Abstract

Objective: Spinal cord degeneration is a hallmark of amyotrophic lateral sclero-

sis. The assessment of gray matter and white matter cervical spinal cord atrophy

across clinical stages defined using the King’s staging system could advance the

understanding of amyotrophic lateral sclerosis progression. Methods: We

assessed the in vivo spatial pattern of gray and white matter atrophy along cer-

vical spinal cord (C2 to C6 segments) using 2D phase-sensitive inversion recov-

ery imaging in a cohort of 44 amyotrophic lateral sclerosis patients, evaluating

its change across the King’s stages and the correlation with disability scored by

the amyotrophic lateral sclerosis functional rating scale revised (ALSFRS-R) and

disease duration. A mathematical model inferring the potential onset of cervical

gray matter atrophy was developed. Results: In amyotrophic lateral sclerosis

patients at King’s stage 1, significant cervical spinal cord alterations were mainly

identified in gray matter, whereas they involved both gray and white matter in

patients at King’s stage ≥ 2. Gray and white matter areas correlated with clini-

cal disability at all cervical segments. C3–C4 level was the segment showing

early gray matter atrophy starting about 7 to 20 months before symptom onset

according to our model. Interpretation: Our findings suggest that cervical

spinal cord atrophy spreads from gray to white matter across King’s stages in

amyotrophic lateral sclerosis, making spinal cord magnetic resonance imaging

an in vivo assessment tool to measure the progression of the disease.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-

erative disease1 caused by the progressive degeneration of

both upper and lower motor neurons,2 resulting in pro-

gressive weakness of voluntary muscles up to death from

respiratory failure within 2–5 years from clinical onset.3

Spinal cord (SC) degeneration is one of the hallmarks

of ALS.4 Total cross-sectional area (TCA) or volume of

the cervical SC is significantly reduced in ALS patients

compared to healthy subjects5–13 with atrophy more

prominent in the caudal portion.8,10,11 The degree of cer-

vical SC atrophy is predictive of shorter life expectancy9,14

and worsening of respiratory functions at 12 months,9
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with longitudinal studies showing significant SC tissue

loss at 3 months’ follow-up,9,10,15,16 mainly localized in

the caudal segments of the cervical SC.10,11

Although more refined in vivo SC studies are needed

to better understand the pathophysiology of ALS, the

majority of magnetic resonance imaging studies have been

limited to the investigation of the SC in its entirety, with-

out differentiating the gray and white matter, because of

the challenges posed by SC imaging (e.g., small dimen-

sion, strong magnetic susceptibility effects, motion in the

area due to swallowing and respiration).4 The few studies

conducted in small cohorts of patients and evaluating the

differential impact of ALS on cervical SC gray and white

matter showed severe atrophy of both regions in the cau-

dal portion.8,17,18

Recent advances in SC imaging offer new perspectives

for the quantitative assessment of neurodegeneration in

ALS, enabling the separate measure of cross-sectional gray

matter (GMA) and white matter (WMA) areas. Together

with the T2*-weighted protocols recently used in the field,

Phase-sensitive inversion recovery (PSIR) is a well-

established technique to reliably quantify the SC TCA,

GMA, and WMA in the clinical settings thanks to fast

acquisition times, high contrast-to-noise ratio between SC

tissues and cerebrospinal fluid, and relatively low sensitiv-

ity to magnetic and motion artifacts.19,20 As evidence of

its ability to selectively quantify GMA and WMA, PSIR

has been successfully applied in the study of gray and

white matter atrophy in large cohorts of patients with

multiple sclerosis.21 Moreover, PSIR was already

employed to investigate SC GMA and WMA atrophy in

motor neuron disease in a small cohort of subjects as a

proof of concept of the clinical applicability of this mag-

netic resonance imaging sequence.18

In this study, we sought to identify a possible SC imag-

ing marker of disease progression that can be easily

employed in a clinical context. To this aim, we assessed

the pattern of gray and white matter atrophy along the

cervical portion of the SC (from C2 to C6 vertebral seg-

ments) in a large cohort of early diagnosed sporadic ALS

patients employing a 2D PSIR protocol. We investigated

the gray and white matter changes across patients’ clinical

stages classified by the King’s staging system22 and their

correlation with clinical measures. Finally, a linear regres-

sion model inferring the potential onset of cervical gray

matter atrophy was developed.

Material and Methods

Participants

Between 2019 and 2020, 48 sporadic patients diagnosed

with probable or definite ALS based on El Escorial revised

criteria,23 and 17 healthy participants were recruited at

the Motor Neuron Diseases Centre of the Fondazione

IRCCS Neurological Institute “Carlo Besta” in Milan.

Exclusion criteria were clinical and/or neuroimaging evi-

dence of cerebrovascular diseases and neurological or psy-

chiatric diseases.

All patients underwent genetic assay for C9orf72,

SOD1, FUS, OPTN, TARDBP mutations. The presence

of a genetic mutation was considered an additional

exclusion criterion for this study. An in-depth clinical

assessment was performed in all patients for the evalua-

tion of the type of onset (bulbar vs. spinal) and the

involvement of clinical damage of upper and lower

motor neurons. Disease duration was calculated from

symptom onset to clinical assessment date, in months.

Disability was scored using the amyotrophic lateral scle-

rosis functional rating scale revised (ALSFRS-R)24,25 and

progression rate was calculated [i.e., (48 – ALSFRS-R)/

(disease duration from symptom onset in months)].26

Clinical staging was defined in each patient using the

King’s Clinical Staging Criteria System,22 which was

shown to be closely linked to ALS anatomical spread.27

Briefly, this scale corresponds to the number of regions

involved (bulbar, upper limb, lower limb, and respira-

tory or nutritional domains). From Stage 1 to Stage 3

there is an increase of the number of body regions pre-

senting clinical signs of disease, on Stage 4 the respira-

tory or nutritional insufficiency require life-saving

intervention.

The study was conducted according to the principles

set forth by the Declaration of Helsinki. The procedures

involving human participants were reviewed and

approved by the Ethical Committee of the IRCCS Neuro-

logical Institute “Carlo Besta.” All subjects gave written

informed consent to participate in this study.

Magnetic resonance imaging acquisition

Images were acquired using a 3T scanner (Achieva TX,

Philips Healthcare) equipped with a 32-channel coil.

Whole-brain 3D T1-weighted images (Turbo Field Echo:

repetition time (TR) = 8.4 ms, echo time (TE) = 3.9 ms,

inversion time (TI) = 900 ms, flip angle = 8°, matrix =
240 × 240, voxel size = 1 × 1 × 1 mm3, 180 sagittal

slices) as well as single slice axial 2D PSIR images

(TR = 9.4 ms, TE = 4.6 ms, TI = 400 ms, flip angle = 10°
axial in-plane resolution = 0.78 × 0.78 mm2 slice thick-

ness = 5 mm, matrix = 252 × 250, 3 averages, acquisition

time: 2 min, magnitude and phase-sensitive reconstructed

images) at four cervical intervertebral disc segments (C2–
C3, C3–C4, C4–C5, and C5–C6) were acquired as part of

a more extensive magnetic resonance imaging protocol.

The four axial 2D PSIR slices were acquired perpendicular

214 ª 2023 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
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to the long axis of the cervical cord and centered at each

intervertebral disc (Fig. 1).

Structural magnetic resonance imaging data
analyses

For all subjects, TCA and GMA were estimated at the

four different cervical segments from the phase-sensitive

reconstructed PSIR images using JIM software (http://

www.xinapse.com). A single expert operator (N.P.) per-

formed the measurements, blinded to the demographic

and clinical characteristics of the cohort. TCA was mea-

sured semi-automatically using the JIM “cord finder” tool

with fixed settings, while GMA was manually computed,

as previously reported.18,20,21 High intra- and inter-rater

reliability of measurements was shown.

Normalization of data for inter-subject variability

V-scale (representing the relative scaling of each partici-

pant’s skull to the standard MNI152 space skull) and the

product of the maximum anterior–posterior and lateral

diameters of the spinal canal at the C2–C3 segment (i.e.,

surrogate of the canal area) were demonstrated to be the

most effective normalization metrics to reduce the inter-

subject variability of cervical cord areas.28,29

For each subject, V-scale was obtained processing 3D-

T1 weighted images with SIENAX30 and surrogate of the

canal area was measured on the PSIR images.

For each subject and cervical segment, TCA and GMA

were normalized for inter-subject variability using V-scale

and surrogate of the canal area following Model 3 of Ref.

[28]. The (normalized) WMA was computed as the dif-

ference between the normalized TCA and GMA. When

working segment by segment, we will refer to normalized

areas in all the following sections of the manuscript

unless otherwise specified.

To have a single value to represent the severity of SC

atrophy in a subject we finally computed a z-score aver-

age for the four cervical segments to take into account

inter-segment variability. For TCA, GMA, and WMA,

z-score was computed for each cervical segment for each

subject according to the formula:

z�scorei ¼ Ai
N– mean ACTRLs

N

� �� �
=stdev ACTRLs

N

� �
,

where Ai
N are the normalized TCA, GMA, and WMA for

subject i, and mean (ACTRLs
N) and stdev (ACTRLs

N) are,

respectively, their mean values and standard deviations

for the group of healthy participants.

We computed the mean of the z-score rather than the

mean of the area because areas at the different cervical

segments were different from each other and, by doing

so, we would have weighted more the segments with big-

ger areas.

Statistical analyses

Evaluation of SC atrophy across King’s stages

Statistical analyses were performed using R software 4.0.3.

Normal distribution of data was tested employing the

Shapiro–Wilk test. The percentage reduction in TCA,

WMA, and GMA of patients versus healthy participants

was obtained for descriptive purposes. All the following

statistical tests were separately applied to TCA, GMA, and

WMA at the separate cervical segments and to the z-score

average for each tissue (henceforth SC metrics). Wilcoxon

test was applied to SC metrics to assess differences

between ALS patients and healthy participants. To assess

if upper and lower motor neuron dominant phenotype

Figure 1. Example of PSIR magnetic resonance imaging acquisition. Panel A: axial 2D PSIR slices were acquired at four cervical segments (i.e.,

C2–C3, C3–C4, C4–C5, and C5–C6) perpendicular to the long axis of the cervical cord and centered at each intervertebral disc. Panel B: phase-

sensitive reconstructed PSIR images for each cervical segment.
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had different SC atrophy, the Kruskal–Wallis test was

applied to SC metrics among healthy participants and

ALS patients grouped for upper motor neuron dominant

versus lower motor neuron dominant. To assess if the

level of the spinal cord involved at the time of MRI

acquisition played a role in SC atrophy, the Kruskal–Wal-

lis test was applied to SC metrics among healthy partici-

pants and ALS patients divided in three groups (i.e.,

cervical, lumbar and multi-level involvement). We

repeated this latter analysis restricting the entire cohort to

the 31 spinal - lower motor neuron dominant patients to

verify if these patients had a different pattern of gray and

white matter atrophy at the cervical level when only

upper limbs were clinically affected. For this analysis, we,

therefore, compared lower motor neuron dominant

patients with some degree of upper limb involvement

with lower motor neuron dominant patients with lower

limb impairment only. Post-hoc tests (Dunn’s Kruskal–
Wallis multiple comparisons) were used to assess

between-groups differences when the results for the

Kruskal–Wallis tests were significant.

To assess whether there was a trend of reduced SC

metrics as the King’s stage increased, Jonckheere–Terpstra
test (p < 0.05 with 1000 permutations) for ordered differ-

ences among groups was applied. Participants were cate-

gorized into four ordered groups based on King’s stage

independently from the phenotype (i.e., ordinal indepen-

dent variable): healthy participants, ALS patients with

King’s stage 1, King’s stage 2, and King’s stage 3.

To assess the between-group differences among healthy

participants and ALS patients at the different King’s

stages, the Kruskal–Wallis test was applied to SC metrics

to test for differences among healthy participants, ALS

patients with King’s stage 1, and ALS patients with King’s

stages> = 2. For significant tests, Dunn’s Kruskal–Wallis

multiple comparisons were used to assess between-group

differences. ALS patients with King’s stage 2 and King’s

stage 3 were grouped to highlight the difference between

the more (ALS patients with King’s stages> = 2 partici-

pants) and less (ALS patients with King’s stage 1) com-

promised patients.

Results were considered significant at p < 0.05 corrected

for multiple comparisons (i.e., Holm-Bonferroni method).

To assess the relationship between SC metrics in

patients and the ALSFRS-R score and disease duration

from symptom onset (hereafter “linear regression model

disease duration”), linear regression models (p < 0.05)

were separately computed.

Estimation of time onset for SC atrophy

Since the motor neurons of anterior horns are the earliest

foci31 affected by the pathological processes underlying

ALS, we estimated the potential time of the onset of SC

gray matter atrophy before the clinical manifestation of

the disease, employing a linear disease progression

model.10

To this aim, we applied the following steps:

i. We identified if there was at least a SC segment where

GMA was significantly correlated with disease duration

(using the “linear regression model disease duration”);

ii. For the segments identified with step (i), we estimated

the interquartile range (i.e., minimum and maximum of

range) around the 25th percentile of the GMA distribu-

tion in the group of healthy participants using bootstrap

test (1000 iterations). We arbitrarily defined this range as

the interval in which the SC can be considered early

atrophic;

iii. A straight line (i.e., regression line) was computed for

each patient i using the slope coefficient of “linear regres-

sion model disease duration”.

iv. For each patient i, we identified the corresponding

time-points at which the regression line of the “linear

regression model disease duration” intersected the maxi-

mum and the minimum of interquartile range in the

group of healthy participants. For all patients, mean val-

ues of time-points intersecting the maximum and the

minimum of interquartile range, respectively, were com-

puted allowing to estimate the possible time onset range

of SC area atrophy before the clinical symptoms.

Results

Four ALS patients were excluded from the initial cohort

due to motion artifacts in the 2D PSIR acquisitions. Our

final cohort included 44 early-onset ALS patients with

slow disease progression according to Kimura et al.26

Clinical and demographic data are summarized in Table 1.

Due to low gray/white matter contrast in the 2D PSIR

acquisitions, we could not assess the GMA and WMA at

some segments in three patients [1 (upper motor neuron,

ALS patients with King’s stage 1) at C3–C4, 1 (lower

motor neuron, ALS patients with King’s stage 1) at C4–
C5, 1 (lower motor neuron, ALS patients with King’s

stage 1) at all segments]: they were dealt as missing data

in the analyses. No significant differences between ALS

patients and healthy participants were reported for age

[H (1) = 253.5; p = 0.06] and gender [χ2(1,
N = 61) = 0.73; p = 0.39]. Patients predominantly

showed slow disease progression (median = 0.29

ALSFRS-R points decline/month).32 The site of onset was

evenly distributed among the King’s stages, with the lar-

gest percentage of patients presenting lower motor neuron

predominant phenotype (71%) and all limbs involvement

(59%).
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Evaluation of SC atrophy across King’s
stages

The effectiveness of normalization on TCA, GMA, and

WMA metrics using V-scale and surrogate of the canal

area is reported in Table 2. On the whole cohort, the

average standard deviation reduction at the 4 cervical seg-

ments was 10.33% for TCA and 6.28% for GMA. Consid-

ering the healthy participants only, the average standard

deviation reduction at the 4 cervical segments was 15.57%

for TCA and 14.09% for GMA.

ALS patients showed a significant reduction in both

GMA (9.7–14.3%) and WMA (4.5–11.3%) versus healthy

participants in all SC metrics (Wilcoxon test: p ≤ 0.005;

Table 3).

Significant between-group differences among healthy

participants, lower motor neuron, and upper motor

neuron dominant patients were detected for all SC met-

rics (Kruskal–Wallis test: p ≤ 0.026), while no signifi-

cant difference was observed between upper and lower

motor neuron dominant patients (Table 4). Similarly,

significant between-group differences among healthy

participants and patients grouped for the level of the

spinal cord involved at the time of MRI acquisition

were detected (Kruskal–Wallis test: p ≤ 0.021, see Sup-

plementary materials). In post-hoc tests, no differences

were identified between cervical and lumbar patients

when considering the entire cohort (Table S1, Fig. S1),

while a significant reduction in GMA of the C5–C6
segment was detected in lower motor neuron dominant

patients with some degree of upper limb involvement

when compared to lower motor neuron dominant

patients with lower limb involvement only (Table S2,

Fig. S2).

The SC metrics among the ordered King’s stages

showed a significant trend of increasing atrophy from

healthy participants to patients with King’s stage 3 in

TCA, GMA, and WMA at each segment and z-score aver-

age (Jonckheere–Terpstra test: p ≤ 0.001; Table 3;

Fig. 2A).

Table 1. Demographic and clinical characteristics of study participants (median and interquartile range).

ALS (n = 44)

CTRL (n = 17)K1 (n = 25)a K2 (n = 14) K3 (n = 5) All (n = 44)

Demographic data

Age (years) 64 (52–69) 64 (52.8–71.8) 70 (59–72) 64.5 (52–71) 56 (49–60.8)
Male/female 11/14 7/7 2/3 20/24 5/12

Clinical data

Site of onset [n (%)]

SC level involved at MRI [n]

Bulbar 4 (16) 1 (7) 0 (0) 5 (11) –
Bulbar 4 0 0 4 –
Bulbar + cervical 0 1 0 1 –

Spinal – UMN dominant 5 (20) 2 (14) 1 (20) 8 (18) –
Bulbar 2 0 0 2 –
Lumbar 3 0 0 3 –
Bulbar + lumbar 0 1 0 1 –
Cervical + lumbar 0 1 0 1 –
Bulbar + cervical + lumbar 0 0 1 1 –

Spinal – LMN dominant 16 (64) 11 (79) 4 (80) 31 (71) –
Cervical 7 1 0 8 –
Lumbar 9 0 0 9 –
Cervical + lumbar 0 10 0 10 –
Bulbar + cervical + lumbar 0 0 4 4 –

ALSFRS-R (points) 44 (43–46) 42.5 (39.5–44.8) 36 (36–37) 43.5 (41–46) NA

Disease duration (months) 13 (9–26) 14 (8.5–23) 32 (10–35) 14 (9–27) NA

Disease progression rate (points/months) 0.27 (0.1–0.44) 0.28 (0.21–0.63) 0.38 (0.29–1.1) 0.29 (0.12–0.53) NA

ALS patients are grouped according to site of onset, and further stratified by spinal cord (SC) levels involved at the time of MRI acquisition.

Disease duration indicates the time interval from the onset of symptoms and the date of MRI scan.

ALS, amyotrophic lateral sclerosis patients; K1, King’s stage 1; K2, King’s stage 2; K3, King’s stage 3; CTRL, healthy participants; LMN, lower

motor neuron; mo, months; NA, not applicable; UMN, upper motor neuron.
aDue to low gray/white matter contrast in the 2D PSIR acquisitions, GMA and WMA was not assessed in three patients at some segments: 1

(UMN, K1) at C3–C4, 1 (LMN, K1) at C4–C5, 1 (LMN, K1) at all segments.
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Significant between-group differences among healthy

participants and ALS patients grouped by King’s stages

were detected for all SC metrics (Kruskal–Wallis test:

p ≤ 0.001; Table 3). In post-hoc tests, ALS patients with

King’s stage 1 compared to healthy participants showed a

significant reduction of TCA and GMA, particularly in z-

score average (TCA: p = 0.014; GMA: p = 0.007)

(Fig. 2A). This atrophy was mainly localized from C2–C3
to C4–C5 segments for TCA and C3–C4 and C4–C5 seg-

ments for GMA. ALS patients with King’s stage ≥ 2 com-

pared to healthy participants presented significant atrophy

for all segments extending not only to the gray matter

but also to the white matter. ALS patients with King’s

stage 1 differed from ALS patients with King’s stage ≥ 2

prevalently in WMA, but also in GMA as z-score average,

although to a lesser extent (Table 3, Fig. 2B). The marked

atrophy was mainly localized in the GMA from C3–C4 to

C5–C6 segments and the WMA of C2–C3 to C5–C6 seg-

ments, increasing caudally (Table 3, Fig. 2B).

Linear regression showed a strong positive association

between TCA, GMA, and WMA for all segments and

ALSFRS-R score, except for the C5–C6 segment for GMA

(Table 5). The association was more marked in white

matter than gray matter for all segments. Moreover, we

detected a negative association between TCA and WMA

as z-score average (Table 5) and disease duration. This

relationship was also present in TCA for all 4 segments,

in GMA of C3–C4 segment, and in WMA from C3–C4 to

C5–C6 segments. C3–C4 was the segment at which GMA

and WMA were mainly correlated with disease duration.

Estimation of time onset for SC atrophy

The linear disease progression model was computed for

the GMA of the segment C3–C4, which presented a sig-

nificant correlation with disease duration according to the

“linear regression model disease duration” (Table 5).

According to our model, the atrophy in this segment is

likely to appear from 7 to 20 months before the clinical

onset of the disease (GMA in C3–C4: healthy participants

interquartile range = 22.9/23.7 mm2; slope coefficient of

“linear regression model disease duration” = −0.061; esti-
mation range of time onset = −20/−7 months) (Fig. 3).

Discussion

Our cross-sectional study investigated the spatial patterns

of SC atrophy in a cohort of ALS patients stratified by

the King’s clinical stage. Using a reliable segmentation

method on 2D PSIR images, we were able to estimate

TCA, GMA, and WMA at four cervical intervertebral disc

segments (C2 to C6). The main findings of the study are:

(i) TCA, GMA, and WMA in ALS patients were signifi-

cantly reduced compared to healthy participants at all

four cervical segments; (ii) the first evidence of significant

cervical SC alteration was identified in gray matter for

patients at King’s stage 1 in comparison to healthy partic-

ipants, whereas, in patients at King’s stage ≥ 2, both gray

and white matter were significantly reduced when com-

pared to healthy participants and patients at King’s stage

1; (iii) TCA, GMA, and WMA at all segments correlated

with clinical severity measured by ALSFRS-R; (iv) the cer-

vical segment affected first by gray matter atrophy was

the C3–C4 level, with an estimated onset time range of

SC area atrophy approximately 7–20 months before

symptom onset according to our model. Interestingly, the

differences in SC atrophy related to the clinical stage of

the disease seemed independent from the upper and

lower motor neuron dominant involvement of these

patients as well as the level of spinal cord involvement at

the MRI acquisition, as we reported no differences

between these ALS phenotypes.

As reported in previous studies, we found that TCA in

ALS patients was significantly reduced in comparison to

healthy participants.5–8,10–12,18 So far, only three studies

have separately assessed SC GMA and WMA in patients

with ALS using magnetic resonance imaging.8,17,18 In

agreement with our findings, these studies reported signif-

icant atrophy in both gray8,17,18 and white17,18 matter of

the cervical SC in small samples of ALS and motor

Table 2. The normalization effectiveness comparing the standard

deviation (stdev) of the 4 cervical levels before (raw data) and after

(norm. data) normalization on the whole cohort and on the group of

healthy participants only.

Cervical segments

C2–C3 C3–C4 C4–C5 C5–C6

Whole cohort

TCA

stdev of raw data 8.656 10.437 10.950 8.623

stdev of norm. data 7.901 9.511 9.659 7.587

% reduction 8.63% 8.87% 11.79% 12.01%

GMA

stdev of raw data 1.938 2.860 3.039 2.972

stdev of norm. data 1.875 2.681 2.768 2.772

% reduction 3.24% 6.26% 8.91% 6.70%

Healthy participants

TCA

stdev of raw data 7.509 7.806 9.713 7.434

stdev of norm. data 6.265 6.597 8.053 6.458

% reduction 16.57% 15.49% 17.09% 13.13%

GMA

stdev of raw data 1.349 1.660 2.354 2.414

stdev of norm. data 1.026 1.493 1.938 2.301

% reduction 23.93% 10.10% 17.68% 4.66%

GMA, gray matter area; TCA, total cross-sectional area.
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neuron disease patients, showing in particular that GMA

more than TCA was a sensitive marker of atrophy in

ALS.8

In addition, our cross-sectional study showed that SC

atrophy followed a trend of increasing atrophy along the

investigated cervical portion of the SC as King’s clinical

stage increases, with an earlier involvement of gray and

white matter. In detail, when compared with healthy par-

ticipants, patients with involvement of a single anatomical

region (i.e., patients with King’s stage 1) showed atrophy

limited to the gray matter, whereas those with multiple

central nervous system regions involved (i.e., patients

with King’s stage 2 and 3) had atrophy involving not only

the gray matter but also the white matter. Previous SC

studies in postmortem patients showed early extensive

degeneration of gray matter oligodendrocytes.31 Specifi-

cally, in the early stages of disease evolution in patients,

pTDP-43 inclusions were present in the SC gray matter

oligodendroglia and absent in the SC white matter oligo-

dendroglia. By contrast, in more advanced stages of the

disease with a greater burden of neuronal TDP-43 lesions,

pTDP-43 inclusions were widespread in both gray and

white matter oligodendroglia.31

SC atrophy affected the various cervical segments dif-

ferently depending on the disease stage, but independently

from clinical phenotype or motor neuron dominant

involvement. We observed prominent atrophy at the C3–
C4 segment followed by the C4–C5 segment in patients

in King’s stage 1, and of the more caudal segments (i.e.,

C4–C5 and C5–C6) at more advanced King’s stages. This

observation is consistent with the progression of pathol-

ogy to the caudal portion of the cervical cord reported in

previous longitudinal studies.10,11 Interestingly, we

detected a reduction of GMA of the C5–C6 segment in

lower motor neuron dominant patients with some degree

of clinical upper limb involvement when compared to

patients without upper limb involvement. These results

seem to support the hypothesis of a different pattern of

gray and white matter atrophy in the cervical SC of

patients with upper limb versus lower limb involvement,

but have to be confirmed in a larger cohort.16

Also in line with previous studies, in our ALS patients

TCA was associated with ALSFRS-R and disease duration.6–

8,10,11,16 Furthermore, we showed that there was a strong

positive correlation with ALSFRS-R in WMA as well as

GMA, although WMA showed the higher correlation.

Table 3. SC area comparison between healthy participants and ALS patients according to King’s clinical stage.

Percentage of atrophy

compared to Healthy p. (%)

Trend

(Jonckheere–
Terpstra test)

ALS versus

Healthy p.

King1 versus

King ≥ 2 versus

Healthy p.

King1

versus

Healthy p.

King ≥ 2 versus

Healthy p.

King1 versus

King ≥ 2

All ALS King1 King2 King3 p-value W p-value χ2 p-value p-value p-value p-value

TCA

z-score average – – – – <0.001 621 <0.001 23.53 <0.001 0.014 <0.001 0.008

C2–C3 8.24 4.1 11.96 13.55 <0.001 581 0.001 15.58 <0.001 0.049 <0.001 0.034

C3–C4 10.04 6.11 12.07 15.98 <0.001 625 <0.001 20.72 <0.001 0.008 <0.001 0.036

C4–C5 10.91 6.19 13.47 17.45 <0.001 619 <0.001 23.36 <0.001 0.016 <0.001 0.008

C5–C6 8.24 3.66 13.54 9.89 <0.001 588 <0.001 25.00 <0.001 0.107 <0.001 <0.001
GMA

z-score average – – – – <0.001 635 <0.001 27.11 <0.001 0.007 <0.001 0.006

C2–C3 9.66 7.38 11.18 11.84 <0.001 558 0.001 13.09 0.001 0.054 0.001 0.077

C3–C4 14.26 10.86 17.28 21.12 <0.001 635 <0.001 26.20 <0.001 0.002 <0.001 0.033

C4–C5 13.63 9.97 16.86 22.46 <0.001 616 <0.001 24.11 <0.001 0.006 <0.001 0.021

C5–C6 12.9 5.79 20.34 18.12 <0.001 558 0.001 23.66 <0.001 0.204 <0.001 <0.001
WMA

z-score average – – – – <0.001 574 <0.001 20.78 <0.001 0.073 <0.001 0.004

C2–C3 9.07 3.28 13.52 15.59 <0.001 536 0.005 14.34 <0.001 0.151 0.001 0.016

C3–C4 9.73 6.17 13.66 15.86 <0.001 542 0.002 16.19 <0.001 0.098 <0.001 0.015

C4–C5 11.26 6.1 14.64 16.64 <0.001 560 <0.001 23.45 <0.001 0.123 <0.001 0.001

C5–C6 4.45 2.47 10.82 10.45 <0.001 554 0.002 18.63 <0.001 0.132 <0.001 0.004

The percentage reduction of SC metrics in patients in comparison to healthy participants according to King’s clinical stage is reported. The Jonck-

heere–Terpstra test assessed the trend of SC atrophy according to ordered differences among classes, that is, healthy participants, ALS patients

with King’s staging system score = 1 (King1), ALS patients with King’s staging system score = 2 (King2), and ALS patients with King’s staging sys-

tem score = 3 (King3). Wilcoxon tests were used to assess the differences between ALS patients and healthy participants while Kruskal–Wallis

tests were used to analyze between-groups differences among healthy participants, ALS patients with King’s staging system score = 1, and ALS

patients with King’s staging system score> = 2. Results were corrected for multiple comparisons. Significant results are highlighted in bold.

ALS, amyotrophic lateral sclerosis patients; GMA, gray matter area; Healthy p., healthy participants; SC, spinal cord; TCA, total cord area; WMA,

white matter area.
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In our cohort, the C3–C4 cervical segment appeared to

be a key region in the earliest phases of disease evolution.

It showed early gray matter alterations and a strong cor-

relation with disease duration in both gray and white

matter. Notably, assuming a linear progression of pathol-

ogy our model estimated that SC gray matter atrophy in

the C3–C4 segment is likely to start 7–20 months before

clinical symptoms become apparent. The crucial role that

this segment played in the early phase and disease pro-

gression of ALS in our study seems consistent with previ-

ous studies in early ALS patients that showed alterations

in SC area localized at C3 and/or C4 segments both

cross-sectionally, associated with lower survival index,8,14

and longitudinally.10,11

Altogether our new findings corroborate the potential

role of SC gray and white matter area quantification as a

valuable additional tool to quantify the spread of the dis-

ease in vivo and to monitor disease progression in future

longitudinal research studies.

The investigation of the thoracic and lumbar portion

of the SC would complete the scenario. PSIR and T2*-

weighted MRI protocols have been successfully applied to

the thoracic and lumbar SC of multiple sclerosis patients

and healthy controls.20,33,34

However, adding the exploration of thoracic and lum-

bar segments to the MRI session would have required

longer acquisition times and introduced more discomfort

for patients. We have decided to focus our study on the

cervical SC, but a future study including other portions

of the SC is warranted, in particular to validate the find-

ings of a recent study on 15 ALS patients and 17 healthy

participants that found evidence of TCA reduction

around the cervical but not the thoracolumbar enlarge-

ment of the cord in the ALS participants.13

Some limitations of our study should be noted.

First, in this study we used a manual segmentation of

GMA. However, it was shown that the acquisition and pro-

cessing methods used here have high intra- and inter-

operator reliability.18,20,21 Free-access software that can

provide automated segmentation of SC tissues is nowadays

available, and its use has the potential to substantially

improve SC atrophy analyses in terms of operator depen-

dency and time. The Spinal Cord Toolbox (SCT)35 is

undoubtedly the most complete and widely used software

currently available in the field. While the automated meth-

ods included in the SCT provide reliable TCA estimates on

MRI images of different resolution and contrast,19 the per-

formance of the SCT and other available tools for GM

Table 4. SC metrics between healthy participants and ALS patients according to site of onset and lower and upper motor neuron dominant

involvement.

Percentage of atrophy compared to

Healthy p. (%)

UMN versus LMN

versus Healthy p.
UMN versus

Healthy p.

LMN versus

Healthy p.

UMN versus

LMN

All ALS UMN LMN Bulbar χ2 p-value p-value p-value p-value

TCA

z-score average – – – – 15.972 <0.001 0.03 <0.001 0.616

C2–C3 9.16 9.28 9.36 7.76 11.287 0.004 0.039 0.003 0.948

C3–C4 11.62 10.97 12.31 8.41 16.803 <0.001 0.041 <0.001 0.474

C4–C5 11.98 9.00 12.68 12.40 14.896 0.001 0.042 <0.001 0.593

C5–C6 8.83 8.08 9.34 6.89 11.934 0.003 0.044 0.002 0.833

GMA

z-score average – – – – 22.051 <0.001 0.016 <0.001 0.42

C2–C3 7.28 6.76 8.14 2.96 11.966 0.003 0.055 0.002 0.732

C3–C4 13.68 11.10 15.39 7.02 23.607 <0.001 0.017 <0.001 0.436

C4–C5 13.19 9.23 14.42 12.39 20.214 <0.001 0.034 <0.001 0.323

C5–C6 11.24 10.75 12.29 5.71 10.554 0.005 0.06 0.005 0.833

WMA

z-score average – – – – 10.973 0.004 0.067 0.003 0.745

C2–C3 9.34 10.15 9.11 9.44 7.314 0.026 0.069 0.034 0.826

C3–C4 9.39 5.28 10.42 8.95 10.124 0.006 0.392 0.005 0.276

C4–C5 10.40 8.91 10.47 12.40 10.084 0.006 0.045 0.007 0.997

C5–C6 7.59 7.04 7.77 7.35 9.156 0.01 0.074 0.010 0.902

The percentage reduction of SC metrics in spinal (upper and lower motor neuron dominant) and bulbar patients in comparison to healthy partici-

pants (%) is reported. Kruskal–Wallis tests were used to assess the between-groups differences among healthy participants, upper and lower

motor neuron dominant involvement patients. Bulbar patients were not included in this analysis due to the small number of cases (i.e., n = 5).

Results were corrected for multiple comparisons. Significant results are highlighted in bold.

ALS, amyotrophic lateral sclerosis patients; Healthy p., healthy participants; LMN, lower motor neuron dominant involvement; UMN, upper motor

neuron dominant involvement.
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segmentation has not been tested on images acquired with

2D PSIR protocols or at cervical segments distinct from C2

to C3.36–38 Training a Deep learning method on PSIR

images acquired at multiple cervical segments is the most

promising approach to develop an automated GM segmen-

tation method that would make the results of the present

study easily translatable to clinical practice.

Second, our results may be biased by the prevalence of

lower motor neuron dominant patient and slow progressors.

Nonetheless, patients were equally distributed among King’s

stages for upper and lower motor neuron dominant pheno-

type and the slow disease progression may have allowed us

to closely staging the disease in gray and white matter.

Third, we assumed a linear model for disease progres-

sion in SC gray matter, that might overestimate the possi-

ble onset of SC atrophy. However, this assumption is

consistent with prior longitudinal studies.10,11 Further

studies in early-stage patients, longitudinally assessed, will

be necessary to confirm the pattern of disease progression

in gray matter and white matter along the cervical SC.

Conclusions

Our findings support the hypothesis of a progressive

spread of degeneration starting from gray to white matter

cervical cord across King’s clinical stages in ALS. The C3–
C4 segment seems to be a key region of pathology in the

early stage of the disease and we speculate that alterations

in gray matter of this segment could appear up to

20 months before the clinical symptoms. In vivo measure-

ment of SC gray matter areas using magnetic resonance

imaging may be useful to track anatomical ALS disease

spread from its earliest stages.
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Additional supporting information may be found online

in the Supporting Information section at the end of the
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Table S1. SC metrics between healthy participants and

ALS patients according to the level of the spinal cord

involved at the time of MRI acquisition.

Table S2. SC metrics between healthy participants and

lower motor neuron dominant patients with upper and

lower limb involvement.

Figure S1. SC metrics for patients grouped according to

the level of the spinal cord involved at the time of MRI

acquisition.

Figure S2. SC metrics for lower motor neuron dominant

patients with upper and lower limb involvement at the

time of MRI acquisition.
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