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INTRODUCTION
Despite the high efficacy of quadruplets incorporating anti-CD38
monoclonal antibodies, as showed in the phase III CASSIOPEIA [1]
and PERSEUS [2] studies, high-dose melphalan (HDM) followed by
autologous stem-cell transplant (ASCT) remains a standard of care
in young and fit newly diagnosed (ND) multiple myeloma (MM)
patients [3]. Therefore, an ideal induction regimen should not only
achieve rapid and deep disease control but also allow an optimal
hematopoietic stem-cell (HSC) collection.
HSC mobilization strategies include a steady-state mobilization

with granulocyte colony-stimulating factor (G-CSF) only or a
combination of conventional chemotherapy (e.g., cyclophospha-
mide at different dose of 2–4 g/m2) and G-CSF, with additional
plerixafor that has significantly reduced the number of mobiliza-
tion failure patients [4].
Here we report the results of a retrospective, observational

study conducted in two Italian centers, “Città della Salute e della
Scienza di Torino” and “Istituto di Ricovero e Cura a Carattere
Scientifico (IRCSS) Istituto Clinico Humanitas” evaluating the
impact of daratumumab on HSC collection, as well as post-
transplant engraftment, in MM patients treated with VTd or VTd
plus daratumumab (DVTd) induction who underwent
chemotherapy-free mobilization with G-CSF with “on-demand”
plerixafor.

MATERIALS AND METHODS
Consecutive, transplant eligible, NDMM patients, who received
induction therapy with DVTd or VTd and underwent HSC
mobilization only with G-CSF (10 mcg/Kg per day) plus “on-
demand” plerixafor, were analysed.
According to its label, “on-demand Plerixafor” was administered

in patients with <20 CD34+ cells/L after at least four consecutive
days of G-CSF or in patients unable to collect at least 1 × 106 mg/kg
after the first day of apheresis. The primary endpoint of the study
was the rate of poor mobilizers, defined as the rate of patients who
collected <2 × 106 CD34+ cells/Kg (“mobilization failure”) [4] or who
required plerixafor to complete HSC collection.
Collection failure, suboptimal collection and optimal collection

were defined as <2, 2–4 and ≥4 × 106 CD34+/Kg cells collected,
respectively. Neutrophil and platelet recovery were defined as the
first day with an absolute neutrophil count ≥500/mL post-ASCT
nadir and as the first day with a count ≥20,000/mL without

platelet transfusion for 3 days, respectively. Patients’ charts were
reviewed to collect data on baseline patient and disease
characteristics (online Supplementary Appendix).
Statical methods, ethics approval, and informed patient

statement were described in online Supplementary Appendix.

RESULTS
A total of 217 NDMM patients undergoing HSC mobilization
between May 2015 and October 2023 were included in the
analysis, 83 (38%) treated with DVTd and 134 (62%) with VTd.
Baseline characteristics were well balanced within the two groups
and are summarized in Table 1.
The rate of poor mobilizers was higher in patients receiving

DVTd as compared to those who received VTd induction (64% vs.
30%; p= 0.002), mainly due to a higher use of plerixafor in the
DVTd as compared to the VTd group (57% vs. 26%; p= 0.006),
while no significant difference in the rate of patients who were
unable to collect ≥2 × 106 CD34+ cells/kg was observed (7% vs.
4%; p= 0.6). Overall, 93% in the DVTd and 96% in VTd collected at
least 2 × 106/Kg CD34+ cells (p= 0.58) with the first mobilization
attempt. A similar proportion of patients in the DVTd and VTd
group achieved an optimal (88% vs 91%; p= 0.4) or a suboptimal
collection (5% vs 6%; p= 0.7), respectively. The median number of
CD34+ x 106/Kg collected was similar in the two groups (DVTd,
7.04; VTd, 7.84; p= 0.08). Despite a lower median number of
CD34+/L on the first day of count in the DVTd group (18, IQR 7–27)
as compared to the VTd group (24, IQR 14–42; p= 0.002), a similar
increase in the median number of CD34+/L after the first dose of
plerixafor was observed in the DVTd (45, IQR 30–62) and VTd (55,
IQR 38–70) group, respectively (p= 0.4). The median number of
apheresis was 2 (IQR 1-2) in the DVTd and 1 (IQR 1-2) in the VTd
group (p= 0.58). Eleven patients (DVTd, n= 6; VTd, n= 5; total
5%) failed to collect at least 2 × 106 CD34+ cells/kg; of these, 6/10
and 4/10were respectively rescued with cyclophosphamide plus
G-CSF and plerixafor “on demand” (n= 4, all in the DVTd group).
Overall, 100 and 99% of patients in the two arms collected
≥2 × 106 CD34+ cells/kg and were able to proceed to ASCT.
Mobilization and harvest data are summarized in Table 1,
Figs. S1–S3.
Engraftment outcomes were analysed in 108 patients (DVTd,

51/83; VTd, 57/134) who received post-transplant G-CSF starting
between day +3 and +5 after ASCT. The median number of
CD34+cells/kg transplanted was 3.60 (IQR 2.96–3.69) and 3.28 (IQR
3.20–3.90) in the DVTd and VTd groups, respectively (p= 0.39).
Hematopoietic recovery was obtained in 100% of patients. Median
time to neutrophil recovery was 12 (IQR 12–13) and 13 days (IQR
12–15) in the DVTd and VTd groups, respectively, (p= 0.02) and a
median time to platelet recovery was of 13 (IQR 12–15) and 15
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Table 1. Baseline characteristics and study results.

Variables Overall
(n= 217)

DVTd (n= 83) VTd (n= 134) p-value

Age (years) Median (IQR) 63 (56–68) 63 (56–68) 63 (55–68) 0.63

≤60, n (%) 89 (41) 34 (41) 55 (41) 1

>60, n (%) 128 (59) 49 (59) 79 (59)

Sex Female, n (%) 94 (43) 36 (43) 58 (43) 1

Male, n (%) 123 (57) 47 (57) 76 (57)

Isotype IgG, n (%) 115 (53) 45 (54) 70 (52) 0.9

IgA, n (%) 39 (18) 13 (16) 26 (19)

BJ, n (%) 47 (22) 19 (23) 28 (21)

NS, n (%) 8 (4) 2 (2) 6 (5)

Other, n (%) 7 (3) 3 (4) 4 (3)

Missing, n (%) 1 (<1) 1 (<1) 0

LDH > UNL No, n (%) 155 (71) 64 (77) 91 (68) 0.71

Yes, n (%) 26 (12) 9 (11) 17 (13)

Missing, n (%) 36 (17) 10 (12) 26 (19)

FISHa Yes, n (%) 162 (75) 64 (77) 98 (73) 0.75

Standard risk, n (%) 114 (70) 43 (67) 71 (72)

High risk, n (%) 48 (30) 21 (33) 27 (28)

Missing, n (%) 55 (25) 19 (23) 36 (27)

ISS I, n (%) 87 (40) 32 (39) 55 (41) 0.72

II, n (%) 46 (21) 18 (22) 28 (21)

III, n (%) 53 (25) 25 (30) 28 (21)

Missing 31 (14) 8 (9) 23 (17)

R-ISS I, n (%) 57 (26) 18 (22) 39 (29) 0.30

II, n (%) 63 (29) 33 (40) 30 (22)

III, n (%) 20 (9) 7 (8) 13 (10)

Missing, n (%) 77 (36) 25 (30) 52 (39)

Number of induction cycles Median (IQR) 4 (4-4) 4 (4-4) 4 (4-4) 0.06

≥4, n (%) 183 (84) 79 (92) 107 (80) 0.14

<4, n (%) 34 (16) 7 (8) 27 (20)

Best response SD, n (%) 5 (2) 2 (2) 3 (2) 0.13

PR, n (%) 60 (28) 16 (19) 44 (33)

VGPR, n (%) 97 (45) 49 (59) 48 (36)

≥CR, n (%) 54 (25) 15 (18) 39 (29)

Missing, n (%) 1 ( < 1) 1 ( < 1) 0

Radiotherapy No, n (%) 174 (80) 70 (84) 194 (78) 0.52

Yes, n (%) 43 (20) 13 (16) 30 (22)

Hematologic toxicity during
inductionb

No, n (%) 208 (96) 79 (95) 129 (96) 0.73

Yes, n (%) 8 (4) 4 (6) 4 (3)

Missing, n (%) 1 ( < 1) 0 1 ( < 1)

Time from end of induction therapy
and stem cell mobilization

Median (IQR) 28 (15–37) 31 (23–37) 24 (12.5–36) 0.65

≤30, n (%) 119 (55) 39 (47) 80 (60) 0.25

>30, n (%) 93 (43) 42 (51) 51 (38)

Missing, n (%) 5 (2) 2 (2) 3 (2)

CD34+/L at day 4 of count Median (IQR) 21 (11–33) 18 (7–26.5) 24 (14–42) 0.002

<20, n (%) 90 (42) 46 (55) 44 (33) 0.4

≥20, n (%) 107 (49) 34 (41) 73 (54)

Missing, n (%) 20 (9) 3 (4) 17 (13)

CD34+ /L increase after first PLX
administration

Median (IQR) 50.5 (33.8–66.3) 45 (29.5–62) 55 (38–70) 0.48

Plerixafor administration No, n (%) 135 (62) 36 (43) 99 (74) 0.006

Yes, n (%) 82 (38) 47 (57) 35 (26)
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(IQR 13–17) days in the DVTd and VTd groups, respectively
(p= 0.1).

DISCUSSION
In this real-word study, we showed that HSC collection with G-CSF
and on-demand plerixafor was effective irrespective of the prior
use of daratumumab, although a higher use of plerixafor (57% vs.
26%; p= 0.006) was observed in patients treated with a
daratumumab-based induction. Results from our study are in line
with prior observations concerning the impact of daratumumab
on HSC mobilization. In the CASSIOPEIA and PERSEUS studies, in
which the majority of patients underwent HSC mobilization with
cyclophosphamide plus G-CSF, a greater use plerixafor (40% vs.
23% and 22% vs. 8%, respectively) and a lower HSC yield (6.7 vs
10 × 106 CD34+/Kg and 5.5 vs 7.4 × 106/kg) was reported among
patients treated with upfront daratumumab [1, 2, 5], a phenom-
enon that could be at least partially explained by the expression of
CD38 on CD34+ mobilized cells [6]. Our data are also in line with
other retrospective real-world studies that, regardless of the
mobilization strategy adopted, demonstrated a higher use of
plerixafor patients exposed to daratumumab during induction
(37–51%) [7–9].
In our study, a broad use of “on-demand” plerixafor, along with

G-CSF, resulted in a similar median number of CD34+ × 106/kg
cells collected in the DVTd (7.04) and VTd groups (7.84; p= 0.08).
Of note, despite adoption of a steady-state mobilizing strategy
without chemotherapy, the median HSC yield obtained in our
study with in daratumumab-treated patients is comparable to
those reported in the CASSIOPEIA and PERSEUS studies (median
7.04 × 106/kg vs. mean 6.7 and median 5.5 × 106/kg), although this
came at the cost of a higher plerixafor use (57% vs 22% and 40%,
respectively) [1, 5], thus supporting a chemotherapy-sparing
mobilization strategy also in daratumumab-exposed patients.
Data regarding the time to engraftment in patients receiving

daratumumab are conflicting [2, 5, 9–11]; however, in our study
hematological recovery was achieved in all patients and no

difference in terms of both neutrophil and platelet recovery in
patients who received daratumumab as compared to those of
who did not was observed.
In conclusion, our study shows that daratumumab exposure

during induction does not impair HSC collection nor post-
transplant hematopoietic recovery in NDMM patients undergoing
steady-state mobilization and that G-CSF plus “on demand
plerixafor” is an effective mobilization strategy also in
daratumumab-exposed patients. These results, along with those
reported by the GRIFFIN and the MASTER studies [12], further
support the use of a chemotherapy-free mobilization strategy in
the era of quadruplet induction regimens.
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Table 1. continued

Variables Overall
(n= 217)

DVTd (n= 83) VTd (n= 134) p-value

Reason for Plerixafor administrationc <1 × 106 CD34+/Kg after first
apheresis, n (%)

6 (7) 3 (6) 3 (8) 1

<20 CD34+/L, n (%) 74 (90) 43 (92) 31 (89)

Missing, n (%) 2 (3) 1 (2) 1 (3)

CD34+ x106 cells/Kg Median (IQR) 7.52 (6.10–9.37) 7.04 (5.76–8.85) 7.84 (6.30–10.1) 0.08

Suboptimal, n (%) 11 (6) 4 (5) 7 (6) 0.7

Optimal, n (%) 195 (90) 73 (88) 122 (91) 0.4

Successful mobilization No, n (%) 11 (5) 6 (7) 5 (4) 0.58

Yes, n (%) 206 (95) 77 (93) 129 (96)

Poor mobilization patients No, n (%) 124 (57) 30 (36) 94 (70) 0.002

Yes, n (%) 93 (43) 53 (64) 40 (30)

Apheresis days 1, n (%) 101 (46) 32 (38.6) 69 (51.5) 0.58

Bold values indicate statistical significance p < 0.05.
Suboptimal collection was defined as 2 to 4 × 106 CD34+ /Kg cells collected. Optimal collection was defined as ≥ 4 × 10^6 CD34+ /Kg cells collected.
Successful mobilization was defined as ≥ 2 × 10^6 CD34+ /Kg cells collected. Poor mobilization was defined as failure to collect ≥ 2 × 10^6 CD34+ /Kg or
requiring plerixafor for complete collection after the first mobilization attempt.
BJ Bence-Jones protein, LDH lactate dehydrogenase, ULN upper limit normal, FISH fluorescent in situ hybridization, HR high-risk, ISS International Staging
System, R-ISS Revised International Staging System, SD stable disease, PR partial response, VGPR very good partial response, CR complete response, PLX
plerixafor.
aPercentage of standard risk and high-risk patients calculated among patients with available FISH (n= 162).
bHematologic toxicity, including anemia, thrombocytopenia, or neutropenia, grade ≥ 3 was defined according in CTCAE v5.0.
cPercentage calculated in patients who need plerixafor.
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