
Citation: Ahmed, N.; Vione, D.;

Rivoira, L.; Castiglioni, M.;

Beldean-Galea, M.S.; Bruzzoniti, M.C.

Feasibility of a Heterogeneous

Nanoscale Zero-Valent Iron

Fenton-like Process for the Removal

of Glyphosate from Water. Molecules

2023, 28, 2214. https://doi.org/

10.3390/molecules28052214

Academic Editor: Carlo Santoro

Received: 27 January 2023

Revised: 14 February 2023

Accepted: 22 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Feasibility of a Heterogeneous Nanoscale Zero-Valent Iron
Fenton-like Process for the Removal of Glyphosate from Water
Naveed Ahmed 1 , Davide Vione 1,* , Luca Rivoira 1 , Michele Castiglioni 1 , Mihail S. Beldean-Galea 2

and Maria Concetta Bruzzoniti 1,*

1 Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125 Turin, Italy
2 Faculty of Environmental Science and Engineering, Babes-Bolyai University, 400347 Cluj-Napoca, Romania
* Correspondence: davide.vione@unito.it (D.V.); mariaconcetta.bruzzoniti@unito.it (M.C.B.)

Abstract: Glyphosate is a widely used herbicide, and it is an important environmental pollutant that
can have adverse effects on human health. Therefore, remediation and reclamation of contaminated
streams and aqueous environments polluted by glyphosate is currently a worldwide priority. Here,
we show that the heterogeneous nZVI–Fenton process (nZVI + H2O2; nZVI: nanoscale zero-valent
iron) can achieve the effective removal of glyphosate under different operational conditions. Removal
of glyphosate can also take place in the presence of excess nZVI, without H2O2, but the high amount
of nZVI needed to remove glyphosate from water matrices on its own would make the process
very costly. Glyphosate removal via nZVI—Fenton was investigated in the pH range of 3–6, with
different H2O2 concentrations and nZVI loadings. We observed significant removal of glyphosate
at pH values of 3 and 4; however, due to a loss in efficiency of Fenton systems with increasing pH
values, glyphosate removal was no longer effective at pH values of 5 or 6. Glyphosate removal also
occurred at pH values of 3 and 4 in tap water, despite the occurrence of several potentially interfering
inorganic ions. Relatively low reagent costs, a limited increase in water conductivity (mostly due to
pH adjustments before and after treatment), and low iron leaching make nZVI–Fenton treatment at
pH 4 a promising technique for eliminating glyphosate from environmental aqueous matrices.

Keywords: glyphosate; ZVI; degradation; tap water; pH; Fenton; adsorption; heterogeneous reactions

1. Introduction

Glyphosate (GLY: N-(phosphonomethyl)glycine) is the world’s most-used herbicide,
and it is employed to control weeds in both agricultural (herbaceous crops and trees) and
non-agricultural areas [1]. GLY is so widely used owing to its broad spectrum (effectively
killing any plant, with the exception of some genetically modified ones), high efficacy,
good toxicological profile, and low cost [2,3]. Since its first commercialization in the
1970s [4], the use of GLY has steadily increased, with almost 600–700 thousand tons used
annually, and an expected 740–920 thousand tons to be used by 2025 [5]. In the meanwhile,
many harmful effects of GLY on plants, humans, and animals have been discovered,
including the weakening of plant systems, endocrine disorders, and the disruption of
animal metabolism [6–8]. GLY is potentially carcinogenic to humans, even if present at
trace levels (<0.02 mg/L) in the environment [9]. Up to now, about 750 GLY-containing
products have been used in 130 countries [1,10], but several countries have banned its use.
The EU regulations have set a maximum permissible limit of 0.1 µg/L for GLY in water [11],
but in some areas, its concentration is as high as 0.7 mg/L [12]. Although relatively low GLY
concentrations have been detected in surface waters in Germany, Hungary, Switzerland,
and northeastern Spain (0.1–2.5 µg/L, which is still often above the EU limit), high levels
(up to 165 µg/L) have often been found in Denmark and France [8]. Eventually, an efficient
strategy will be required to treat wastewaters and other streams that are contaminated with
GLY before concentration of this compound reaches alarming levels and GLY diffuses into
other compartments, such as the food chain.
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Conventional water treatment methods, including adsorption, biological oxidation,
and chemical oxidation, have all been used to remove GLY from water [13–18]. In recent
decades, advanced oxidation processes (AOPs) have attracted much attention as promis-
ing methods for the abatement of organic pollutants [16]. The AOPs include numerous
techniques based on the in situ formation of strong oxidants. Among those species, the
hydroxyl radical (HO•) plays a central role in AOPs due to its high standard reduction
potential (2.8 V vs. NHE), especially in acidic media. Being highly reactive and nonse-
lective, HO• can oxidize several organic compounds [19]. Main AOPs include ultraviolet
(UV) irradiation, H2O2/UV, photocatalysis, ozonation, electrochemical oxidation, Fenton
processes, and Fenton-like processes. Many of these have been used to remove GLY from
wastewater [20–25].

Unfortunately, the majority of AOPs are too costly to be applied to the treatment
of environmental water matrices, which are much more likely than wastewater to be
contaminated by GLY. Oxidation with Fenton’s reagent is an AOP based on ferrous ions
reacting with hydrogen peroxide to produce hydroxyl radicals and/or other oxidizing
species (e.g., ferryl). Fenton is an effective and proven method for the abatement of several
hazardous organic pollutants [16,22]. Over the past few years, heterogeneous Fenton-like
processes using nanoscale zero-valent iron (nZVI) have attracted much attention due to their
ability to efficiently remove heavy metals and organic contaminants [26–33]. Under acidic
conditions, slowly released Fe2+ (or FeII occurring on the surface of nZVI) activates H2O2
to promote the production of HO• (and/or ferryl), as described in reactions (1–2) [34,35].
The most important advantage of using nZVI, rather than conventional ferrous ions, is the
rapid recycling of Fe3+ into Fe2+ at the surface of the nZVI, which can proceed as shown in
reaction (3) [35]. Moreover, magnetic nZVI can be easily separated from the aqueous phase
at the end of treatment.

Fe0 + H2O2 + 2 H+ → Fe2+ + 2 H2O (1)

Fe2+ + H2O2 → Fe3+ + OH− + HO• (2)

2 Fe3+ + Fe0 → 3 Fe2+ (3)

It has been reported that, by using nZVI (22.4 mg/L) and H2O2 (0.1 mmol/L) at
pH 3, chlorpheniramine (10 mg/L) can be completely removed at room temperature [36].
Moreover, the efficiency of the degradation of polyvinyl alcohol (PVA) reached 94% in 1 min
at pH 3 with a nZVI dosage of 5 mg/L and a H2O2 concentration of 1 × 10−4 mol/L [34].
Many approaches have been attempted to remove different contaminants from water
using Fenton-related processes [37–45]. However, GLY removal from water using nZVI,
through either adsorption or degradation (nZVI/H2O2 Fenton-like system), has not yet
been reported.

This is the first work, to our knowledge, in which GLY removal was investigated by
using nZVI + H2O2 at different pH values (a heterogeneous Fenton-like process). The
removal efficiency was here maximized by optimizing the concentrations/loadings of both
nZVI and H2O2. The comparative removal of GLY via either nZVI alone or nZVI + H2O2
was also studied so as to highlight the role of the nZVI–Fenton reaction in the process.
Finally, nZVI–Fenton degradation of GLY was also investigated using tap water.
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2. Results and Discussion

To optimize the concentrations/loadings of nZVI and H2O2, a number of experiments
were performed at different pH values to investigate the efficiency of GLY degradation.
Preliminary experiments with nZVI + H2O2 at pH 3 were carried out to highlight the
Fenton degradation (Figure 1).

Figure 1. (a) Effect of H2O2 concentration (50–300 µM) on GLY removal via nZVI–Fenton at pH
3 at 10 mg/L nZVI loading, optimized to minimize adsorption; (b) GLY removal using different
loadings of nZVI alone, without H2O2, at pH 3. The error bounds represent the standard deviation of
triplicate experiments.
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The loading of nZVI (varying in the range of 0.001–300 mg/L) was optimized while
minimizing GLY removal by nZVI alone (which could involve adsorption, at least in
part; see Figure 1b). Indeed, although complete GLY removal could be achieved by using
300 mg/L nZVI without H2O2 (Figure 1b), such a high nZVI loading would be impractical
in water treatment applications due to the elevated costs of chemical reagents. (A quantity
of 300 mg/L nZVI would cost approximately USD 0.24/m3 [46]).

Note that adsorption is not the only phenomenon that could account for the removal
of GLY by nZVI alone, as shown in Figure 1b. Indeed, the nZVI–Fenton process can be
activated by O2 alone, without H2O2, with the generation of both Fenton reactants [47]:

Fe0 + O2 + 2H+ → Fe2+ + H2O2 (4)

The minimum tested loading of nZVI (0.001 mg/L) was effective at minimizing
adsorption, but it did not induce effective GLY degradation in the presence of H2O2.
Moreover, such a low level of loading could not be obtained by direct weighting, but
rather by the dilution of a stock nZVI suspension. Presumably due to the difficulty of fully
homogenizing the stock suspension, the system lacked reproducibility in results.

Therefore, compromise loadings (10 mg/L, i.e., the lowest loading that could be achieved
via direct weighting, or 20 mg/L) were chosen for the nZVI in subsequent experiments.

2.1. GLY Removal at pH 3

As shown in Figure 1a, complete GLY removal could be achieved at pH 3 by using
10 mg/L nZVI and 300 µM H2O2. Lower H2O2 concentrations were less effective, most
likely because of lower hydroxyl radical (HO•) generation when H2O2 is low. Higher H2O2
concentrations were not tested because their use would increase treatment costs (300 µM
H2O2 would cost approximately USD 0.009/m3 [46]) and because effectiveness would
decrease at a certain point due to HO• scavenging by the H2O2 itself [48]:

H2O2 + HO• → HO2
• + H2O (5)

2.2. GLY Removal at pH 4

It was not possible to achieve satisfactory GLY removal at pH 4 in the presence of
10 mg/L nZVI + H2O2. For this reason, higher loadings of nZVI (20–40 mg/L) were tested,
but the adsorption of GLY by nZVI alone (i.e., without H2O2) was also checked. Limited
adsorption was observed with 20 mg/L nZVI, which was then used to perform further
degradation experiments at different concentrations of H2O2 (200–400 µM). However, as
shown in Figure 2a, the maximum GLY removal by nZVI + H2O2 was, at most, only 72%
when using 400 µM H2O2 at pH 4.

An alternative strategy, proposed by Minella et al. (2019), consists in the stepwise
addition of H2O2. This procedure allows for the use of a relatively high overall amount
of H2O2 (thereby providing a sufficiently high total amount of generated HO•), while
simultaneously minimizing HO• scavenging by the H2O2 itself. The rationale is that the
H2O2 becomes progressively degraded as the reaction goes on and, if H2O2 is added
stepwise, it never reaches excessive concentration values at any time point [31]. By adding
150 µM of H2O2 at the beginning, plus an additional 50 µM at 30 min after the start of the
reaction, we obtained 87% GLY removal with 20 mg/L nZVI at pH 4 (Figure 3).
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Figure 2. (a) GLY removal (%) by nZVI (20 mg/L) and H2O2 (200–400 µM) at pH 4; (b) GLY removal
at pH 4 by nZVI alone (with different loadings).

Figure 3. GLY removal (%) by nZVI (20 mg/L) and, where applicable (“Adsorption + Degradation”),
H2O2 (150 µM at t = 0 + 50 µM at t = 30 min) at pH 4.
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2.3. GLY Removal at pH Values of 5 and 6

Several combinations of nZVI loadings (10–30 mg/L) and H2O2 concentrations, includ-
ing multiple additions of different amounts of the latter, were attempted for the removal of
GLY at pH values of 5 and 6 via nZVI–Fenton. However, no GLY degradation at all was ob-
served. In particular, the tested conditions at both pH 5 and 6 were as follows: (i) 10 mg/L
nZVI, 150 µM H2O2 at the beginning of the reaction, plus an additional 50 µM H2O2 at
30 min reaction time; (ii) 20 mg/L nZVI, 200 µM H2O2 at the beginning of the reaction,
plus an additional 50 µM H2O2 at 30 min reaction time; (iii) 30 mg/L nZVI, 300 µM H2O2
at the beginning of the reaction, plus an additional 50 µM H2O2 at 30 min reaction time.

The most likely explanation for the lack of GLY degradation at pH values of 5 and 6 is
the decrease in efficiency of the Fenton reaction with the increase in the pH value (and of
the nZVI–Fenton reaction as well [31,46]). Actually, a major issue in the Fenton process is
Fe(III) recycling to Fe(II) [46,49]. As the pH increases, the decreasing solubility of the Fe(III)
hampers its reduction to Fe(II), slowing down the Fenton degradation [49].

2.4. GLY Removal from Tap Water

GLY removal was then studied using GLY-spiked tap water at pH values of 3 and
4 (the pH was adjusted by H2SO4; the original tap water pH was 7.6–7.7), starting with
the loadings/concentrations of nZVI and H2O2 already optimized in ultra-pure water. At
pH 3, with 10 mg/L nZVI and 300 µM H2O2, the GLY removal efficiency reached 80%.
Unfortunately, it was not possible to improve the removal percentage, even by employing
the stepwise addition method. In particular, the achieved removal percentages at 1 h were
as follows: (i) 54% with 10 mg/L nZVI, 150 µM H2O2 at the beginning of the reaction, plus
an additional 50 µM H2O2 at 30 min reaction time; (ii) 72% with 10 mg/L nZVI, 200 µM
H2O2 at the beginning of the reaction, plus an additional 50 µM H2O2 at 30 min reaction
time; (iii) 75% with 10 mg/L nZVI, 350 µM H2O2 at the beginning of the reaction, plus an
additional 50 µM H2O2 at 30 min reaction time; (iv) 76% with 10 mg/L nZVI, 400 µM H2O2
at the beginning of the reaction, plus an additional 50 µM H2O2 at 30 min reaction time.

The lower level of GLY removal from tap water, compared to ultra-pure water, might
be tentatively ascribed to the presence of common inorganic anions in tap water (Cl−,
SO4

2−, and NO3
−) (see Table 1). Some anions, and especially chloride, are able to scavenge

HO• at pH 3 to produce different reactive transient species that are, however, significantly
less reactive than HO• itself [48], thereby lowering the nZVI–Fenton efficiency [33]. Fur-
thermore, the scavenging of HO• by H2O2 would become comparatively less important in
tap water that already contains other HO• scavengers, thereby decreasing the effectiveness
of the stepwise H2O2 addition method.

Table 1. Concentration values of different anions in tap water.

Parameter Measured Value (mg/L)

Chloride (Cl−) 26
Sulfate (SO4

2−) 44
Nitrate (NO3

−) 16
Nitrite (NO2

−) <0.05

Very interestingly, it was possible to achieve 100% GLY removal from tap water at
pH 4 by using 20 mg/L nZVI, 150 µM of H2O2 at the beginning of the reaction, plus an
additional 50 µM at 30 min reaction time. Complete removal of GLY was achieved in
40 min, and degradation at 30 min was around 66% (Figure 4). A possible reason for the
better performance of nZVI–Fenton at pH 4, as compared to pH 3, is that the reaction
rate between chloride and HO• decreases with increases in the pH value, because the
HO• + Cl− reaction step becomes partially reversible [48].
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Figure 4. Kinetics of GLY removal from tap water at pH 4.

The pH and conductivity values of the GLY-spiked tap water were monitored during
the nZVI–Fenton treatment. In the case of the experiments carried out at pH 3, the pH value
was quite stable and ranged between 3–3.2. Initial water conductivity was 0.53–0.58 mS/cm;
it increased to around 0.9–1.1 mS/cm upon acidification to pH 3, and then it remained
reasonably stable during the advancement of the reaction.

As far as the degradation experiments at a pH value of 4 are concerned, initial tap-
water conductivity was around 0.5–0.55 mS/cm, and it increased to around 0.6 mS/cm
upon acidification to pH 4. A further increase, by ~0.1 mS/cm units, is expected to take
place in the final neutralization step, intended to bring the pH to at least 6 to allow for
discharge in the environment. Despite the increase in conductivity, it would still be possible
to reuse treated water in several fields, including some of the most demanding in terms
of water conductivity (e.g., agriculture [50]). The pH value was reasonably stable during
the reaction (4.0–4.3). Leached iron at pH 4 was quantified as well; the concentration of
dissolved Fe was undetectable before treatment and amounted to 2.5 mg/L at the end of the
treatment. This means that around 12% of the initially added nZVI (20 mg/L) underwent
dissolution at pH 4. When compared with Fe wastewater limits (4 mg/L according to
Italian law), a dissolved Fe concentration of 2.5 mg/L suggests that treated water can be
safely discharged without the need for additional steps of iron removal (apart from the
easy magnetic separation of nZVI).

Under optimal conditions in tap water (pH 4, 20 mg/L nZVI, 150 + 50 µM H2O2), the
GLY removal capacity of nZVI–Fenton can be calculated as at least 100 mg GLY/g nZVI. This
value exceeds the capacity of adsorption systems based on metals with high complexation
capabilities towards P-containing ligands [51] and, to an even higher extent, the adsorption
capacity of activated carbon [52], which is a widespread adsorbent used in tertiary treat-
ments at most potabilization facilities. Therefore, the studied Fenton-like process appears
to make better use of the solid reagent, as compared to adsorptive techniques.

2.5. Cost Estimates for GLY Removal from Tap Water

Based on the results reported in the previous section, a preliminary and partial esti-
mate of the costs of the nZVI–Fenton process can be carried out within the framework of
expenditures for chemical reagents per m3 of treated water. This estimate is significant, in
that reagents are a major expenditure in Fenton treatments [53]. The necessary infrastruc-
ture, including basins for water treatment, also contributes to the treatment costs, but in the
case of Fenton techniques, the required infrastructure is much simpler and considerably
less costly, as compared to ozonation, for example. [53].

The costs of bulk chemicals that were used as reference for calculations are as fol-
lows [46]: USD 800/ton for nZVI, USD 500/ton for H2O2, USD 240/ton for H2SO4, and
USD 120/ton for CaO. Note that CaO is a relatively cheap base that can be used to adjust
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pH after treatment. Indeed, because the environmental discharge of treated water with a
pH value of 3 or 4 is not permitted, the water’s pH should be increased to at least 6 in order
to avoid damaging the receiving bodies of water [50].

In the case of GLY degradation at pH 4, with 20 mg/L nZVI and 200 µM H2O2 (i.e.,
150 µM + 50 µM), cost estimates are USD 0.016/m3 for nZVI and USD 0.006/m3 for H2O2.
The cost of H2SO4 can be estimated by carrying out tap-water titration and then measuring
the amount of H2SO4 that is required to adjust the water’s pH to any given value (pH 4
in the present case; see Figure 5). On this basis, one can conclude that the adjustment of
the pH value to 4 would require 1.8 mol H2SO4 m−3, which translates to a cost of USD
0.041/m3 for H2SO4 [46]. Moreover, again based on water titration data, one would also
need 1 mol CaO m−3 to finally adjust the pH value to at least 6 for eventual discharge or
reuse, which entails an added cost of USD 0.0067/m3 [46]. Overall, the elimination of GLY
from water using the nZVI–Fenton technique at a pH of 4 would cost USD 0.070/m3 in
chemical reagents.

Treatment at pH 3 would cost USD 0.008/m3 for the nZVI, USD 0.009/m3 for the H2O2,
USD 0.052/m3 for the H2SO4, and USD 0.010/m3 for the CaO, for a total of USD 0.079/m3

(i.e., a slightly higher cost, as compared to pH 4, to achieve a lower level of GLY removal).
Moreover, higher conductivity increases (up to 1–1.5 mS/cm) were observed upon water
treatment at pH 3, as compared to at pH 4, and 8 mg/L iron leached from 10 mg/L nZVI at
pH 3 (implying 80% dissolution of initially occurring nZVI). This means that a further step
of dissolved-iron removal before discharge would be required for treatment at pH 3.

By comparison, the cost of traditional wastewater treatment (including sedimen-
tation and activated sludge, which is often unable to remove GLY) is in the range of
USD 0.3–0.4/m3 [31,46]. Ozonation costs would be in the same range (about 4 times as
much as the cost of chemicals in Fenton [53]), which makes nZVI–Fenton a potentially very
competitive and effective technique for the removal of GLY from aqueous streams.

Figure 5. Results of tap-water titration with H2SO4 (measured pH, as a function of added volume of
H2SO4 1 M). The upper X-axis plots the cost of H2SO4 addition, based on an estimate of USD 240
(ton H2SO4)−1 [46]. The reported phenomenological equation is a second-order polynomial fit. The
volumes of H2SO4 needed to bring the pH to values of 4 and 6 are highlighted. (The latter allows for
the calculation of the amount of CaO needed to fix the pH at 6 at the end of the treatment.).

3. Experimental
3.1. Reagents and Materials

All chemical reagents used in the study were of analytical grade and were used
without further purification. Nanoscale zero-valent iron (nZVI, ≥ 99.5% purity), hydrogen
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peroxide (H2O2, 30% w/w), H2SO4 (98%), glyphosate (OH)2P(O)CH2NHCH2CO2H, and
NaOH (≥ 97%) were obtained from Sigma-Aldrich (Darmstadt, Germany). All solutions
were prepared by using Milli-Q water (Elix-Milli Q Academic system (Millipore-Merck,
Vimodrone, Italy).

3.2. Experimental Procedure

All experiments were performed at room temperature (20–22 ◦C), and the initial pH
values were adjusted using diluted solutions of sulfuric acid (see below for the choice
of H2SO4). In a typical experiment, 1 L of ultra-pure water containing 2 mg/L GLY was
placed in a 1.2 L beaker. The value of the pH was monitored with a Checker pH meter
(Hanna Instruments, Woonsocket, RI, US), and it was adjusted whenever required using
diluted H2SO4. The required amounts of directly weighed (or pipetted) nZVI and H2O2
were added to already-prepared 2 mg/L GLY, and the whole system was then magnetically
stirred for 1 h of reaction time. (Longer times would be uninteresting within the framework
of water treatment.) After 1 h, a few mL of the sample was withdrawn, filtered (nylon
0.45 µm, VWR, Radnor, PE, USA), and injected into an ion chromatograph (Thermofisher-
Dionex DX-100, Sunnyvale, CA, USA) equipped with a 200 µL loop, using 17 mM NaOH
as the eluent. GLY was separated and detected with an IonPac AS16 column (250 × 4 mm,
Thermofisher-Dionex, Sunnyvale, CA, USA), a Dionex ASRS 4 mm membrane suppressor,
and a conductivity detector. The same experimental procedure was adopted to check for
the adsorption efficiency of GLY using nZVI, with the exception that H2O2 was not added
in this case. All experiments were conducted in triplicate.

The concentration of dissolved iron leached during the nZVI–Fenton treatment was
determined via inductively coupled plasma–optical emission spectroscopy (ICP–OES,
Agilent 5100, Santa Clara, CA, USA). Emission of atomic Fe was quantified at 238.204 nm,
and the Fe-detection limit with this technique was at the level of µg/L. By comparison, the
limit for Fe in wastewater is 4 mg/L according to Italian law [Legislative decree 152/06].

In tap-water experiments, tap water (from Turin, Italy) was spiked with GLY to achieve
the desired 2 mg/L concentration. Then, the same procedure (as described earlier) was
followed, but conductivity was also monitored throughout the reaction. Common inorganic
anions in tap water were determined via suppressed anion chromatography.

Before deciding how to adjust the pH value, preliminary experiments were performed
to minimize chromatographic interferences of acids (HClO4, HCl, and H2SO4) and buffers
(phosphate and acetate) in the detection of GLY. Chromatographic interference was ob-
served between GLY and HClO4, which was thus excluded. Although chloride did not
interfere with GLY detection, HCl was not chosen because of the ability of chloride ions
to scavenge HO• in acidic solutions [48,54]. Phosphate buffer was not selected, owing
to the very close elution of phosphate and GLY, which is due to the similar selectivity
usually exhibited by chromatographic columns for these anions. Acetate buffer was tested
but excluded due to ineffectiveness. (The orange-red Fe2+-acetate complex is possibly
unreactive within the framework of nZVI + H2O2.) Therefore, H2SO4 was finally selected
to adjust the pH value, with consideration of the high chromatographic resolution between
sulfate and GLY ions.

4. Conclusions

Significant GLY degradation was obtained in the pH range of 3–4 using the nZVI–Fenton
technique after optimization, which encompassed a variety of conditions of nZVI loading
and H2O2 concentration. Unfortunately, the decrease in Fenton reactivity with an increase
in pH prevented effective degradation to be achieved at either pH 5 or 6. GLY removal was
also obtained at pH 3 with nZVI alone, without H2O2, but the required loading (300 mg/L
nZVI) was 15–30 times higher than the loading required in nZVI–Fenton. That issue would
be reflected in rather high costs for water treatment with nZVI alone.

In the case of tap water, complete (100%) GLY removal was achieved at pH 4 with
20 mg/L nZVI and 150 + 50 µM H2O2 (i.e., 150 µM added at t = 0, and 50 µM added after
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30 min reaction time). Overall, water treatment costs for GLY with nZVI + H2O2 at pH
4 would be very reasonable in terms of the expenditures for chemical reagents (a total
of USD 0.07/m3, of which approximately 30% would be for nZVI + H2O2, and the rest
would go to pH-adjustment reagents). Interestingly, these same conditions would also
allow for the removal of additional emerging contaminants (pharmaceuticals) from the
water matrix [29,42].

Potential drawbacks of water treatment in acidic conditions are the elevated costs for
pH adjustment, the increase in water conductivity following the acidification necessary
for the Fenton process to work, the basification at the end of treatment to allow for water
discharge, as well as the leaching of iron from the nZVI due to increased iron solubility at
an acidic pH. As far as pH adjustment costs are concerned, we show here that they make
up ~70% of the total reagent costs in the case of treatment at pH 4, and even ~80% for
treatment at pH 3. With these limitations in mind, in this work, nZVI–Fenton was also
tested at pH values of 5 and 6 but, unfortunately, no GLY degradation was achieved under
these conditions. Water treatment at pH 4 would be quite satisfactory, however, because
overall reagent costs would still be low, and the increase in conductivity was quite small, as
compared, for instance, to treatment at pH 3. (Tap-water conductivity more than doubled
upon treatment at pH 3, while a 40% increase is expected to occur at pH 4). Therefore,
final water conductivity would still allow for water reuse in agriculture, which is a very
demanding field as far as conductivity requirements are concerned. Furthermore, iron
leaching from nZVI at pH 4 was low enough for treated water to meet the legal limits
for safe discharge into the environment, while the same would not occur in the case of
treatment at pH 3.
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