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Summary

Arbuscular mycorrhizal (AM) symbiosis is amutualistic interaction between fungi andmost land

plants that is underpinned by a bidirectional exchange of nutrients. AMdevelopment is a tightly

regulatedprocess that encompassesmolecular communication for reciprocal recognition, fungal

accommodation in root tissues and activation of symbiotic function. As such, a complex network

of transcriptional regulation and molecular signaling underlies the cellular and metabolic

reprogramming of host cells upon AM fungal colonization. In addition to transcription factors,

small RNAs (sRNAs) are emerging as important regulators embedded in the gene network that

orchestrates AM development. In addition to controlling cell-autonomous processes, plant

sRNAs also functionasmobile signals capable ofmoving todifferent organs andeven todifferent

plants or organisms that interact with plants. AM fungi also produce sRNAs; however, their

function in theAMsymbiosis remains largely unknown.Here,wediscuss the contributionof host

sRNAs in the development of AM symbiosis by considering their role in the transcriptional

reprogramming of AM fungal colonized cells.We also describe the characteristics of AM fungal-

derived sRNAsandemergingevidence for thebidirectional transfer of functional sRNAsbetween

the two partners to mutually modulate gene expression and control the symbiosis.

Introduction

Arbuscular mycorrhizal (AM) symbiosis is an intimate interaction
between the roots of most land plants and soil fungi of the
subphylumGlomeromycotina. This mutualistic interaction, based
upon the trading of mineral nutrients (mainly phosphates) from
fungi to plants in exchange for carbon compounds, dates back to
the Devonian when it was pivotal for plant terrestrial colonization.
Thus, such a relationship implies a long history of plant–fungus co-
evolution and a finely tuned coordination of developmental and
metabolic processes in both partners (reviewed in Genre et al.,
2020).

During the presymbiotic phase, plant and AM fungi release
diffusible molecules that enable mutual recognition and induce
reciprocal symbiotic responses: Host plants attract and stimulate
the fungal partner through the release of strigolactones (SLs) and

perhaps other still uncharacterized molecules. In AM fungi, the
perception of SLs increases the production of short chitin-based
oligomers (chito-oligosaccharides and lipo-chito-oligosaccharides)
generally referred to as Myc factors, which, in turn, enhance plant
SLs production (Volpe et al., 2023) and induce plant responses
essential for fungal accommodation. Myc factors activate the
genetic program known as the Common Symbiotic Signalling
Pathway (CSSP) that largely shapes the transcriptional response to
AMcolonization andnodulation in legume plants (Oldroyd, 2013;
MacLean et al., 2017; Pimprikar & Gutjahr, 2018).

Once inside plant roots, AM fungi develop intercellular hyphae
and highly branched intracellular structures within the inner
cortex layers, called arbuscules. In arbuscule-containing cells, the
plant cell plasma membrane extensively envelops even the finest
fungal hyphae, leading to the formation of the peri-arbuscular
membrane (PAM), which presents a characteristic lipid and
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protein composition (Ivanov & Harrison, 2018; Roth
et al., 2018). Between the arbuscule/fungal cell membrane and
the PAM spans an apoplastic zone, called the peri-arbuscular
space (PAS), where a bidirectional transport of nutrients and,
possibly, several signalingmolecules from fungal to plant cells and
vice versa occurs. Although little is known about the types of
molecules and the mechanisms involved, these exchanges likely
play a key role in the regulation of the symbiosis.

Although fungal growth is restricted to roots, AM colonization
also leads to metabolic and physiological changes at the systemic
level, according to the occurrence of a root-shoot axis influencing
multiple aspects of plant biology including nutrition, development
and responses to (a)biotic stresses (Fiorilli et al., 2018; Chialva
et al., 2023).

Local, as well as systemic responses, upon AM colonization
imply a fine-tuning of plant and fungal gene expression that is
crucial for the establishment and functioning of the mutualistic
association. Accordingly, many studies have reported extensive
and conserved transcriptional reprogramming across different
plant species in response to AM fungi, including genes
present only in the genomes of AM-competent species (Delaux
et al., 2014; Bravo et al., 2016). Besides transcription factors and
cis-regulatory elements (Pimprikar & Gutjahr, 2018), small
RNAs (sRNAs) have also been deemed important regulators
embedded in the genetic networks orchestrating AM develop-
ment (Lauressergues et al., 2012; Bazin et al., 2013; Etemadi
et al., 2014; Couzigou et al., 2017; M€uller & Harrison, 2019;
Pradhan & Requena, 2022). Likewise, AM fungi undergo
profound reprogramming that might include sRNAs since they
possess all the essential components of RNA interference (RNAi)
machinery regulating the production of sRNA from different
genetic sources (Silvestri et al., 2019, 2020; Dallaire et al., 2021;
Manley et al., 2023).

In addition to controlling cell-autonomous processes, sRNAs
may also function as mobile signals within the plant (Li et al.,
2021), and even between different plants (Shahid et al., 2018;
Betti et al., 2021) and the microorganisms they interact with, in
a process known as cross-kingdom RNA interference (ckRNAi,
Cai et al., 2018a). Accordingly, plants impaired in the production
of sRNAs show dysbiosis (Kaushal et al., 2021).

In this review, we aim to summarize known sRNA pathways
and discuss the contribution of sRNAs in the establishment
and functioning of AM symbiosis, examining the reprogramming
of plant sRNAs upon colonization by AM fungi and the landscape
and significance of sRNAs in the fungal symbionts; lastly, we
comment on emerging evidences for ckRNAi involving the possible
transfer of functional sRNAs between the two symbiotic partners.

The RNA interference machinery: a flexible platform
based onmultiple components and a plethora of small
RNA types

RNA interference (RNAi) is a universal gene regulatory system in
eukaryotes that orchestrates development and stress responses. This
regulatory system is based on sequence complementarity between
sRNAs and their DNA (transcriptional gene silencing, TGS) or

RNA (post-transcriptional gene silencing, PTGS) targets. Plant
sRNAs typically range from 20 to 28 nucleotides in length and
belong to two different subclasses according to the RNA template
they originate from via the action of RNAse-like II enzymes from
the DICER-Like family (DCL). Micro RNAs (miRNAs) are
produced from single-stranded RNAs (ssRNAs), transcribed from
endogenous genes, that self-fold into highly thermodynamically
stable hairpins, which are then processed into mature miRNAs
mainly by the action of DCL1. Plant miRNAs are involved in
PTGS by triggering the cleavage of their mRNA targets or by
inhibiting their translation. Short interfering RNAs (siRNAs)
constitute the second class of sRNAs and are produced from fully
complementary double-stranded RNAs (dsRNAs) of exogenous
and endogenous origin. siRNA participates both in PTGS
(mediated by 21–22 nt siRNAs) and in TGS through the RNA-
directed DNA methylation pathway, which is mediated by 24 nt
heterochromatic-siRNAs (hc-siRNAs). Most endogenous siRNA
precursors originate from ssRNA templates that are converted into
dsRNAs by enzymes from the RNA-dependent RNA polymerase
family (RdRps). Processing of those dsRNAs into siRNAs occurs in
a phased manner (pha-siRNAs). After their biogenesis, the
resulting sRNA duplexes are further methylated and stabilized by
the conserved HUA ENHANCER1 enzyme (HEN1, Yu et al.,
2005; Sanobar et al., 2021) and loaded into the RNA-induced
silencing complex (RISC). Proteins from the ARGONAUTE
(AGO) family are themain effectors forming the RISC. Eukaryotic
AGOproteins sharemany common features and functions through
conserved RNAi pathways. However, plant AGOs vary largely in
number among species and have diversified into three major
phylogenetic clades, as exemplified in the model Arabidopsis
thaliana by AGO1/5/10, AGO2/3/7 and AGO4/6/8/9 (Li
et al., 2022; B�elanger et al., 2023). Sorting of sRNAs onto AGOs
is a regulated process, where the length (Mi et al., 2008; Takeda
et al., 2008), the 50 nucleotide (Mi et al., 2008) and the secondary
structure of the duplexes act as determinants for differential AGO
loading and subsequent function. Interestingly, the regulatory
function of sRNA-loaded AGO proteins extends beyond the cells
in which they are primarily expressed. This regulatory function can
occur through their inclusion in extracellular vesicles (EVs; He
et al., 2021) or by secretion into the apoplastic fluid alongwith long
noncoding and circular RNAs (Zand Karimi et al., 2022) that have
been proposed to act in mammals as miRNA sponges (Olesen
et al., 2021).

It is important to note that most of what is known about DCL-
dependent biogenesis of sRNAs, sorting into AGO proteins and
their functions in plants is based on the model plant species
Arabidopsis thaliana, a non-host plant for AM fungi. Other plant
species may present additional gene family members with specific
expression patterns, subcellular location or specialized functions
arising from gene duplication and sub- and/or neofunctionaliza-
tion. Examples of functional specialization include the monocot-
specific DCL5, which evolved from the duplication of an ancient
DCL3 from a eudicot ancestor (Ono et al., 2018) and that is
involved in the cell-type specific production of 24-nt sRNAs that
participate in temperature-dependent fertility (Teng et al., 2020).
Another example is the preferential loading of unusually long
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sRNAs (> 26 nt) intoAGO1 in the unicellular algaChlamydomonas
reinhardtii (Li et al., 2023).

Plant sRNAs shape plant-biotic interactions including
the AM symbiosis

Besides having a central role in regulating endogenous gene
expression, RNAi safeguards genome integrity from transposable
elements (TEs) and constitutes one of the main antiviral defense
mechanisms. During their life cycle viruses produce highly stable
dsRNAs intermediates that are recognized and processed by the
host RNAi machinery, generating viral small RNAs (vsRNAs) that
are used to seek and destroy viral genomes and stop the infection. In
addition, vsRNAs can also target host transcripts, promoting viral
infection (Smith et al., 2011). Perception of molecules derived
from bacterial and fungal pathogens, such as flagellin and chitin,
also leads to changes in the levels of several plant sRNAs which, in
turn, can elicit antimicrobial defense responses (Navarro et al.,
2006; Li et al., 2010; Boccara et al., 2014; Soto-Su�arez et al., 2017;
L�opez-M�arquez et al., 2021; Vasseur et al., 2022).

Notably, the role of plant sRNAs in plant–microbe interactions
is not restricted to their direct regulation of endogenous plant
immune programs but it can be exerted distantly through their
translocation to the pathogenic microorganism. Since the finding
that miR159 and miR166 from cotton were targeting virulence
genes in the fungal pathogen Verticillium dahlia abrogating

infection (Zhang et al., 2016), other studies have shown an
antimicrobial role of plant-derived sRNAs (Cai et al., 2018b; Hou
et al., 2019; Zhu et al., 2022).

While there is awealth of literature on the role of sRNAs in plant-
pathogenic interactions, the current knowledge on the sRNA-
mediated gene regulation network controlling the AM symbiosis is
still limited and possibly represents the tip of the iceberg. The
colonization by AM fungi induces an extensive reprogramming of
plant sRNAs expression, many of which are conserved in different
plant species (Gu et al., 2010; Devers et al., 2011; Formey et al.,
2014;Wu et al., 2016; Pandey et al., 2018; Xu et al., 2018;Mewalal
et al., 2019; Mendoza-Soto et al., 2022; Zeng et al., 2023; Fig. 1).
Upon AM fungal colonization inMedicago truncatula, a number of
miRNAs are transcriptionally upregulated with predicted miRNA
targets mostly represented by transcription factors that modulate
AM development and defense-related genes to suppress immunity
(Devers et al., 2011). Similar results were obtained in the host plant
Nicotiana attenuata (Pandey et al., 2018). In this case, a specific
member (AGO7) of the AGO family was shown to contribute to
the AM-induced sRNAmodulation that allowed to control of root
colonization levels through the actions of various phytohormone
signaling pathways (gibberellins, ethylene and auxin) and phos-
phate and fatty acid metabolism (Pradhan et al., 2023). Moreover,
the downregulation of N. attenuata AGO7 by RNAi led to an
increasedmycorrhization level (Pradhan et al., 2023). Interestingly,
enhanced root nodulation was described in aM. truncatula AGO7

(a)

miR171b

miR393 Auxin
signaling

miR171h

NSP2

LOM1

miR171
a,c,d,e,f,g

miR171
a,c,d,e,f,g

LOM1

Inhibition of arbuscule
development

(b)

Leaves
Biosynthesis and modification
of cell wall components

Roots
• Transcription 
• Defence
• Phosphate metabolism
• Fatty acid metabolism
• Phytohormones (gibberellins, 
  auxin, ethylene, strigolactones)

Biological processes targeted
by miRNA in AM symbiosis

Epidermis/outer cortex Inner cortex

Fig. 1 Micro RNA (MiRNA)-mediated plant gene expression reprogramming in the arbuscular mycorrhizal (AM) symbiosis. (a) SmallRNAome survey in
different plant species identified target genes involved in several biological processes (Gu et al., 2010; Devers et al., 2011; Formey et al., 2014;Wu et al., 2016;
Pandey et al., 2018;Mewalal et al., 2019;Mendoza-Soto et al., 2022; Zeng et al., 2023). (b) SpecificmiRNA-target interactionswere shown to control theAM
colonization. The downregulation (blue color) of miR393 by AM symbiosis releases its suppressive effect onmembers of the auxin signaling pathway, thereby
promoting arbusculedevelopment (Etemadiet al., 2014).miR171h,which is expressed in epidermis andouter cortex layers, by targeting theNSP2 transcription
factor, prevents AMover-colonization (Lauressergues et al., 2012). miR171b is induced (red color) in arbuscule-containing cells where it protects LOM1 from
being targeted by other members of the miR171 family (miR171a,c,d,e,f,g), promoting arbuscule formation (Couzigou et al., 2017).
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mutant (Hobecker et al., 2017), suggesting that shared regulatory
processes may occur in these two root symbiotic interactions,
possibly crossing the CCSP.

The underlying mechanisms of plant miRNA-mediated gene
regulation in mycorrhizal roots have been characterized in only a
few cases. Members of the miR399 family, systemic inorganic
phosphate (Pi)-starvation signals that suppress the E2 conjugase
Phosphate 2 (PHO2) needed tomaintain Pi homeostasis, have been
proposed as root-to-shoot signaling molecules in the regulation of
the AM symbiosis by Pi. The expression ofmembers of themiR399
family is indeed modulated in mycorrhizal plants (Branscheid
et al., 2010; Pandey et al., 2018; Xu et al., 2018; Zeng et al., 2023).
However, miR399 overexpression did not restore AM fungal
colonization at high Pi concentration (Branscheid et al., 2010),
suggesting that other mechanisms are involved. Recent findings
provided evidence that a plant regulatory network centered on
crucial components of the so-called Pi starvation response (PHR)
controls the level of AM root colonization (Shi et al., 2021; Das
et al., 2022).

Opposite to what has been found in defense against bacterial
(Navarro et al., 2006) and fungal pathogens (Shi et al., 2021), an
increase in core elements under miRNA regulation from the auxin
signaling pathway has a positive role in regulating symbiotic
interactions, including the AM colonization. Thus, it has been
shown that miR393 is downregulated in mycorrhizal roots,
suggesting that TIR1/AFB-dependent auxin signaling is required
for arbuscule formation (Etemadi et al., 2014; Fig. 1).

In contrast to what was found inArabidopsis, where higher levels
of miR396b expression increased plants’ susceptibility to fungal
pathogens (Soto-Su�arez et al., 2017), miR396b overexpression in
M. truncatula led to reduced mycorrhization, possibly mediated by
the silencing of target transcription factors belonging to the GRF
and bHLH families (Bazin et al., 2013).

Interestingly, the expression of some plant AM-related genes is
under the control of miRNAs (M€uller & Harrison, 2019; Zeng
et al., 2023). The best characterized example concerns miRNAs of
the conserved family miR171, known for regulating the expression
of GRAS transcription factors – TFs (Cenci & Rouard, 2017).
Notably, in M. truncatula it was reported that the isoform mtr-
miR171h, targeting the NSP2 (Nodulation Signaling Pathway2;
Fig. 1)GRASTF, is specifically induced byAM fungi or treatments
with symbiotic diffusible molecules such as Myc factors (Bransc-
heid et al., 2010; Devers et al., 2011; Lauressergues et al., 2012;
Hofferek et al., 2014). NSP2 cooperates with other GRAS TFs,
such as NSP1 and RAM1 (Required for Arbuscular
Mycorrhization-1) to promote the expression of AM-specific genes
required for correct root colonization by AM fungi (Gobbato
et al., 2012; Rich et al., 2017). In particular, mtr-miR171h is
specifically expressed in those root peripheral tissues (e.g. epidermis
and first cellular layer of the cortex of the elongation zone) in which
the colonization or over-colonization by AM fungi should be
prevented (Lauressergues et al., 2012). Furthermore, the miR171
family is also known for controlling the expression of LOM (Lost
Meristems) genes, another group of GRAS TFs (Xue et al., 2015).
InM. truncatula, LOM1 is a positive regulator of the AMsymbiosis
(Couzigou et al., 2017; Fig. 1): the isoform mtr-miR171b, that is

encoded only by genomes of AM-competent plants, is specifically
induced in cells containing arbuscules and protects LOM1 from
being targeted by othermembers of themiR171 family, thanks to a
mismatch in the cleavage site (Couzigou et al., 2017). The
mismatch makes AGO-miR171b complex cleavage-incompetent
toward LOM1 transcripts and, by competing for the same substrate
with other cleavage-competent isoforms of miR171, miR171b
prevents the silencing of its target. It has been hypothesized that this
protectivemechanismof action ofmiRNAsmay exist in other plant
miRNA families (Couzigou et al., 2017; Fig. 1).

Although the majority of the investigations were performed on
herbaceous species and on roots, more recently, attention was also
given to woody plants and epigeous organs. The differential
expression of 130 miRNAs was identified in R. irregularis-colonized
roots of Populus trichocarpa (Mewalal et al., 2019), among which
were homologs of miRNAs shown to be AM-responsive in other
species (miR156,miR160,miR170,miR167,miR393 andmiR396;
Bazin et al., 2013; Etemadi et al., 2014; Wu et al., 2016). Moreover,
39 AM-responsive miRNAs showed a similar expression trend when
poplar plants were colonized by the ectomycorrhizal fungus Laccaria
bicolor. This indicates that the plant miRNA landscape and hence,
the molecular mechanism controlled by this level of regulation, may
be conserved to a certain extent across species and even across endo-
and ectomycorrhizal types.

Systemic responses to mycorrhization, which might be linked to
miRNA-regulated processes, have been found in leaves of AM-
colonized plants. Differentially expressed miRNA/targets were
identified in leaves of mycorrhizal tomato plants (Mendoza-Soto
et al., 2022). Among the identified miRNAs, miR164a-3p,
miR164a-5p, miR171e-5p and miR397 target genes related to
the biosynthesis or modification of cell wall components. These
findings support the hypothesis that the remodeling of the plant cell
wall participates in the induction by mycorrhizal colonization of a
priming state, that confers increased tolerance against foliar
pathogens (Mendoza-Soto et al., 2022).

To have a full view of the sRNA-mediated plant gene regulation
network occurring in the AM symbiosis, integrated analyses of the
different populations ofRNA, covering the sRNAs and their targets
and including the so far little characterized tiny and circular RNAs,
should be performed (Zeng et al., 2023). The role of specific
members from the DCL and/or AGO family in the AM symbiosis
also deserves further investigation (Huang et al., 2019; Pradhan &
Requena, 2022; Pradhan et al., 2023).

Insights on small RNA and RNAi in AM fungi

Almost all fungal lineages possess the key components of the RNAi
machinery (Torres-Mart�ınez & Ruiz-V�azquez, 2017; Lax
et al., 2020). Fungi often present more than one gene encoding
for the basic RNAi components, typically 1–2DCL, 1–4AGOand
1–4 RdRp (Chang et al., 2012). AM fungi are characterized by a
conserved repertoire of core RNAi genes that exhibit distinctive
attributes from other fungi (Lee et al., 2018; Silvestri et al., 2019,
2020; Dallaire et al., 2021; Lanfranco & Bonfante, 2023). A first
salient hallmark of AM fungi is the expansion of the AGO gene
family: In R. irregularis, this gene family consists of 26 complete
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AGO genes and an additional 14 genes that contain the typical
PIWI domain but lack other AGO domains. In the Rhizophagus
genus, the RdRP gene family also shows some level of expansion,
with R. irregularis having 21 RdRps, six of which correspond to
small peptides containing a short RdRp domain unreported in
other species (Silvestri et al., 2019). AM fungi possess 1 or 2 DCLs
but, remarkably, contain uniquely in eukaryotes, prokaryotic-type
class I ribonuclease III homologs arising from horizontal gene
transfer (HGT) events with cyanobacteria that may contribute to
the production of sRNAs (Lee et al., 2018). AM fungi have
maintained the sRNAmethyltransferaseHEN1,which is known to
confer higher stability to plant sRNAs, while this gene was lost in
several genomes of other mycorrhizal (ectomycorrhizal, orchid and
ericoid) and non mycorrhizal plant-interacting fungi (Dallaire
et al., 2021). Transcriptomics and proteomic data show these
RNAi-related genes are expressed and sometimes regulated in
different stages of the fungal life cycle (Silvestri et al., 2019, 2020;
Dallaire et al., 2021).

As expected by the presence of a complete RNAimachinery, AM
fungi produce sRNAs with typical hallmarks of RNAi-equipped
organisms, as demonstrated by a few sRNA-Seq experiments
(Silvestri et al., 2019, 2020; Dallaire et al., 2021). These studies
showed that the sRNA reads had a unimodal length distribution
centered at 24, 25, or 26 nucleotides depending on the species
(R. irregularis and G. margarita) and the fungal stage analyzed.
This length distribution is expected from species possessing a single
DCL. The sRNA reads also showed enrichment in uracyl at their
50-end, a common feature ofRNAi-competent fungi. InR. irregularis,
Dallaire et al. (2021) also demonstrated that a significant subset of
sRNAs is 20-O-methylated at the 30-end, a modification likely
provided by HEN1 homologs. Despite the available data being
limited to only two species (G. margarita and R. irregularis),
comprehensive sRNA genomic annotations revealed the existence
of two distinct populations of sRNA-generating loci in AM fungi
(Silvestri et al., 2019, 2020). The first group of loci localizes on
unannotated regions or overlaps with TEs, producing typical
RNAi-related sRNAs in length (22-to-26 nt-long sRNAs). The
second group of loci originates from protein-coding genes and
produces sRNAs not enriched in a specific length. A noncanonical
DCL-independent pathway (NCRIP) that generates sRNAs with
similar features has been described in the phylogenetically related
nonmycorrhizal fungus Mucor circinelloides (Trieu et al., 2015;
P�erez-Arques et al., 2020). Interestingly, this pathway depends on a
prokaryotic-derived RNAse III protein (R3B2), likely a product of
HGTbetween a bacterium and aMucorales ancestor. This evidence
also suggests that the AM fungi-specific prokaryotic-type ribonu-
clease III may contribute to sRNA production with an NCRIP.
Moreover, a few sRNA-generating loci have been annotated as
miRNA-like (Silvestri et al., 2019, 2020).

The recent re-annotation of TEs and the characterization of their
transcriptional and epigenomic dynamics in R. irregularis demon-
strated that bothRNAi and 5-methylcytosine atCG sites play a role
in controllingTEs (Dallaire et al., 2021). TE activitymay be crucial
for generating adaptive genetic variation in asexual organisms such
as AM fungi, but it also poses a risk to genome integrity. In this
context, a finely tuned anti-TE AGO-mediated defense activity

seems essential to balance the potential benefits (genome
variability) and drawbacks (loss of genome integrity) of TE
proliferation. Notably, the expansion of the AGO gene family in
R. irregularis appears to have been caused by TE activity, suggesting
an ongoing AGO-TE co-evolution process in AM fungi (Dallaire
et al., 2021). TEs are also the primary source of sRNA production
(49%), consistently with almost half of the genome constituted by
repetitive elements. Interestingly, the remaining sRNA loci,
corresponding to unannotated regions (41%) or protein-coding
genes (10%), are preferentially localized near TEs, raising questions
about the biological implications of such a linkage betweennon-TE
andTE sRNA-generating loci. Remarkably, in the fungal pathogen
Botrytis cinerea sRNAs, derived fromTEwere shown tomove from
fungus to plant cells and silence plant defense genes to favor host
colonization (Weiberg et al., 2013).

Although the most abundant DNA epigenetic change in AM
fungi is 5-methylcytosine, it is worth noting that AM fungi present
a unique methylome signature not present in Dikarya and plants:
N6-methyldeoxyadenin at symmetrical ApT motifs (6mApT;
Chaturvedi et al., 2021). This feature preferentially occurs at gene
and promoter regions and is associated with increased transcrip-
tion. Core genes for symbiosis, like those involved in phosphate
metabolism and transport, appear to be primarily 6mApT
methylated.

Chromosome-level genome sequencing coupled to Hi-C
analyses of R. irregularis strains showed that nuclei are organized
in a euchromatic compartment, containing many genes with core
functions, and a heterochromatic and heavily methylated compart-
ment, rich in repetitive sequences but also in genes for predicted
secreted proteins highly expressed in planta (Yildirir et al., 2022;
Sperschneider et al., 2023). This suggests that during the symbiotic
phase the chromatin condensation in AM fungi could be, to some
extent, under the control of the host plant. On the contrary, there is
also evidence that colonization by AM fungi causes changes in
DNA methylation (Varga & Soulsbury, 2017, 2019) and induces
the expression of specific retrotransposons in the host plant
(Vangelisti et al., 2019). Remarkably, the RiNEL1 effector from
R. irregularis was recently shown to interact with the plant
nucleosome protein histone 2B resulting in the downregulation of
defense-related gene expression and enhanced mycorrhization
(Wang et al., 2021). Chromatin changes and TGS thus appear as
another level of regulation of gene expression in the AM symbiosis,
in which sRNAs could also play a role.

Considering the highnumber of sRNAsmapping on the genome
of viruses hosted by AM fungi, the RNAimachinery of AM fungi is
likely also involved in antiviral defense, although the role of these
mycoviruses is still unknown (Silvestri et al., 2020).

Is there cross-kingdom RNAi in the AM symbiosis?

The process wheremobile sRNAs are transported between distantly
related organisms leading to silencing the expression of target genes
in the interacting partner through RNAi is known as cross-
kingdomRNAi (ckRNAi, Cai et al., 2018a) and has been described
in plant and animal systems (Buck et al., 2014; Cai et al., 2019;
Zhao et al., 2021). In plants, numerous studies have confirmed
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ckRNAi as a widespread defense strategy to suppress virulence
targets in the invading organism (Zhang et al., 2016; Cai
et al., 2018b; Hou et al., 2019; Zhu et al., 2022). Equally,
evidences of sRNAmovement from pathogens to plants, leading to
the RNAi-mediated suppression of plant defense, pointed
to ckRNAi as an evolutionarily conserved virulence mechanism
(Weiberg et al., 2013; Wang et al., 2016; Xu et al., 2022; Cheng
et al., 2023).

Building on the breadth of knowledge in plant pathosystems,
the interest on ckRNAi has also moved toward mutualistic
interactions (Qiao et al., 2023): The first evidence for ckRNAi in
such an interaction was described in the root nodule symbiosis
where tRNA-derived sRNA fragments (tRFs) from Bradyrhizo-
bium japonicum were found to hijack soybean AGO1 to target
root development genes essential for nodule formation (Ren
et al., 2019). Similarly, tRFs from Rhizobium tropici, that target
Phaseolus vulgaris genes also implicated in nodules, were shown
to immuno-precipitate with the P. vulgaris AGO5 (S�anchez-
Correa et al., 2022). Convincing evidence for a role of ckRNAi
during mycorrhizal symbioses came from a study on the
ectomycorrhizal fungus Pisolithus microcarpus and its host plant
Eucalyptus grandis. Fluorescence in situ hybridization experiments
demonstrated the transfer of a fungal miRNA-like sequence
(Pmic_miR-8) into root cells of the host plant where Pmic_miR-8
was supposed to target a number of genes within the largest class
of plant NLRs to sustain the interaction (Wong-Bajracharya
et al., 2022).

In AM symbiosis, there are indirect evidences in support of
extracellular sRNA to modulate plant–fungal communication
through ckRNAi. Following its discovery in plants, host-induced
gene silencing (HIGS) emerged as a powerful genetic tool in crops
to confer resistance to plant pathogens and pests, including fungi,
oomycetes and insects (Zand Karimi & Innes, 2022). Similarly, in
AM symbiosis HIGS and virus-induced gene silencing of RNAi
(VIGS) emerged as useful tools to silence fungal genes in
mycorrhizal roots and validate their relevance in the AM symbiosis.
For example, a hairpin RNAi (hpRNAi)-silencing construct
targeting the R. irregularis Monosaccharide Transporter2 (MST2)
expressed in M. truncatula hairy roots reduced MST2 expression
and mycorrhization levels (Helber et al., 2011). HIGS/VIGS has
since confirmed the function of a R. irregularis SL-induced secreted
protein1 (RiSlS1; Tsuzuki et al., 2016), a crinkler effector
(RiCRN1; Voß et al., 2018), a fungal aquaporin (Kikuchi
et al., 2016), a 14–3-3 (Ri14-3-3, Sun et al., 2018), a lysin motif
effector (Zeng et al., 2020) and three HOG1-MAPK cascade
proteins (RiSte11, RiPbs2 and RiHog1,Wang et al., 2023), as well
as a phosphate transporter (GigmPT) in the distantly related AM
fungus, Gigaspora margarita (Xie et al., 2016). Although evidence
of naturally occurring extracellular sRNA transfer from plants to
AM fungi is lacking, the success of HIGS/VIGS provided indirect
confirmation of a ckRNAi mechanism in the AM symbiosis and
confirmed that a RNAi-related mechanism to process host-derived
sRNA exists in AM fungi.

Mining of sRNA sequences in R. irregularis showed an
abundance of sRNA (Rir-sRNAs) highly expressed in mycorrhizal
roots and presenting a characteristic 5’ U enrichment, suggesting

the potential for fungal sRNA to hijack the plant AGO1 RNAi
machinery (Silvestri et al., 2019, 2020; Dallaire et al., 2021).
Alongside, in silico sRNA-mRNAhost target prediction provided a
first indication of ckRNAi from AM fungi to their hosts. A recent
study experimentally corroborated an in silico target prediction,
showing that a sRNA from R. irregularis targets a M. truncatula
WRKY transcription factor, controlling AM colonization level,
suggesting the occurrence of fungus to plant ckRNAi (Silvestri
et al., 2023).

Little is known about the mechanisms that underpin ckRNAi,
although in recent years, there has been an increase in studies
that relate EVs in extracellular RNA delivery. EVs are defined as
cell-derived nanoparticles delimited by a lipid bilayer that
cannot replicate and that mediate the transport of proteins,
lipids, RNAs and other biomolecules between cells and inter-
organisms. EVs include entities such as apoptotic bodies,
membrane-derived microvesicles and multi-vesicular body-
derived exosomes (Th�ery et al., 2018). A role for EVs in
cross-kingdom transport of sRNAs was shown in landmark
studies reporting that cells of Arabidopsis secreted exosome-like
EVs containing sRNA cargoes that contributed to resistance
against the filamentous pathogens B. cinerea (Cai et al., 2018b)
and Phytophthora capsica (Hou et al., 2019). Moreover, a recent
study showed that sRNAs from B. cinerea move through EVs to
enter plant cells through clathrin-mediated endocytosis (He
et al., 2023). A similar role for EVs in transporting sRNAs in
the AM symbiosis was proposed after transmission electron
microscopy revealed a heterogenous collection of EVs, including
exosome-like vesicles, accumulate in the apoplastic matrix
between the host PAM and fungal arbuscule cell wall (Ivanov
et al., 2019; Roth et al., 2019; Holland & Roth, 2023).
Although such structural studies point to EVs as potential
mediators of ckRNAi, future research is needed to confirm or
refute EVs as shuttles for inter- and intra-organismal exRNA
molecule transfer and to uncover possible mechanisms of sRNA
loading and EV-mediated sRNA delivery in the context of
ckRNAi in the AM symbiosis.

Open questions and future perspectives

sRNAs are emerging as core components of the complex regulation
networks behind the cellular and metabolic changes that occur
upon AM colonization. However, we are far from having a
comprehensive picture as many issues remain to be elucidated
(Fig. 2).

Investigations with computational, cellular, molecular and
genetic tools should clarify the functional role of the plethora of
plant sRNAs which are differentially expressed in the host plants
during the AM symbiosis. Do they have a biological function at
local (root) level, likely in the presymbiotic dialogue (Middleton
et al., 2023) or during fungal accommodation and the activation of
metabolic pathways involved in nutrient exchanges? Are they
mobile molecules that travel toward epigean organs and are
involved in the systemic effect? Are there components of the RNAi
machinery (i.e. AGO) specifically active/required in the AM
symbiosis?
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In the arm race between viruses and plants, viruses were shown to
produce silencing suppressors to fight against the host RNAi
(Lopez-Gomollon & Baulcombe, 2022). Notably, effectors that
suppress host RNA silencing have also been identified in bacterial
(Navarro et al., 2008), oomycete (Qiao et al., 2013; Ye &
Ma, 2016; Vetukuri et al., 2017; Hou et al., 2019) and fungal
pathogens (Yin et al., 2019; Zhu et al., 2022). Since filamentous
pathogens translocate silencing suppressors that disrupt sRNA
production in plant host cells (Hou et al., 2019), it is tempting to
speculate that AM fungi could possess modulators of the host RNA
silencingmachinery to optimize the colonization process. A further
level of complexity is given by the presence of mycoviruses in AM
fungi, that may also be involved in the production of silencing
suppressors. A recent study demonstrated thatmycoviruses from an
orchid mycorrhizal fungus encode for proteins that function as
RNA silencing suppressors in fungal and in plant cells (Shimura
et al., 2022), suggesting a fascinating hypothesis that, using this
strategy within a close association such as endomycorrhizas, viruses
can be bidirectionally transmitted between plants and fungi.

On the fungal side, it will be crucial, though challenging due to
their nature of obligate biotrophs, to functionally dissect the
rich repertoire of AGO and RdRp to verify whether specific
components are required for symbiosis in analogy to what is
emerging from fungal pathogens (Cheng et al., 2023).We also need

to decipher the role of the sRNA populations in AM fungi to
understand how they influence fungal gene expression and, as a
consequence, fungal biology and symbiotic functions.

Considering the intimate nature of the interaction between
plants and AM fungi, another challenge will be to understand
whether silencing competent sRNAs are exchanged between the
symbiotic partners of AM in both directions (Qiao et al., 2023).
The validation of in silico predicted targets of sRNA-mRNApairs is
a key goal to be achieved to provide convincing evidence on the
presence of ckRNAi. And, if this is the case, we need to know how
sRNAs move from one partner to the other. EVs are the first
obvious candidate to be investigated; their characterization from
mycorrhizal roots will shed light on molecules (sRNAs and
proteins) that move between the two symbionts and their
importance for mutualistic association.
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