
OUTPUT

LOG
LOG

Sk
ip
 r

ea
lg

in

Ch
an
ge

 t
oo

ls

Tr
y

ne
w
ap

pr
oa
ch

Ex
tr
a

de
bu

g

TMP
LOG

TMP

.tar

Re
ad

 th
e

do
cs

So
ur

ce
 o

n
G

itH
ub

TCP Lab

Luca Visentin, Luca Munaron and Federico Alessandro Ruffinatti
Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy

Pr
ep
ro

ce
ss

 D
at
a

Pl
ot
ti

ng

Kerblam! uses the kerblam.toml file for its
configuration, allowing you to work declaratively.

It’s used to specify, among other things:
• what the folder structure of the project is;
• what files should be downloaded;
• which data profiles are available;
• what kind of backend execution you want to

use: Docker or Podman;

Kerblam! is a simple and lightweight project
management system that helps you structure,
execute, package and share your routine data
analyses. It promotes a default project structure
for ease of interoperability and collaboration.

With Kerblam! you can:
• setup new projects with sensible defaults;
• work reproducibly in containers without

writing long, hard to remember commands;
• keep your workflows neat and ordered;
• bake-in documentation for your pipelines;
• manage your local data, including

downloading, cleaning up of temporary and
intermediate data, and packaging output;

• and more!

Quickstart.md

kerblam data fetch

The push for FAIR(-er) data makes online datasets increasingly common.
Kerblam! can fetch remote data for you, simply by configuring your endpoints.
When you finish working on the project, you can also use Kerblam! to smartly
delete these data and save precious disk space.

The declarative nature of the configuration makes it easy for others to re-run
your project without having to ask you for input data.

Execution profiles

You often need (or want) to run the same workflows on different data: for
testing purposes, on distinct batches of samples, or simply to change the
configuration of your pipelines a bit.

Kerblam! allows you to do all of this declaratively and at runtime by creating
execution profiles that map files to their alter-egos, so that Kerblam! can swap
them at runtime for you on demand.

kerblam data clean

Kerblam! can clean your intermediate,
temporary and even remotely-available
input data with just one command, to
keep your projects tidy and compact on
disk.

Kerblam! can also show you how much
disk space your data is using, broken
down by file type: input, output and
intermediate or temporary. With this,
you can check whether your project is
growing too large.

kerblam package

Ex
ec
ut
io
n

When you are done, you usually want to share your
work, so that others can reproduce your results.

Kerblam! allows you to package your pipelines into
the same container images that you used for your
own runs, export them for upload to a registry, and
package the precious local-only data that others
need for execution in a compressed replay
package… just with one command!

If you share this replay package along with the
container image, others can replay your work
manually, or simply by using kerblam replay.

Necessary local data

Copyright: Luca Visentin, Luca Munaron, Federico Alessandro Ruffinatti, 2024/2025
This poster is CC-BY and available in Zenodo: https://doi.org/10.5281/zenodo.11442700/

kerblam.toml

GitHub Pages
Precompiled for

What’s a Kerblam anyway? This project is named after the fictitious online shop/delivery company in S11E07 of Doctor Who.
Kerblam! might be referred to as Kerblam!, Kerblam or Kerb!am, interchangeably, although Kerblam! is preferred.

The Kerblam! logo is written in the Kwark Font by tup wanders.

If you want data analysis, Kerblam! it!

Docs generated by
mdBook

When you have to share your output
with the rest of the world, Kerblam! can
export your output data to a
compressed tarball by carefully picking
it out of the rest.

No more having to look up how to use
tar!

kerblam data pack

kerblam run

Kerblam! runs your pipelines, but not by itself: it leverages other workflow
managers. It supports GNU make out-of-the-box, and everything else through
shell scripts. This allows you to be flexible in the choice of workflow manager:
are you familiar with snakemake? Use that! nextflow? Great! Do you just
need a small Bash script? We love it!

Kerblam! can manage any number of pipelines, all with potentially different
workflow managers, container images, documentation…

Easy containerisation

Kerblam! can use containers for you, so you don’t have to
remember how to docker run or write long volume
mountpoints for your data if you want run inside containers
what you normally would run locally (like make). Just write a
dockerfile with the same name as your pipeline, and
Kerblam! does the rest.

	Slide Number 1

